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Abstract 
 

A method for detection and tracking of 

maritime obstacles based on multi-video 

 

Jeong-Ho Park 

Naval Architecture and Ocean Engineering 

The Graduate School 

Seoul National University 

 

Among the causes of marine accidents, human error accounts for a relatively high rate, 

and accordingly, the need for an autonomous recognition technology for recognizing the 

surroundings is emerging. Research on autonomous recognition technology using 

traditional recognition sensors such as Automatic Identification Systems (AIS) and Radio 

Detection and Ranging (RADAR) is being actively conducted, but there are clear limits. 

Therefore, we tried to develop a new cognitive technology to replace them. 

In this paper, we proposed an autonomous recognition technology using a camera to 

supplement the limitations of traditional cognitive sensors and replace human vision. First, 

the YOLOv5 algorithm, a real-time object detection algorithm based on camera images, 

was improved to increase obstacle detection accuracy. Then, a position transformation 

algorithm estimated the relative position of the detected obstacle. Based on the relative 

position of the obstacle, we proposed an adaptive extended Kalman filter to estimate the 

motion of the obstacle, such as trajectory, Course Over Ground (COG), and Speed Over 

Ground (SOG). In addition, assuming that USV is operated for strategic purposes and 

mutual communication and cooperation are possible, sensor fusion between data tracked 

by different cameras was performed to increase the accuracy of tracking data. It was 

confirmed that more accurate tracking data could be obtained by fusing the tracked data 
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from several cameras to improve tracking accuracy or compensate for the disadvantages 

that occur in the tracking process of individual cameras. 

 

Keywords: Object detection (장애물 탐지), Object tracking (장애물 추적), Adaptive tracking 

filter (적응형 추적 필터), Data association (데이터 연관), Sensor fusion (센서 퓨전) 

Student number: 2021-21642 
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 Introduction 

 Research background 

Research on autonomous ship navigation systems is being actively conducted to solve 

maritime accidents caused by human negligence and the problem of a gradually decreasing 

crew. The autonomous navigation system of a ship is composed of various technologies 

such as obstacle recognition, obstacle avoidance, and path following. Among them, 

accurate obstacle recognition technology must be preceded. 

In coastal areas where Unmanned Surface Vehicles (USVs) are operated, many 

maritime obstacles are fatal to USVs, such as small boats without an Automatic 

Identification System (AIS). Marine obstacles in coastal areas are often smaller than those 

in the open ocean. They have many variables, making them difficult to detect with 

traditional recognition systems such as AIS and Radio Detection And Ranging (RADAR). 

RADAR mounted on USVs can detect obstacles in a wide range, but there is a blind spot 

within 150m around the boat due to ocean reflection. For large vessels, blind spots do not 

have a significant effect, but for relatively small USVs, RADAR blind spots are fatal. In 

addition, Light Detection And Ranging (LiDAR), which is currently being actively 

researched as one of the new cognitive technologies, is used as a means for short-range 

detection as opposed to RADAR. However, the price of the equipment increases rapidly as 

the detection distance increases. Therefore, even if the corresponding recognition 

technology is mounted on a boat, it still has to rely on human vision to recognize such 

obstacles. 

In this paper, to compensate for the shortcomings of traditional recognition technologies, 
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we proposed a recognition technology that detects and tracks obstacles around the boat 

within the human visual range using a camera. As shown in Figure 1, the cognitive 

technology using a camera has the advantage of detecting short-range obstacles that are 

difficult to detect with AIS and RADAR and utilizing various visual features that can be 

obtained from images. In addition, since each type of camera has different obstacle 

detection and tracking characteristics, it is possible to fuse data tracked by Electro-Optical 

(EO) and Infrared (IR) cameras, respectively, or data tracked from different viewpoints. It 

was fused to increase the tracking accuracy. 

 

 

Figure 1. Proposed awareness system using cameras 
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 Related works 

Research to develop cognitive technology using cameras or to utilize various visual 

information obtained from camera images in various fields is being conducted regardless 

of the field. In particular, many studies have been conducted to improve detection accuracy 

by introducing the attention algorithm to the traditional convolutional neural network 

(CNN), a representative image analysis algorithm. Zhu et al. [1] improved the detection 

accuracy of the You Only Look Once v5 (YOLOv5, GitHub [2]) algorithm while 

maintaining the inference speed by using Convolutional Block Attention Module (CBAM, 

Woo et al. [3]) and Efficient Channel Attention Network (ECA-Net, Wang et al. [4]). The 

study detected target rock in planetary images, and the detection accuracy was improved 

by about 3.4% compared to before improvement. 

Fu et al. [5] proposed SSIM-Weighted Multiple Instance Learning (SSIM-WMIL) for 

tracking a specific object in an adjacent frame and verified it on BlueCar4 video data, a 

road-driving image. First, the SSIM-based classifier is trained by selecting positive and 

negative samples for objects in the frame of the past time. Next, they selected the candidate 

most similar to the object among the candidates of the object extracted from the current 

frame, and tracking was performed using the trained classifier. 

As one of the methods of utilizing visual information obtained from images, research 

on an algorithm that can maintain similar detection or labeling performance even if the 

domains of the data set are different (domain shifted) is being conducted. Rezaeianaran et 

al. [6] proposed a Visually Similar Group Alignment (ViSGA) algorithm that can adapt to 

changes between different domains through visual similarity-based clustering and 

adversarial training. They solved the problem that detection performance varies depending 



6 

 

on the domain of the data set. 

As interest in autonomous navigation increases, research on recognizing and tracking 

obstacles around boats using cameras is being conducted in the field of shipbuilding. Zhang 

et al. [7] proposed the improved-YOLOv3 as a maritime obstacle detection algorithm that 

improved the network structure of the YOLOv3 (Redmon et al. [8]) algorithm. They 

improved detection accuracy by 0.79% based on mean Average Precision (mAP). 

Han et al. [9] detected a maritime obstacle using the Single Shot multi-box Detector 

(SSD) algorithm. They estimated the motion data of the obstacle by tracking it based on 

the Extended Kalman Filter (EKF). In addition, they attempted to improve the tracking 

accuracy by fusing camera image-based tracking data with radar-based tracking data 

acquired similarly. Lee et al. [10] conducted a similar study. They used the YOLOv3 

algorithm to detect maritime obstacles from EO, IR, and panorama (wide EO) camera 

images acquired by mounting them on a small boat. For training the obstacle detection 

algorithm, they create virtual ocean images. Then, using the detected bounding box, they 

estimated the motion of the obstacles by tracking through an EKF-based tracking algorithm. 

In this paper, we tried to analyze the characteristics of the camera, the most important 

sensor in the proposed obstacle recognition technology, and the obstacle detection 

algorithm using the camera and develop the most suitable detection and tracking algorithm. 

First, we implemented an algorithm that enables fast and accurate detection even on 

hardware with poor performance using the YOLOv5 algorithm and the CBAM algorithm 

for detection. 

Second, in the data association of detection results and tracking data, existing methods 

using visual features or distances between bounding boxes do not consider obstacles' 
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motion. Therefore, accurate matching is difficult when many obstacles are densely 

clustered or intersected. Therefore, it was confirmed that there are limitations. So, in this 

paper, based on the estimated motion data of the obstacle, the position of the next time was 

predicted to enable a more accurate association and used in the data association process. 

In obstacle tracking, we proposed an Adaptive Extended Kalman Filter (AEKF) 

designed to appropriately change the error covariance of sensor measurements among EKF 

parameters according to the detection results. It reflects the detection uncertainty of the 

obstacle detection algorithm. In addition, a more robust and accurate tracking algorithm 

was developed compared to operating a single camera by fusing data tracked by multiple 

types of cameras or cameras mounted on multiple boats through sensor fusion. A summary 

of related research and this paper is shown in Table 1. 
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Table 1. Summary of related works and this study 

Related 

works 
Image 

Detection 

algorithm 

Data 

association 

Obstacle 

tracking 

Sensor 

fusion 

Rezaeianaran 

et al. (2021) 
Single car image 

CNN (Faster-

RCNN) 

Visual feature 

(ViSGA) 
X X 

Fu et al. 

(2019) 
Single car image - 

Visual feature 

(SSIM) 

O (on 

image) 
X 

Zhu et al. 

(2021) 

Single planetary 

image 

CNN 

(YOLOv5) + 

CBAM/ECA-

Net 

X X X 

Zhang et al. 

(2020) 

Single USV 

image 

CNN 

(improved 

YOLOv3) 

- O X 

Han et al. 

(2020) 

Multi USV 

images 

(EO, IR) 

CNN (SSD) 
Bounding 

box distance 
O (EKF) 

O 

(camera-

RADAR) 

Lee et al. 

(2021) 

Multi USV 

images 

(EO, IR, 

panorama) 

CNN 

(YOLOv3) 

Bounding 

box distance 
O (EKF) X 

This study 

(2023) 

Multi USV 

images 

(EO, IR, 

panorama) 

CNN 

(YOLOv5) + 

CBAM 

Bounding 

box 

estimation + 

bounding box 

distance 

O (AEKF) 

O 

(multiple 

cameras) 
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 Process of the proposed recognition system 

This paper proposes an obstacle recognition algorithm using a camera, as shown in 

Figure 2. First, an obstacle detection algorithm was constructed by adding a CBAM module 

to the YOLOv5 algorithm. Then, the proposed obstacle detection algorithm was trained by 

classifying several maritime obstacle-related images acquired in the actual sea into training 

and validation images. 

When an image comes in from the camera, the obstacle detection algorithm detects 

obstacles every time and extracts a bounding box. At this time, since the extracted bounding 

box of the obstacle represents only position information on the image plane, position 

transformation was performed to estimate the motion of the obstacle.  

The obstacle tracking algorithm estimates the motion of the obstacle by performing 

tracking based on the calculated relative position of the obstacle. For tracking, the adaptive 

extended Kalman filter proposed in this paper was used, and the motion data of the obstacle, 

such as trajectory, COG, and SOG, was estimated. Furthermore, the information tracked 

by multiple cameras for the same obstacle was fused using a sensor fusion algorithm to 

improve tracking accuracy. Finally, the effectiveness of the algorithm proposed in this 

paper was verified based on the images and navigation data acquired from the actual sea. 
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Figure 2. Process of the proposed recognition system 
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 Camera-based marine obstacles 

detection 

An accurate obstacle detection algorithm is the most important element of camera 

recognition technology. It is the most precedent process among the three steps (detection, 

location estimation, and tracking) which constitute cognitive technology. Because, if 

accurate detection is possible, relatively accurate tracking is possible even with a simple 

tracking algorithm. However, if the detection error is large, accurate tracking is impossible 

with any algorithm. 

In this paper, an obstacle detection algorithm based on deep learning was constructed 

for accurate detection. A bounding box surrounding an obstacle was extracted from a 

camera image, and the relative position of the obstacle was calculated using the bounding 

box and the posture of the camera. In this process, we found that most of the algorithms 

designed for real-time obstacle detection had a limitation of low accuracy. To overcome 

this, we introduced an attention module. 
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 Object detection algorithm 

For image-based obstacle detection, this paper used a deep learning algorithm that is 

rapidly developing. Object detection in images using CNN has been studied in various ways. 

Based on the structure of the object detection algorithm, it can be largely divided into a 

one-stage algorithm and a two-stage algorithm. Representatively, there is the one-stage 

algorithm YOLO series algorithm and the two-stage algorithm Regions with CNN features 

(R-CNN) series algorithm. 

The one-stage algorithm is an algorithm that calculates regression and classification in 

one step based on features extracted from images. Because it uses the features once, it has 

the advantage of fast computation speed. However, there is a limitation in that its detection 

accuracy is low than the common two-stage algorithm. On the other hand, in the two-stage 

algorithm, regression and classification are performed in two steps. First, the proposed 

region is extracted through the Region Proposal Network (RPN), and regression and 

classification are performed. So it has the characteristic that the computation speed is 

relatively slow. However, a two-stage algorithm is used when high detection accuracy is 

required regardless of speed. 

This paper selected a one-stage algorithm with a relatively fast computation speed, 

focusing on application to actual USV. An obstacle detection algorithm was constructed 

based on the YOLOv5 algorithm. The structure of the YOLOv5 algorithm is shown in 

Figure 3. The YOLOv5 algorithm has nano, small, medium, large, and x-large versions that 

have the same structure and differ only in the depth and width of the network. Table 2 

shows each of the five algorithms' detection accuracy and computation speed. As a result, 

because the specification of the PC to be loaded into the USV is relatively low, the 
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calculation speed is slower than that of a general pc, and the trade-off between computation 

speed and detection accuracy, YOLOv5m can guarantee the maximum computation time 

and minimum accuracy required. Therefore, in this paper, an obstacle detection algorithm 

was constructed based on the YOLOv5m algorithm. 

 

 

Figure 3. Structure of YOLOv5 
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Table 2. Specification of YOLOv5 trained with COCO dataset 

Algorithm mAP
val  

0.5:0.95 (%) 
mAP

val  

0.5 (%) 
Speed 

V100 (ms) 
Params 

(M) 

YOLOv5n 28.0 45.7 6.3 1.9 

YOLOv5s 37.4 56.8 6.4 7.2 

YOLOv5m 45.4 64.1 8.2 21.2 

YOLOv5l 49.0 67.3 10.1 46.5 

YOLOv5x 50.7 68.9 12.1 86.7 

 

YOLO-based algorithms have the advantage of fast computation speed due to the 

characteristic of one-stage algorithms. However, they also have the disadvantage of low 

detection accuracy compared to two-stage algorithms. Therefore, in this paper, we 

improved the accuracy by inserting CBAM [3] before each detection layer of the 

YOLOv5m algorithm. 

CBAM is an attention module that functions as a layer trained to calculate appropriate 

weights according to input values. It compensates for the decrease in accuracy when an 

input not learned in the algorithm comes in. CBAM is applied to the obstacle detection 

algorithm of this paper because it corresponds to mixed attention that considers both 

channel attention and spatial attention among attention modules. The obstacle detection 

algorithm applying CBAM to the YOLOv5m algorithm is shown in Figure 4. 
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Figure 4. Structure of obstacle detection algorithm 

 

To train the obstacle detection algorithm, a data set was constructed based on images 

acquired in Changwon, Pyeongtaek, and Jebudo Islands in the Republic of Korea. It is 

classified into a data set for obstacle detection in EO images and a data set for detection in 

IR images. Each data set comprises training, verification, and test data sets. First, the EO 

detection algorithm was trained and analyzed with 4,641 training data, 516 verification data, 

and 553 test data. For the IR detection algorithm, since the lack of IR data, the data was 

augmented through image flipping. Training and analysis were performed with 2,952 

training data, 328 verification data, and 122 test data. All data was captured by a camera 

(1-channel EO, 1-channel IR, 3-channel EO) mounted on a vessel with a length of 8 to 12 

meters. An example of image data is shown in Figure 5 below. 
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Figure 5. Sample of the image data 

 

The maritime obstacles were classified into three classes, and the types are shown in 

Figure 6 below. The ‘Boat’ class corresponds to a general type of boat or USV and is one 

of the main perceived obstacles at the coast because it usually moves at relatively high 

speeds. Therefore, the largest number of objects among the total object to training in both 

EO and IR detection algorithms were assigned to this class. The ‘Barge’ class includes 

fixed objects such as aquaculture auxiliary vessels. Because it is fixed at sea, the 

recognition priority is relatively low. Moreover, there are many cases where they have 

external differences from general boats, so we separate classes to increase the detection 

accuracy of the main recognition target, ‘Boat’. The least number of objects is included in 

the optical data, and the thermal image data was included in the ‘Boat’ for learning because 

the entire data was insufficient. Finally, the ‘Buoy’ class includes all water surface markers 

regardless of size and shape, and the second largest number of objects were used for 

learning. 
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Figure 6. Classification of maritime obstacles 

 

The obstacle detection algorithm was trained on an INTEL i7-10700, NVIDIA GeForce 

RTX 3080 Ti, 32GB RAM, and Microsoft Windows 10 environment. The EO detection 

algorithm was trained with batch size 8 and 200 epochs, and the thermal image detection 

algorithm was trained with batch size 8 and 150 epochs. 
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 Position transformation 

In order to track an obstacle in a 3D space based on the detection, the detected bounding 

box must be converted into 3D location information (distance, bearing). The method of 

converting the bounding box information detected in the image into 3D spatial coordinates 

for obstacle tracking is largely divided into a method using a stereo camera and a method 

using a monocular camera. 

First, the stereo camera method uses the parallax and disparity of two parallel cameras, 

like the human eyes, as a visual clue to estimate the position through triangulation. It has 

the advantage of changing the position of all points that match each other on the two image 

planes. However, there are several difficulties in setting, such as additional calibration 

between the two cameras. 

On the other hand, the monocular camera method uses the horizon appearing in the 

image as a most important visual clue. Based on the pin-hole camera model, we transform 

the position into a three-dimensional space using the distance between the horizon line and 

the point where the obstacle contacts the water surface (pixel) and the distance between the 

principal point of the image and the obstacle (pixel). Since the visual clue is a single horizon 

line, there is a limit that only the point in contact with the water surface can be transformed. 

However, there is an advantage in that the position can be transformed without additional 

settings.  

In this paper, to apply the research results to a camera mounted on a USV where rapid 

motion frequently occurs, a position transformation method using a monocular camera with 

relatively fewer setting errors during the operation was adopted. In addition, since most of 

the maritime obstacles targeted for detection and tracking are in contact with the water 
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surface, the limitations of the position transformation method adopted must be addressed. 

Position transformation is largely divided into obtaining relative bearing and relative 

distance of the detected obstacle. The process of calculating the relative bearing is shown 

in Figure 7. First, an obstacle position vector is defined at the point where the obstacle 

detected on the camera coordinate system contacts the water surface. Afterward, the camera 

coordinate is transformed from the camera coordinate to the body-fixed coordinate, 

considering the location and angle of the camera installed on the boat. For example, in the 

case of a panoramic camera (3 channels), the images taken by multiple cameras are 

concatenated. At this time, each camera is rotated in reverse as much as the installation 

angle. Finally, the obstacle vector defined in the body-fixed coordinate is converted to the 

global coordinate, considering the posture of own boat. Through the transformation process 

above, the direction of the obstacle can be calculated from the heading of boat on the global 

coordinate. In the whole transformation process, the quaternion was used to rotate so that 

the gimbal-lock problem did not occur. 
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Figure 7. Process of the relative bearing calculation 
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Figure 8. Process of the relative distance calculation 
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The process of calculating the relative distance of the obstacle is shown in Figure 8. 

First, a horizontal line was detected, an important visual clue for distance calculation in the 

monocular method. In this paper, the horizontal line on the image is detected based on the 

posture measured from the gyro sensor mounted on the USV so that the horizontal line 

detection process is not affected by the quality of the image or the surrounding environment 

for accurate distance calculation.  

Using the pixel distance between the detected horizontal line and the obstacle bounding 

box, the angle 𝛿𝑇  between a straight line parallel to the water surface and a straight line 

connecting the camera and the obstacle can be calculated. Finally, through the following 

Eq. (1), the relative distance of the obstacle can be obtained using 𝛿𝑇  and the camera 

installation height. 
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(1) 

 

𝑓 represents the focal length of the camera in pixels unit, and 𝛽𝑇 represents the bearing 

of the obstacle with respect to the camera heading. 𝛾𝑇  is the angle calculated by the 

straight line connecting the camera origin and the principal point of the image plane with 

the straight line connecting the camera origin and the obstacle, calculated as arctan(
𝑏𝑇
𝐼

𝑓
). α 

is the angle calculated by the straight line connecting the camera origin and the horizontal 
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line with the straight line connecting the camera origin and the principal point of the image 

plane, calculated as arctan(
ℎ𝑃
𝐼

𝑓
). 
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 Marine obstacles tracking 

In obstacle tracking, we estimate a motion data of the obstacle based on the positional 

information (distance and bearing) of the obstacle acquired as a result of the detection. The 

motion information of the obstacle to be estimated in this paper is the trajectory, Course 

Over Ground (COG), and Speed Over Ground (SOG). The obstacle tracking process is 

divided into data association which is matching tracking data up to the previous time and 

detection information of the current time, and tracking, which is estimating motion data 

based on matched detection information. 
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 Data association 

Data association is a method of matching tracking data up to a previous point in time 

with detection information of a current point. And there are various methods, such as a 

location-based matching method or a visual feature-based matching method. There is no 

significant difference when the obstacles are spread out on the sea according to the 

matching method. However, in an environment where obstacles are dense, there are 

limitations to the location-based matching method. A small error in the detection step can 

increase the size of the error in the location estimation process. Therefore, we used a 

matching method based on visual features. 

Bewley et al. [11] proposed Simple Online Realtime Tracking (SORT), a representative 

data association algorithm in computer vision. As shown in Figure 9, the SORT algorithm 

first predicts the motion of the bounding box which is surrounding the object on the image 

plane using the Kalman Filter (KF). Then, the intersection over union (IoU) between the 

predicted value and the detected value is defined as the similarity (reverse of cost). Based 

on the similarity, the detection information is assigned to each tracking data through the 

Hungarian allocation algorithm. The SORT algorithm has the advantage that real-time 

association is possible. However, it has the problem that the object motion predicted using 

KF is only the motion on the image plane and does not reflect the object motion in the 

actual 3D space. 
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Figure 9. Process of the SORT algorithm 

 

In this paper, we proposed a data association algorithm that reflects motion data 

estimated through obstacle tracking to enable robust association even if multiple obstacles 

overlap or are covered in a situation where many obstacles are concentrated in the actual 

sea. The proposed data association algorithm significantly improved two things from the 

SORT-based algorithm. First, it is a prediction method for the obstacle bounding box of 

the next time step (𝑡 + 1). When the motion data of the obstacle estimated through tracking 

up to the previous time step (𝑡 − 1) is defined as a trajectory (𝑥𝑡−1, �̂�𝑡−1), COG (�̂�𝑡−1), 

and SOG (𝑣𝑡−1), the obstacle position (𝑥′𝑡 , �̂�′𝑡) at the current time step (𝑡) is the derived as 

following Eq. (2). 
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In order to estimate the bounding box through the calculated 𝑥′𝑡 and �̂�′𝑡, the inverse 

transformation process of the position transformation algorithm used in the previous 

obstacle position estimation process was used. First, at the time (𝑡), if we define (𝑥𝑜, 𝑦𝑜), 
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as the position of the own boat, 𝜙ℎ as the heading of the own boat, 𝜙𝑟 as the roll of the 

own boat, ℎ𝑐  as the camera installation height, and 𝑓 as the camera focal length, the 

numerical value for position transformation can be calculated as shown in Eq. (3). 
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(3) 

 

𝜌 is the distance between the ship and the obstacle [m], 𝛽 represents the bearing of the 

obstacle based on the heading of the ship, and can be calculated as above. Based on the 

calculated values, the image coordinates (𝑥𝑖 , 𝑦𝑖) corresponding to the global coordinates 

(𝑥′𝑡, �̂�′𝑡) of the obstacle in the image with width 𝑤𝑖 and height ℎ𝑖 are shown as Eq. (4). 
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An example of applying the bounding box prediction method at the next time step is 

shown in Figure 10. 

 

 

Figure 10. Example of the proposed algorithm for data association 

 

The second improvement is to modify the cost of the Hungarian allocation algorithm to 

suit this paper. IoU, used as the cost of the Hungarian allocation algorithm in the proposed 

SORT algorithm, can evaluate the similarity based on the size and location of bounding 

boxes together. However, when the camera is not fixed and moving, a bounding box shift 
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on the image often occurs. Accordingly, IoU alone has a limitation in that proper similarity 

cannot be evaluated. 

Therefore, in this paper, the center distance between the bounding boxes was 

additionally applied to the cost to calculate the appropriate cost even when the bounding 

box shift occurred. The center distance between the bounding boxes means the positional 

similarity of the two bounding boxes. Positional similarity is the most common similarity 

used in various matching algorithms, including the traditional Nearest Neighbor (NN) 

algorithm. Therefore, by adding the positional similarity in the image to the cost, the 

similarity that IoU cannot calculate can be compensated. 

However, defining only the center distance of the bounding box as the cost has a 

disadvantage. It is very likely to make an error when many obstacles are dense. In this 

paper, the cost is defined based on the center distance of the bounding box but multiplied 

by the IoU cost so that IoU plays a dominant cost in matching when obstacles are dense. 

Conversely, when the bounding box shift occurs, the bounding box center distance is 

designed to play a dominant cost in matching. The defined equation is shown in the 

following Eq. (5). 
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The cost of the Hungarian allocation algorithm was defined as a product of the central 
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distance between the bounding boxes and the IoU cost. 𝑏𝑏𝑜𝑥𝑝, 𝑏𝑏𝑜𝑥𝑑 mean the predicted 

bounding box and the detected bounding box, respectively. Bounding box information is 

consisted of the [𝑥1 𝑦1 𝑥2 𝑦2], which is the top-left and bottom-right coordinate of 

the surrounding box. And ∆𝑥𝑝_𝑑 , ∆𝑦𝑝_𝑑  respectively represent the central distance in a 

width direction and in a height direction between the predicted bounding box and the 

detected bounding box. The function IoU on Eq. (5) is a function that calculates the IoU of 

two bounding boxes. 
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 Tracking filter 

In this paper, an adaptive tracking filter suitable for a detection method using a camera 

is designed to estimate the motion data of the obstacle, such as trajectory, COG, and SOG. 

Motion is estimated using distance and bearing, which are the location information of the 

obstacle. The proposed adaptive tracking filter is designed based on EKF (Kim and Park 

[12]), one of the recursive filters for estimating nonlinear systems based on sensor 

measurements. The basic structure of EKF is shown in Figure 11. 
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Figure 11. Structure of the Extended Kalman Filter 

 

In this paper, the state vector is defined as [𝑥, 𝑦, 𝑣, 𝜙], 𝑥 and 𝑦 are absolute positions, 

𝜙 is COG, and 𝑣 is SOG of the tracked obstacle. The sensor measurement vector is [𝜌, 𝛽], 

where 𝜌 is the distance from the own boat and 𝛽 is the bearing from the heading of the 

own boat.  

The system model of the obstacle was assumed as constant velocity motion, as shown 

in Eq. (6). Unlike land obstacles or land vehicles, marine obstacles are generally 

characterized by low acceleration. Moreover, the tracking period of the detection method 

proposed in this paper is sufficiently short, less than 0.1 second per tracking update, so the 
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system model assumption is suitable.  

The correlation between the state and measurement vectors was defined as Jacobian 

matrices 𝐴  and 𝐻 . In this paper, matrices 𝐴  and 𝐻  are defined as Eq. (7). In the 

equation, 𝑥𝑜 and 𝑦𝑜 mean the absolute position of the boat. 
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In most tracking-related studies using the Kalman filter, when setting the measurement 

error covariance, a fixed value obtained by multiplying the error covariance of the sensor 

by an appropriate margin is used. However, in the case of detecting an obstacle using a 

camera with the proposed detection algorithm, an obstacle detected from a close location 

has a low error variability, and an obstacle detected from a distant location has a high error 

variability. Since the variability of sensor measurement that varies depending on the 
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detection location cannot be defined as one common error covariance, in this paper, the 

variability according to the detection location is reflected in the tracking by defining the 

adaptive error covariance. 

In this paper, since the variability of sensor measurement is caused by the maritime 

obstacle detection algorithm, the error covariance of the sensor can be estimated through 

the distribution of detection information. Therefore, the distribution of bounding boxes of 

obstacles detected in images (consecutive frames) was first analyzed to estimate the 

variability arising from the obstacle detection algorithm. Then, to estimate the 

measurement distribution from the distribution of the bounding box, the variability of the 

sensor measurement by the obstacle detection algorithm was finally estimated by 

calculating the change in the relative distance of the obstacle as the bounding box fluctuated 

by 1 pixel. 

As shown in Figure 12 below, we find that the standard deviation of the bounding box 

distribution by the obstacle detection algorithm is 1.82 pixels. Also, as the bounding box is 

distributed by 1 pixel, the distribution of the relative distance can be calculated as the 

following Eq. (8) by differentiating Eq. (3). 
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Figure 12. Uncertainty of obstacle detection algorithm 

 

 

 

2 2 2

1.82

sin ( ) ( )

d

cT

I I

T T T

h FOV

b FOV b





 




 

  

 (8) 

 

FOV means the horizontal field of view of the camera in radian, and other parameters 

are shown in Eq. (3).  

The adaptive error covariance defined by reflecting the distribution of the obstacle 

detection algorithm and introducing a moving average filter for smoothing is shown in Eq. 

(9). 𝑅 is the adaptive error covariance, 𝜎𝜌 is the standard deviation of the distance error, 

and 𝜎𝛽 is the standard deviation of the bearing error. Because the standard deviation of 

the bearing error distribution is sufficiently small compared to the distance error, we 

defined it as a fixed value. 
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 Sensor fusion 

Fusion between multiple tracked data on the same obstacle was performed to increase 

tracking accuracy and reliability in various situations. We adopted fusion in two ways: 

fusing tracked data from three types of cameras (1-channel EO, 1-channel IR, 3-channel 

EO) mounted on one boat and fusing tracked data from each boat observing obstacles at 

various viewpoints at the same time. A graphical explanation of Each case is shown in 

Figure 13. 

 

 

Figure 13. Scenarios of the sensor fusion case 

 

In order to fuse tracked data from different cameras, a process of matching data 

indicating the same obstacle between different tracking data must be preceded. It is called 
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data association. For example, when each of several cameras tracks an obstacle, it is 

associated if tracking for the same obstacle is performed by more than one camera.  

In this paper, the association between different tracking data was performed using the 

Nearest Neighbor (NN) algorithm, which is most commonly used for data association. The 

NN algorithm judges the closest tracking data within the threshold as the data from the 

same obstacle based on the location of the tracking data, and the formula is shown in Eq. 

(10). 𝑥 and 𝑦 mean the absolute coordinates of the tracking data, and subscript 𝑖 and 𝑗 

represent 𝑖𝑡ℎ camera and 𝑗𝑡ℎ camera, respectively. 
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The method of fusing data between associated tracking data can be largely classified 

into sensor-to-global fusion and sensor-to-sensor fusion, as shown in Figure 14. First, 

sensor-to-global fusion is a method of fusing the tracking data to be fused with the system 

track by defining a system track (global track) that has an additional tracking process. On 

the other hand, sensor-to-sensor fusion is a method that does not define a separate system 

track but fuses matched tracking data at every moment. When defining a system track, it 

goes through an additional tracking process, so there is a smoothing effect, but there is a 

disadvantage that error accumulation may occur accordingly.  

In this paper, the sensor-to-sensor fusion method was adopted to maintain the tracking 

characteristics of each camera during the sensor fusion and to eliminate the accumulation 
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of errors due to an additional tracking process. While the sensor fusion process, when 

tracking data for fusion was missing, fused by predicting tracking data at that time based 

on the current tracking data. 

 

 

Figure 14. Type of fusion process 

 

The sensor fusion algorithm used in this paper is fast Covariance Intersection (fast CI) 

(Fränken and Hüpper [13]). The original CI algorithm is a weighted fusion algorithm that 
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finds the weights that minimize the trace or determinant of the resulting error covariance 

and fuses using the found weights. (see Eq. (11)) And also, it is a candidate that yields 

consistent estimates independent of network structure and any possible cross-correlation 

between local estimates. (Fränken and Hüpper [13]) 
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However, the original CI algorithm has a disadvantage because it takes a long time to 

calculate due to the iterative process of finding the appropriate weights. Therefore, in this 

paper, we fuse tracking data using a fast CI algorithm designed to enable real-time 

calculation by replacing nonlinear optimization to find weights with numerical calculation. 

Since there is a possibility for more than two tracking data to be fused (more than three 

cameras), the fast CI algorithm for fusion between two or more sensor data was used. The 

detailed equation to calculate the weights, resulting state, and resulting covariance of the 

state is shown in Eq. (12). (Mitchell [14]) 
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 Applications 

The application was conducted based on navigation data acquired from the coast for 

three years (2020 ~ 2022, Changwon, Pyeongtaek, and Jebudo Islands in Republic of 

Korea). The accuracy of detection, tracking, and fusion algorithms were analyzed on three 

trial tests. The graphical description of each case and the vessel specifications are shown 

in Figure 15. Regarding the obstacle tracking result, the tracking result within 18m, 

corresponding to about 80% accuracy based on the general GPS error of 15m, was 

evaluated as a meaningful tracking result. 

 

 

Figure 15. Application scenarios 
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Figure 16. Specification of the USVs 

 

Case 1 is an example of detecting and tracking by defining the leading boat as the target 

obstacle in chasing the boat ahead. USV 1 is equipped with three types of cameras (1-

channel EO, 1-channel IR, 3-channel EO), and the data tracked by each camera are fused 

together. Through this case, the differences in tracking results from different types of 

cameras can be confirmed, and the effects of error reduction and disadvantage 

compensation through fusion can be confirmed. 

Case 2 is an example in which USV 1 and USV 2 detect and track by defining a boat 

approaching from the right as a target obstacle based on Figure 15 in a situation where three 

boats assume collision and avoidance. The data tracking the target obstacle simultaneously 

from the viewpoints of USV 1 and USV 2 was fused with each other. Through this case, it 

can be confirmed that the error characteristics of the distance error and bearing error of the 

detection method using the camera appear differently depending on the viewpoint, and the 

error reduction due to fusion can be confirmed. 

Case 3 is an example in which USV 1 and USV 2 detect and track by defining target 
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obstacles 1 and 2, respectively, for the two boats located in the middle where four boats 

operate in a cluster (see Figure 15). Similar to Case 2, the data tracked simultaneously from 

the viewpoints of USV 1 and USV 2 was fused with each other. Through this case, the 

occurrence of tracking error according to the turning radius of the obstacle was confirmed, 

and the effect of fusion was analyzed when there was no significant difference between the 

two tracking results. 
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 Obstacle detection 

The accuracy of the maritime obstacle detection algorithm was calculated based on 

Average Precision (AP). The EO detection algorithm and the IR detection algorithm were 

trained separately, and the data for accuracy analysis were 553 EO images and 122 EO 

images. The environment for computing speed measurement is Intel® Core™ i7-10700, 

GeForce GTX 3080 Ti, 32GB RAM, and Microsoft Windows 10. The accuracy analysis 

results are shown in Table 3 below. 

 

Table 3. Accuracy of obstacle detection algorithm 

Detection 

algorithm 

Detection 

image 

AP 

(Average 

Precision) 

Computation 

time 

(sec/frame) 

Computation 

speed (FPS) 

YOLOv5m 
Electro 

Optical (EO) 
95.75% 0.0266 37.6 

v5m + CBAM 

(proposed) 

Electro 

Optical (EO) 
95.98% 0.0284 35.2 

YOLOv5m 
Infrared  

(IR) 
94.44% 0.0266 37.6 

v5m + CBAM 

(proposed) 

Infrared  

(IR) 
95.67% 0.0284 35.2 

 

Compared to the IR detection algorithm, the training data was abundant in the case of 

the EO detection algorithm, so the effect of introducing CBAM was not very noticeable. 

However, it was confirmed that the IR detection algorithm, which increased the training 

data through data augmentation (such as image flipping) due to a relatively small dataset, 
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showed a significant effect of introducing CBAM, with about 1.23% accuracy 

improvement. In addition, while the obstacle detection accuracy increased by introducing 

CBAM, the computation time per frame increased by a very small amount from 0.0266sec 

to 0.0284sec. Nevertheless, the detection accuracy of both obstacle detection algorithms is 

over 90%, which is not enough to perform tracking based on image detection results.  
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 Obstacle tracking and sensor fusion 

Analysis of obstacle tracking and fusion results was performed for the three cases 

described above. First, the tracking results individually in each camera were analyzed, and 

the fusion of data tracked by multiple cameras was analyzed. 

 

 Case 1: Leading boat tracking 

Case 1 is an example of detecting and tracking by defining the leading boat as the target 

obstacle in chasing the boat ahead. The distance between the target obstacle and the USV 

was maintained at about 80 m while tracking, and the target obstacle repeated the turning 

motion. First, the result of detecting the obstacle in the 3-channel EO video is shown in 

Figure 17. For 3-channel EO video, the horizontal Field Of View (horizontal FOV) of the 

camera is 180.0°, and the resolution is 3840×720. The green line in the figure results from 

detecting a horizontal line on the image based on the posture of USV 1 measured through 

the gyro sensor. It can be seen that horizontal lines on the image are well detected in all 

three directional frames. 
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Figure 17. Detection result of target obstacle on 3-channel EO video 

 

Figure 18 shows the result of tracking the trajectory of the obstacle, which is the motion 

data of the obstacle tracked in the 3-channel EO video. The blue trajectory in the figure 

means the trajectory of the USV 1, the green trajectory is the ground truth of the target 

obstacle measured through GPS, and the red trajectory is the trajectory of the target obstacle 

estimated through the tracking method proposed in this paper.  

Although there are parts where some position errors occur more than 18m, the pre-

defined benchmark, they are generally similar to ground truth. As a result of calculating 

the Mean Absolute Error (MAE), the mean error was 6.58m. It is within 80% of the GPS 

error, and it can be seen that the tracking method proposed in this paper is meaningful. 
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Figure 18. Trajectory tracking result on 3-channel EO video 

 

The part where the relatively large positional error occurred during the tracking process 

was caused by occlusion due to the wake of the obstacle. As shown in Figure 19, as the 

obstacle turned rapidly, a strong wake was generated on the water surface, and the part 

where the obstacle and the water surface came into contact was occluded. Due to the 

occlusion, a detection error of about 5 pixels was continuously generated compared to 

ground truth. And it caused a relatively large error when estimating the position of an 

obstacle.  

Detection errors due to occlusion, such as occlusion by wake and occlusion between 

obstacles, are problems that can frequently occur in the image-based detection process. In 

the case of errors due to temporary occlusion, they can be removed by the tracking filter. 

However, this case confirmed that a method to reduce the tracking error is necessary when 
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detection errors due to occlusion occur for a long time. 

 

 

Figure 19. Occluded detection result by wake 

 

The result of tracking the COG and SOG of the obstacle in the 3-channel EO video is 

shown in Figure 20. As with the previous trajectory, the green graph is the ground truth 

calculated through GPS, and the red graph is the estimated value through tracking. The 

units of the drawn graph are degrees and knots, respectively. As a result of calculating the 

MAE for each result, an error of 12.45° for COG and 1.40 knots for SOG occurred.  

Although the tendency was generally similar to ground truth, a relatively large error 

than the MAE repeatedly occurred in some parts indicated by the arrow in the graph. The 

indicated parts are sections where the obstacle repeats its turning motion. The error of the 

parts occurs because the motion of the obstacle is assumed to be a constant velocity motion 

in the tracking filter proposed in this paper. That is, the tracking delay occurred because 



51 

 

the tracking filter could not consider the acceleration due to the rotational motion. Although, 

if the delay occurred in the corresponding parts is removed, the error is within the average, 

and the delay is also within 3 seconds, which is a meaningful tracking result. 

 

 

Figure 20. COG and SOG tracking result on 3-channel EO video 

 

Second, the result of detecting an obstacle in 1-channel EO video in the same situation 

is shown in Figure 21. 1-channel EO video has a horizontal FOV of 63.0° and a resolution 

of 1280×720. Since the specifications of individual channels are the same as those of the 

previous 3-channel EO video, very similar detection results can be confirmed for this 

example. 
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Figure 21. Detection result of target obstacle on 1-channel EO video 

 

The result of tracking the trajectory of the obstacle in 1-channel EO video is shown in 

Figure 22. It shows very similar tracking characteristics to the previous 3-channel EO video, 

and the MAE was relatively large at 12.09m. Due to the posture maintenance built into the 

1-channel EO camera, there was a difference in the posture between the camera and USV. 

As a result, the horizontal line on the image was not accurately detected, increasing the 

error. However, this also did not exceed 80% of the general GPS error, confirming that 

tracking was possible. 
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Figure 22. Trajectory tracking result on 1-channel EO video 

 

The result of tracking the COG and SOG of the obstacle in 1-channel EO video is shown 

in Figure 23. The MAE of COG and SOG were 15.19° and 2.18 knots, slightly higher than 

the 3-channel EO video tracking results. It is also because of the same reason as the position 

error due to the self-posture maintenance described above. That is, when a horizon line is 

accurately detected without a separate posture-maintaining, it suggests that tracking error 

can be greatly reduced. Other tracking characteristics are similar to the previous 3-channel 

EO video, and the tracking delay due to the assumption of the constant velocity motion also 

appears similar. 
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Figure 23. COG and SOG tracking result on 1-channel EO video 

 

Finally, the result of detecting obstacles in 1-channel IR video is shown in Figure 24. 

For 1-channel IR video, the horizontal FOV is 35.5°, and the resolution is 720×480. It can 

be expected that the detection performance will be low due to the low image resolution 

compared to the EO camera. But the performance of detection algorithm was confirmed 

similarly because the horizontal FOV was inversely proportional to the decrease in 

resolution. 

 



55 

 

 

Figure 24. Detection result of target obstacle on 1-channel IR video 

 

The result of tracking the trajectory of the obstacle in a 1-channel IR video is shown in 

Figure 25. Similar to the 1-channel EO camera, the IR camera has built-in posture 

maintenance, so there was the same problem the horizontal line was not accurately detected 

in some parts.  

As a result of the tracking, the MAE was 9.22m, and the error was smaller than the 

tracking result of the 1-channel EO video where the same horizontal line detection error 

occurred. The reason for obtaining more accurate tracking results in poor-quality IR video 

was that the reduction in horizontal FOV was more dominant than the reduction in 

resolution. So more accurate detection within a small area in front of the USV was possible, 

and tracking accuracy was improved accordingly. 
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Figure 25. Trajectory tracking result on 1-channel IR video 

 

The result of tracking the COG and SOG of the obstacle in a 1-channel IR video is 

shown in Figure 26. MAE was found to be COG 13.93° and SOG 1.83 knots, respectively. 

Although the horizontal line was not accurately detected for the same reason as the 1-

channel EO video, the error is relatively small because the horizontal FOV is small. 
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Figure 26. COG and SOG tracking result on 1-channel IR video 

 

The tracking results from the images of three different types of cameras installed in the 

same location were fused using the sensor-to-sensor fusion method.  

First, the trajectory of the obstacle is shown in Figure 27. As a result of fusion, the MAE 

was 8.43m, which is about 10.32% lower than the mean average error before fusion. Since 

the tracking results from all three cameras show almost similar tracking characteristics, 

there was no distinct difference. Partially, because a large position error does not occur 

compared to the tracking result before fusion, the fused trajectory of the obstacle appeared 

smooth. 

 



58 

 

 

Figure 27. Trajectory fusion result 

 

Next, the result of converging COG and SOG is shown in Figure 28. The MAE was 

COG 8.01° and SOG 1.85 knots, respectively, 10.50% and 6.09% lower than the average 

error before fusion. The convergence result of COG and SOG, like trajectory, did not show 

a big difference compared to the preceding camera-specific tracking result. Among the 

three types of camera tracking results, it showed the most similar aspect to the tracking 

result of the 3-channel EO camera, which had the highest tracking reliability. So through 

this fusion result, the convergence result that properly reflected the error covariance of the 

tracking result was derived. 
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Figure 28. COG and SOG fusion result 

 

In this case, obstacles were tracked from the images of three identically installed 

cameras, and the tracked data of the obstacle was fused. As a result, the error was reduced 

through the fusion, compared to the average tracking error of the three cameras. However, 

it was greater than the minimum error among the tracking errors of the three cameras. Since 

the tracking characteristics of the cameras are similar rather than opposite, it is difficult to 

improve the accuracy of the tracking result with the minimum error through fusion.  

However, the camera sometimes has different tracking characteristics and errors. For 

example, EO cameras generate high errors in low-light environments and may not be able 

to track them at all. In contrast, IR cameras have the disadvantage that tracking is difficult 

in most areas due to a narrow horizontal FOV. Similarly, in the real world, the tracking 

accuracy of each camera may vary depending on the environment around the boat. So 

through a fusion technique that reflects the tracking reliability of different cameras, we can 

expect that tracking errors can be reached below a certain level without checking the 

tracking reliability of each camera every time. 
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 Case 2: Collision avoidance 

Case 2 is an example of detecting and tracking by defining the boat on the right side of 

Figure 15 as the target obstacle in a situation where three boats assume a collision. USV 1, 

the left boat in the figure, is equipped with the same 3-channel EO camera as Case 1, and 

USV 2, the boat approaching from the bottom in the figure, is equipped with the same 1-

channel EO camera as Case 1. Since the collision situation is assumed, it takes little time 

to observe obstacles simultaneously in USV 1 and USV 2. However, it is a case in which 

fusion characteristics can be confirmed relatively well. 

The result of detecting obstacles approaching head-on in USV 1 is shown in Figure 29. 

The obstacle detected in the left frame of the figure is the target obstacle, and the boat 

located in the middle frame is USV 2. Based on USV 1, the obstacle is approaching head-

on from a position up to 100m away. 

 

 

Figure 29. Detection result of target obstacle on USV 1 

 

First, the trajectory that tracks the target obstacle from the viewpoint of USV 1 is shown 

in Figure 30. In the figure, it can be seen that the position error occurred in the direction 

parallel to the movement direction of the obstacle. That is, the trajectory of the obstacle 
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oscillates forward and backward along the direction of movement.  

The reason for such a tracking error is that the camera-based obstacle detection method 

proposed in this paper has a characteristic that the distance estimation error is relatively 

large compared to the bearing estimation error. As the obstacle gets farther away, the 

bearing error does not change significantly. In contrast, the distance error is affected by the 

decrease in the resolution of the obstacle in an image, so when the obstacle gets farther 

away, resulting in a large error. Therefore, from the viewpoint of USV 1 tracking in the 

movement direction of the obstacle, it can be seen that the distance error of the obstacle 

appears along the movement direction of the obstacle. In this case, MAE of the trajectory 

tracking result was 2.27m because of the short tracking time, resulting in a small error. 

 

 

Figure 30. Trajectory tracking result on USV 1 
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The result of tracking the COG and SOG of the target obstacle in USV 1 is shown in 

Figure 31. As mentioned in the previous trajectory results, position of the obstacle showed 

an oscillation pattern along the movement direction of the obstacle. The SOG was also 

tracked as an oscillation pattern due to the effect. On the other hand, the direction of 

movement of the obstacle was tracked relatively accurately, and COG had little error. To 

sum it up, the obstacle was observed as moving in a constant direction but at oscillating 

speeds. MAE was 2.98° for COG and 0.64 knots for SOG. 

 

 

Figure 31. COG and SOG tracking results on USV 1 

 

Figure 32 shows the result of detecting obstacles passing by crossing in USV 2. 

Although some water splashed on the camera, no false detection occurred in this example. 

To prevent false detection and a decrease in detection accuracy, we added additional 

training images (images with fog or water droplets) that impaired detection accuracy when 

training the obstacle detection algorithm. Based on USV 2, the obstacle starts from a 

position up to 80m away and passes through a crossing. 

 



63 

 

 

Figure 32. The detection result of target obstacle on USV 2 

 

The result of tracking the trajectory of the obstacle in USV 2 is shown in Figure 33. It 

can be confirmed that it is different from the result of tracking the trajectory of the obstacle 

in USV 1 above. As a result of tracking from the viewpoint of USV 2, a large perpendicular 

way error occurred in the movement direction of the obstacle.  

The characteristics of tracking error differ relative to the USV 1 because the direction 

error occurs on the positional relationship with the obstacle. In USV 1, a distance error 

occurred along the movement direction of the obstacle, resulting in a large position error 

and SOG error. In contrast, in USV 2, the distance error occurred in a direction 

perpendicular to the obstacle. Because USV 2 tracked the obstacle from the side of it. The 

tracking pattern is shown in the figure. The MAE of the tracking result was 2.89 m, almost 

similar to that of USV 1. 
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Figure 33. Trajectory tracking result on USV 2 

 

The result of tracking the COG and SOG of the obstacle in USV 2 is shown in Figure 

34. The tracking characteristic in USV 2 is the exact opposite of the one in USV 2. As an 

error occurred perpendicular to the movement direction of the obstacle, the COG was 

tracked as oscillating in all sections. As a result, the average error was larger than that of 

USV 1, where the COG error rarely occurred. In contrast, since the position error associated 

with the forward speed did not occur significantly, the SOG error was relatively low than 

that of USV 1. MAE was 6.78° for COG and 0.42 knots for SOG. 
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Figure 34. COG and SOG tracking results on USV 2 

 

The result of tracking the same obstacle from different viewpoints (front/side) was fused 

in real time through the sensor-to-sensor fusion method. First, the result of fusion with each 

other is shown in Figure 35. Compared to the individual tracking results, it can be seen that 

both parallel errors and perpendicular errors are reduced. In other words, when two tracking 

results with different tracking characteristics due to the difference in viewpoint are fused, 

the disadvantages found in each tracking result can be compensated. Numerically, the MAE 

after fusion was 1.78m, a decrease of 31.0% compared to before fusion. 

 



66 

 

 

Figure 35. Trajectory fusion result 

 

Figure 36 shows the COG and SOG of obstacles estimated through fusion. Compared 

to the previous individual tracking results, the error is significantly reduced. First, in the 

case of COG, a large error occurred in USV 2 and a relatively small error in USV 1. 

However, after fusion, the error from USV 2 is decreased by the influence of USV 1, which 

has high tracking reliability. Also, in the case of SOG, some tracking error tendency of 

USV 1 remains, but the oscillation pattern disappeared after fusion. As a result, MAE 

decreased by about 38.9% compared to before fusion to COG 2.98°, and SOG was 0.57 

knots. 

 



67 

 

 

Figure 36. COG and SOG fusion result 

 

In this case, the results of tracking the same obstacle from different viewpoints were 

fused to obtain more accurate motion data of the obstacle. The disadvantages appeared in 

tracking data from different viewpoints compensated each other through fusion. Parallel 

errors and perpendicular errors were large in each viewpoint, respectively, based on the 

direction of the obstacle, but both directions of errors decreased after fusion.  

In the real situation, if communication between operating USVs is possible, more 

accurate maritime obstacle recognition will be possible by fusing obstacle data tracked at 

various viewpoints in time by using the proposed fusion method. 
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 Case 3: Platooning 

In the last case, four boats operate in a platoon. As shown in Figure 15, the tracking was 

performed by defining the boat at the rear is called USV 1, the boat at the forefront as USV 

3, and the boats on the left and right are target obstacle 1 and target obstacle 2, respectively. 

In USV 1, a 3-channel EO camera was installed to look forward, and in USV 3, two 3-

channel EO cameras capable of monitoring in whole directions were installed. The camera 

mounted on USV 1 has the same specifications as the 3-channel EO camera of the previous 

case. The two cameras on USV 3 each have a horizontal FOV of 180°, and the image 

resolution is 2160 × 480. Using two cameras that can monitor 180°, it is possible to detect 

and track target obstacle 1 and target obstacle 2 located in the rear. 

First, the result of detecting target obstacle 1 and target obstacle 2 in USV 1 is shown 

in Figure 36. The boat surrounded by the blue detection box in the left frame is target 

obstacle 1, and the boat surrounded by the green detection box in the right frame is target 

obstacle 2. The tracking and fusion results were analyzed only for the part where 

simultaneous detection and tracking were possible because they existed within the field of 

view of USV 1 and 3 during platoon operation. 

 

 

Figure 37. Detection result of target obstacles on USV 1 
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The result of tracking the trajectory of target obstacle 1 in USV 1 is shown in Figure 37. 

The platoon operation was conducted for a relatively long time of more than 3 minutes, but 

it was the result of tracking until the target obstacle 1 turned to the left and left the field of 

view of USV 1.  

Although there was almost no position error in the straight-line section, a position error 

occurred when target obstacle 1 made a sharp turn to the left because it could not properly 

track the sharp turn. Since the constant velocity motion was assumed in the tracking filter, 

the acceleration due to the turn could not be properly reflected, resulting in a relatively 

large position error. However, compared to the previous cases, the MAE was relatively 

small at 4.51m because it was tracking at a distance of about 60m, which is a relatively 

short distance. 

 

 

Figure 38. Trajectory tracking result of target obstacle 1 on USV 1 
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The result of tracking the COG and SOG of target obstacle 1 in USV 1 is shown in 

Figure 38. As can be seen in the figure, similar to the trajectory tracking results, the COG 

and SOG were well tracked in the section where target obstacle 1 moved in a straight line. 

However, in the section where the obstacle turning occurred after 55 seconds, the sudden 

turning acceleration was not sufficiently reflected, so some delay appeared in the COG and 

SOG tracking results. The calculated MAE seemed that the proposed tracking algorithm 

tracked accurately with 13.25° and 0.94 knots, respectively. 

However, the maximum error was 101.04° and 4.05 knots, which caused a very large 

error temporarily due to inaccurate tracking in the turning section. Through these results, 

the turning motion of a small boat can temporarily generate a very large tracking error. 

Therefore, we must consider introducing a tracking filter assuming a constant acceleration 

motion to reduce the error and delay. 

 

 

Figure 39. COG and SOG tracking result of target obstacle 1 on USV 1 

 

Figure 40 results from tracking the trajectory of target obstacle 2 in USV 1. As seen in 

the figure, same as the tracking result of target obstacle 1 above, some delay occurred in 
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the section where target obstacle 2 makes a sharp turn to the right. It occurred for the same 

reason as explained in the tracking result of target obstacle 1. However, in the case of target 

obstacle 2, the turning path was relatively gentle, so the delay was relatively small. In 

addition, some errors occurred in the straight motion section. It occurred because a part of 

target obstacle 2 was occluded by the structure of USV 1 existing in the right frame of 

Figure 37. As a result, a positional error occurred in the straight motion section. The MAE 

was 4.04m, similar to target obstacle 1. 

 

 

Figure 40. Trajectory tracking result of target obstacle 2 on USV 1 

 

The result of tracking the COG and SOG of target obstacle 2 in USV 1 is shown in 

Figure 40. First, looking at the COG graph, there was an aspect in which some tracking 

results vibrated in the straight motion section due to occlusion by the USV 1 structure, and 

a delay occurred in the tracking result when the obstacle turned to the right. However, 
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compared to the previous tracking result of target obstacle 1, it can be seen that the delay 

occurred less because the turning radius was smaller. 

Next, SOG could not track all the detailed speed increases and decreases of target 

obstacle 2, but the overall trend was tracked with reasonable accuracy. The MAEs were 

11.26° and 1.32 knots, respectively. 

 

 

Figure 41. COG and SOG tracking result of target obstacle 2 on USV 1 

 

Next, the result of tracking the target obstacles from the viewpoint of USV 3 in the same 

case is shown in Figure 41. The three frames on the left half are the areas corresponding to 

the front 180°, and the three on the right half are the areas corresponding to the rear 180°. 

Among the obstacles detected from the rear of USV 3, the rightmost blue detection box is 

target obstacle 1, second green detection box located from the right is USV 1, and the third 

pink detection box located from the right is target obstacle 2. It is similar to USV 1 above, 

but it can be seen that the camera installation height of USV 3 is relatively high at 6.0m, 

and the obstacle is detected as relatively small. 
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Figure 42. The detection result of target obstacles on USV 3 

 

The result of tracking the trajectory of target obstacle 1 in USV 3 is shown in Figure 43. 

The tracking time is slightly longer than in USV 1 above. Shifting occurred during the 

whole tracked path compared to ground truth, but the magnitude was not large. As in USV 

1, the target obstacle 1 was not accurately tracked when the obstacle turning motion was 

sharp, resulting in a large error. It can be seen that the MAE is 8.62 m, which is relatively 

large compared to the previous tracking results in USV 1. 
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Figure 43. Trajectory tracking result of target obstacle 1 on USV 3 

 

The result of tracking the COG and SOG of target obstacle 1 in USV 3 is shown in 

Figure 44. Shifting occurred in trajectory tracking, but other tracking aspects except shift 

were similar to the ground truth, so COG and SOG tracking results were also tracked 

similarly to ground truth. As in USV 1, tracking was performed with very small errors in 

both COG and SOG in the straight motion section, and some delay appeared in the sharp 

turn section. USV 3 has a slightly longer tracking length than USV 1, so we can better see 

the delay. 

 



75 

 

 

Figure 44. COG and SOG tracking results of target obstacle 1 on USV 3 

 

The result of tracking the trajectory of target obstacle 2 in USV 3 is shown in Figure 45. 

Similar to the trajectory of target obstacle 1, shifting occurred in the entire path, but the 

overall tendency of the tracked trajectory followed the ground truth well. In addition, the 

turning radius of target obstacle 2 is relatively large compared to that of target obstacle 1, 

so the tracking error caused by turning acceleration is smaller than that of target obstacle 1 

in the sharp turning section. The MAE was relatively large at 10.86 m due to shifting. 

However, more accurate tracking will likely be possible if shifting is removed by improving 

horizon line detection. 
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Figure 45. Trajectory tracking result of target obstacle 2 on USV 3 

 

The result of tracking the COG and SOG of target obstacle 2 in USV 3 is shown in 

Figure 46. Tracking is performed well in whole tracking sections. Even in the section where 

target obstacle 2 made a sharp turn, the delay in tracking the COG of the obstacle occurred 

less compared to the tracking result of target obstacle 1. Moreover, in the case of SOG, no 

delay was observed. The MAEs were 10.59° and 1.01 knots, respectively, similar to those 

tracked in USV 1. 
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Figure 46. COG and SOG tracking results of target obstacle 2 on USV 3 

 

Figure 47 shows the trajectory that fuses the tracking results from the front and rear 

viewpoints of target obstacle 1. The fusion was conducted with the sensor-to-sensor fusion 

method. Compared to Figure 38 and Figure 43, the tracked trajectory seems more similar 

to the ground truth, and the tracking error decreased even in the sharp turn section, where 

the tracking error was large in tracked individuals.  

Although the error in the sharp turn section occurred largely in the previous two tracking 

results, the error decreased after a fusion because the errors generated in the two tracking 

results had opposite characteristics. In detail, when tracking in USV 1, shifting occurred in 

the direction away from the USV, and an error occurred. Whereas, when tracking in USV 

3, shifting occurred in a direction closer to the USV, and an error occurred. It shows that 

when tracking results with opposite error characteristics are fused, the errors are 

compensated, and more accurate tracking results can be derived. The MAE was 4.42m, a 

32.7% decrease compared to before fusion. 
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Figure 47. Trajectory fusion result of target obstacle 1 

 

The result of fusing the COG and SOG of target obstacle 1 is shown in Figure 48. The 

tracking results from USV 1 and USV 3 were almost similar, so the fusion results of COG 

and SOG were not significantly different. Unlike trajectory, tracking characteristics 

opposite to each other did not appear, so a fusion effect beyond the appropriate fusing of 

two similar tracking results did not appear. MAEs were 11.31° and 0.70 knots, respectively. 

This fusion result shows that fusion between tracking results that do not have mutually 

opposite characteristics or compensating characteristics has a limitation in not improving 

the tracking result. 
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Figure 48. COG and SOG fusion results of target obstacle 1 

 

Figure 49 shows the trajectory that fused the tracking results from the front and rear of 

target obstacle 2, respectively. Similar to the fusion result for target obstacle 1, a relatively 

smooth tracking result was generated compared to before fusion. However, some shifting 

occurring due to the effect of the tracking result in USV 3 still needs to be eliminated. The 

MAE was 6.03m, a decrease of 19.1% compared to before fusion, but greater than that of 

USV 1.  

In this case, an accurate tracking result may be contaminated if the two tracking results 

do not have opposite characteristics or errors are concentrated in one of the two tracking 

results. Therefore, it is necessary to study fusion algorithms by carefully analyzing the 

correlation of tracking results using different cameras to prevent contamination of accurate 

tracking results through fusion. For example, in this case, if USV 1 has an accurate tracking 

result but tends to have a large standard deviation of the distance, and USV 3 has a small 

standard deviation of the distance but tends to shift the average. More accurate fusion 

results are expected to be obtained through the fusion algorithm that reflects the correlation. 
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Figure 49. Trajectory fusion result of target obstacle 2 

 

The result of fusing the COG and SOG of target obstacle 2 is shown in Figure 50. 

Similar to the fusion results of target obstacle 1, the results of COG and SOG were not 

significantly different from those before fusion. In the case of COG, it was accurately 

tracked in the straight motion section, but a delay occurred in the sharp turn section, and in 

the case of SOG, it followed the overall trend well. The MAEs were 11.28° and 0.99 knots, 

respectively, similar to the values before fusion. 

 



81 

 

 

Figure 50. COG and SOG fusion results of target obstacle 2 

 

In this case, the results of tracking obstacles from different viewpoints were fused. In 

the case of opposite error characteristics between different tracking results, the error was 

greatly reduced through fusion, and tracking results close to the ground truth could be 

obtained. However, when a large error occurred in one of the different tracking results, the 

tracking result with the minimum error could be contaminated due to fusion with inaccurate 

tracking results. Through this, there is a need for a fusion method that can reflect the error 

characteristics of each tracking result by closely analyzing the correlation between the 

tracking results through different cameras or sensors. 
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 Summary 

The camera-based recognition technology proposed in this paper was applied to three 

cases, and the results are summarized in Table 4 below. In all cases, the tracking results 

showed convergence within about 18 m with an accuracy of 80% of the general GPS error. 

And in most cases, the accuracy of tracking data was reduced after the fusion of tracked 

data from different camera conditions. Through the application, it can be proved that the 

camera image-based tracking is reliable, and the fusion was useful in situations where 

communication between the USVs is possible. 

First, in case 1, obstacles were detected and tracked by three types of cameras installed 

on the boat, and each tracking data was fused with the other. Tracked data from three 

different cameras did not show significant differences due to clear weather. Through this, 

stable tracking could be possible through fusion without a separate reliability evaluation 

process when various cameras with different operating environments are simultaneously 

operated regardless of daytime, nighttime, or weather. 

Case 2 detected and tracked an obstacle moving in a straight line from the front and side, 

and simultaneously tracked data was fused. Through this, different tracking characteristics, 

because of the relatively large distance error compared to the bearing error, could appear 

depending on the observation point of the obstacle. In addition, when tracking data is fused 

in this situation, the characteristics that are disadvantages of each tracking data can be 

compensated with each other according to the reliability of tracking data. 

Finally, in case 3, obstacles were detected and tracked from the front and rear in a 

platooning situation, and the tracking data was fused. Through this, when opposite error 

characteristics between different tracking data appear, the error can be greatly reduced after 
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fusion. On the other hand, when a relatively large error occurs in one tracking data, tracking 

data with a relatively small error is contaminated. That is, it is necessary to analyze each 

tracking characteristics of the camera or the target object in more detail and develop a 

fusion algorithm that reflects them. 
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Table 4. Summary of application case result 

Application case Camera 
Trajectory MAE 

[m] 

COG MAE 

[°] 
SOG MAE 

[knots] 

Case 1 

3-channel EO 6.58 12.45 1.40 

1-channel EO 12.09 15.19 2.18 

1-channel IR 9.22 13.93 1.83 

Fusion 8.43 8.01 1.85 

Case 2 

USV 1 2.27 2.98 0.64 

USV 2 2.89 6.78 0.42 

Fusion 1.78 2.98 0.57 

Case 3 

Obstacle 

1 

USV 1 4.51 13.25 0.94 

USV 3 8.62 17.57 0.88 

Fusion 4.42 11.31 0.70 

Obstacle 

2 

USV 1 4.04 11.26 1.32 

USV 3 10.86 10.59 1.01 

Fusion 6.03 11.28 0.99 
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 Conclusions and future works 

 Conclusions 

In this paper, we implemented a maritime obstacle detection algorithm based on 

YOLOv5, a deep learning algorithm capable of real-time maritime obstacle detection for 

actual USV applications. In addition, CBAM was introduced to improve the accuracy of 

the YOLOv5 algorithm. As a result of evaluating the AP accuracy for actual marine images, 

the EO detection algorithm improved from 95.75% to 95.98%, and the IR detection 

algorithm showed a large improvement from 94.44% to 95.67%. Both algorithms proved 

that the obstacle detection accuracy was over 90%, which is not enough to perform 

detection-based tracking. 

A position conversion method using a monocular camera was proposed to perform 

obstacle tracking based on the detected obstacle data. First, the position vector of the 

detected obstacle was defined. Then using a defined position vector, the bearing of the 

obstacle was estimated through quaternion rotation transformation. Finally, the distance 

between the obstacle and the boat was estimated by detecting a horizontal line on the image. 

Calculated bearing and distance is a value representing the relative position of an obstacle 

defined by the own USV and was used as a sensor measurement in the obstacle tracking 

process. 

To estimate the motion data of an obstacle, an adaptive extended Kalman filter suitable 

for camera-based obstacle detection results is proposed. In the case of detecting an obstacle 

based on the camera image, the error variability was small for objects near. However, the 

variability was high for objects at a long distance. Therefore, to consider these 
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characteristics in the tracking phase, the adaptive error covariance was defined by 

analyzing the obstacle detection results. To define the adaptive error covariance, the 

bounding box variability of the obstacle detection algorithm was analyzed, and the resulting 

variability of the actual distance estimation result was analyzed.  

As a result of verifying the obstacle tracking method proposed in this paper based on 

images and GPS data acquired from the actual sea, it was confirmed that it converged 

within 80% of the GPS error for all application cases. In addition, the COG and SOG 

tracking results showed that the overall movement tendency was tracked well, except for 

the delay that occurred when the obstacle made a sharp turn. 

To obtain more accurate tracking data based on the data tracked by each camera, data 

tracked by multiple cameras and multiple boats were fused. Fusion was largely applied and 

verified in two cases: a case in which data tracked by three types of cameras mounted on a 

boat is fused, and a case in which data tracked by two boats observing obstacles from 

different viewpoints is fused.  

First, it was confirmed that more stable tracking data could be obtained through fusion 

between cameras with different operating environments. However, drastic error reduction 

did not appear when the fusion of data tracked with similar accuracy and characteristics 

was performed. In addition, it was confirmed that when the data tracked by the two boats 

at different viewpoints are fused, the distance estimation errors that appear differently 

depending on the viewpoints compensate each other, and the errors can be largely reduced.  

However, on the contrary, if the error is weighted on only one of the two tracking data 

to be fused, the accurate tracking data can be contaminated through fusion with the less 

accurate data. So, in this case, we confirmed that there is a need to analyze the relationship 
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between tracking data between different cameras. 
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 Future works 

To improve the multi-image-based maritime obstacle detection and tracking method 

proposed in this paper through future research, tracking errors due to occlusion that may 

occur in the detection stage must first be improved. As shown in Figure 19, occlusion due 

to the wake may occur, but in the actual sea, errors due to occlusion between obstacles 

occur more frequently, as shown in Figure 51. Therefore, such detection errors must be 

reduced first in the obstacle detection algorithm. Furthermore, even if detection errors occur, 

tracking management, such as backing up tracking data during occlusion, as shown in 

Figure 52, has to be devised to avoid incorrect detection results contaminating tracking data. 

 

 

Figure 51. False detection result by occlusion 
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Figure 52. Example of track management when occlusion happened 

 

Also, as mentioned many times, it is necessary to carefully analyze the correlation 

between data tracked by different cameras. The sensor fusion algorithm used in this paper, 

fast CI, is designed to produce optimal fusion results between two tracking data with 

ambiguous correlation. However, as a result of applying this to this paper, it was found that 

when a relatively large error occurs in only one of the fusion data, it is not properly reflected. 

In other words, if the reliability of one side has significantly decreased through correlation 

analysis between cameras, it is necessary to improve the algorithm, such as excluding it 

from the fusion target or giving weight to the reliability of the side with less error. 
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국문 초록 

다중 영상 기반 해상 장애물 탐지 및 추적 방법 

 

해양에서 발생하는 사고의 원인 중에서 사람의 과실이 비교적 높은 비율을 

차지하고 있으며, 그에 따라 선박 주변 인지를 위한 자율 인지 시스템의 

필요성이 대두되고 있다. 전통적인 인지 센서인 Automatic Identification 

System (AIS)와 Radio Detection and Ranging (RADAR)를 활용한 자율 

인지 기술에 관한 연구가 활발히 이루어지고 있으나, USV 와 같은 소형선이 

활동하는 연안에서는 AIS 누락, RADAR 사각 지대 등의 한계가 존재한다. 

따라서 이들을 대체할 수 있는 새로운 인지 기술을 개발하고자 하였다. 

본 논문에서는 전통적인 인지 센서의 한계를 보완하고 인간의 시각을 

대체하고자 카메라를 활용한 자율 인지 기술을 제안하였다. 먼저 카메라 영상 

기반의 실시간 객체 탐지 모델인 YOLOv5 모델을 개선하여 장애물 탐지 

정확도를 높였으며, 단안 카메라를 활용한 위치 변환 알고리즘으로 탐지된 

장애물의 상대적 위치를 추정하였다. 추정된 장애물의 상대적 위치를 

바탕으로 본 논문에서 제안한 적응형 확장 칼만 필터 (adaptive extended 

Kalman Filter)를 이용하여 장애물의 운동 정보인 trajectory, Course Over 

Ground (COG), 그리고 Speed Over Ground (SOG)를 추정하였다. 또한 

USV 가 전략적인 목적으로 운용되어 상호 간의 통신 및 협력이 가능할 

경우를 가정하여 추적 정보의 정확도를 높이기 위해 서로 다른 카메라에서 

추적된 정보 간의 센서 융합 (sensor fusion)을 수행하였다. 여러 대의 

카메라 각각에서 추적된 정보를 서로 융합하여 추적 정확도를 개선하거나 

개별 카메라의 추적 과정에서 발생하는 단점을 서로 상쇄하는 등 보다 정확한 

추적 정보를 얻을 수 있음을 확인하였다. 
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주요어: Object detection (장애물 탐지), Object tracking (장애물 추적), Adaptive 

tracking filter (적응형 추적 필터), Data association (데이터 연관), Sensor fusion (센서 

퓨전) 
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