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Abstract

Accurate depth acquisition using depth-sensing devices is fundamental to vari-

ous computer vision applications such as 3d object recognition and scene under-

standing. Recently, commercial RGB-depth (RGB-D) cameras have been widely

used as depth sensors owing to their portable sizes and affordable prices. But

depth images of most commercial RGB-D cameras contain heavy noise and un-

detected regions (i.e., missing values) caused by their lower-grade light sources

and sensors. Recent deep-learning-based methods have been proposed to al-

leviate these problems. However, such methods typically require high-quality

supervised depth datasets for training networks, which are difficult to obtain.

In this dissertation, a novel method for generating high-quality depth images is

presented to address the issue.

The main idea of the proposed framework is leveraging depth information

from nearby view frames to reduce noise and recover missing values of a certain

depth frame. Based on a sequentially scanned RGB-D dataset, the frames in

a local spatial region are defined as a local frame set. Then, local frame set

is aligned to a single depth frame by estimating relative motions of frames.

An unsupervised learning-based registration method is employed for frame set

alignment, which does not require any ground-truth dataset. To improve regis-

tration accuracy, registration parameters of the local frame set are trained by

an overfit-training scheme. The final depth image is rendered by averaging the

aligned frame set at the pixel-level to reduce noise and recover missing values.

Experimental results showed that the proposed method is superior to pre-

viously benchmarked depth generation methods based on the local frame set

registration strategy. The method was evaluated by recovering a noise-added
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synthetic depth dataset, and verified that the method can capably retrieve

the original ground-truth dataset compared to previous methods. Moreover, a

constructed depth dataset was used to train a learning-based method and sig-

nificantly outperformed state-of-the-art depth enhancement frameworks. The

major advantage of this study is that high-quality depth images can be gen-

erated using only the RGB-D stream dataset to construct a new benchmark

depth dataset.

Keywords: Depth image generation, depth image enhancement, monocular

depth estimation, point cloud registration, RGB-D dataset, three-dimensional

reconstruction.

Student Number: 2017-36611
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Chapter 1

Introduction

1.1 Background and motivation

Accurate depth acquisition is a prerequisite for several computer vision and

robotics applications, such as 3D reconstruction [1–3], object detection [4–6] and

monocular depth estimation [7–10]. Recently, commercial RGB-D cameras (e.g.,

Kinect, Realsense, ASUS Xtion) have been widely adopted as single-view depth

sensors because of their affordable price and portability (Fig. 1.1). But depth

images of most commercial RGB-D cameras contain heavy noise and undetected

(i.e., missing values) caused by their lower-grade light sources and sensors [11]

(Fig. 1.2). Since inaccurate depth information can mislead downstream tasks,

improving the quality of depth images is a prerequisite.

Several previous studies have attempted to enhance the quality of depth im-

ages based on traditional filter-based methods [12–15], and deep-learning-based

methods [16–19]. The deep-learning-based methods show promising results over

traditional approaches, which typically require a high-quality supervised depth
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Figure 1.1: RGB-D sensor based 3D vision applications. Consumer-level RGB-

D cameras are used for various single-view-based 3D vision tasks.

dataset to train the network. Because the performance of supervised approaches

is primarily dependent on the quality of the ground-truth dataset, a high-quality

depth dataset is essentially required. Therefore, construction of high-quality

depth dataset is urged to improve the performance of single-view-based 3D

vision applications.

1.2 Problem statement

Acquisition of reliable depth images from most commercial depth cameras is

difficult to obtain since the limitations of the single-view scanning environment

(e.g., distance, light source, and occlusion), which induces heavy noise and

missing values. Therefore, most single-view sensor-based tasks that rely on the

original raw depth dataset [2, 7, 20] (Fig. 1.3) suffer from inaccurate 3D struc-

tures of the dataset. Several studies attempted to generate the enhanced depth

images for the enhanced depth dataset [16, 17, 20]. However, the main focus of

the method [20] is to cover the missing values by optimizing the distribution

of the depth intensities, and the methods [16, 17] requires setting of their own

2



Figure 1.2: RGB-D pairs captured from commercial depth sensor. Top row: RGB

images; bottom row: corresponding depth images. The depth images contain

noise and missing values.

scanning environments.

A possible approach to improve the depth quality of a certain frame is to

leverage multiple frames of view. Depth information captured from other view

positions (neighbor frames in Fig. 1.4) can be used to supplement the insuf-

ficiently scanned regions in the target depth frame t in the Fig. 1.4. In this

case, accurate estimation of pose parameters (i.e., spatial registration) is criti-

cal to align the multiple depth images from different frames of view. In the last

decade, considerable researches have been proposed to construct a multi-view

depth dataset using commercial RGB-D cameras [21]. These datasets provide

RGB-D scanned images and a visual odometry (i.e., camera motion parame-

ters) dataset using 3D reconstruction methods [22,23], which indicate that the

estimated camera pose parameters were optimized with a global frame set. In-

spired by these works, large-scale RGB-D and pose dataset-based approaches

have been proposed [18, 19]. These methods privileged the real-world 3D re-

3



Figure 1.3: RGB-D sensor aided for 3D vision tasks pipeline. Synchronized

RGB and depth images are used as inputs for the downstream tasks. For deep-

learning-based application cases, the RGB-D images are leveraged as supervi-

sion dataset to train neural networks. Either type of dataset is used as input or

ground-truth dataset according to given tasks. In this case, the depth images

contain inherent noise, which can mislead training networks.

construction dataset [23,24], which were generated by projecting reconstructed

meshes using the given motion parameters. Such datasets have been used in

several novel works as direct supervision dataset [18, 19], or for performance

evaluations [25]. However, such pose parameters have been estimated using

classical handcrafted features; consequently, the dataset is relatively vulnerable

to texture-less and noisy regions when compared to current datasets with deep-

learning-based features [26]. Moreover, such method contain occasional mis-

alignment [25] and over-smoothing errors [17] (Fig. 1.5), which fundamentally

come from the globally optimized pose parameters and inevitable simplification

for surface reconstruction. Since the similar structures for a certain view frame

are dominant to nearby view positions in sequentially scanned frames (Fig.

1.6), leveraging the proper number of neighboring frames is sufficient. There-

fore, estimation of the relative pose parameters for the neighboring frames (i.e.,

point cloud registration) which are optimized in the local spatial region is more

efficient.

4



Figure 1.4: Multi-view leveraged depth image supplement. Insufficient depth

structures of current view frame can be supplemented by leveraging depth in-

formation from neighbor frames. Yellow and blue circled region in target frame

can be supplemented by the neighbor frame 1 and 2, respectively.

1.3 Main contributions

In this dissertation, a novel method for generating an accurate real-world depth

dataset has been proposed (Fig. 1.7). The method only requires several numbers

of neighboring frames without the requirement of any other ground-truth (GT)

dataset. Since the primary objective is precise estimation of the pose parameters

optimized in the local frame set, a novel unsupervised point cloud registration

scheme [27] was adopted. Note that the registration parameters were overfit-

trained in each local frame set to improve the robustness. Then, the enhanced

depth frame of a certain frame was generated by averaging the aligned local

frame set to obtain a clean and dense depth dataset.

The proposed method enables the construction of a reliable depth dataset

using a pure RGB-D stream dataset without any other supervised dataset.

Furthermore, the proposed method introduces a new benchmarking standard for

5



(a) Example of misalignment error (b) Example of over-smoothing error

Figure 1.5: Error types from globally optimized pose parameters in [2].

the performance evaluation metrics. The quantitative comparison was evaluated

by using synthetic depth dataset, and demonstrated that the proposed method

outperformed the comparative generation methods of benchmarking dataset.

The constructed dataset was used to train the depth enhancement network, and

the results showed superior performance when compared to other state-of-the-

art depth enhancement methods both for the realistic and synthetic datasets.

In order to verify the contributions of the proposed framework for the RGB-

D sensor-based 3D vision tasks, the constructed dataset was applied to two

tasks; 3D reconstruction and monocular depth estimation. Experimental results

show that the enhanced depth images contribute to improved performance of

the 3D vision tasks both for conventional and learning-based applications. The

results verified that the quality of the depth dataset plays a primary role in

the tasks, and the proposed dataset generation pipeline can be combined with

6



(a) Globally optimized registration (b) Locally optimized registration

Figure 1.6: Comparison between globally optimized and locally optimized reg-

istrations. Locally optimized registration parameters can be more precise in

certain view direction.

other 3D computer vision applications.

1.4 Contents and organization

The remainder of this dissertation is organized as follows. First, primal back-

ground theory is briefly introduced to understand the single-view-based 3D

vision area in chapter 2. Then, related works are explored in chapter 3. In

chapter 3, a literature on point cloud registration and depth enhancement ap-

proaches are described, which are primarily related to depth generation. Then,

brief introduction of representative tasks (i.e., 3D reconstruction, and monocu-

lar depth estimation) is followed in the section. The proposed enhanced depth

generation method is described in chapter 4, which comprises an overview, de-

tailed methodology, experimental results and discussion. Chapter 5 presents an

overview and the experimental results of each task. The conclusion and future

works are presented in chapter 6.
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Figure 1.7: Multi-view leveraged enhanced depth image generation. The regis-

tration parameters in local frame sets are aligned to their local target frame

(i.e., the box frame outlined in red in the local frame set). The final depth im-

age is generated by averaging the aligned depth images to obtain refined depth

values at pixel-level.
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Chapter 2

Preliminaries

In this chapter, preliminaries of theoretical background are presented to under-

stand the RGB-D camera-based computer vision area. First, a brief introduction

of camera geometry is described. Then, main approaches for camera calibration

are introduced, which is a prerequisite process for various 3D vision applica-

tions. Finally, basic concepts for several representative depth-sensing modalities

are introduced in the following section.

2.1 Camera geometry

Single-view geometry

A camera is a mapping device between 3D world and 2D images as illustrated in

Fig. 2.1 (a). The camera of interest in this dissertation is the central projective

(i.e., perspective) camera, which follows the pinhole camera model (Fig. 2.1

(b)). Suppose a 3D point X is projected on to an image plane as x, a linear

9



(a) Projective camera geometry

(b) Pinhole camera model

Figure 2.1: Single-view camera geometry. (a) Geometry of projected 3D point

X to 2D point x in image plane; (b) Pinhole camera model. In the sub-figure

(a), C is a camera center, and X and x indicate that original 3D point and

projected 2D point of the X on an image plane, respectively. p is principal

point and f denotes focal length of camera in (b).
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relationship between the two points is defined by:

x = PX = K[R|t], (2.1)

where the points x = [x, y, 1]⊤ and X = [X,Y, Z, 1]⊤ are the points in homo-

geneous coordinate, and the P indicates a 3 × 4 camera matrix. The camera

matrix is composed of camera intrinsic and extrinsic parameters. R is 3 × 3

rotation matrix and t is 3 × 1 translation vector to indicate camera pose pa-

rameters. In the single-view case, the camera extrinsic parameters (i.e.,R and

t) can be represented by identity matrix and zero-vector, respectively. Camera

intrinsic matrix K is defined as following matrix form:

K =

fx s cx

0 fy cy

0 0 1

 , (2.2)

where f and c denote the focal length and the principal point of each coordinate

according to its subscript, respectively. s is skewness parameter which can be

ignored by 0. Owing to the X is mapped to the x on to the image plane where

a ray joining the X to camera center C, the cx and cy is center pixel coordinate

of xy-plane in ideal case. Therefore, a projective relationship between x and X

is can be represented by x = [x, y, 1]⊤ = [fxX + cx, fyY + cy, 1]
⊤.

Multi-view geometry

3D structures cannot be properly estimated by single camera owing to every

3D points in a ray are projected on to a same 2D point. In this case, multiple

images from different view position are required for 3D reconstruction to avoid

perspective or affine ambiguity [28,29]. Let two camera centers in different po-

sitions are C1 and C2, then the geometry between X and two projected point

x1 and x2, which are on two images from each camera (Fig. 2.2). The geometry

11



Figure 2.2: Epipolar geometry. P and C denote camera matrix and center,

respectively. e denotes epipole and l is epipolar line. Subscript of the notations

indicates number camera which composes single-view domain.

from two images and 3D structure is called epipolar geometry. If camera matri-

ces (i.e., P1 P2) and the correspondence (i.e., x1 and x2 are projected by same

X) are given, then the X can be estimated where two rays meet, which indicate

that the rays of C1 to P1 and C2 to P2. Baseline indicate joining line from the

C1 to C2, and meeting point between the baseline and image plane is denoted

by epipole (i.e., e1 and e2 on each image plane according to its subscript). A

line l passing through x and e is defined by epipolar line, which can be written

as l = e × x. Then, epipolar line on second image plane is l2 = e2 × x2. Since

the relationship between x2 and x1 can be represented by 2D transformation

H, the l2 can be written as follows:

l2 = e2 ×Hx1, (2.3)
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where x2 = Hx1. The cross product form of (2.3) can be rewritten as a linear

equation form by:

l2 = [e2]×Hx1, where e2 = [e1, e2, e3]
⊤,

[e2]× =

 0 −e3 e2
e3 0 −e1
−e2 e1 0

 .
(2.4)

Let a fundamental matrix F = [e2]×H; then (2.4) simplified by:

l2 = Fx1, (2.5)

which represents a relationship between a point on image plane of C1 and a

line on image of C2. In this case, because the x2 is a point on l2, x
⊤
2 l2 = 0.

Therefore, the relationship between the two projected points x1 and x2 can be

written as following equation:

x⊤
2 Fx1 = 0. (2.6)

2.2 Camera calibration

Camera calibration is a prerequisite for various 3D computer vision applica-

tions [28, 29], which indicates estimating camera intrinsic matrix relating to

internal properties of the camera. The methods for camera calibration can be

categorized by photogrammetric and self-calibration methods. In this section,

an introduction to understand basic camera geometry and theoretical back-

ground of both calibration methods are described.

Photogrammetric calibration

The photogrammetric method estimates camera parameters based on 2D to

3D point correspondences by using calibration rigs (Fig. 2.3). A 3D coordinate
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Figure 2.3: Calibration using checkerboard rig. Predetermined rig with 3D

points can easily provide image coordinate (i.e., 2D) to world coordinate (i.e.,

3D) correspondence.

system can be predetermined based on the calibration rig, and the coordinates

of projected on image coordinate system can be easily determined. Although

any types of rig can be used, the checkerboard type is one of the most widely

used shapes of rig. In this case, because the board-type rig can be regarded as

a plane (i.e., 2D) structure in 3D space, the 3D points on the rig have the same

depth values (i.e., Z = 0). Therefore, (2.1) can be written as follows:

xy
1

 = K
[
r1 r2 r3 t

] XY0
1


= K

[
r1 r2 t

] XY
1

 ,

(2.7)

where ri denotes ith column vector of the rotation matrix R. Therefore, rela-

tionship of the 2D x = [x, y, 1]⊤ to 3D X = [X,Y, Z, 1]⊤ correspondence can

be represented by 2D transformation form x = Hx′, where H = K[r1 r2 t].
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The 2D transformation (i.e., 3× 3 matrix) reduces the degree of freedom 11 to

8, which means that less constraints are required compared to direct computa-

tion of the camera matrix P (i.e., 3× 4 matrix). A detail method to solve the

parameters of (2.7) is described in appendix A.

Self-calibration

Although the photogrammetric calibration is an efficient and robust method to

estimate the parameters, the calibration rig cannot be set for various applica-

tions. In this case, the parameters of the camera matrix have to be obtained by

2D to 2D correspondence based on the epipolar geometry as presented in 2.1. In

the Fig. 2.2, the e2 is a projected point of C1 by C2, which can be formulated

by e2 = P2C1. Subsequently, X can be represented by deprojected point of

x1 (i.e., X = P†
1x1, where P†

1 indicates pseudo inverse of P1) and x2 = P2X.

Owing to the epipolar line on second image is defined by l2 = e2 × x2, the l2

can be substituted by following equations:

l2 = (P2C1)× (P2P
†
1x1)

= [e2]×(P2P
†
1)x1 = Fx1,

(2.8)

where F = [e2]×P2P
†
1. Owing to the equation is equivalent to (2.5), the camera

matrices P1 and P2 can be obtained by decompose the fundamental matrix.

However, the camera matrices that are directly decomposed by F contain inher-

ent perspective ambiguity [28]. Since the problem comes from unknown camera

geometry, it can be removed by applying the camera intrinsic matrix K. In this

case, the K−1 can be regarded as a 2D transformation matrix to decompose

the geometric parameters. Let the transformed point x̂ = K−1x. Consequently,

the x̂ is on an image coordinate where independent to the camera intrinsic

properties, which is defined as normalized coordinate; then (2.6) can be written
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Stereo vision ToF Structured light

Distance ≤ 2m 0.4m-5m 0.2m-3m

Accuracy low high medium

Resolution medium low high

Hardware cost low medium high

Environments Textured region Indoor/outdoor Indoor

Table 2.1: Comparisons of depth-sensing modalities

as

x̂⊤
2 Fx̂1 = x⊤

2 K
−⊤
2 FK−1

1 x1 = 0. (2.9)

In this case, an essential matrix E can be defined as E = K−⊤
2 FK−1

1 . By using

(2.8) and (2.9), the essential matrix can be derived by

E = [t]×R, (2.10)

where t and R are translation vector and rotation matrix of (2.1), respectively.

Because the camera intrinsic parameters are unvarying in most case, K can

be precomputed by the photogrammetric method as described in section 2.2.

Consequently, the camera pose parameters (i.e., t and R) are obtained by de-

compose (2.10) in most applications.

2.3 Depth-sensing modalities

A depth camera is a type of camera that can capture 3D objects or scenes, which

contains depth information of the scenes different to conventional monocular

cameras. Depth-sensing technologies have been rapidly developed in the last

few decades, and such devices are widely adopted owing to their efficient depth-

sensing ability. In this section, several representative depth-sensing modalities
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are briefly introduced that are widely used in 3D computer vision area (Fig.

2.4).

Stereo camera

A stereo vision technique uses a pair of monocular cameras, which are analo-

gous to human binocular vision systems. Each of these pinhole cameras is built

in different positions to estimate depth based on the multiple view geometry

(section 2.1). When x and x′ are projected points from a 3D point X onto left

and right images as illustrated in Fig. 2.4 (a), a depth value Z of X can be

calculated using triangle similarity:

x− x′

O−O′ =
f

Z
, Z =

(O−O′)f

x− x′
, (2.11)

where O and O′ denote centers of left and right camera, respectively. The

method has lower implementation cost, and does not require built-in light

sources. However, matching correspondence between points is difficult in tex-

tureless regions (Table 2.1).

Time-of-flight camera

Time-of-Flight (ToF) cameras calculate the distance between the camera and

objects by measuring the time delay between the emitted laser and the reflected

light from objects (Fig. 2.4 (b)). The distance can be calculated by analyzing the

phase shift of the emitted and returned light, since the light speed is constant.

Although these cameras have a large measurement range and fast capture speed,

they have low spatial resolution and complex manufacturing (Table 2.1).

1https://www.stemmer-imaging.com/en/knowledge-base/
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(a) Stereo vision

(b) Time-of-Flight (c) Structured light

Figure 2.4: Examples of several representative single-view depth-sensing tech-

nologies. The sources of figures (b) and (c) are noted in footnotes1.
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(a) RGB-D pair from stereo camera

(b) RGB-D pair from ToF camera

(c) RGB-D pair from structured light camera

Figure 2.5: RGB-D pairs from different depth-sensing modalities. Depth images

contain heavy noise and missing regions regardless of sensing modalities.
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Structured light camera

Structured light cameras project predefined patterns on the object and cal-

culate the disparity between the original projected pattern and the observed

pattern deformed by the scene. These cameras have higher spatial resolution

and accuracy compared to other techniques, however, such cameras are suitable

for indoor applications because of sunlight can interference with light patterns

(Table 2.1).

Motivation

Although such types of depth cameras are widely used for various 3D vision

applications because of their efficient depth-sensing ability, the quality of depth

images is inaccurate owing to heavy noise and missing values as shown in Fig.

2.5. Since inaccurate depth information can mislead downstream tasks, improv-

ing the quality of depth images is a prerequisite.
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Chapter 3

Related Works

3.1 Overview

In this chapter, a literature review that related tasks to generate the enhanced

depth dataset and several RGB-D sensor based applications are presented. The

chapter is composed of the tho main subjects: 1) High-precision depth acquisi-

tion, and 2) RGB-D sensor based 3D vision tasks. First, a brief review of the

point cloud registration approaches that are a primal task for the proposed

framework is presented. Subsequently, an introduction of depth enhancement

methods is followed in the second subject. In the following section, the liter-

ature reviews of several representative RGB-D camera based 3D vision tasks

comprised of conventional applications and learning-based applications are de-

scribed.
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(a) Point-to-point method (b) Point-to-plane method (c) Plane-to-plane method

Figure 3.1: Examples of representative ICP methods. Standard ICP [30] is a

point-to-point method. The point-to-plane and plane-to-plane methods can be

represented by methods [31] and [32], respectively.

3.2 High-precision depth acquisition

In this section, a review of point cloud registration schemes and depth enhance-

ment methods are illustrated. A brief review of the point cloud registration

approaches are firstly presented and a description of literature on depth image

enhancement methods are followed.

3.2.1 Point cloud registration

Problem statement

The proposed method generates a high-quality depth image by leveraging the

depth information from the local frame set as illustrated in Fig. 1.4. To obtain

the relative pose parameters of the frames, the transformation matrices of the

frames were estimated using a point cloud registration scheme. Let {P,Q} ∈ R3

be two point clouds from different frames of view. To align the point cloud Q

to P, the estimating optimal transformation matrix T∗ can be formulated as

T∗ = argminT ∥P− T(Q)∥, which minimizes the distance between the point

cloudP and the transformedQ (i.e., T(Q)). The general pipeline for point cloud

registration consists of three main steps: feature descriptor extraction, match-

ing correspondence, and transformation parameter estimation. In the following
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Figure 3.2: Example of conventional feature descriptor in [33]. The method

defines a local descriptor based on the histogram of query points of neighboring

points.

section, the phases of the point cloud registration task are briefly summarized.

Classical point cloud registration

(1) Global registration

Iterative closest points (ICP) [30] based methods have been the most widely

used approaches for the point cloud registration. The method finds the most

closest point for each point in a point cloud, then the correspondences are

used to estimate the transformation matrix. The registration parameters are

iteratively updated toward minimize the mean squared error between the coor-

dinates of the corresponding points. However, only considering Euclidean dis-

tance cannot sufficiently find the matching points. To alleviate the problem of

the standard ICP method, several have been proposed to improve the robust-

ness by considering geometric structures. While the ICP method determine

the correspondences by point-to-point distance (Fig. 3.1 (a)), a point-to-plane

23



Figure 3.3: Example of supervised learning pipeline for point cloud registration

in [26]. The method extract local 3D patches and correspondence labels from

different views of existing RGB-D reconstruction data. The matching and non-

matching pairs of patches are collected as a volumetric representation.

method (Fig. 3.1 (b)) [31] uses the intersection of normal vector of the point

to find the corresponding points. The method calculates the distance from the

point to the tangent plane of the corresponding point instead of finding the

Euclidean distance of the closest point. Generalized-ICP [32] method combine

the point-to-point method and point-to-plane method (Fig. 3.1 (c)) into a sin-

gle framework. The method uses local planar surface structure to determine

the distance, which can be regarded as a plane-to-plane method. However, such

approaches require initial alignment to avoid local minima and expensive com-

putations.

(2) Local feature descriptors

The traditional point cloud registration methods rely heavily on handcrafted

feature descriptors. These methods estimate the relative poses directly from

manually defined feature descriptors to determine geometric correspondence.

In recent decades, several descriptors have been proposed to define geomet-
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Figure 3.4: Example of unsupervised learning pipeline for point cloud registra-

tion in [34]. A feature vector is learned for every point in a hierarchical manner

based on the PointHop method [35] in the feature learning module, and feature

distance for point pairs is calculated to determine correspondences. Final reg-

istration parameters are optimized using a well-known matrix decomposition

scheme.

ric features using local 3D neighboring points. Spin images [36] represent a

local surface by composed of oriented points and images. Several methods fo-

cused on geometric or feature histograms of the local region to define the de-

scriptors [37,38]. SIFT [39] proposed scale-and-rotation-invariant descriptor by

clustering features using Hough transform to estimate object poses. SURF [40]

and ORB [41] proposed more efficient the scale-and-rotation-invariant descrip-

tors compared to the SIFT scheme. FPFH [33] combines local coordinates and

surface normals of points in neighboring regions (Fig. 3.2). Despite the im-

provements achieved by these approaches, their performance is still sensitive to

the quality of data (e.g., noise, low resolution, missing values); moreover, these
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methods exhibit limitations in distinguishing the features in certain texture-less

primitives, such as planes or smooth surfaces.

Learning-based point cloud registration

(1) Supervised approach

Recent learning-based methods have been proposed that outperform the tra-

ditional feature-based methods. These approaches attempt to improve the dis-

tinguishing ability by extracting deep-learning feature descriptors [42–44], or

determining accurate correspondence, which is directly used for the final pa-

rameter estimation step [26, 45, 46]. 3DMatch method [26] learned 3D feature

descriptors using Siamese 3D convolutional neural network (CNN) to extracts

local feature descriptors from a signed distance function (Fig. 3.3). PPFNet [47]

learned globally informed context by combining point-pair-features with the

points and normals within a local vicinity. 3DSmoothNet [43] uses a Siamese

network to learn the local point descriptors, voxelized by Gaussian smooth-

ing technique. Although these methods have shown promising performance,

such descriptor-based approaches only work on local patches and require ex-

pensive computational cost. D2-Net [48] and R2D2 [49] employed fully convo-

lutional architectures [50] to design faster and dense 3D feature descriptors.

CORSAIR [51] extended the fully convolutional geometric features model to

learn a global shape embedding with local point-wise features. D3feat [52] also

leveraged the fully convolutional network to predict salient feature descriptors.

These methods train high-level features from the surface dataset or highly con-

sistent features from the given pose dataset. However, obtaining an accurate

GT dataset is difficult, and the pretrained GT dataset may be biased toward

its own dataset.

(2) Unsupervised approach
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Several unsupervised approaches have been proposed recently to address the

GT collection problem. USIP [53] learned feature points by detecting highly

repeatable and accurately localized points and respective transformed pairs

from arbitrary transformations. DeepMapping [54] uses deep neural networks

as auxiliary functions for multiple point clouds registration from scratch to a

globally consistent frame. Deep-3DAligner [55] learned spatial correlation of

point clouds by optimizing randomly initialized latent features. Feature-metric

registration [56] enforces the optimization of registration by minimizing feature-

metric projection error. CEM [57] learned a prior sampling distribution over the

transformation space using a cross-entropy method. PPFFoldNet [58] proposed

a self-supervised version of [47] based on folding-based auto-encoding of fea-

ture pairs. R-PointHop [34] learns local-to-global hierarchical features based on

PointHop [35] classification method (Fig. 3.4). However, their aim is to perform

registration in a sparse-object scale; thus, the application of these methods to

the dense point cloud obtained from the RGB-D camera is time consuming.

Recently, an unsupervised method for point cloud registration of data from the

RGB-D dataset was proposed [27]. The method leverages differentiable align-

ment and rendering schemes to enforce unsupervised losses. This method en-

ables dense point cloud registration from arbitrarily scanned RGB-D frames in

a fully end-to-end unsupervised manner. Inspired by this work, a multiple view

based enhanced depth generation scheme has been invented that can be con-

structed using only a RGB-D stream dataset, without any other GT datasets.
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Figure 3.5: Example framework of RGB image leveraged depth enhancement

method [59]. The method combines color and partial depth information to en-

hance the depth image.

3.2.2 Depth image enhancement

Problem statement

The commercial RGB-D cameras have been widely used for various 3D vision

applications. However, owing to their insufficient depth information can mislead

downstream tasks, considerable researches to enhance the quality of the depth

images have been proposed. The studies on depth enhancement strategies can

be categorized based on the use of conventional image processing methods or

deep-learning-based methods. The both approaches are reviewed in following

sections.

Conventional image processing based methods

Early studies to improve the depth quality were mainly accomplished by classi-

cal spatial [60] or transform-domain [61] filtering methods. However, the filter

based methods do not consider the inherent property of images, and usually

induce blurry structures. Another approaches focused on high-quality RGB

images that are synchronized with depth images [12–15, 59] (Fig. 3.5). These

approaches leverage the abundant color texture information for guidance in re-
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Figure 3.6: Example framework of leaning-based depth enhancement method

[69]. The method employed a deep-learning network for guidance depth en-

hancement framework.

covering depth image by modeling the correlation between the color and depth

geometries. The methods regularized total variation [62,63], adopted objective

functions for modeling the correlation [12,13,64], and transferred salient struc-

ture from color to depth image [15, 65]. Several considerable studies solved by

the problem low-rank matrix completion based on an idea of similar RGB-D

patches approximately lie in a low-dimensional subspace [14, 66–68]. However,

the performance of the model based methods are limited in characterizing the

complex dependency [69].

Deep-learning-based methods

Since filter-based methods are vulnerable to heavy noise and missing values,

deep-learning-based approaches have been proposed to address these issues.

Several methods designed deep-learning frameworks to model the statistical

relationship between the color and depth images [69–71]. Similar to the filter-

based methods [14,15], such approaches leveraged RGB images for guidance to
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Figure 3.7: Scanning system to leverage multiple camera for deep-learning-based

depth enhancement framework in [17]. The method requires specific camera

setting to construct dataset, which has limited to own scanning environments.

enhance the depth images (Fig. 3.6). However, the methods require high-quality

depth images that are difficult to be obtained. Another branch of studies has at-

tempted to model the noise that is inherent to raw input depth images [72–74].

As natural noise is combined with various factors (e.g., light sources, materials,

and distances), estimating a realistic noise model is difficult [25]. Other effec-

tive approaches have been investigated to generate a reliable synthetic dataset

that can be obtained using generative models [25, 75, 76]. Owing to the dif-

ficulty in obtaining abundant real-world datasets, such approaches have been

used to generate reliable synthetic GT datasets with realistic simulators [77,78].

Such synthetic-dataset-based methods require accurate scenes from real-world

datasets [25]. A few studies attempted to use a real-world dataset for supervi-

sion by incorporating their own scanning system for the task. These methods

used multi-view depth supervision as nonrigid reconstruction [16], and multi-

camera setting [17] for real-world depth-supervised approaches. Although the
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Figure 3.8: 3D reconstruction using multiple 2D images [79]. 3D structures and

motion parameters of each view are simultaneously estimated.

methods demonstrated superior results when compared to previous methods,

such scanning systems have difficulty in constructing real-world datasets be-

cause they require fixed scanning environments (Fig. 3.7). Consequently, an

applicable real-world supervised depth dataset is required.

3.3 RGB-D sensor based 3D vision tasks

RGB-D camera based 3D vision applications can be categorized by the con-

ventional and learning-based applications. In this dissertation, two representa-

tive single-view-based tasks that can be classified as each part are selected to

verify the superiority of the proposed depth generation framework (i.e., 3D re-

construction for conventional application, and monocular depth estimation for

learning-based application). A brief review of each task is introduced separately

in following subsections based on its approach; 3D reconstruction is described

in the conventional application part, and monocular depth estimation is intro-
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Figure 3.9: Example of RGB-D camera based SLAM pipeline in [2].

duced in learning-based application part.

3.3.1 3D reconstruction

3D reconstruction is a long standing problem in computer vision area. A pur-

pose of the task is merging partially captured visual information from various

view positions to understand entire 3D structures. Based on sensing modal-

ity, the 3D reconstruction approaches can be categorized by 2D based and

3D based methods. The both approaches utilize multiple single-view images

captured by various view positions, however, the only difference is that the

geometrical dimensions of input images are whether 2D or 3D (i.e., RGB or

RGB-D images). The major objective of the 3D reconstruction is estimating

3D structures and camera motions simultaneously in single coordinate system

(i.e., world coordinate). The 2D based methods can be represented by struc-

ture from motion (SfM) [79–81], which recover 3D scene based on point-wise

feature correspondence from multiple images (Fig. 3.8). Given multiple images,

the 3D structures and camera parameters of each image are simultaneously

estimated to minimize total reprojection error. Conventional SfM approaches

heavily rely on the robustness of feature descriptors ((i.e., SIFT [39], SURF [82],

and ORB [41])) and bundle adjustment (BA) techniques [83] to obtain jointly
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optimized 3D structures and motion parameters of each view [80, 84, 85]. The

methods are vulnerable to textureless or reflective surfaces owing to the insuffi-

cient correspondence. Recent studies leverage deep-learning techniques to cope

with the problems. The methods have shown improved performance compared

to the conventional methods based on direct regression of the structures and

motions [86, 87] or using photometric constraints [88–90]. Although the meth-

ods have shown promising results, the 2D based approaches are time-consuming,

and have inherent scale-ambiguity.

Several depth-sensing modalities have been developed for efficient percep-

tion of 3D structures, such as, stereo camera [91], time-of-flight [92], structured

light [93], and shape from focus [94], which generally provide synchronized RGB

and depth image in real-time. The major objective of the RGB-D camera based

method is accurate pose estimation which is globally optimized in input frames.

The methods estimate 3D surface and camera ego-motion (i.e., pose parame-

ters) simultaneously that fuse multiple RGB-D images [2, 3, 95, 96], which can

be represented by simultaneously localization and mapping (SLAM) technique

(Fig. 3.9).

An approach is tracking camera motion based on currently built 3D struc-

tures, such as voxel or surfel-based methods [1, 95, 97, 98], and keyframe-based

method [99,100]. However, the camera motion parameters are not refined in the

methods, which induce drift camera trajectory and misalignment error of mod-

els [3]. Considerable researches have been proposed to alleviate the problems by

solving optimization problem of pose graph or fragment alignment [101–104],

and applying BA for direct [85, 105, 106] or indirect [2, 107, 108] manner. Al-

though the existing methods have shown promising results, the methods mainly

focused on accurate fusion of multi-view information (i.e., surface reconstruction

and motion estimation), which are based on single-view depth images. Because

33



Figure 3.10: General training pipeline of supervised MDE. The depth prediction

network directly regresses depth by penalizing the difference between the GT

and predicted depth images.

performance of the fusion problem fundamentally relies on the quality of each

single-view depth structures, enhancing the single-view depth images can be a

low-level contribution for the 3D reconstruction task.

3.3.2 Monocular depth estimation

Monocular depth estimation (MDE) is a task that estimating depth for each

pixel in single RGB image. The task plays a key role to understand 3D scene

structures for various vision applications, such as SLAM [110], autonomous

driving [111], and augmented reality [112]. The methods for the MDE can be

categorized by supervised and unsupervised approaches. In this subsection, lit-

erature review on the both approaches are described.

Supervised approach

The supervised methods for the MDE leveraged large scale RGB-D dataset to

impose direct depth supervision for the corresponding RGB image [7–10] dur-
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Figure 3.11: The general training pipeline of unsupervised MDE in [109]. The

method simultaneously trains depth and pose networks based on multi-view

geometric constraints by penalizing photometric consistency loss.

ing training (Fig. 3.10). The purpose of supervised methods is to train depth

prediction networks by penalizing the difference between the GT and predicted

depth images. The approaches have been progressed impressively based on the

abundant open RGB-D dataset both for the indoor (e.g., NYU-V2 [20], Scan-

Net [23]) and outdoor (e.g., KITTI [113], Cityscapes [114]) environments. Early

methods designed pixel-level regression models based on convolution neural net-

works to minimize the differences between the predicted and GT depths [7,115].

After that, various supervised methods have been proposed based on pioneering

studies. FCRN [116] designed a fully convolutional architecture with residual

learning. AdaBins [10] employed a transformer-based architecture block to build

depth range bins to estimate depth adaptively for each image. NCRFs [117] used

a conditional random fields optimization strategy rather than direct regression

method. DCNN [118] used a spacing-increasing discretization strategy and de-

fined an ordinal regression loss function to cast the depth estimation problem
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as an ordinal regression problem. Virtual Normal [119] enforced geometric con-

straints for the depth estimation that determine virtual normal directions from

randomly selected points.

Supervised methods provide superior results as compared to self-supervised

methods, especially for the indoor environment dataset [112], because such di-

rect depth regression approaches are independent of the multi-view constraints

required by the common self-supervised methods. These methods sufficiently

cope with the challenging scene structures from the indoor dataset and have rel-

atively efficient training pipelines as compared to self-supervised methods [112].

However, owing to the depth images from the RGB-D camera suffer from inher-

ent noise and missing values [11, 17, 18, 25], obtaining a reliable depth dataset

is challenging.

Self-supervised approach

Self-supervised depth estimation schemes have been proposed to address the

GT depth collection problem [109,120]. The general self-supervised approaches

are based on multiple-view geometry [28], where 3D structures are estimated

by using multiple two-dimensional images from different view positions. The

methods utilize pairs of stereo [120] or monocular [109] image sequence datasets,

which are used for several three-dimensional (3D) perceptive modalities (e.g.,

stereopsis, structure from motion). Such types of dataset enable to impose mul-

tiview geometric constraints on their own learning pipelines, and relatively easy

to obtain as compared to an accurate depth-labeled dataset. These approaches

train the depth to minimize the difference between the warped image from

different view positions and the original image based on the photometric con-

sistency loss [121] (Fig. 3.11). The methods have achieved results comparable

to those of supervised methods by training an additional pose network [109]
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or considering the correspondence between pairs of the left-right images [120]

without the depth-annotated dataset. However, such approaches result in a

more complex and heavier learning pipeline and induce more expensive com-

putations for training. Furthermore, self-supervised methods generally have a

lower performance than supervised methods [112], and especially results exhibit

significantly lower performance when trained on an indoor environment dataset

than on an outdoor dataset [122,123]. Several textureless regions complex cam-

era motions in indoor scenes can disturb the convergence of the photometric

loss, which is fundamental for the depth and pose prediction. Recent stud-

ies attempted to improve the performance of self-supervised MDE for indoor

scenes [122–126]. The methods have shown promising results by modifying the

typical self-supervised MDE frameworks, which are generally constructed by

supplementing additional modules to improve robustness [122, 123]. However,

such approaches require complex training pipelines, which induce expensive

computations during training.
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Chapter 4

Enhancing Depth Image using
Local Frame Set Registration

4.1 Overview

Accurate depth acquisition is a prerequisite for several downstream computer

vision and robotics applications. Recently, commercial RGB-D cameras have

been widely adopted as single-view depth sensors owing to their affordable

price and portability. However, they still suffer from insufficient depth quality

due to heavy noise and missing values. Because deficient depth information can

mislead the tasks, enhancing the depth quality when using a commercial depth

camera is a fundamental task for achieving superior performance in 3D vision

applications.

In this chapter, a method for generating the enhanced depth dataset is pre-

sented. The framework only requires a sequentially scanned RGB-D dataset,

which can be easily provided by the open RGB-D datasets [20,23] or arbitrary

scanned frames. By using the sequential RGB-D frames, insufficient depth infor-
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mation from a certain frame is supplemented by the nearby frames of view based

on the multiple view leveraging strategy. The proposed depth image generation

method consists of two steps: local frame set alignment and depth rendering.

The first step is achieved by the unsupervised point cloud registration scheme.

First, consecutive frames in a local spatial region are defined as a local frame

set consisting of a target frame and neighboring frames. Then, the depth frames

in the local frame set were aligned to the target frame. In order to achieve the

precisely aligned the frame set, a novel unsupervised point cloud registration

scheme was adopted [27]. The authors used differentiable alignment and ren-

dering strategy [127] to impose consistency losses between projected rendered

point cloud and input image (Fig. 4.1). Since the primary objective is to es-

timate the pose parameters optimized in the local frame set, the registration

parameters are trained based on an overfit-training scheme. The subsequent

rendering step is attained by projecting the aligned point clouds onto the lo-

cal target frame using a pixel-level weighted averaging scheme. This process is

performed in each local frame set. Consequently, the final depth datasets are

constructed using several local frame sets, and each local frame set is trained

independently.

The major advantage of the proposed method is that the high-quality depth

dataset can be constructed under various scanning environments using only the

RGB-D stream dataset. Inspired the fact that the depth quality of a certain

frame can be supplemented by the depth information from different frames

of view, the method privileged abundant open RGB-D datasets to achieve

the multi-view-based data generation. Although several multi-view-based ap-

proaches had been proposed, the method requires setting of their own scanning

environments [17], or cannot properly preserves geometric structures in some

cases [18]. Especially in [18], the motion parameters have been estimated using
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Figure 4.1: End-to-end unsupervised learning pipeline of [57]. The method en-

code two RGB-D images into a feature map and project them into a 3D point

cloud. Subsequently, the correspondences between the two feature point clouds

are extracted to estimate transformation parameters, which minimize the con-

sistency losses.

Figure 4.2: Process of depth dataset construction using global frame set. di and

d̄i indicate ith original and generated depth. A total of N depth images are

generated using a single pipeline.
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Figure 4.3: Process of depth dataset construction using local frame set. A prop-

erly selected number of neighboring frames is used to generate a depth image.

The registration parameters of each local frame set are optimized independently.

classical handcrafted features [39], which means that the dataset is relatively

vulnerable to texture-less and noisy regions. Furthermore, the pose parameters

were optimized with global frame set that induce misalignment error, and the

inevitable simplification for surface reconstruction causes the over-smoothing

errors (Fig. 4.2). On the other hand, the proposed method optimizes the param-

eters with adequate numbers of frames and does not require the simplification

process (Fig. 4.3). Then, the deep-learning overfitting property enables robust

estimation pose parameters for the depth registration. The method is applica-

ble to generate enhanced depth dataset from arbitrary scanned RGB-D stream

without any other GT dataset, and the can be utilized as a new benchmark-

ing standard of the real-world depth dataset for the performance evaluation
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metrics.

4.2 Unsupervised RGB-D point cloud registration

4.2.1 Problem formulation

Point cloud has become a primary data format to represent the 3D real-world

environments since the rapid development of the depth-sensing devices. Due to

the depth cameras can only perceive scenes within their limited view range,

the registration of the partial information is required to complete a 3D scene

structures. Point cloud registration is a problem to estimate a geometric trans-

formation relationship that aligns one point cloud (i.e., source) to another one

(i.e. target). Given with calibrated depth images captured by the depth camera

from different view positions can be transformed to point clouds in each 3D

coordinate system, and the point clouds can be aligned by estimating relative

pose parameters which comprise rotation matrix R and translation vector t.

Let P, Q are the target and source point cloud, respectively. Then, the point

cloud registration problem of the two point clouds can be formulated by:

argmin
R∈SO(3),t∈R3

∥P− Ts→t(Q)∥, (4.1)

where Ts→t(Q) indicates the transformation of point cloud Q to P, which is

composed of R and t. Then, a relationship between transformed point q
′
=

[X
′
,Y

′
,Z

′
, 1]⊤ ∈ Ts→t(Q) and point q = [X,Y,Z, 1]⊤ ∈ Q in homogeneous

coordinates can be written as:
X

′

Y
′

Z
′

1

 =


r11 r12 r13 tx

r21 r22 r23 ty

r31 r32 r33 tz

0 0 0 1




X

Y

Z

1

 , (4.2)
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where ri,j denotes element of ith row and jth column in R, and t indicates

translation element for each axis in t according to its subscript. For the proposed

multi-view leveraged depth image generation framework, estimating the relative

pose parameters of multiple frames is a fundamental task, which can be solved

by the point cloud registration scheme. The pose optimization problem for all

multi-view frames can be formulated as follows:

T∗ = argmin
T

∑
i

∑
j ̸=i

∥Pi − Tj→i(Pj)∥,

where T = {Tj→i(·)} ∀i, j,
(4.3)

where Tj→i(Pj) indicates the transformation of point cloud Pj to Pi, and T is a

set of the transformation matrix Tj→i(Pj). The optimal transformation matrix

set T∗ is estimated to minimize the errors between every possible pairs in the

global frame set. However, the reconstructed meshes (i.e., 3D surface data)

from the globally optimized pose parameters contain occasional misalignment

[25] and over-smoothing errors [17], which can mislead the results of the deep-

learning-based approaches.

To address these problems, a local-frame-set-based method have been pro-

posed by using sequentially scanned depth frames in independent local spatial

regions. The enhanced depth image for a certain frame (i.e., target frame), the

pose parameters are optimized in the local frame set, which consist of the tar-

get frame and neighboring frames (i.e., source frames). For a point cloud Pi

from ith depth frame and its jth neighbor point cloud set Pj , the point cloud

registration problem of the neighboring frames to the local target frame (i.e.,

ith frame) can be represented by the sub-formulation of (4.3) as follows:

T∗
i = argmin

Ti

∑
j

∥Pi − Tj→i(Pj)∥,

where Ti = {Tj→i(·)} ∀j.
(4.4)
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The transformation matrices T∗
i of the frame sets are optimized independently,

and each frame set is aligned to its local target frame, unlike the pose estimation

of the entire frame as in (4.3).

4.2.2 Correspondence prediction

Point data representation

Let an input RGB-D image I ∈ R4×H×W sized with H×W . Then, a generated

point cloud P ∈ R(6+F )×N from I is represented by a set of a point p =

(px,prgb,pF ) ∈ P, where px ∈ R3 is 3D coordinate, prgb ∈ R3 denotes color

value, and pF ∈ RF indicates a extracted feature vector from the network. Due

to the prgb, pF , and depth value can be easily determined by each corresponding

pixel, the remaining task is converting the xy-coordinates values from depth

image pixel d = (x, y, d)⊤ to a point vector px = (X,Y, d, s)⊤. According

to (2.1), a relationship between d and px in homogeneous coordinate can be

formulated as follows:

d ∼ K[I|0]px, (4.5)

where I is an identity matrix, and 0 is zero-vector. Then, (4.5) can be written

by:


x

y

d

 ∼


fx 0 cx 0

0 fy cy 0

0 0 1 0



X

Y

d

s



=


fxX + cxd

fyY + cyd

d

 ,

(4.6)
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where s is unknown scale factor. Subsequently, both side of (4.6) can be nor-

malized by dividing last dimension value (i.e., depth value), then the X and Y

can be obtained by:


x/d

y/d

1

 =


u

v

1

 =


fx

d
X + cx

fy

d
Y + cy

1

 , (4.7)

where u and v denote normalized image coordinates. Therefore, final X, Y

coordinates of px are obtained by:

X =
(u− cx)

fx
d, Y =

(v − cy)

fy
d. (4.8)

Definition of corresponding weight

Given with a target point cloud P and source point cloud Q, the method [27]

determined the quality of the correspondence between (P,Q) based on distance

ratio of nearest neighbor points as following equation:

r =
D
(
p,Ts→t(q1)

)
D
(
p,Ts→t(q2)

) , (4.9)

where Ts→t(qi) denotes ith nearest point in transformed Q to P, and D
(
p, q

)
indicates distance between the p and q on feature space. The main idea of

the distance ratio between the first and second nearest neighbor points is to

determine uniqueness of correspondence. Owing to a point which has many

similar correspondence is less unique (i.e., large r value), and since 0 ≤ r ≤ 1,

the final weight of each correspondence is defined by ω = 1−r, where 0 ≤ ω ≤ 1.
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Figure 4.4: Example of pose learning pipeline via geometric loss functions. Sev-

eral approaches [27,109] train network toward minimize difference between tar-

get and source frame using depth and photometric loss functions to estimate

pose parameters.

Figure 4.5: Learning pipeline of method [27]. The proposed method train a

network to estimate optimal registration parameters of input RGB-D pair from

different frames of view.
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Figure 4.6: Modified learning pipeline for the local frame set registration. The

proposed method was modified to estimate optimal registration parameters of

every possible pairs in a local frame set based on method [27].

4.2.3 Consistency loss functions

Original loss functions for two frames registration

The alignment of the local frame set is performed by estimating the relative

pose parameters. To estimate the pose parameters between frames of different

depths, a state-of-the-art point cloud registration scheme was adopted [27]. The

authors used differentiable alignment and rendering strategy [127] to impose

consistency losses between projected rendered point cloud and input image

(Fig. 4.5). With a set of k corresponding points M = {(t, s, ω)i : 0 ≤ i < k},

three losses, i.e., depth, photometric, and correspondence losses are defined as

follows:
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LD =
∑
Ω(dt)

|dt − Proj(px
s→t)|,

LP =
∑
Ω(It)

|It − Proj(prgb
s→t)|,

LC = |M|−1
∑
M

ω(px
t − px

s→t)
2,

where ps→t = T(ps),

(4.10)

where p = (px,prgb) ∈ R6 is a point which contains px, which is a 3D coordi-

nate, and prgb, which indicates the color space. d ∈ Ω(d) and I ∈ Ω(I) indicate

the depth, and RGB pixel value, respectively, t and s denote the elements of

the target and source frame, respectively. |M| is the cardinality of the putative

correspondence, and Proj(p) denotes the projected rendered image from p ac-

cording to its superscript. ω is defined using (4.9) based on the distance ratio

between the first and second nearest neighbor points of the two point clouds.

The depth and photometric loss functions (i.e., LD, and LP in (4.10)) are widely

used in pose dependent applications [27,109] toward minimize difference of ge-

ometric structures between target and source frame (Fig.4.4). The consistency

losses (i.e., LC) train the feature encoder to generate a unique correspondence

between the two frames, which is fundamental to derive the relative camera

poses using input RGB-D frames. Contrast to existing pose-supervised point

cloud registration approaches [42, 46, 128], this method is performed in a fully

end-to-end unsupervised manner. This method can be applied to any other

unannotated RGB-D stream dataset for the enhanced depth generation.

Modified loss functions for local frame set registration

To attain a precisely aligned local frame set, the pose estimation problem in

(4.4) was modified by employing the unsupervised learning method [27] for each
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local RGB-D frame set as illustrated in Fig 4.6. Let us consider k neighboring

frames of the ith target frame. Then the loss functions of the local set can be

represented by a summation of (4.10) as follows:

LDi =
∑
Ω(dt)

k∑
j=1

|dt − Proj(px
s,j→t)|,

LPi =
∑
Ω(It)

k∑
j=1

|It − Proj(prgb
s,j→t)|,

LCi =
∑
M

k∑
j=1

ωj |Mj |−1(px
t − px

s,j→t)
2,

(4.11)

whereM = [M1,Mk]. For consistency between the target frame and the frames

from the other rendered neighboring frames, the frames are trained simultane-

ously to precisely align every possible pair in the local frame set (i.e., alignment

between a neighbor frame and the target frame, and between a neighbor frame

and another neighbor frame). To derive robust corresponding points for accu-

rate pose estimation in the frames, the features are trained only in the frame

set, which implies that the features are overfit trained in a certain local frame

set. The overfit-trained feature encoder yields feasible feature descriptors for the

local frame set, and precise pose parameters are achieved by the correspond-

ing coordinate geometry from the overfit-trained features. The overfit-trained

parameters can cope with challenging cases (e.g.,textureless regions) more ro-

bustly, compared to previous hand-craft feature based registration method [18]

(Fig. 4.7).

4.3 Weighted Procrustes analysis

The transformation matrices for every pairs in the frame set are updated toward

minimize the loss functions (4.11) during training. At each iteration, the trans-
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formation matrix is calculated using the geometric correspondences. Suppose

M = {(t, s, ω)i : 0 ≤ i < k} is a set of correspondence which was obtained by

(4.9). The objective of point cloud registration problem is to estimate a transfor-

mation matrix T which minimize the difference between the correspondences.

A method to solve the problem is Procrustes method [129], which minimize

the mean squared error ε between the corresponding points in M as following

equation:

ε =
1

N

∑
M

∥px
t − Ts→t(p

x
s )∥

2, (4.12)

where Ts→t(p
x
s ) denotes transformation of a source point px

s to target point.

However, (4.12) does not consider the weight of corresponding points, which

indicates that every correspondence in M has same weight. To distinguish the

weight of each corresponding point, weighted Procrustes method have been

proposed [46] by modifying the original equation. The weighted mean squared

error εω is formulated as follows:

εω = |M|−1
∑
M

ω∥px
t − Ts→t(p

x
s )∥

2

=
∑
M

ω̄∥px
t −

(
Rpx

s + t
)
∥2

=
∑
M

ω̄∥px
t −Rpx

s − t∥2

(4.13)

where |M| denotes cardinality of the correspondence set, and ω̄ indicates nor-

malized weight (i.e., divided by |M|). R and t are rotation matrix and trans-

lation vector of (2.1), respectively. First, an optimal translation vector t∗ can

be derived by differentiating (4.13) with respect to t and equates the partial

derivative to 0:

∂

∂t
εω =

∑
M

ω̄
(
px
t −Rpx

s − t
)2

= −2

(∑
M

ω̄px
t −

∑
M

ω̄Rpx
s −

∑
M

ω̄t

)
= 0.

(4.14)
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Let Xt = [px
t,1, ...,p

x
t,|M|], and Xs = [px

s,1, ...,p
x
s,|M|], then the t∗ can be repre-

sented by:

t∗ =
(
Xt −RXs

)
W1, (4.15)

where W indicates diagonal matrix formed by ω̄ (i.e., W = diag(ω̄)), and 1 =

[1, ..., 1]⊤. Then, (4.14) can be represented by:

εω = trace
(
(Xt −RXs − t1⊤)W(Xt −RXs − t1⊤)⊤

)
. (4.16)

Subsequently, the matrix Xs can be written as Xs = KXs+Xs

√
w̄
√
w̄

⊤
, where

w̄ = [ω̄1, ..., ω̄|M|], and K = I −
√
w̄
√
w̄

⊤
. Similarly, Xt = KXt +Xt

√
w̄
√
w̄

⊤
.

Since t can be substituted by t∗, (4.16) can be represented by:

εω = trace
(
XtK−RXsK)W(XtK−RXsK)⊤

)
= trace

(
XtKWK⊤X⊤

t

)
+ trace

(
RXsKWK⊤X⊤

s R
⊤)

− 2trace
(
XtKWK⊤X⊤

s R
⊤),

(4.17)

due to
√
w̄
√
w̄

⊤
= W11⊤. Therefore, (4.12) is minimized when the last negative

term is maximized:

argmax
R

(
trace

(
XtKWK⊤X⊤

s R
⊤))

=
∑
k

σk(XtKWK⊤X⊤
s ),

(4.18)

where σk(A) denotes kth largest singular value of matrix A. Because (4.18) is

maximized whenR can most similarly represent the geometric space of previous

terms (i.e.XtKWK⊤X⊤
s ) on its own dimensions, the optimal R∗ is obtained by:

R∗ = USV ⊤,

S = diag(1, ..., 1, det(U)det(V )),

UΣV ⊤ = SVD(XtKWK⊤X⊤
s ),

(4.19)
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where SVD(A) denotes singular value decomposition of a matrix A. Since the

term XtKWK⊤X⊤
s is 3 × 3 matrix, U and V ⊤ are guaranteed to be 3 × 3

orthogonal matrices (i.e., rotation), and S is 3×3 diagonal matrix (i.e., scaling).

The optimal pose parameters (i.e., R∗, and t∗) are updated by (4.15) and (4.19)

toward minimize the loss functions (4.11) during training.

4.4 Depth image rendering

After estimating the registration parameters of the frames, the neighbor frames

are transformed to the target frame. To obtain depth image from the merged

point cloud, the points in 3D coordinate have to projected onto a 2D image co-

ordinate. SupposeX = [X,Y, d, 1]⊤ is a 3D point, and d = [u, v, d]⊤ is projected

X in a depth image. According to (4.7), the normalized image coordinates u

and v are calculated by:

u =
fx

d
X + cx, v =

fy

d
Y + cy. (4.20)

Because the purpose of this work is generating an refined depth image by lever-

aging the merged point cloud from multiple frames, an efficient weighted av-

eraging scheme was adopted in [130]. When the 3D point X is projected onto

the rasterized image plane, di,k ∈ [di,1,di,n] is defined by kth nearest projected

point to pixel i with n points in radius R. Then the weight ωi,k for di,k is defined

as:

ωi,k = e−d̂i,k , (4.21)

where d̂i,k = di,k/R
2. A point that projected on the nearby pixel is considered

as reliable point and weighted more in exponential way. Let a depth value of

point di,k = zi,k; then, the weighted summation of m depth values for pixel i is

computed as follows:
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d̄i =

m∑
k=1

ω̂i,k · zi,k, (4.22)

where d̄i is the refined depth value for pixel i and d̂i,k is normalized weight

factor. The closer the depth is, the more it is weighted to compute the refined

depth value for the rasterized pixel.

4.5 Dataset construction

4.5.1 Network overfit training

The objective of the proposed method is to generate the high-quality depth

image inspired by the fact that the insufficient depth information can be sup-

plemented by depth images from neighboring frames of view. The multi-view

leveraged strategy is achieved by the local frame set point cloud registration

scheme, which is conducted in a fully end-to-end unsupervised manner. To esti-

mate accurate relative pose parameters in the local frame set, the network was

intentionally overfit trained by minimizing the loss function in (4.11). The final

loss function for each local frame set is defined as a linear combination of each

term of (4.11) as follows:

L = LD + λPLP + λCLC , (4.23)

where λP = 1 and λC = 0.1. The network was trained independently at each

frame set using Adam optimizer based on a single batch and a 10−4 learning

rate for 30 epochs without weight decay. The neighboring frames in each local

frame set is defined as three previous and successive frames with a two-frame

interval (i.e., a total of six frames). The feature dimensions and number of

correspondences are 32 and 200, respectively. In this case, center region of
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(a) Input RGB-D frame set

(b) Method [39] (c) Proposed

Figure 4.7: Comparisons of point cloud registration results. (b) and (c) are

registration result of (a) from the method [39] and proposed method, respec-

tively. The conventional hand-craft feature based method failed to handle the

textureless regions. On the other hand, the proposed method found proper cor-

responding points based on the robustly overfit-trained features.
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Figure 4.8: Overall process of proposed multi-view leveraged depth enhancement

framework. The registration parameters in the local frame sets are aligned to a

certain frame (i.e., the box frames outlined with red dashed lines). The weighted

average of the aligned depth images in the frame set at the pixel-level is obtained

to generate the enhanced depth image (i.e., the box frame outlined with red

solid lines).
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Figure 4.9: Overall process of pairwise data construction. The depth pairs are

overfit-trained individually in their own local frame set as illustrated in Fig.

4.8. Ri, ti represent the rotation matrix and translation vector of the ith depth

frame in the corresponding local frame sets, respectively. The images outlined

with colored (i.e., red, green, and blue) dashed lines are the original input depth

images and the corresponding images outlined with colored solid lines are the

generated depth images.
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(a) (b) (c)

Figure 4.10: Examples of enhanced depth generation results. (a): RGB images;

(b): original depth images; (c): Enhanced depth images generated using the

proposed method. Each row has corresponding frame. The proposed method

significantly reduced the noises and covered the missing values for various scan-

ning environments.
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RGB-D image pair is cropped during training to discard marginal region that

generally contain inaccurate depth information. An input image pair for training

is obtained by resizing the cropped pair to reduce computation times. Given

with H × W size image pair, when cropped size of each direction are h and

w, and final purposing image size is H
′ ×W

′
, an intrinsic camera matrix K in

(2.2) have to be corrected as K
′
according to the input image size as follows:

K
′
=


sxfx 0 sx(cx −W − w/2)

0 syfy sy(cy −H − h/2)

0 0 1

 , (4.24)

where sx = W
′
/(W −w) and sy = H

′
/(H−h). K

′
have to precomputed before

train the network at each local frame set. Final input image size was set as

256× 256. For rendering stage, radius R = 2.0 for (4.21) and maximum sixteen

points were rendered for a pixel. The network was trained using an Intel i7-

6700 desktop system with 3.40 GHz processors, 32GB of memory, and NVIDIA

TITAN RTX (24GB) GPU machine. The PyTorch frameworks was employed

for the implementation, and about one minute was taken to train a single frame

set.

4.5.2 Overall framework

As described in section 4.2 and 4.4, the proposed framework comprised of two

stages: 1) local frame set registration and 2) depth rendering. Figure 4.8 shows

the overall process that consists of local frame set registration, and depth ren-

dering is performed in each local frame set. Consequently, the final depth dataset

is constructed using multiple local frame sets, and each local frame set is trained

independently as illustrated in Fig. 4.9. Figure. 4.10 shows the proposed method

significantly improved the quality of depth images on several environments. The
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Sampling interval 1 2 3 4 5

Overlap ratio (%) 97.8 ± 0.6 96.4 ± 0.5 95.2 ± 0.6 93.7 ± 0.7 92.6 ± 0.8

Table 4.1: Sampling rate and average overlap ratio on ScanNet [23] dataset

Interval ± 1 frames ± 2 frames ± 3 frames ± 4 frames ± 5 frames

1 92.2 ± 1.38 94.3 ± 0.76 97.8 ± 0.42 98.2 ± 0.29 98.4 ± 0.24

2 94.5 ± 0.67 97.8 ± 0.44 98.6 ± 0.29 98.7 ± 0.28 98.8 ± 0.22

3 96.1 ± 0.49 98.4 ± 0.31 98.7 ± 0.27 98.8 ± 0.22 98.9 ± 0.21

4 97.7 ± 0.37 98.7 ± 0.23 98.7 ± 0.24 98.8 ± 0.21 99.0 ± 0.19

5 98.1 ± 0.34 98.7 ± 0.23 98.8 ± 0.23 98.9 ± 0.18 99.2 ± 0.15

Table 4.2: Pixel coverage performance (%) on ScanNet [23] dataset

generated image has reduced noise with the averaging manner, and the missing

values are covered in the detected region in the neighbor frames.

4.6 Experimental results

4.6.1 Overview

In the experiments, quality of the generated depth images are evaluated by two

aspects. First, the depth images are directly compared to previously bench-

marked depth datasets by evaluating preservation ability of original geometric

structure. Then, the constructed dataset is used as a depth supervision dataset

for a deep-learning-based depth enhancement framework to verify the usability

as a new benchmark depth dataset. Quantitative comparisons were evaluated

both for the real-world and synthetic datasets using 1,000 randomly sampled

images. The proposed dataset was adopted as GT depth dataset for real-world

case, and synthetic depth dataset was also leveraged to clarify the superiority

of the proposed depth dataset.
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(a)

(b)

Figure 4.11: Real-world and synthetic dataset configuration.

4.6.2 Data configuration and target of comparison

The proposed depth generation framework requires sequentially scanned RGB-

D dataset. The dataset was constructed by using the ScanNet [23] dataset,

which provides millions of precisely synchronized RGB-D stream images from

various indoor scenes. Since the optimal number of neighboring frames and

sampling interval are dependent on each scene, the parameters were deter-

mined statistically. The average overlap ratio of two images according to their

interval of frames is presented in Table 4.1. Table 4.2 shows several case studies

for pixel coverage results of generated depth when the frame interval and the
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Figure 4.12: Graph for number of neighboring frames and coverage performance.

number of neighboring frames are variant. While the performance is improved

when the interval and number of frames are large, such parameters reduce reg-

istration accuracy and increase computation times. Therefore, the neighboring

frames in a local frame set are defined by three previous and successive frames

with a two-frame interval where the performance is almost saturated and have

a manageable number of frames (Figs. 4.12 and 4.13). The image size was set

to 256×256 pixels, and a total of 20K pairs of original RGB-D and enhanced

depth images were generated (Fig. 4.11 (a)). For a fair comparison of quali-

tative analysis, the depth images from the ScanNet [23] dataset were used as

the real-world dataset, whereas those from SceneNet [131] were used for the

synthetic dataset. The comparison of quantitative analysis was evaluated using

both the realistic and synthetic datasets. To simulate the original raw depth

images for the evaluation, Kinect-style noise was added to the original synthetic

GT depth images by embedding a mixture of shapes and illuminations of the

scene [132] (Fig. 4.11 (b)). The generated dataset were compared against the

color optimization scheme [133] as used in NYU-V2 [20] (Colorization), and the
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(a) Original depth

(b) Result using

2 intervals and ± 3 frames

(c) Result using

5 intervals and ± 5 frames

Figure 4.13: Depth generation results using different intervals and number of

frames. Results using large intervals and number of frames do not rapidly in-

crease coverage performance.
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reconstruction based method [18] (Recon-global). For fair comparisons, same

frame set with proposed method was used for the reconstruction based method

rather than usage of global frame set (Recon-local).

4.6.3 Enhanced depth image generation

The depth generation results using real-world dataset (i.e., ScanNet [23]) are

shown in Figs. 4.14, 4.15, and 4.16. Figures. 4.17 and 4.18 illustrate the results

from the synthetic dataset (i.e., SceneNet [131]). The results from Coloriza-

tion method [133] recovered the depth images by optimizing the distribution of

the depth intensities using a colorization scheme [133]. However, the method

only focused to cover the missing regions without considering to preserve the

scene structures. The dataset constructed by Recon-global [18] induced a mis-

alignment error in certain frames owing to globally optimized pose parameters

(e.g., Case (c) of figs.4.14, 4.15 and 4.16). Moreover, the reconstructed meshes

also contained an over-smoothing problem, particularly in object boundaries or

thin structures (e.g., Case (c) of Figs.4.14 and 4.15). In contrast, the proposed

method did not use redundant depth frames from a target frame for the depth

data generation. The estimated registration parameters in this study were op-

timized in an independent local frame set to alleviate the misalignment error.

Subsequently, the generated depth image was directly rendered with the inverse-

projected point cloud, according to (4.22), to mitigate the over-smoothing prob-

lem from the reconstructed meshes. The proposed method accurately preserved

the original geometric structures compared to previous methods without mis-

alignment error. For fair comparisons, same number of frames with the proposed

method were used for the reconstruction based dataset generation method (i.e.,

Recon-local part in each subfigure) rather than usage of global frame set. Note

that the point cloud simplification process was not applied to avoid the over-
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(a) RGB (b) Original

(c) Recon-global

SSIM:0.8724, SPE:2.0718

(d) Recon-local

SSIM:0.9306, SPE:0.6452

(e) Colorization

SSIM:0.9195, SPE:0.6377

(f) Proposed

SSIM:0.9687, SPE:0.2581

Figure 4.14: Qualitative depth generation results of real-world dataset.
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(a) RGB (b) Original

(c) Recon-global

SSIM:0.8906, SPE:1.8344

(d) Recon-local

SSIM:0.9453, SPE:0.5532

(e) Colorization

SSIM:0.9258, SPE:0.4818

(f) Proposed

SSIM:0.9775, SPE:0.1931

Figure 4.15: Qualitative depth generation results of real-world dataset.
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(a) RGB (b) Original

(c) Recon-global

SSIM:0.0000, SPE:None

(d) Recon-local

SSIM:0.0000, SPE:None

(e) Colorization

SSIM:0.9743, SPE:0.1251

(f) Proposed

SSIM:0.9812, SPE:0.1048

Figure 4.16: Qualitative depth generation results of real-world dataset.
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(a) RGB

(b) Noise-added (c) Ground-truth

Figure 4.17: Qualitative depth generation results of synthetic dataset.
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(a) Recon-global

SSIM:0.8692, SPE:1.8665

(b) Recon-local

SSIM:0.9595, SPE:0.5384

(c) Colorization

SSIM:0.9327, SPE:0.7736

(d) Proposed

SSIM:0.9794, SPE:0.2518

Figure 4.18: Qualitative depth generation results of synthetic dataset.
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(a) Recon-global (b) Recon-local

(c) Colorization (d) Proposed

Figure 4.19: Example visualizations of Fig 4.17. The color image is visualized

based on the distance to the GT depth image.

69



smoothing error, and the results were directly rendered by the merged point

cloud similar to the proposed method. Despite the local frame registration strat-

egy shows promising results compared to the original method, such hand-craft

feature based scheme failed to handle the textureless region in both global and

local cases (i.e., Recon-global and Recon-local parts in Fig. 4.16 (c)). On the

contrary, the proposed method properly coped with the challenging regions

based on the robustly overfit-trained features. The distance error between GT

and the results of each method for Fig. 4.17 is visualized in Fig. 4.19.

The preservation ability of the original geometric structures was evaluated to

verify the superiority of the proposed depth dataset using structural similarity

(SSIM) and the comparisons of structure-preserving loss defined in [18]. The

SSIM between two image x and y is defined by:

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
, (4.25)

where µ and σ denote mean pixel value and standard deviation of an image

according to its subscript. σxy indicates covariance of x and y, and c1 and c2

are constants to avoid zero division. The metric is used to measure similarity

between the original and generated depth images as proposed in [18, 25]. The

other structure-preserving loss in [18] is defined as follows:

LS =
1

N

∑
p

(
max
q∈Ω(p)

|∇ŷq| − max
q∈Ω(p)

|∇xq|
)2

, (4.26)

where N is the total number of pixels and Ω(p) denotes a local window cen-

tered at pixel p. LS was proposed to calculate similarity between the geometric

structures of predicted depth ŷ and original depth x by imposing the maximum

gradient magnitude loss around edge pixels. In this experiment, (4.26) was com-

parisons of point to measure the difference of geometric structures between the

generated depth and original depth. The Structural Preservation Error (SPE)
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modified by the LS is defined as following equation:

SPE =
1

N

∑
p

(
max
q∈Ω(p)

|∇xq| − max
q∈Ω(p)

|∇yq|
)2

, (4.27)

where ∇ŷq is substituted by ∇yq. Table 4.3 presents quantitative comparison

of the methods for both metrics on the real-world (i.e., ScanNet [23]) and syn-

thetic dataset (i.e., SceneNet [131]). From the results, proposed depth dataset

outperforms the dataset from the previous methods [20, 23] in both metrics.

Table 4.4 presents the errors between the synthetic GT images and recovered

images from simulated original images. The SSIM in (4.25) was evaluated, and

Mean Absolute Error (MAE), and Root Mean Squared Error (RMSE) metrics

were additionally employed as follows:

MAE =
1

N

∑
i

|yi − xi|,

RMSE =

√
1

N

∑
i

(yi − xi)2,

(4.28)

where N is the total number of pixels, and yi − xi indicates the difference be-

tween ith pixel value of the image x and y. The results demonstrated that the

generated depth images from the proposed method were most similar to the

GT images. The superiority of proposed method is twofold: 1) the pose param-

eters optimized in the local frame set overcame the data misalignment error

from the globally estimated parameters and 2) the over-smoothed mesh recon-

struction error was alleviated by direct rendering of the merged point clouds.

The proposed framework enables to generate high-quality depth images with-

out damaging original geometric structures compared to previous benchmark

dataset generation methods.
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Method
ScanNet [23] SceneNet [131]

SSIM ↑ SPE ↓ SSIM ↑ SPE ↓

Colorization 0.925 ± 0.044 0.864 ± 0.086 0.918 ± 0.039 0.786 ± 0.091

Recon-global 0.884 ± 0.072 2.463 ± 0.363 0.895 ± 0.067 1.709 ± 0.168

Recon-local 0.946 ± 0.037 0.556 ± 0.084 0.967 ± 0.035 0.563 ± 0.075

Proposed 0.976 ± 0.006 0.252 ± 0.019 0.979 ± 0.011 0.273 ± 0.015

Table 4.3: Comparison of geometric structure between generated and original

depth image

Method SSIM ↑ MAE ↓ RMSE ↓

Colorization 0.945 ± 0.012 0.465 ± 0.019 0.348 ± 0.015

Recon-global 0.909 ± 0.032 0.575 ± 0.034 0.418 ± 0.028

Recon-local 0.962 ± 0.014 0.375 ± 0.026 0.354 ± 0.018

Proposed 0.985 ± 0.006 0.278 ± 0.013 0.183 ± 0.009

Table 4.4: Quantitative depth generation results on SceneNet [131] dataset

4.6.4 Supervision for learning-based framework

Learning architecture

The constructed depth dataset from the proposed method is applied to a deep-

learning-based depth enhancement framework to verify the usability as a new

benchmark dataset for depth supervision. To train the deep neural network

for the depth enhancement framework using the constructed depth dataset,

a deep Laplacian pyramid depth image enhancement network (LapDEN) was

adopted [18]. The network predicts an enhanced depth image from a coarse to

fine scale using a progressive upsampling scheme in an image pyramid without

loss of scale-variant features based on the deep Laplacian pyramid network

architecture [134] (Fig. 4.20).
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Loss functions

Given the original depth image x and the corresponding generated depth image

y, the loss functions to train the depth enhancement network ŷ are defined

as L = LD(ŷ,y) + λsLS(ŷ,x) [18], where LD and LS indicate data loss and

structure preserving loss, respectively. The LD is a combination of L1 distances

between ŷ and y in terms of depth, depth gradient, and surface normal. LD was

adopted in this study to directly train the network using the generated depth

geometry for enhanced depth prediction. The other structure-preserving loss

term LS in (4.26) was proposed to calculate similarity between the geometric

structures of predicted depth ŷ and input depth x by imposing the maximum

gradient magnitude loss around edge pixels. The method utilized the original

input depth x for supervision instead of supervised depth y to prevent the

data misalignment errors between the input and the supervised depth image.

However, the maximum gradient value around the heavy noise and the missing

values, which may have contained in the original depth x, can disturb the

training of the depth geometry obtained from the supervision dataset. In this

study, the proposed depth dataset were used as supervision for the LS term

rather than the raw input depth data. That is, the loss functions from the

original paper were modified as:

LS =
1

N

∑
p

(
max
q∈Ω(p)

|∇ŷq| − max
q∈Ω(p)

|∇yq|
)2

, (4.29)

where ∇xq is substituted by ∇yq. Owing to the pairwise depth dataset con-

structed using the proposed framework, the results does not suffer from the

data misalignment problem. The accurate depth dataset enables to supervise a

more elaborate geometric structure compared to previous depth dataset.
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Figure 4.20: Deep Laplacian pyramid depth enhancement network proposed

in [18]. The network predicts an enhanced depth image from a coarse to fine

scale using a progressive upsampling scheme in an image pyramid based on the

architecture.

Accuracy evaluation

The depth enhancement results from the proposed dataset were compared

against the results obtained using both the traditional filter-based and deep-

learning-based approaches using the real-world datasets; rolling guidance filter-

ing (RGF [137]) and joint filtering (JF [15]) were considered for the filter-based

methods, whereas depth denoising and refinement network (DDRNet [16]),

reconstruction-based depth enhancement (RDE [18]), self-supervised depth de-

noising (SDD [17]), deformable kernel networks for joint image filtering (DKN

[135]), and discrete cosine transform network for guided depth map super-

resolution (DCTNet [136]) were considered for the learning-based-methods.

Note that the refinement part of the network in the DDRNet have been omitted

for a fair comparison as in [17]. The depth enhancement results of the several

comparative methods were evaluated using both real-world and synthetic depth

datasets in qualitative and quantitative manners (Figs. 4.21, 4.22, and 4.23).

The default parameters of the filter-based methods (RGF [137], JF [15]) were
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(a) RGB (b) Input

(c) JF [15] (d) RDE [18] (e) SDD [17]

(f) DKN [135] (g) DCTNet [136] (h) Proposed

Figure 4.21: Qualitative depth enhancement results of NYU-V2 [20] for real-

world dataset.
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(a) RGB (b) Input (c) GT

(d) JF [15]

SSIM:0.8736, RMSE:0.3327

(e) RDE [18]

SSIM:0.9327, RMSE:0.2021

(f) SDD [17]

SSIM:0.9202, RMSE:0.2438

(g) DKN [135]

SSIM:0.9105, RMSE:0.2547

(h) DCTNet [136]

SSIM:0.9123, RMSE:0.2455

(i) Proposed

SSIM:0.9788, RMSE:0.1621

Figure 4.22: Qualitative depth enhancement results of ScanNet [23] for real-

world dataset.
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(a) RGB (b) Input (c) GT

(d) JF [15]

SSIM:0.8869, RMSE:0.4011

(e) RDE [18]

SSIM:0.9235, RMSE:0.2327

(f) SDD [17]

SSIM:0.9019, RMSE:0.2708

(g) DKN [135]

SSIM:0.8984, RMSE:0.2891

(h) DCTNet [136]

SSIM:0.9008, RMSE:0.2774

(i) Proposed

SSIM:0.9639, RMSE:0.1772

Figure 4.23: Qualitative depth enhancement results of SceneNet [131] for syn-

thetic dataset.
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(a) JF [15] (b) SDD [17]

(c) DKN [135] (d) DCTNet [136]

(e) RDE [18] (f) Proposed

Figure 4.24: Example visualizations of depth enhancement methods for Fig.

4.22.
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(a) JF [15] (b) SDD [17]

(c) DKN [135] (d) DCTNet [136]

(e) RDE [18] (f) Proposed

Figure 4.25: Example visualizations of depth enhancement methods for Fig.

4.23.
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Method SSIM ↑ MAE ↓ RMSE ↓

RGF [137] 0.893 ± 0.040 0.434 ± 0.042 0.341 ± 0.038

JF [15] 0.877 ± 0.049 0.450 ± 0.046 0.339 ± 0.040

DDRNet [16] 0.845 ± 0.038 0.506 ± 0.049 0.424 ± 0.035

RDE [18] 0.938 ± 0.015 0.304 ± 0.021 0.203 ± 0.019

SDD [17] 0.919 ± 0.019 0.384 ± 0.025 0.241 ± 0.021

DKN [135] 0.909 ± 0.020 0.419 ± 0.031 0.255 ± 0.025

DCTNet [136] 0.911 ± 0.022 0.399 ± 0.036 0.246 ± 0.023

Proposed 0.974 ± 0.011 0.255 ± 0.020 0.163 ± 0.015

Table 4.5: Quantitative results of depth enhancement on ScanNet [23] dataset

Method SSIM ↑ MAE ↓ RMSE ↓

RGF [137] 0.887 ± 0.043 0.504 ± 0.052 0.399 ± 0.046

JF [15] 0.890 ± 0.041 0.511 ± 0.055 0.404 ± 0.048

DDRNet [16] 0.836 ± 0.039 0.515 ± 0.048 0.426 ± 0.042

RDE [18] 0.921 ± 0.022 0.288 ± 0.038 0.222 ± 0.028

SDD [17] 0.904 ± 0.034 0.399 ± 0.043 0.263 ± 0.035

DKN [135] 0.899 ± 0.039 0.405 ± 0.048 0.284 ± 0.037

DCTNet [136] 0.905 ± 0.038 0.401 ± 0.045 0.276 ± 0.033

Proposed 0.964 ± 0.014 0.257 ± 0.025 0.176 ± 0.019

Table 4.6: Quantitative results of depth enhancement on SceneNet [131] dataset

used, as in their provided codes. The distance error between GT and the results

of each method for Figs. 4.22 and 4.23 are visualized in Figs. 4.24 and 4.24,

respectively.

The quantitative comparison was evaluated based on the SSIM, RMSE,

and MAE metrics as introduced in (4.27) and (4.28). Figures 4.21 and 4.22

present the qualitative analysis results of depth enhancement based on the

original NYU-V2 [20] and ScanNet [23] dataset, respectively. Because SDD [17],

DKN [135], and DCTNet [136] are only utilized for depth denoising or super
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resolution, the methods cannot cope with the missing depth values appropri-

ately. Although filter-based methods covered the missing holes marginally, the

results were inadequate when retrieving the entire scene. Only RDE [18] per-

formed with promising results in the comparative methods; however, partial

noisy regions remained, especially in object boundaries, which originated from

the data misalignment error between the generated depth and original depth

data. Furthermore, the method failed to recover thin objects in certain cases

(e.g., Fig. 4.22 (e)) owing to the over-smoothed mesh reconstruction error in

its dataset. Table 4.5 presents a quantitative comparison of the methods. The

results demonstrate that the depth enhancement results from the proposed

dataset outperformed those of the other state-of-the-art comparative methods.

As shown in Fig. 4.22 and Table 4.5, the proposed dataset were used as GT

dataset (Fig. 4.22 (c)) for the evaluations rather than the previously bench-

marked dataset [23] owing to the superiority of the proposed dataset.

Synthetic depth data were also evaluated to clarify the superiority of the

proposed depth dataset. Figure 4.23 illustrates the qualitative results of the

depth enhancement for the synthetic RGB-D dataset provided by SceneNet

[131]. To simulate the raw input depth images for the evaluation, Kinect-style

noise [132] was added to the original synthetic GT depth images (Fig. 4.23 (c)).

The RDE [18] achieved promising results similar to the real-world case; however,

inferior results were observed when recovering thin objects. Conversely, the

results from the proposed dataset show the successful recovery of such structures

when compared to the other methods. The comparative results of quantitative

analysis are listed in Table 4.6. The results demonstrated that the proposed

depth enhancement outperformed the other state-of-the-art methods on the

synthetic dataset case also.
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4.7 Discussion

Accurate 3D acquisition using depth-sensing devices is a prerequisite for many

computer vision applications. However, limitations of a single-view environment

(e.g., distance, light source, and occlusion) are severe for downstream tasks. Re-

cent studies have proposed deep-learning-based approaches for the single-view

depth enhancement of the data obtained from depth cameras, which typically

train the networks using a high-quality depth dataset. Because the performance

of deep-learning-based methods is primarily dependent on the quality of the su-

pervision dataset, the construction of a high-quality depth dataset is essential.

Inspired by the fact that most frames in local spatial regions overlap consid-

erably, the proposed method leverages multiple independent neighboring frames

for high-quality depth dataset generation. This study proposes a multi-view-

based dataset generation method using a local frame set. When compared to the

previous approaches, the proposed method significantly reduced misalignment

errors based on an unsupervised metric. The major difference from the previous

approaches is that the training units of this study were based on a local frame

set rather than global frames. Although the single-view depth from the depth

camera contains inherent noise, the proposed method enables the construction

of a reliable depth dataset using a pure RGB-D stream dataset without any

other supervised dataset. The dataset can increase the performance of most

real-world supervised depth enhancement tasks based on the proposed high-

quality supervision; moreover, the method can be used as a new benchmarking

standard for performance evaluation metrics on real-world depth datasets. Fur-

ther, the dataset generation pipeline can be combined with various other 3D

computer vision applications as a fundamental process for high-precision depth

acquisition.
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Chapter 5

Enhanced Depth Image for 3D
Vision Applications

5.1 Overview

Various 3D computer vision applications adopt the commercial RGB-D cameras

as single-view depth sensors owing to their efficient depth-sensing ability. How-

ever, inaccurate depth information of the original depth images can mislead to

perform the applications because the quality of depth image is primal to under-

stand geometric scene structures. To alleviate the inaccurate depth perception

problem, a novel method to generate the enhanced depth images was proposed

as described in chapter 4.

In this chapter, the generated depth images were applied to two repre-

sentative RGB-D camera based tasks for the conventional and learning-based

applications to verify the contributions of the proposed framework. First, the

depth images were applied to 3D reconstruction task, which is one of the most

longstanding problem in the computer vision area. The reconstruction results
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were compared both for the original and enhanced images in the aspect of global

point cloud registration. Subsequently, the generated images were employed as

depth supervision dataset for several monocular depth estimation frameworks

to verify the usability as a new benchmark depth dataset for the learning-based

applications. The experimental configurations and results of each task are pre-

sented in the following sections.

5.2 3D reconstruction

5.2.1 Overview

Recent depth-sensing modalities can efficiently perceive 3D scene structures in

single-view direction. Such devices generally provide synchronized RGB and

depth images, which are called RGB-D cameras. The major objective of the

RGB-D camera based method is accurate pose estimation which is globally

optimized in input frames. The methods estimate motion parameters and 3D

structures from the input frames, and final 3D surface is extracted using the

globally optimized pose parameters and scene structures [2, 3, 95, 96]. Because

the procedure is based on the merged partial point clouds from input frames,

point cloud registration is a primary task to obtain accurate motion parameters

of the multiple frames. However, inaccurate depth information in depth images

from the commercial RGB-D cameras can disturb estimating the spatial rela-

tionship of inter-frames. Since the problem fundamentally relies on the quality

of each single-view depth structure, the depth generation method in chapter 4

can contribute to improving the performance of the 3D reconstruction task.
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5.2.2 Key-frame selection

Most multi-view-based 3D reconstruction applications use sequentially scanned

image frames as input datasets. In such a video-type dataset, the difference

of visual information between inter-frames is dependent on the motion of the

camera. When the motion in a certain region is too small, the scanned images

from the region contain analogous scene structures. Owing to the frames can

reduce robustness and cause time-consuming, such redundant frames have to

be omitted in the preprocess. To alleviate these problems, an efficient key-frame

selection method is employed [138]. The method measures the entropy-difference

of frames in a video clip, and selects the most representative frame (i.e., key-

frame) in the frame set. Let hf (k) be the histogram of frame f and k be the

intensity level. If the size of images in the frames is M ×N , the probability of

appearance of the frame pf (k) can be written as:

pf (k) =
hf (k)

M ·N
. (5.1)

Then, the information quantity Qf (k) is defined as:

Qf (k) = log2
1

pf (k)
= − log2 pf (k). (5.2)

Since the entropy ef (k) of the quantization level k is defined by multiplication

of the Qf (k) and its probability in (5.1), the global entropy E information of

the frame can be represented by:

E =
∑
k

ef (k), (5.3)

where ef (k) = pf (k)Qf (k). Subsequently, the entropies of the quantization lev-

els are sorted in descending order. Each entropy is cumulated from the highest

towards the lowest entropy until it exceed the E:

Ethr =
n∑
m

em ≤ τ ·E, (5.4)
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Figure 5.1: Illustration of bundle adjustment. Xi is i
th 3D point, and Cj indi-

cates jth camera center. xij denotes observation point of Xi on Cj , and x̂ij is

re-projected xij .

where n denotes the index of intensity level when sum exceed the threshold

τ . For each of the intensity level entropies that used in order to reach the E,

the entropy-difference (ED) with the relevant intensity level between a certain

frame i and a nearby frame j is defined as:

ED(i, j) =

∑n
kmax−1

|ei(k)−ej(k)|
eik

kmax − n
. (5.5)

Consequently, the most representative frame of the video clip scanned in a

region can be determined that has maximum ED with neighbor frames in (5.5)

by comparing every possible pair of frames in the clip.
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5.2.3 Geometric optimization

3D reconstruction is the task of estimating 3D structures and camera motion pa-

rameters simultaneously. Therefore, errors of both parameters (i.e., 3D points,

pose parameters) have to be reduced to obtain accurate 3D models. Bundle

adjustment [83] is an algorithm to jointly refine 3D structure and motion pa-

rameters by minimizing sum of errors between the measured pixel coordinates

and the re-projected pixel coordinates (Fig. 5.1). According to (4.7), a rela-

tionship between normalized image coordinate and pixel coordinate in certain

camera can be written as:

x =


u

v

1

 =


fx 0 cx

0 fy cy

0 0 1



X

d

Y

d
1

 =
1

d
KX, (5.6)

where K and X denote camera intrinsic matrix, and a 3D point, respectively.

When the point X is located as Xw in world coordinate, predicted u
′
, v

′
coor-

dinates by projection of Xw can be represented by:

x̂ =


u

′

v
′

1

 =
1

d
K(RXw + t), (5.7)

where R is rotation matrix, and t is translation vector. If the 3D structures and

pose parameters are not exactly estimated, the error between observed point

x in (5.6) and predicted point x̂ in (5.7) can be determined by a distance be-

tween the points. Given with n 3D points and m camera positions, an objective

function to be minimized is defined as:

argmin
n∑
i

m∑
j

(eij)
2, (5.8)
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where eij = xij − x̂ij . xij is observed projection of Xi on Cj , and x̂ij denotes

predicted xij as (5.7). Such method is defined as bundle adjustment, which

refine the 3D structures and pose parameters simultaneously by minimizing the

re-projection error. Details of solving (5.8) is described in appendix B.

5.2.4 Experimental results

Data configuration and target of comparison

The ScanNet [23] dataset was used as real-world dataset for the qualitative com-

parison, and the quantitative analysis was evaluated using an ICL-NUIM [139]

dataset, which provides synthetic RGB-D images with GT pose parameters.

Since the point cloud registration is an essential task for the reconstruction

process, several point cloud registration methods were compared, both for the

classical hand-craft feature-based method and deep-learning-based methods;

SIFT [39], ORB [41], and Super4pcs [140] were considered for classical meth-

ods, whereas PREDATOR [141], DHVR [142], and R-PointHop [34] were con-

sidered for the learning-based methods. Then, each scene was reconstructed

using the selected key-frames by (5.5) with a 0.7 τ in (5.4), and the neigh-

boring frames of each frame (i.e., supporting frames to enhance depth frame

described in section 4) were also added in the case of reconstruction using origi-

nal depth images for fair comparison. The initial pose parameters for each point

cloud pair were estimated by the R-PointHop method [34], which showed best

performance among the comparative methods. Subsequently, the estimated 3D

structures and pose parameters were globally optimized by the bundle adjust-

ment technique as described in subsection 5.2.3. Final surfaces were extracted

using marching cubes [143] with 1 cm spatial resolution, and a total of 8 scenes

of ICL-NUIM [139] were used for the evaluations.
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Evaluation metric

For the quantitative analysis, a total of five metrics were evaluated; intersection-

over-union (IoU), Chamfer distance, relative rotation error, relative translation

error (RRE and RTE in [142]), and F-score ( [144]). The IoU is defined as

follows:

IoU =
|X ∩Y|
|X ∪Y|

, (5.9)

where | · | is the cardinality of a set. X and Y indicate the reconstructed and

GT surface, respectively. Chamfer distance CD between X and Y is defined as:

CD =
1

|X|
∑
x

miny|x− y|+ 1

|Y|
∑
y

minx|x− y|, (5.10)

where x ∈ X and y ∈ Y. RRE and RTE are defined by:

RRE(R̂) = arccos
trace(R̂⊤R∗ − 1)

2
,

RTE(t̂) = ∥t̂− t∗∥22,
(5.11)

where R̂, t̂ denote the predicted rotation matrix and translation vector, and

R∗, t∗ are the GT rotation matrix and translation vector. trace(·) is the trace

of matrix. Let points x ∈ X and y ∈ Y, then the distance ex→Y between

reconstructed point x and GT surface Y is defined as:

ex→Y = miny∥x− y∥. (5.12)

Then, the precision P(τd) of X can be defined by aggregation of the (5.11) for

any distance threshold τd:

P(τd) =
1

|X|
∑
x∈X

[ex→Y < τd], (5.13)

where [·] indicates Iverson bracket. Similarly, the distance ey→X is defined as:

ey→X = minx∥y − x∥. (5.14)
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(a) Ground-truth point clouds

(b) Noise-added point clouds

(c) Enhanced point clouds

Figure 5.2: Qualitative point cloud generation results on ICL-NUIM [139]

dataset. Left side: target points clouds; right side: source point clouds.
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(a) Super4pcs (N)

RRE:17.38, RTE:16.33

(b) Super4pcs (E)

RRE:4.18, RTE:3.69

(c) PREDATOR (N)

RRE:3.75, RTE:2.39

(d) PREDATOR (E)

RRE:1.97, RTE:1.08

(e) R-PointHoP (N)

RRE:3.11, RTE:2.09

(f) R-PointHoP (E)

RRE:1.74, RTE:0.96

Figure 5.3: Qualitative point cloud registration results of Fig. 5.2. The results of

noise-added case written as “N”, and the results by enhanced case are written

as “E” in the parentheses following each method.
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Method
Noise-added Enhanced

RRE (◦) ↓ RTE (cm) ↓ RRE (◦) ↓ RTE (cm) ↓

SIFT [39] 10.66 ± 1.94 16.29 ± 2.38 5.64 ± 0.66 8.17 ± 0.42

ORB [41] 8.73 ± 1.05 15.05 ± 1.74 6.49 ± 0.63 7.58 ± 0.38

Super4pcs [140] 6.58 ± 0.86 13.32 ± 1.26 5.35 ± 0.62 5.04 ± 0.33

PREDATOR [141] 3.97 ± 0.16 2.54 ± 0.14 2.06 ± 0.09 1.56 ± 0.09

DHVR [142] 3.88 ± 0.14 2.39 ± 0.13 1.92 ± 0.09 1.41 ± 0.06

R-PointHop [34] 3.47 ± 0.11 2.24 ± 0.08 1.84 ± 0.07 1.34 ± 0.04

Table 5.1: Point cloud registration results on synthetic dataset. The first group

of rows shows the results of conventional feature based methods, and the second

group of rows shows the results of deep-learning-based methods.

Therefore, the recall R(τd) of X for a distance τd is defined as:

R(τd) =
1

|Y|
∑
y∈Y

[ey→X < τd]. (5.15)

The final F-score F(τd) is defined by combining the precision P(τd) and recall

R(τd) in a summary measure as follows:

F(τd) =
2P(τd) · R(τd)
P(τd) + R(τd)

. (5.16)

Performance comparison

Since the point cloud registration task is fundamental to the 3D reconstruction

task, several point cloud methods have been compared on the ICL-NUIM [139]

dataset, both for noise-added and enhanced cases (Figs. 5.2 and 5.3). The quan-

titative evaluation on the registration parameters (i.e., RRE and RTE in (5.11)

of the comparative methods is presented in Table 5.1. The results show that

the performance of recent deep-learning-based point cloud registration meth-

ods has not a significant difference, when the enhanced depth case. Figures
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Metric Noise-added Enhanced

IoU ↑ 0.812 ± 0.106 0.966 ± 0.098

CD ↓ 0.074 ± 0.026 0.042 ± 0.022

RRE (◦) ↓ 2.430 ± 0.690 1.280 ± 0.560

RTE (cm) ↓ 1.150 ± 0.750 0.380 ± 0.230

F-score ↑ 0.748 ± 0.152 0.915 ± 0.077

Table 5.2: Reconstruction results on synthetic dataset using method [34].

5.4 and 5.5 illustrate qualitative comparison of reconstruction results on the

ScanNet dataset [23]. Each scene was reconstructed separately using original

RGB-D frames and the proposed dataset (i.e., subfigure (a) and (b) in both

figures). The reconstruction results from the original frame set still suffer from

the misaligned structures and motion parameters, which primarily come from

the inaccurate geometric information from the primitive depth images. On the

other hand, the depth images from the proposed method significantly improved

the reconstruction results by alleviating the problems of the original depth im-

ages.

The reconstruction results of the synthetic dataset [139] are shown in Figs.

5.6 and 5.7. The original depth images were simulated by adding noise [132]

to the GT depth images, similar to the method described in section 4.5. The

enhanced depth images from the proposed method show superior reconstruction

result compared to results from the simulated depth images. Table 5.2 presents

the quantitative evaluation on the dataset [139], and distance error (5.14) of

Figs. 5.6 and 5.7 are visualized in Fig. 5.8. Table 5.2 presents the quantitative

evaluation on the dataset [139] of 8 synthetic scenes. τd of (5.16) was set by 2

cm for the F-score. The experimental results demonstrated that the proposed

depth generation method enables to retrieve scene structures from the simulated
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(a) Reconstructed result using original frame set.

(b) Reconstructed result using enhanced frame set.

Figure 5.4: Qualitative reconstruction results on ScanNet [23] dataset. Scene

from different view direction of outlined (i.e., blue color) region is illustrated in

right column of each subfigure.
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(a) Reconstructed result using original frame set.

(b) Reconstructed result using enhanced frame set.

Figure 5.5: Qualitative reconstruction results on ScanNet [23] dataset. Scene

from different view direction of outlined (i.e., red color) region is illustrated in

right column of each subfigure.
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(a) Reconstructed result using ground-truth frame set.

(b) Reconstructed result using noise-added frame set.

IoU:0.8064, CD:0.076

(c) Reconstructed result using enhanced frame set.

IoU:0.9767, CD:0.039

Figure 5.6: Qualitative reconstruction results on ICL-NUIM [139] dataset. Scene

from different view direction of outlined (i.e., yellow color) region is illustrated

in right column of each subfigure.
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(a) Reconstructed result using GT frame set.

(b) Reconstructed result using noise-added frame set.

IoU:0.7834, CD:0.068

(c) Reconstructed result using enhanced frame set.

IoU:0.9691, CD:0.043

Figure 5.7: Qualitative reconstruction results on ICL-NUIM [139] dataset. Scene

from different view direction of outlined (i.e., green color) region is illustrated

in right column of each subfigure.
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(a) Noise-added scene of Fig. 5.6 (b) Noise-added scene of Fig. 5.7

(c) Enhanced scene of Fig. 5.6 (d) Enhanced scene of Fig. 5.7

Figure 5.8: Example visualizations of Figs. 5.6 and 5.7. The surface color is

visualized based on the distance to the GT surface.
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depth images only using the original dataset.

5.3 Monocular depth estimation

5.3.1 Overview

Depth estimation from a monocular image is a fundamental task in computer

vision. Early studies on monocular depth estimation (MDE) leveraged a large-

scale RGB-D dataset to supervise the depth for the corresponding RGB image

[7, 10, 115, 117, 119]. Supervised approaches have progressed significantly based

on the abundant open RGB-D datasets that are available for both indoor (e.g.,

NYU-V2 [20] and ScanNet [23] datasets) and outdoor (e.g., KITTI [113] and

Cityscapes [114] datasets) environments. However, in the case of the indoor

dataset, the depth images from the RGB-D camera suffer from inherent noise

and missing values. Therefore, obtaining a reliable depth dataset from indoor

scenes is challenging.

Self-supervised approaches have been proposed in several studies to alleviate

data-collection problems. The methods commonly require a monocular RGB

sequence [88,109,145,146] or a dataset with pairs of stereo images [120,147,148],

which are used for several three-dimensional (3D) perceptive modalities (e.g.,

stereopsis, structure from motion). Such approaches derive depth and motion

(i.e., camera pose) information based on multiview geometric constraints on

their own learning pipelines [112], instead of directly supervising the imprecise

results from classical depth estimation schemes. These methods have achieved

results comparable to those of supervised methods by training an additional

pose network [109] or considering the correspondence between pairs of the left-

right images [120]. However, most of these methods exhibit a significantly lower

performance when trained on an indoor environment dataset than on an outdoor
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dataset [122, 123]. Several researchers conjectured that the following reasons

make the self-supervised learning of the indoor dataset more challenging [125,

126]. First, indoor scenes contain several textureless regions, such as walls,

ceilings, and floors. Such untextured regions can disturb the convergence of the

photometric loss, which is widely used in self-supervised approaches [87, 109,

121]. Second, camera motions in indoor scenes are more complex than those in

outdoor scenes. Estimating the motion parameters of arbitrary scanned motions

in an indoor dataset is more difficult. Finally, the depth ranges of the indoor

scenes have an uneven distribution owing to various scanning environments,

whereas outdoor datasets generally contain simpler distributions from relatively

monotonous driving scenes [125]. In this case, the inherent scale ambiguity of

the MDE can disturb the training depth in indoor environments.

In several recent studies, attempts have been made to improve the perfor-

mance of self-supervised MDE for indoor scenes [122–126]. Progressive results

have been obtained by modifying the typical self-supervised MDE frameworks,

which are generally constructed by supplementing additional modules to im-

prove robustness [122,123]. However, such approaches result in a more complex

and heavier learning pipeline and induce more expensive computations for train-

ing. Contrary to self-supervised approaches, supervised methods enable depth

prediction with a relatively efficient learning framework, and their general per-

formance is superior to that of self-supervised methods [112]. Because the only

issue is the insufficient quality of the GT depth dataset, an accurate depth

dataset must be constructed to retrieve an efficient supervised learning pipeline

for the MDE of indoor scenes.
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5.3.2 Framework configuration

Problem formulation

The goal of MDE is to learn a mapping function, Φ : I → D, where I and D

denote domain of the RGB and the GT depth images, respectively. To construct

the supervised learning pipeline for the indoor dataset, the mapping function,

Φ, was trained by using a training dataset, T = {Ii,Di}i∈[1,N ] where Ii ∈ I

and Di ∈ D. The overall framework consists of two stages: dataset generation

stage and training stage. The first stage generates high-quality depth images

based on the proposed method in chapter 4, and a depth estimation network is

trained in a supervised manner based on the generated dataset. The proposed

learning pipeline enables the depth estimation of an indoor dataset by training

only a typical depth estimation network.

Overall framework

An improved supervised MDE framework are proposed for an indoor scene

using the enhanced depth dataset. The proposed framework involves two stages:

GT dataset construction stage and training stage. GT dataset is achieved by

the proposed method in chapter 4, which generates high-quality depth images

of indoor scenes by using sequentially scanned RGB-D frames. The method

can provide pairs of RGB and enhanced depth images, which can be directly

leveraged for the supervised learning framework. Therefore, the enhanced depth

dataset enables the construction of an efficient MDE framework for the indoor

scene dataset, which consists of a typical depth-training network without any

other supplementary modules (e.g., pose network). The overall framework of

the proposed method is illustrated in Fig. 5.9.
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(a) Ground-truth enhancement stage

(b) Training stage

Figure 5.9: Proposed monocular depth estimation two-stage framework. The

ground-truth (GT) enhancement stage generated an enhanced GT depth

dataset using a local RGB-depth (RGB-D) frame set from the original dataset,

and the depth network was trained based on the enhanced GT depth dataset in

the training stage. I and dorg are the original RGB-D pairs; dGT and d̂ indicate

the generated GT and predicted depth, respectively.
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Figure 5.10: Pairs of RGB and enhanced depth dataset construction. Previous

supervised methods used the original depth images (outlined with dashed red

lines), and the proposed framework substitutes the GT with an enhanced depth

dataset (outlined with solid red lines).
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Data configuration

Figure 5.10 illustrates the method for pairwise RGB-D dataset construction.

The original depth dataset is preprocessed using (4.11) to construct the pairs

of RGB and enhanced depth dataset. Different to construct original-enhanced

pairwise depth dataset in Fig. 4.9, pairs of RGB-enhanced depth dataset was

constructed for the supervised MDE framework. The method enables to pro-

vide high-quality depth images, which are synchronized to corresponding RGB

images. Similar to chapter 4, A high-quality indoor dataset was constructed by

using the ScanNet [23] dataset, which provides millions of precisely synchronized

RGB-D stream images from various indoor scenes. The neighboring frames in

a local frame set were defined by three previous and successive frames with a

two-frame interval. The image size was set to 256×256 pixels, and a total of 20K

pairs of RGB-D and enhanced GT depth images were generated, which were di-

vided into 1.8K for training and 1.5K for validation. The input RGB-D images

were randomly augmented during training, as in previous studies [115,116,149].

5.3.3 Supervised monocular depth estimation

Learning pipeline

By leveraging the high-quality indoor dataset, an improved supervised MDE

framework, as illustrated in Fig. 5.11. The entire learning pipeline and loss func-

tions are similar to a typical supervised learning pipeline [7, 112], which trains

the depth directly by using unordered RGB-D pairs from independent scene

structures. The depth estimation network follows a residual network (ResNet)-

based [150] architecture, which is commonly used as a basic network module for

depth estimation [116, 149, 150]. The depth network can be replaced by other

preferable network models to improve the performance of depth regression.
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Figure 5.11: Difference between previous and proposed monocular depth esti-

mation pipeline.

Loss functions

The loss function applied in the proposed method consists of three terms: depth

loss Ld, depth gradient loss Lg, and surface normal loss Ln terms, which are

commonly used in the supervised methods [112,151]. The Ld and the Lg penal-

ize the depth and depth gradient errors between the GT and predicted depth

images, respectively, and Ln is computed to minimize the difference in the sur-

face normal between the GT and predicted depth images. The loss terms are
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defined as follows:

Ld

(
d̂,d

)
=

1

N

N∑
i

(
|di − d̂i|

)
,

Lg

(
d̂,d

)
=

1

N

N∑
i

(
|∇di −∇d̂i|

)
,

Ln

(
d̂,d

)
=

1

N

N∑
i

(
|ni − n̂i|

)
,

(5.17)

where d̂i ∈ d̂ and di ∈ d denote the predicted and GT depth values of pixel i,

respectively. n̂i and ni indicate the estimated surface normal vectors of pixel i

for the predicted and GT depth images, respectively. N represents the number

of nonzero pixels, and ∇ is the gradient operator. The final loss function, L, is

defined as a combination of the loss terms, indicating L
(
d̂,d

)
= Ld + λgLg +

λnLn. The loss function is a basic form that represents the loss functions of other

supervised methods [7,9,115,149], that use variants of the loss terms [112,151].

5.3.4 Experimental results

Implementation details

The proposed network model follows a general encoder-decoder architecture

with ResNet-101 [150], and the encoder module is initialized using a pretrained

model on ImageNet [152]. A stochastic gradient descent optimizer was used to

train the network based on eight batch sizes for 100 epochs, with weight decay

of 0.0005. The initial learning rate is set as 10−4; then it was decayed by 0.1

at the fiftieth epoch. The coefficients of the loss terms λg and λn were set by 2

and 1, respectively.
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Evaluation metric

A total of 500 image samples from the GT depth dataset were selected to

evaluate the ScanNet [23] dataset, and the NYU-V2 [20] dataset was evaluated

by using the officially provided 654 densely labeled images from the dataset

[20]. The evaluation metrics follow previous studies [9, 116, 123, 149], which

include RMSE in (4.28), mean absolute relative error (AbsRel), mean log10

error (Mlog), and accuracy under threshold (δi < 1.25i, i = 1, 2, 3) for both

datasets. Given with a pair of predicted and GT depth image, the AbsRel,

mean log10, and accuracy under threshold (AUT) are defined as follows:

AbsRel =
1

N

∑
i

|yi − xi|
yi

,

Mlog =
1

N

∑
i

| log10 yi − log10 xi|,

AUT = max

(
yi
xi
,
xi
yi

)
< δ,

(5.18)

where xi and yi denote it pixel value of the predicted and GT depth image,

respectively. N indicates the number of valid pixels for both image. Note that

the empty values in the GT images were not included in the evaluations.

Performance comparison

Several depth estimation results were compared for both the state-of-the-art su-

pervised and self-supervised methods. In the DistDepth [125] case, a pretrained

model using only the simulation dataset was utilized. The quantitative depth

estimation results for the ScanNet [23] dataset are listed in Tables 5.3 and 5.4,

and results for the NYU-V2 [20] dataset are linted in Tables 5.5 and 5.6. The

“✓” and “x” denote the supervised and self-supervised methods, respectively,

in the second column (i.e., the column titled S). As shown in Tables 5.3 and
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(a) RGB (b) Ground-truth

(c) VN [119]

RMSE:0.409,AbsRel:0.111

(d) AdaBins [10]

RMSE:0.408,AbsRel:0.110

(e) NCRFs [117]

RMSE:0.405,AbsRel:0.110

(f) Proposed

RMSE:0.399,AbsRel:0.107

Figure 5.12: Qualitative depth estimation results on ScanNet dataset
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(a) RGB (b) Ground-truth

(c) VN [119]

RMSE:0.435,AbsRel:0.132

(d) AdaBins [10]

RMSE:0.424,AbsRel:0.118

(e) NCRFs [117]

RMSE:0.433,AbsRel:0.129

(f) Proposed

RMSE:0.401,AbsRel:0.108

Figure 5.13: Qualitative depth estimation results on ScanNet dataset
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(a) VN [119] (b) AdaBins [10]

(c) NCRFs [117] (d) Proposed

Figure 5.14: Example visualizations of monocular depth estimation methods for

Fig. 5.12.
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(a) VN [119] (b) AdaBins [10]

(c) NCRFs [117] (d) Proposed

Figure 5.15: Example visualizations of monocular depth estimation methods for

Fig. 5.13.
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(a) RGB (b) Original GT (c) Enhanced GT

(d) VN (O)

RMSE:0.422

(e) AdaBins (O)

RMSE:0.442

(f) NCRFs (O)

RMSE:0.403

(g) VN (E)

RMSE:0.391

(h) AdaBins (E)

RMSE:0.402

(i) NCRFs (E)

RMSE:0.371

Figure 5.16: Qualitative comparisons of the original and enhanced ground-

truth depth dataset. The depth estimation results trained by using the original

dataset are written as “O”, and the results by enhanced ground-truth dataset

are written as “E” in the parentheses following each method.
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(a) VN (O) (b) VN (E)

(c) Adabins (O) (d) Adabins (E)

(e) NCRFs (O) (f) NCRFs (E)

Figure 5.17: Example visualizations of depth estimation results for Fig. 5.16

when trained by different ground-truth datasets. The error map is visualized

based on enhanced ground-truth depth image.
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Method S
Error ↓

RMSE AbsRel Mlog

Monodepth2 [146] × 0.682 ± 0.174 0.187 ± 0.078 0.076 ± 0.007

TrainFlow [153] × 0.699 ± 0.167 0.163 ± 0.081 0.059 ± 0.009

DistDepth [125] × 0.638 ± 0.169 0.199 ± 0.088 0.076 ± 0.008

SC-Depthv1 [154] × 0.666 ± 0.173 0.182 ± 0.082 0.078 ± 0.007

SC-Depthv2 [123] × 0.583 ± 0.181 0.151 ± 0.076 0.063 ± 0.006

StructDepth [126] × 0.594 ± 0.147 0.157 ± 0.082 0.066 ± 0.006

FCRN [116] ✓ 0.634 ± 0.136 0.138 ± 0.072 0.064 ± 0.006

DORN [118] ✓ 0.569 ± 0.123 0.127 ± 0.068 0.059 ± 0.005

Hu et al. [149] ✓ 0.573 ± 0.131 0.118 ± 0.066 0.051 ± 0.004

BTS [155] ✓ 0.427 ± 0.119 0.115 ± 0.054 0.048 ± 0.004

VN [119] ✓ 0.415 ± 0.106 0.112 ± 0.037 0.046 ± 0.004

AdaBins [10] ✓ 0.412 ± 0.101 0.112 ± 0.038 0.046 ± 0.005

NCRFs [117] ✓ 0.406 ± 0.098 0.110 ± 0.033 0.044 ± 0.004

Proposed ✓ 0.401 ± 0.089 0.108 ± 0.033 0.044 ± 0.004

Table 5.3: Depth estimation errors of ScanNet dataset

5.4, the proposed method outperforms the self-supervised methods and achieves

results comparable to those of the supervised methods, even when a baseline-

level training pipeline and loss functions are used. The proposed method shows

promising results for the NYU-V2 dataset (Tables 5.5 and 5.6), despite the

dataset not being included in the training dataset. The dataset successfully

copes with both the ScanNet and NYU-V2 datasets because it is an analogous

Kinect-style indoor dataset. Figs. 5.12 and 5.13 present the qualitative com-

parison results for several recent methods [9, 10, 117, 119] on the ScanNet [23]

dataset. Figures 5.14 and 5.15 visualize the distance error between GT and the

depth estimation results of each method for Figs. 5.12 and 5.13, respectively.

The results show that the proposed depth dataset enables the construction of

an efficient learning pipeline comprising only a baseline-level network and loss

functions.
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Method S
AUT ↑

δ1 δ2 δ3

Monodepth2 [146] × 0.694 ± 0.108 0.915 ± 0.033 0.971 ± 0.007

TrainFlow [153] × 0.707 ± 0.103 0.918 ± 0.034 0.972 ± 0.007

DistDepth [125] × 0.703 ± 0.104 0.922 ± 0.032 0.975 ± 0.006

SC-Depthv1 [154] × 0.711 ± 0.928 0.182 ± 0.029 0.976 ± 0.005

SC-Depthv2 [123] × 0.756 ± 0.099 0.936 ± 0.026 0.984 ± 0.004

StructDepth [126] × 0.751 ± 0.101 0.936 ± 0.024 0.983 ± 0.005

FCRN [116] ✓ 0.744 ± 0.099 0.930 ± 0.021 0.978 ± 0.004

DORN [118] ✓ 0.749 ± 0.095 0.934 ± 0.021 0.993 ± 0.001

Hu et al. [149] ✓ 0.801 ± 0.088 0.949 ± 0.016 0.991 ± 0.002

BTS [155] ✓ 0.848 ± 0.076 0.950 ± 0.015 0.995 ± 0.001

VN [119] ✓ 0.869 ± 0.076 0.953 ± 0.016 0.996 ± 0.0003

AdaBins [10] ✓ 0.881 ± 0.067 0.959 ± 0.013 0.997 ± 0.0003

NCRFs [117] ✓ 0.893 ± 0.052 0.972 ± 0.008 0.997 ± 0.0002

Proposed ✓ 0.902 ± 0.048 0.976 ± 0.008 0.997 ± 0.0002

Table 5.4: Depth estimation accuracy of ScanNet dataset

To verify the contribution of the data quality to performance improvement,

the proposed proposed simple training method and several novel supervised

methods [10, 117,119] were evaluated, which were retrained by supervising the

original ScanNet [23] depth dataset and the enhanced dataset (Tables 5.7 and

5.8). Each model in the different methods was initialized, and the networks were

trained based on their own network and loss functions for both the original

and enhanced depth datasets. Note that the model pretrained on ImageNet

[152] was not used for fair comparisons, and the number of epochs was set

to 500 to ensure sufficient training results. The remaining parameters followed

those in the original manuscript for each method. Tables 5.7 and 5.8 show that

the comparative methods yield superior results when trained on the enhanced

GT depth dataset. The “✓” denotes the result trained based on the enhanced

dataset, and the “x” denotes the result trained based on the original dataset in
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Method S
Error ↓

RMSE AbsRel Mlog

Monodepth2 [146] × 0.600 ± 0.179 0.161 ± 0.083 0.068 ± 0.009

TrainFlow [153] × 0.532 ± 0.153 0.138 ± 0.085 0.059 ± 0.011

DistDepth [125] × 0.566 ± 0.148 0.164 ± 0.083 0.069 ± 0.010

SC-Depthv1 [154] × 0.608 ± 0.161 0.159 ± 0.073 0.068 ± 0.008

SC-Depthv2 [123] × 0.532 ± 0.131 0.138 ± 0.074 0.059 ± 0.005

StructDepth [126] × 0.540 ± 0.147 0.142 ± 0.082 0.060 ± 0.005

FCRN [116] ✓ 0.573 ± 0.126 0.127 ± 0.076 0.055 ± 0.005

DORN [118] ✓ 0.509 ± 0.108 0.115 ± 0.074 0.051 ± 0.004

Hu et al. [149] ✓ 0.530 ± 0.112 0.115 ± 0.066 0.050 ± 0.004

BTS [155] ✓ 0.392 ± 0.087 0.110 ± 0.052 0.047 ± 0.004

VN [119] ✓ 0.416 ± 0.093 0.108 ± 0.039 0.048 ± 0.003

AdaBins [10] ✓ 0.364 ± 0.089 0.103 ± 0.034 0.044 ± 0.004

NCRFs [117] ✓ 0.334 ± 0.086 0.095 ± 0.029 0.041 ± 0.003

Proposed ✓ 0.411 ± 0.091 0.110 ± 0.036 0.046 ± 0.004

Table 5.5: Depth estimation errors of NYU-V2 dataset

the second column (i.e., the column titled E). As the performance of supervised

methods is fundamentally affected by the quality of the GT depth dataset, the

dataset enhancement method can contribute to any other supervised method.

The qualitative results and error distance are depicted in Figs. 5.16 and 5.17,

respectively. The results indicate that the quality of the supervised dataset

is significant for the MDE task, along with the training architectures and loss

functions. The enhanced GT depth dataset enabled to obtain results comparable

with those of state-of-the-art supervised methods using only a baseline-level

network.

5.4 Discussion

Commercial RGB-D cameras are widely adopted as single-view depth sensors

for various 3D vision applications. However, insufficient geometric structures of
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Method S
AUT ↑

δ1 δ2 δ3

Monodepth2 [146] × 0.771 ± 0.098 0.948 ± 0.018 0.987 ± 0.005

TrainFlow [153] × 0.820 ± 0.075 0.956 ± 0.016 0.989 ± 0.004

DistDepth [125] × 0.779 ± 0.101 0.935 ± 0.022 0.980 ± 0.005

SC-Depthv1 [154] × 0.772 ± 0.102 0.939 ± 0.021 0.982 ± 0.005

SC-Depthv2 [123] × 0.820 ± 0.076 0.956 ± 0.019 0.989 ± 0.003

StructDepth [126] × 0.813 ± 0.079 0.954 ± 0.018 0.988 ± 0.003

FCRN [116] ✓ 0.811 ± 0.078 0.953 ± 0.020 0.988 ± 0.003

DORN [118] ✓ 0.828 ± 0.072 0.965 ± 0.017 0.992 ± 0.002

Hu et al. [149] ✓ 0.866 ± 0.075 0.975 ± 0.013 0.993 ± 0.002

BTS [155] ✓ 0.885 ± 0.068 0.978 ± 0.011 0.994 ± 0.001

VN [119] ✓ 0.875 ± 0.071 0.976 ± 0.011 0.994 ± 0.0002

AdaBins [10] ✓ 0.903 ± 0.065 0.984 ± 0.007 0.997 ± 0.00005

NCRFs [117] ✓ 0.922 ± 0.041 0.992 ± 0.003 0.998 ± 0.0002

Proposed ✓ 0.894 ± 0.054 0.987 ± 0.005 0.996 ± 0.0002

Table 5.6: Depth estimation accuracy of NYU-V2 dataset

the original depth images can mislead to perform the tasks. To alleviate the

problem, the enhanced depth images have been applied to two representative

RGB-D camera-based tasks for the conventional (i.e., 3D reconstruction) and

learning-based (i.e., monocular depth estimation) applications.

First, the 3D reconstruction task estimate motion parameters and 3D struc-

tures from the input frames, and final 3D surface is extracted using the globally

optimized pose parameters and scene structures [2, 3, 95]. Since the procedure

of the point cloud registration task is essential to obtain accurate motion pa-

rameters of the frames of view, the quality of depth information is fundamental

to estimate the spatial relationship of the interframes. The experimental results

verified that the proposed framework can significantly contribute to improving

the performance of the task based on the accurate single-view depth perception.

Subsequently, the enhanced depth images were used as GT depth dataset for
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Method E
Error ↓

RMSE AbsRel Mlog

Proposed × 0.451 ± 0.084 0.117 ± 0.023 0.051 ± 0.004

Proposed ✓ 0.398 ± 0.067 0.107 ± 0.019 0.042 ± 0.004

VN [119] × 0.418 ± 0.077 0.112 ± 0.018 0.046 ± 0.004

VN [119] ✓ 0.383 ± 0.059 0.106 ± 0.016 0.037 ± 0.004

AdaBins [10] × 0.423 ± 0.081 0.114 ± 0.020 0.048 ± 0.003

AdaBins [10] ✓ 0.386 ± 0.070 0.105 ± 0.019 0.040 ± 0.002

NCRFs [117] × 0.406 ± 0.064 0.105 ± 0.098 0.039 ± 0.003

NCRFs [117] ✓ 0.369 ± 0.048 0.098 ± 0.011 0.034 ± 0.002

Table 5.7: Depth estimation errors trained using the original ScanNet [23]

dataset and enhanced datasets.

Method E
AUT ↑

δ1 δ2 δ3

Proposed × 0.852 ± 0.035 0.966 ± 0.013 0.993 ± 0.0009

Proposed ✓ 0.906 ± 0.031 0.976 ± 0.012 0.997 ± 0.0003

VN [119] × 0.903 ± 0.029 0.958 ± 0.012 0.994 ± 0.0008

VN [119] ✓ 0.908 ± 0.028 0.983 ± 0.008 0.9960 ± 0.0008

AdaBins [10] × 0.877 ± 0.030 0.949 ± 0.013 0.994 ± 0.0009

AdaBins [10] ✓ 0.896 ± 0.028 0.956 ± 0.011 0.995 ± 0.0003

NCRFs [117] × 0.907 ± 0.025 0.988 ± 0.003 0.997 ± 0.0003

NCRFs [117] ✓ 0.914 ± 0.021 0.992 ± 0.002 0.999 ± 0.0002

Table 5.8: Depth estimation accuracy trained using the original ScanNet [23]

dataset and enhanced datasets.

the monocular depth estimation (MDE) task by substituting the original depth

dataset. This method enables the training of depth with a typical depth network

module similar to previous supervised methods [115, 149]; however, this study

demonstrated the importance of the quality of the GT depth for the MDE. Due

to the performance of supervised approaches are fundamentally affected by the

quality of the GT depth dataset, the generated high-quality depth dataset ef-

118



fectively contributes to improving the performance of the learning-based task.

The experimental results showed that the dataset enhancement scheme can be

combined with any other supervised learning method as a preprocessing module

to improve performance, and verified that the proposed dataset can be used as

a new benchmark depth dataset both for the conventional and learning-based

3D vision applications.
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Chapter 6

Conclusion and Future Works

Accurate depth acquisition using commercial RGB-D cameras is still a challeng-

ing problem owing to their limitations of the single-view scanning environment.

Recent research has proposed deep-learning-based approaches for the single-

view depth enhancement framework, which typically train networks using a

high-quality depth dataset. In this dissertation, a multi-view leveraged high-

quality depth generation method is developed to improve the quality of the

original depth dataset. When compared to previous approaches, the proposed

method significantly reduced misalignment errors based on an unsupervised

registration scheme. The major difference from the previous approaches is that

training units of the method is a local frame set rather than global frames.

While the original depth dataset contains inherent noise, the proposed method

reliably constructed the enhanced depth dataset only using a RGB-D stream

dataset without any other supervision. The proposed method improved the

performance of the conventional 3D reconstruction application and real-world

supervised monocular depth estimation task. The experimental results demon-
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strated that the dataset was superior to previously benchmarked datasets and

can be used as a new benchmarking standard for the performance evaluation

metrics of real-world depth data.

Further research is required to handle datasets scanned on dynamic envi-

ronments (e.g., driving scenes), which are also primal data types for 3D vision

applications. Since the capability of the proposed framework is limited to cop-

ing with static scene environments, the point cloud registration problem for

dynamic scene structures has to be solved in future works. In addition, an au-

tomatic method for selecting a frame set has to be developed. Because the pro-

posed framework determines each local frame set empirically using consecutive

view frames based on sequentially scanned RGB-D frames, the approach cannot

be applied to unordered RGB-D datasets. Selecting an optimized local frame

set for a scene in the target view frame can improve coverage performance and

reduce the number of neighboring frames. These additional works can increase

the applicability of the proposed framework in the field of 3D vision.
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objects in range data using regional point descriptors,” in European con-

ference on computer vision. Springer, 2004, pp. 224–237.

[38] F. Tombari, S. Salti, and L. D. Stefano, “Unique signatures of histograms

for local surface description,” in European conference on computer vision.

Springer, 2010, pp. 356–369.

[39] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,”

International journal of computer vision, vol. 60, no. 2, pp. 91–110, 2004.

[40] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded-up robust fea-

tures (surf),” Computer vision and image understanding, vol. 110, no. 3,

pp. 346–359, 2008.

[41] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “Orb: An efficient

alternative to sift or surf,” in 2011 International conference on computer

vision. Ieee, 2011, pp. 2564–2571.

[42] C. Choy, J. Park, and V. Koltun, “Fully convolutional geometric fea-

tures,” in Proceedings of the IEEE/CVF International Conference on

Computer Vision, 2019, pp. 8958–8966.

127



[43] Z. Gojcic, C. Zhou, J. D. Wegner, and A. Wieser, “The perfect match:

3d point cloud matching with smoothed densities,” in Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition,

2019, pp. 5545–5554.

[44] H. Deng, T. Birdal, and S. Ilic, “3d local features for direct pairwise

registration,” in Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, 2019, pp. 3244–3253.

[45] Y. Wang and J. M. Solomon, “Deep closest point: Learning represen-

tations for point cloud registration,” in Proceedings of the IEEE/CVF

International Conference on Computer Vision, 2019, pp. 3523–3532.

[46] C. Choy, W. Dong, and V. Koltun, “Deep global registration,” in Pro-

ceedings of the IEEE/CVF conference on computer vision and pattern

recognition, 2020, pp. 2514–2523.

[47] H. Deng, T. Birdal, and S. Ilic, “Ppfnet: Global context aware local fea-

tures for robust 3d point matching,” in Proceedings of the IEEE confer-

ence on computer vision and pattern recognition, 2018, pp. 195–205.

[48] M. Dusmanu, I. Rocco, T. Pajdla, M. Pollefeys, J. Sivic, A. Torii, and

T. Sattler, “D2-net: A trainable cnn for joint detection and description

of local features,” arXiv preprint arXiv:1905.03561, 2019.

[49] J. Revaud, P. Weinzaepfel, C. De Souza, N. Pion, G. Csurka, Y. Cabon,

and M. Humenberger, “R2d2: repeatable and reliable detector and de-

scriptor,” arXiv preprint arXiv:1906.06195, 2019.

128



[50] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks

for semantic segmentation,” in Proceedings of the IEEE conference on

computer vision and pattern recognition, 2015, pp. 3431–3440.

[51] T. Zhao, Q. Feng, S. Jadhav, and N. Atanasov, “Corsair: Convolutional

object retrieval and symmetry-aided registration,” in 2021 IEEE/RSJ In-

ternational Conference on Intelligent Robots and Systems (IROS). IEEE,

2021, pp. 47–54.

[52] X. Bai, Z. Luo, L. Zhou, H. Fu, L. Quan, and C.-L. Tai, “D3feat: Joint

learning of dense detection and description of 3d local features,” in Pro-

ceedings of the IEEE/CVF conference on computer vision and pattern

recognition, 2020, pp. 6359–6367.

[53] J. Li and G. H. Lee, “Usip: Unsupervised stable interest point detection

from 3d point clouds,” in Proceedings of the IEEE/CVF International

Conference on Computer Vision, 2019, pp. 361–370.

[54] L. Ding and C. Feng, “Deepmapping: Unsupervised map estimation from

multiple point clouds,” in Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, 2019, pp. 8650–8659.

[55] L. Wang, X. Li, and Y. Fang, “Unsupervised learning of 3d point set

registration,” arXiv preprint arXiv:2006.06200, 2020.

[56] X. Huang, G. Mei, and J. Zhang, “Feature-metric registration: A fast

semi-supervised approach for robust point cloud registration without cor-

respondences,” in Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, 2020, pp. 11 366–11 374.

129



[57] H. Jiang, Y. Shen, J. Xie, J. Li, J. Qian, and J. Yang, “Sampling network

guided cross-entropy method for unsupervised point cloud registration,”

in Proceedings of the IEEE/CVF International Conference on Computer

Vision, 2021, pp. 6128–6137.

[58] H. Deng, T. Birdal, and S. Ilic, “Ppf-foldnet: Unsupervised learning of

rotation invariant 3d local descriptors,” in Proceedings of the European

Conference on Computer Vision (ECCV), 2018, pp. 602–618.

[59] L.-F. Yu, S.-K. Yeung, Y.-W. Tai, and S. Lin, “Shading-based shape re-

finement of rgb-d images,” in Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, 2013, pp. 1415–1422.

[60] X. Zhang, X. Feng, and W. Wang, “Two-direction nonlocal model for

image denoising,” IEEE Transactions on Image Processing, vol. 22, no. 1,

pp. 408–412, 2012.

[61] D. Tomassi, D. Milone, and J. D. Nelson, “Wavelet shrinkage using adap-

tive structured sparsity constraints,” Signal processing, vol. 106, pp. 73–

87, 2015.

[62] U. S. Kamilov, “A parallel proximal algorithm for anisotropic total vari-

ation minimization,” IEEE Transactions on Image Processing, vol. 26,

no. 2, pp. 539–548, 2016.

[63] I. Selesnick, “Total variation denoising via the moreau envelope,” IEEE

Signal Processing Letters, vol. 24, no. 2, pp. 216–220, 2017.

[64] J. Park, H. Kim, Y.-W. Tai, M. S. Brown, and I. Kweon, “High quality

depth map upsampling for 3d-tof cameras,” in 2011 International Con-

ference on Computer Vision. IEEE, 2011, pp. 1623–1630.

130



[65] K. He, J. Sun, and X. Tang, “Guided image filtering,” IEEE transactions

on pattern analysis and machine intelligence, vol. 35, no. 6, pp. 1397–

1409, 2012.

[66] H. Xue, S. Zhang, and D. Cai, “Depth image inpainting: Improving low

rank matrix completion with low gradient regularization,” IEEE Trans-

actions on Image Processing, vol. 26, no. 9, pp. 4311–4320, 2017.

[67] A. Gogna, A. Shukla, H. Agarwal, and A. Majumdar, “Split bregman

algorithms for sparse/joint-sparse and low-rank signal recovery: Applica-

tion in compressive hyperspectral imaging,” in 2014 IEEE International

Conference on Image Processing (ICIP). IEEE, 2014, pp. 1302–1306.

[68] C. Yan, Z. Li, Y. Zhang, Y. Liu, X. Ji, and Y. Zhang, “Depth image

denoising using nuclear norm and learning graph model,” ACM Trans-

actions on Multimedia Computing, Communications, and Applications

(TOMM), vol. 16, no. 4, pp. 1–17, 2020.

[69] S. Gu, W. Zuo, S. Guo, Y. Chen, C. Chen, and L. Zhang, “Learning

dynamic guidance for depth image enhancement,” in Proceedings of the

IEEE conference on computer vision and pattern recognition, 2017, pp.

3769–3778.
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초록

컴퓨터 비전 분야에서 정확한 깊이 정보를 획득하는 것은 중요한 문제이다. 최근

에는 상업용 RGB-깊이 (RGB-D) 카메라가 저렴한 가격과 휴대할 수 있는 크기로

인해 깊이를 지각하기 위한 장치로써 널리 사용되고 있다. 그러나 상업용 RGB-

D 카메라의 깊이 영상은 저품질의 광원과 센서로 인해 노이즈와 검출되지 않은

영역들로 인해 품질이 떨어지는 문제가 있다. 최근 인공지능을 기반으로 한 깊이

영상의 품질을 높이기 위한 방법들이 각광받고 있지만, 이러한 방법들은 네트워

크를 학습시키기 위한 고품질의 깊이 데이터 세트를 요구하므로 고품질의 깊이

영상을 만드는 것이 필수적이다.

본 논문에서는 고품질의 깊이 영상을 생성하는 방법을 제안한다. 제안하는

방식은 연속적으로 획득한 RGB-D 데이터 세트에서 특정 프레임의 노이즈와 빈

영역을 줄이기 위해 주변 프레임의 깊이 정보들을 활용하는 방식으로 이루어진다.

국소적인 영역 내의 프레임들을 로컬 프레임 세트로 정의하고, 프레임들의 상대적

인 위치 정보를 추정하여 원하는 프레임에 정렬한다. 이 과정을 위해 별도의 정답

데이터 세트가 필요 없는 비지도 방식 포인트 세트 정합 기법을 활용한다. 이때

정합의 정확도를 높이기 위해 파라미터들은 로컬 프레임 세트 내에서 과적합 학습

된다. 최종 깊이 영상은 노이즈와 빈 영역을 줄이기 위해 정렬된 프레임들의 화소

단위로 평균을 통해 획득한다.

노이즈를 추가한 합성 깊이 영상을 복구하는 실험을 통해 본래의 정답 영상을

회복하는 측면에서 기존의 기법들보다 더욱 뛰어난 결과를 나타냈다. 또한 구축된

데이터세트를학습기반방식에적용하여최신의깊이개선방법들에비해우수한

성능을보였다.제안하는방법을통해연속적으로획득한 RGB-D데이터세트만을

사용해 새로운 표준 데이터 세트로 활용될 수 있는 고품질의 깊이 영상을 생성할

수 있다.
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주요어: 깊이 영상 생성, 깊이 영상 개선, 단안 카메라 깊이 추정, 포인트 셋 정합,

RGB-D 데이터 셋, 3차원 복원.

학번: 2017-36611
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Appendix A

Camera calibration

Conic

A conic is a curve in 2D space represented by a second-degree equation:

ax21 + bx1x2 + cx22 + dx1x3 + ex2x3 + fx23 = 0, (A.1)

where x = [x1, x2, x3]
⊤ is a point in the conic. The equation can be represented

by in a matrix form:

x⊤Cx = 0, (A.2)

where the conic coefficient C is given by:

C =


a b/2 d/2

b/2 c e/2

d/2 e/2 f

 . (A.3)

When two 2D point x′ and x have transformation relationship as x′ = Hx,

(A.2) becomes:

x⊤Cx = x′⊤H−⊤CH−1x′. (A.4)
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Therefore, under a point transformation x′ = Hx, a conic C transforms to:

C′ = H−⊤CH−1. (A.5)

Absolute conic

The canonical form of plane at infinity is π∞ = [0, 0, 0, 1]⊤. Let a absolute conic

Ω∞ is a conic on the π∞, then the absolute conic is defined to satisfy [28]:

X2
1 +X2

2 +X2
3 = X4 = 0, (A.6)

where X = [X1,X2,X3,X4]
⊤ is a 3D point in Ω∞. For directions on π∞, the

equation can be written by [X1,X2,X3]
⊤I [X1,X2,X3] = 0 , where I is 3D

identity matrix. Therefore, Ω∞ = I [28].

Image of the absolute conic

A point at infinity on π∞ can be written as X∞ = [d⊤, 0]⊤, where d is a

direction vector toward π∞ [28]. Let X∞ is projected point on a image plane

as v, the relationship between X∞ and v can be written as following according

to (2.1):

v = PX∞ = K[R|t]
[
d
0

]
= KRd. (A.7)

Since d can be regarded as a 2D point, the transformation relationship between

v and d can be written as v = Hd, where

H = KR. (A.8)

Subsequently, when Ω∞ is projected on to the image plane as ω, the image of

Ω∞ can be represented by (A.5):

ω = H−⊤Ω∞ H−1 = H−⊤I H−1. (A.9)

147



By substituting (A.8) to (A.9), the image of the absolute conic ω can be written

by:

ω = (KR)−⊤I (KR)−1

= K⊤RR−1K−1 = (KK⊤)−1

= K−⊤K−1,

(A.10)

where RR−1 = I, owing to R is an orthonormal matrix. Consequently, when

ω matrix is obtained, the camera intrinsic matrix K can be computed using

Cholesky factorization [28].

Formulation and solution

According to (2.7), the transformation matrix H from 3D point on a plane (i.e.,

planar rig) X = [X,Y, 1]⊤ to a 2D point x = [x, y, 1]⊤ on the image plane can

be represented as:

H = [h1 h2 h3] = K[r1 r2 t], (A.11)

where hi denotes i
th column vector of H. Since r1 and r2 are orthonormal and

ri = K−1hi, i ∈ [1, 2], two constraints can be obtained as follows:

h⊤
1 K

−⊤K−1h2 = 0,

h⊤
1 K

−⊤K−1h1 = h⊤
2 K

−⊤K−1h2 = 1.
(A.12)

Owing to the K−⊤K−1 is the image of the absolute conic in (A.10), the con-

straints (A.12) is equivalent to:

h⊤
1 ω h2 = 0,

h⊤
1 ω h1 = h⊤

2 ω h2.
(A.13)

Let a matrix for the image of the absolute conic
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ω = K−⊤K−1 =


w11 w12 w13

w12 w22 w23

w13 w23 w33

 . (A.14)

Note that ω = K−⊤K−1 is symmetric. Then, a vector w that comprised of six

parameters to find can be defined by:

w = [w11, w12, w22, w13, w23, w33]
⊤. (A.15)

Let ith column vector of H in (A.11) be hi = [hi1, hi2, hi3]
⊤. Then, h⊤

i ωhj =

v⊤
i,j , where vi,j = [hi1hj1, hi1hj2+hi2hj1, hi2hj2, hi3hj1+hi1hj3, hi3hj2+hi2hj3, hi3hj3]

⊤.

Consequently, the constraints in (A.13) can be represented by: v⊤
12

(v11 − v22)
⊤

w = 0. (A.16)

Given with n images are observed, a linear equation form by stacking (A.15)

n times as follows:

Vw = 0, (A.17)

where V is a 2n × 6 matrix. In ideal case, that minimum three corresponding

points are required to solve the equation up to a scale factor. The solution of

(A.17) is well-known as finding the eigenvector of V⊤V with the smallest eigen-

value [28,156]. After K is computed, the extrinsic parameters can be obtained

by (A.11) as follows:

r1 = K−1h1, r2 = K−1h2, r3 = r1 × r2, t = K−1h3. (A.18)

However, owing to the estimated parameters contain inherent error, the param-

eters have to be optimized in real case. Similar to (5.8), an objective function

to be minimized is defined as:
n∑
i

m∑
j

∥xij − x̂ij∥2, (A.19)
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where n and m indicate number of estimated 3D points and camera positions,

respectively. xij is observed projection of Xi on jth image, and x̂ij denotes

predicted xij . Such method refine the camera matrix parameters by minimizing

the re-projection error. Details of the representative optimization methods to

solve (A.19) is introduced in appendix B.

150



Appendix B

Iterative minimization

Suppose a functional relation x = f(p) where x is a measurement vector and p

is a parameter vector. Then, the purpose is to find the estimated parameter p̂

that satisfying f(p̂) = x+ ϵ for which ∥ϵ∥ is minimized. When f is not a linear

function, the main strategy of the iterative minimization methods is to refine

the estimation iteratively under the assumption that f is a piecewise linear

function.

Let p̂k be a estimated parameters at kth iteration, then a relationship be-

tween p̂k and p̂k+1 is defined as:

p̂k+1 = p̂k +∆k,

f(p̂k+1) = f(p̂k +∆k),
(B.1)

where ∆k is the solution to the linear least-square problem. When expand

f(p̂k+1) about f(p̂k) in a Taylor series:

f(p̂k+1) = f(p̂k +∆k) = f(p̂k) + g⊤k ∆k +
1

2
∆⊤

k Hk∆k + · · · , (B.2)
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where g and H denote the gradient and Hessian of f , respectively. Therefore,

f(p̂k+1) can be approximated by:

f(p̂k+1) ≈ f(p̂k) + g⊤k ∆k +
1

2
∆⊤

k Hk∆k. (B.3)

By differentiate (B.3) w.r.t. ∆i and set the derivative to zero, the solution can

be obtained as follows:

∆k = −H−1
k gk. (B.4)

Therefore, the p̂k+1 in (B.1) can be represented by following:

p̂k+1 = p̂k −H−1
k gk. (B.5)

Subsequently, let a cost function c(p̂) of the least-square minimization problem

be defined by:

c(p̂) =
1

2
∥ϵ(p̂)∥2 = 1

2
ϵ(p̂)⊤ϵ(p̂). (B.6)

Then, the g and H are obtained as:

g = J⊤c,

H = J⊤J +
∑
i

∑
j

cij∇2cij ,
(B.7)

where J is the Jacobian matrix J = ∂c/∂p̂. By substituting (B.7) to (B.5), the

Newton iteration method is defined as following:

p̂k+1 = p̂k −
(
J⊤J +

∑
i

∑
j

cij∇2cij

)−1

J⊤c. (B.8)

Although the Newton method is a prominent approximation, it requires expen-

sive computation to obtain the Hessian matrix at each iteration. When ignoring

the Hessian matrix in (B.5) and substitute it as an identity matrix that scaled

by λ (i.e, Hk = λI), the gradient descent scheme is defined as:

p̂k+1 = p̂k −
1

λ
J⊤c, (B.9)
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which indicates that the only considering first order term in the Taylor expan-

sion in (B.2). Subsequently, if second term of H in (B.7) is sufficiently small,

the Gauss-Newton method is defined by:

p̂k+1 = p̂k − (J⊤J)−1J⊤c. (B.10)

This method can be a reliable approximation that is intermediate between the

Newton and gradient descent methods. However, when J⊤J becomes singu-

lar, the method becomes numerically unstable [157]. In order to alleviate the

problem, the Levenberg-Marquardt [158] has been proposed by adding a scaled

identity matrix to the approximated Hessian matrix as follows:

p̂k+1 = p̂k − (J⊤J + λI)−1J⊤c. (B.11)

The λ can be reduced or increased by comparing the error of each iteration is

reduced or not. When the λ is large, it becomes similar to the Newton method,

and follows the Gauss-Newton method when the λ is small. This process is

repeated for different values of λ until an acceptable ∆ is found.
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