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Abstract

The noise on a piping systems become a serious issue in the 

industries of shipbuilding. This noise originating from various 

sources such as main machinery can be propagated to many parts of 

a ship including outer hull, workshops, and accommodation areas. In 

addition, this noise exerts a negative effect on workers, residents and 

also underwater radiated noise (URN). Especially in submarines, 

URN is directly related to survivability and degrades detection 

performance of sonar (sound navigation and ranging). Conventional 

source localization methods with time difference of arrival (TDoA)

are not applicable in complex systems because it is too noise 

sensitive. Moreover, these methods are limited to transient noise 

sources from defects and leak, and a single type of pipe by using 

more than two sensors. Recent studies on source localization have 

shown that deep learning application have the potential to solve these 

problems. Therefore, We propose the deep learning approach to 

noise source localization on a pipe system with a single 

accelerometer. Transfer learning and fine tuning are applied for the 

suggested method for noise source localization on pipes. As pre-

trained convolutional neural network (CNN) models, VGG16 for 

classification and ResNet50 for regression are used. We suggest both 

the classification method and the regression method combined with 

classification model for 2D pipe source localization, which is 

applicable in 3D pipes. This can also be possible solution for unseen 

data due to complex and narrow piping systems. For training the 

models, the structure-borne noise dataset is acquired from the 

experiments according to four typical conditions which are a variety 

of source types, with and without the presence of water in the pipe, 

boundary conditions, and configuration of pipes. The collected signals 

are pre-processed from raw signals to Log-Mel spectrogram images 

so as to train the deep learning model. The performance of the model 

are evaluated by 5-folds cross validation. Though this thesis is 

focused on the pipe noise source localization, the proposed methods 
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can be employed for source localization methods in other systems as 

well as in the pipe systems of other industries.

Keyword : Noise source localization, Deep learning, Convolutional 

neural network, Piping systems

Student Number : 2021-28481
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Chapter 1. 

Introduction

1.1. Backgrounds

Ships have various hull shapes and internal structures according 

to their purpose of use. A ship is composed of several systems, and 

each of the systems is organic and has a complex structure. In 

addition, since a ship is a steel structure, it has a characteristic in 

which noise is easily propagated. Various noises affect not only 

around the noise source but also in many parts of the hull.

In particular, the types of noise in submarines are as follows: 

machinery noise, propeller noise, flow induced noise, and pipe noise. 

The main noise sources are main machinery and propeller noise. 

These noise affects the overall noise level of the ship. Therefore, it 

is necessary to figure out the main transmission path of noise through

noise and vibration analysis at the design stage of ship, and insulate 

the sound.

Recently, the need for soundproofing a ship against especially 

pipe noise has emerged. If sound insulation of various pipes 

connected to the equipment is poor, the noise affects the entire parts 

of ships as shown in Figure 1.1. The workers suffer a degradation of 

ability and a hearing loss because of noise. The noise is also 

transmitted to the exterior structures through the pipe, which has an 

effect on the overall underwater radiated noise (URN) in the case of 
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submarines. This leads to degrade performance of sonar and 

survivability of submarines. In addition, in the case of secondary 

noise caused by flow and pressure changes inside the pipe, it is very 

difficult to locate the noise source and to take measures for 

soundproofing and vibration prevention. In addition, unlike what a 

ship is designed and is predicted, there are cases in which abnormal 

noise occurs after shipbuilding.

Figure 1.1: Propagation of noise through pipes and negative effects.

1.2. Purpose of research

Piping noise is very difficult to identify the noise source through 

measurement and analysis when a problem occurs during sea trial, in

the case of a submarines, due to the complexity of the piping system 

and the narrow internal space. The identification can be divided into 

three aspects, (a) detection, (b) recognition, and (c) localization, but 

they have their own difficulty.

(a) In the detection stage, when noise occurs, it is difficult to 

determine whether it is noise from the piping systems or from other 

systems. (b) There is a problem in that it is hard to find which piping 

system among various piping systems in terms of recognition. Finally, 

(c) in terms of localization, it is not easy to find where the noise 

source occurred on the pipe.

In conclusion, the most fundamental solution to this is to directly 

locate the noise source in the piping system. Accordingly, shipyards 

are using various methods as a way to identify the noise source in 

the piping system. Figure 1.2 shows two representative methods: a 

frequency-based noise source location estimation method and an 
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on-off test 

Figure 1.2: The existing noise source identification methods used by shipyards 

and their limitations.

The first method is to analyze the frequency to find the noise 

source corresponding to the frequency of interest. However, this 

methods have limitations that several noise sources have the same 

frequency component and also broadband frequency component, and 

the frequency signals can be fluctuated as it passes through the 

transmission path.

The on-off test is to turn off the internal machinery and turn 

them on one by one to determine where the noise is coming from. 

Then, the number of cases of noise sources is reduced compared to 

the frequency-based method, so that the location can be estimated 

more efficiently. However, due to the complex structure of the ship, 

there are some problems that most machinery is coupled with each 

other and the method is too time consuming.

For such reasons, these existing methods has many limitations 

to be applied in reality. It is necessary to develop the existing method 

and introduce a new method. 
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1.3. Related works

1.3.1 Source localization methods on a piping system

Source localization on a piping system is mainly used for leak 

detection. Conventional pipe noise source localization methods are 

mostly based on the time difference of arrival (TDoA) method as 

shown in Figure 1.3. By TDoA methods, two or more sensors are

attached on a pipe system and the noise propagated from a noise 

source is acquired from the sensors. There is difference in arrival 

time at each sensor because of the distance from source to sensor 

position. The position of source can be calculated with the wave 

speed of the pipe and the time difference.

Figure 1.3 Source localization based on TDoA [1]

Pan et al. [2] proposed a source localization method that uses 

cross-correlation to know the time difference after narrowing the 

interested area with the attenuation property of the noise signal 

amplitude. Kousiopolous et al. [3] showed the result of a method 

using cross-correlation, and suggest improved method. The 

improved method converts time series data to frequency domain data 

through FFT, and multiplies the cross spectral density between two 

sensors by introducing a weighting function, and performs inverse 

FFT. Shehadeh et al. [4] proposed a localization method which 

estimates pipe noise source location through sliding window energy 

technique, cross-correlation of decomposed signals, threshold 

method, cross-correlation method, and Gabor wavelet transform. 

First, the sliding window energy technique calculates the energy ratio 
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of a high-frequency band and a low-frequency band at uniform time 

intervals. The point at which the ratio rapidly decreases was 

computed with a time delay from two sensors. The second method 

analyzes cross-correlation after decomposing the signal into 

wavelets. Third, the threshold was initially set with the threshold 

method. When a signal of a certain value comes in, it is determined 

that a wave has arrived and is obtained through a time delay between 

sensors. The next method is to use cross-correlation, and the last 

method is to find peaks in time-frequency data by applying Gabor 

wavelet transform, and estimate the position through the time 

difference between the peaks. Gao et al. [5] proposed a method 

similar to Kousiopolous' method [3] without a weighting function. 

Choi et al. [6] improved cross-correlation results for various types 

of pipe by introducing a maximum likelihood (ML) pre-filter. Kang 

et al. [7] estimated by cross-correlation as a graph-based 

calculation method. In order to estimate an accurate position, a virtual 

node was determined by a method similar to matched-field process 

to find a location where the cost function is minimized. Guo et al. [8] 

used cubic interpolation search (CIS) in a similar way to Kang's 

method. Liu et al. [9] used the generalized cross correlation-phase 

transform (GCC-PHAT) to overcome of limitation of the cross-

correlation analysis. 

Source localization on a piping system is based on not only TDoA 

method but also other methods as follows: Wang et al. [10-11] used 

a matched-field processing method which determines source 

position by comparing among the candidate source positions acquired 

from simulation and the actual position and finding the best position 

minimizing difference. Lang et al. [12] developed a new position 

estimation method based on the relationship between the position of 

the source and the speed of the wave heading to both ends of the 

pipe. Wang et al. [13] used a beamforming method, which is a method 

of finding where an array comes from like a radar by inserting several 

arrays.
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1.3.2 Source localization methods using deep learning

Artificial intelligence (AI) has emerged as a solutions to localize 

the source. AI based source localizatiton methods are widely used in 

field of room acoustics and speech and prove a good performance in 

these fields. The research trends of existing AI-based noise source 

localization methods are as follows: Heng et al. [14] utilize short-

time Fourier transform (STFT) spectrogram images. The signals 

were collected from two sensors located at both ends of the straight 

pipe. Each of two signals was converted into the two spectrogram 

images by STFT. These two spectrogram were combined, which 

made a cross-correlation map. CNN model was trained by this 

cross-correlation map. Ebrahimkhanlou et al. [15] excited each node 

in a riveted metallic panel to obtain a signal through a sensor, and 

proceeded with CNN classification. Yiwere et al. [16] presented a 

method for identifying the location and direction  for the distance and 

orientation from the noise source based on deep learning. Park et al. 

[17] used two microphones to find the source position by predicting 

the horizontal angle. Yalta et al. [18] adjusted the SNR to a room with 

white noise and evaluated whether it showed good performance even 

in a noisy environment. The signal was collected from a microphone 

array, and the direction was estimated by learning it with STFT 

image data.  Vera-Diaz et al. [19] measured noise with a 

microphone for a noise source moving in 3D space. Moing et al. [20] 

locate a source on a two-dimensional plane for multiple noise 

sources. Choi et al. [21]  acquired noise signals according to various 

types of noise sources and location of noise sources for inter-floor 

noise in a building using a smartphone recorder, and found the 

location through CNN classification. Kita et al. [22] proposed the 3D 

source localization method of structural transmission noise using a 

vibration sensor  
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1.4. Approach

AI has actively applied in structural health monitoring of piping 

structures. Ahn et al. [23] suggested a leak detection method using 

support vector machine. Jung [24] and Shin [25] proposed the AI 

methods for fault detection used accelerometer which is non-

invasive and relatively economical sensor. In deep learning, 

convolutional neural network (CNN) is popularly employed in pattern 

recognition of an image [26]. Currently, CNN models are also used 

for source localization [27-28] and are trained by spectrogram 

images [27, 29].

The conventional in-person method used in the shipbuilding 

company is too sensitive to noise and is time-consuming tasks and 

the piping systems is too complex and narrow to find a source in 

person especially in submarines. Previous researches using TDoA 

source localization methods studied with one type of pipes and 

impulse source including leak and faults. In this research, we 

considered four representative conditions such as various types of 

pipes and source types a piping system. In addition, TDoA has low 

accuracy because it is noise sensitive and it is difficult to know the 

accurate time difference and wave speed. Moreover, it is hard to do 

modeling the piping system. Therefore, we proposed a deep learning 

approach to localize the noise source on a piping system. We used 

CNN model for classification and regression to find a position of noise 

source with an spectrogram image. For this, a structure-borne noise 

is measured from a single accelerometer which is non-invasively 

installed on a pipe.

Thus, Figure 1.4 shows the overall flow of this study. The 

dataset is needed for training a CNN model. At first, the data are 

acquired from an vibrational sensor. Then the data are pre-

processed from vibration signal to spectrogram, especially Log-Mel 

spectrogram. This spectrogram is an input of CNN model. With this 

input, the CNN model's parameters are learned for classification and 

regression. In order to do source localization, this model produces 
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outputs as a distance from a sensors to source position. 

Figure 1.4: Overall flow of this research
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1.5. Organization of the thesis

This chapter consists of four parts which are the Backgrounds, 

the purpose of research, the related works and the approach. The 

remainder of this thesis is organized as follows. In chapter 2, 

experiment and data processing method are described. To be specific, 

features of source of a piping noise, purpose of experiment, 

configuration of experiment and data processing are demonstrated. 

In chapter 3, source localization on a piping system is presented. This 

chapter is composed convolutional neural network (CNN), CNN 

classification and regression for source localization on a piping 

system, CNN training and source localization results. Chapter 4 

concludes this thesis with summary, application, and future work
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Chapter 2. 

Experiment and data processing

2.1. Experiment

2.1.1 Features of noise on a piping system

The characteristics of the noise source can be considered in 

terms of noise source, transmission path, and receiver.

First, main machinery can be noise source. Ships have become 

large-sized, high-speed, and high-output. As a result, the excitation 

force has increased, which has become a factor in increasing 

vibration and noise. The operation of propulsion engines, generators, 

and pumps is also the cause of the unpleasant sound. Moreover, there 

is secondary noise due to the pressure difference. It occurs when the 

kinetic energy of the compressed fluid at the orifice is converted into 

noise and vibration. A control valve is also one of factors making 

pressure difference by controlling the flow rate or reducing pressure. 

In addition, flow noise may be generated from discontinuity including 

piping components and supports. To be specific, noise is made as the 

flow changes while passing through flanges, dampers, etc. and is 

caused by defects in these parts. Finally, there are various types of 

piping in ships and submarines, and noise is generated because of the 

configurations of the piping such as an elbow and a branch pipe by 

making vortex.

Second, the transmission path of pipe noise can be divided into 
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two types. When a noise is generated, there are airborne noise 

transmitted through the air and structure-borne noise transmitted 

via a structure including pipe. Through this, the noise propagates 

throughout the inside and outside of the ship.

Finally, the noise source depends on the receiver. As discussed 

in the transmission pathways, noise is transmitted from the noise 

source through pipes to the hull structure, decks, walls and ceilings. 

Then, it has negative effect on workers in workspace, residents in 

accommodations, and underwater radiation noise.

2.1.2 Purpose of experiment

The experiment was conducted under four representative 

conditions in a piping system as follows: (1) various types of noise 

source, (2) the presence and absence of water in the pipe, (3) 

different boundary conditions, and (4) the configurations of pipes. 

The pipes are fully filled with water except for the case of absence 

of water in the pipe of condition (3), and also are without any flow of 

water.

Condition (1): The purpose of the experiment is that various 

noise sources exist in each piping system of ships and submarines. 

There will also be impulse signals caused by defects, water 

hammering, and so on. In particular, signal of noise from main 

machinery is continuous and has a periodicity. Since the most noise 

sources are complex and tend to have a broad-band and modulated 

frequency. The data were obtained for verifying the location 

estimation capability for each noise source. 

Condition (2): The experiment based on the presence or absence 

of water in the pipe was carried out. Each Pipe has the different water 

level for its purpose. Therefore, as representative cases, the case 

where water is present and the case where water is not are 

considered. 

Condition (3): There are many types of boundary conditions  
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making up a pipe system including U-bolt for support. The boundary 

conditions have an influence on the noise when the wave passes 

through. For this experiments, steel U-bolt and rubber U-bolt are 

used. 

Condition (4): The experiment according to the configuration of 

the pipes. Ships and submarines have not only straight pipes, but also 

various types of pipes. This pipe tests with different configuration 

with straight, elbow, and branch pipes are for verifying the 

effectiveness and performance of the noise source localization 

method of the CNN algorithm.

2.1.3 Configuration of experiment

The experimental equipment was made for pipe noise data 

acquisition. Figure 2.1 shows the support of pipe which was 

fabricated and installed because of deflection of pipes. 

Figure 2.1: Support of pipes

Figure 2.2 shows the overall setup of experiment. The blue dot 

means the support for pipes and the red dot is an accelerometer as a 

sensor which are placed on the pipes. The sensors were used to 

measure the structure-borne type of vibration transmitted from the 
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noise source through the pipe.

For the straight pipe, two 6 meter straight pipe made of CuNi, 

which is most commonly used in actual submarines, were connected 

with flange. Since there are not only straight pipes in the ship, elbows 

and branch pipes were used in consideration of this. These two pipes 

are made of steel generally used for water pipes, and the length in 

the vertical direction on the figure was determined to be 2m each in 

consideration of the laboratory space.

Figure 2.2: Setup of experiment - straight, elbow, and branch



１４

2.1.4 Data acquisition

For data acquisition, B&K's Lan-XI was used as a data 

acquisition system with Pulse and BKconnect program. Commonly, 

the sampling frequency was set to 32,768 Hz (B&K standard 12,800 

Hz). Time-acceleration data was recorded with 5 seconds duration. 

One accelerometer (PCB's 352A60) was placed on the left end of 

each pipe. Another accelerometer was installed at the excitation point 

to compare coherence for validation of the experiments. 

The pipes were vibrated by an impact hammer and shaker. The 

impact hammer was used for making an impulse source, and the 

exciter (B&K's V406) for periodic and broad-band source. Periodic 

and broadband signals were made by the exciter with a function 

generator (Agilent 33250A) and an audio amplifier (Behringer's 

NX4-6000). The pipes were excited with distance of 0.5 m starting 

from the left end. In the case of a straight pipe, since the pipe is 12 

meter, the total excitation points is 25 points as shown in Figure 2.3. 

Elbows and branches are 17 and 33 points, respectively. For every 

excitation point, 100 data with each frequency were acquired for 

continuous signals and 50 data for impulse signals.

Figure 2.3: Excitation points for a straight pipe

Condition (1): Three types of source are considered. The types 

of source on the straight pipe are impulse, continuous, and modulated 

respectively and the interest frequency is below 1 kHz. The impulse 

signals were collected by comparing the coherence through the 

impact hammer. The continuous signals had each frequency of 100 

Hz, 200 Hz, and 500 Hz with a sine waveform. The modulated signal 

was set between 100 Hz to 1000 Hz frequency bands. The total data 
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number of impulse, of continuous, and of modulated is 750, 7500, and 

2500, respectively.

Condition (2): The straight pipe fully filled with water and the 

straight pipe without water are used. Since the data from the pipe 

fully filled water was already collected in condition (1), the data from 

the pipe without water was conducted on a sine wave of 100 Hz. The 

total data number from test with rubber U-bolts is 2500.

Condition (3): Boundary conditions are compared between two 

different types of U-bolts. The straight pipe is fastened to steel U-

bolts or rubber U-bolts. The pipes with different U-bolts are 

vibrated with continuous wave having each frequency of 100 Hz, 200 

Hz, and 500 Hz with 25 points of excitation. Each of data number of 

the pipe with steel U-bolts and rubber U-bolts is 2500 and 7500.

Condition (4): In terms of configuration of pipes, the data are 

acquired by using straight, elbows, and branch pipes. These three 

types of pipes were excited with a continuous sine waveform of 100 

Hz, 200Hz,and 500Hz frequency. The number of data is 7500, 5100, 

9900 each from straight, elbow, and branch structure.

Figure 2.4 The connection of (a) straight pipe (b) elbow pipe (c) branch pipe
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2.2. Data processing

The collected data are time and acceleration data. Figure 2.5 

shows the raw signal and FFT results of impulse source. Firstly, the 

noise was filtered from the raw data to remove the frequency 

components that are beyond the range of frequency which a sensor 

can measure .The filtered data could be used as one-dimensional 

data, but it is more effective to convert the this data into two-

dimensional data. Due to the characteristics of CNN, when CNN 

extracts the features of an two-dimensional data, it could take the 

absolute value of each data. Furthermore, it is possible to recognize 

the relationship about each pixel and its neighbor pixels. In two 

dimensional image, the data could be pixels of the image. Therefore, 

when one-dimensional data such as time series data is input of CNN, 

the data can find a relationship of only one direction. Therefore, using 

two dimensions is more suitable for CNN.

Figure 2.5: One raw signal and FFT results of impulse source
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For vibrational data, one of the two-dimension data is a 

spectrogram which has information on both time and frequency data. 

Therefore, a short-time Fourier transform (STFT) image could be 

used as the input of the CNN. The flow of calculating STFT is shown 

in Figure 2.6. STFT divides time data into several time frames of 

uniform size, and then each time frame is changed into frequency data. 

Next, these frequency data per time frame are arranged in 

accordance with order of time, which means that x-axis is time axis 

and y-axis is frequency axis. Therefore, STFT data represent the 

change in frequency value according to the time interval. This 

spectrogram can be visualized in two-dimensional space and 

displayed like an image. 

Through spectrogram image, CNN extracts both time and 

frequency characteristics and reflect the information more 

comprehensively than time data and frequency data separately. In 

addition, if a CNN model takes just acceleration data in a time domain, 

it is not robust against offset or noise. However, it does not matter 

for STFT. Also, The number of samples of time-domain signal 

sampled at a frequency of 32,768 Hz during 5 seconds is 163,840, 

but the size of the image for input of CNN including ResNet and VGG 

is reduced to 50,176 which has 224 x 224 input image. Therefore, 

the computational cost can be reduced.



１８

Figure 2.6: Overview of short-time Fourier transform (STFT) [30]

For STFT, there is a trade-off between resolution of time and 

frequency. when a window size is narrow, a time resolution is better, 

and vice versa. So choosing a window size is important and  the 

number of Fast Fourier Transform (FFT) number determines 

frequency range. In terms of making a spectrogram image, The hop 

size is controlled to match the horizontal length of 224.The window 

function is Hanning window.

STFT was converted into Mel-spectrogram which emphasizes 

the low frequency band, because the frequency range of interest is 

below 1000 Hz, A concept of the Mel scale is from human ear which 

perceives lower frequencies more precisely than higher frequencies. 

Human detects frequencies on Mel scale not linear scale. Figure 2.7 

shows an example of Mel filter bank. Power spectrum from FFT 
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results were applied to Mel filter bank in order to create Mel-

spectrogram.  In this research, maximum frequency of mel scale was 

set to 10,000 Hz. The mel scale is defined as

(2.1)

where f is frequency.

Figure 2.7: An example of filter bank on Mel-scale [31]

But the Mel-spectrogram was made but was poorly visualized.  

It is hard to distinguish the feature of Mel-spectrogram. Thus, log-

scale is used for feature extraction. This is called a Log-Mel 

Spectrogram. Figure 2.8 shows an example of Mel-spectrogram.  

Additionally, normalization of an image is performed to improve CNN 

learning performance. To be specific, normalization makes 

distribution of the data even, so the process of updating the gradient 

in the CNN model works well, which has an advantage in speed of 

calculation.

Figure 2.8: An example of Log-Mel spectrogram
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Chapter 3. 

Source localization on a piping system

3.1. Convolutional neural network (CNN)

Convolutional neural network (CNN) is one of the deep learning 

algorithms. It was developed to compensate for the disadvantages of 

general Deep neural network (DNN). 

General neural networks are trained with one-dimensional data. 

Even if data is two-dimensional, the data should be changed to one-

dimensional data as an input as shown in Figure 3.1. When this 

happens, data which have two dimensions can easily lose their 

important features. These data including images and videos have 

important information about the relationship among its surrounding 

pixels as well as absolute value of one pixel. Therefore, CNN 

recognizes 2D pattern of 2D data whereas general DNN finds 1D 

pattern. In the view of signal processing, CNN is fit for images and 

videos data, while DNN is suitable for time-series data. 
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Figure 3.1 Flattening 2D data for input of general DNN

CNN uses a convolutional kernel to extract the feature from an 

image. Figure 3.2 shows that the convolution operation in 

convolutional layer compute a dot product of image (I) and kernel or 

filter (K) to get a feature (I*K). And move one pixel to the right and 

repeat same thing. The number of cell to move is called stride (S),

which decides the size of feature. Padding (P) also affects the 

dimension of feature by adding zeros surrounding the image. The 

feature size is expressed as

�
������

�
� + 1    (3.1)

Figure 3.2: An example of convolution operation [32]
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Figure 3.3 shows an example of CNN architecture. CNN 

architecture is divided into two major parts; the feature extraction 

and classification or regression. 

Figure 3.3 An example of CNN architecture [33]

There are two types of layer which are convolutional layer and 

pooling layer in feature extraction part. When an input image is fed 

into the CNN model, A convolution layer extracts a feature from the 

input by convolution operation between the input and kernel. The 

output of convolution layer is called feature map. A pooling layer 

follow a convolutional layer and reduce the feature map size. There 

are many kinds of pooling layer. A max pooling is mostly used and 

takes the maximum element from feature map. All this process is 

repeated as to get a good feature.

After feature extraction, a fully connected layer (FC layer) is 

used in second part. The FC layer flatten the feature map from last 

convolutional layer and reduce the feature map size. There is an 

activation function in the last layer of CNN. Classification model has 

softmax activation function so as to estimate the value with 

probability for each label. The label with the highest probability 

(argmax) is output whereas regression model does not have. Softmax 

function is defined as

softmax(z)� =  
��

�

∑ ��
��

���
      , i = 1, 2, …, N     (3.2)

where z is the vector of outputs of the network and N is number 
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of classes. So, Figure 3.4 shows the difference of regression and 

classification. Output of classification which classify the data into 

different categories is only one discrete number or label. Because 

regression model predicts a value from input, a real number is output.

Figure 3.4: Regression and classification

Classification and regression have different loss function. Cross-

entropy loss function is used for classification and mean squared 

error loss (MSE loss) function is used for regression to optimize the 

parameters of CNN. CNN Training is minimizing the loss between 

target value and predicted value.

The introduction of CNN improve a performance in image 

recognition. Currently, CNN is the most widely used neural network.
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3.2. CNN classification and regression for source 

localization on a piping system

The preprocessed image data is labeled for each excitation 

position starting from the left end where a sensor is placed as shown 

in Figure 3.5. For example, each 0 m, 0.5 m, ..., 12 m is 0, 1, ..., 25. 

This input fed into the CNN model. Then, CNN model performs 

feature extraction from each label through training. As explained in 

the CNN theory, each loss function produces the output of optimized 

classification and regression model.

Figure 3.5: The method of labeling on a straight pipe

A discrete label value with the highest probability among labels 

is output of classification model through softmax function. In this 

research, the position is label and the position can be classified by 

CNN classification model.

For regression, a continuous real number value like 1.5014 is 

output of CNN model. Estimation of distance from the sensor is 

possible.

In the case of 2D pipes, the classification approach is able to 

applied in similar method as shown in Figure 3.6. However, the 

regression approach needs to be improved. The regression model can 

estimate the distance not the position of source. So I suggest the 2D 

regression source localization method as shown in Figure 3.7 and 3.8. 

The method utilize classification and regression at the same time. To 

be specific, the CNN model classify the branch of pipes. Then, 

regress the distance. This method can be explainable to 3D piping 

system problem.
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Figure 3.6: The method of labeling on 2D pipe

Figure 3.7: The source localization method on 2D pipes for regression

Figure 3.8:  The source localization strategies on 2D pipes for regression
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3.3. CNN model training

The more complex the problem, the deeper the CNN model. 

However, training such a deep CNN model requires an enormous 

amount of data. In this research, the data is not enough to train a the 

deep CNN model and obtaining more data has limitations of time. In 

terms of time and finance, it takes a long time to train the model, and 

it is difficult to build a model structure. Therefore, transfer learning 

was used for this study. Transfer learning is a method of utilizing an 

existing model that has already been trained through a large amount 

of image data and has shown good performance in image recognition 

problem. In a new problem, even if the data is insufficient, it shows 

good results of performance and save the time for learning 

parameters. Also a fine-tuning should be used to apply to the new 

task. Fine-tuning is adjusting parameters in the transfer-learned 

model to suit the purpose of new problem.

In this study, a CNN architecture optimized for image 

classification among existing CNN models was selected. For 

classification, VGG16 model was used as shown in Figure 3.9. But, 

for regression, ResNet50 model was used as shown in Figure 3.10. 

This is because ResNet50 model gave better performance for the 

data of this study. For fine-tuning, adaptation layers which consists 

of fully connected layer, pooling layer, and activation functions was 

added. Output size was adjusted to match with output size of 

classification and regression. As an activation function, classification 

model was optimized with cross-entropy loss, and regression model 

with MSE loss. 

Cross-entropy loss is defined as

CE = − ∑ ��
�
� log(�(��)),      i = 1,2,...,n,            (3.3)

where f(s) is output of neural network and t is target value. And 

MSE loss is defined as

�

�
∑ (�� − ��)��

��� ,       i = 1,2,...,n,            (3.4)
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where y is output of neural network and t is target value. 

Figure 3.9: Architecture of VGG-16 model [34]

Figure 3.10: (a) Architecture of residual networks (b) residual learning [35]

For the rest of the hyper-parameters, the total number of epochs 

was set to 100 and the batch size was set to 32. To prevent over-

fitting, an early-stopping method was applied in which learning was 

stopped if the minimum validation loss did not update the minimum 

loss value for 10 epochs during learning. The learning rate and 

regularization values used values around 0.0001 through random 

search.

k-fold cross validation evaluate the performance of this model. 

Figure 3.11 shows the 5-fold cross-validation. All dataset is divided 
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into the k number of folds. Then, one of folds is used as test set and 

the remainder of the dataset becomes the training dataset. The 

performance of model trained with the training dataset is evaluated 

with the test set. This step is repeated by using each fold as a test 

set. 

Figure 3.11 5-fold cross-validation [36]
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3.4. Source localization results

For classification, the validation loss is cross-entropy loss and 

mean accuracy is average accuracy of 5-fold cross validation. For 

regression, the validation loss is MSE loss.

3.4.1 Source localization results according to source types

Table 3.1 shows the results of source localization according to source 

types which are sources with impulse, continuous, modulated signals. 

The position estimation performance for the experimental data is 

represented. The total number of classes is 25 which is the number 

of excitation points because the 12 m straight pipe was excited with 

0.5m distance from the left end of pipe. Then, 100 data were 

collected per frequency through one sensor. (50 in the case of 

impulse) Therefore, the total number of data is 750, 7500, and 2500, 

respectively. At that time, the validation classification accuracy came 

out to be 98.7%, 95.4%, and 95.9%, respectively.

Table 3.1: Classification results of impulse, continuous, and modulated sources 

in the straight pipe

Impulse Continuous Modulated

Validation

loss
0.1415 0.1379 0.1091

Mean 

accuracy
98.7% 97.4% 96.4%
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3.4.2 Source localization results according to existence of water 

in pipes 

Table 3.2 shows the result of verifying the estimated performance 

according to the presence or absence of water in the pipe. From the 

experimental data, we trained the CNN using one sensor. The number 

of classes is the same as in the previous experiment, since it is a 

straight pipe. We collected 100 data per frequency. Therefore, the 

total number of data was 2500 and 7500 when water was not present 

and when water was present, respectively. At that time, the 

classification accuracy was derived as 98.0% and 95.4%

Table 3.2: Classification results of the straight pipe with and without water in 

the straight pipe

With water Without water

Validation

loss
0.1379 0.1940

Mean 

accuracy
97.4% 98.0%

3.4.3 Source localization results according to boundary 

conditions

According to the pipe connection structure, it is divided into pipe with 

steel U-bolt and rubber U-bolt, and Table 3.3 shows the result of 

checking and verifying the position estimation performance for the 

experimental data. Table 3.3 shows the result of verifying the 

estimated performance according to the boundary conditions the pipe. 

From the experimental data, we trained the CNN using one sensor. 

The number of classes is the same as in the previous experiment, 

since it is a straight pipe. We collected 100 data per frequency. 
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Therefore, the total number of data was 7500 in both cases. At that 

time, the classification accuracy was derived as 97.4% and 98.0%, 

respectively, as a validation mean accuracy

Table 3.3: Classification results of the straight pipe with Steel U-bolt and with 

Rubber U-bolt

Steel U-bolt Rubber U-bolt

Validation

loss
0.1379 0.1379

Mean 

accuracy
97.4% 98.0%

3.4.4 Source localization results according to configuration of 

pipes

According to the pipe connection structure, it is divided into straight, 

elbow, and branch pipe, and Table 3.3 is the result for verifying the 

position estimation performance for the experimental data. For the 

training data used in CNN, one sensor was used from all experimental

data. The number of classes to be classified is straight (total 12 m), 

elbow (total 8 m), and branch (total width 12 m, vertical 4 m), so 25, 

17, and 33 at 0.5m intervals. We collected 100 data per frequency. 

Data were acquired for all three frequencies of 100, 200, and 500 Hz. 

Therefore, the total number of data was 7500, 5100, and 9900 

respectively according to the pipe connection structure. At that time, 

the classification accuracy was 95.4%, 95.1%, and 98.3%.
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Table 3.4: Classification and regression results of the straight, elbow, and 

branch pipe in the straight pipe

Straight Elbow Branch

Classification

Validation 

loss
0.1379 0.1369 0.0480

Mean 

accuracy
97.4% 95.1% 98.3%

Regression
Validation 

loss
0.1415 0.0910 0.0480

In the case of regression, the validation loss came out as 0.3646, 

0.0910, and 0.0480. A scatter plot is made as shown in Figure 3.12-

14 for visibility.

Figure 3.10: The scatter plot of regression on a straight pipe 
(x-axis : traget value, y-axis: predicted value)



３３

Figure 3.11: The scatter plot of regression on a elbow pipe 
(x-axis : traget value, y-axis: predicted value)

Figure 3.12: The scatter plot of regression on a branch pipe 
(x-axis : traget value, y-axis: predicted value)
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Chapter 4

Conclusions

4.1. Summary

We suggest deep learning based noise source localization method 

with a single accelerometer. For obtaining the dataset, We considered 

four representative conditions in a piping system. In condition 1 

(source types), This shows that noise source localization on a pipe 

regardless of source types which is possible to exist in piping 

systems. In condition 2 (with and without the existence of water in 

the pipe), most industrial pipes are filled with gas or water, which 

means that this localization method can be applicable in pipes with 

water or gas. In condition 3 (boundary conditions), source 

localization on a piping system with various boundary conditions This 

shows this method enables to localize the source in pipes having 

many types of boundary conditions. In condition 4 (configuration of 

pipes), although there are many configurations of pipes in piping 

systems, this method can be applied to even unseen data.

There are also clear limitations which is generalization of model. 

This source localization method should be verified in pipes with flow 

and real world problems. However, the data are limited.

4.2 Applications

This research can offer possible solutions to the problems to 

identify the noise source in ships and submarines with a single 
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accelerometer. Most ships and submarines are built based on the 

series vessels. 

Therefore, the piping systems of series vessels are mostly same. 

By using this fact, firstly, make a model of the pipe network facilities 

of the reference ship. (2) Test the equipment at the main noise 

source location or test the exciter at a frequency and frequency band

similar to the equipment. Then, (3) the vibration is transmitted and 

the frequency response is anlayzed through the data collection device 

in the main region of interest. Compare with the frequency from the 

noise source in (2), and if a matching frequency is found, set that 

place as the measurement point. (4) A training dataset is obtained 

from the measurement point and saved along with location 

information. (5) Train the model using the developed CNN model and 

check the validation performance. (6) If abnormal noise occurs after 

construction or during operation, vibration data for each excitation 

point is obtained and regression is performed to estimate the location 

of the noise source in the ship piping system.

Here, it is possible to directly measure a training dataset for CNN 

training in a piping system of an actual ship, such as a merchant ship 

and surface ship, using a vibration sensor. In the case of a submarine, 

in the case of an accessible piping system, a training data set is 

acquired from the piping system inside the actual submarine. 

Otherwise, construct the pipe network facilities as in the method in 

the paragraph above. Also. There is one thing to consider in a 

submarine. The structure inside the submarine is so sealed and 

complex that it is difficult to measure it directly. In addition, it is 

difficult to measure directly in the case of a submarine due to security 

issues. Therefore, cooperation with national organizations is 

necessary to solve this problem.
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4.3 Future study

Learning with two-dimensional deck and three-dimensional hull

A goal of the this future study is developing from source 

localization method on a piping system into source localization 

method on deck and hull. With expansion of dimension, this future 

study estimates the location of abnormal noise sources in the ship 

deck and hull. Noise sound directly affects on underwater radiated 

noise as well as accommodations and workspaces. There are some 

considerations for studying this future study, as follows: (1) To 

identify the location of the noise source based on the neural network 

through the measurement with multiple vibration sensors and noise 

sensors. To develop the source localization methods for plate 

structures with (2) various boundary conditions, and (3) noise 

sources types.

(1) Transmission characteristic of noise in a 2D deck and a 3D 

hull is need. Noise generated from machinery in a real ship will be 

transmitted to the deck and hull along the transmission path. Airborne 

noise as well as structure-borne noise are considered, therefore, 

both vibration and noise sensors are used. In this way, by using 

multiple sensors, each sensor is attached to a place of interest to 

measure the signal. Estimating a azimuth angle or a position using a 

microphone array, which is a noise sensor.

(2) There are many boundary conditions in the structure of ships 

and submarines. For 2D, to conduct basic research, nodes on a metal 

plate are created as in the thesis []. Noise at the node is made, and 

the location is estimated using the AI method. Various boundary 

conditions are applied to the plate to conduct experiments to verify 

classification performance with CNN model. For 3D, it is possible to 

suggest a method of estimating the location of the internal noise 

source based on AI methods by implementing a small 3D room with 

steel plates and creating various structures inside. Alternatively, in 
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order to diversify the boundary conditions, there may be a method of 

confirming the performance of the CNN by placing sound sources at 

various locations within the actual ship and performing location 

estimation accordingly.

Finally, (3) a variety of source types such as impulse, continuous, 

modulated signals should be considered 
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Appendix

TDoA based source localization results

Wave speed for fluids in pipes (v) is expressed as,

, (A.1)

where ρ is a fluid's density, ψ is pipe support factor, E is bulk 

modulus of pipe, K is bulk modulus of fluid, D is internal diameter of 

pipe. A straight pipe made of Cu-Ni pipe was used, therefore, e is 

0.004 m, ρ is 1000 kg/m^3, D is 0.4191, E is 115 GPa, K is 140 GPa, 

and ψ is 0.8775. Therefore, the wave speed for fluids in pipes is 

1183 m/s.

Figure A.1 shows the scatter plot of results of the time difference 

of arrival (TDoA) based source localization method. Generalized 

cross-correlation is employed for calculating the time difference of 

arrival. The MSE loss is 26.3468 which is far higher than the MSE 

loss from regression model. So our suggested model has better 

results than conventional TDoA method.
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Figure A.1: The scatter plot of estimated value by TDoA method.
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Abstract

파이프 시스템 내 소음원 위치 추정에 관한

딥러닝 접근법

김덕연

조선해양공학과

서울대학교 대학원

조선산업에서 선박과 잠수함의 소음원을 규명은 중요한 문제로 대

두되고 있다. 주 장비와 같은 다양한 소음원으로부터 발생하는 소음은

선체 외부, 작업장, 그리고 거주구역을 비롯한 선체 대부분에 전파될 수

있다. 게다가, 이러한 노이즈는 작업자들과 거주자들, 그리고 수중 방사

소음에도 여향을 미친다. 특히 잠수함의 경우, 수중 방사 소음은 생존성

과 직접적으로 관련되며 소나의 탐지 성능을 저해시키는 원인이다. 도착

시간 차이에 의한 기존 소음원 위치 추정방법은 노이즈에 너무 민감하기

때문에 복잡한 시스템에 적용하기는 어렵다. 게다가 이러한 방법들은 두

개 이상의 센서를 사용해서, 파이프 결함이나 누수에 의한 일시적인 소

음원이거나 한 가지 파이프 종류에 대해서 한정된 방법이다. 최근 소음

원 위치추정에 대한 연구들은 딥러닝 적용이 이러한 문제들을 해결 가능

하다는 것을 보여주고있다. 따라서, 우리는 한 개의 센서를 이용해 파이

프 시스템에서 소음원의 위치를 추정하는 방법을 제시했다. 전이학습과

미세조정이 제안된 파이프 소음원 위치 추정 방법에 적용되었다. 사전

학습된 컨볼루셔널 신경망으로서, 분류를 위한 VGG 16과 회귀를 위한

ResNet 50이 사용되었다. 우리는 2차원 파이프 위치 추정을 위해 분류

를 이용한 방법과 분류 모델이 결합된 회귀를 위한 방법을 제시하였고, 

이것은 3차원 파이프에서도 적용이 가능하다. 이것은 또한 복잡하고 좁
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은 파이프 시스템으로 인해 볼 수 없는 데이터에 대한 해결책도 될것이

다. 모델들을 학습시키기 위해, 구조 전달 소음 데이터셋이 4가지 전형

적인 조건들에 따라 실험을 통해 얻어졌고, 그 4가지 조건은 다양한 소

음원 유형, 파이프 내에 물이 존재하는지 여부, 경계조건, 그리고 파이프

의 형상에 대해 다뤘다. 이렇게 모아진 신호들은 딥러닝 모델을 학습시

키기 위해 원신호에서 로그-멜 스펙트로그램 이미지로 전처리 되었다. 

모델의 성능은 5-겹 교차검증으로 평가되었다. 비록 이 논문은 파이프

소음원 위치 추정에 초점을 맞춰져있지만, 이 제안된 방법들은 다른 산

업에서의 파이프 시스템뿐만 아니라 다른 시스템에서의 소음원 위치 추

정에도 이용될 수 있다.  
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