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Abstract

Nayoung Lee
Department of Naval Architecture and Ocean Engineering
The Graduate School

Seoul National University

Recently, interest in digitalization is gradually increasing in the field of
shipbuilding and marine. In particular, the digital twin enables monitoring by
synchronizing the data of the real system with a virtual model in real-time and can
be seen as a major platform that integrates various technologies related to
digitalization. The digital twin consists of four major components: data,
communication, model, and service. Among them, in the data and communication
sector, much progress has been made due to the simultaneous development of new
technologies such as the Internet of Things, big data, cloud, and 5G, and
international standards such as ISO 23247, ISO/IEC30172, and 30173 have been
established. It became. On the other hand, development in models and services,
especially in the service sector, is relatively slow. The reason for this is that
existing simulation models and analysis techniques lack the ability to handle and
process sensor data collected and updated in real-time, and machine learning and
data-based analysis techniques, which have recently emerged, are not immediately
applicable to marine systems. It can be pointed out that additional engineering is

required because it is not possible.



In this study, an anomaly detection model based on a machine learning model, a
hazard detection model through sensor data prediction, and a process predictive
maintenance model was modified and verified for use in marine systems.

In first part, an anomaly detection model based on correlation between sensors
that can be applied to process systems is proposed. This model is a modification of
the MSCRED model. A two-dimensional correlation matrix calculated over time
using Multivariate Time Series Data is used to generate a two-dimensional
correlation matrix over time, and Conv-LSTM ED (Convolutional Long A
reconstruction matrix is obtained using the -short Term Memory Encoder Decoder
model, and a residual matrix is calculated through the difference with the input
value. The anomaly score was calculated through the residual matrix calculated in
this way in a different way from the existing method. This reflects the
characteristics of the offshore process and enables monitoring of the entire process
system even when there is no abnormal situation. Finally, the process state can be
monitored by enabling classification of fault cases using the clustering technique
for time-series abnormal scores. To verify the proposed anomaly detection model,
a pilot-scale Mono Ethylene Glycol (MEG) regeneration process was used, and the
model was trained using four normal operation data, one starting operation
situation and four abnormal data. The model was verified using the abnormal
situation data of pilot plant. As a result of learning using several normal driving
data, the performance of the model was improved by performing time series
synthesis based on specific normal data with high accuracy. As a result of the
verification, anomaly detection was performed with an accuracy close to 88%, and
as a result of clustering the anomaly score that came out as a result, it was

confirmed that clustering was performed for each anomaly situation.
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In the second part, Deep learning-based time series prediction framework for the
lab-scale hydrate formation experiment was developed. This framework suggests
methodologies to use the experimental data as the input of real-time time series
prediction model, which can be scaled up for the field use using transfer learning.
Preventing gas hydrate formation is critical in offshore gas and oil production
systems. Several models can predict hydrate formation, however, these empirical
approaches have limitations due to dependency on geometries and fluid
characteristics of the systems. The trends of hydrate formation or risk are
considered statistical, which means there is no definite model to describe its
behavior. Herein, we present a novel framework based on a combination of feature
reduction methods and several deep learning models to predict the hydrate
formation trend through the multivariate sensor data. Transition and segregation
trends during hydrate formation were predicted in real-time using sequential time
series data from the last 60 seconds. We employed various deep learning models
(Dense, LSTM, GRU, ARLSTM), layers, and dropout to investigate and enhance
the prediction ability of each model. Two groups of experimental data (200rpm,
600rpm) were used for training and testing the prediction to examine the universal
applicability of the model. Transfer learning in training the model was employed to
apply the discrete experimental set to time-series data and enhance the accuracy.
The results with higher layer numbers and a dropout rate of 0.2 ~ 0.6 showed the
best performance. ARLSTM showed the smallest error among deep learning
models and predicted the good trend of kinetic characteristics (transition and
segregation part) during the hydrate formation. This approach based on deep
learning can be adopted for risk and issue detection of pipelines in the gas

production system. The research questions in this chapter are as follows :
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In the third part, a novel framework using data-driven prognosis with fully deep
learning models is suggested. Prognosis should be accompanied by fault detection,
propagation prediction, and root cause diagnosis. This study proposes a framework
for performing these tasks using deep learning-based methodologies. First, the
feature extraction to latent space using a Convolutional Auto Encoder (CAE) to
perform fault detection. Then, near-real-time prediction on the latent vectors using
the Recurrent Neural Network (RNN). Online machine learning using transfer
learning was applied to increase the accuracy of prediction in unlearned situations,
since the fault case trajectory propagation of the chemical process is difficult to
predict. Also autoregressive prediction using the trained RNN has been done to
predict Remaining Useful Life (RUL). After that, the T? index for the prediction
result was calculated, and the contribution on T2 index was calculated by SHAP,
a model agnostic eXplainable Artificial Intelligence (XAI) technique. This
framework was tested and verified through CSTR and TEP datasets and showed

the better prediction performance than other previous prognosis schemes.
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Chapter 1. Introduction

1.1. Research background

Recently, interest in digitalization is gradually increasing in the field of

shipbuilding and marine. In particular, the digital twin enables monitoring by

synchronizing the data of the real system with a virtual model in real-time and can

be seen as a major platform that integrates various technologies related to

digitalization. The digital twin consists of four major components: data,

communication, model, and service. Among them, in the data and communication

sector, much progress has been made due to the simultaneous development of new

technologies such as the Internet of Things, big data, cloud, and 5G, and

international standards such as ISO 23247, ISO/IEC30172/3 have been established.

Real
(physical)
Asset

Functional
Output

Virtual
Asset

Live Digital

Coupling

Information/
Process

Fig. 1-1. simplified configuration of the digital twin
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Fig. 1-2. Components of the digital twin
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Fig. 1-3. stages of digital twin and generic data analytics maturity model

On the other hand, development in models and services, especially in the service
sector, is relatively slow. The reason for this is that existing simulation models and
analysis techniques lack the ability to handle and process sensor data collected and
updated in real-time, and machine learning and data-based analysis techniques,
which have recently emerged, are not immediately applicable to marine systems. It
can be pointed out that additional engineering is required because it is not possible.

In this study, an anomaly detection model based on a machine learning model, a
hazard detection model through sensor data prediction, and a process predictive

maintenance model was modified and verified for use in marine systems.

In the Chapter 2, a plant-wide anomaly detection algorithm using Multi-Scale
Convolutional Recurrent Encoder-Decoder (MSCRED) has been proposed.
Automating the process plant anomaly detection using artificial intelligence is
currently widely studied topic and is attracting attention of many researchers. But
still, it is a challenging task to detect changes for the entire process, not for each

single sensor data, and to perform anomaly detection and classify them by fault
15 = A&t &
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type. This is because most of the anomaly detection algorithms perform without
information on the degree of association between sensors. Accordingly, this study
addresses the existing problems by expanding the Multi Scale Convolutional
Recurrent Encoder Decoder (MSCRED) model, which allows the correlation
between sensors to be matched in the form of 2D matrix to perform analysis
detection based on changes in sensor correlation on a specific time window. In
addition, the vulnerability of existing MSCRED models is compensated by
replacing the anomaly score calculation method and threshold-based anomaly
detection method with clustering technique using time series distance with normal
data. The framework presented in this study was verified using the operational data
of the actually operated pilot scale Mono Ethylene Glycol (MEG) regeneration
plant, and additional studies were conducted on which data to use as training data
to improve the accuracy of the model.
The research questions in this chapter are as follows:
e How to detect system wide anomaly using process sensor data and
machine learning model?
e Using MSCRED model on real world sensor data works well?
e How does the training data affect on the performance of the detection
model?
e How to set the threshold for the given system?

e How to classify the anomaly score result into a fault modes?

In the Chapter 3, Deep learning-based time series prediction framework for the
lab-scale hydrate formation experiment was developed. This framework suggests

methodologies to use the experimental data as the input of real-time time series

16 -:l-"i —1 - I!-



prediction model, which can be scaled up for the field use using transfer learning.
Preventing gas hydrate formation is critical in offshore gas and oil production
systems. Several models can predict hydrate formation, however, these empirical
approaches have limitations due to dependency on geometries and fluid
characteristics of the systems. The trends of hydrate formation or risk are
considered statistical, which means there is no definite model to describe its
behavior. Herein, we present a novel framework based on a combination of feature
reduction methods and several deep learning models to predict the hydrate
formation trend through the multivariate sensor data. Transition and segregation
trends during hydrate formation were predicted in real-time using sequential time
series data from the last 60 seconds. We employed various deep learning models
(Dense, LSTM, GRU, ARLSTM), layers, and dropout to investigate and enhance
the prediction ability of each model. Two groups of experimental data (200rpm,
600rpm) were used for training and testing the prediction to examine the universal
applicability of the model. Transfer learning in training the model was employed to
apply the discrete experimental set into time-series data and enhance the accuracy.
The results with higher layer numbers and a dropout rate of 0.2 ~ 0.6 showed the
best performance. ARLSTM showed the smallest error among deep learning
models and predicted the good trend of kinetic characteristics (transition and
segregation part) during the hydrate formation. This approach based on deep
learning can be adopted for risk and issue detection of pipelines in the gas
production system.

The research questions in this chapter are as follows:

e How to select the feature from the many sensor data?
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e How to predict the event which are not like traditional time series
prediction; non-stationary, non-periodical with statistical and single time
occurrence event?

e Training machine learning model with the experimental data which has
set of multiple iterative time series data?

e How to make the near-real time prediction model to use for field use?

In the Chapter 4, a novel framework using data-driven prognosis with fully deep
learning models is suggested. Prognosis should be accompanied by fault detection,
propagation prediction, and root cause diagnosis. This study proposes a framework
for performing these tasks using deep learning based methodologies. First, the
feature extraction to latent space using an Convolutional AutoEncoder (CAE) to
perform fault detection. Then, near-real-time prediction on the latent vectors using
the Recurrent Neural Network (RNN). Online machine learning using transfer
learning was applied to increase the accuracy of prediction in unlearned situations,
since the fault case trajectory propagation of the chemical process is difficult to
predict. Also autoregressive prediction using the trained RNN has been done to
predict Remaining Useful Life (RUL). After that, the $T"2§$ index for the
prediction result was calculated, and the contribution on $T"2$ index was
calculated by SHAP, a model agnostic eXplainable Artificial Intelligence (XAI)
technique. This framework was tested and verified through CSTR and TEP datasets
and showed the better prediction performance than other previous prognosis
schemes.

The research questions in this chapter are as follows:
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What is the best way to build the prognosis framework using different
deep learning models?

How to boost the accuracy of the prediction on fault cases, when the fault
case data is hard to get before it occurs?

How to predict the Remaining Useful Lifetime (RUL) using the deep
learning-based prediction model?

Does diagnosis with an explainable artificial neural network on the

prediction model available?
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Chapter 2. System-wide Anomaly Detection*

2.1. Introduction

Automatic anomaly detection and diagnosis [1, 2] are now largely getting
attention, with the rising demand for the digitalization of process systems.
Chemical process plants usually consist of many components like vessels,
equipment, and pipelines. Sensors and controllers are attached to those components
and gather data for the constant time interval. Indicators and controllers are the
main categories of values we can get from the chemical plant. Indicators monitor
the status like pressure, temperature, and liquid level. Controllers transmit values
including Set Point (SP), Present Value (PV), and Valve Opening (OP). These
measured values indicate the status of each component and the system and are used
for monitoring. Sensor data in chemical processes has been measured for a long
time since they are values closely related to the process yield, efficiency, and safety
[3]. However, interpreting these values need domain knowledge, which makes it
hard to automate. But with the recent rise of digital storage technology and big
data-related technologies, the volume of collected data has been increasing and the
algorithms for data utilization are becoming more sophisticated. Methodologies
have been developed that enable machines to automatically perform necessary
algorithms using data collected using machine learning and deep learning

technologies. In addition, advances in sensor hardware and sensor data processing

* This chapter is partially adapted from Plant-wide Anomaly Detection and Single-Value Monitoring
using Conv-LSTM in Pilot-Scale MEG Regeneration Plant with authors N. Lee, H. Kim, J. Jang, and
Y. Seo. (Preparing Submission)



technology have opened the way for various uses of the collected sensor data. With
this, technologies that can automatically perform anomaly detection and failure
cause analysis using sensor data using data-driven methods are starting to attract
attention [4, 5]. Here we will suggest the monitoring and anomaly detection
method using a deep learning model trained with historical sensor data. Though
many Al methods do not use field data to ensure their accuracy [6], this study
examines the proposed anomaly detection algorithm with real-world data which is

obtained from the pilot plant.

2.2. Related Work

2.2.1 Fault monitoring and identification of the chemical

plant

Anomaly detection of a chemical process is a widely researched topic. Classical
division for a process fault detection is like the following [7] : (1) data methods and
signal methods (limit checking and trend checking, dimension reduction (PCA) [2],
spectrum analysis and parametric models, pattern recognition (neural nets)) (2)
Process model-based methods: parity equations, state observations, parameter
estimation, nonlinear models (neural nets) (3) knowledge-based models : Expert

systems, Fuzzy Logic [8].

2.2.2 Process Anomaly Detection Using Al

Most successful deep learning applications fall into the category of supervised

learning. Assuming that the amount of data is sufficient, supervised learning can
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now show guaranteed performance. Anomaly detection, however, cannot use
supervised learning because anomalies are extraordinary in the whole data and not
always present in the historical data [4, 9]. Instead, model training is performed
using unsupervised learning such as clustering to find the normal state and detect
anomalies by the deviance from the defined normal state.

Basically, Anomaly detection is a same task as defining the normal
condition and finding its representation within the format of the given data. And Al
model is trained entirely by the normal data given from operation. However, in
chemical process plant (or in other applications), it is hard to define the normal
status since its condition is constantly changing by demand and its range of normal
status is large.

Within the domain of unsupervised models, the encoder-decoder model
(also called an autoencoder model) is recently gaining its popularity due to its
efficiency with a rather easy model architecture among the data-driven methods
[10]. Also new ML methods such as Variational Auto Encoder — Generative
Adversarial Network (VAE-GAN) was explored on fault detection on chemical

process [11].

Table 2-1. Literature related to the major methodology in the ML area

Literature Method Taxonomy

Takehisa Yairi et al. K-Means Unsupervised, Classic ML, distance
(2001)

S. Ramaswamy et al., KNN Unsupervised, Classic ML, distance
(2000)

F. T. Liu, et al., Isolation Unsupervised, Outlier detection, Trees
(2008) Forest

P. Malhotra, et al., LSTM-AD Semi-supervised, Deep Learning,
(2015) forecasting
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M. Sakurada and T.  Autoencoder Semi-supervised, Deep Learning,

Yairi. (2014) reconstruction

P. Malhotra, et al., Enc-Dec AD Semi-supervised, Deep Learning,

(2016) reconstruction

D. Park et al., (2018) LSTM-VAE Semi-supervised, Deep Learning,
reconstruction

Y. Su et al., (2019) OmniAnomaly Semi-supervised, Deep Learning,
reconstruction

C Zhang et al.,(2019) MSCRED Semi-supervised, Deep Learning,
reconstruction

Table 2-2. Literature related to the system correlation based anomaly

detection on time series sensor data using Deep Learning

Literature Method Outperforms Domain
D. Hallac et al., GMM, DTW, K- ..
2017) TICC means Driving sensor data
physical activity
monitoring dataset,
I;i S(g:;%sf;t %Se%&%zggg LSTM, CNN Sussex-Huawei
" Locomotion (SHL)
dataset
K. Jiang et . AlexNet, CNN Network Traffic Intrusion
+ R 2 b .
al.(2019) CNNFBILSTM BiLSTM Detection
CNN+BiLSTM,
I.S.Thaseen el CFS+ANN N%Zf/i]:i?)}rlle"i"sr.lM’ Network Intrusion
al. (2020) ’ Detection

Random Tree, CNN,
AlexNet

2.2.3 Plant-wide Anomaly Detection

There are several advantages to developing a deep learning model that performs
anomaly detection for the entire process with a single algorithm. There are some
studies on plant-wide anomaly detection without deep-learning, as principal
component analysis [12] or local outlier factor [3]. The reason for using a deep

learning model that utilizes data from the entire process is that, first, creating a
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combined model reduces the number of models to be trained much more than
creating an individual anomaly detection algorithm model for each signal. Second,
it is possible to detect anomalies in consideration of the connectivity between the
sensors. Third, when an abnormality is detected, it can be explained in which part
and for what reason in one deep learning model. However, this plantwide anomaly
detection is not quite well researched in this field. MSCRED [13] considers every
sensor data and its correlation by introducing a signature matrix. This signature
matrix is a correlation matrix for a given time-series window. For a given time
window, the signature matrix shows the system status by showing the average
value of sensor value and the correlation between different pairs of the sensor time-
series data. multiscale anomaly detection is enabled by a multiple encoder which
scales system into many stages.

MSCRED has been used steadily in the field of anomaly detection in systems
utilizing multivariate sensor data [14] and has been used as a basis for new
algorithms [15] and demonstrated their usefulness. It is also receiving a lot of
attention in the industrial field, which is thought to be due to MSCRED's efficient
combination of association analysis and time series prediction to be considered in
the industry. It is noteworthy that the cases used for predictive maintenance in the

field of manufacturing were used.

2.2.4 Timeseries Anomaly Detection

Many of the process anomaly detection proposed so far have mainly been
algorithms for performing fault diagnosis based on past data [16]. For this reason,

although various anomaly detection models and algorithms have appeared, they
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have not been actively introduced in the actual process. What is needed in the
actual process is the prognosis, which predicts process abnormalities that will occur
in the future and prevents them in advance, because this process was impossible
using existing algorithms. As a method to compensate for this, a method of
combining a recently introduced time series prediction model with an anomaly
detection model may be introduced. Predictive maintenance is possible if the
propagation of future sensor data is predicted using the existing process sensor data
and the existing anomaly detection algorithm is introduced for the predicted value.
A time series is not simply a set of values according to a time index, but a case in
which the value of the previous time step affects the next time step. Time series-
based forecasting has been mainly done in the fields of stock and weather
forecasting and control systems.

Within the fault identification model, it is able to put timeseries model inside
the anomaly detection architecture. RNN cells can be used after the encoder, and
pass the output value to the decoder. Also, classical autoregressive models can also
be used as a bridge between the encoder and decoder, but not implemented in this
paper.

It also enables dynamic fault detection in chemical process domain. In
MSCRED framework, employing conv-LSTM model allows the time-series

prediction.
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2.3. Experiment: Pilot-plant data for MEG regeneration

process

The proposed model for abnormally detection is applied in the experimental plant
(pilot scale) from MEG regeneration process, which is to recover a high
concentration of MEG aqueous solution (Lean MEG) from low concentration of
MEG aqueous solution (Rich MEG) and remove the salts inside the aqueous

solution [17].

2.3.1. Experimental apparatus and procedure

Detailed description regarding the materials, equipment & sensor information
employed in the present study, are included in our previous work [25]. The sensor
data measured were recorded every 60 seconds through data acquisition system.

The pilot plant of the MEG regeneration process consists of 4 main units: storage
tank, pretreatment, distillation column, reclamation as shown in Fig. 2-1. The rich
MEG solution (feed stream), of which the concentration of MEG is around 50
wt%, was made with mixing the MEG and water at 40 °C in two feed tanks
(T101A, T101B) in advance. It is noted that the operating conditions in each
equipment described are based on the normal operation. The feed entered the pre-
treatment vessel (V101) with a constant mass flow rate (200+£10kg/hr). The
purpose of vessel was to eliminate a small amount of divalent salt from the solution
under the conditions of 80 °C and 150 kPa. However, we didn’t include the
observation of divalent salts in this paper. After the pre-treatment unit, the water
from the solution stream was evaporated in the distillation column (C101) to

increase the MEG concentration in the solution to 80 — 90wt%, called lear_ll MEG. _
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The operating temperature of reboiler in distillation unit was controlled with the
range of 125 °C to 155 °C. The bottom product of the distillation column, lean
MEG, was split into two streams and one of them was entered into the reclamation
unit. The purpose of the reclamation vessel (V111) was to flash the lean MEG
solution to vapor phase and remove the residual monovalent salt (NaCl in this
work) as the liquid phase under the vacuum condition. The vaporized lean MEG
from the reclamation vessel were cooled down to liquid phase and mixed with the
stream from bottom of distillation column. The combined stream returned to the

feed tanks (T101 A/B). The NaCl liquid slurry was removed through filter units

(F111 A/B).

CW: Cooling Water E1
NV: Normal Vent

Ti: Temperature Indicator

PI: Pressure Indicator

Ui Liquid level Indicator

FIC: Flow Indicator and Controller

LIC: Liquid level Indicator and Controller
PIC: Pressure Indicator and Controller
TIC: Temperature Indicator and Controller

Salt2

Fig. 2-1. Process flow diagram of pilot-scale MEG regeneration system

Table 2-3. Description of operating conditions of units for the pilot-scale MEG

regeneration plant.

Operatin Design
Unit Name Object Size g condition

condition (P/T)
Feed T101A/  Storage 1.20 m*x2 F:200 -

b ey 13
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tank B tank kg/hr
T:313K
P:100
kPa
F:200
kg/hr
VIOl  Flashtank Zén(% T:353K i
i P: 150
kPa
Pl;Ieltel:tat 1. Shell side :
E101 Recycle  1.02m(ID)*0.0 i 1080kPa/483K
heater Im(L) 2. tube side :
900kPa/403K
Fl(])glA/ Filter - - 750kPa/383K
1. Shell side :
2.12m(ID) 600 kPa/348K
E103 Condenser x0.012m(L) ) 2. tube side :
280kPa/413K
T:372-
Reflux 3 374 K
V102 drum 0.043m P-100- 280 kPa/373K
Distillat 03525mi(iD 105 kPa
ion  CI01  Tower -2545m(ID) - 280 kPa/473K
column x8.00m(H)
T:398— 1. Shell side :
. 3 418 K 280kPa/473K
E102 Reboiler 0.168 m P-105 7 tube side -
kPa 1080kPa/483K
Column 1. Shell side :
E104 Bottom 1.61m(ID) i 600kPa/348K
cooler x0.015m(L) 2. tube side :
750kPa/473K
F:20
kg/hr
V111  Flash tank 3153?(1(1}31)) T:400- 450 kPa/413K
oom 402K
P: 11 kPa
Reclamati 1. Shell side :
Reclam  Ell1 on inlet 0.20m(ID) i 1080kPa/483K
ation heater x0.018m(L) 2. tube side :
600kPa/453K
1. Shell side :
E112 OVHD 1.61m(ID)x0.0 i 600kPa/348K
condenser 15m(L) 2. tube side :
450kPa/413K
V112 OVHD = 2.12m(ID)x5.5 - 450 kPa/413K

receiver

0m(H)
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Vacuum

VP111 pump - - B
package
FILA/ e ] ] 600kPa/433K

Table 2-4. Description of sensors for the pilot-scale MEG regeneration plant

Variables Sensor name Description
Flowrate from feed tank (T101A/B) to
FIC 4010_PV pretreatment (V101)
Flowrate from pretreatment(V101) to filter
FIC_4003_PV (F101A/F101B)
Reflux flowrate of condenser (V102) to
Flowrate FIC_4005_PV distillation column (C101)
FIC 4004 PV Flowrate from bo.ttorn of column (E102) to
- - reclamation vessel(V111)
FIC 4014 PV Steam flowrate to reboiler
FIC 4102 PV  Reflux flowrate of reclamation vessel(V111)
PI 4001 PV Pressure of pretreatment vessel (V101)
Pressure P1 4002 PV Pressure of distillation column (C101)
PIC 4101 PV Pressure of reclamation vessel (V111)
TI 4001 PV Temperature of pretreatment vessel (V101)
TIC 4004 PV Flow temperature after pretreatment heat
- - exchanger(E101)
TI 4005 PV Flow temperature before distillation column
- - (C101)
Column internal temperature sensor 1 -
T1L4010_PV Overhead temperature
TIC 4011 PV Column internal te'rnperature sensor 2 - 1st
- - packing column
Temperatur T 4012 PV Column internal temperature sensor 3 - 2nd
e - - packing column
TIC 4014 PV Column internal tgmperature sensor 3 - 3rd
- - packing column
TI 4015 PV Column mtern?ﬂ temperature sensor 4 -
- - Reboiler temperature
Column internal temperature - condenser
TL4016_PV receiver tank(V102)
TI 4102 PV Temperature of recliglp;ltlon vessel (V111) -
TI 4106 PV Temperature of overhead receiver to

reclamation vessel (V112)
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Flow temperature after pretreatment vessel to

TIC_4052_PV filter (FA01A/B)

LI 4001A PV Liquid level percent of feed tank (T101A)

LI 4001B_PV Liquid level percent of feed tank (T101B)

Liquid level percent of condenser receiver

LIC 4002 PV
Level tank(V102)

(liquid level LIC 4003 PV Liquid level percent of reboiler (E102)

percent) LIC 4111 PV Liquid level percent of pretreatment (V101)

Liquid level percent of reclamation vessel

LIC_4103_PV Wil

Liquid level percent of overhead receiver to

LIC_4104_PV reclamation vessel (V112)

2.3.2. Operation case

In this work, the simulation contains normal and abnormal operations. The
normal operations consist of 4 cases, which contain the operating conditions of
equipment and streams within the normal operating tolerance range. Each normal
operation case is not a continuous process. A case name with ‘normal-total’ is a
process in which each normal operation case is sequentially combined over time,
and there is a discontinuity in the connection range of each case. The normal-total
data and each of four cases were used to train the models.

For verifying the algorithm used, four abnormal operation cases have tested,
which means the operating condition goes outrange of the normal conditions.
Table 2-5. summarized what is the event and how to take action for solving the
event for each issue case. Issue-1 had the increase of liquid level percent of
LIC003 in reboiler of column unit (E102). The liquid level percent of LIC003 was
measured exceeded the operating range for normal operation. To decrease of the
liquid level percent of LIC003, the flow rate of lean MEG at the bottom of the
column should be increased. The value of FIC004 was manipulated to increase.

Issue-2 described abruptly shutdown of feed flowrate controlled by FIC010 at 1.6
30 1 S2-TH



hr of operation. Accordingly, the liquid level percent (LIC001) of vessel V101 was
reduced. Afterward, the FIC010 turned on with 250 kg/hr, which is higher than the
normal operating condition of 200 kg/hr at 2.6 hr. Hence, the liquid level precent of
V101 (value of LIC001) started to increase. Issue-3 case indicates a situation in
which the problem continues to become more serious after the problem has
occurred. The initial problem happened from the decrease of steam flowrate for
reboiler (FIC014) at 1.5 hr. Liquid level percent of condenser (V102) at column
(LIC002) results in decreasing due to lowering the operating temperature of
distillation column (C101). The operator rapidly turned down the reflux flowrate
from the condenser (FIC005) to zero for 5 minutes at 1.66 hr of operation time.
Afterward, the value of FIC005 returned to original value (20 kg/hr). However,
liquid level percent at LIC002 kept increasing to 77.2%, which is still abnormal
operating condition. Issue-4 showed the abnormal operation with emergency
shutdown. The issue occurred from the failure of heat exchanger, E111. Due to the
failure of E111, the operating temperature of reclamation vessel, V111, was
dropped and measured in TI102. Lower operating temperature led to decrease the
amount of vapor to be flashed and increased the liquid level percent of V111,
measured by LIC111. However, meaningful action has not been taken at LIC111
and the measure value of LIC111 (liquid level percent of V111) increased
continuously. The case was decided to emergency shutdown at around 12 hrs. The
experimental profiles is described in section 5 for comparison with the model

results.



Table 2-5. Summary of each abnormal operation case (issue) with event and

action
Case name Event Action for solving the
event
Issue-1 Liquid level percent of LIC003 was Increase the flowrate of
increased. FIC004 (at 5.8 hr)
Issue-2 Feed flowrate of FIC010 was FICO010 restarted with
abruptly shutdown. target flowrate.
Steam flowrate for reboiler FIC005 manipulated to
Issue-3 (FICO014) was decreased at 1.5 hr. stop the reflux flowrate to
Liquid level percent of condenser at C101 from V102 for 5
column (LIC002) was decreased. minutes at 1.66 hr.
Heat exchanger, E111, failed.
Issue-4 Temperature of V111(T1102) was N/A. The operation was
dropped and liquid level percent of emergency terminated.
V111 (LIC111) was increased.
2.4. Model Framework

In this study, we applied modified MSCRED framework as shown in

Fig. 2. This framework suggests the combination of signature matrix and

conv-LSTM ED model with Anoamly score calculation. conv-LSTM ED

model has convolutional encoder followed by conv-LSTM with attention,

followed by convolutional decoder. the model has been optimized for Mean

Squared Error (MSE) with Adam stochastic gradient descent.

Chemical process is a complex system with multivariate time series

data of the networked sensors [21], where its measured data are physically

interconnected and influence each other throughout the system. Also the

measured values are closely interconnected with the static and dynamic

status of the previous data. here, sensor data from the chemical plant is

dependent with physical dependency by its adjacency of system and
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temporal continuity of each data points. This spatio-temporal dependency

affects a lot in system monitoring. However, there is not many existing

machine learning models that physically implements both spatial and

temporal relationships. For spatially related (e.g. image) data, Convolutional

Neural Network (CNN) is used for processing. For temporary related (e.g.

audio signal) data, Recurrent Neural Network (RNN) is used for processing.

To reflect both spatial and temporal data, conv-LSTM model has been used

CoooTT T
! . . ] . . Multivariate
: Windowing H Preprocessing H Sensor Data
= i | Signature Matrix Convolutional Convolutional Convolutional Convolutional )
; ! Calculation Encoder 1 Encoder 2 Encoder 3 Encoder 4
3
£ |
g
: : [ convLSTM 1 ] [ convLSTM 2 convLSTM 3 [ convLSTM 4
=
2 | v v v v
O
; ' | Residual Matrix Convolutional Convolutional Convolutional Convolutional
] Calculation Decoder 1 Decoder 2 Decoder 3 Decoder 4 )

Anomaly Score
Calculation

Anomaly
Identification

Fault
Classification

Fig. 2-2. Configuration of the modified MSCRED framework with 4 encoding-

decoding layers

2.4.1. Signature Matrix

The signature matrix was introduced to represent the correlation of two

given time-series signals. With two input sensor data(ith and jth) under the
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x = (x{~*,x;~®"%, ..., xf), The (i,j) component of the signature matrix

t

attime t M® is m;; , and this is the sum of the component-wise

multiplication divided by window length w.

Y_ox{0xf°
t _ =8=0"1 %Y -
miy = 20 @1

Signature matrix using above correlation value showed better performance
than using correlation coefficients, such as Kendall or Spearman
coefficients. Calculating this value for the whole combination of sensors
makes the signature matrix M® which is a symmetric matrix However,
unlike the signature matrix, the reconstructed matrix, the output of the
Conv-LSTM ED model, is not always a symmetric due to the non-linearity

of conv-LSTM model and nature of the encoder-decoder architecture.

2.4.2. MSCRED Model

2.4.2.1. Conv-LSTM

Conv-LSTM [26] model is an extended version of an LSTM model, which
allows larger dimension input for the conventional LSTM model. This
model was initially used in video processing [26] and was used to find out
how the motion of pixels changes over time in the data in the form of a
moving image in which several images are overlapped over time. Although

this study does not deal with image or image processing, the conv-LSTM
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model was chosen since the correlation calculation matrix between sensor
data used as an input value has the same data format as the image. This
allows conv-LSTM to handle the spatiotemporal data
In the Conv-LSTM model, each cell undergoes the following computational
steps.

g =Wy % Xy + Wy * Hyq + Wy o Coq + by)

fo = 0(Wys % Xp + Wy * Hy_g + Wep 0 Cooq + by)

Ce = f © Ceoq + iy o tanh(Wye * X + Wy * Hy_y + b) (2-2)

0r = 0(Wyo * Xy + Who *x Hy_y + Weo 0 Cr + by)

H: = o, o tanh (C;)

X is the feature maps, W is a convolutional kernel, H is a hidden state,
C is cell output, b is the bias parameter of a given layer, f, i and o is gate
tensor, o is the sigmoid function, o is Hadamard product, and *
convolutional operator. In the MSCRED framework, temporal attention was
adopted in the current state estimate in the conv-LSTM model to selectively
give weight to previous timesteps. To do this, the output of the feature map

is given as follows:



He = 2:ie(t—h,t)ai}[i; at

exp {Vec(}[t);Vec(}[i)} (2-3)
0T i
(o XD {Vec(ﬂ-[ )XVec(}[ )}

Here, H is the last hidden state, h is step length, a is importance weights
of previous steps through a softmax function, Vec means vector, and X is
arbitrary rescale factor (here, X’ = 5). This is slightly different from the
original attention mechanism [27] as this does not employ transformers and

context parameters.

2.4.2.2. Encoder-Decoder Model

The encoder-decoder structure is also called an autoencoder, and this
methodology is widely used for detecting abnormalities not only in the field
of chemical engineering [28] but in general time-series data [9, 16, 18]. and
has proven its usefulness. In addition, research on process anomaly
detection using many advanced autoencoder models initiated in the field of
machine learning is also actively underway. As a method using an
autoencoder, a deep learning model is created in which the dimension is
reduced first and then increased again. In addition, learning is conducted to
modify the internal parameters so that the normal data can be used to

produce output data identical to the input data. The produced output is
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called reconstructed data. When the test data is similar to the data used for
the training data after completion of the training, the reconstructed data is
almost the same as the input data. However, when test data show different
characteristics from the training data, the reconstructed data is different
from the input data. It results that the larger the difference between input
and reconstructed data when the more different the abnormal value from the

normal data value used as the training data.

2.4.2.3. Encoder

Encoders are responsible for dimension reduction and can take several
different forms. The general model employs the form of a basic dense neural
network and reduces the number of cells in the anomaly detection. In this
paper, the model uses the convolution operation functions as an encoder
[29], which is typically used in image processing [30]. At the same time, the
conv-LSTM model is employed for each encoding step so that the results
from multiple encoding steps could be used. In other words, the four-step
encoder model using fully convolutional layer [31] is combined.

Xt=f(W=* X'+ b) (2-4)

Here the function f denotes activation function, Xt is output feature map
of the previous layer at time t, W is convolutional kernels of size

k xk xd , b isabias parameter, * is convolutional operation. Selection

of the number of the convolutional layer is arbitrary, however, this can be
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affecting the size of the result since encoding allows to capture of the

interconnectivity between sensors.

2.4.2.4. Decoder

The convolutional decoder has a symmetric architecture with the
convolution encoder, with its layer and the size of the kernels. As shown in
Eq. (5), The last decoder can decipher the values that passed through the
conv-LSTM in the last encoder, and compute the other layers in reverse
order. If not in the last layer, decoders must go through the process of
adding the value of the previous output to the current output, to sum up the
branches that entered the encoder and conv-LSTM.

t!l tl tl —
xt,l_lz{ fWE @ H 4+ b4 1= L 25)

FWH @ [HUDXE] + b5 [#1

Here the function f denotes activation function, Xt is output of decoder
at time t, W is filter kernels which is same as convolutional kernel of each
layer of size k X k X d , b is abias parameter, [ is decoder number, L is
the largest decoder number, ® is deconvolutional operation, and @ is

concatenation operation.

2.4.2.5. Loss Function

Since this is an encoder-decoder model as whole, the output of the model is

the reconstructed matrix. Loss function is the sum of element wise
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difference (L2 norm) between reconstructed matrix and signature matrix

used as original input for whole time series.

L= Y kg - e 0:6)

Where s is number of windows, n is number of sensors, t is the
temporal length of the input data, i is the row index of the matrix, j is
column index of the matrix, s is number the of windows and c is the

index of windows. Adam optimizer was employed to minimize the loss.

2.4.3. Anomaly Score

Anomaly score is a sum of values in elements of Loss matrix in the original
paper [21]. Here we introduce the state monitoring variable L(t), which
processed under deep learning model to show single time-series monitoring.

S n n
t0 _ $t0
Ly =) > ) |t~ Zi -7)
c=11i=1j=1
Where s is number of windows, n is number of sensors, t is the

temporal length of the input data.

2.4.3.1. Anomaly Score Calculation

The anomaly score is calculated over time. The score is greater when the

value change is farther away compared to the normal state. However, the
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large deviation of the values at a specific point does not mean that the score
may increase and be vulnerable even if the overall time series pattern
changes. This is because the conv-LSTM model can detect patterns on a
continuous time series and may vary depending on the model configuration.
That is, the anomaly score can produce different results depending on which
anomaly detection model is used.

In original MSCRED framework, anomaly score is calculated as a total
sum of absolute values from reconstructed matrix, which is only larger than
a predefined threshold value for each time window. However, in this work,
anomaly score is a simple sum of absolute values from the whole
reconstructed matrix for each time window regardless of the threshold
value. The calculated score can see how the value propagates before the
abnormal situation occurs. By this method, it is possible to monitor the
status change during the non-anomaly state. Also, this allows the setting of a
system-wide threshold rather than setting the threshold for each sensor,
which is harder to optimize the threshold value. Threshold value is set by
examining the output value of the normal case data. Using the threshold
value before summing up the elements of the matrix makes hard to see the
state of the process before the faults occur.

In addition, empirical analysis of many different abnormal conditions is
required to obtain the threshold, but in the case of chemical processes, there
are not many analyses on the anomaly cases which leads to the failure of the

process. Unlike mechanical systems, where the development of the existing
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anomaly detection methodology is made, the chemical process may already
be a serious problem even if minor sensor changes do not lead to major
changes. Simply because the range of change is large does not mean that the
problem is big. To prevent this situation, the threshold setting was excluded
to prevent the prediction of a specific anomaly state if the threshold is set
without analysis. and instead, time series classification was introduced to
compensate for this, so that the normal state and anomaly state could be

classified through clustering between the derived anomaly scores.

2.4.4. Fault Classification by Anomaly Score Clustering

Time series clustering is a general clustering technique performed
according to time series [32]. This process was performed to replace the
general threshold setting method for anonymous detection. Clustering uses
distance to find similar clusters. For distance metric, correlation
coefficients(including Kendall and Spearman correlation coefficient),
Euclidean, MAPE(Maximum Averaged Percentage Error), and
CBD(Compression Based Dissimilarity) [33] has been used in this paper.
The distance was used to identify how the anomaly score is far from the
normal case and thence classify the fault. Here, In addition, a dendrogram
was written according to the degree of association so that it could be

visualized.



2.5. Results

2.5.1. Environmental Settings

Environment : Google Colab with CPU Configuration of Intel(R) Xeon

CPU 2.30GHz Dual CPU with Ubuntu 18.04

2.5.2. Anomaly Score Result for Issues

The anomaly score above a threshold indicates that the anomalies are
more likely to appear. In this study, the threshold for anomaly score was
calculated from the statistical distribution of the normal data’s model output.
The normal value was put into the trained conv-LSTM model as an input
value, and then the distribution of model output (anomaly score) was
checked. After that, the boundary value of the distribution was set to
threshold. The threshold value is set as constant value regardless of the
situation, which is related only to the type of normal data used in training.
Currently, it is a threshold value derived as a maximum value when trained
using all four normal data, and is 0.94.

Fig. 2-3 shows experimental and anomaly score trends with event
moments for each issue (Issue-1, -2, -3, -4 as (a), (b), (c), (d), respectively).
Anomaly scores are obtained from the model with different windows
lengths of 10, 30, and 60. It should be noted that the time interval for each
window is 0.015hr (53sec). Since the model output can be obtained after the

largest input length, model result starts from 0.883h, not from Oh. Overall,
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the period where the calculated anomaly score exceeded the threshold was
observed similar to the section in which the event occurred in the
experiment (see Fig. 2-3). In addition, when comparing the above anomaly
detection results with the control point, it was seen that the anomaly scores
decreased at the same point with the control action had been taken.

Depending on the size of the window, the value of the anonymous
score appears differently. If the window size is small, it is suitable to catch
more than short cycles, and if the window size is large, it is suitable to
detect Anomaly with long cycles. Issue-1 (Fig. 2-3a) and Issue-3 (Fig. 2-
3¢) have some similar tendencies, which can be seen as cases where the
cycle of abnormal situations is not clear or noisy.

On the other hand, Issue-4 (Fig. 2-3d) shows the different trend
depending on the size of window. It shows a similar score value on different
size of window at the beginning, but the calculated score shows a different
trend after 7 hrs of operation. The trend for 10 size of window shows similar
trend to size of 60 but different to size of 30. This means that the period of
the abnormal pattern appears only as a combination of a shorter period of 10
or less and a longer period of 60 or more compared to an intermediate length
pattern of about 30. According to the experimental data, the temperature of
V111 vessel (TI102) drops sharply after 10 hours. As a result, the liquid
level (LIC111) increases and finally exceeds the normal operating range

(around 60%). The results shows that the score calculated from window size



of 10/60 tend to follow better than the scores calculated with a window size
of 30.

In the case of Issue-2 (Fig. 2-3b), the score calculated with each size of
window shows the different trend for each section. At 2.5hr to 3.5hr, the
score in window size of 10 is significantly higher than in windows 30 and
60, so it can be considered that an abnormal situation with a short cycle may
have occurred at this time. From 3.5 hr to 7 hr, the score at window 30 is
remarkably high, so it may be thought that the cycle of abnormal situations

may have been a little longer than at 2.5 hr to 3.5hr.

Table 2-6. Accuracy of anomaly detection by Issues and windows

Issue 1 Issue 2 Issue 3 Issue 4
Max Index 87.2% 78.9% 49.8% 88.0%
xgi‘; 78.6% 54.5% 49.5% 79.5%
Window 0.5 64.0% 58.6% 6760,
10 . 0 . 0
Window 82 70, 55.3% 49.5% 39.1%

30 . 0 .

3 0 0

W1161(c)low 73.6% 58.2% 49.5% 26.7%

Table 2-6. shows the accuracy of the anomaly detection result by different
window length. However, each window length detects different anomaly so
detection with a single window is not enough. For Issue-4, detection
accuracy difference between window 30 and 60 is about 47%, which is very
high. So, to derive the single system-wide anomaly score, anomaly scores
obtained by different windows should be combined. Max index identifies
anomaly if one of the scores among all windows exceeds threshold. Mean

1|
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index averages all scores (in this case, averaged score of window length of

10, 30, 60). As a result of comparing them, in the case of performing

anomaly detection by selecting the largest value among the three(Max

index), the result was higher than that of separately checking the results for

each window. In particular, For Issue 2 the accuracy of max index showed

highest, which is higher than 2" highest detection result by more than 14%.
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Fig. 2-3. Experiment and calculated anomaly score trend for issue 1(a), issue

2(b), issue 3(c), and issue 4(d) with different with different window size was
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normal data’s anomaly score . Grey marked area shows event from

experiment case and labeled anomalies. Calculated threshold value is 0.94.
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Fig. 2-4. Heatmap of anomaly score on (a) issue 1, (b) issue 2, (c) issue 3, (d)
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1~4, Normal Total.

2.5.3. Result of anomaly scores with different train

data(train1~4, Sum of train data, synthesized train data)

The challenge of deep learning-based technology is to require huge amount of
data for better performance and its performance can be susceptible to the quality of
train data/model structures [34]. In this paper, we learned that the internal
parameters and performance of the anomaly detection model may be greatly
influenced depending on what data is used as an input, and conducted a case study.
Four separately collected data were considered normal data, which have slightly
different in its characteristics. In addition, results using synthetic data were added.
This was then performed to further find out whether it would be possible to
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perform training using the synthesized time series data. Synthesis used TimeGAN.
As a result, there were quite a few differences depending on what train data was
used. In addition, when all train data were combined and used, it was found that the
anomaly score was significantly lower than that of each use. This is believed to be
because when learning using each case of trains 1 to 4, only each case of trains 1 to
4 is determined to be normal, but when learning using the whole, all cases are
determined to be normal, so if any of trains 1 to 4 are determined to be normal, it is
considered normal. So using the synthetic data which includes every feature of the
separated train data or the parallel use of different models trained with different

training dataset would be recommended.

2.5.4. Anomaly Score Timeseries Clustering

The results of the time series clustering data above show that the average score
value is well separated for each issue. This is the result of clustering six different
windows (length of 1, 5, 10, 30, 60, and 90) using Issuel to 4, normal data (valid).
Each is clustered using different methods, and clustering results are slightly
different.

Figure shows anomaly score value as output of model trained with normal data 3.
This anomaly score is separated using several time series-based clustering
methods. In Figure, (a), (b), and (c¢) are clustering techniques based on correlation
coefficient, which best isolate issues. (a)The results of clustering based on Pearson,
(b) Kendall, and (c) Spearman coefficients. (d) and (e) are clustering results based
on the Maximum Average Precious Error (MAPE) and Euclidean distance,
respectively, indicating that they separate normal data well, but not in the

separation of Issue. (f) uses the CBD technique of clustering after performing
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compression by determining a section, and the distance for each case is calculated
around the default value of 0.5, but it is difficult to say that clustering was
performed according to the purpose. Among them, (a) based on Pearson correlation
coefficient and (b) based on Kendall correlation coefficient shows the most
obvious clustering for each case and the largest difference between normal data and
other Issue data. Through this result, it can be confirmed that when a specific
clustering technique is used, the presence or absence of a steady state can be
monitored only with the Anomaly score result value, and based on this, which issue

can be inferred.
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Fig. 2-5. dendrogram of clustering result using 6 clustering methods : Pearson
correlation coefficient(a), Kendall correlation coefficient(b), Spearman

correlation coefficient(c), MAPE based distance(d), and Euclidean distance(e),
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CBD(f). Input of clustering was anomaly score for 6 case(Normal, Issue 1~4,

Start-up) with 6 window size(1, 5, 10, 30, 60, 90).

2.6. Summary and Discussion

Through this study, anomaly detection was performed based on the
interconnected side of process plant sensor data rather than simple sum of single
sensor data. This model used a framework that modified the method of calculating
the anomaly score based on the MSCRED framework for the chemical process.
Also, we established methodology to process the anomaly detection using multiple
windows. In addition to performing anomaly detection, the effect of the training
data on the anomaly detection performance of the model was analyzed, and the

situation and timing of separation of each issue were possible.

Topics need more discussion are as below :

e Impact of adjacency in signature matrix - When creating a signature
matrix, the order of sensor data or how adjacent sensors are impacting on the
output. Manually collecting related sensors and processing them in a
hierarchical manner can improve performance. Additional studies are needed.

¢ Finding the best training data - The exact condition of normal data to
training the data is not yet determined. more robust study is needed to
determine the optimal training data for the anomaly detection. It can be seen
that the results of anomaly detection vary depending on which data is used as
input data. Through this, it was possible to confirm the importance of

selecting learning data for the anonymous detection model. However, it has



yet to reach a general answer to which data makes the best anomaly detection
model. If we can figure this out, I think it will be a great contribution to data-
driven industrial animation detection.

e Identification of fault type and cause diagnosis in real time - Anomaly
score of each issue was separated through clustering, but it cannot
automatically classified. Making automatic classification can be more helpful

for actual use.

2.7. Acknowledgement

This chapter is partially adapted from Plant-wide Anomaly Detection and Single-
Value Monitoring using Conv-LSTM in Pilot-Scale MEG Regeneration Plant with

authors N. Lee, H. Kim, J. Jang, and Y. Seo. (Preparing Submission)

51 A 2]



Chapter 3. Multivariate Time Series Prediction*x*

3.1. Introduction

Gas hydrates are crystalline compounds in which hydrogen-bonded water
molecules form lattice structures that encage gas molecules such as methane,
ethane, and carbon dioxide [76]. These molecules are the predominant components
of natural gas, thus the gas hydrates attract attention as natural resources trapping
huge amounts of methane or a gas storage medium. Clathrate gas hydrate can store
approximately 170 volume of gas per volume of hydrate(STP) in theory [82]. From
the perspective of the energy industry, gas hydrates have been an operational risk
that may block the subsea flowlines transporting the produced hydrocarbon fluids.
In addition, the gas hydrates have been also applied in environmental fields
including carbon dioxide (CO>) capture and storage [84]. Therefore, understanding
the formation characteristics of gas hydrates has been central to managing the
operational risks of offshore gas fields and developing novel gas storage
technologies for methane and even hydrogen.

Early recognition of hydrate formation kinetics suggested the mass transfer of gas
molecules into forming hydrate particles through a liquid phase, leading
researchers to improve the interfacial interaction between water and gas molecules
by adopting kinetic promoters including anionic surfactants such as SDS [39-41].

Without these promoters, gas hydrates eventually formed the film on the interface

** This chapter is partially adapted from Time series prediction of hydrate dynamics on flow
assurance using PCA and Recurrent neural networks with iterative transfer learning in Chemical
Engineering Science with authors Lee, N., Kim, H., Jung, J., Park, K. H., Linga, P., & Seo, Y.
(https://doi.org/10.1016/j.ces.2022.118111).
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between water and gas phases, limiting the continued transfer of gas molecules. A
mechanical stirred-tank reactor was used to continuously form the gas hydrates, but
increasing hydrate fraction in the aqueous phase results decreasing formation rate
due to mass transfer limitation [37]. To avoid the blockage of the reactor
connecting downstream units, water and gas flow rates need to be optimized or
novel devices like impinging jets and spray nozzles must be implemented. Times
New Roman pointed out that hydrate formation kinetics might be the major
challenge to develop hydrate-based technologies and understanding the naturally-
occurring marine gas hydrates.

There have been studies about the hydrate formation mechanism in different
systems: oil-dominated [80], gas-dominated [50], and water-dominated systems
[59]. In a gas-dominated system, the flow regime changes from homogeneous to
heterogeneous suspensions of gas hydrate particles in the liquid phase, termed as a
transition point [59]. Upon becoming a heterogeneous flow regime, segregation of
hydrate particles was observed from the continuous phase, resulting in the
formation of hydrates beds on the wall. The hydrate beds eventually became
blockages for the continuous liquid phase, thus considered an operational risk. The
transition points may vary depending on the Gas-to-Oil Ratio (GOR), Reynolds
number, the velocity of the mixed flow and liquid loading, etc. [37, 42, 43]. Aman
et al. [37] investigated the hydrate fraction at the transition point and calculated the
Reynolds number in the gas-water system. Chaudhari et al. [42] developed the
correlation between the transition point, Reynolds number, capillary number, and
liquid loading in oil-dominated flowlines. However, these empirical approaches
have limitations in the scale-up application and may demand a scale-up factor to be

verified on other scales. Davies et al. [49] developed the model for hydrate
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formation in oil-dominated flowlines to predict the pressure drop and viscosity
change due to the agglomeration of hydrate particles. Lorenzo et al. [S0] quantified
the pressure drop due to the hydrate deposition and sloughing in a gas-dominated
flow-loop through the pressure, and temperature profiles by using the empirical
parameters. Charlton et al. [41] proposed the hydrate growth model and verified
with the experimental results from the gas-dominated flow loop. These attempts
tried to link the pressure profiles with viscosity change, resulting in a transition
from homogeneous to heterogeneous flow. They manipulated the intrinsically
linked parameters in the flow-loop to match the predicted and experimental results,
but still, it may challenge the scale-up issue.

Recently, there has been an attempt to advance the hydrate kinetics model. Qin et
al. [71] applied the classification/regression machine learning techniques to analyze
the relationship between the hydrate fraction and the probability of hydrate
plugging in the pipeline according to the independent input features such as water
cut, GOR. However, the statistical methods used the classification state of the data
and cannot analyze the trend of plugging risk. It is still required to develop a

method for predicting the hydrate risk in pipelines through real-time sensing data.

Table 3-1. Literature related to the hydrate formation prediction

Literature Objective Variable Methodology

P. J. Metaxas, et  Formation P Fitting formulation by
al. (2019) probability fitting experiment

V. W. Lim, et al. Formation P Fitting formulation by
(2020) probability fitting experiment

B. X. Ferreira et  Near future AP Multi layer perceptron
al. (2022) prediction




In pipeline, lots of variables (i.e. pressure, temperature) are acquired from sensors.
Those sensor logging data can be classified as time series data, which is the data
logged continuously with fixed time interval (time step). In this work, we tried to
adopt data analysis techniques to analyze the features of the hydrate formation
process in terms of pressure, temperature, and torque data. The Principal
Component Analysis (PCA) technique can reduce a set of different time-series data
as one single time-series data (principal component) without losing its important
features. Koegh et al. [61] showed multivariate time series clustering with PCA as
a feature reduction technique for anomaly detection. Gupta et al. [54] predicted the
point when fatigue damage crack occurs and its length propagation by time using
the PCA technique. Once we reduce the multivariate time series data into a single
principal component, we can develop a data-driven model to predict the time-series
trend for the desired period, i.e. temporal prediction. The sliding window is widely
used in treating time series, also known as time series segmentation [47] . Common
methods for time series prediction can be statistical methods like Auto Regressive
Integrated Moving Average (ARIMA) and particle filtering, and deep learning
methods like Long-Short Term Memory (LSTM) and Gated Recurrent Unit
(GRU). Siami-Namini et al. (2018) compared the statistical model (ARIMA) and
deep learning model (LSTM), where the prediction accuracy of the deep learning
model was 85% better than that of the statistical model.

Deep learning is a subset of machine learning, a computational model used for
regression and classification of time-series data [65]. The type of deep learning
varies by its architecture but is classified into three large categories, Multi-Layer
Perceptron (MLP), Convolution Neural Network (CNN), and Recurrent Neural

Network (RNN). MLP is the most basic type of neural net architecture [65] with
% P i
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many cells in one layer and interconnected with the previous one. CNN is
specialized in image data, involving convolution with filter in preprocessing step.
RNN is specialized in sequential data like continuous signals, connecting cells side
by side to mimic the continuous temporal behavior [65]. In literature, most
prediction and forecasting tasks show that RNN families (RNN, LSTM, GRU)
produce the best results [79].

The objective of this work is to develop the time series prediction model for
hydrate formation based on a novel data-driven framework. We first investigate the
hydrate formation characteristics in a gas-water system with experimental results
from a high-pressure autoclave under different initial conditions. Then we applied a
sliding window and a PCA technique for the experimental data. The time-series-
based deep learning models predicted the principal components for hydrate
formation and transition from homogeneous to heterogeneous flows. After making
the prediction model, the model was trained through the transfer learning by each
experiment batch to enhance the performance. Using the combination of PCA and
deep learning models with the transfer learning method, the developed framework
was useful to predict the hydrate formation trend from the obtained data during

specific periods.
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3.2. Experiment

3.2.1 Materials and Methods

A methane gas (99.9%) was supplied by Alpha Gas (South Korea). Deionized
water (99.0% purity) was used without further purification. A high-pressure
autoclave was made to investigate information related to the hydrate onset time and
the volumetric amount of hydrate formation while monitoring pressure, the
temperature of the autoclave, and torque changes of the mechanical stirrer. The
experimental apparatus is as shown in Fig. 3.1. The autoclave was made of 316
SUS and had an anchor-type impeller to mix the system. The impeller was located
on the base of the shaft and the torque of the rotating shaft was measured by a
torque sensor (TRD-10KC) having a platinum-coated connector with an
uncertainty of 0.3%. Transducers measured the pressure with an uncertainty of 0.1
bar. The cell was immersed in a refrigerator to control and maintain the

temperature of the cell. The platinum resistance thermometers measured the
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temperature of the liquid and gas phase with an uncertainty of 0.15°C. The torque,
pressure, and temperature data were recorded through a data acquisition system in

real-time every 10 sec.

Computer
/Data acquisition

Torque
sensor

Thermocouple[T ... DC motor and .
magnetic coupling
Pressure

Vent line
transducer

Temperature
control unit |
Autoclave

Refrigerator/ ' "
heater i oooo

Glycol+water bath High pressure syringe pump Gas cylinder

Fig. 3-1. Schematic diagram of the experimental apparatus [63]

The constant cooling method was used to investigate the hydrate formation
kinetics. The cell was filled with 200 ml of aqueous solutions with inhibitors and
310 ml of methane gas. The cell was pressurized to 130 barg or 100 barg at 24 °C
and mixed with the target mixing rate to saturate the liquid phase with gas till
reaching a steady-state condition. The cell was cooled to 1 °C at 0.25 °C per minute
by a bath circulator and maintained at 1 °C for 10 hours to consider outside
temperature and resident time in the subsea pipeline. The performance of hydrate
risk for agglomeration of hydrate particles was evaluated using torque changes
because torque changes could be an indicator of resistance-to-flow [58]. In this
work, a total of 16 experiments were carried out as shown in Table 3-3. Hydrate
nucleation and growth were recognized from a rapid pressure decrease and

temperature spikes from exothermic heat of hydrate formation.
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Table 3-3. A summary of the tested condition for hydrate formation

characteristics
Batch number  Initial pressure (barg) Mixing rate (rpm)
1-4 100 200
5-8 130 200
9-12 100 600
13-16 130 600

To assess the characteristics of hydrate kinetics from sensing data, the relative
torque is calculated as the ratio of the torque recorded during the experiment at a
certain time (T;) to the torque measured before nucleation (t) using Eq. (3-1).

Te

Relative torque = — (3-1)

Ts
The moles of consumed gas during hydrate formation was calculated from
followed equation, which is based on the difference between experimentally
measured pressure and estimated equilibrium pressure at a certain temperature. The
methods to get the moles of consumed gas and the hydrate fraction values have
been suggested in the literature as a method for studying hydrate formation in

small-scale apparatus [63].

An — (Pcachell) _ (Pexchell) — (AP Vcell) (3 2)
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The hydrate fraction in the liquid phase was calculated using the amount of

consumed gas by Eq. (3-3) [62],

Vhyd

Dpyq = (3-3)

Vhyd+ (Vw_Vw,conv)



, Where V,, is the volume of water, V., conv is the volume of the water converted to

hydrate, and V},q is the volume of formed hydrates.

3.2.2 Experimental Results on Hydrate Formation

Fig. 3-2. shows the measured results (pressure, temperature, relative torque) and
calculated hydrate fraction as a function of the time for the experiment (batch
No.12 in Table 3-3.). It is noted that relative torque could indicate the flow-to-
resistance due to the hydrate particle agglomeration [37, 58]. The experiment set

appears the five distinct regions (labeled with A-E).

(@ 120
100 -
80 |
60 |
40 |
20 1

Pressure (barg)
Temperature (°C)

0 50 100 150 200 250 300
(b) Time (min)

1.0 T =C = = 12

0.8 |
06 | =TT
///
0.4 1
4 ol '.
0.2 1 ﬂ" J/M“’.ﬂ.
|
— - T T i -

0.0

Hydrate fraction
Relative torque

0 50 100 150 200 250 300

Time (min)

Fig. 3-2. Measured pressure, temperature (a), and calculated hydrate fraction
measured relative torque (b) during the cooling and hydrate formation

(experimental batch No. 12)
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Each region is characterized by the rate of hydrate formation and changes in
relative torque. Region A is a stage before hydrate nucleation and the pressure
decreases just from the cooling effect. Then hydrate nucleation occurs in region B
designated as an early stage of hydrate formation. The temperature rises
instantaneously due to the exothermic heat of hydrate formation while the pressure
decreases sharply due to gas consumption. The relative torque was stable with the
small population of hydrate particles homogeneously dispersed in the liquid phase.
Region B is relatively short.

In followed region C, the pressure was sharply dropped from the fast formation
and growth of hydrate particles. In this region, the relative torque increases as
increasing hydrate fraction results in the increasing viscosity of the liquid phase.
The beginning of region C indicates the transition point from homogeneous to
heterogeneous flow. Continuous increase of the relative torque was then followed
by fluctuation in region D, which started from the segregation point. This behavior
would be attributed to the break of hydrate particles with continuous mixing from
increased fluid shear stress [50]. Segregated hydrate particles tend to repeat the
deposition and breaking from the wall. After several fluctuations of the relative
torque, a sudden surge of the torque and motor stoppage were observed possibly
due to the thick deposition of the hydrate beds that the motor couldn’t break. This
is region E. It should be noted that a safety lock has been implemented for the
impeller stopping when the torque is higher than 50 N-cm, this is to protect the
motor and torque sensor [77].

Fig. 3-3. showed the relative value changes as a function of hydrate volume
fraction during hydrate formation under low (200 rpm) and high (600 rpm) mixing

rates after the hydrate nucleation. Both experimental data and prediction data from
%



the viscosity model were presented. At both mixing rates, the relative torque
increased sharply as increasing the hydrate fraction from region B to region C.
Similar to previous works [59], the flow characteristics changed from region B to
region C when the hydrate fraction reached about 0.15.

The point below the transition fraction is generally said to be able to transport
hydrates safely and the “No Plug” zone [71]. As we mentioned, the transition point
is dependent on lots of features such as liquid loading, fluid velocity, and driving
force for hydrate formation (pressure, temperature, etc.). In regions D and E, the
relative torque fluctuated and eventually stopped as increasing hydrate fraction.
The operation of the motor stopped around 0.25 to 0.3 of hydrate fraction due to
the surge in the relative torque value at a low mixing rate (200 rpm) as shown in
Fig. 3-3a. In contrast, the relative torque at a high mixing rate (600 rpm) suddenly
decreased and fluctuated with a larger amplitude (Fig. 3-3b.). A faster mixing rate
could lead to the continuous breakage of hydrate particles avoiding the hydrates
bedding. For the four of eight experiments, the motor stopped at around 0.5 - 0.6 of
hydrate fraction due to over range of torque levels that may be caused by jamming

and plugging of segregated hydrate beds.
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Fig. 3-3. Relative torque changes were observed during hydrate formation at

200 rpm (a) and 600 rpm (b)

Joshi et al. [59] observed that the flow behavior with hydrate particles is changed
from homogenous to heterogeneous distribution, which then induces particle
accumulation and jamming. The hydrate volume fraction at which this transition
occurs is referred to as the transition hydrate fraction ( @yansiion) [59]. The relative
viscosity of hydrate slurry increases rapidly with increasing hydrate fraction after
the transition hydrate fraction. In autoclave experiments, changes in relative torque
indicate the changes in the rheological properties of hydrate slurry. To predict the
transportability of hydrate slurry, we compare the relative torques obtained from
the autoclave experiments to the relative viscosities estimated from the viscosity
model of hydrate slurry.

The relative torque was calculated from the experimental results and Eq. (3-1).
The hydrate slurry behaves as a non-Newtonian fluid [74] and the viscosity of
hydrate slurry can be developed from the viscosity of the concentrated suspension.

Camargo and Palermo [40] presented a model for hydrate slurry viscosity as a
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function of particle volume fraction using the Mills model [68], which considers
the rheological properties of immobilized fluid trapped between the particles. As
the particles form, the amount of suspended fluid decreases, and the viscosity of
the fluid system increases [66]. Thus, the viscosity of the hydrate slurry changes
depending on the hydrate fraction in the fluid. Herein, we investigate the relative
viscosity (u,-) of hydrate slurry, which is the ratio of the viscosity between hydrate
slurry and continuous fluid (water). The relative viscosity (i) can be derived from

Eq. (3-4) and Eq. (3-5) due to the fractal structure of aggregates as shown in Fig.

3-4.
l,{ _ l—d)eff _ 3 4
r D, -
(r-22) S
da 3-f
Pepr =P (a) (3-5)

, Where @, is an effective volume fraction of immobilized fluid and @y, 4y is
the maximum packing fraction, which is typically in the range of 0.64 to 0.74 [67].
This work assumed the maximum packing fraction of 0.74 [66].

The size of the agglomeration (d,) was calculated under steady-state force balance
using Eq. (3-6). In the equation, d, and d, denote the size of agglomeration and
monomer size, respectively. the particle size is determined by shear stress and
cohesion force between hydrate particles [40]. F, is the cohesion force between
hydrate particles and fis the fractal dimension assumed to be 2.5 from previous
literature [49]. p. is the viscosity of the continuous phase. @ is the volume

fraction of hydrate in the slurry, and y is the shear rate of the system. The shear
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rate in the autoclave was derived from the mixing rate and autoclave geometry

[69].

o (43T
(d—A)4_f_F“(1‘¢max(@> )

dp 2 da =T 0 (3_6)
afucy(1-o(52)

In this work, the monomer size was assumed from the Sauter mean diameter of the
entrained droplets in a gas-dominated flow loop [38]. The viscosity of continuous
solution (u.) was derived from multiflash v6.2 with the CPA infochem model set.
The cohesion force (F,) between CH4 hydrates was assumed to be 37.5 mN/m,
which Wang et al. [83] measured under 3.2 MPa.

The estimated relative viscosity of hydrate slurry in Fig. 3-3. increased
exponentially with increasing hydrate volume fraction regardless of phase
transition. Likely, the viscosity model could not demonstrate the fluctuation of the
relative torques induced by the segregation and deposition of hydrate particles. Gas
hydrate particles tend to agglomerate rapidly from the transition point.
Understanding the hydrates flow behavior is central to the safe operation of subsea
flowlines. Hydrate formation characteristics have been investigated for more than
decades using bench-scale autoclaves as well as pilot-scale flow loops, but the
probabilistic and non-linear relationship of hydrate formation with the parameters
of the fluid only make it difficult to predict or analyze the hydrate formation

characteristics using the analytical models.
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Fig. 3-4. Flow diagram of relative viscosity model in the autoclave

3.3. Computational Methodology

To overcome the limitation of the model-based prediction of hydrate formation,
the time series prediction using experimental data was adopted to analyze and
forecast the hydrate formation characteristics. We predicted the hydrate formation
behavior according to time and mostly focused on the two kinetic behavior: the
transition point and the segregation point.

The obtained experimental data are difficult to directly use in the conventional

prediction model due to following reasons:
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(1) Trend of one specific sensor data (pressure, temperature, relative torque) is not
a definite indicator in the prediction of transition and segregation points. Prediction
cannot be dependent on specific formula or relation.

(2) Data used for time series prediction usually assume stationary or periodical
repetition. However, transition and segregation behavior during hydrate formation
are one-time occurrence, that is not repeated but occurs once in each experiment.
Application of time series prediction for one-time occurrence is not common.

(3) Most time series prediction is typically applied on continuous non-split
historical data like weather or electricity consumption [55]. However, hydrate
formation experiments are carried out in a batch-by-batch manner and are
segmented rather than continuous. Since there is no continuity between two
experimental batches, simply concatenating the time series data of many batches
and putting it into the existing framework should be avoided.

(4) Prediction cycle is much shorter than other continuous historical data and
should carry out on a real-time basis. The kinetic behavior such as phase transition
and segregation of hydrate particles occurs in a short duration. Therefore, the
prediction model should receive the small and restricted length of time series data

and should return following prediction ahead.

To consider the above limitation for acquired data, this work proposed a novel
framework in cooperating with the prediction scheme for hydrate experimental
data. Schematics of the proposed framework to train the prediction model are
shown in Fig. 3-5. First, in preprocessing step, PCA is applied to input data to use
every time series data rather than one specific sensor data. Single time series data

may show good results in making predictions, but it cannot be a definite indicator
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for the transition or segregation points during hydrate formation. Therefore, we
employed the PCA technique to include the effect of whole sensor data. Next,
windowing is applied to treat data into a suitable foam for Neural Network (NN)
inputs and to make a real-time prediction using a small set of adjacent historical
data points. Then, in the model training phase, NN is used to predict an
indeterministic system with a vague factor. Transfer learning has been carried out
to preserve the characteristics of experimental data, which is done in a batch-by-
batch manner and initialized after one batch finishes. After that, model validation is
carried out to check if the model prediction result is reasonable and accurate. One
model has been validated; the model can be deployed to use in real-time. Finally, in
the operation phase, a trained neural network model can predict the future trend of
PCA processed data in real-time with windowing. The proposed framework can be
implemented universally with various types of input data (i.e., sensors, parameters
etc.) to forecast the hydrate formation behavior. However, the input data can affect
the accuracy of each model. It is noted that since PCA is a linear transformation
and its parameters had been calculated/determined in the training phase, the speed

of preprocessing can be done under real-time speed.
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Fig. 3-5. Schematics of hydrate formation characteristics prediction model

3.3.1 Data Processing

3.3.1.1. Principal Component Analysis

In the proposed model, rather than predicting the sensor time series as it is, the
prediction was performed after reducing the dimension to a latent space. A latent
space can be said to be a reduced dimension in which similar data are intertwined,
and PCA is a representative algorithm that performs dimensionality reduction to a
latent space. Although PCA reduces the number of dimensions, it does not reduce
the dimension by extracting only the important ones from the existing features but
creates new variables composed of a combination of features. For example, if PCA
is performed with seven sensor data, it is not reduced to a part of seven sensor data,

but the importance of seven sensor data is multiplied and used as a welgh%ed sum

69 A :l-'-.r- ” -;fj]r T



to obtain a combined characteristic value. If this is used, the training time of the
machine learning model can be reduced, and the prediction performance can be
improved because the number of features is reduced while all values of the sensor
can be reflected. Machine learning, especially deep learning models, has the
concept of a 'curse of dimension', in which the complexity increases exponentially
as the number of features increases, resulting in lower accuracy, which can be

solved by reducing the number of dimensions of the input value.

PCA is a commonly used numerical method for feature reduction and clustering.
By using PCA, feature numbers are reduced and original features are reconstructed
in a latent space. Latent space is a lower-dimensional manifold of high-dimensional
data, where dimension means the number of features in this context. PCA is an

optimization problem found below [46]

vTxTxv

MAXypzo~—r— (7

, where v € R™ is set of orthogonal vectors and X is matrix consists of train
data with n observations and m process variables. The PCA process itself can be
used as an anomaly detection tool since it performs both feature reduction and
clustering [51, 57, 73]. This reduces the training time of the deep learning model
far less than using every feature in the dataset while conserving their characteristics
of them. When applied in time series data, PCA plays an additional role in

denoising either.



3.3.1.2. Windowing

Windowing is a common preprocessing method in time series analysis
[39].Windowing is similar to convolution in the sense that it gives stride values,
but it is displayed with the 1D array type. Windowing is making the original time
series into many shorter pieces called windows, by sliding through the sequence
shown in Fig. 3-6. If the window length is n and its stride (gap between two
windows) is k, then the first window should be [xq,x5,...,x,] and the second
window will be [Xg41, Xk42,---» Xk4n], and the third one would be
[X2k+1) X2k 42s -+ » X2k 4] .- SO On. windowing enables the real-time prediction
model by training on the window, not on historical sequences. In this paper, the

total window length was set as 120, with the input length of 60 and output length of

60.

Original
Xq Xz X3 X XNe2 XN-1 X
Sequence I 1X2 X3 Xg N-2 XN-1 XN
1 |x1x2x3----xn.1xn|
2 |X2x3x4"" xnxnnl
Windows
N-n IXN.n.... XN.2XN.]]
N-n+1 |XN~n+1 XN-1XN|

Fig. 3-6. Concept of windowing
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3.3.2 Deep Learning Schematics

3.3.2.1. Model Architecture

The most basic model of deep learning is called MLP. MLP model consists of
several layers with many cells. Layers are divided into three types: input layer,
hidden layer, and output layer. For the deep learning model, there are many hidden
layers and inside the hidden layers, many cells are only interconnected with the
cells in adjacent layers and each cell in the same layer is not connected. Each cell
consists of receiving part which gathers the previous layer's output values as a
weighted sum and an activation function part that adds non-linear behavior. The
output value of the activation function is sent to the next layer's input.

Deep learning starts with defining model architecture. The model architecture
consists of the type of model layers (dense (=MLP), CNN, RNN, and other
variants), the number of layers, and the cell number in each layer. Also, selection
of activation functions inside the cell (linear/nonlinear activation functions (e.g.
tanh, Sigmoid, Rectified Linear Unit (ReLU), Scaled Exponential Linear Unit
(SeLU)...)), Selection of loss metric (e.g. Mean Squared Error (MSE), Mean
Squared Percentage Error (MAPE)), selection of optimization function (e.g.
Stochastic Gradient Descent (SGD), Root Mean Squared Propagation (RMSprop),
Adam, Adagrad, Adamax) and additional techniques like attention [81] and
dropout [78] are followed to boost the accuracy of the prediction. In this study, four
model types were selected; dense, LSTM, GRU, and Auto Regressive Long Short-
Term Memory (ARLSTM) as shown in Fig. 3-8. LSTM, GRU, and ARLSTM
models are variants under the RNN family. RNN has been made for processing

sequential data and applied in the areas like speech recognition.
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These basic deep learning layers are made of interconnected cells between layers,
and each of them receives the sum of the product of weight and cell outputs from
the previous layer. The name “Dense” comes from the fact that each cell inside the
layer has a full connection with every cell inside the previous layer. In time series
prediction, a dense layer has the input of one window and trains to have the output
of a targeted prediction sequence as shown in Fig. 3-8a. LSTM is the advanced
version of RNN [53, 56] , that allows the past information to persist. LSTM cells
are connected sequentially in temporal order as shown in Fig. 3-8b. A detailed
description of the LSTM model is provided in Fig. 3-7a. LSTM cells are connected
sequentially in temporal order as shown in Fig. 3-8b. GRU (Gated Recurrent Unit)
cells are simplified forms of LSTM cells for faster computing and easier
implementation [48, 60]. A typical GRU cell consists of two gates: update and
output gate whereas the LSTM cell has three gates (forget, input, output) to give
the memory cells ability. Like LSTM cells, GRU cells are also connected
sequentially as in Fig. 3-8¢. ARLSTM model uses the previous timestep outputs as
another dimension of current step input, which is autoregressive in terms of making
predictions using its output shown in Fig. 3-8d. Autoregressive behavior can be

described below.

p(x) = i p(xilos, -+, xi-1) = p(xa) " plraley) = -
(®)

(xil2q, -+, xi-1)

With these equations, the network learns temporal patterns from the input

sequence with its past predictions.



A.LSTM (Long Short-Term Memory) model
As shown in Fig. 3-7a, LSTM model added operations inside the cell to keep cell
states and controlled by three gates: input, output, forget. By this allows the model

to selectively take past information into account.

fo = o(Ws - [Re_q, %] + by) (4)
i = o(W; - [he—1, %] + b)) 5)
C; = tanh(W¢ - [he_y, x,] + b) (6)
Co=fi*Coy+ir*C (7)
or = 0(Wo - [he—1, %] + bo) (®)
he = o, * tanh(C;) )

where f; is forget gate, i; is input gate, C; is cell state, o; is output gate. h;
is hidden state at time t, h;_; is hidden state at time (t-1) or the initial hidden state
attime o, ¢, is cell state at time t, x; is input at time t, i, is input gate at time t,
fr is forget gate at time t, C; is cell gate at time t, o, output state at time t, and *

is Hadamard product, o is sigmoid function.

B. GRU (Gated Recurrent Unit) model

While LSTM cells have three gates (forget, input, output), GRU cells only have
two gates (update, output) as shown in Fig. 3-7b. GRU integrated both cell state
and hidden state while LSTM has both. This integration allows GRU layers to learn
and predict faster than LSTM layer without the loss of accuracy.

ze = o(W, - [he—1, x¢]) (10)
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e =0W; - [he-1,x¢]) (11)

he = tanh(W - [ry * he_q, x¢]) (12)

he =1 —2z¢) *heq +2¢ * e (13)

, where h; is hidden state at time t, h;_; is hidden state at time (t-1) or the
initial hidden state at time o, x; is input at time t, 7, is reset gate, z; is update

gate, n, isnew gate, * is Hadamard product, and o is sigmoid function.

(a) ¢ (b) .
Xt Xt
ht-1 > hy heg ) > hy
g T
I:J:] tanh
2t 8t
-1
Cr.1 Cr ® NP
Fofget Input Output  y, Fofget Input hy=yy
Gate Gate Gate Gate Gate

Fig. 3-7. Computational graph inside cell of (a) LSTM, (b) GRU
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3.3.2.2. Model Architecture Configuration

Using model types described above, model architecture has been configured as in
Table 3-4. In whole models, ReLLU was used as an activation function for every
cell. In this study, the effects of the number of model layers, dropout, and the
number of cells were investigated with four selected model types. Dropout was
included in the model since it boosts the accuracy of the RNN models [45, 52].
This study compared the results through four types based on the dense models
(Dense-1 to Dense-4 in Table 3-4.), seven types based on the LSTM models
(LSTM-1 to LSTM-7 in Table 3-4.), three types based on the GRU models (GRU-
1 to GRU-3 in Table 3-4.) and three types based on the ARLSTM models
(ARLSTM-1 to ARLSTM-3 in Table 3-4.). For the dense model, architecture was
set to examine the effect of stacking model layers and the dropout technique.
Dense-1 and Dense-2 models are basic models with a single dense layer for a
hidden layer without and with a dropout rate of 0.2, respectively. The Dense-3
model has two dense layers stacked and the Dense-4 model is two stacked dense
layers, each layer with a dropout rate of 0.2. In the LSTM model, seven models
have been implemented to investigate the effect of the dropout rate. LSTM-1 to
LSTM-5 has a single LSTM layer for hidden layer with dropout rate of 0 (no
dropout), 0.2, 0.4, 0.6, 0.8, respectively. LSTM-6 and LSTM-7 models have two
stacked LSTM layers for the hidden layer with a dropout rate of 0 and 0.2,
respectively. GRU models consist of two stacked GRU layers with various dropout
rates (0, 0.2, 0.4). ARLSTM models are studied according to various cell numbers
(32, 64, 128), which are only parameters. Noted that cell numbers of each model

were set differently, as the structures of each cell are different. Base cell numbers
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of each model were set as the most used value, for example, 32 for LSTM and 128

for GRU.

Table 3-4. Summary of model architecture configuration

Model Name

No.

Model Architecture

Dense

1

lambda + dense (512, relu) + dense (out_steps) + reshape

2

lambda + dense (512, relu) + dropout (0.2) + dense (out_steps) +
reshape

lambda + dense (512, relu) + dense (512, relu) + dense
(out_steps) + reshape

N

lambda + dense (512) + dropout (0.2) +dense (512) + dropout
(0.2) + dense (out_steps) + reshape

LSTM

LSTM (32) + dense (out_steps) + reshape

LSTM (32) + dropout (0.2) + dense (out_steps) + reshape

LSTM (32) + dropout (0.4) + dense (out_steps) + reshape

LSTM (32) + dropout (0.6) + dense (out_steps) + reshape

LSTM (32) + dropout (0.8) + dense (out_steps) + reshape

LSTM (128) + LSTM (32) + dense (out_steps) + reshape

N | N BTN

LSTM (128) + dropout (0.2) + LSTM (cell 32) + dropout (0.2) +
dense (out_steps) + reshape

GRU

GRU (128)+ GRU (32) + dense (out_steps) + reshape

GRU (128) + dropout (0.2) + GRU (32) + dropout (0.2) + dense
(out_steps) + reshape

GRU (128) + dropout (0.4) + GRU (32) + dropout (0.4) + dense
(out_steps) + reshape

ARLSTM

ARLSTM (32) + dense (out_steps) + reshape

ARLSTM (64) + dense (out_steps) + reshape

ARLSTM (128) + dense (out_steps) + reshape

3.3.2.2. Transfer Learning by Batch

Transfer learning is the method to use knowledge from the other machine learning

models [70] widely used in CNN Architectures. In general, the knowledge to be

ransferred refers to trained cell weights of hidden layers from another dataset.

Transfer learning is a method to train a model with already-trained other datasets.

As we mentioned above, our experiment data have a format of discrete yet iterative

time series for each experiment set. Since we are interested in the prediction of an
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irregular and abrupt event, simply concatenating time series data should be
avoided. Due to the discontinuous points. To train the model with several
experiments set by concatenating the individual sets of experiments, a transfer
learning method has been employed. One experimental batch is trained at a time
and then the training results are saved with a form of weight parameter. These

weight parameters are transferred and loaded when training the next batch.

3.4. Results and Discussion

The working environment of the proposed approach was done on Google Colab,
and GPU was used in some batches to boost the running speed. CPU/GPU
Selection is mainly affecting on the speed of computation but does not plays an
important role in the result of prediction. CPU Configuration is Intel (R) Xeon
CPU 2.30GHz Dual CPU with Ubuntu 18.04, GPU Configuration is Tesla K80
with Cuda 11.2. Each model has been trained and saved its cell weights as .h5 files

during each training process on transfer learning.

3.4.1. Preprocessing

PCA was introduced to define hydrate formation characteristics considering
many factors. PCA was carried out from seven features. Four features are time-
series signal from the measured sensor (pressure, relative torque, temperature,
hydrate fraction). By PCA, input features are reduced to smaller dimensions that
are different from previous variables but still contain the fractions of the input
features. PCA calculates the parameters for linear transformation, and the set of

values for multiplication is called an eigenvector. With the given training sets
%
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(batch No.1~7, 10~16 in Table 3-3.), PCA returns the multiplication factor for the
original seven features to be transformed as 1* principal component.

Fig. 3-9a. shows the major principal component through PCA analysis during
the whole experiment including before and after hydrate transition at the mixing
rate of 200 rpm (batch No. 1~8 in Table 3-3.). It shows the distinction between
regions before and after the hydrate transition fraction in its reduced feature space.
Red dots and black dots can be clustered and divided. This distinction allows
feature space to divide the regions by transition point, which indicates the initial
point of the sudden and rapid hydrate growth. In addition, the PCA result of points
before the transition point shows two different line-shaped clusters with a gap due
to the different initial pressure conditions of 100 barg and 130 barg. The two
different initial condition leads to the different slopes of PCA results. More
experiment data with the different initial conditions would be beneficial to
determine the hydrate region and the boundary shape more precisely, which

supposed as linear in this paper.

(b) (c)

e Before Transition 7 s 7 '
3‘ . After Transition 6 $ 6 {
3, 5 : 5 .
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Fig. 3-9. (a) Reduced feature space of experiment data at 200rpm (1st to 8th
batch) before transition (block dot) and after transition point (Red dot) of
hydrate using 3 dimensional PCA results (7 features to 3 features). (b)

relationship between pressure and to
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As we observed in section 2, the hydrate transition and segregation trend could
be identified from the relationship between hydrate fraction and relative torque.
Hydrate fraction can be calculated from pressure and temperature by using Eq. (3-
2)-(3-3). PCA results in Fig. 3-9a. show a similar trend with the relationship charts
between pressure and relative torque or temperature and relative torque in Fig. 3-
9b. and Fig. 3-9¢. The results suggested that the PCA results can be used as an
indicator of hydrate formation behavior since they can preserve the original
relationships between the experimental values.

However, feature reduction itself is not time dependent. To keep the temporal
information of PCA results, we use PCA data in time series format by adding a
new column on pre-PCA data as shown in Fig. 3-10. The PCA results formatted
with time series are used as an input for a deep learning model after the windowing

process.
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Fig. 3-10. 1st and 2nd Components of Principal Component Analysis

3.2. Prediction Results

To analyze the trend of hydrate formation behaviors with time-dependent, the
model was trained with 7 experimental batches (batch no. 1 — 7 in Table 3-3.) and
tested on the 8" batch (batch no. 8 in Table 3-3.). The 1% principal component
from PCA was trained. Each model training was done for 20 epochs without
callbacks and optimizer with Adamax. To evaluate the performance of prediction
results, MSE and MAPE are adopted as loss metric and error metric, respectively,

from the following equations:

MAE = —- Z?:l'yobserved - ypredicted' (3-9)

1
n

82 = A&t &



MAPE = 100 - 1. ?:1 IYObserved_Ypredicted (3_10)
n

Yobserved

, where n is the length of time series, Y pservea 1S the observed or real value,
and Ypreaictea 18 the predicted value by the model. Typically, lesser MAPE shows

better performance, since MAPE is negatively oriented values with a range of 0 to
positive infinite. MAE value itself cannot be used as an absolute accuracy measure.

Rather than MAE, MAPE is recommended in data with different ranges.

3.2.1. Effect of Transfer learning

To take the characteristics of individual experiment data into the continuous-
time series prediction model, the transfer learning method has been used. The
accuracy of the model under various experimental conditions was analyzed by
training with experimental data for 1% to 7" batches at a mixing rate of 200 rpm,
sequentially, then for 10™ to 16™ batches at a mixing rate of 600 rpm. Finally, the
trained model was used for testing the performance for 8" batches at a mixing rate
of 200 rpm.

MAPE was evaluated for every training batch by each model used to predict 1*
principal component of PCA as shown in Fig. 3-11. MAPE observation shown in
Fig. 3-11. And Table 3-5. shows that transfer learning is an effective method in
training, as it reduces error as training proceeds. MAPE was decreased in the range
of 30 to 83% depending on the model after completing to train the 7" batch
compared to the 1* batch. There is a slight increase in MAPE after training the 6™
batch due to some discrete points in the 6™ batch data. Except for that, MAPE

gradually decreased as the batch number increased, which suggested that transfer
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learning worked effectively for all deep learning models used in the study. When
the models trained with the 600rpm data after the 200rpm data consecutively
(training with 1% ~ 7" and 10™ ~ 16™ batch sequentially), the MAPE increased
compared to training with only 200rpm data (training with 1% ~ 7 batch) as shown
in Fig. 3-11. All models except for GRU-2 and ARLSTM-1 models show the

negative values for the difference in MAPE between the 7™ batch and 16™ batch

((Bz;% -100 in Table 3-5.). The results suggested that the prediction accuracy for

the model could be higher when the model is trained with the data under constant

experimental conditions, even if the amount of training data is small. Also, the

©
(

slope of MAPE reduction after training 600rpm batches ( ;§D) -100 in Table 3-

5.) was less steep compared to using only 200rpm batches (% - 100 in Table

3-5.). This is partly due to the general relation between the amount of training data
and the amount of MAPE showing a logarithmic decrease. However, MAPE has
decreased even in 600 rpm batches as the batch continued to transfer learning. The
results suggest that putting more data contributes to lowering error, which implies
more data is needed to train the model as universally applicable with higher

accuracy.
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Fig. 3-11. Training loss for 1st principal component using the experiment
batches at a mixing rate of 200 rpm and 600 rpm for various model

architectures (Dense, LSTM, GRU, ARLSTM)

Table 3-5. MAPE by model calculated after training with 1st batch (A), after
training batch 1 to batch 7 (B), after training 1st~7th and 10th batch (C), after
training 1st~7th and 10th ~16th batch (D)

MAPE
+
200rpm 200rpm+600rpm Reduction
Model after
Model Name 1\? ¢ MAPE MAPF 600rpm
0. 1st 7th Reduction 10th 16th Reduction  (B) — (D)
Batch Batch @ -3 Batch Batch (C) — (D) (B)
A) (B) (4) © D) © 100
-100 -100
1 3042 1194 60.7% 347.6  189.0 45.6% -33.1%
2 2832  56.7 80.0% 176.6  53.7 69.6% -15.0%
Dense
3 6122  105.1 82.8% 430.3 2527 41.3% -100.7%
4 320.3 60.1 81.2% 364.7 1149 68.5% -18.6%
1 103.0 719 30.2% 294.1 91.0 69.1% 56.3%
2 201.5 524 74.0% 98.7 64.1 35.0% -111.2%
LSTM
3 159.6  53.1 66.7% 101.5 38.1 62.4% -6.9%
4 1594 70.0 56.1% 264.2 94.9 64.1% 12.5%
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5 155.4 63.6 59.1% 246.7  140.7 43.0% -37.5%

6 239.3 53.7 77.6% 185.8  126.9 31.7% -144.6%

7 151.9 52.7 65.3% 199.0 92.7 53.4% -22.2%

1 207.0 70.7 65.8% 3503  149.7 57.3% -15.0%

GRU 2 158.7 65.6 58.7% 81.4 125.4 -54.0% 208.5%

3 149.9 67.5 54.9% 237.8 112.6 52.6% -4.4%

1 153.5 100.2 34.7% 336.2  168.9 49.8% 30.3%

ARLSTM 2 191.2 55.1 71.2% 429.1  208.4 51.4% -38.4%
3 164.5 77.0 53.2% 3042 261.0 14.2% -274.9%

Average 63.1% 44.4% -30.3%

The trained prediction model was employed to locate the two major events
during the hydrate formation, the transition point followed the segregation point.
The experimental results of the test batch (no. 8) showed that transition point at
5830 second and a segregation point at 6250 second. The prediction results from
the LSTM-1 model were presented with a graph shown in Fig. 3-12. for each case
demonstrated in Table 3-6. for (a) window without transition nor segregation
point, (b) window with transition point, and (c¢) window with segregation point.
Like MAPE performance shown in Fig. 3-11., the model trained with transfer
learning (Case 2 and 3 in Table 3-6.) shows far better performance than that with
only the 1% batch (Case 1 in Table 3-6.). In addition, transfer learning had an
advantage for accuracy on repeated cycles compared to concatenated cases. The
predicted results with transfer learning followed the actual value better than those

with concatenated batch.



Table 3-6. Case description for time-series modeling

Case no. Description
Case 1 Training only with 1% batch
Case 2 Training with 1% to 7" batch by transfer learning
Case 3 Training with 1*to 7" and 10™ to 16™ by transfer learning
Case 4 Training with 1* to 7" batch by concatenating
Case 5 Training with 1* to 7™ and 10" to 16™ by concatenating
® o Transion Point (5 Segregation Poin
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Fig. 3-12. Comparison of prediction results and true values for the test batch
(No. 8) by LSTM-1 model with different cases of transfer learning. The
prediction was shown at three points: (a) window without transition nor
segregation point, (b) window including t ransition point, and (c) window

including segregation point

These results suggested that the transfer learning method could improve the
accuracy of prediction, especially on the irregular trend like transition and

segregation, when the time-series data exists in an individual for each batch cycle.
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The more the model is trained with many data batches, the more accurate model
there will be. Further studies with a larger number of data set under various
experimental condition would be beneficial to verify the scalability of the

framework.
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3.2.2. Effect of Deep Learning Model Configurations

In the previous section, the transfer learning method with the 1% to 7" batch
(case 2 in Table 3-6.) showed the best performance for predicting the hydrate
formation characteristics for testing the 8" batch by the LSTM-1 model. In this
section, we apply the various deep learning model and configurations as shown in
Table 3-4. To determine which model shows the best performance. Table 3-7.
shows the forecasting results estimated with MAPE by each model for four
window sections: (1) whole time series, (2) window without transition nor
segregation point, (3) window with transition point, and (4) window with
segregation point. Concerning MAPE results, LSTM and GRU models showed
better performance compared with other models for the whole time series. In
particular, the LSTM-2 model had the best performance with the lowest MAPE in
the whole window.

However, the forecasting performance of each model showed a difference for
each window section of hydrate formation. For windows except for the transition
and segregation points (Section 1 in Table 3-7.), ARLSTM and GRU showed
better results than other models. ARLSTM-3 showed the smallest MAPE. The
model accuracy at the window of transition point (Section 3 in Table 3-7.) and
segregation point (Section 4 in Table 3-7.) was dropped with higher MAPE
compared to the data where the transition and segregation did not occur (Section 2
in Table 3-7.). For transition point, the Dense-2 model has the lowest MAPE, but
GRU-based models show the best overall average MAPE results. ARLSTM and
Dense models had a good performance on the prediction of segregation point with

the lowest MAPE of the ARLSTM-2 model.
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To investigate which models fit the best to predict the two characteristics:
transition and segregation point, we calculated the averaged MAPE of window
sections including transition and segregation point. With this, the GRU-3 model
and ARLSTM-2 model show the best results and ARLSTM models show better
results than other model types. Overall, each model has its best prediction points.
This indicates that MAPE results alone cannot decide which model makes the best
prediction. Also, the MAPE result only shows the difference between predictions
and true values on the given window, thus it is not likely to determine if the models
predict the right trend. This needs another investigation by trend-prediction rather
than MAPE only. In the rightmost column in Table 3-7., Dense-2, LSTM-3, GRU-

3, and ARLSTM-2 show the best prediction result in each model type, respectively.

Table 3-7. MAPE is calculated by model on the whole window (1), a window
without transition nor segregation point (2), a window including transition

point (3), and the window including segregation point (4).

Window  yiqow  Window
Whole wio Includin Includin Average
Model ~ Model Windo Transition ong g g
Transition Segregatio of
Name No. w & . >
. Point n Point (3) and (4)
€)) Segregatio 3) @)
n Point (2)

1 1194 26.1 95.6 73.4 84.5

2 56.7 102.2 80.4 85.2 82.8
Dense

3 105.1 15.7 136.7 44 .4 90.5

4 60.1 19.1 177.0 81.1 129.0

1 71.9 12.0 359.9 117.2 238.5

2 52.4 37.1 110.4 89.8 100.1

3 53.1 514 96.5 68.5 82.5
LSTM

4 70.0 437 101.4 77.4 89.4

5 63.6 83.3 98.5 149.1 123.8

6 53.7 16.8 173.3 134.9 154.1
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7 52.7 35.0 178.0 82.2 130.1

1 70.7 6.2 122.8 65.9 94.3

GRU 2 65.6 354 139.9 131.0 135.5

3 67.5 55.7 99.5 36.1 67.8

1 100.2 18.9 161.2 70.8 116.0

ARLSTM 2 55.1 7.3 119.9 36.0 71.9
3 77.0 5.2 112.6 53.1 82.8
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Fig. 3-13. Comparison of prediction results and true values for the test batch
(No. 8) by each model; (a) Dense-2, (b) LSTM-3, (¢) GRU-3, and (d)
ARLSTM-2 model. Each model has shown in 3 points were (1) window
without transition nor segregation point (2) window including transition point

(3) window including segregation point.

Fig. 3-13. graphically expresses the results of the true and prediction values by
each model type during the hydrate formation for trend evaluation. As above, the
results were presented for three windows: (a) before the transition of hydrate
particles, (b) when the transition occurs, and (¢) when segregation occurs after the
transition. The model used in Fig. 3-13. was chosen from Table 3-7., which

showed the best MAPE result on each model type (Dense, LSTM, GRU,
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ARLSTM). Noted that the results from other configurations for each model type

are provided in Fig. 3-14. to 3-17.
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Fig. 3-14. Comparison of prediction results and true values for the test batch

(No. 8) on Dense-based model
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Fig. 3-15. Comparison of prediction results and true values for the test batch

(No. 8) on LSTM-based model.
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Fig. 3-16. Comparison of prediction results and true values for the test batch

(No. 8) on GRU-based model
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Fig. 3-17. Comparison of prediction results and true values for the test batch

(No. 8) on ARLSTM-based model

The prediction by ARLSTM-2 followed the trend well with experimental results
for three windows rather than other models as shown in Fig. 3-12. However, the
results predicted by the Dense-2 model did not show good agreement with actual
values even before the transition point. Even though the results followed the trend
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at the transition and segregation point, their magnitude and timing were not precise.
Prediction results from other dense models show a similar tendency in Fig. 3-13
The prediction with the LSTM-3 model shows poor performance compared to
other model types. LSTM-3 model does not predict the trend of the transition point.
Even though other LSTM models are not that good for predicting transition trends,
LSTM-1 and LSTM-6 followed the trend well (see Fig. 3-14.). Compared to the
LSTM-based model, the GRU-based model predicts the transition trend and
segregation trends but is not good at predicting the precise magnitude. GRU-2 had

a particularly inaccurate performance of prediction as shown in Fig. 3-15.

Table 3-8. Prediction result and amount of error on transition point and

segregation point for test batch (No. 8) of each model

Transition Point Segregation Point

Predicted Error Predicted Error

Time (sec) (sec) Time (sec) (sec)

1 5820 -10 6220 30
Dense 2 5330 -500 6220 30
3 5340 -490 6220 30
4 5780 -50 6220 30
1 5840 10 6200 50
2 5790 -40 6200 50
3 5660 -170 6200 50
LSTM 4 6100 270 6200 50
5 N/A* N/A* 6200 50
6 5910 80 6200 50
7 5600 -230 6200 50
1 5910 80 6200 50
GRU 2 5600 -230 6200 50
3 5920 90 6200 50
1 5880 50 6200 50
ARLSTM 2 5870 40 6210 40
3 5900 70 6220 30

* It did not show the particular point for prediction.
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Table 3-8. shows the prediction result of the transition point and segregation
point for the test batch (no. 8) of each model. The transition point (time: 5830sec)
was defined as the first point to reach below the original 1* principal value of the
actual transition point. Segregation point (time: 6190sec) was defined as the abrupt
slope change from negative to positive. This shows how well the models predict
each point. Dense and LSTM models show high variance between models, but
ARLSTM models show consistency between models and their errors are low,
though not best, compared to other model types.

Overall, ARLSTM-based models showed the best performance in the prediction
of timing and trend when transition and segregation occurred (see Fig. 3-18. and
Table 3-8.). Even though ARLSTM-2 did not exactly detect the 1* trough (the
initial part of phase transition), the model predicted the overall trend of the phase
transition section better than the other types. In particular, the prediction results at
segregation points followed the true value with a similar trend and magnitude in all
ARLSTM-based models. In ARLSTM-based models, large cell numbers (64 and
128) with ARLSTM-2 and the ARLSTM-3 model showed better results than small
cell numbers (32) with ARLSTM-1. Through the evaluation of MAPE and trend
prediction, ARLSTM-based models show the best performance for the prediction
of hydrate formation behavior, followed by GRU-based models. Dense-based
models and LSTM-based models showed nonuniform performance depending on
their configuration. Also, from the comparison of the several dropout rates, the

effective dropout rate was showing the range of 0.2~0.6.
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Fig. 3-18. Comparison of prediction results and actual values for the test batch
(No. 8) on ARLSTM-based model at window including transition point (a) and
segregation point (b)

Using the combination of PCA and deep learning models with the transfer
learning method, this framework can be used more universally in a system that
repeatedly gathers many sensor data for specific periods. This approach
automatically clusters the hydrate risk of the given system using PCA and trains
the prediction neural network to be fitted with the given system. This work
suggests, for the first time, a novel framework based on the combination of PCA
technique and deep learning model to demonstrate the hydrate formation
characteristics. The developed model predicted the time-series hydrate formation
behavior for phase transition and hydrate segregation points by using the pressure,
temperature, and relative torque data. This would provide the possibility to detect

the hydrate formation and plugging risks in the early stage with reliable ways for
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the safe operation of subsea flowlines. Further studies would be considered to
predict the probability and the amount of remaining time to the point of hydrate
blockage by using the frameworks. Furthermore, the data-driven deep learning
method can be integrated into the governing physics to improve the limitation on
generalization, which is called as a Physics Based Neural Network (PBNN) (Ren et
al., 2020). Further studies using PBNN with time-series prediction would be
beneficial to improve the performance of deep learning into flow assurance

applications.
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3.5. Conclusions

Prediction of hydrate formation characteristics with real-time data is important to
safely operate the subsea flowlines. However, due to uncertain relations between
measurable data and hydrate formation behavior, it was difficult to develop an
accurate prediction method. With significant advancements in time series analysis
and prediction models using deep learning, predicting the uncertain future trend
was possible. In this work, we propose a novel data-driven framework to assess
and predict the hydrate formation behavior using various deep learning models,
especially the RNN family. The obtained results showed the models can predict the

transition and segregation points well. Here is the comparison between the models.

1) PCA on many data can cluster the points by before/after transition point,
which indicates the sudden and rapid hydrate growth. Also, PCA reduces the
number of features, which makes training deep learning models more efficient.

2) Windowing was done on given time-series data to make a real-time
prediction model which gets input from the near past.

3) Prediction using deep learning models (Dense, LSTM, GRU, ARLSTM)
shows reasonable results on prediction transition and segregation points. Among
the models, ARLSTM shows the best results. For layer number, the single layer
shows larger MAPE than stacked layers. The dropout rate between 0.2~0.6
showed significant improvement in accuracy.

4) Using dataset for deep learning model, training under similar
experimental conditions (training until 7th batch; only with 200rpm data) shows

the best result. The data under different experimental conditions (training with
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1~7 and 9~16th batch; adding 600rpm data after 200rpm data) increases MAPE
but the MAPE is decreasing as training the model with multiple batches. Enough

amount data is used in the training, the better the prediction results become.
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Chapter 4. Prognosis on System

4.1. Introduction

Prognosis is a important goal in the domain of process monitoring, yet no
definitive definition or the framework has been given. It is to detect a fault before it
occurs and find out its root cause to prevent in advance. Fault prognosis in
chemical processes has been proposed by the several literature from [85, 86] to
recent model using combined approach of hidden Markov and Bayesian network
model [87], but the framework is not yet has been standardized as the research is
still in its early stage, and has only been centered around in each separated
subcategory; fault detection, prediction in fault case, and root cause diagnosis.
Until now, numerous studies have attempted to find and explore the new
algorithms. However, in order to use this effectively, prediction is needed to find
when and what faults will occur and a diagnostic that determines what causes them
to occur are needed together. From the perspective of maintenance, if the control or
maintenance point of a system can be predicted and informed in advance, it is
called prognosis, which is the most efficient among various maintenance
techniques. And ultimate purpose of fault detection is to build a system that enables

prognosis within a process system, which requires fault prediction and diagnostics.

4.1.1. Deep learning based fault detection

In domain of fault detection using deep learning, there are 3 major subsets on
its techniques [88]. (1) deep learning of feature extraction, (2) learning feature

representations of normality, (3) end-to-end anomaly score learning. On the second
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category, learning feature representations of normality, includes the generic
normality feature learning and anomaly measure-dependent feature learning.
Generic normality feature learning is the methods which gaining its popularity
nowadays, which includes the autoencoders [89]-[91], generative adversarial

networks [92], predictability modeling [93], and self-supervised classification [94].

4.1.2. Deep learning based propagation prediction

Machine learning based time series prediction methods has been successfully
applied in many domains related to time series, including sensor networks. Time
series prediction requires the ability to effectively handle the complex and innate
features of temporal relationships and since the machine learning models have
superiority in their ability to process big data with high dimensionality and
representability[95]. Machine learning based time series prediction method is
divided into 2 major subsets. One is discriminative and the other is generative.
Discriminative prediction methods learn to act from the statistics from the observed
data, where the methods like Support Vector Machine (SVM), Shallow neural
network (In the category of classical machine learning), Convolutional Neural
Network (CNN), Long-short Term Memory (LSTM), Auto-Encoder (AE), and
Deep Stacking Net (DSN) (In the category of deep learning) are included. The
generative prediction method considers the joint probability distribution of both
observed data and target data, where the Gaussian Process (GP), Bayesian Network
(BN) & Hidden Markov Model (HMM) (In the category of classical machine
learning), Restricted Boltzmann Machine (RBM), Deep Belief Network (DBN),

and Generative Adversarial Networks (GANSs) (In the category of deep learning)
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are included. Other than these two major categories, clustering-based models and
hybrid deep learning models are also present. The prediction model used for the
prognosis for chemical process are widely studied. Some used AE, HMM [96].
Here, we are using the LSTM model to effectively use the autoregressive trajectory

propagation prediction.

4.1.3. Deep learning based diagnosis

For fault diagnosis, we employed eXplainable Artificial Intelligence (XAI)
method. Unlike fault detection and propagation prediction, XAl methods are not a
standalone model but the algorithms for the given model. Here, we apply the XAl
method to the fault detection and propagation prediction model to perform the fault
diagnosis to identify the cause of the problem. XAl methods can be categorized by
the scope, methodology and usage. By its scope, there are 3 major subsets : (1) the
local, (2) global or (3) hybrid methodologies. The local explanation method
calculates the contribution of input features to output in the training stage.
Activation maximization, saliency map, Layer-wise Relevance BackPropagation
(LRP), Local Interpretable Model-agnostic Explanations (LIME), and Shapley
Additive exPlanations (SHAP) [97] is included. The global explanation method is
about the set of decision-making rules applied by the model to analyze the global
behavior of an Al model on all input variables, not each of them. Global surrogate
models, Class model visualization, LIME for Global Explanations, Concept
Activation Vectors (CAVs), Spectral Relevance Analysis (SpRAYy), Global
attribution mapping, and Neural Additive Models (NAMs) are included in this

category. The hybrid XAl explanation combines the above-mentioned approaches.
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Here, we are using SHAP, which is the local and model agnostic XAI method, on
the deep learning model. Model is made up of two different deep learning models :
one is performing the fault detection and the other performing the prediction. There
are a few literatures with SHAP employed on a time series prediction model,
however, VegaGarcia et al. [98] used DeepSHAP-based method to explain the
predictions of time-series signals involving Long Short-Term Memory (LSTM)
networks. Explanations were generated for each time step of each input instances.
This study introduces the novel deep learning based prognosis scheme
including 3 major parts : fault detection, propagation prediction and root cause
diagnosis. This study is distinguished from previous studies as the framework is 3
main parts are fully deep-learning based, and the prediction technique employs
novel methodology to enhance the prediction accuracy under the unprecedented

situation and to predict the RUL until the threshold.
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Fig. 4-1. Schematic of fault prognosis suggested in this paper

4.2. Process prognosis framework

As it is a combination of many algorithms, it is important to connect them

with the flow. Also, in the case of this study, the algorithms used were closely

connected, so the framework configuration was an important part of the study. In

this study, we first train the fault detection model and fix the encoder and decoder

models. After that, the latent space between the encoder-decoder used for fault

detection was used, and this was considered as a reduced feature dimension and

used as a preprocessing step for fault prediction. T?index value was calculated

using this predicted value, and fault diagnosis was performed through contribution
analysis on variables that affect the change of this index. In addition, windowing, a

method of dividing the time series into pieces, was introduced to perform
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prediction in real time, and the code of the existing algorithm was changed and
applied to apply this windowing to fault detection and diagnosis. Also, attention
was paid to the interpretation of the result value as the format of input and output

was changed by windowing.

Lin Lin

Nsensor
N, sensor

Feature

CAE filter i Contribution
Extraction Calculation
RNN at t=T
Lin Lout
Single

Prediction

(FEEE =
s EERE -

Niatent

Index
Calculation T |

Lin Lhorizon
-
——— —
o [T1rr - @O
Input 72 Value Future T2 Value

Fig. 4-2. Auto regressive prediction on current fault for calculating RUL

106 = A&t &



4.2.1. Offline modeling

4.2.1.1. Feature extraction using convolutional autoencoder

The raw data obtained from the chemical process is first processed with a sliding
window with a fixed length L, followed by a normalization between 0 and 1. The
data is transformed into matrices of the size L X 1 X n, where n represents the
process variable number.

The model used for feature extraction is CAE. We employ CAE to deal with
multivariate time-series data. It should be noted that the point-wise convolution
which uses 1 X 1 kernel is conducted to only extract information across channels
without destroying the features in time series. Although it varies from the
autoencoder in that it uses a convolutional layer instead of a dense layer, the
dimension reduction operation itself is the same because the kernel size is 1. The
encoder part of CAE map the input to a hidden representation by the nonlinear
transformation. Then, the hidden representation is reconstructed to the output
through the decoder part. The model is trained by optimizing the mean squared

error between input and reconstructed output.

4.2.1.2. Prediction using RNN

Here, RNN model combined with the online machine learning technique was used
for prediction. Long-Short Term Memory (LSTM), is one of the most popular
model amongst the RNN family. LSTM model has operations inside the cell to
keep cell states and controlled by three gates : input, output, forget. By this the

model can selectively take past information into account. This is expressed as :
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fr=0W;s - [hi—1, 3] + by)
it = o(W; - [he—1, ¢ + b;)
C, =tanh W, - [At—1, x¢] + b
Ci=fixCi1+ i xC,

ot = 0(Wy - [hi—1,2¢] + bo)
h: = o; * tanh C;

(4-1)

, where h; is hidden state at time t, h;_; is hidden state at time t — 1 or the
initial hidden state at time o, ¢; is cell state at time t, x; is input at time t, i; is
input gate at time t, f; is forget gate at time t, Cqis cell gate at time t, o,

output state at time ¢, and * is the Hadamard product, ¢ is the sigmoid function.
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Fig. 4-3. Configuration of RNN cells

LSTM is widely studied model and proved its usefulness [99]. But there are not
many research has been done on LSTMs with online learning. However, the
combination of LSTM and online learning is very essential for fault prediction
since It is difficult to detect a fault condition promptly using unsupervised data, and
Predicting the fault condition using offline risk calculation based

on a normal dataset is not accurate [100]. Unlike general prediction, process fault
prediction must predict propagation that has never been made before. This is a
'abnormal’ situation where abnormal situations that occur in the process are literally
not encountered before, and fault prediction must make predictions in these
abnormal situations. For this reason, the accuracy is very poor if the existing

recurrent neural network is used as it is.
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Fault prediction is made for the latent vector obtained after passing through the
encoder used in the fault detection step. These values, which are feature redux, can
increase accuracy and reduce time. The latent vector is put as an input to the RNN
model so that learning is performed. This paper attempted to verify using various
models through mixing and matching with various models and various types of
current natural network models. The training data used in the prediction model
contains some of the fault data as well as pure normal data, unlike the training data
in the fault detection model. Combination of CAE and LSTM is a bit similar to the
of CNN-LSTM, which combines the CNN and LSTM shown in [100], however,
the training process is different since this study treats CAE and LSTM as the

different model and train with different data.

4.2.1.3. Monitoring statistics

The indicator for process monitoring is calculated using the future latent vector
predicted by LSTM predictor. The Hotelling's T? statistic [101] is a way of

measuring the variation captured in the latent vector, and it is expressed as:
T? =2zTA712 (4-2)

where A is the covariance matrix of the latent vector z. A fault is detected when
the T? exceeds a specific threshold, where the deviation from the normal state is
observed. The threshold is determined through a kernel density estimation of T2

with a given confidence level a. It should be noted that, in order to consider the
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accumulated error while passing through the LSTM predictor, the future normal
latent vector which is not obtained from CAE but from LSTM is used for

calculating the threshold.

4.2.2. Online monitoring

4.2.2.1. Online learning

For real-time prediction, N inputs were received and M prediction results were
presented as outputs. This is to make it available in real time in the actual process.
Based on this, the methods of fault detection and fault diagnostics were also
changed.

After completing the fault prediction, the T2 value was calculated using each
latent variable. That is, since it is possible to calculate the future T?value, it is
possible to predict whether or not a fault will occur in the future.

Online learning means training a system by iteration of small amounts of data
sequentially. Examples of applying online learning to deep learning include the
case of changing the cell structure itself [102] and the case of using batch learning
[103].

It is suitable for systems that receive data continuously and have to adapt itself to
rapid changes, so it can compensate for the lack of data at the time of process
failure by allowing the prediction model in the process system to run online. In
general, if only online learning is enabled, system performance can degrade when
bad data is injected into the system. To compensate for this, the framework was
configured so that it could learn using existing historical data and online learning

using transfer learning while monitoring was performed. As a result of comparing
%
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several cases, the shorter the update cycle and the longer the sample returned at
once, the shorter the learning time was. The time required for learning is expected

to be shortened if the simulation is performed in a better environment.

4.2.2.2. RUL estimation using autoregressive trajectory prediction

RUL is an amount of time left for which a unit under test is usable [104]. This is
an important index for calculating the lifespan of equipment and for maintenance
of process plants and prevention of faults. RUL has mainly been studied in relation
to mechanical equipment as shown in [105]-[107] rather than chemical processes.
So There is a difficulty in RUL prediction in chemical processes can be viewed as
the time it takes to reach a specific fault condition rather than mechanical failure.
Since chemical process fault is a broad concept that includes mechanical and
process condition fault, it is hard to adopt the physical model formulation as shown
in literature. In this study, the RUL prediction has been made based on the auto
regressive trajectory prediction of health indicator, which has been predicted by the
trained RNN model of the given time. At each time window, RNN model can
predict far future using autoregressive iteration, which done by putting output of
prediction result as a input of next prediction. Iterative point prediction has made
for the trajectory prediction. Autoregressive behavior means that the each output

depends on previous observations as below :

d
o0 = | [pulx<d (4+3)
i=1
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where p(x) is a density function of training samples x. Since the LSTM model
can be described as the autoregressive model perspective [108], autoregressive

prediction using LSTM based prediction model satisfies the innate accordance.

With using the prediction model at ¢ =i for prediction of point t =i + 1, the
trajectory ¢ (i + 1|i) denotes the trajectory of the T* value. RUL r(i) at t =i
is

r(i) =t —t

(4-4)
j= mzax(h(z) <0,z>1)

, where z is point of failure (=End Of Life (EOL), a time instance when the
prediction crosses the failure threshold), h(z)is health indicator, which in here is

same as ¢ (2).
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Algorithm 1 Autoregressive propagation and RUL estimation

0: for Every time step i > 60 do

0:  Predict future latent vectors for ¢ = 7 + 1 with the input
time length of ¢t = ¢ — 59, ...,% with model

0: for Every time step from i to end j do

0: Make next input latent vector with given vectors of
t=7-058,..,7andt=75+1

0: Predict future latent vector for ¢ = j+ 2 with the input
time length of ¢ = j — 58, ..., j + 1 with model

0: Calculate T

0: if T2 Value of predicted future latent vector for ¢ =

j + 2 > Threshold then

0: Failure Time < t = j + 2

0: RUL <~ t=35+4+2—1

o: end if

0: end for

0:  Calculate m = i/nsampie

0: if i/nsampie == 0 then

0: Append input of ¢ = i— ngample,...,1 as model
training input

0: Using list of above, train model using transfer learning
and get new model M(i)

o: Save weights of trained model

0: end if

0: end for=0

4.2.2.3. Fault diagnosis using future T2

Based on the future T? value, the contribution of input sequence of sensors to the
future T* was calculated using the SHAP technique [97]. The SHAP technique
used in diagnosis is a model agnostic method among XAI techniques. There are
several sub-techniques in SHAP, such as treeSHAP and deepSHAP kernelSHAP,
and techniques are increasingly being added. Among them, the method used in this
study is kernelSHAP, which can be used for all models with defined input/output,
unlike treeSHAP or deepSHAP, which are greatly affected by the type of model. In
this study, the feature extractor and predictor built above are the parts that need

explanation through SHAP for fault diagnosis.
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Algorithm 2 KernelSHAP Algorithm

Input: classifier f, input sample x
Output: explainable coefficients from the linear model

zy < SampleByRemovingFeature(x)
Zx hx(zk)

yi « f(zx)

W, < SHAP(f, zx, yx)
LinearModel(W ,).fit()

Return LinearModel.coefficients() =0

LR

Algorithm of KernelSHAP is shown in Algorithm2. Using SHAP kernels,
KernelSHAP removes features from the input data and linearizing the model

influence to randomly sample coalitions.
M
9@ = bo+ ) ¢j7/ (45)
j=1

where g as the explanation model of an ML model f, z;" as the coalition vector,
M the maximum coalition size, and ¢; the feature attribution for feature j,

g(zp) 1is the sum of bias and individual feature contributions.

4.3. Case study

To prove the validity and effectiveness of the proposed prognosis methodology,

two widely used simulation cases, the Continuous Stirred-Tank Reactor (CSTR)

process [109] and the Tennessee Eastmann (TE) process [110], were used.
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4.3.1. Target system

4.3.1.1. CSTR Process

CSTR is a vessel in which reactants and solvents flow into the reactor while the
reaction product flows which shown in Fig. 4-4. Simulation of the CSTR has been
introduced in [109]. Simulations of normal and faulty data were generated every
60 min for 20 h of operation under varying conditions. There are 8 process
variables : inlet flow rate, tank volume, jacket volume, heat of reaction, heat
transfer coefficient, pre-exponential factor to k, activation energy, fluid density,
and fluid heat capacity. The sampling interval for all variables was 1 min. There
were 10 incipient faults, as listed in Table 4-2. These faults were initiated from the

200th sample.

C; (mol/L) |
T; (K) l
I I

T (K) C (mol/L)
Q. (L/min) T (K)
Fig. 4-4. Configuration of the CSTR simulation
Table 4-1. Constant values in the CSTR model
Parameter Description Value Units
Q Inlet flow rate 100.0 L/min
|4 Tank volume 150.0 L
vV, Jacket volume 10.0 L
AH, Heat of reaction 2.0x10° cal/mol
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UA Heat transfer coefficient 7.0 x 10° cal/min/K

ko Pre-exponential factor to k 7.2 x 10" min-1
E/R Activation energy 1.0 x 10* K
P, P Fluid density 1000 g/L
Cp, Cpc Fluid heat capacity 1.0 cal/g/K

Table 4-2. Incipient fault scenarios in the CSTR

Rate of fault

Fault ID Description . Type
progression
1 a = agexp (—6t) 0.0005 Multiplicative
2 b = by exp (—6t) 0.001 Multiplicative
3 Simultaneous Faults 1 and 2 - Multiplicative
4 C;=Cip+ 6t 0.001 Additive
5 T, =Tip+ 6t 0.05 Additive
6 Tei = Teip + 6t 0.05 Additive
7 C=Cy+56t 0.001 Additive
8 T=T,+dt 0.05 Additive
9 T. =T,y + 6t 0.05 Additive
10 Qc = Q.o+ 6t -0.1 Additive
4.3.1.2. TE process

The TE process contains five major unit operations: reactor, condenser, separator,
compressor, and stripper. There are 52 variables, including 22 process variables
and 19 composition variables, i.e., X1-X41, and 11 manipulated variables, i.c.,
X42-X52, as described in Table 4-3.. And the time length of the cases is 1080
samples. The TE process contains 1 normal case and 21 fault cases, as described in
Table 4-4. In test set A, faults have 480 samples, and in the test set, B faults had

960 samples. And for all the fault cases, faults were initiated from the 160th

117 I



sample. This means that even in the fault set, samples before the 160th sample are
under normal conditions.
TE process has total of 8 components, 4 of which are reactants (A, C, D, E) and 2
are products (G, H) and 1 is byproduct (F). Reactions are irreversible and
exothermic. The reactions are shown as :

A(g) +C(g) + D(g) - G(lig)

A(g9) +C(9) +E(g) » H(lig)

(4-6)
A(g9) +E(g) - F(liq)

3D(g) - 2F(liq)
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Fig. 4-5. Configuration of the TEP simulation

Table 4-3. Process variables in TEP, including manipulated variables (XMYV),
Continuous process measurements (XMEAS (1) ~ XMEAS (22)), sampled
process measurements (XMEAS (23) ~ XMEAS (41))

number Variablename RO it Limie U
XMV (1) D feed flow (stream 2) 63.053 0 5811 kgh
XMV (2) E feed flow (stream 3) 53.980 0 8354 kgh
XMV (3) A feed flow (stream 1) 24.644 0 1.017 kscmh
XMV (4) A and C feed flow (stream 4) 61.302 0 15.25 kscmh
XMV (5) Compressor recycle valve 22.210 0 100 %
XMV (6) Purge valve (stream 9) 40.064 0 100 %
XMV (7) Separag’;g;’;hl‘l&id flow 38100 0 6571 mh!
XMV (@8)  Swipper (lig‘;;‘zfrl‘i‘)lw flow 46534 0 4910 mh!
XMV (9) Stripper steam valve 47.446 0 100 %
XMV (10) Reactor cooling water flow 41.106 0 227.1 m’h’
XMV (11) Condenser cooling water flow 18.114 0 2726 m’h’'
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XMV (12) Agitator speed 50.000 150 250  rpm
XMEAS (1) A feed (stream 1) 0.25052 - - kscmh
XMEAS (2) D feed (stream 2) 3664.0 - - kgh'!
XMEAS (3) E feed (stream 3) 4509.3 - - kgh'
XMEAS (4) A and C feed (stream 4) 9.3477 - - kscmh
XMEAS (5) Recycle flow (stream 8) 26.902 - - kscmh
XMEAS (6) Reactor feed rate (stream 6) 42.339 - - kscmh
XMEAS (7) Reactor pressure 2705.0 - - kPa

gauge
XMEAS (8) Reactor level 75.000 - - %
XMEAS (9) Reactor temperature 120.40 - - °C
XMEAS (10) Purge rate (stream 9) 0.33712 - - kscmh
XMEAS (11) Product separator temperature 80.109 - - °C
XMEAS (12) Product separator level 50.000 - - %
XMEAS (13)  Product separator pressure 2633.7 - - kPa
gauge
XMEAS (14) Product separator underflow 25160 ) ) 'l
(stream 10)
XMEAS (15) Stripper level 50.000 - - %
. kPa
XMEAS (16) Stripper pressure 3102.2 - - sauge
XMEAS (17) Stripper underflow (stream 11)  22.949 - - m’h’!
XMEAS (18) Stripper temperature 65.731 - - °C
XMEAS (19) Stripper steam flow 230.31 - - kgh'!
XMEAS (20) Compressor work 341.43 - - kW
XMEAS (21) Reactor cooling water outlet 94 599 ) ) oC
temperature
Separator cooling water outlet o
XMEAS (22) 77.297 - - C
temperature
XMEAS (23) Stream 6 (reactor feed) 32188 ) — mol%
component A
XMEAS (24) Stream 6 (reactor feed) 88933 ) — mol%
component B
XMEAS (25) Stream 6 (reactor feed) 26383 ) ) mol%
component C
XMEAS (26) Stream 6 (reactor feed) 6.8820 i i mol%
component D
XMEAS (27) Stream 6 (reactor feed) 18.776 ) ) mol%
component E
XMEAS (28) Stream 6 (reactor feed) 1.6567 ) ) mol%

component F
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Stream 9 (purge gas)

XMEAS (29) 32.958 mol%
component A

XMEAS (30)  Stream 9 (purge gas) 13.823 mol%
component B

XMEAS (31)  Stream 9 (purge gas) 23.978 mol%
component C

XMEAS (32) Stream 9 (purge gas) 1.2565 mol%
component D

XMEAS (33) Stream 9 (purge gas) 18579 - - mol%
component E

XMEAS (34)  Stream 9 (purge gas) 22633 - - mol%
component F

XMEAS (35)  Stream 9 (purge gas) 48436 - - mol%
component G

XMEAS (36) Stream 9 (purge gas) 2298 - - mol%
component H

XMEAS (37) Stream 11 (product) 001787 - - mol%
component D

XMEAS (38) Stream 11 (product) 083570 - - mol%
component E

XMEAS (39) Stream 11 (product) 0.09858 - - mol%
component F

XMEAS (40) Stream 11 (product) 53724 - - mol%
component G

XMEAS (41) Stream 11 (product) 43828 - - mol%
component H

4.3.2. Results

4.3.2.1.Feature extraction using CAE

Using the trained CAE's encoder, sensor data of Ngnso With a time step length
of Linpys s reduced to N_latent with the time step length of L;pp,.. Here, the
number of features (N) is reduced number of time steps (L) is conserved. For
CSTR process, 8 variables (Ngeps0r) Were reduced to 3 latent variables (Nygrent)-
and for TE process, 52 variables (Nens0,-) Were reduced to 8 latent variables

(Nygtent)- The number of the latent vector is obtained empirically. CAE isltrair_led
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only with the normal data, due to the characteristic of encoder-decoder. For
training in the CSTR process, the normal case in the training data was used and for
the TE process, the normal case in the training data was used for training. The
decoder was trained accordingly with the encoder for the reconstruction but did not
use in this framework. With the obtained latent vector, the T?value of the given
data was calculated as a prediction label. Also the fault detection threshold was set

from the T?value.

4.3.2.2. Trajectory prediction

Trajectory prediction of multivariate time series on latent space was performed
using various RNN models. The input of prediction is the reduced feature number
of Njgtent by input time step length of L;y,,. and the output of the prediction is
the reduced feature number of Nigten; by output time step length of Loypye-
Here, several variables () are conserved but the number of time steps (L) can be
differed by the length desired for prediction. For the CSTR process, the normal
case in the training data and fault case 1 to 10 in the test set A was used for model
training, and fault case 1 to 10 in test set B was used for model testing. For the TE
process, the normal case in the training data and fault case 1 to 21 in the test set A

was used for model training, and fault case 1 to 21 in test set B.
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Model architectures combined with various RNN cell types were used for
prediction including LSTM, LSTM + Dense, ARLSTM, GRU, GRU + Dense,
ARGRU. The dense model is a simple fully-connected neural network model,
ARLSTM is Autoregressive LSTM, and ARGRU is Autoregressive GRU. There
were no big differences between the cell types on the prediction performance of the
model shown in Table 4-4, but were tendencies regarding the model architectures.
Basic models without stacking like LSTM and GRU showed faster performance

than stacked models like RNN + Dense + Dense and RNN + RNN + Dense. As a
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result of the comparison, an unstacked LSTM model was used as a prediction

model for further steps.

A large T? value means that there is a large deviation from the normal driving
situation, and it means that data that is different from the data learned by the deep
learning model under normal conditions is being input. In other words, the existing
model refers to the problem of significantly lowering prediction performance when
a new situation occurs, not the learned situation, that is, the extrapolation problem
of the deep learning model, which is a data driven technique. However, in the case
of using online learning using new incoming samples, prediction performance can
be maintained even if a new situation appears rather than the learned situation
through continuous updates. This is a very big advantage in the chemical process

where it is difficult to actually generate a problem situation.

4.3.2.3. Online learning after training

Online learning was done using periodic transfer learning. when the number of
incoming samples accumulates up to a certain value(l,y;ine ), the training process
using transfer learning is initiated using newly incoming samples as the training
set. This method uses makes changes to the trained internal weight parameters of
the neural network model with accumulated samples. Since the sample number
used as update l,pne 1s smaller than the sample number used for training the
original model, changes would be smaller compared to the main training phase.
Here, the number of sample interval lengths for online learning(l,,;ine) Was set as

10, 30, and 60. Also, the epoch size for the transfer learning was set as 20, 50, and .
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100. As a result, the error was lower with the smaller interval length and the larger
epoch size. The error was calculated as the Maximum Error Percentage Error

(MAPE) on T? value of predicted latent vectors.

Also, a visual comparison of the trend was included in finding the tendency. By
comparing the result without online learning and with online learning, there is a
significant accuracy increase in prediction using online learning. Also, there is a
relatively small difference between the different combinations of sample interval
length and epoch size. By this, using online learning is beneficial regardless of the
sample interval or epoch size. For the TE process, faults 2, 6, 13, 17, and 18
showed a dramatic increase in accuracy. Those faults have larger T?values than
other cases, which means they showed a large difference from the normal operating

behavior.

Table 4-4. Prediction errors on TEP fault case 1~21 by different RNN models

Dense LSTM GRU
Description Type Dense +Dens LSTM + ARLS GRU +Dens ARG
™ RU
e Dense e
A/C feed ratio, B
Fault 1 composition Step 1900 2.136 2.570 2364 2086 2.846 2.146 2.737
constant (Stream
4)

B composition,
Fault2 A/Cratioconstant Step 17.130 15.187 25.078 24.517 26.338 28.471 26.154 29.172
(Stream 4)
D feed
Fault 3 temperature Step 1425 1511 1582 1996 1567 1.632 1553 1.667
(Stream 2)
Reactor cooling
Fault 4 water inlet Step 1354 1495 1463 2.025 1511 1.673 1587 1.646
temperature

Condenser
Fault 5 cooling water inlet ~ Step 1.509 1.685 2.153 2.132 1917 1584 1.778 2.173
temperature

Fault 6 A feed loss Step 29.805 47.048 53.703 38.968 50.047 45.359 55.656 40.554
(Stream 1)
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C header pressure
loss-reduced

Fault 7 0581 Step  1.870 2177 2.618 2.652 1926 2021 2200 2.057
availablity (Stream
4)
A, B, C feed Rando
Fault 8 composition 1.643 2018 2798 2.671 2504 2612 1998 3.681
(Stream 4) m
D feed Rand
Fault 9 temperature f:l”’ 1338 1401 1534 1.861 1486 1.568 1.468 1.623
(Stream 2)
C feed Rando
Fault 10  temperature o 1220 1351 1349 1711 1330 1422 1359  1.489
(Stream 4)
Reactor cooling Rando
Fault 11 water inlet 1233 1344 1408 1753 1368 1469 1461 1.469
temperature m
Condenser Rand
Fault 12 cooling water inlet ':‘:1‘ O 2419 2751 3328 3.024 3780 3.857 4.003 3398
temperature
Fault 13  Reaction kinetics Si?fvtv 3357 5207 10152 8947 8110 5716 5.609 8.111
Fault 14 ~ Reactorcooling  Sticki 400 000 1197 1258 1088 1166 1.158 1.104
water valve ng
Condenser Sticki
Fault 15  cooling water 1429 1543 1587 1978 1569 1.612 1568 1.666
ng
valve
Fault 16 Unknown U\fv‘l;“" 1.190 1286 1399 1.694 1338 1445 1359  1.492
Fault 17 Unknown U\fv‘l;“" 7948 8261 7.682 7.898 8.456 7.663 7.866 8.236
Fault 18 Unknown U\;‘l;“" 46.854 43.085 48241 48.115 46.030 47.073 45.818 45.309
Fault 19 Unknown U\fv‘l;“" 1457 1546  1.603 2.013  1.599 1.648 1.585 1.677
Fault 20 Unknown U\fv‘l;“" 1.157 1225 1315 1531 1213 1273 1278 1314
Fault 21 Unknown U\fv‘l;“" 1240 1356 1418 1.681 1356 1396 1355 1431
ARGRU{ HI%] ' P
GRU+Dense 4 {ﬂn + + + J
GRU PO |
ARLSTMA 1.‘&}4 N N |
LSTM+Dense 4 {-'+ + o+ 4
ol -
0 5 10
Range
Fig. 4-8. Result of prediction by RNN model (except fault 2, 6, 18)
s
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Fig. 4-9. Fault propagation prediction on TEP fault case 1~21((a)~(u)) without

and with online learning (interval 10, epoch 100)
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Table 4-5. Prediction errors on TEP fault case 1~21 without and with online
learning with various combinations of online learning intervals (10, 30, 60)

and epoch sizes (100, 50, 20)

Description Type V(‘;/](j 10/100 10/50 10/20 30/100 60/100

Fault1 A/C feed ratio, B composition constant Step 257 070 077 0.76  0.82 0.70

Fault 2 B composition, A/C ratio constant Step 25.07 6.04 898 6.67 1141 6.85

Fault 3 D feed temperature Step 1.58 149 134 118 135 1.31

Fault4 Reactor cooling water inlet temperature Step 146 145 135 1.09 152 1.47

Condenser cooling water inlet

Fault 5 Step 2.15 1.64 155 120 1.63 1.46

temperature
Fault 6 A feed loss Step 53.70 228 353 243 679 725
Fault 7 € header p;j;;‘;fhlt‘; ss-reduced Step  2.61 206 173 135 178 142
Fault 8 A, B, C feed composition Random  2.79 1.71 1.34  1.24 1.83 1.17
Fault 9 D feed temperature Random 1.53 130 1.19 1.10 1.25 1.54
Fault 10 C feed temperature Random 1.34 128 129 1.07 1.14 1.17

Fault 11 Reactor cooling water inlet temperature Random  1.40  1.32  1.14 1.11 1.38 1.22

Condenser cooling water inlet

Fault 12 temperature Random 332 199 190 152 1.73 1.64
Fault 13 Reaction kinetics Slow Drift 10.15 3.16 238 3.26 2.46 3.14
Fault 14 Reactor cooling water valve Sticking  1.19 1.06 092 0.87 1.05 1.17
Fault 15 Condenser cooling water valve Sticking  1.58 145 132 121 1.69 1.42
Fault 16 Unknown Unknown 139 1.16 1.08 1.00 1.26 1.20
Fault 17 Unknown Unknown 7.68 3.03 295 256 287 2.81
Fault 18 Unknown Unknown 4824 320 3.68 346 4.68 8.25
Fault 19 Unknown Unknown 1.60 1.33 128 1.18 145 1.66
Fault 20 Unknown Unknown 1.31 .13 1.05 095 099 1.33
Fault 21 Unknown Unknown 1.41 .17  1.06 097 1.21 1.31
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Fig. 4-10. Fault propagation prediction errors on TEP fault case 1~21 without

and with online learning
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Fig. 4-11. Fault propagation prediction on CSTR case fault 1~10 ((a)~(j))

without and with online learning

Table 4-6. Fault propagation prediction on CSTR fault case 1~21 without and

with online learning with various combinations of online learning intervals

and epoch sizes

w/o

Description  Type oL 10/10010/50 10/20 30/100 60/100
Fault 1 Catalyst decay Multiplicative 8.96 5.02 525 531 550 549
Faule2 1O NSOy p i licative 037 101 130 110 072 0.73

fouling

Simultaneous .
Fault 3 Faults 1 and 2 Multiplicative 7.89  2.62 2.62 2.78 3.07 2.99
Fault 4 geinsor drift on \ 4 jitive 653.7536.10 43.62 212.71193.17 616.50
Fault 5 %ensor drift on \ 4 jitive 045 61.92 44.97 1824 49.33 9.99

Sensor drift on ..
Fault6 " Additive 873 7.97 2732927 1820 41.80
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Sensor drift on

Fault 7 C Additive 22529 11.31 31.11 100.95219.65 159.19
Sensor drift on ..

Fault 8 T Additive 037 1749 13.419.80 3231 241
Sensor drift on ..

Fault 9 Te Additive 2.86 151.8168.15 58.50 56.22 12.07

Fault 10 Sensor drift Qc Additive 0.52 13.48 13.49 690 14.24 222

4.3.2.4. RUL Prediction

Assuming the prediction model has a certain level of accuracy, the prediction
result can be put as the model’s input to get a prediction result for the further
future. This is referred to as an autoregressive prediction, which iteratively makes a
prediction until a certain time horizon limit using its own prediction result. This is
separate sequence with online learning, however, to better predict RUL, online
learning is also needed for the RUL calculation phase as included in the algorithm
Algorithm 1. Here, the End Of Life (EOL) point is defined as the first point at
which the T?value meets the threshold. For the TE process, the threshold is 20 and
For the CSTR process the threshold is 5. RUL is difference between the current

time and EOL.and this can be shown in Fig. 4-12.
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Fig. 4-12. Alpha-lambda plot of TEP Fault 2 from t =80 to t =173 (EOL)

4.3.2.5. Fault Diagnosis

Using the SHAP algorithm, the contribution score of the calculated T?value of the
corresponding input value of size Ngensor bY Linpys Was obtained. Since the
Shapely value obtained from the SHAP is model-dependent, constantly updating
the model using online learning affects the result of the SHAP value. This means
that when the model updates using online learning, the calculation of the Shapley
value for the model should be renewed. The result shown in Fig. 4-13 was re-
calculated by each sample interval length [,,;ine. the larger the contribution score,
the more likely the sensor is the cause of the fault. In Fig. 4-13, sensor has the

largest contribution score which correlates with the real root cause.
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4.4. Conclusion

In this study, novel prognosis scheme for chemical process with deep-learning
based anomaly detection, prediction and diagnosis has been suggested. anomaly
detection has been done with CAE, prediction was done using autoregressive RNN
using online learning and root cause diagnosis was done with XAI method SHAP.
With progress in each parts, this framework shows the far better results than any

other attempts at prognosis on chemical plant.
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Chapter 5. Concluding remarks

5.1. Conclusions

This study presented various models using machine learning for use in offshore
systems, including an anomaly detection model based on a machine learning
model, a hazard detection model through sensor data prediction, and a process
predictive maintenance model.

Firstly, a plant-wide anomaly detection algorithm using Multi-Scale
Convolutional Recurrent Encoder-Decoder (MSCRED) has been proposed. Herein,
anomaly detection was performed based on the interconnected side of process plant
sensor data rather than the simple sum of single sensor data. Conv-LSTM model
used a framework that modified the method for calculating the anomaly score
based on the MSCRED framework for chemical processes. Additionally, we
established a methodology to process anomaly detection using multiple windows.
In addition to performing anomaly detection, we analyzed the effect of the training
data on the anomaly detection performance of the model, and the situation and
timing of separation of each issue were obtained.

Secondly, a novel data-driven framework to assess and predict the hydrate
formation behavior using various deep learning models, especially the RNN
family, was proposed. The obtained results showed the models can predict the
transition and segregation points well. PCA on many data can cluster the points by
before/after transition point, which indicates the sudden and rapid hydrate growth.
Also, PCA reduces the number of features, which makes training deep learning

models more efficient. And windowing was done on given time-series data to make
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a real-time prediction model which gets input from the near past. Prediction using
deep learning models (Dense, LSTM, GRU, ARLSTM) shows reasonable results
on prediction transition and segregation points. Among the models, ARLSTM
shows the best results. For layer number, the single-layer shows larger MAPE than
stacked layers. The dropout rate between 0.2~0.6 showed significant improvement
in accuracy. Lastly, using dataset for deep learning model, training under similar
experimental conditions (training until 7th batch; only with 200rpm data) shows
the best result. The data under different experimental conditions (training with 1~7
and 9~16th batch; adding 600rpm data after 200rpm data) increases MAPE but the
MAPE is decreasing as training the model with multiple batches. Enough amount
data is used in the training, the better the prediction results become.

Thirdly, novel prognosis scheme for chemical process with deep-learning based
anomaly detection, prediction and diagnosis has been suggested. anomaly detection
has been done with CAE, prediction was done using autoregressive RNN using
online learning and root cause diagnosis was done with XAl method SHAP. With
progress in each parts, this framework shows the far better results than any other

attempts at prognosis on chemical plant.

5.2. Further study

Machine learning and deep learning-based methodologies have come a long way
in about 10 years. In addition, studies that can be used in harmony with existing
engineering techniques are also being studied a lot recently. However, there is no
methodology established as an industry standard yet, and it will be an important

task to develop an algorithm with accuracy and efficiency that can be established
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as a standard while identifying various machine learning techniques that are
continuously developing. The biggest advantage of machine learning-based
methodology is that it can be automatically optimized based on data, and that
automation can be performed later using this. In other words, it is necessary to
automatically process it in the era of increasing data volume using cloud and big
data. However, in order to use it efficiently, it is necessary to compare and review
the methodology suitable for the system and modify it to suit the system. In this
study, only the diagnostic field was studied, but for complete automation, it is
thought that a full framework that applies machine learning to the control field
should be produced. Since the control part uses methodologies such as
reinforcement learning, additional research on how to bridge is needed. Also,
within this study, clear definitions and classification methods for fault cases and
thresholds are needed for predictive maintenance in many process systems.
However, since this is different for each system, automation can be easily achieved
only when research on a methodology that can determine this regardless of the
system is conducted. There is also a need to more actively borrow probabilistic
methodologies. The introduction of formula-based deep learning methodologies
such as Physics informed neural network (PINN) is also an important part. Since
this field is still in the stage of application, it is necessary to continuously search
for the optimal methodology through the introduction of various methodologies

and comparison between them.
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