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초    록 

 
Robot Operating System (ROS)는 로봇 애플리케이션을 만드는데 

널리 쓰이는 미들웨어이다. ROS composition 방법이 등장하면서, 

하나의 프로세스 내에 여러 개의 노드를 같이 실행하는 것이 가능 

해졌다. 그러나, 하나의 프로세스 내에 여러 개의 노드가 존재할 때는 

모든 노드가 하나의 메모리 공간을 사용하므로, 각 노드에 동적으로 

할당된 메모리 개체들이 페이지의 경계에 상관없이 무질서하게 배열된다. 

본 논문에서는 ROS composition 프로세스에서 페이지 수준 격리를 

적용하기 위해서, 각 노드에 동적으로 메모리를 할당할 때 서로 다른 

영역에 메모리를 할당하도록 하는 메모리 할당 방법을 제안한다. 본 

논문에서 제안하는 방법은 기존에 컴파일 된 노드 바이너리에 대해서도 

적용이 가능하다. 해당 방법에서는 메모리 할당 및 해제 요청을 

특수하게 설계된 메모리 할당자로 보내어 처리한다. 이 때, 어느 

영역에서 해당 요청을 처리해야 하는지 결정하기 위해 필요한 정보를 

추적하여 확보하며, 이를 이용하여 각 요청을 적절하게 처리한다. 

 

주요어 : 메모리 할당, 페이지 수준 격리, ROS composition 

학   번 : 2021-25362 
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제 1 장 Introduction 
 

 

Recently, robots have been increasingly used for reasons such 

as cost reduction, and the development of artificial intelligence has 

made it possible to implement complex movements that were 

previously impossible. Various software components and libraries 

are provided in order to implement such complex behaviors of robots. 

One of the most widely used middleware of this kind is the Robot 

Operating System (ROS) [1].  

Formerly, the application components of ROS, called nodes, were 

executed in a single process per each node. After some time, ROS 

composition methods [2] have emerged, allowing the composition of 

multiple nodes executed together in a single process. However, when 

multiple nodes are composed into a single process, multiple 

independent nodes share the same memory space, and therefore the 

attack surface becomes wider, allowing attackers to compromise 

several nodes by detouring through only a subset of nodes in the 

process. Furthermore, the C++ language, which is a well-known 

memory unsafe language, is currently one of the officially supported 

languages, which may allow the attacker to read contents of arbitrary 

memory regions through memory bugs such as buffer overflow.  

In order to address this issue, one may try to apply memory 

isolation on a per-node basis. There are currently many ways to 

apply memory isolation. One of the simplest techniques is SoftBound 

[3], which verifies each memory access using base and bound 

information for each pointer, but this technique has a relatively high 

cost of 67(%) on average, and requires compiler assisted 

instrumentation of each memory access. In order to reduce the cost 

of isolation, a special hardware mechanism such as Intel MPK may be 

utilized. A technique that utilizes such a feature is ERIM [4], which 

incurs a cost of up to 4.3(%) on average on typical applications, which 

is quite lower than SoftBound. In order to apply memory isolation 

with moderate overhead using Intel MPK, and also avoid compiler 

assisted instrumentation on each memory access, it would be very 
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beneficial to apply page level isolation.  

Currently, however, since the nodes share the same heap, 

dynamically allocated memory chunks of different nodes are 

intermixed, regardless of the page boundary. This paper introduces 

a memory allocation method to dynamically allocate memory chunks 

on separate regions for each node, even on precompiled node 

libraries. Upon the assumption that ROS nodes are provided as a 

shared library binary, the key challenge is to devise a way to 

adequately handle memory requests that are issued from the node. 

This issue is tackled by altering the dynamic linking process so that 

the memory requests are passed to a specially designed allocator that 

handles the memory requests considering which node the request 

came from. Here, context tracing and memory space tracing 

techniques are leveraged in order to pinpoint which node issued the 

memory request. Through this study, it is expected that various 

efficient region-based isolation techniques can be seamlessly 

applied in ROS composition. 

This paper is organized as follows. In section 2, background 

knowledge regarding what is memory isolation, and how ROS process 

is organized is described. In section 3, design and implementation of 

the allocator and memory request handling mechanism is described 

in detail. In section 4, the experiment settings are described, and 

execution overhead is quantified. Lastly, the conclusion of this paper 

is provided in section 5. 
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제 2 장 Background 
 

 

제 1 절 Robot Operating System (ROS) 
 

The Robot Operating System (ROS) [1] is a set of libraries and 

tools for developing a robot application software. It is an open source 

software that is provided by Open Robotics, a nonprofit public benefit 

corporation. ROS is known to be currently used by various 

organizations and vendors.  

ROS 2 is the latest version of the Robot Operating System. In 

ROS 2, a node is a unit component of an application that is executed 

in ROS. ROS also provides a library that provides various 

functionalities such as inter-node communication. At the core of this 

functionality is the ROS client library (rcl) [5] that is written in C. 

Based on this library, the rclcpp library [6] is provided to support 

C++ language, which is an official language of ROS.  

For inter-node communication, ROS provides various 

communication models. A publish-subscribe model is supported as a 

functionality called a topic. In this model, a node can subscribe to a 

topic by its name and wait for a message to be published. After that, 

another node can publish a message to this topic, so that all of the 

subscribers to that topic can receive the published message. Another 

model that is supported is the server-client model, as a functionality 

called a service. In this model, a node can open a service and wait for 

any other node to send a request to that service. Upon a request to 

that service from another node, the node that opened the service 

executes a callback function to handle the request. Finally, there is a 

functionality called an action, that is based on a communication model 

that is specially designed for usage in communications between 

robots. 
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제 2 절 Structure of ROS Process 
 

The process that the ROS application is executed in consists of 

several components. Figure 1 shows the typical structure of ROS 

applications. In ROS 2, nodes are typically executed based on an 

executor that is provided as part of the ROS library. In order to allow 

several nodes to be executed together on a single process, the 

executor executes predefined functions of each node when needed. 

ROS assumes that the functions are implemented in a non-blocking 

fashion, and based on that assumption, the executor schedules the 

execution of functions of nodes, and the procedures are executed one 

by one, possibly on a single thread. The users may compose the 

provided nodes by compiling and executing their own execution base 

that calls the initialization routines and creates and registers the 

nodes that the user wants to execute. When the node is executed, it 

may use several library functions that are provided by the C/C++ 

standard and the functions that are provided by the ROS library.  

 

 
Figure 1 ROS Process Structure 

 

Upon creation of the ROS process, the execution base will 

specify in advance or dynamically load needed node binaries. When 

the node binaries are loaded to the process, the dependent libraries 

such as the ROS library and the system library (e.g. glibc [7]) are 

also loaded and needed functions are dynamically linked to the node 

binaries. The loaded and dynamically linked binaries are dynamic 

libraries that may be patched and recompiled without any information 
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of the binaries that use it. It is this point that will make possible the 

technique specified in this paper. 

 

 

제 3 절 Page Level Isolation 
 

Isolation is a technique to control the memory access so that a 

specific component can access only a predefined subset of the 

memory space and any access to other memory regions are detected 

or blocked.  

Isolation can be applied in various ways. One possible way is 

SoftBound [3] that verifies the accessed pointers of each memory 

access based on the base and bound of the allowed region. However, 

in order to use this technique, the isolated component must be 

instrumented to properly check the pointers on each memory access. 

Also, since each memory access instruction is instrumented, the cost 

is relatively high. In order to reduce the overhead of isolation, page 

level isolation techniques exist that utilize special hardware features 

such as Intel MPK or ARM Domains to modify memory page 

permissions with low overhead and check each memory access based 

on the modified page permissions. One technique that utilizes Intel 

MPK is ERIM [4], which incurs a cost of up to 4.3(%) on average on 

typical applications, which is quite low. However, since the memory 

permissions can be granted on a page-per-page basis, special care 

might be required to seamlessly apply isolation on a page granularity. 

 

 

제 4 절 Memory Allocator 
 

Typically, a programmer can allocate a local variable in the stack 

or a global variable that is shared throughout the whole execution 

time. However, there are cases where the programmer cannot know 

the needed size of memory space in advance or needs a temporary 

buffer that will be used by several functions in a short time window. 

In this case, the programmer may request a dynamic memory 
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allocation to the memory allocator so that a memory space of the 

specified size is provided in a dynamically resizable memory space, 

called a heap.  

Basically, memory allocators receive memory allocation requests 

to provide a memory chunk of a specific size, and memory 

deallocation requests that return formerly allocated memory chunks 

by the same memory allocator. Typical memory allocators handle 

requests of small sizes by dividing a piece of memory chunk from a 

big memory region acquired by the memory allocator in advance. 

Therefore, one may not assume that the memory chunks are 

organized in a certain way, but rather are scattered around the whole 

memory space, regardless of the page boundary. There are several 

memory allocator implementations in order to address various 

specific challenges for memory allocation, but typical memory 

allocators acquire memory regions on a granularity of a multiple of 

pages, aware of the common MMU hardware structure. 
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제 3 장 Design and Implementation 
 

As described so far, in ROS, several nodes can be loaded into a 

single process and be executed together, based on a ROS executor. 

These nodes share the same memory space, and therefore share the 

same heap. On the left of Figure 2 is an example of a possible memory 

allocation status using the current implementation. Allocated memory 

chunks are handled from the same heap, by the same allocator in the 

standard C library. As a result, allocated memory chunks are 

interleaved without any order, regardless of which node requested 

the memory chunk. However, in order to seamlessly apply page level 

isolation without modification of node binaries, memory requests 

from each node should be handled on the caller’s own heap, or at least 

the memory chunks from other nodes should be separated by page 

boundaries, as in the right of Figure 2.  

To do this, a special memory allocation unit is inserted as part of 

the ROS library, and existing ROS library functions, including the 

executor, will be modified to properly use the new memory allocation 

management unit, as in Figure 3. Then, using this modified library, 

the user may specify in the execution base so that this new 

functionality will be activated properly. The memory allocation unit 

consists of 4 parts. First, by using the malloc/free hooking 

mechanism to alter the dynamic linking process, the memory 

requests are redirected to a trampoline so that the newly inserted 

handler is called. Second, the (de)allocation routine will be called by 

the trampoline with the requested size and which heap to use, and 

this routine is where the actual memory allocation happens. Third, in 

order to choose the right heap to handle the memory request, the 

execution context tracer constantly keeps tracking which node is 

currently being executed for this reason. Lastly, the memory tracer 

is used to track the address and owner of each heap, in order to 

recognize the owner of the memory chunk using only its address, so 

that on a memory deallocation request, the memory chunk will be 

returned to its exact owner. 
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Figure 2 Memory allocation on each node should be handled on a separate region 

 

 
Figure 3 Modified structure of ROS process to apply page level isolation 

 

 

제 1 절 Memory Request Trampoline 
 

Most of the binaries compiled from C/C++, including ROS node 

libraries, assume that the system allocation library that abides by the 

C/C++ standard is provided on the executed system. Therefore, 

these binaries use the memory allocator provided by the language 

standard library. The memory request trampolines, specifically the 

memory allocation routine and the memory deallocation routine, are 

defined in a new ROS library, with the same name and parameters as 

the original memory request routines. Here, the memory allocation 

trampoline only takes the allocation size as the parameter, and the 

memory deallocation routine only takes the returned memory chunk 

pointer as the parameter. However, the memory requests should be 

handled separately, depending on which heap to handle the request. 

The essence of the rest of the components that are described in later 

sections is to provide a way to handle the memory requests with the 

provided parameter which would be insufficient to completely handle 

memory requests if additional information were not available.  
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The memory allocation trampoline receives only the size of the 

requested memory chunk, so it should choose the right heap to handle 

the memory allocation request. Figure 4 illustrates the behavior of 

the memory allocation trampoline. To do so, it first looks up the 

current execution context in the Context Tracer component, which is 

described in section 3-3. The Context Tracer tracks and stores the 

current execution context, specifically whether which node was being 

executed, or if the library function was executed, just before the 

memory request was issued. The execution context includes a 

memory allocator object that is described in section 3-2. The 

trampoline then passes the memory allocation request to the memory 

allocator object that is included in the execution context, and the 

memory allocator routine handles the memory request using the 

metadata stored in the passed memory allocator object. 

 

 
Figure 4 Memory allocation trampoline behavior 

 

The memory deallocation trampoline behaves very similarly to 

the memory allocation trampoline in that it should also choose the 

right heap to handle the memory deallocation request, except that it 

only receives the pointer of the returned memory chunk. Figure 5 

illustrates the behavior of the memory deallocation trampoline. It first 

looks up in the Memory Tracer which heap this returned memory 

chunk is part of. The Memory Tracer tracks the location and owner 

of each memory region that was fetched by each memory allocator. 
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Using this information, the memory deallocation trampoline can pass 

this returned memory chunk to the memory allocator that exactly 

owns this memory chunk. 

 

 
Figure 5 Memory deallocation trampoline behavior 
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even know the existence of other instances. Here, it is the 

responsibility of the operating system to ensure that the fetched 

memory regions do not overlap. Another modification to mention in 

advance is that it is required by the memory tracer for the memory 

allocator to hand information about the memory regions fetched from 

and returned to the OS. 

 

 

제 3 절 Execution Context Tracer 
 

The Execution Context Tracer, or shortly Context Tracer, stores 

information about which context, or which node, is currently being 

executed on this thread. The execution context is stored by each 

thread on a thread local storage, so multiple threads can be traced 

without any synchronization issues. The Context Tracer leverages 

the fact that the behavior of node execution resembles the behavior 

of process execution, in the point that the entrance to and exit from 

the executed component is only connected to certain management 

units, which are the ROS library components on the left and the OS 

kernel on the right in Figure 6. Here, we assume that calling library 

functions other than the ones that appear in Figure 6 is part of the 

node execution context, because the mechanisms of heap memory 

management proposed in this paper should also be analogously 

applied in these cases. Therefore, patching the possible entries to 

the node functions from the ROS executor and the possible exits to 

the ROS library to inform the Execution Context Tracer about context 

switches allows to up to date tracking of the current execution 

context, whether the ROS library function is being executed, or 

whose node function is being executed, so that the memory request 

trampoline is able to look up the execution context whenever the 

memory allocation routine is called. 
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Figure 6 The behavior of node execution resembles process execution. 
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owned by which memory allocator object. Figure 7 illustrates which 
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However, this information is stored as global data, so it does require 
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implementations are quite efficient, traversing a balanced binary tree 

would impose a significant performance overhead. Therefore, a 
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support an efficient, lock free lookup. The shadow memory stores a 

byte per each page. The byte stored is an identifier, or specifically 

an index to a table that stores a pointer to each registered context. 

Here, the shadow memory overhead is one byte per page size, but 

this scheme should also work even if it uses more bytes per page 

size, if the user decides to bear the memory overhead. Since the 
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shadow memory is updated on memory acquisition or removal, it 

should not be modified when any memory chunk is allocated on the 

page. Therefore, only a simple synchronization on these page updates 

is enough for this scheme to work correctly, and since lookups only 

need to read the shadow memory, they can be done in a lock free 

manner.  

 An issue that occurs when using this shadow memory scheme 

is that the addresses of memory pages other than the ones managed 

by the registered memory allocators are unknown, and therefore the 

shadow pages of these unknown memory pages cannot be mapped in 

advance. Therefore, assuming that any address of the shadow region 

can be accessed, this issue is handled by installing a handler of an 

unmapped memory access exception, so that if the shadow memory 

region is accessed, the region is mapped with a page filled with null 

bytes. 

 

 
Figure 7 Memory Tracer stores data about the location and owner of each heap 
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제 4 장 Evaluation 
 

In this section, the settings and results of several experiments 

regarding this allocator are provided. The experiment was done on 

an Intel i9-10900K CPU with an Ubuntu Linux 18.04 operating 

system. ROS dashing rcl library [5] and rclcpp library [6] was 

modified and fully compiled with the source code on the machine. 

Also, the memory allocator from glibc version 2.27 [8] was ported, 

which is the same implementation as the default system allocator of 

the operating system, for a reasonable comparison. Unfortunately, 

the thread caching technique was disabled since the original 

implementation used a thread local variable whose location and size 

were fixed at compile time, but this is not trivially available because 

the total number of memory allocators may vary depending on the 

node composition setting. In future works, it might be viable to apply 

a variably sizable thread caches to support a variable number of 

memory allocators. 

 

 

제 1 절 Proof of Concept Experiment 
 

In order to show that this also works on precompiled nodes, a 

composition experiment regarding four components is done. Figure 8 

illustrates the components of this experiment. The executed nodes 

are leaker, and peeker. The leaker component puts an address of a 

dynamically allocated memory chunk on a global data space, to 

simulate a situation where an address to data of some node is 

accidentally leaked. The peeker component is a corresponding 

component to the leaker component, which tries to collect leaked 

information by acquiring this address and reading the data using this 

leaked address.  

In order to show that it is possible to apply page level isolation 

using this technique, a simple page level isolation using Intel MPK is 

applied. This point is illustrated in Figure 8 by the double line borders 
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wrapping each component on the right. In this case, all of the allocator 

objects are assigned a dedicated pkey, which is a tag related to Intel 

MPK. Then, Intel MPK can be used to easily mask read or write 

permission of memory pages of a selected pkey. This way, page level 

isolation can be simply done by masking memory permissions of data 

from all components other than the component that is being executed.  

The experiment is done as follows. First, in order to illustrate 

that this works on precompiled nodes, the four nodes to be used are 

compiled inside a docker container, where the ROS environment is 

identical to the host, and no modifications were made to the ROS 

library. Then, the node binaries in shared library format are collected 

to the host machine. On the other hand, the modified ROS libraries 

are compiled on the host environment. Lastly, the execution base is 

crafted to load the collected node binaries along with the modified 

ROS library. As a result, the nodes are successfully executed, and 

the abnormal memory access by the peeker component is 

successfully detected and a warning is issued. This illustrates that 

memory access to data of other components violates the effective 

memory permission when the memory access is done, and therefore 

page level isolation of dynamically allocated data is successfully 

enforced. 

 

 
 

Figure 8 The setting of Proof of Concept Experiment 
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제 2 절 Performance Evaluation 
 

To measure the performance benefit of using the proposed 

method with ROS composition, the execution time of a simple 

composed process with 1 publisher and 1 subscriber with various 

publishing periods is measured using the linux perf utility [9]. In this 

setting, a publisher publishes a simple message of 16 (bytes) 

periodically, and a subscriber receives the message. The period of 

publishing messages used in the experiment varies from 0.25 (ms) 

up to 5 (ms). This time length was chosen because a former study 

[10] has shown that the message transmission latency is about ~ 1 

(ms). Thus, for a period as long as 5 (ms), the nodes wait for sending 

and receiving a message for a major portion of time. On the other 

hand, for a period as short as 0.25 (ms), the nodes constantly keep 

sending and receiving messages, which indicates a highly loaded 

situation. The execution time of two settings is measured. First, the 

execution time of a process comprising one publisher and one 

subscriber is measured, when a simple page level isolation with the 

proposed memory allocation method is applied. Also, to compare the 

former setting with an equivalent in terms of isolation, the execution 

time of two processes, each containing one publisher and one 

subscriber respectively, is measured. In terms of isolation, this 

setting is equivalent to the composed process with page level 

isolation, since the memory space of other processes are naturally 

separated, and therefore each node in their own process cannot 

access each other.  
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Figure 9 Execution time of one publisher and one subscriber on different settings 

 

Figure 9 illustrates the results. The results show that execution 

time is reduced by from 3.0 (%) up to 17.6 (%) when comparing the 

proposed design with isolation enabled, to when each node is 

executed on separate processes, which is an equivalent in terms of 

isolating dynamically allocated memory. Specifically, when the 

publish period is as long as 5 (ms), which indicates a low workload 

circumstance, the execution time is reduced by 3.0 (%). On the other 

hand, as the publish period decreases, the execution time gap 

becomes bigger, up to 17.6 (%) when the publish period is as short 

as 0.25 (ms). This indicates that there is definitely a benefit in 

applying page level isolation on a composed process, rather than just 

executing each node on separate processes, especially when the 

nodes are handling heavy workloads.  
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제 5 장 Conclusion 
 

In ROS composition, currently all nodes in the process use the 

same system allocator, and therefore allocated memory chunks are 

scattered regardless of which node uses it. In order to apply page 

level isolation, a specially designed memory allocation unit is 

introduced. Using this memory allocation unit, memory allocation can 

be controlled so that each page only contains memory chunks used 

by only a single node, and therefore it becomes possible to 

seamlessly apply page level isolation. In this design, memory 

requests can be redirected to an allocation/deallocation trampoline. 

Even if only the request size or returned address is passed as the 

parameter, the memory requests can be handled properly. Here, this 

memory allocation unit fills in the gaps of insufficient information by 

properly tracing the required data. Experiment result shows that the 

proposed design allows to seamlessly apply page level isolation on 

dynamically allocated memory regions of a composed process 

running several nodes together, and therefore allows a benefit of up 

to 17.6 (%) execution time reduction compared to naively running 

the same nodes on separate processes, which is an equivalent in 

terms of isolating dynamically allocated memory.  
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   One of the most widely used middleware in robot application 

development is the Robot Operating System (ROS). As ROS 

composition methods have emerged, it has become possible to 

execute multiple nodes concurrently in a single process. However, 

when multiple nodes are composed into a single process, multiple 

independent nodes share the same memory space, and therefore 

dynamically allocated memory chunks of different nodes are 

intermixed, regardless of the page boundary. In order to apply page 

level isolation, this paper introduces a memory allocation method to 

dynamically allocate memory chunks on separate regions for each 

node, even on precompiled node binaries. In this method, the memory 

requests are redirected to a specially designed allocator, and upon a 

memory request, on which region the memory request must be 

handled is determined using additional information obtained through 

tracing the required information. 
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