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Abstract

Recently, interest in deep learning has increased, and many studies are being con-

ducted. In this dissertation, I deal with the application part that applies deep learning to

radar signal processing and the deep learning theory that deals with neural architecture

search.

First, in the automotive system, radar is a key component in autonomous driving.

Using transmit radar signal and reflected radar signal by a target, I can capture target

range and velocity. However, when interference signals exist, noise floor increases and

it severely impacts detectability of target object. Previous studies have been proposed

to cancel interference or reconstruct original signals. However, the conventional signal

processing methods for canceling the interference or reconstructing the transmit signal

are a high-complexity tasks, and also have many restrictions. In this work, I propose a

novel concept to mitigate interference using deep learning. The proposed method pro-

vides high performance in various interference conditions and has low processing time.

Moreover, I show that our proposed method achieves better performance compared to

existing signal processing methods.

Second, neural architecture search (NAS) methods automatically find optimal neu-

ral networks without human assistance. Numerous algorithms for NAS have been

studied to find architectures with gradient-based search. Differentiable architecture

search (DARTS), one of the key papers of gradient-based search, dramatically re-

duced search cost, and shoId outstanding performance through continuous relaxation

and meta-learning based approximation. However, one of the issues with DARTS is

that the gradient-based search process is biased due to the nested bi-level structure,

and the greedy behavior of the gradient descent. As a result, there is a problem that

search spaces are limited to a limited set of architectures. To overcome the bias of

the gradient-based search, I used dynamic search method. This technique allows the
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gradient-based search to have an exploration effect. In this paper, I present a novel

approach, namely, Dynamic-Exploration DARTS (DE-DARTS). For effective explo-

ration, I use dynamic attention networks (DANs) in DE-DARTS, which change model

architectures based on input data. As our DANs are activated early in the search, var-

ious architectures are considered, depending on input data at the beginning of search.

Our algorithm is evaluated in multiple image classification datasets including CIFAR-

10, CIFAR-100, and ImageNet, and shows improved performance.

Third, based on the method in neural architecture search, I apply it to radar interfer-

ence cancellation. The model is based on the DARTS paper. As a result of applying the

neural architecture search-based model, it was possible to remove radar interference

well with the rnn-based model created by AI without designing the model directly.

keywords: radar, signal processing, neural architecture search, dynamic search

student number: 2016-27442
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Chapter 1

INTRODUCTION

1.1 Related Work

1.1.1 Radar System

As interest in autonomous vehicles rises, research on radar is also in progress. As an

example, in Figure 1.1, 1.2 [2], there are vehicles equipped with radar. As shown in

Figure 1.3 the number of vehicles equipped with Advanced Driving Assistance System

(ADAS) and automated driving is increasing over time. As time goes by, the number of

vehicles for automated driving will increase, and technology for measuring distance,

speed and angle will also be needed.

Figure 1.1: Vehicles equipped with radar

1



Figure 1.2: Vehicles equipped with radar

Figure 1.3: Advanced Driving Assistance System and Automated Driving market vol-

ume

2



Figure 1.4: Advanced Driving Assistance System and Automated Driving market vol-

ume

Radar is mounted on a vehicle and detects the position of another vehicle, mainly

by distance or angle. At this time, if another vehicle is present, a measurement er-

ror may occur due to interference. Signals mainly used in automotive radar include

FMCW and OFDM. Figure 1.4 shows how FMCW works. Measure distance and speed

through 2d-fft. There is a limit to removing interference with the existing signal pro-

cessing method. Because it is difficult to process all interference patterns. However,

if you use deep learning, if you put enough data, the model can learn the interference

pattern and recover the original signal well.

1.1.2 Neural Architecture Search

In the early study of deep learning, a person directly designed a model to learn deep

learning. However, it takes a long time to find the optimal model because you have

to try all the parameters. In fact, even when designing a deep learning model used for

3



Figure 1.5: search space, search algorithm, evaluation strategy

Figure 1.6: reinforcement learning algorithm

Figure 1.7: reinforcement learning algorithm
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Figure 1.8: darts example

radar interference, it takes a long time to design several models from scratch. In or-

der to optimize the design of deep learning models that take such a long time, AutoML

technology Neural architecture Search technology has been proposed. Neural architec-

ture search basically consists of three steps. search space, search algorithm, evaluation

strategy. [3]. Search Space : The search space defines which architectures can be rep-

resented in principle. Incorporating prior knowledge about typical properties of archi-

tectures well-suited for a task can reduce the size of the search space and simplify the

search. However, this also introduces a human bias, which may prevent finding novel

architectural building blocks that go beyond the current human knowledge. Search

Strategy: The search strategy details how to explore the search space(which is of-

ten exponentially large or even unbounded). It encompasses the classical exploration-

exploitation trade-off since, on the one hand, it is desirable to find well-performing

architectures quickly, while on the other hand, premature convergence to a region of

suboptimal architectures should be avoided. Performance Estimation Strategy : The

objective of NAS is typically to find architectures that achieve high predictive perfor-

mance on unseen data. Performance Estimation refers to the process of estimating this

performance: the simplest option is to perform a standard training and validation of the

architecture on data, but this is unfortunately computationally expensive and limits the

number of architectures that can be explored. Much recent research therefore focuses

5



on developing methods that reduce the cost of these performance estimations.

In the early days of neural architecture search technology, it was difficult learning

that required a large number of GPUs as the process of learning the model from the

beginning using reinforcement learning was involved. Figure 1.6[4] shows the rein-

forcement learning algorithm. The architecture is sampled through controller rnn and

the sampled architecture is learned from the beginning to obtain reward R. The ob-

tained reward is sent back to the controller and learned in a circular structure. Figure

1.7 is the architecture creation process.

However, recently, the learning time is shortened by using the weight sharing tech-

nique or the method of learning the model through gradient update. Figure 1.8 shows

DARTS [5], one of the weight sharing techniques. The weights of each graph have a

structure in which weights are shared, so learning is accelerated. In this study, the study

was conducted in a situation where network search was shortened through weight shar-

ing technology, and it is proposed to improve the limitations of the existing method.

1.2 Contributions and Organization

In this paper, I discuss how to apply deep learning to remove radar interference and

propose a new automl technique to make a more efficient network.

Chapter 2 covers how to remove interference by applying deep learning to auto-

motive radar for the first time. The existing vehicle radar interference removal method

used signal processing technology to remove interference, but in this paper, deep learn-

ing was used. When there is interference in the radar signal, the part with the in-

terference basically shows a different pattern from the non-interference signal, and

deep learning detects this pattern and deletes it. The deep learning model used was an

RNN-based model and showed better performance than the existing signal processing

algorithm.

Chapter 3 proposes a deep learning algorithm with improved performance than
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Chapter 1 and a method to remove deep learning interference from OFDM modules as

well as FMCW. The deep learning model used is a model in which the attention module

of transformer is added to the existing RNN model. As a result of the experiment, it

showed better performance than the existing algorithm, and it was confirmed that both

FMCW and OFDM interference was removed.

In Chapter 4, AutoML technology was researched considering that the existing

deep learning model creation method is limited by human creation. I propose the pro-

posed AutoML technology to find the optimal model in a given search space. In this

dissertation, in order to solve the problem of increasing the number of skip connec-

tions, which is a limitation of DARTS: differentiable architecture search, an additional

network is added to explore more diverse models in the model search process. As a re-

sult, the tendency to skip connection in the early stages of learning was alleviated, and

a balanced model was found. As a result of the experiment, additional performance

improvement was achieved compared to the existing papers.

In Chapter 5, I have shown that interference is removed with a non-human neural

architecture search-based model. After making a cell with the DARTS technique, it

was applied to radar interference cancellation. Attention was applied to the cell created

by neural architecture search and compared with the algorithm in the previous paper.

As a result, it showed a better result than the existing gru rnn cell.

In, Chapter 6, I summarize my works and propose a future directions

7



Chapter 2

A Deep Learning Approach for Automotive Radar In-

terference Mitigation

2.1 Introduction

Radars mounted on advanced vehicles, such as autonomous vehicles, require a va-

riety of functions, including detection of multi-target and long-range sensing. These

functions must be performed accurately ensure user safety and solve collision problem

between vehicles. Recent popular radar technologies include Frequency Modulated

Continuous Wave (FMCW) or Chirp Sequence (CS) radars [6, 7, 8]. However, it is

difficult to perform the above functions with interference [9, 10].

Several techniques have been proposed to solve the problems related to interfer-

ence [11, 12, 13, 14, 15]. [11] used the characteristics of the interference region in the

time domain to remove the interference. [13] proposed a method of estimating the am-

plitude and frequency of the interference signal to recover the original signal as well as

the interference elimination with high computational complexity. The paper [15] pro-

posed an algorithm that requires a small computational complexity and showed that it

detects targets within small distances without defining an adaptive threshold. The ef-

fect of interference still remains, however, because the target is not well detected when

8



the interference signal source is closer to the radar than the target.

To the best of our knowledge, It is the first to use a deep learning method to mit-

igate interference in time domain. Recently, the development of deep learning has

been remarkable, and in particular, it has made significant achievements in image and

language processing. Besides, these deep learning techniques have shown outstanding

results in the field of signals, and [16] and [17] showed that deep learning can be useful

in signal processing. Especially I apply the Recurrent Neural Network (RNN) model

with Gated Recurrent Unit (GRU)[18], which is known to be suitable for processing

sequence data, to remove interference and reconstruct transmit signal simultaneously.

I can reconstruct transmit signal even in the presence of various interference signals,

and the reconstructed signal can be used to detect objects through Fast Fourier Trans-

form (FFT). In particular, through the learned network, signal processing can be done

only with the matrix calculation, not with any iteration structure. Also, the algorithm

does not require any adaptive threshold. I show that our algorithm outperforms existing

algorithms in experiments where noise and interference coexist.

The rest of this paper is organized as follows. In Section 2.2, I introduce the system

model considered in the paper. In Section 2.3, I show the deep learning model for our

proposed algorithm. In Section 2.4, I show the simulation results for the proposed

scheme. Lastly, in Section 2.5, I conclude this paper.

2.2 System Model

2.2.1 CS Radar System

One of the main radar waveforms is the CS waveform [6, 8] as shown in Fig. 2.1. If

the transmit signal consists of k linear frequency chirps, frequency and phase of the

9



Figure 2.1: CS waveform of transmit and received signal

transmit signal are as follows.

f(t) = fB + α(t− kTchirp)

ϕ(t) = 2π

∫ t

0
f(t)dt

= 2π(fBt+
1

2
αt2 − αkTchirpt),

(2.1)

where BSW is sweep bandwidth, Tchirp is chirp duration, α = BSW /Tchirp is slope

of the CS waveform, and fB is carrier frequency of the transmit signal. The beat fre-

quency is the difference between the transmit frequency and the received frequency.

The beat frequency fB(t) is represented as Fig. 2.2. A Low Pass Filter (LPF) can

remove signals with higher absolute frequency value. So the remaining beat phase

through the LPF can be represented as

ϕB(t) = ϕ(t)− ϕ(t− τ)

= 2πfBτ − πα(τ2 − 2τtk)

if τ < t < Tchirp.

(2.2)

I denote target range, target velocity and speed of light as R, v, c, respectively, and

the propagation delay can be represented as τ . Substituting τ = 2(R+vt)
c and t =

10



Figure 2.2: Beat frequency

kTchirp+tk into equation (2.2) (if t is present in k-th chirp), (2.2) can be approximated

ϕB(t) = 2πfB

(
2R

c
+

2vt

c

)
− πα

((
2R

c
+

2vt

c

)2

− 2

(
2R

c
+

2vt

c

)
tk

)

≈ 2π

(
2R

c
fB +

2v

c
fBk Tchirp

+

(
2αR

c
+

2v

c
fB

)
tk

)
.

(2.3)

Applying sampling as t = nTs, phase of the beat signal ϕB[n, k] is written as

ϕB[n, k] = 2π

(
2R

c
fB +

2v

c
fBkTchirp

+

(
2αR

c
+

2v

c
fB

)
nTs

)
.

(2.4)

Using two dimensional Fast Fourier Transform (FFT), I can obtain following two val-

ues fR and fD,

fR =
2αR

c

fD =
2v

c
fBTchirp.

(2.5)

Range R and velocity v can be obtain by fR and fD.
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Figure 2.3: Interrupted transmit signal, interference occurs in a.

2.2.2 Interrupted Radar Signal

The equations in the previous subsection are derived in an ideal situation without in-

terference. However, there will be a large error in distance and velocity estimation if

interference occurs. In a typical driving situation, I usually encounter CS waveform

signals, which have different slopes with the signal being sent, and interference situa-

tion would occur as shown in Fig. 2.3. Since the beat frequency passes through the low

pass filter, the interference occurs in the section a only, not in the whole section. Fig.

2.4 shows that a large distortion occurs around 0 to 80 time samples, unlike the original

beat signal. Conventionally, the interference is removed or the original beat signal is

restored by using the characteristics of the time-domain beat signal. However, if noise

and interference exist, the cancellation of interference and the restoration of original

beat signal are difficult with a traditional method.
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Figure 2.4: Interrupted beat signal, interference occurs around the 0 to 80 samples.

2.3 Interference Mitigation Using Deep Learning

In this section, I propose a deep neural network model which can be used for multi-

interference mitigation without relying on adaptive threshold.

2.3.1 Deep Learning Model

As shown in previous studies [19], RNN is known to be suitable for sequence data pro-

cessing. Since the raw data before preprocessing is consecutive time samples, I apply

RNN structure for interference cancellation and restoration in our model. Following

equations represents the vanilla RNN elements.

ht = fW (ht−1, xt)

= tanh(Whhht−1 +Wxhxt)

yt = Whyht.

(2.6)
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xt is the input vector, ht is the hidden state of the RNN network and yt is the output

vector. Whh ,Wxh and Why are weight matrices of the hidden state to another hidden

state, the input vector to the hidden state and the hidden state to the output vector, re-

spectively. By using RNN, the network can learn the relation of consecutive samples.

The input sequence may consist of hundreds of time samples. It may cause long-term

Figure 2.5: Proposed deep learning model

dependency problem in RNN [20]. So I use a GRU cell to solve this problem in RNN.

GRU has the same time series structure as RNN, but the contents of the cell are differ-

ent. In the multi-layer GRU layer, each layer has a bidirectional structure, rather than

one direction of the signal[21]. In addition, several GRU layers were piled up to learn

various interference cases. The residual network[22] is added between layers for better

propagation of gradient flow. The residual connection is written as

X l+1 = X l +GRU(X l), (l = 1, 2, 3, ..., L− 1), (2.7)

where X l is l-th layer input vector of GRU cells, and GRU(X l) is l-th layer output

vector of GRU cells. When the total time step is N and the hidden state size is H ,

14



the output value of GRU network is XL ∈ RH×N . If I denote xLi ∈ RH as the ith

column vector of XL, XL can be represented as [xL1 , x
L
2 , ..., x

L
N ]. To obtain the output

dimension identical to the label dimension, I perform average pooling on XL. The

average pooling output Y ∈ RN is written as

Y = [average(xL1 ), average(x
L
2 ), ..., average(x

L
N )]. (2.8)

To regularize the network, I applied drop out in each GRU Cells[23]. The proposed

RNN model is shown in Fig. 2.5.

2.3.2 Optimizing Model

The inputs is time-sampled interference beat signal, which is represented as X0 =

X = [x1, x2, ..., xN ], where xi ∈ R is amplitude of beat signal(i = 1, ..., N). Each

input X is normalized and satisfies the following equation.

N∑
i=1

x2i = 1. (2.9)

The output Y is represented as Y = [y1, y2, ..., yN ], which has the same length as X .

Ŷ = [ŷ1, ŷ2, ..., ŷN ] is a beat signal with the same target condition as X but without

interference. I called Ŷ as label. In order to minimize the difference between the two

vectors Y and Ŷ , the loss L is defined as

L =
N∑
i=1

(ŷi − yi)
2. (2.10)

The loss L can be minimized by gradient descent. I use a gradient descent algorithm,

Adam[24]. As the training progresses, I get output Y which is similar to label Ŷ . I can

then use this value Y to detect target range and velocity.

2.4 Simulation Results

In this section, I introduce radar simulator parameters and deep learning model param-

eters. The proposed deep learning model is also compared with existing algorithms.
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Table 2.1: Radar simulator random parameters

Parameter Min Max

Center frequency 76GHz 78GHZ

Distance 1m 130m

Velocity 0km/h 50km/h

Sweep bandwidth 100MHz 200MHz

Chirp duration 20us 40us

Target number 1 2

Interference number 1 4

I have assumed a situation with multi-target, multi-interference, and Gaussian

noise in order to reflect the practical situation. I use a randomly generated 150,000

time sampled input sequence (with interference) and 150,000 label sequence (no in-

terference). The range of random parameters for training is shown in Table 2.1. The

transmit signal is the CS wave mentioned in Section 2.2 and the interference waveform

is the FMCW wave signal with different chirp slope (includes CS waveform, triangle

sweep FMCW). The total number of chirps was 75 in both the desired and the interfer-

ing signals. The model proposed in Section 2.3 is used and the hyperparameter used

in the model is shown in Table 2.2. The deep learning model input and label are beat

signals corresponding to one chirp of the transmit signal. To apply RNN, the input and

label length must be constant. However, the number of samples of one chirp can vary

depending on the sampling period of the signal. So I limit the maximum length of the

input and label to 416 and cut the remaining part if the actual length is longer than that,

and do zero-padding if it is smaller. In order to solve the exploding gradients problem

in the GRU structure, the gradient clipping method is used [25].

16



Table 2.2: Deep learning hyperparameter

Hyperparameter Value

Batch size 128

Learning rate 1e-3

Hidden layer size 100

Number of data 150000

Number of layer 3

Drop out rate 0.3

Optimizer Adam

I analyzed the interference mitigation performance of the proposed method. The

results are shown in Fig. 2.6. I use Fig. 2.6(a) as deep learning label (not interfered),

Fig. 2.6(b) as deep learning input (interfered), and the deep learning output is Fig.

2.6(c). I can see that the proposed deep learning algorithm finds out where the inter-

ference is. Under the considered situation, the reconstruction of the original signal is

not perfect. However, I can see that the result of FFT in Fig. 2.6(f) finds the object

more clearly than the interfered input Fig. 2.6(e). To compare result with other meth-

ods, I use the average signal to remaining interference noise ratio (SRINR)[15]. The

SRINR result is in Table 2.3. Method I is time domain thresholding (TDT) method

used in [11]. Method II did not use an adaptive threshold, which was proposed in [15].

The simulation SRINR is average of 50 random scenarios SRINR. Our proposed deep

learning algorithm outperforms other methods. Especially, even in situations where

the interference signal sources are close and the targets are too far away, our proposed

method finds the target properly as shown in Fig. 2.7.
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(a) Label (b) Input (c) Output

(d) FFT label (e) FFT input (f) FFT output

Figure 2.6: Result of deep learning model. (a) to (c) is beat signal, (d) to (f) is FFT

result of (a) to (c) signals respectively.

Table 2.3: Simulation results

Method I Method II Proposed

SRINR 23.369 22.665 26.091

2.5 Conclusion

In this paper, I proposed a novel approach to mitigate interference in CS radar system.

I used a deep learning approach to mitigate interference. Our method shows better

performance compared to other signal processing methods. Our method also shows

good performance even when the target is far away. It is believed this method can

be applied not only to CS waveforms but also to most situations where frequency

changes linearly. This is because interference occurs at the point where the transmit

signal crosses the interference signal. The interference patterns of linear frequency

signals are similar. Experiments with other waveforms are left as future work.
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(a) Proposed (b) Method I

(c) Method II (d) No processing

Figure 2.7: Simulated power levels with respect to range. Two targets exist in range

100m, 120m. Four interferences exist in range 40m, 50m, 60m, and 70m. Red circles

are detected targets.
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Chapter 3

Automotive Radar Signal Interference Mitigation using

RNN with Self Attention

3.1 Introduction

Recently, as interest in autonomous vehicles has greatly increased, safety concerns in

autonomous vehicles is a rising issue. To ensure safety, radar is an key component

as a sensor as it is cheap and can cope bad conditions. Radars mounted on advanced

vehicles, such as autonomous vehicles, require a variety of functions, including detec-

tion of multiple targets and long-range sensing. Using the information, radar can be

used in adaptive cruise control or collision mitigation systems. These functions must

be performed accurately to ensure user safety and to help prevent collisions between

vehicles. Recent popular radar technologies use frequency modulated continuous wave

(FMCW), chirp sequence (CS) waveform [6, 7, 8] and OFDM signal [26, 27]. How-

ever, it is difficult to perform the above functions in the presence of interference [9, 10].

Several signal processing techniques have been proposed to solve problems related to

interference [11, 12, 13, 14, 15, 28, 29]. However, little studies has been done to mit-

igate FMCW radar interference using deep learning. Also none of studies has been

done to mitigate OFDM radar interference.
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Recently, the development of deep learning has been remarkable and has facili-

tated significant achievements in image and language processing. These deep learning

techniques have provided outstanding results in the field of signal processing [16, 17]

showed that deep learning can be useful in signal processing. Deep learning technol-

ogy has also been widely used in with radar. For example, [30] used a convolutional

neural network(CNN) for gesture recognition and [31] used a CNN for vehicle classi-

fication by using FMCW radar.

Our model used a recurrent neural network (RNN) model with a gated recurrent

unit (GRU) [18] to process sequence data. However, our previous model could not

sufficiently reconstruct the original signal in the presence of interference[32]. In order

to restore the original signal perfectly, information on the surrounding signals must be

sufficiently learned. Inspired by the self attention model used in recent google deep

learning papers[33], I combined a transformer module to our model. After applying

the attention mechanism, the restoration of the interfered signal is nearly complete,

and the range and velocity of the target can be clearly detected after applying a fast

fourier transform (FFT). To validate our model, I experimented with two different en-

vironment. First is FMCW radar, and second is OFDM radar.

The main contribution of this paper are

• I presented a novel RNN based deep learning algorithm that can mitigate FMCW

radar interference.

• I showed that our algorithm can not only remove the interference but also restore

original signal

• I showed that our algorithm has better performance than other existing signal

processing method and deep learning method.

• I showed that our algorithm is capable of OFDM radar system interference mit-

igation
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3.2 System Model

3.2.1 FMCW Radar System

Figure 3.1: FMCW waveform of transmit and received signal

One of the main radar waveforms is the FMCW waveform [6, 8] as shown in Fig.

3.1.

If the transmit signal consists of k linear frequency chirps, frequency and phase of

the transmit signal are as follows.

f(t) = fC + α(t− kTchirp)

ϕ(t) = 2π

∫ t

0
f(t)dt

= 2π(fCt+
1

2
αt2 − αkTchirpt),

(3.1)

where BSW is sweep bandwidth, Tchirp is chirp duration, α = BSW /Tchirp is slope

of the FMCW waveform, and fC is carrier frequency of the transmit signal. The beat

frequency is the difference between the transmit frequency and the received frequency.

A anti aliasing filter (AAF) can remove higher frequency signals, thus the remaining

beat phase through the AAF is
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ϕB(t) = ϕ(t)− ϕ(t− τ)

= 2πfCτ − πα(τ2 − 2τtk)

if τ < t < Tchirp.

(3.2)

I denote target range, target velocity and the speed of light as R, v and c, respectively,

and the propagation delay is τ . Using 2d-fft on beat signal, I can get target range and

velocity. The equations 3.1, 3.2 are derived in an ideal situation without interference.

However, if there are several radar-based autonomous vehicles on the road, radar sig-

nals will interfere with each other and cause severe problems in range and velocity

measurements. Interference will occur if FMCW such as FMCW with different slopes

are encountered. Because AAF removes the high frequency portion, actual interference

occurs in the part of the whole signal. Fig. 3.2 shows an example of the remaining in-

terference in the beat signal in the time domain. It is difficult to completely remove the

interference because it appears as an irregular waveform.

3.2.2 OFDM Radar System

As described in the previous section, overlapping frequency bands causes performance

degradation. One solution to this problem is the orthogonal frequency division multi-

plexing (OFDM) radar. In communications, OFDM has become a popular transmis-

sion technique. Similarly, radar can also use orthogonal signals between users to avoid

interference [26, 27]. The possible application areas for these signals are both in the

radar networks with spatially distributed sensors as well as in multi-input multi-output

(MIMO) radar sensors, both of which employ multiple transmit antennas fed with in-

dividual signals in order to achieve high robustness and improved spatial resolution.
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Figure 3.2: Interrupted beat signal. Interference occurs from sample 250 to sample

410.

The received signal of the OFDM radar is expressed as

dRx(uNc + n) = A(u, n)dTx(uNc + n)

× exp(−j2πn∆f
2R

c
)

× exp(j2πuTOFDM
2vrelfc

c
).

(3.3)

In this expression Nc denotes the number of subcarriers, with n being the index of the

individual subcarrier, u is the OFDM symbol index, TOFDM is the total transmitted

OFDM symbol duration, and dTx is a sequence of complex-valued modulation sym-

bols obtained from binary data. To determine the range R and the relative velocity

vrel of the reflecting object, the influence of the transmitted modulation symbols dTx

must be removed from this result. This is accomplished by element-wise division of
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transmitted and received signals

ddiv(uNc + n) =
dRx(uNc + n)

dTx(uNc + n)
. (3.4)

I can get range and velocity by applying 2d-fft on matrix ddiv. In an ideal situation,

interference would not occur due to proper channel assignments between users. How-

ever, in practice, interference may occur due to intentional interference or system prob-

lems. I consider this situation and assume that k(k < n) out of n channels(n is total

number of channels in one user) are corrupted.

3.3 Deep Learning Algorithm

3.3.1 Previous Deep Learning Model

The beat signal we want to mitigate interference is a sequence of longitudinal data, not

an image. Therefore, we use the RNN model to learn the relationship between these

sequences. RNN has been used in speech recognition, translation, and many other

fields, and has been used for processing sequence data [19]. The following equations

represents the vanilla RNN elements.

ht = fW (ht−1, xt)

= tanh(Whhht−1 +Wxhxt)

yt = Whyht.

(3.5)

where xt is the input vector, ht is the hidden state of the RNN network and yt is the

output vector. Whh ,Wxh and Why are weight matrices relating one hidden state to

another hidden state, the input vector to the hidden state and the hidden state to the

output vector, respectively. tanh is used as an activation function, which determines

whether the output signal is activated in the next step. Information from each time step

is stored in ht−1 and updated whenever new input information xt is received.

However, long-term dependency or vanishing gradient problems arise because the

temporal data of the beat signal that we want to use as input data usually contain
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hundreds of samples. One way to solve this is to use GRU cells instead of basic RNN

cells. The workflow of GRU is expressed as follows:

rt = σ(Wrxt + Urht−1 + br)

ut = σ(Wuxt + Uuht−1 + bu)

ct = tanh(Wcxt + Uc(rt · ht−1) + bc)

ht = ut · ht−1 + (1− ut) · ct,

(3.6)

where xt is the input vector, and ht is the hidden state of the GRU network. The two

vectors are transformed linearly with respect to the matrices Wr and Uu, and a bias

vector br is subsequently added to obtain the reset gate rt via a sigmoid function σ(·).

ut is the update gate composed of Wu, Uu in a similar way as rt. ct is a memory vector

composed of Wc, Uc, and the previous hidden state ht−1. The current hidden state ht is

composed of the previous hidden state ht, reset gate rt, update gate ut and memory ct.

The reset gate determines how the new input merges with the previous memory, and the

update gate determines how much of the previous memory will be retained. Each layer

in the multi-layer GRU layer has a bidirectional structure, rather than one direction.

In addition, several GRU layers were piled up to facilitate learning of interference in

various cases. The residual network is added between layers for better gradient flow

propagation. The residual connection is written as follows:

X l+1 = X l +GRU(X l), (l = 1, 2, 3, ..., L− 1), (3.7)

where X l is l-th layer input vector of the GRU cells and GRU(X l) is l-th layer output

vector from the GRU cells. When the total number of time steps is N and the size of a

hidden state is H , the output value from the GRU network is XL ∈ RH×N . We denote

xLi ∈ RH as the ith column vector of XL. XL is represented as [xL1 , x
L
2 , ..., x

L
N ]. We

perform average pooling on XL to obtain the output dimension identical to the label
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dimension. The average pooling output Y ∈ RN is written as follows:

Y = [average(xL1 ), average(x
L
2 ), ..., average(x

L
N )]. (3.8)

3.3.2 Model

Figure 3.3: Deep learning architecture.

Since the signal I want to recover varies over time, I used an RNN-based model.

However, the basic RNN cell has a gradient vanishing problem where the information

disappears as the time step increases. One way to solve this problem is to use GRU

cells instead of basic RNN cells. I stack multiple GRU layers. In addition, since the

interference partially occurs in the entire data, model needs to capture the relationship
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Figure 3.4: Attention Block.

between the entire time steps. Inspired by state of art natural language processing

(NLP) paper[33], I add attention blocks to our RNN layer. Our final deep learning

architecture is shown in Fig. 3.3 and Fig. 3.4. The key to our attention block is Scaled

Dot-Product Attention[33]. The equation of Scaled Dot-Product Attention is expressed

as

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V. (3.9)

Q, K, and V are quary, key, and value, respectively. In our model, Q, K, and V are

same previous time step vector. dk is dimension of key vector. By using the attention

block, model can better learn the relationship between time step values.

In order to minimize the difference between the deep learning inputs and label, I

defined the loss L as

L =

T∑
i=1

(ŷi − yi)
2. (3.10)
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yi is deep learning output, and ŷi is label. L can be minimized using a gradient descent

algorithm ADAM[24].

3.3.3 Preprocessing

FMCW radar preprocessing

Firstly, I applied a median filter to remove the high power interference. The amplitude

of the time samples of the beat signal varies greatly, depending on the power of the

transmit signal or signal attenuation due to the distance between the sender and the

target. Therefore, I must set the input time sample values to the appropriate size. Al-

gorithm 1 shows the overall flow of preprocessing and applying deep learning model.

OFDM radar preprocessing

FMCW beat signal from the previous section is one-dimensional, whereas OFDM data

ddiv is two-dimensional. In addition, in the OFDM radar, if subcarrier number Nc

is 1024 and symbol number Nsym is 256, ddiv has a large data size of (256, 1024),

making learning difficult. So instead of putting ddiv as input, I used row vector of ddiv

as input . In the final step, 256 row vectors were combined into a matrix. The other

process is the same as in section 3.3.3.

3.4 Experiment Results

3.4.1 Simulation Setup

A simulation environment for measuring the target distance and speed with a CS radar

system is shown in Fig. 3.5. The transmitter generates a CS waveform and the gener-

ated signal is reflected from the target. The reflected signals are combined through a

mixer and passed through an anti aliasing filter (AAF). The AAF is an 8th order But-

29



Algorithm 1 Overall interference mitigation algorithm using deep learning
1: Use simulator, make data

2: Input : X = [x1, x2, . . . , xT ]

3: Output : Y = [y1, y2, . . . , yT ]

4: Label : Ŷ = [ŷ1, ŷ2, . . . , ŷT ]

5: α = 100 ∗median(abs(X))

6: X[X > α] = 0

7: Normalize input and label

8: if
∑T

i=1 x
2
i = K then

9: xi ← xi√
K

10: ŷi ← ŷi√
K

11: end if

12: for X , Ŷ in data do

13: Get output Y using deep learning network

14: Optimize loss L using gradient descent algorithm ADAM

15: end for

16: Restore yi ←
√
Kyi

17: Get target range and velocity using Y
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Table 3.1: Random parameters in the radar simulator

Parameter Min Max

Center frequency 76GHz 78GHZ

Distance 1m 130m

Velocity 0km/h 50km/h

Sweep bandwidth 100MHz 200MHz

Chirp duration 20us 40us

Train target number 1 2

Train interference number 1 4

Test target number 1 5

Test interference number 1 8

Figure 3.5: FMCW radar system model

terworth low pass filter with impulse invariance. After passing through the AAF, we

obtain the target range and velocity using a two dimensional (FFT). To create a situa-

tion that accurately represents the actual environment, we added Gaussian noise to the

signal and phase noise was added when generating the transmit signal. We assumed

multiple targets in multiple interference situations. We selected different numbers of

targets and interference sources during training and testing to show that our deep learn-

ing algorithm can be used to detect targets in various situations. The maximum number
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Table 3.2: Deep learning hyperparameter

Hyperparameter Value

Batch size 128

Learning rate 1e-3

Hidden layer size 100

Number of data 150000

Number of layer 3

Optimizer Adam

of targets was set to 2 and the maximum number of interference sources was set to 4

during training. During testing, the maximum number of targets was set to 5 and the

maximum number of interference sources was set to 8. Other radar parameters were

randomly generated. We gathered random data in Matlab using a phased array system

toolbox. Details of the random radar parameters are shown in Table 3.1. The trans-

mit signal is the CS wave mentioned in previous Section and various waveforms with

different chirp slopes (includes CS waveform, triangle sweep FMCW, MFSK) were

used for the interference waveform. The total number of chirps in the transmitted and

interfered signals was set to 75. The model proposed in previosu Section was used for

deep learning, and the hyperparameter used in the model is shown in Table 3.2. We

created the model using the Google tensorflow api. Because the platform for creating

radar data is different from the platform used for deep learning, we make the data from

Matlab and train data from tensorflow and then passed the result data back into Matlab.

The input data and label data for deep learning are beat signals with length of one chirp

and are one-dimensional vectors. However the length of the input and label must be

fixed in order to run the RNN. Therefore ,we limited the length of the input and label

to an overall average value of 416. The input and label were padded with zeroes if the

input and label were short.
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3.4.2 Implementation Details

FMCW radar

I assume there are up to five targets and eight interferences. There are three types

of interference, Chirp Sequence (CS), triangle FMCW and multiple frequency-shift

keying (MFSK) respectively. I gathered random data in MATLAB using a phased array

system toolbox.

OFDM radar

Our parameters of OFDM radar are the same as previous OFDM radar paper[27]. In

the simulator, a transmitted signal has eight channels, and k(k < 4) channels are

corrupted by interference.

3.4.3 FMCW Radar Result

(a) Input (b) Output

Figure 3.6: FMCW beat signal. Input is interrupted signal, and Output is deep learning

result.

The original signal is restored after interference cancellation by deep learning. The

beat signal result is shown in Fig. 3.6. The Table 3.3 shows average SINR of FMCW

radar range and doppler response. Our Attention Bi-RNN algorithm shows better SINR

performance than the existing algorithm.
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Table 3.3: Average SINR values from 50 trials

CS triangle FMCW MFSK

No algorithm 21.613 21.252 20.751

Method I [11] 25.415 25.038 25.076

Method II [15] 27.429 27.231 28.144

Attention Bi-RNN 36.700 35.147 37.425

Table 3.4: Runtime

runtime(s)

Method I [11] 0.016

Method II [15] 0.02

Attention Bi-RNN 0.031

3.4.4 Comparison with Other Algorithms

In this section, we tested the robustness of the algorithm by differentiating the training

and test environments of the radar system. This consists of four environments. The

number of targets and interference sources in each environment are different. The de-

tailed number of targets and interference sources are shown in Table 3.5. In particular,

to illustrate the robustness of the deep learning algorithm, the training data contained

up to two targets with up to four interference sources, as shown in Table 2.1. We use

the average signal to remaining interference noise ratio (SRINR) to compare result

with other methods [15], which is equivalent to the ratio of the reflected power from

an object to the average remaining interference power. If multiple targets are present,

we only consider targets with the highest reflected power. We compared results from

the proposed algorithm with those from two other algorithms Method I and Method II.

Method I is time domain thresholding (TDT) method used in [11]. Method II does not
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Table 3.5: Target and interferences number in training and test time

training

target

number

training

interference

number

test

target

number

test

interference

number

Setup1 1 to 2 1 to 4 1 to 2 1 to 4

Setup2 1 to 2 1 to 4 3 to 5 1 to 4

Setup3 1 to 2 1 to 4 1 to 2 5 to 8

Setup4 1 to 2 1 to 4 3 to 5 5 to 8

define an adaptive threshold, which was proposed in [15].

Setup1

We assumed that 1-2 targets, and 1-4 interference sources were present in test case

Setup1. ”No interference” assumes a situation where there is no interference with the

target alone and it has maximum theoretical SRINR. The simulate SRINR value is an

average of SRINR values from 50 random scenarios. We tested each algorithm with

three interference waveforms (CS, triangle FMCW, MFSK waveforms). The average

SRINR test results are shown in Table 3.6. In Setup1, our proposed algorithm produces

average SRINR values of 24.245, 23.424, and 23.494 for CS, Triangle FMCW, and

MFSK waveforms, respectively. Fig. 3.7 shows range and velocity measurements of

the target. The graphs (a)-(d) on the Fig. 3.7 represent the amplitude of the target

beat signal over the target range. Additionally, the graphs (e)-(h) on the Fig. 3.7 show

that the relationship between the amplitude of the target beat signal with the target

velocity. The unit of the amplitude of the beat signals is dB scale indicated by colored

bars located on the right hand side of the each graph. Our proposed algorithm provides

better performance than other algorithms, regardless of the type of interference and

our proposed algorithm has SRINR value close to the situation without interference
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(i.e., ”No interference”).

Table 3.6: Setup1 : average SRINR values from 50 trials(1 to 2 targets and 1 to 4

interference sources)

CS triangle FMCW MFSK

No algorithm [dB] 17.355 17.169 16.958

Method I [dB] 19.735 19.727 19.217

Method II [dB] 19.685 19.663 19.593

Proposed [dB] 24.245 23.424 23.494

No interference [dB] 25.212 25.212 25.212

(a) Method I (b) Method II (c) Proposed (d) No interference

(e) Method I (f) Method II (g) Proposed (h) No interference

Figure 3.7: Setup1. Simulated power levels with respect to range and velocity. Two

targets exist at (range : 20m, velocity : -30km/h), (range : 30m, velocity : -40km/h).

Four interference sources exist at 30m, 40m, 50m, and 60m.
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Setup2

We assumed that 3-5 targets and 1-4 interference sources were present in test case

Setup2. The average SRINR test results are shown in Table 3.7. In Setup2, our pro-

posed algorithm produces average SRINR values of 35.159, 34.389, and 34.540 for

CS, triangle FMCW, and MFSK waveforms, respectively. Fig. 3.8 shows range and

velocity measurements of the target. Compared to Setup1, the number of targets in-

creased, and the likelihood that a target could produce a larger peak also increased.

Thus, the overall SRINR increased. Regardless of the number of targets, our proposed

algorithm prodecues higher SRINR values than other algorithms.

Table 3.7: Setup2 : average SRINR values from 50 trials(3 to 5 targets and 1 to 4

interference sources)

CS triangle FMCW MFSK

No algorithm [dB] 26.051 25.677 25.015

Method I [dB] 29.207 29.160 28.832

Method II [dB] 28.862 28.855 28.279

Proposed [dB] 35.159 34.389 34.540

No interference [dB] 36.211 36.211 36.211

Setup3

We assumed that 1-2 targets and 5-8 interference sources were present in test case

Setup3. The average SRINR test results are shown in Table 3.8. In Setup3, our pro-

posed algorithm produces average SRINR values of 22.334, 20.551, and 21.830 for

CS, triangle FMCW, and MFSK waveforms, respectively. Fig. 3.9 shows range and ve-

locity measurements of the target. Compared to Setup1, the overall SRINR decreased

because of the number of interference sources increased. However, even if the number

of interference sources increases, our proposed algorithm provides higher performance
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(a) Method I (b) Method II (c) Proposed (d) No interference

(e) Method I (f) Method II (g) Proposed (h) No interference

Figure 3.8: Setup2. Simulated power levels with respect to range and velocity. Five

targets exist at (range : 20m, velocity : -30km/h), (range : 30m, velocity : -40km/h),

(range : 50m, velocity : 20km/h), (range : 70m, velocity : 50km/h), and (range : 90m,

velocity : 10km/h). Four interference sources exist at 30m, 40m, 50m, and 60m.

than other algorithms.

Table 3.8: Setup3 : average SRINR values from 50 trials(1 to 2 targets, 5 to 8 interfer-

ence sources)

CS triangle FMCW MFSK

No algorithm [dB] 13.941 13.621 13.379

Method I [dB] 15.942 15.999 16.963

Method II [dB] 16.157 15.692 15.350

Proposed [dB] 22.334 20.551 21.830

No interference [dB] 25.212 25.212 25.212
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(a) Method I (b) Method II (c) Proposed (d) No interference

(e) Method I (f) Method II (g) Proposed (h) No interference

Figure 3.9: Setup3. Simulated power levels with respect to range and velocity. Two

targets exist at (range : 20m, velocity : -30km/h), (range : 30m, velocity : -40km/h).

Eight interference sources exist at 30m, 40m, 50m, 60m, 55m, 45m, 35m, and 15m.

Setup4

We assumed that 3-5 targets and 5-8 interference sources were present in test case

Setup4. The average SRINR test results are shown in Table 3.9. In Setup4, our pro-

posed algorithm produces average SRINR values of 33.361, 31.564, and 33.058 for

CS, triangle FMCW, and MFSK waveforms, respectively. Fig. 3.10 shows distance

and velocity measurements of the target. Compare to Setup2 and Setup3, the average

SRINR value is slightly lower than that in Setup3 because the number of targets and

the number of interference sources increases compared to Setup1. Our proposed algo-

rithm showed better performance than the other algorithms even when 1-2 targets and

1-4 interference were used for training, while 3-5 targets and 5-8 interference sources

were used for testing. In other words, our proposed deep learning methods provides

greater performance, even when the number of training and test data are completely

different.
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Table 3.9: Setup4 : average SRINR values from 50 trials(3 to 5 targets, 5 to 8 interfer-

ence sources)

CS triangle FMCW MFSK

No algorithm [dB] 21.373 21.050 20.182

Method I [dB] 24.981 24.911 25.873

Method II [dB] 24.218 23.783 23.620

Proposed [dB] 33.361 31.564 33.058

No interference [dB] 36.211 36.211 36.211

(a) Method I (b) Method II (c) Proposed (d) No interference

(e) Method I (f) Method II (g) Proposed (h) No interference

Figure 3.10: Setup4. Simulated power levels with respect to range and velocity. Five

targets exist at (range : 20m, velocity : -30km/h), (range : 30m, velocity : -40km/h),

(range : 50m, velocity : 20km/h), (range : 70m, velocity : 50km/h), and (range : 90m,

velocity : 10km/h). Eight interference sources exist at 30m, 40m, 50m, 60m, 55m,

45m, 35m, and 15m.

3.4.5 OFDM Radar Result

The Fig. 3.11 is 2d-fft result of interfered channel of ddiv. After applying the deep

learning algorithm, the peak was clearly detected.
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(a) Interrupted (b) After deep learning

Figure 3.11: 2d-fft result of ddiv.

3.5 Conclusion

This paper presents a novel RNN based algorithm to mitigate interference in FMCW

and OFDM radar environment. By adding the attention module to the previous GRU

model, I can better capture the relationship between time sequences. The proposed

model not only removes the interference but also recovers the original signal and shows

better performance than the state-of-the-art method. In addition I applied the deep

learning algorithm for mimo ofdm interference cancellation for the first time. Our

future work will focus on testing our algorithm on real-world data.

41



Chapter 4

Neural Architecture Search with Dynamic Exploration

4.1 Introduction

The optimal neural architecture is different for each deep learning task, and designing

it requires substantial knowledge of experts and a lot of computation time. Neural

architecture search (NAS) has emerged to solve this problem, and it aims to automate

the neural architecture design and weight optimization.

Early NAS approaches set the search problem as hyperparameter optimization,

where the weights are trained under the sampled architectures and the performance

of each architecture is measured by validation error. For effective hyperparameter op-

timization, reinforcement learning was commonly used [4, 34], but these approaches

consume enormous computation time and cost. To reduce the enormous computation,

recent NAS approaches [35, 36, 37, 5, 38, 39], called one-shot NAS, perform weight

training and architecture search jointly by weight sharing for all possible architec-

tures. It can successfully save huge amount of computation by not having to train new

weights from scratch for different architectures.

Differentiable Architecture Search (DARTS) [5], one of the recent one-shot NAS

approaches, has received a lot of attention for its simple methodology and small search

cost. Based on directed acyclic graph (DAG) for weight sharing [37], it proposed
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gradient-based search via continuous relaxation over discrete search space and first-

order approximation of bi-level optimization. However, the gradient-based search of

DARTS has a bias issue. As DARTS solves a bi-level optimization problem of weight

training and architecture search in a nested manner, and the gradient descent has a

greedy nature, the search process is inevitably biased.

The issue that the gradient-based search is biased has been addressed in the previ-

ous literature. With empirical results, several papers [40, 41] point out that the gradient-

based search results are biased to prefer skip-connect operation. As skip-connection

helps neural networks to rapidly converge with gradient update, lots of skip connect

operations are found in the architectures selected by DARTS.

To tackle the bias issue, I dynamically transform the architecture during the search,

so that the search process does not consider only a limited architecture when train-

ing the weight of operations. By introducing a dynamic architecture into the search

process, I tried to mitigate the bias of the search that bi-level optimization is per-

formed in a nested manner. For dynamic architecture, I propose Dynamic Attention

Networks (DANs). Each DAN is implemented on each edge of the DAG, and dynami-

cally changes the neural architecture depending on the input during the early stages of

the search process. By considering various architectures during the search, it allows the

gradient-based search to have an exploration effect. To reduce exploration at the end

of the search and decide network architecture, the attention weight for DAN gradually

decreases as the search process proceeds, reaching zero at the end of the search.

The main contributions of our paper are as follows.

• I introduce a dynamic architecture into the search process, which alleviates the

drawbacks from the bias of the gradient-based search where bi-level optimiza-

tion is performed in a nested manner.

• I propose Dynamic Attention Networks (DANs), which change the neural ar-

chitecture based on inputs so that the gradient-based search has an effective

exploration effect.
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• Our proposed algorithm achieves state-of-the-art performance in multiple image

classification datasets: CIFAR-10, CIFAR-100, and ImageNet.

4.2 Related Work

4.2.1 Neural Architecture Search

Early researches for NAS focused on reinforcement learning. The representative works

[4, 34] of reinforcement learning-based search construct a network structure with a

RNN controller and validation accuracy is used as rewards for training a RNN con-

troller. In addition, evolutionary algorithm [42] was proposed to combine evolution

theory and reinforcement learning. However, it takes too much time for the search.

Recently, gradient-based search methods attracted many researchers for simple imple-

mentation and powerful performances.

One of the gradient based search methods, DARTS [5], proposed continuous re-

laxation to make architecture search differentiable. Also, it proposed 2nd order ap-

proximation for faster convergence of the search progress. SNAS [38] introduced the

stochastic search through a gumbel-softmax [43]. It reduces the inconsistency of sub-

graphs and a supergraph. DATA [44] proposed ensemble gumbel-softmax for more

effective stochastic search. PC-DARTS [45] samples small parts of the super-network

to reduce the redundancy in exploring the network space.

4.2.2 Exploration and Exploitation

The gradient update method of the existing DARTS algorithm always learns archi-

tecture parameter α in a direction of reducing validation loss. Using such greedy al-

gorithm can result in some of the options not being explored. In this case, architec-

ture learning can fall into local minimum rather than global minimum. Reinforce-

ment learning finds more possibilities by using ϵ-greedy, which involves not only

exploitation but also exploration, to solve this problem. The ϵ-greedy of reinforce-
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ment learning is expressed as the following equation.

π(a|s) =

 ϵ
m + (1− ϵ) , a∗ = argmax {Qπ(s, a)}
ϵ
m , otherwise

(4.1)

Where π(a|s) is policy given action a and state s. m is the number of total action and Q

function Qπ(s, a) is the sum of the reward. This policy ensures that with probability e
m ,

I choose a random action. In reinforcement learning, exploration as well as exploitation

is needed to find the optimal. ϵ-greedy is one of the methods of exploration, and the

following proof shows that epsilon-greedy still result policy improvement.

Theorem 1 (ϵ-greedy policy iteration) For any ϵ -greedy policy π, the ϵ-greedy policy

π′ with respect to qπ is an improvement, vπ′(s) ≥ vπ(s)

Q
(
s, π′(s)

)
=
∑
a∈A

π′(a|s)Qπ(s, a)

=
ϵ

|A|
∑
a∈A

Qπ(s, a) + (1− ϵ)max
a

Qπ(s, a)

≥ ϵ

|A|
∑
a∈A

Qπ(s, a)

+ (1− ϵ)
∑
a∈A

π(a|s)− ϵ
|A|

1− ϵ
Qπ(s, a)

=
∑
a∈A

π(a|s)Qπ(s, a)

=
∑
a∈A

π(a|s)Qπ(s, a)

= Vπ(s)

(4.2)

Where the inequality holds because the max operation is greater than or equal to an

arbitrary weighted sum.
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4.2.3 Dynamic Deep Neural Networks

The state-of-the-art performance of deep learning has largely come from increasing

the size of neural networks. There are numerous works for efficient memory usage and

inference using dynamic deep neural networks.

The dynamic kernels have been proposed for efficient memory usage [46, 47, 48].

In order to avoid applying the same convolutional kernels to every example in a dataset,

the convolutional kernels changes based on the input. By transforming the inference

path dynamically, the inference time can be efficiently reduced [49, 50, 51, 52, 53].

These approaches aim to use large networks for difficult examples and small networks

or sub-network for easy examples. Our proposed method is related to how to dynam-

ically transform the neural architecture for effectively introducing exploration effect

into the gradient-based search.

4.3 Proposed Method

4.3.1 Preliminary: DARTS

I first briefly review DARTS, the basis for our proposed architecture search. Fol-

lowing prior works [34, 42, 54], DARTS aims to search for a cell as the building

block of the final architecture. Based on the DAG with ordered sequence of N nodes

[37], DARTS treats all possible cell architectures as subgraphs of a supergraph using

weight sharing. The cell consists of two input nodes x(0), x(1) and intermediate nodes

x(2), · · · , x(N−1). The output of each intermediate node x(j), where 2 ≤ j ≤ N − 1,

is computed by sum of its all predecessors x(0), · · · , x(j−1) as

x(j) =
∑
i<j

o(i,j)(x(i)) , (4.3)

where o(i,j)(·) is a mixed operation by continuous relaxation. For each directed edge

(i, j), there is a mixed operation o(i,j)(·) as
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o(i,j)(x) =
∑
o∈O

f(α(i,j))o · o(x)

=
∑
o∈O

exp
(
α
(i,j)
o

)
∑

o′∈O exp
(
α
(i,j)
o′

) · o(x) , (4.4)

whereO is a set of all possible operations (e.g., convolution, identity connection, etc),

and α
(i,j)
o is a hyperparameter for weighting operation o(x) on the edge (i, j). The

final output of the entire cell is formed by concatenating the output of all intermedi-

ate nodes x(2), · · · , x(N−1). By relaxing the discrete search space to be continuous,

DARTS could simultaneously optimize the architecture α = {α(i,j)} and the weights

w within all the mixed operations. After the search is finished, operation o(x) with the

largest α(i,j)
o value excluding the zero operation is selected on each edge (i, j). Then,

two incoming edges with the largest α(i,j)
o value are preserved for each node.

4.3.2 Exploration Strategy for Gradient-Based Search

DARTS alternately optimizes the architecture α and the weights w on the validation

set and the training set, respectively. Let αt and wt denote the architecture and the

weights at training step t, the gradient-based search is performed by alternating gradi-

ent descent with a learning rate ξ as

αt+1 = αt − ξ∇αtLval (wt, αt) (4.5)

wt+1 = wt − ξ∇wtLtrain (wt, αt+1) . (4.6)

Using a gradient descent, α is optimized in direction of reducing the validation loss,

and w is updated in direction of reducing the training loss. There is an issue with this

bilevel optimization problem. Due to the greedy nature of the gradient-based method

and the nested formulation, the search process is inevitably biased, limiting the search

for various directions. The optimization of α has a bias due to w at every step of the

gradient descent, and vice versa. Thus, α and w affect each other’s optimization, and

the positions of α and w can greatly affect the direction of the architecture search.
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Due to mutually biased optimization, the search proceeds without considering other

different architectures. DARTS is a gradient-based search, but in terms of reinforce-

ment learning, it can be viewed as using only exploitation to search the architecture

without exploration. To tackle the bias issue of the gradient-based search, I introduce

an exploration effect into the gradient-based search.

Let Z(i,j) be a vector where each element represents the value of choosing a par-

ticular operation on the edge (i, j). DARTS computes Z(i,j) as a softmax of the archi-

tecture parameter α(i,j) as in equation (4.4). In our proposed method, I compute Z(i,j)
o

as

Z(i,j)
o =

exp
(
α
(i,j)
o

)
∑

o′∈O exp
(
α
(i,j)
o′

) + σ · q(i,j)o , (4.7)

where σ is a weight of how much the exploration effect will be activated during the

search, and q
(i,j)
o is a random probability independent of the architecture parameter

α(i,j). Using an auxiliary noise variable ϵ that is randomly sampled from the univariate

Gaussian distribution of mean 0 and variance 1, I compute a random probability q
(i,j)
o

as

q(i,j)o =
exp (ϵo)∑

o′∈O exp (ϵo′)
, (4.8)

where ϵo ∼ N (0, 1).

I start the architecture search with σ = 1, which decreases exponentially with each

training epoch, reaching nearly zero at the end. At the beginning of the search, I can

estimate less biased Z(i,j) due to the exploration by q(i,j), and weight w is optimized

with various cases of the architecture where each edge of the cell has a distribution

of Z(i,j). As the search proceeds, the exploration weight σ exponentially decreases,

the exploration effect by q(i,j) gradually diminishes. At the end, the exploitation by

optimization of α(i,j) becomes dominant. With this simple technique, the architecture

gradually changes from the dynamic architecture to the static architecture during the

search. After the search, I select a operation o(x) with the largest Z(i,j)
o value excluding
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the zero operation on each edge (i, j). Then, two incoming edges with the largest Z(i,j)
o

value are preserved for each node, same as DARTS.

4.3.3 Dynamic Attention Networks

Using a random probability vector q(i,j) of equation (4.8) is not an efficient strategy

for the exploration effect. For efficient exploration, I propose Dynamic Attention Net-

works (DANs) that dynamically change the architecture based on the input, rather than

randomly changing the architecture. Based on equation (4.7), I replace a random prob-

ability q
(i,j)
o to compute Z

(i,j)
o as

Z(i,j)
o =

exp
(
α
(i,j)
o

)
∑

o′∈O exp
(
α
(i,j)
o′

) + σ · F (x(i))o, (4.9)

where x(i) is an input on the edge (i, j), and F (x(i))o is the output of DAN. DAN

computes the attention weights over all possible operations on the edge (i, j). The

attention weights make the search to consider more potential architectures than random

ones. As shown in Figure 4.1, I uses global average pooling first to squeeze the global

information of the edge input x(i). Then, two fully connected layers are followed with

a ReLU activation function between them. To generate a normalized attention, final

layer is a softmax as

F (x(i))o =
exp

(
f(x(i))o

)∑
o′∈O exp

(
f(x(i))o′

) , (4.10)

where f(x(i)) is the logit of DAN. As in previous Section 4.3.2, I use the attention

weight σ to control the exploration effect of DAN during the search. Our proposed

method does not require much memory usage. DAN generates a |O|-dimensional vec-

tor from the edge input with dimension H ×W × C. The edge input is squeezed to a

vector with dimension C by a global average pooling. Then, two fully connected lay-

ers in our DAN changes a vector size in order of C → C/4→ |O|. I can compute the

number of parameters in DAN as C ×C/4+C/4× |O|, and the sum of these param-
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𝜎 (attention weight)

Dynamic Attention Network (DAN)

Figure 4.1: Illustration of our proposed method, DE-DARTS. Dynamic Attention Net-

work (DAN) is implemented on each edge of DAG. DAN consists of a global aver-

age pooling, two fully connected layers with a ReLU activation between them, and a

softmax. I multiply the output of DAN by the attention weight σ, then add it to the

architecture parameter α.

eters in all DANs is significantly smaller compared to the sum of the other parameters

{w,α}. Thus, our proposed method, DE-DARTS, is applicable to any gradient-based

methods by just implementing DAN on each edge of cells, and has a negligible effect

on the search time.

The method of adding noise in equation (4.7) is similar to the gumbel softmax

proposed by SNAS[38] et al. However, more efficient architecture search is possible

by adding learnable variable to the architecture parameter α through the DAN I use.

In addition, the equation (4.7) proposed by us differs from the gumbel softmax in that

each noise has different dynamic characteristics for each input in the batch. In the case

of gumbel softmax, the noise value added to the α value is the same for all inputs in the

batch. The performance comparison of the noise and the DAN is described in Section

4.5.2.
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4.4 Experiments

4.4.1 Datasets

I conduct experiments with three image classification datasets including CIFAR-10,

CIFAR-100 , and ImageNet. Each of CIFAR-10 and CIFAR-100 [55] contains 50K/10K

training/testing RGB images with a fixed size of 32 × 32. Images in CIFAR-10 are

equally distributed over 10 classes, with 6K images per each class. Images in CIFAR-

100 are equally distributed over 100 classes, with 600 images per each class. ImageNet

[56] contains 1.3M/50K training/validation RGB images with a high resolution. Im-

ages in ImageNet are roughly equally distributed over 1,000 object categories. Follow-

ing the conventions [34, 5], I adopt the mobile setting where the input image size is

224× 224 and the number of multi-add operations is restricted to be less than 600M. I

conduct the architecture search and evaluation on CIFAR-10, and test the transferabil-

ity of the architecture on CIFAR-100 and ImageNet.

4.4.2 Architecture Search

Implementation details

Following DARTS, I set eight candidate operations on each edge: 3 × 3 and 5 × 5

separable convolutions, 3×3 and 5×5 dilated convolutions, 3×3 max pooling, 3×3

average pooling, identity, and zero. The architecture is constructed by stacking eight

cells (6 normal cells and 2 reduction cells) of 16 initial channels, and two reduction

cells are located at the 1/3 and 2/3 of the total depth of the network. And each cell

consists of N = 7 nodes (2 input nodes, 4 intermediate nodes, and 1 output node).

For each cell, the two input nodes are from the output of the two previous cells. The

output of the cell is computed by concatenating the output of all intermediate nodes.

A small network with 8 cells is trained for 50 epochs. For the optimization of weights

w, I use a momentum SGD optimizer, with an initial learning rate of 0.025 (annealed

down to zero following a cosine schedule without restart [57]), a momentum of 0.9
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and a weight decay of 3 × 10−4. And for the optimization of architecture α, I use

an Adam [24] optimizer, with an initial learning rate of 3 × 10−4, a momentum of

(0.5, 0.999), and a weight decay of 10−3. As our proposed method can be simply

applied to any search method based on DAG, I adopt the second order optimization

scheme of DARTS to learn the architecture parameters for high performance.

Dynamic architecture search

Our Dynamic Attention Network (DAN) used for dynamic architecture search consists

of a global average pooling, two fully connected layers with a ReLU between them,

and a softmax as shown in Figure 4.1. When weights w are optimized, I optimize the

parameters in DAN together using a same momentum SGD optimizer. As the number

of parameters in DANs is small and parameters are optimized with weights w together,

DANs has almost negligible effects on the search time. Thus, the search time is almost

same with DARTS (24 hours on a single GPU). The attention weight σ gradually

decreases with each epoch, with an initial value of σ = 1, a decaying rate of γ = 0.9.
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Figure 4.2: Selected cells by DE-DARTS (2nd order) on CIFAR-10.
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Search results

After the search, the cell selection is based on the architecture parameter α. After

selecting a operation for 14 edges of the cell, two incoming edges per each node are

preserved with a largest value α. As in Figure 4.2 (a), the normal cell I found consists

of 7 convolutions, and 1 skip connection. And as in Figure 4.2 (b), the reduction cell

I found consists of 4 convolutions, 2 max poolings, and 2 skip connections. I provide

evaluations of the architecture I found on the next section.

4.4.3 Architecture Evaluation

After the search on CIFAR-10, I evaluate the cell found by DE-DARTS. In addition, I

performed transferability test on CIFAR-100 and ImageNet using the cell searched on

CIFAR-10. All experiments were conducted using RTX-2080TI GPUs.

Evaluation on CIFAR-10

To evaluate the selected architecture on CIFAR-10, I stack 20 cells of 36 initial chan-

nels to make a whole network: 18 normal cells and 2 reduction cells. The reduction

cells are located at the 1/3 and 2/3 of the total depth of the network. Then, the whole

network is trained from scratch for 600 epochs with batch size 80. I use a momentum

SGD optimizer, with an initial learning rate of 0.025, a momentum of 0.9, and a weight

decay of 3 × 10−4. Following the existing works [5, 38, 37, 34, 42, 41, 44], I adopt

cutout [1], path dropout [58] of probability 0.2, and auxiliary towers [59] with weight

0.4. I repeat training an evaluation network from scratch 3 times, then report the mean

and standard deviation of 3 independent runs. Compared to the existing works using

the gradient-based search [5, 38, 41, 44, 45], the architecture I searched on CIFAR-10

achieves state-of-the-art performance with a test error of 2.46%. Also, compared to the

algorithms using reinforcement learning or evolutionary algorithm which are NASNet

[34] and AmoebaNet [42], our algorithm achieves a lower test error. Proxylessnas [39]

is the lowest with an accuracy of 2.08, but the search space is different from the pro-
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posed paper. The number of parameters in the cell I found is 4.1, which has a relatively

larger number of parameters than other DARTS-based papers[5, 38, 41, 44, 45], but

shares the same search space with other DARTS-based papers. In other words, our

algorithm performs better than other algorithm in the same search space.

Table 4.1: Comparison with state-of-the-art architectures on CIFAR-10. All architec-

tures are constructed by stacking 20 cells of 36 initial channels and trained using cutout

[1] enhancement.

Architecture
Test Error

(%)

Params

(M)

Search Cost

(GPU days)

Search

Method

DenseNet-BC [60] 3.46 25.6 - manual

NASNet-A + cutout [34] 2.65 3.3 2000 RL

AmoebaNet-A + cutout [42] 3.34 ± 0.06 3.2 3150 evolution

AmoebaNet-B + cutout [42] 2.55 ± 0.05 2.8 3150 evolution

PNAS [54] 3.41 ± 0.09 3.2 225 SMBO

ENAS + cutout [37] 2.89 4.6 0.5 RL

DARTS + cutout [5] 2.76 ± 0.09 3.3 1 gradient-based

SNAS + cutout [38] 2.85 ± 0.02 2.8 1.5 gradient-based

ProxylessNAS + cutout [39] 2.08 5.7 4 gradient-based

P-DARTS + cutout [41] 2.50 3.4 0.3 gradient-based

DATA (M = 7) + cutout [44] 2.59 3.4 1 gradient-based

PC-DARTS + cutout [45] 2.57 ± 0.07 3.6 0.1 gradient-based

DE-DARTS + cutout 2.46 ± 0.06 4.1 1 gradient-based

Transferability evaluation on CIFAR-100

I use CIFAR-100 to test the transferability of the architecture searched on CIFAR-

10. Experimental settings such as the number of layers and hyperparameters are the
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same as those of CIFAR-10. The results are presented in Table 4.2. It shows that DE-

DARTS transferability results on CIFAR-100 are highly competitive with a test error

of 15.82%.

Table 4.2: Comparison with state-of-the-art architectures on CIFAR-100. † indicates

that architecture was searched on CIFAR-100, other wise it was searched on CIFAR-

10.

Architecture
Test Error

(%)

Params

(M)

Search Cost

(GPU days)

Search

Method

DenseNet-BC [60] 17.18 25.6 - manual

DARTS + cutout (2nd order) [5] 17.54 3.3 1 gradient-based

P-DARTS + cutout (CIFAR-10) [41] 16.55 3.4 0.3 gradient-based

P-DARTS + cutout (CIFAR-100)† [41] 15.92 3.6 0.3 gradient-based

DE-DARTS + cutout 15.82 ± 0.24 4.1 1 gradient-based

Transferability evaluation on ImageNet

In addition to CIFAR-100, I also test the transferability of DE-DARTS on ImageNet.

I train a whole network from scratch for 250 epochs with the batch size 128. I use a

momentum SGD optimizer with an initial learning rate of 0.1, a momentum of 0.9, and

a weight decay of 3× 10−5, and use auxiliary towers with weight 0.4 for an additional

enhancement. I use learning rate warm up [63] for the first 5 epochs and use label

smoothing [64]. Table 4.3 shows that DE-DARTS transferability results on ImageNet

are highly competitive with a test error of 24.0%.
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Table 4.3: Comparison with state-of-the-art architectures on ImageNet. ∗ indicates that

architecture was searched on ImageNet, otherwise it was searched on CIFAR-10.

Architecture
Test Error (%) Params Search Cost

Search Method
top-1 top-5 (M) (GPU days)

Inception-v1 [59] 30.2 10.1 6.6 - manual

MobileNet [61] 29.4 10.5 4.2 - manual

Shuffle-Net-v2 [62] 25.1 - 5 - manual

NASNet-A[34] 26.0 8.4 5.3 2000 RL

NASNet-B[34] 27.2 8.7 5.3 2000 RL

NASNet-C[34] 27.5 9.0 4.9 2000 RL

AmoebaNet-A[42] 25.5 8.0 5.1 3150 evolution

AmoebaNet-B[42] 26.0 8.5 5.3 3150 evolution

AmoebaNet- + cutout [42] 24.3 7.6 6.4 3150 evolution

DARTS [5] 26.7 8.7 4.7 4 gradient-based

SNAS [38] 27.3 9.2 4.3 1.5 gradient-based

ProxylessNAS (GPU)∗ [39] 24.9 7.5 7.1 8.3 gradient-based

PC-DARTS [45] 25.1 7.8 5.3 0.1 gradient-based

P-DARTS [41] 24.4 7.4 4.9 0.3 gradient-based

DATA (M=7) [44] 24.9 8.0 5.0 1 gradient-based

DE-DARTS 24.0 7.2 5.7 1 gradient-based

4.5 Analysis and Ablation Study

4.5.1 Operation Distribution of DARTS and DE-DARTS

I run DARTS and DE-DARTS 5 times with different random seeds and observed the

distribution of operations. The number of operations for each search result (S1 ∼ S5)

is in Table 4.4 and Table 4.5. In Table 4.4 and Table 4.5, I show the total number of
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7 operations excluding zero operation. For each search result, there are a total of 16

operations, 8 operations for normal cell and 8 operations for reduction cell respectively.

There are many skip connections in each search result by DARTS. On the other hand,

DE-DARTS had a relatively higher number of sep-convs and fewer skip-connect than

DARTS. Cells searched by DE-DARTS have a lot of convolution operations, so their

expressive power is better than cells found with DARTS.

Table 4.4: DARTS

Operation S1 S2 S3 S4 S5 Mean

max-pool 3x3 3 0 1 1 0 1

avg-pool 3x3 0 4 3 2 4 2.6

skip-connect 7 5 6 8 5 6.2

sep-conv 3x3 3 5 4 3 3 3.6

sep-conv 5x5 1 1 0 0 0 0.4

dil-conv 3x3 2 0 1 1 3 1.4

dil-conv 5x5 0 1 1 1 1 0.8

Table 4.5: DE-DARTS

Operation S1 S2 S3 S4 S5 Mean

max-pool 3x3 1 5 6 5 2 3.8

avg-pool 3x3 0 0 0 0 0 0

skip-connect 3 3 2 2 3 2.6

sep-conv 3x3 5 4 4 4 7 4.8

sep-conv 5x5 5 2 3 4 2 3.2

dil-conv 3x3 0 0 0 0 0 0

dil-conv 5x5 2 2 1 1 2 1.6

4.5.2 Comparison of Ramdom Noise and DAN

In this section, I discuss the effectiveness of exploration by two different functions

of equation (4.7) and equation (4.9). In addition to the evaluation results of the 2nd

order DE-DARTS with DAN in CIFAR-10 result, I evaluate the 2nd order DE-DARTS

with a random probability vector q
(i,j)
o that randomly changes the architecture. To

compute a random probability vector q(i,j)o , auxiliary random variable ϵ is first sampled

from the univariate Gaussian distribution of zero mean and unit variance. The, random

probability q
(i,j)
o is computed as a softmax of random variable ϵ.

In Table 4.6, (noise batch static) means the input noise in all batches the same as

the gumbel softmax, whereas (noise batch dynamic) means the input noise in each

batch different. As a result of the experiment, it was better to make the noise different
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for each input in the batch than to make it the same. Also, it turned out that it was

better to use a learnable DAN than to use noise.

Table 4.6: Comparison of exploration effects of DAN and noise. Noise is Gaussian

distribution of zero mean and unit variance. The experiment was carried out on CIFAR-

10.

Architecture
Test Error

(%)

Params

(M)

DE-DARTS (noise batch static) 2.73 ± 0.07 3.4

DE-DARTS (noise batch dynamic) 2.67 ± 0.06 4.3

DE-DARTS (DAN) 2.46 ± 0.06 4.1

4.5.3 Decaying Rate γ

We conducted experiments for the effect of decaying rate γ of the attention weight.

The search progresses of different decaying rates are shown in the Fig. 4.3. We can

see that the smaller decaying rate γ, the higher validation accuracy early in the search.

In other words, a lower decaying rate means reducing exploration and increasing ex-

ploitation more rapidly so that validation accuracy achieves higher early in the search.

The validation accuracy with a decaying rate of γ = 0.5 increases faster than a decay-

ing rate of γ = 0.9, but the final validation accuracy is similar, but validation accuracy

at the end of the search reaches almost the same value. Except the very early stage of

the search, we can see that progresses of different decaying rates are very similar. So,

it indicates that DE-DARTS is robust to the value of a decaying rate γ.
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Table 4.7: Correlation of operators ranking up to the first 10 epoch. I calculate the

correlation of operators between 0-5 epoch and 5-10 epoch.

Edge DARTS DE-DARTS

E1 0.77 0.37

E2 0.98 0.05

E3 0.57 -0.6

E4 0.6 -0.84

E5 0.98 -0.08

E6 -0.19 -0.72

E7 0.19 -0.18

E8 1 0.03

E9 0.98 -0.04

E10 0.36 0.75

E11 0.12 0.32

E12 0.5 0.51

E13 1 -0.05

E14 0.9 -0.21

4.5.4 DE-DARTS Learning Curve on CIFAR-10

Fig. 4.4 shows the test accuracy on CIFAR-10 which is evaluated during the training

of the architectures found by 2nd order DARTS and 2nd order DE-DARTS. At 600

epochs, DARTS achieves a test accuracy of 97.30% and DE-DARTS achieves a test

accuracy of 97.62%. At the beginning of the training procedure, there is no significant

difference between DARTS and DE-DARTS test accuracy. After about 200 epochs,

the test accuracy of DE-DARTS is gradually higher than that of DARTS.
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Figure 4.3: Search progresses of DE-DARTS with different decaying rates γ. We mea-

sured validation accuracy every 5 epochs with 5 different decaying rates from γ = 0.5

to γ = 0.9. The architecture search was conducted for 50 epochs on CIFAR-10.

4.5.5 Exploration Effect in Architecture Search Process

Due to the greedy nature of gradient update and bi-level optimization, the architecture

search process of existing DARTS methods is biased. In other words, the search range

of the architecture search is too narrow, and the search continues only within similar

architectures. This trend is particularly noticeable early in the architecture search. I

obtained the ranks of operators for each edge and found how the ranking of operators

changes according to epochs through Spearman rank correlation.

I show the correlation between operators of DARTS and DE-DARTS in Table 4.7.

I calculated the average of the rankings of operators from 0 to 5 epoch and from 5

to 10 epoch, respectively, and then calculated the correlation between the two. Many

edges in DARTS are mostly positive with high correlation, whereas DE-DARTS has

a diverse correlation range with a low positive correlation or negative correlation. In

other words, DARTS has a similar operator ranking between 0-5 epochs and 5-10

epochs. Therefore the architecture search range of DARTS is narrow at the beginning.
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Figure 4.4: Test accuracy on CIFAR-10 during the training procedure. Both DARTS

and DE-DARTS were trained for a total of 600 epochs. For a clear comparison of the

learning curve, the results from epoch 5 to 600 epoch are plotted on the graph.

However, DE-DARTS has a large change in operator ranking, which indicates a wider

range of architecture search is possible.
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Figure 4.5: This plot shows the number of skip connections of the DARTS and our

DE-DARTS as the epoch changes. I averaged a total of 5 runs.
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4.5.6 Number of Skip-Connections

In this section, I analyze the skip-connect operation issue, which was also addressed

by previous research. It is an issue is that the number of skip-connect operations is too

large in the selected architecture by DARTS. As architecture parameters of gradient-

based architecture search are updated in the direction that accelerates convergence,

the gradient descent begins to prefer skip-connect operation and it becomes more and

more dominant. Excessive skip connections do not have parameters compared to other

operators, so their expressive power is relatively inferior to convolution operations.

As a result, when there are many skip connections, the final accuracy is lower than

that of fewer skip connections. As our proposed method aims to reduce the bias in the

search process, the number of skip-connect operations is expected to be small in an

architecture selected by our proposed method.

Figure 4.5 shows the number of skip connections in search processes as the epoch

changes. I select two edges each in the order of the highest architecture parameter

based on the input edge coming to the graph node of DARTS from all edges. For the

final number of edges, eight edges are selected from the normal cell and the reduce cell.

I searched 5 times for both DARTS and DE-DARTS. The number of skip connections

in Figure 4.5 is the average sum of the number of skip connections in the normal cell

and the reduce cell respectively. Both the DARTS and the DE-DARTS tend to increase

the number of skip connections as the epoch increases. In our DE-DARTS, the rate of

increase in the number of skip connections was lower than that of the DARTS. Finally,

the number of skip connections for DE-DARTS was 2.75 on average compared to the

DARTS with an average number of skip connections of 6.5. Compared to DARTS,

DE-DARTS has a relatively low number of skip connections, which implies greater

expressive power.
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Table 4.8: DARTS

Operation S1 S2 S3 S4 S5 Mean

max-pool 3x3 3 0 1 1 0 1

avg-pool 3x3 0 4 3 2 4 2.6

skip-connect 7 5 6 8 5 6.2

sep-conv 3x3 3 5 4 3 3 3.6

sep-conv 5x5 1 1 0 0 0 0.4

dil-conv 3x3 2 0 1 1 3 1.4

dil-conv 5x5 0 1 1 1 1 0.8

Table 4.9: P-DARTS

Operation S1 S2 S3 S4 S5 Mean

max-pool 3x3 0 1 1 1 0 0.6

avg-pool 3x3 1 2 4 3 4 2.8

skip-connect 7 6 4 4 4 5

sep-conv 3x3 3 4 3 5 4 3.8

sep-conv 5x5 2 1 1 0 2 1.2

dil-conv 3x3 2 2 3 1 0 1.6

dil-conv 5x5 1 0 0 2 2 1

Table 4.10: PC-DARTS

Operation S1 S2 S3 S4 S5 Mean

max-pool 3x3 4 2 2 2 2 2.4

avg-pool 3x3 0 1 0 1 1 0.6

skip-connect 1 4 5 2 4 3.2

sep-conv 3x3 7 3 2 6 2 4

sep-conv 5x5 3 2 3 3 4 3

dil-conv 3x3 1 3 3 0 2 1.8

dil-conv 5x5 0 1 1 2 1 1

Table 4.11: DE-DARTS

Operation S1 S2 S3 S4 S5 Mean

max-pool 3x3 1 5 6 5 2 3.8

avg-pool 3x3 0 0 0 0 0 0

skip-connect 3 3 2 2 3 2.6

sep-conv 3x3 5 4 4 4 7 4.8

sep-conv 5x5 5 2 3 4 2 3.2

dil-conv 3x3 0 0 0 0 0 0

dil-conv 5x5 2 2 1 1 2 1.6

4.5.7 Comparison of Operation Distribution with Other Papers

I added P-DARTS and PC-DARTS to the operation distribution experiments men-

tioned in section 5.1. I used publicly available code for both P-DARTS and PC-DARTS.

In the P-DARTS experiment, there is a part to manually adjust the skip connection in

second regularization, so the results of applying operation-level dropout to the first reg-

ularization were displayed. As a result of the experiment in Table 4.8, 4.9, 4.10, 4.11,

it was found that skip-connection was small in the order of DARTS, P-DARTS, PC-

DARTS and DE-DARTS. The operation distribution of PC-DARTS and DE-DARTS

with relatively few skip-connections was found to be quite similar. For example, the
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number of max-pools is more than the number of avg-pools. All four algorithms have

in common that the number of sep-convs is larger than the number of dil-convs.

4.5.8 Changes of Architecture Distribution

To see the changes in the cell architecture during the search process, I visualize the

distribution of all edges over seven operations sampled at the end of the epoch. The

zero operation is excluded because the operation with the largest α value is selected

among seven operations excluding the zero operation. Fig. 4.6 and Fig. 4.7 represent

the changes in the distribution of normal and reduction cells during the search process

of DARTS. Fig. 4.8 and Fig. 4.9 represent the changes in the distribution of normal

and reduction cells during the search process of DARTS. Normal and reduction cells

each have 14 edges. The y-axis represents epochs, and the x-axis represents operations

with 1 through 7 representing 3×3 max pooling, 3×3 average pooling, identity, 3×3

separable convolution, 5×5 separable convolution, 3×3 dilated convolution, and 5×5

dilated convolution, respectively.

Comparing DARTS and DE-DARTS, DARTS has a similar distribution in most

of the epochs, whereas DE-DARTS has a diverse distribution for each epoch. And,

especially in the early part of the search, you can see that DE-DARTS considers more

diverse cell architectures than DARTS.

4.6 Conclusion

I viewed the gradient-based search in terms of reinforcement learning and proposed

DE-DARTS using Dynamic Attention Networks. By adding DAN on the edge, input-

dependent dynamic architecture is constructed during the search, and makes explo-

ration effect for the gradient-based search. I experimentally showed that DE-DARTS

has fewer skip-connects on average than DARTS. I found the normal cell and the

reduction cell that achieve lower test error than other state-of-the-art algorithms on
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Figure 4.6: Visualization of the changes in the normal cell distribution during the

search process (DARTS).

Figure 4.7: Visualization of the changes in the reduction cell distribution during the

search process (DARTS).

CIFAR-10, CIFAR-100, and ImageNet. In addition, I believe that our proposed method

is easily applicable to any other gradient-based search as well as DARTS algorithm.
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Figure 4.8: Visualization of the changes in the normal cell distribution during the

search process (DE-DARTS).

Figure 4.9: Visualization of the changes in the reduction cell distribution during the

search process (DE-DARTS).
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Chapter 5

Radar Interference Mitigation Using Neural Architec-

ture Search Model

5.1 Introduction

When designing the existing radar interference cancellation model, the RNN-based

model was initially conceived, and the attention technique was later introduced. Also,

it took a lot of time to adjust the number of layers or hyper parameters of the RNN even

after designing the model. Rather than designing a model by humans, I wondered how

AI would design a model, so I started to study neural architecture search later. Neural

architecture search makes AI design a model, and given data, it provides optimal model

results. In this chapter, I apply the neural architecture search-based model we did in

chapter 4 to the radar interference removal.

5.2 Model

The basic model was constructed based on the recurrent experiment of the DARTS

paper. The word embedding part was removed from the model used in the existing

DARTS paper, and the average pooling layer was applied during the last decoding to

make the final output a one-dimensional signal.
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Figure 5.1: recurrent cell

For hyperparameters, the hidden layer size was 300, the batch size was 64, and

dropout was not applied. The optimizer used sgd, the initial learning rate was 0.1, and

the learning rate decay used cosine decay. The epoch used for training was 100 epochs,

and the total number of data was 130000 train data, 10000 valid data, and 10000 test

data.

As a result of training the DARTS-based gradient descent model, the result shown

in Fig. 5.1 was obtained. Tanh is one, sigmoid is three, identity is two, and relu is two.

5.3 Experiment

The experiment result is shown in Fig. 5.2, Fig. 5.3, Fig. 5.4. Fig. 5.2 is input signal

with interference, Fig. 5.3 is output signal using deep learning, Fig. 5.4 is the orignal

label without interference. If you look at the output result, you can see that there was a

large interference in the middle of the input signal, but it was removed and the original

signal was restored well. As a result of this experiment, it has been shown that radar

interference is well removed even with a neural architecture search-based model.

Next, we will compare the found cell with other algorithms. The table is in 1.

As a result of comparing the tables, when comparing the cells, the performance was
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Figure 5.2: input signal

Figure 5.3: deep learning output signal

Figure 5.4: label

good in the order of rnn, gru, and seach cell. The performance slightly improved when

attention was applied, and the performance when using search cell + attention was
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Table 5.1: Comparison of algorithm

cell val loss(RMSE)

RNN 0.008311

GRU 0.007012

search cell 0.006918

GRU + attention [65] 0.006627

search cell + attention 0.006583

slightly better than when using GRU + attention.
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Chapter 6

Conclusion

6.1 Summary

In this dissertation, we discuss radar interference cancellation and new AutoML tech-

nology using deep learning.

In chapter 2, how to remove radar interference using deep learning is covered.

The most commonly used signal in radar is FMCW. FMCW predicts the distance and

angle of the target using the difference between the transmitted signal and the received

signal. Existing signal processing methods have limitations in predicting the pattern of

this error, but I used deep learning to achieve higher performance.

In chapter 3, the self-attention technique used in AI was added to the deep learning

model that removes radar interference to enable more detailed processing, and the

interference cancellation technology was applied to OFDM signals as well as FMCW.

In chapter 4, creating an existing deep learning model requires a lot of human-

power. To solve this problem, AutoML, in which AI designs models, was introduced.

In the early days of AutoML, the model was designed using reinforcement learning,

but it takes a long time to learn because the model has to be run from scratch. The

weight sharing technique that came out to solve this problem is ENAS and DARTS. In

this dissertation, to solve the problem of the existing DARTS I introduce DE-DARTS.
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In DE-DARTS, to solve the problem of the increase in the number of skip connections,

a dynamic attention network was added at the beginning of learning to give an explo-

ration effect. As a result, the number of skip connections was reduced, and DE-DARTS

showed higher performance than existing papers in CIFAR-10, CIFAR-100, Imagnet.

In chapter5, I demonstrate that radar interference is removed with a neural archi-

tecture search-based model. As a result, the interference was well removed and the

original signal was similarly restored. In addition, when compared with the existing

rnn cell and gru cell, performance improvement was achieved with a larger gap than

rnn cell and a slightly smaller gap with gru cell.

6.2 Future Direction

In removing radar interference through deep learning, it would be better to experiment

directly with real data rather than simulation data. In addition, I plan to update the

model through AutoML, which we did in Chapter 4, rather than directly implementing

the deep learning model. In DE-DARTS, I plan to experiment with RNN as well as

CNN later. Also, I plan to improve the algorithm for further performance improvement

later.
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초록

최근딥러닝에대한관심이높아지고많은연구가진행되고있습니다.본논문에

서는딥러닝을레이더신호처리에적용하는부분과신경구조탐색을다루는딥러닝

이론을다룬다.

첫째, 자동차 시스템에서 레이더는 자율주행의 핵심 부품이다. 표적에 의한 송

신레이더신호와반사된레이더신호를이용하여표적의범위와속도를포착할수

있습니다.그러나간섭신호가존재하면노이즈플로어가증가하고대상물체의감

지 가능성에 심각한 영향을 미칩니다. 간섭을 제거하거나 원래 신호를 재구성하기

위한이전연구들이제안되었습니다.그러나,간섭을제거하거나송신신호를재구

성하는 기존의 신호 처리 방법은 복잡도가 높은 작업이며 많은 제약이 따른다. 이

작업에서는 딥 러닝을 사용하여 간섭을 완화하는 새로운 개념을 제안합니다. 제안

하는 방법은 다양한 간섭 조건에서 높은 성능을 제공하며 처리 시간이 짧다. 또한

제안하는 방법이 기존의 신호 처리 방법에 비해 더 나은 성능을 보인다는 것을 보

였다.

둘째, 신경망 구조 검색(NAS) 방법은 사람의 도움 없이 자동으로 최적의 신경

망을 찾습니다. 그래디언트 기반 검색으로 아키텍처를 찾기 위해 NAS에 대한 수

많은 알고리즘이 연구되었습니다. Gradient 기반 검색의 핵심 논문 중 하나인 Dif-

ferentiable Architecture Search(DARTS)는 검색 비용을 획기적으로 줄였으며, 지속

적인완화와메타학습기반근사화를통해뛰어난성능을보여주었습니다.그러나

DARTS의문제중하나는그래디언트기반검색프로세스가중첩된이중수준구조

와그래디언트디센트의탐욕스러운동작으로인해편향된다는것입니다.결과적으

로 검색 공간이 제한된 아키텍처 집합으로 제한되는 문제가 있습니다. 그래디언트
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기반검색의편향성을극복하기위해동적검색방법을사용했습니다.이기술을사

용하면그래디언트기반검색이탐색효과를가질수있습니다.이논문에서는새로

운접근방식인 DE-DARTS(Dynamic-Exploration DARTS)를제시합니다.효과적인

탐색을 위해 DE-DARTS에서 입력 데이터를 기반으로 모델 아키텍처를 변경하는

동적 주의 네트워크(DAN)를 사용합니다. 우리의 DAN은 검색 초기에 활성화되기

때문에검색초기에입력데이터에따라다양한아키텍처가고려됩니다.우리의알

고리즘은 CIFAR-10, CIFAR-100 및 ImageNet을 포함한 여러 이미지 분류 데이터

세트에서평가되었으며향상된성능을보여줍니다.

셋째,신경구조탐색방법을기반으로레이더간섭제거에적용한다.이모델은

DARTS 논문을 기반으로 합니다. 신경망 구조 검색 기반 모델을 적용한 결과 직접

모델을 설계하지 않고도 AI가 만든 rnn 기반 모델로 레이더 간섭을 잘 제거할 수

있었다.

주요어:레이더,신호처리,신경구조탐색,동적탐색

학번: 2016-27442
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작성법및여러어려운점들을도와주었고연구진행이막힐때마다새로운아이디

어를제시해주었습니다.

마지막으로연구활동을하는동안저를믿어주시고든든히지원해주신우리사

랑하는가족들,아버지,어머니,형에게정말감사드립니다.가족들의이해와헌신이

없었다면,긴학업기간동안연구에전념하지못했을겁니다.
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이외에도많은분들의도움과응원들이있었기때문에이논문을완성할수있

었습니다.다시한번모든분들께감사드리며,앞으로의삶에있어서도항상감사한

마음을잊지않겠습니다.
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