

저 시-비 리- 경 지 2.0 한민

는 아래 조건 르는 경 에 한하여 게

l 저 물 복제, 포, 전송, 전시, 공연 송할 수 습니다.

다 과 같 조건 라야 합니다:

l 하는, 저 물 나 포 경 , 저 물에 적 된 허락조건
 명확하게 나타내어야 합니다.

l 저 터 허가를 면 러한 조건들 적 되지 않습니다.

저 에 른 리는 내 에 하여 향 지 않습니다.

것 허락규약(Legal Code) 해하 쉽게 약한 것 니다.

Disclaimer

저 시. 하는 원저 를 시하여야 합니다.

비 리. 하는 저 물 리 목적 할 수 없습니다.

경 지. 하는 저 물 개 , 형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

공학석사 학위논문

Memory Allocation for

Page Level Isolation in ROS

Composition

ROS Composition에서 페이지 수준 격리를 위한

메모리 할당 방법

2023년 2월

서울대학교 대학원

전기·정보공학부

이 경 룡

Memory Allocation for

Page Level Isolation in ROS

Composition

지도 교수 백 윤 흥

이 논문을 공학석사 학위논문으로 제출함

2023년 2월

서울대학교 대학원

전기·정보공학부

이 경 룡

이경룡의 공학석사 학위논문을 인준함

2023년 2월

위 원 장 문 수 묵 (인)

부위원장 백 윤 흥 (인)

위 원 이 병 영 (인)

 i

초 록

Robot Operating System (ROS)는 로봇 애플리케이션을 만드는데

널리 쓰이는 미들웨어이다. ROS composition 방법이 등장하면서,

하나의 프로세스 내에 여러 개의 노드를 같이 실행하는 것이 가능

해졌다. 그러나, 하나의 프로세스 내에 여러 개의 노드가 존재할 때는

모든 노드가 하나의 메모리 공간을 사용하므로, 각 노드에 동적으로

할당된 메모리 개체들이 페이지의 경계에 상관없이 무질서하게 배열된다.

본 논문에서는 ROS composition 프로세스에서 페이지 수준 격리를

적용하기 위해서, 각 노드에 동적으로 메모리를 할당할 때 서로 다른

영역에 메모리를 할당하도록 하는 메모리 할당 방법을 제안한다. 본

논문에서 제안하는 방법은 기존에 컴파일 된 노드 바이너리에 대해서도

적용이 가능하다. 해당 방법에서는 메모리 할당 및 해제 요청을

특수하게 설계된 메모리 할당자로 보내어 처리한다. 이 때, 어느

영역에서 해당 요청을 처리해야 하는지 결정하기 위해 필요한 정보를

추적하여 확보하며, 이를 이용하여 각 요청을 적절하게 처리한다.

주요어 : 메모리 할당, 페이지 수준 격리, ROS composition

학 번 : 2021-25362

 ii

목 차

제 1 장 Introduction ... 1

제 2 장 Background .. 3

제 1 절 Robot Operating System (ROS) 3

제 2 절 Structure of ROS Process .. 4

제 3 절 Page Level Isolation .. 5

제 4 절 Memory Allocator ... 5

제 3 장 Design and Implementation 7

제 1 절 Memory Request Trampoline ... 8

제 2 절 Porting a Memory Allocator ... 10

제 3 절 Execution Context Tracer ... 11

제 4 절 Memory Tracer ... 12

제 4 장 Evaluation .. 14

제 1 절 Proof of Concept Experiment ... 14

제 2 절 Performance Evaluation ... 16

제 5 장 Conclusion ... 18

Reference .. 19

Abstract ... 20

 iii

그림 목차

[Figure 1] .. 4

[Figure 2] .. 8

[Figure 3] .. 8

[Figure 4] .. 9

[Figure 5] .. 10

[Figure 6] .. 12

[Figure 7] .. 13

[Figure 8] .. 15

[Figure 9] .. 17

 1

제 1 장 Introduction

Recently, robots have been increasingly used for reasons such

as cost reduction, and the development of artificial intelligence has

made it possible to implement complex movements that were

previously impossible. Various software components and libraries

are provided in order to implement such complex behaviors of robots.

One of the most widely used middleware of this kind is the Robot

Operating System (ROS) [1].

Formerly, the application components of ROS, called nodes, were

executed in a single process per each node. After some time, ROS

composition methods [2] have emerged, allowing the composition of

multiple nodes executed together in a single process. However, when

multiple nodes are composed into a single process, multiple

independent nodes share the same memory space, and therefore the

attack surface becomes wider, allowing attackers to compromise

several nodes by detouring through only a subset of nodes in the

process. Furthermore, the C++ language, which is a well-known

memory unsafe language, is currently one of the officially supported

languages, which may allow the attacker to read contents of arbitrary

memory regions through memory bugs such as buffer overflow.

In order to address this issue, one may try to apply memory

isolation on a per-node basis. There are currently many ways to

apply memory isolation. One of the simplest techniques is SoftBound

[3], which verifies each memory access using base and bound

information for each pointer, but this technique has a relatively high

cost of 67(%) on average, and requires compiler assisted

instrumentation of each memory access. In order to reduce the cost

of isolation, a special hardware mechanism such as Intel MPK may be

utilized. A technique that utilizes such a feature is ERIM [4], which

incurs a cost of up to 4.3(%) on average on typical applications, which

is quite lower than SoftBound. In order to apply memory isolation

with moderate overhead using Intel MPK, and also avoid compiler

assisted instrumentation on each memory access, it would be very

 2

beneficial to apply page level isolation.

Currently, however, since the nodes share the same heap,

dynamically allocated memory chunks of different nodes are

intermixed, regardless of the page boundary. This paper introduces

a memory allocation method to dynamically allocate memory chunks

on separate regions for each node, even on precompiled node

libraries. Upon the assumption that ROS nodes are provided as a

shared library binary, the key challenge is to devise a way to

adequately handle memory requests that are issued from the node.

This issue is tackled by altering the dynamic linking process so that

the memory requests are passed to a specially designed allocator that

handles the memory requests considering which node the request

came from. Here, context tracing and memory space tracing

techniques are leveraged in order to pinpoint which node issued the

memory request. Through this study, it is expected that various

efficient region-based isolation techniques can be seamlessly

applied in ROS composition.

This paper is organized as follows. In section 2, background

knowledge regarding what is memory isolation, and how ROS process

is organized is described. In section 3, design and implementation of

the allocator and memory request handling mechanism is described

in detail. In section 4, the experiment settings are described, and

execution overhead is quantified. Lastly, the conclusion of this paper

is provided in section 5.

 3

제 2 장 Background

제 1 절 Robot Operating System (ROS)

The Robot Operating System (ROS) [1] is a set of libraries and

tools for developing a robot application software. It is an open source

software that is provided by Open Robotics, a nonprofit public benefit

corporation. ROS is known to be currently used by various

organizations and vendors.

ROS 2 is the latest version of the Robot Operating System. In

ROS 2, a node is a unit component of an application that is executed

in ROS. ROS also provides a library that provides various

functionalities such as inter-node communication. At the core of this

functionality is the ROS client library (rcl) [5] that is written in C.

Based on this library, the rclcpp library [6] is provided to support

C++ language, which is an official language of ROS.

For inter-node communication, ROS provides various

communication models. A publish-subscribe model is supported as a

functionality called a topic. In this model, a node can subscribe to a

topic by its name and wait for a message to be published. After that,

another node can publish a message to this topic, so that all of the

subscribers to that topic can receive the published message. Another

model that is supported is the server-client model, as a functionality

called a service. In this model, a node can open a service and wait for

any other node to send a request to that service. Upon a request to

that service from another node, the node that opened the service

executes a callback function to handle the request. Finally, there is a

functionality called an action, that is based on a communication model

that is specially designed for usage in communications between

robots.

 4

제 2 절 Structure of ROS Process

The process that the ROS application is executed in consists of

several components. Figure 1 shows the typical structure of ROS

applications. In ROS 2, nodes are typically executed based on an

executor that is provided as part of the ROS library. In order to allow

several nodes to be executed together on a single process, the

executor executes predefined functions of each node when needed.

ROS assumes that the functions are implemented in a non-blocking

fashion, and based on that assumption, the executor schedules the

execution of functions of nodes, and the procedures are executed one

by one, possibly on a single thread. The users may compose the

provided nodes by compiling and executing their own execution base

that calls the initialization routines and creates and registers the

nodes that the user wants to execute. When the node is executed, it

may use several library functions that are provided by the C/C++

standard and the functions that are provided by the ROS library.

Figure 1 ROS Process Structure

Upon creation of the ROS process, the execution base will

specify in advance or dynamically load needed node binaries. When

the node binaries are loaded to the process, the dependent libraries

such as the ROS library and the system library (e.g. glibc [7]) are

also loaded and needed functions are dynamically linked to the node

binaries. The loaded and dynamically linked binaries are dynamic

libraries that may be patched and recompiled without any information

Execution Base (Initialization, Start Executor)

ROS Executor

Node B

ROS Library System Memory Allocator

Node A

 5

of the binaries that use it. It is this point that will make possible the

technique specified in this paper.

제 3 절 Page Level Isolation

Isolation is a technique to control the memory access so that a

specific component can access only a predefined subset of the

memory space and any access to other memory regions are detected

or blocked.

Isolation can be applied in various ways. One possible way is

SoftBound [3] that verifies the accessed pointers of each memory

access based on the base and bound of the allowed region. However,

in order to use this technique, the isolated component must be

instrumented to properly check the pointers on each memory access.

Also, since each memory access instruction is instrumented, the cost

is relatively high. In order to reduce the overhead of isolation, page

level isolation techniques exist that utilize special hardware features

such as Intel MPK or ARM Domains to modify memory page

permissions with low overhead and check each memory access based

on the modified page permissions. One technique that utilizes Intel

MPK is ERIM [4], which incurs a cost of up to 4.3(%) on average on

typical applications, which is quite low. However, since the memory

permissions can be granted on a page-per-page basis, special care

might be required to seamlessly apply isolation on a page granularity.

제 4 절 Memory Allocator

Typically, a programmer can allocate a local variable in the stack

or a global variable that is shared throughout the whole execution

time. However, there are cases where the programmer cannot know

the needed size of memory space in advance or needs a temporary

buffer that will be used by several functions in a short time window.

In this case, the programmer may request a dynamic memory

 6

allocation to the memory allocator so that a memory space of the

specified size is provided in a dynamically resizable memory space,

called a heap.

Basically, memory allocators receive memory allocation requests

to provide a memory chunk of a specific size, and memory

deallocation requests that return formerly allocated memory chunks

by the same memory allocator. Typical memory allocators handle

requests of small sizes by dividing a piece of memory chunk from a

big memory region acquired by the memory allocator in advance.

Therefore, one may not assume that the memory chunks are

organized in a certain way, but rather are scattered around the whole

memory space, regardless of the page boundary. There are several

memory allocator implementations in order to address various

specific challenges for memory allocation, but typical memory

allocators acquire memory regions on a granularity of a multiple of

pages, aware of the common MMU hardware structure.

 7

제 3 장 Design and Implementation

As described so far, in ROS, several nodes can be loaded into a

single process and be executed together, based on a ROS executor.

These nodes share the same memory space, and therefore share the

same heap. On the left of Figure 2 is an example of a possible memory

allocation status using the current implementation. Allocated memory

chunks are handled from the same heap, by the same allocator in the

standard C library. As a result, allocated memory chunks are

interleaved without any order, regardless of which node requested

the memory chunk. However, in order to seamlessly apply page level

isolation without modification of node binaries, memory requests

from each node should be handled on the caller’s own heap, or at least

the memory chunks from other nodes should be separated by page

boundaries, as in the right of Figure 2.

To do this, a special memory allocation unit is inserted as part of

the ROS library, and existing ROS library functions, including the

executor, will be modified to properly use the new memory allocation

management unit, as in Figure 3. Then, using this modified library,

the user may specify in the execution base so that this new

functionality will be activated properly. The memory allocation unit

consists of 4 parts. First, by using the malloc/free hooking

mechanism to alter the dynamic linking process, the memory

requests are redirected to a trampoline so that the newly inserted

handler is called. Second, the (de)allocation routine will be called by

the trampoline with the requested size and which heap to use, and

this routine is where the actual memory allocation happens. Third, in

order to choose the right heap to handle the memory request, the

execution context tracer constantly keeps tracking which node is

currently being executed for this reason. Lastly, the memory tracer

is used to track the address and owner of each heap, in order to

recognize the owner of the memory chunk using only its address, so

that on a memory deallocation request, the memory chunk will be

returned to its exact owner.

 8

Figure 2 Memory allocation on each node should be handled on a separate region

Figure 3 Modified structure of ROS process to apply page level isolation

제 1 절 Memory Request Trampoline

Most of the binaries compiled from C/C++, including ROS node

libraries, assume that the system allocation library that abides by the

C/C++ standard is provided on the executed system. Therefore,

these binaries use the memory allocator provided by the language

standard library. The memory request trampolines, specifically the

memory allocation routine and the memory deallocation routine, are

defined in a new ROS library, with the same name and parameters as

the original memory request routines. Here, the memory allocation

trampoline only takes the allocation size as the parameter, and the

memory deallocation routine only takes the returned memory chunk

pointer as the parameter. However, the memory requests should be

handled separately, depending on which heap to handle the request.

The essence of the rest of the components that are described in later

sections is to provide a way to handle the memory requests with the

provided parameter which would be insufficient to completely handle

memory requests if additional information were not available.

Node A

Node B

Node C

Memory chunks of other nodes
 should be on separate regions

Memory chunks of other nodes
 are intermixed

Execution Base (Initialization, Start Executor)

ROS Executor

Node B

ROS Library Memory Allocation Management

Node A

Precompiled, Untrusted

Modified, Trusted

New component

 9

The memory allocation trampoline receives only the size of the

requested memory chunk, so it should choose the right heap to handle

the memory allocation request. Figure 4 illustrates the behavior of

the memory allocation trampoline. To do so, it first looks up the

current execution context in the Context Tracer component, which is

described in section 3-3. The Context Tracer tracks and stores the

current execution context, specifically whether which node was being

executed, or if the library function was executed, just before the

memory request was issued. The execution context includes a

memory allocator object that is described in section 3-2. The

trampoline then passes the memory allocation request to the memory

allocator object that is included in the execution context, and the

memory allocator routine handles the memory request using the

metadata stored in the passed memory allocator object.

Figure 4 Memory allocation trampoline behavior

The memory deallocation trampoline behaves very similarly to

the memory allocation trampoline in that it should also choose the

right heap to handle the memory deallocation request, except that it

only receives the pointer of the returned memory chunk. Figure 5

illustrates the behavior of the memory deallocation trampoline. It first

looks up in the Memory Tracer which heap this returned memory

chunk is part of. The Memory Tracer tracks the location and owner

of each memory region that was fetched by each memory allocator.

Lookup Context

Memory

Allocator B Preserved

Memory

Pages

Memory

Allocator A Preserved

Memory

Pages

Node

Memory allocation trampoline

Redirect

Context is Node A?

Context Tracer

Context is Node B?

Allocation

Request Size

 10

Using this information, the memory deallocation trampoline can pass

this returned memory chunk to the memory allocator that exactly

owns this memory chunk.

Figure 5 Memory deallocation trampoline behavior

제 2 절 Porting a Memory Allocator

Common memory allocation routines fetch memory regions in

advance, so that memory requests of small sizes below a certain

threshold could be handled by allocating a small chunk from this

region. For large requests, they are handled by directly fetching

another memory region of the adequate size. The specific

implementation may vary from each memory allocator, but since most

of the CPU architectures use a memory management unit on a

granularity of pages, most memory allocator implementations also

fetch memory regions on a granularity of pages. The metadata about

the memory regions fetched from the OS is typically maintained as a

global data inside the memory allocator, since most of the memory

allocator implementations assume that the whole process will use this

memory allocator. Therefore, by taking the approach of encapsulating

the metadata as an object and modifying the routines to use the

metadata on the object, it is possible to duplicate several memory

allocator instances on a single memory allocator routine and make

the instances operate independently, since each instance does not

Lookup Owner

Memory

Allocator B Preserved

Memory

Pages

Memory

Allocator A Preserved

Memory

Pages

Node

Memory deallocation trampoline

Redirect

Chunk from A?

Memory Tracer

Chunk from B?

Deallocation

Returned

Pointer

 11

even know the existence of other instances. Here, it is the

responsibility of the operating system to ensure that the fetched

memory regions do not overlap. Another modification to mention in

advance is that it is required by the memory tracer for the memory

allocator to hand information about the memory regions fetched from

and returned to the OS.

제 3 절 Execution Context Tracer

The Execution Context Tracer, or shortly Context Tracer, stores

information about which context, or which node, is currently being

executed on this thread. The execution context is stored by each

thread on a thread local storage, so multiple threads can be traced

without any synchronization issues. The Context Tracer leverages

the fact that the behavior of node execution resembles the behavior

of process execution, in the point that the entrance to and exit from

the executed component is only connected to certain management

units, which are the ROS library components on the left and the OS

kernel on the right in Figure 6. Here, we assume that calling library

functions other than the ones that appear in Figure 6 is part of the

node execution context, because the mechanisms of heap memory

management proposed in this paper should also be analogously

applied in these cases. Therefore, patching the possible entries to

the node functions from the ROS executor and the possible exits to

the ROS library to inform the Execution Context Tracer about context

switches allows to up to date tracking of the current execution

context, whether the ROS library function is being executed, or

whose node function is being executed, so that the memory request

trampoline is able to look up the execution context whenever the

memory allocation routine is called.

 12

Figure 6 The behavior of node execution resembles process execution.

제 4 절 Memory Tracer

The Memory Tracer stores information about which heap is

owned by which memory allocator object. Figure 7 illustrates which

information the Memory Tracer stores. The Memory Tracer stores

the start and end address of each heap, and which context owns the

heap. In order to maintain this information, the memory allocator is

patched to inform the Memory Tracer on every acquisition from or

release to the OS, the start and end address of the memory region

that the memory allocator acquired or released, along with which

memory allocator object it is operating on. Then, the Memory Tracer

is available to maintain up-to-date information about which interval

of memory space belongs to which memory allocator object, as in the

table of Figure 7. Here, the Memory Tracer can maintain this interval

data efficiently by using a balanced binary tree data structure.

However, this information is stored as global data, so it does require

some synchronization. Furthermore, since modern memory allocator

implementations are quite efficient, traversing a balanced binary tree

would impose a significant performance overhead. Therefore, a

shadow memory of the acquired memory space is also maintained to

support an efficient, lock free lookup. The shadow memory stores a

byte per each page. The byte stored is an identifier, or specifically

an index to a table that stores a pointer to each registered context.

Here, the shadow memory overhead is one byte per page size, but

this scheme should also work even if it uses more bytes per page

size, if the user decides to bear the memory overhead. Since the

Execution Base (Initialization, Start Executor)

ROS 2 Executor

Node B

ROS 2 Library Memory Allocation management

Node A

ROS 2 Process Structure Process Execution Structure

User

Space

Kernel Process Creator

System Library

User Application B

Kernel System Call Handler

User Application A

 13

shadow memory is updated on memory acquisition or removal, it

should not be modified when any memory chunk is allocated on the

page. Therefore, only a simple synchronization on these page updates

is enough for this scheme to work correctly, and since lookups only

need to read the shadow memory, they can be done in a lock free

manner.

 An issue that occurs when using this shadow memory scheme

is that the addresses of memory pages other than the ones managed

by the registered memory allocators are unknown, and therefore the

shadow pages of these unknown memory pages cannot be mapped in

advance. Therefore, assuming that any address of the shadow region

can be accessed, this issue is handled by installing a handler of an

unmapped memory access exception, so that if the shadow memory

region is accessed, the region is mapped with a page filled with null

bytes.

Figure 7 Memory Tracer stores data about the location and owner of each heap

Memory Tracer

mmap

Memory

Allocator Preserved

Memory

Pages

OS Kernel
Memory

Shortage?
Register Allocated Region

Node A

memory

Node B

memory

Node B

memory

Node A

memory

A

B

B

A

shadow memory

Start End Owner

0x2000 0x4000 A

0x6000 0x7000 B

0x8000 0x9000 B

0x10000 0x12000 A

 14

제 4 장 Evaluation

In this section, the settings and results of several experiments

regarding this allocator are provided. The experiment was done on

an Intel i9-10900K CPU with an Ubuntu Linux 18.04 operating

system. ROS dashing rcl library [5] and rclcpp library [6] was

modified and fully compiled with the source code on the machine.

Also, the memory allocator from glibc version 2.27 [8] was ported,

which is the same implementation as the default system allocator of

the operating system, for a reasonable comparison. Unfortunately,

the thread caching technique was disabled since the original

implementation used a thread local variable whose location and size

were fixed at compile time, but this is not trivially available because

the total number of memory allocators may vary depending on the

node composition setting. In future works, it might be viable to apply

a variably sizable thread caches to support a variable number of

memory allocators.

제 1 절 Proof of Concept Experiment

In order to show that this also works on precompiled nodes, a

composition experiment regarding four components is done. Figure 8

illustrates the components of this experiment. The executed nodes

are leaker, and peeker. The leaker component puts an address of a

dynamically allocated memory chunk on a global data space, to

simulate a situation where an address to data of some node is

accidentally leaked. The peeker component is a corresponding

component to the leaker component, which tries to collect leaked

information by acquiring this address and reading the data using this

leaked address.

In order to show that it is possible to apply page level isolation

using this technique, a simple page level isolation using Intel MPK is

applied. This point is illustrated in Figure 8 by the double line borders

 15

wrapping each component on the right. In this case, all of the allocator

objects are assigned a dedicated pkey, which is a tag related to Intel

MPK. Then, Intel MPK can be used to easily mask read or write

permission of memory pages of a selected pkey. This way, page level

isolation can be simply done by masking memory permissions of data

from all components other than the component that is being executed.

The experiment is done as follows. First, in order to illustrate

that this works on precompiled nodes, the four nodes to be used are

compiled inside a docker container, where the ROS environment is

identical to the host, and no modifications were made to the ROS

library. Then, the node binaries in shared library format are collected

to the host machine. On the other hand, the modified ROS libraries

are compiled on the host environment. Lastly, the execution base is

crafted to load the collected node binaries along with the modified

ROS library. As a result, the nodes are successfully executed, and

the abnormal memory access by the peeker component is

successfully detected and a warning is issued. This illustrates that

memory access to data of other components violates the effective

memory permission when the memory access is done, and therefore

page level isolation of dynamically allocated data is successfully

enforced.

Figure 8 The setting of Proof of Concept Experiment

The same node binary can be loaded even after isolation is applied.

Execution Base

ROS 2 Executor

Peeker Leaker

ROS 2 Library

Isolated Execution Base

ROS 2 Executor

Peeker Leaker

ROS 2 Library Memory Allocator

Currently Released ROS 2 Process ROS 2 Process with Isolation Applied

 16

제 2 절 Performance Evaluation

To measure the performance benefit of using the proposed

method with ROS composition, the execution time of a simple

composed process with 1 publisher and 1 subscriber with various

publishing periods is measured using the linux perf utility [9]. In this

setting, a publisher publishes a simple message of 16 (bytes)

periodically, and a subscriber receives the message. The period of

publishing messages used in the experiment varies from 0.25 (ms)

up to 5 (ms). This time length was chosen because a former study

[10] has shown that the message transmission latency is about ~ 1

(ms). Thus, for a period as long as 5 (ms), the nodes wait for sending

and receiving a message for a major portion of time. On the other

hand, for a period as short as 0.25 (ms), the nodes constantly keep

sending and receiving messages, which indicates a highly loaded

situation. The execution time of two settings is measured. First, the

execution time of a process comprising one publisher and one

subscriber is measured, when a simple page level isolation with the

proposed memory allocation method is applied. Also, to compare the

former setting with an equivalent in terms of isolation, the execution

time of two processes, each containing one publisher and one

subscriber respectively, is measured. In terms of isolation, this

setting is equivalent to the composed process with page level

isolation, since the memory space of other processes are naturally

separated, and therefore each node in their own process cannot

access each other.

 17

Figure 9 Execution time of one publisher and one subscriber on different settings

Figure 9 illustrates the results. The results show that execution

time is reduced by from 3.0 (%) up to 17.6 (%) when comparing the

proposed design with isolation enabled, to when each node is

executed on separate processes, which is an equivalent in terms of

isolating dynamically allocated memory. Specifically, when the

publish period is as long as 5 (ms), which indicates a low workload

circumstance, the execution time is reduced by 3.0 (%). On the other

hand, as the publish period decreases, the execution time gap

becomes bigger, up to 17.6 (%) when the publish period is as short

as 0.25 (ms). This indicates that there is definitely a benefit in

applying page level isolation on a composed process, rather than just

executing each node on separate processes, especially when the

nodes are handling heavy workloads.

0

0.2

0.4

0.6

0.8

1

1.2

0.25 (ms) 0.5 (ms) 1 (ms) 2.5 (ms) 5 (ms)

One Node per Process Composition, Isolation enabled

 18

제 5 장 Conclusion

In ROS composition, currently all nodes in the process use the

same system allocator, and therefore allocated memory chunks are

scattered regardless of which node uses it. In order to apply page

level isolation, a specially designed memory allocation unit is

introduced. Using this memory allocation unit, memory allocation can

be controlled so that each page only contains memory chunks used

by only a single node, and therefore it becomes possible to

seamlessly apply page level isolation. In this design, memory

requests can be redirected to an allocation/deallocation trampoline.

Even if only the request size or returned address is passed as the

parameter, the memory requests can be handled properly. Here, this

memory allocation unit fills in the gaps of insufficient information by

properly tracing the required data. Experiment result shows that the

proposed design allows to seamlessly apply page level isolation on

dynamically allocated memory regions of a composed process

running several nodes together, and therefore allows a benefit of up

to 17.6 (%) execution time reduction compared to naively running

the same nodes on separate processes, which is an equivalent in

terms of isolating dynamically allocated memory.

 19

Reference

[1] Open Robotics. 2022. ROS. https://www.ros.org/.

[2] Open Robotics. 2022. ROS Composition.

https://docs.ros.org/en/dashing/Tutorials/Composition.html.

[3] Nagarakatte, Santosh, Jianzhou Zhao, Milo MK Martin, and Steve

Zdancewic. 2009. SoftBound: Highly compatible and complete spatial

memory safety for C. In Proceedings of the 30th ACM SIGPLAN

Conference on Programming Language Design and Implementation.

245-258.

[4] Anjo Vahldiek-Oberwagner, Eslam Elnikety, Nuno O Duarte,

Michael Sammler, Peter Druschel, and Deepak Garg. 2019. {ERIM}:

Secure, Efficient In-process Isolation with Protection Keys

({{{{{MPK}}}}}). In 28th USENIX Security Symposium (USENIX

Security 19). 1221–1238.

[5] Open Robotics. 2022. ROS 2 rcl library.

https://github.com/ros2/rcl.

[6] Open Robotics. 2022. ROS 2 rclcpp library.

https://github.com/ros2/rclcpp.

[7] GNU. 2022. The GNU C library.

https://www.gnu.org/software/libc/.

[8] Andreas K. Hüttel. 2022. Glibc Wiki, Release/2.27.

https://sourceware.org/glibc/wiki/Release/2.27.

[9] Linux. 2022. Perf Wiki.

https://perf.wiki.kernel.org/index.php/Main_Page.

[10] Sugata Y., Ohkawa T., Ootsu K., Yokota T. 2017. Acceleration

of publish/subscribe messaging in ROS-compliant FPGA component.

In Proceedings of the 8th International Symposium on Highly

Efficient Accelerators and Reconfigurable Technologies. 1-6.

 20

Abstract

Memory Allocation for Page level

Isolation in ROS Composition

Kyeong Ryong Lee

Electrical and Computer Engineering

The Graduate School

Seoul National University

 One of the most widely used middleware in robot application

development is the Robot Operating System (ROS). As ROS

composition methods have emerged, it has become possible to

execute multiple nodes concurrently in a single process. However,

when multiple nodes are composed into a single process, multiple

independent nodes share the same memory space, and therefore

dynamically allocated memory chunks of different nodes are

intermixed, regardless of the page boundary. In order to apply page

level isolation, this paper introduces a memory allocation method to

dynamically allocate memory chunks on separate regions for each

node, even on precompiled node binaries. In this method, the memory

requests are redirected to a specially designed allocator, and upon a

memory request, on which region the memory request must be

handled is determined using additional information obtained through

tracing the required information.

Keywords : Memory Allocation, Page Level Isolation, ROS

Composition, Trampoline, Tracing

Student Number : 2021-25362

	제 1 장 Introduction
	제 2 장 Background
	제 1 절 Robot Operating System (ROS)
	제 2 절 Structure of ROS Process
	제 3 절 Page Level Isolation
	제 4 절 Memory Allocator

	제 3 장 Design and Implementation
	제 1 절 Memory Request Trampoline
	제 2 절 Porting a Memory Allocator
	제 3 절 Execution Context Tracer
	제 4 절 Memory Tracer

	제 4 장 Evaluation
	제 1 절 Proof of Concept Experiment
	제 2 절 Performance Evaluation

	제 5 장 Conclusion
	Reference
	Abstract

<startpage>7
제 1 장 Introduction 1
제 2 장 Background 3
 제 1 절 Robot Operating System (ROS) 3
 제 2 절 Structure of ROS Process 4
 제 3 절 Page Level Isolation 5
 제 4 절 Memory Allocator 5
제 3 장 Design and Implementation 7
 제 1 절 Memory Request Trampoline 8
 제 2 절 Porting a Memory Allocator 10
 제 3 절 Execution Context Tracer 11
 제 4 절 Memory Tracer 12
제 4 장 Evaluation 14
 제 1 절 Proof of Concept Experiment 14
 제 2 절 Performance Evaluation 16
제 5 장 Conclusion 18
Reference 19
Abstract 20
</body>

