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Abstract

Generative Adversarial Network (GAN) is one of the most successful gener-

ative models in recent years. GAN involves adversarial training between two

networks, a generator and a discriminator, which provides a novel and power-

ful way of modeling high-dimensional data distribution such as images. At the

core of this mechanism, the discriminative capability of the discriminator plays

a significant role, because the generator can improve itself only to the extent

that the discriminator can distinguish between real and fake samples. In this

dissertation, we sought for the improvement of GAN models by proposing three

methods to enhance the discriminative capability of the discriminator.

To improve conditional image generation for complex multi-label conditions,

we propose an attention-based conditional discriminator that allows the dis-

criminator to focus on local regions that are relevant to given labels. In addi-

tion, we propose a product-of-Gaussian based latent sampling method to better

encode the multi-label condition. Both proposed architectures for discriminator

and generator improve the controllability of the image generation process.

We then study discriminator enhancement for more complex data distribu-

tions, such as scene images with multiple objects. Due to the high structural

complexity of scene images, the discriminator is under heavy burden to distin-

guish complex structural differences between real and fake scene images. To aid

the discriminator, we design a multi-scale contrastive learning task to enhance

local representations of the discriminator. The proposed auxiliary task allows

us to learn a powerful discriminator that can better incentivize the generator

to improve the synthesis quality of scene images.
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Finally, we explore a way to utilize pretrained scene understanding models

for the discrimination process. Since the pretrained models contain rich knowl-

edge on complex structures of scene images, we propose to use their pretrained

representations to relieve the burden of the discriminator. To take full advan-

tage of both common and per-task knowledge available in different pretrained

models, we propose to ensemble their features to form a set of unified multi-scale

features.

With extensive evaluation and analysis on challenging image domains, we

show that the proposed methods achieve meaningful improvement on modeling

complex image distributions. We believe these achievements would help increase

the utility of GAN models, and facilitate their downstream applications as well.

Keywords: Generative Adversarial Networks, Deep Generative Models, Image

Generation, Conditional Image Generation, Discriminator Enhancement, Scene

Generation, Self-Supervised Learning, Transfer Learning

Student Number: 2013-20865
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Chapter 1

Introduction

1.1 Deep Generative Models

Over the past decade, AI systems have achieved remarkable success in a variety

of tasks including computer vision, recommendation, and language processing

(Zhang et al., 2022). At the heart of this success, there exist a vast amount of

data on which AI systems can be trained. The world around us is represented

and perceived by various forms of data, such as images, natural language, and

speech. One of the important methodologies to fundamentally understand and

utilize these data is generative model.

Generative models aim to learn and model how the data itself can be gen-

erated. Once the model is successfully trained, we can estimate the likelihood

of given data samples or generate new realistic samples. A variety of useful

applications are available via generative models since we can sample new data

points from the model. For example, users can generate or edit images or texts

toward their intention (Isola et al., 2017; Zhu et al., 2017a; Zhang et al., 2017;
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He and Deng, 2017; Pang et al., 2021). Generated data can be further utilized

to augment the training dataset to improve the prediction models (Antoniou

et al., 2017; Shin et al., 2018; Yoo et al., 2019; Zhang et al., 2021). Generative

models are also useful for explaining and analyzing other AI models by visu-

alizing the decision boundaries in an intuitive way (Verma et al., 2020; Sauer

and Geiger, 2021; Lang et al., 2021).

Despite such powerful features and possibilities, generative models are known

to be much more challenging to train compared to analogous discriminative

models. Unlike discriminative models, generative models are required to gener-

ate all the values that make up a data sample which often lies in high dimen-

sional data space such as images of high resolution. Therefore, estimating the

density function of high dimensional data often becomes an intractable task

requiring heavy computational resources.

However, in recent years, the development of deep generative models has

significantly alleviated the difficulty and has shown impressive results for com-

plex and high-dimensional data distributions. From Deep Belief Networks (Hin-

ton et al., 2006) to Deep Boltzmann Machines (Salakhutdinov and Larochelle,

2010), to Variational Auto-encoders (Kingma and Welling, 2014) and Genera-

tive Adversarial Networks (Goodfellow et al., 2014), through the advances on

network architectures and density estimation methods, deep generative mod-

els have greatly improved the training efficiency by leveraging neural networks

as an efficient density estimator. Among the different types of deep generative

models, Generative Adversarial Network (GAN) is one of the most successful

models within a decade since it can produce much sharper and discrete out-

puts compared to the results of other models. In this dissertation, we focus on

Generative Adversarial Networks and explore ways to improve it.
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1.2 Generative Adversarial Networks

GAN consists of two neural networks: a generator and a discriminator. The

generator is a network that transforms random noise vectors into synthetic

data samples and the discriminator is a classifier that classifies input samples

into real or generated ones. The core mechanism of GAN is an adversarial

training scheme where two networks are trained to satisfy conflicting objective

functions. Concretely, the discriminator is trained to correctly discriminate real

data from generated data, while the generator is trained so that the generated

data is determined by the discriminator to be real one, that is, to deceive the

discriminator.

While GAN models have received much attention for its superior capa-

bility, they also have non-trivial limitations and challenges. Since GAN was

first proposed, its unstable training has been pointed out as the biggest limi-

tation (Roth et al., 2017; Wu et al., 2020). Training process easily diverges if

hyper-parameters are not cautiously tuned and the results easily collapse to few

samples, i.e., mode collapse. Another drawback of GAN is its narrow coverage

over the data distribution. While recent GAN models work well with relatively

simple data distributions such as human faces (Karras et al., 2019, 2020b), they

easily fail to achieve the same level of realism for more complex image domains

such as scenes with various objects classes (Gadde et al., 2021). Therefore,

even state-of-the-art models result in mottled layouts and discontinued seman-

tic structures. In this dissertation, we focus on enhancing the discriminator to

overcome these limitations.

In GAN training, a generator and a discriminator rely on each other’s per-

formance to develop themselves competitively. The discriminator evolves more

precisely as the generated samples become more realistic, and the generator
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relies on the discriminator’s discriminative ability to improve the fidelity of its

output samples. At the heart of this mechanism, the discriminative ability of the

discriminator plays a significant role. Since the generator is able to only improve

itself to the extent that the discriminator distinguishes between real and fake

samples, training a powerful and robust discriminator largely determines the

overall generation performance. Therefore, we explore the ways to strengthen

the discriminator learning in three different directions: (1) architectural im-

provement, (2) auxiliary task for discriminator, and (3) use of pretrained vision

models.

1.3 Scope of Dissertation

Architectural improvement For most neural models, designing effective

building blocks of neural networks is a key element to improve the training ef-

ficiency and performance. Likewise, the synthesis quality of GAN is also highly

dependent on how we design the network architecture for both the generator

and discriminator. In Chapter 3, we describe Attention-based Discriminator for

Conditional GAN (Lee and Lee, 2019), which leverages attention mechanism to

strengthen the discriminator and improves conditional generation performance

for complex multi-label condition. In addition, we propose a prior latent con-

ditioning method using the product-of-Gaussian to encode a set of labels and

generate diverse and accurate samples.

Auxiliary task for Discriminator Several recent studies have shown that

GAN training can be improved by assigning auxiliary tasks to the discriminator

in addition to the original binary classification task (Zhang et al., 2020; Jeong

and Shin, 2021; Yang et al., 2021). In Chapter 4, based on these findings, we

propose MsConD (Lee et al., 2023) which leverages multi-scale contrastive learn-
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ing as an auxiliary task for the purpose of improving complex scene generation.

MsConD uses a multi-scale discriminator that performs patch-level real/fake

classification to improve fidelity of local semantic structures in the scene im-

age. To enhance the multi-scale discriminator, we propose to assign contrastive

learning tasks for local representations in multiple scales. By jointly optimizing

both original classification task and contrastive learning task, the discriminator

can enhance its discriminative ability to better incentivize generator to improve

its generation performance.

Leveraging Pretrained Vision models It has now become a ubiquitous

process to boost the performance of downstream tasks by transferring general-

purpose representations learned on large-scale datasets. Recently, several stud-

ies have shown that pretrained representations can benefit discrimination pro-

cess in GAN to improve the generation quality as well as the convergence speed

(Sauer et al., 2021; Kumari et al., 2022). Chapter 5 describes FEGAN, which

leverages pretrained scene understanding models to improve complex scene gen-

eration. FEGAN employs powerful pretrained models trained for various scene

understanding tasks such as object detection, semantic segmentation, and depth

estimation, and ensembles their multi-scale features to aid the discriminator.

Proposed ensemble scheme fully leverages knowledge learned by different scene

understanding models to help GAN better synthesize complex scenes.

1.4 Contributions

Contributions of this dissertation can be summarized as three-fold:

• We propose an advanced architecture for generative adversarial networks

in context of conditional image synthesis by utilizing attention mecha-

13



nism for conditional discriminator and product-of-Gaussian based condi-

tion aggregation for conditional generator. Our method provides improved

controllability on image synthesis for complex multi-attribute conditions.

• We propose an auxiliary task which is designed to improve the discrimina-

tive capability of discriminator on complex scene images containing mul-

tiple objects. By leveraging self-supervised learning scheme, our method

can improve synthesis quality of generator without any other prior infor-

mation on complex scenes, such as object-level or pixel-level labels.

• We also explore the utility of pretrained vision models trained on var-

ious scene understanding tasks for scene image generation. We propose

a feature-level ensemble method which allows the discriminator to effec-

tively utilize pretrained representations from multiple models, thereby

further improve the synthesis quality of complex scene images.
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Chapter 2

Preliminaries and Related Work

In this chapter, we introduce Generative Adversarial Networks (GANs) with

formal notations that will be used in later chapters. Then we review the related

studies that contributed to GAN models, especially to enhance the discrimina-

tive ability of the discriminator. Related works are classified into four major

categories and reviewed in detail. Figure 2.1 shows the overview of related work

on GAN research.

2.1 Generative Adversarial Networks

A standard GAN involves a minimax optimization between two networks, a

generator G and a discriminator D as follows:

min
G

max
D

Ladv(G,D) =

Ex∼pdata [logD(x)] + Ez∼pz [log(1 −D(G(z)))] , (2.1)

15



where pdata is an empirical data distribution where a real data sample x is sam-

pled and pz is a known prior distribution where a noise z is sampled. G generates

a fake image G(z) from a sampled noise z and D computes the prediction score

for both the real image x and the generated image G(z). The adversarial train-

ing encourages D to correctly distinguish real images from generated images

while G to synthesize realistic-looking images so that the generated images can

be distinguished as real ones by D.

While the original GAN formulation only considers unconditional learning

of data distributions, follow-studies (Mirza and Osindero, 2014a; Odena et al.,

2017; Miyato and Koyama, 2018) have developed its conditional variants those

enable conditional data generation. Given pdata as an empirical data distribution

of labeled data, i.e., (x, y), the conditional GAN can be formulated as follows:

min
G

max
D

Ladv(G,D) =

E(x,y)∼pdata [logD(x|y)] + Ez∼pz [log(1 −D(G(z|y)))] , (2.2)

where y is a condition corresponds to a real sample x. As can be seen, the

conditional models take the condition y as well as x to train G and D.

2.2 Architectural Improvement

The GAN models, like all other deep neural network-based models, are largely

affected by the network architecture in training efficiency and generation per-

formance. The seminar paper (Goodfellow et al., 2014) uses simple multi-layer

perceptrons for both generator and discriminator, therefore the model was val-

idated only on simple images such as MNIST (Deng, 2012). DCGAN (Rad-

ford et al., 2015) has first explored the use of convolutional networks for GAN

16
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framework and succeeded in generating more complex images such as bedroom

images. The network architectures are further improved by employing residual

networks (He et al., 2016b; Miyato et al., 2018) and self-attention layers (Zhang

et al., 2019; Brock et al., 2019). While most GAN models utilize symmetric

structures for generator and discriminator, a notable exception is recently pro-

posed UnetGAN (Schonfeld et al., 2020) which employs Unet (Ronneberger

et al., 2015) architecture only for the discriminator to improve discriminative

ability and has shown improved synthesis result.

While major architectural improvement has been achieved and validated

on unconditional GAN models, there also have been significant advances on

conditional GAN models. Conditional GANs aim to generate images for given

various types of condition such as class label, text, or other images. For class

label condition, cGAN (Mirza and Osindero, 2014a) is the first model that

successfully extend GAN to its conditional variant. Conditional mechanism is

further improved by introducing auxiliary classifier (Odena et al., 2017) and

projection based discriminator (Miyato and Koyama, 2018). For text condition,

StackGAN (Zhang et al., 2017) is the first text-to-image GAN model which

utilizes a text encoder to map a condition text into corresponding sentence

embedding. After StackGAN, there have been various attempts to improve

the controllability using word-level spatial attention (Li et al., 2019), siamese

discriminator (Yin et al., 2019), and matching-aware gradient penalty (Tao

et al., 2022). Image-to-image translation is the generation task which utilizes

images as the condition. Pix2Pix (Isola et al., 2017) and CycleGAN (Zhu et al.,

2017a) are the representative models for the image-to-image translation task.

Text-to-image and image-to-image synthesis tasks have been extensively studied

since these seminar works until recently (He and Deng, 2017; Pang et al., 2021).

In Chapter 3, we propose ADGAN which is one of the first approaches that
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introduced the attention mechanism to GAN models like SAGAN (Zhang et al.,

2019). However, different from SAGAN, ADGAN proposes a attention-based

discriminator for conditional tasks rather than using self-attention blocks.

2.3 Objective Functions and Regularization

One of the major drawbacks of GAN is its unstable training (Mescheder et al.,

2017, 2018a). To stabilize the training of GANs, alternative objective functions

as well as regularization techniques have been extensively studied. The objective

function of original GAN is formulated as the binary classification task between

real and fake samples, which is equivalent to minimize the Jensen-Shannon

Divergence between the real and fake data distributions. Wasserstein GAN

(Arjovsky et al., 2017) and its improved version (Gulrajani et al., 2017) propose

to minimize the Earth-Mover distance to further stabilize the learning process.

Hinge loss (Lim and Ye, 2017b) is another widely adopted loss function for

GAN, which are widely adopted in various conditional generation tasks. More

recently, dual-contrastive GAN (Yu et al., 2021) has shown contrastive loss can

be utilized to improve the discriminative ability between real and fake images.

Recent studies show that powerful regularization techniques are more impor-

tant than the alternative loss functions. One of the representative approaches

is to penalize the norm of the gradient for the discriminator input during the

training process (Gulrajani et al., 2017; Mescheder et al., 2018b). The gradient

penalty (Arjovsky et al., 2017; Gulrajani et al., 2017) imposes a Lipschitz con-

straint on the discriminator and helps convergence. Another notable approach

is spectral normalization which was introduced in SNGAN (Miyato et al., 2018).

It controls the Lipschitz constant of the discriminator by controlling the spec-

tral norm of the layer weights. Unlike gradient penalty, spectral normalization
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does not require to additionally calculate the regularization term, therefore it

enables much efficient training. While a variety of regularization approaches

(Webster et al., 2019; Yang et al., 2019; Tseng et al., 2021; Ni et al., 2022) have

been proposed till recently, gradient penalty and spectral normalization have

been utilized as the most popular and effective methods.

2.4 Auxiliary Task

A group of works (Chen et al., 2019; Tran et al., 2019; Hou et al., 2021) have

shown that the rotation prediction task prevents catastrophic forgetting in GAN

and leads to better results. Consistency regularization (Zhang et al., 2020; Zhao

et al., 2021) stabilizes GAN training by imposing consistency of discriminator

output between a clean image and its augmented version. More recently, several

studies have explored the use of the instance discrimination task (Wu et al.,

2018; He et al., 2020; Chen et al., 2020) as an auxiliary task to further enhance

the discriminator (Zhao et al., 2020b; Jeong and Shin, 2021; Yang et al., 2021).

The self-supervised pretext tasks generally involve various image transformation

functions to acquire different views of an image. In GAN training, differentiable

image transformations (Karras et al., 2020a; Zhao et al., 2020a) applied on both

real and fake images have shown to stabilize the training in limited data regimes

and improve the data efficiency.

While the main optimization task of GAN is the binary classification task

for real and generated samples, recent studies have shown that a various self-

supervised learning tasks can aid the real/fake classification task and help to

train a more robust discriminator. A group of works (Chen et al., 2019; Tran

et al., 2019; Hou et al., 2021) have shown that the rotation prediction task pre-

vents catastrophic forgetting in GAN and leads to better results. Consistency
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regularization (Zhang et al., 2020; Zhao et al., 2021) stabilizes GAN training

by imposing consistency of discriminator output between a clean image and

its augmented version. More recently, several studies have explored the use of

the instance discrimination task (Wu et al., 2018; He et al., 2020; Chen et al.,

2020) as an auxiliary task to further enhance the discriminator (Zhao et al.,

2020b; Jeong and Shin, 2021; Yang et al., 2021). The self-supervised pretext

tasks generally involve various image transformation functions to acquire dif-

ferent views of an image. In GAN training, differentiable image transformations

(Karras et al., 2020a; Zhao et al., 2020a) applied on both real and fake images

have shown to stabilize the training in limited data regimes and improve the

data efficiency.

Previous studies mainly focus on self-supervised tasks defined on global rep-

resentations. This is effective for image domains consisting of a single object

class, but the improvement would be limited for more complex scene images.

In Chapter 4, we propose a self-supervised task designed to enhance local rep-

resentations for multiple scales and assign it to the discriminator to increase

global-to-local fidelity of generated scene images.

2.5 Transfer Learning for GAN

Most GAN models are trained from scratch with randomly initialized parame-

ters, thus it takes a long training time to converge. In addition, if the amount of

training data is relatively small, training may be easily unstable and the synthe-

sis quality significantly decreases. To alleviate these difficulties, transfer learning

approaches designed for GAN have been proposed. Most of these approaches

aim to transfer and fine-tune the generator parameters from data-sufficient to

data-scarce domains.
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More recently, a line of works have shown that the discriminator can also

benefit from pretrained networks yielding better synthesis quality and train-

ing efficiency (Sauer et al., 2021; Kumari et al., 2022). ProjectedGAN (Sauer

et al., 2021) makes use of EfficientNet (Tan and Le, 2019) trained on ImageNet

classification task to extract image representations. Light-weight discriminators

are trained to distinguish between real/fake images based on the extracted rep-

resentations. Their scheme greatly improves the convergence speed as well as

synthesis quality. VAGAN (Kumari et al., 2022) also utilizes fixed pretrained

vision models to extract discriminative features and shows that their approach

can improve generation performance when training data is relatively scarce.

In Chapter 5, we extend these findings to explore how to use various scene

understanding models to improve the generation performance of complex scene

images. Unlike previous works, we propose an feature ensemble method to

fully take advantage of multi-scale representations extracted from multiple pre-

trained models.

2.6 Evaluation of Generative models

Evaluating the quality of trained generative models is crucial but non-trivial

task. While a variety of works rely on human evaluation to comparatively assess

their models, human evaluation requires costly labor. Moreover, visual inspec-

tion and assessment can easily be subjective when performed with a small group

of evaluators. Therefore, researchers have sought for reliable automatic quan-

titative metrics. The one of the earliest attempts is Inception score (Salimans

et al., 2016). Inception score assess the quality of generated images with Incep-

tion network (Szegedy et al., 2016) trained on ImageNet (Deng et al., 2009). The

score is calculated by multiplying sharpness and diversity score measured with
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model predictions of generated images. While inception score serves as a rea-

sonable metric, its quality is largely limited when the generated images do not

belong to ImageNet classes. Frechet inception score (Heusel et al., 2017a) and

Kernel inception score (Bińkowski et al., 2018) aim to provide better metrics by

utilizing not only the generated images but also the real images. They measure

the discrepancy between real and generated distributions with Frechet distance

and kernel Maximum Mean Discrepancy, respectively. They systematically show

that the proposed metrics are precisely aligned with perceptual quality assessed

by human evaluators. Precision and Recall (Kynkäänniemi et al., 2019) are an-

other popularly used metrics. Precision measures the ratio of generated samples

that fall into real sample distribution and Recall measures the ratio of real sam-

ples that fall into generated sample distribution. They use k nearest neighbors

in the counterpart sample set to identify pseudo-identical samples to calculate

the metrics.
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Chapter 3

Attention-based Discriminator for
Multi-label to Image Generation

3.1 Motivation

Conditional image generation aims to synthesize novel realistic images those

reflect user-specified conditions. These conditions often include sets of multiple

attributes that match the complex user intention. For example, imagine a fash-

ion designer who are designing new clothes. He or she might want new reference

images that follow the target design concept such as “a white flare dress with

floral pattern”.

We formulate this task as a multi-label to image synthesis. A concept or

condition the user has in mind can be represented as a set of attribute labels.

For above example, the input condition can be described as a attribute set

{white,flare, dress,floral}. Therefore, our aim is to generate synthetic images

those meet a set of given multiple attributes.

Recently as Generative Adversarial Networks (Goodfellow et al., 2014) have
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Figure 3.1 Illustration of the ADGAN architecture

shown impressive results in synthesizing realistic images, a bunch of models

based on conditional GAN (Gauthier, 2014; Mirza and Osindero, 2014b) have

been proposed. Nevertheless, most approaches deal with small number of at-

tributes (van den Oord et al., 2016; Yan et al., 2016) or a single class label

(Odena et al., 2016). Therefore, the existing methods struggle for more com-

plex conditional generation task involving large number of attribute labels such

as fashion images. In addition, the existing methods have been only studied

on image domains where the attributes are densely annotated with extensive

human labor, such as CelebA dataset (Liu et al., 2015). But for many real world

image domains, the attributes are rather sparse and fuzzy.

To build a image generation model for more complex conditions, we imple-
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ment three modules that can be integrated to conditional GAN model. First, we

construct a visual-semantic embedding model to obtain meaningful attribute

embeddings by relating the visual feature from image and associated label sets,

so the attribute embeddings contain rich semantic representations. We then

design a novel conditional modules for both generator and discriminator to im-

prove the conditional GAN model. Two modules are multi-label attention-based

discriminator and product-of-Gaussian generator. Since each attribute is associ-

ated to different spatial regions in an image, we propose to make discriminator

to pay attention to relevant attributes when discriminating an input image.

In addition, we design a new conditional prior based on product-of-Gaussian

for the generator. The intuition under this module is that we can encode the

combination of attributes in a principle and efficient way by sampling condi-

tion vector from product of multiple Gaussian distributions derived from each

attribute in a given set.

We validate our method on a real world fashion dataset. For quantitative

evaluation, we suggest to use a pre-trained attribute classifier to evaluate the

generated images with correctness and coverage metrics. The result shows that

our model significantly outperforms the baseline model showing better con-

trollability over generated images. We also present generated samples of our

model and compare with the samples of baseline model to show efficacy of the

proposed method.

3.2 Related Work

Conditional Generative Adversarial Networks. There has been efforts

to control the image generation with certain condition. As the research on GAN

has progressed, the methods about adding extra information to control genera-
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tion have been studied. cGAN (Mirza and Osindero, 2014b) is implemented by

supplying both generator and discriminator with class labels to learn conditional

distribution. Odena et al. (2016) suggests to use discriminator as an auxiliary

classifier to output the predicted class labels. van den Oord et al. (2016) per-

forms attribute-controlled image generation using PixelCNN. These approaches

use condition of a class label or small number of attributes. There are a line of

research studying image synthesis from unstructured text. Reed et al. (2016)

uses conditional PixelCNN to generate images with text descriptions. Zhang

et al. (2017) propose a two-stage training strategy that can generates images

with higher resolution.

Attention-based architectures. The attention mechanism has become an

essential part of models for machine translation (Bahdanau et al., 2014), image

captioning (Xu et al., 2015), and visual question answering (Yang et al., 2016).

However attention mechanism has not much been explored in the context of

GAN. Xu et al. (2017) propose to use attention for multi-stage generator for

text-to-image synthesis. Zhang et al. (2019) exploit self-attention mechanism to

unsupervised GAN to improve the image generation. To our best knowledge, the

proposed ADGAN apply attention mechanism to discriminator in the context

of conditional image generation.

Generative models for fashion domain. As there has been remarkable

progress in deep generative model including GAN, research on generating im-

ages for fashion application has begun to start. Zhu et al. (2017b) build a GAN

based model that generates images for imagination of wearing image. Jiang

and Fu (2017) propose a style generator which generates a clothing image with

given input patterns on it. Sbai et al. (2018) propose a creative loss function to
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generate novel clothing images.

3.3 Method

Our goal is to train a generator G that can generate a realistic image G(z, y)

consistent with a given set of attributes y = {y1, y2, ..., yn}. The attributes

are represented as fixed-dimensional vectors where the vectors are pre-trained

visual-semantic embeddings described in Section 3.3.3 . As shown in Figure 3.1,

the proposed Attention-based Discriminator Generative Adversarial Network

(ADGAN) has a novel discriminator and a generator structure in context of

multi-attribute to image synthesis. Attention-based discriminator is optimized

to discriminate real from synthesized images with locally attended features of

the given attribute set. For the generator, ADGAN encodes a set of attribute

vectors to a single condition vector sampled from Gaussian which is the product

of multiple Gaussian distributions derived from each attribute vector.

3.3.1 Multi-label Attention for Discriminator

Figure 3.2 shows discriminator design with multi-label attention. The proposed

ADGAN integrate attention mechanism for discriminator D to compute prob-

ability D(x, y) from an input image x and the corresponding set of attributes

y = {y1, y2, ..., yn}. The discriminator is a convolutional neural network com-

posed of several downsampling layers.

We denote an intermediate feature map from a specific layer as H ∈ Rm×dim

where m is the spatial dimensions dim is the dimensionality of each feature

vector in the feature map and we denote a feature vector of j-th spatial dimen-

sion as Hj . Each attribute vector yi is first projected to d-dimensional vector

y′i = Uyi with a projection matrix U . Then the attention coefficient αji for

28



Discriminator

v neck

long sleeve

floral

white

Attribute 

Embedding
Set of attributes

Attribute 

Vectors

Intermediate 

Feature Map Attention Map

Conditioned Feature Map

Multi-label Attention for 

Conditional Discriminator

Figure 3.2 Illustration of Multi-label attention-based conditional discriminator

of ADGAN

each feature vector Hj is computed by applying the softmax function to inner

products between the feature vector Hj and condition attribute vectors y′i as

follows:

αji =
exp(Hj · y′i)

K∑
k=1

exp(Hj · y′k)

, (3.1)

where K is the number of attributes in a condition attribute set.

This coefficients learn how much each attribute is related to synthesizing

an image according to each spatial region. For example, for the upper region

features of an product image, the coefficient of attributes related to neckline

would be high, while for the left and right region sleeve length attributes would

be tightly involved. Finally the context vector of each j-th spatial feature is

calculated as weighted sum of projected attribute vectors as below:

cj =

K∑
i=1

αjiy
′
i, (3.2)
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Figure 3.3 Illustration of Product-of-Gaussian based conditional prior sampling

of ADGAN

and it is concatenated to the image feature Hj and the concatenated feature

map is processed by next convolution layer. Detailed network structures are

described at Table 7.1 and Table 7.2 in Appendix.

3.3.2 Product-of-Gaussian Condition Prior for Generator

Our aim is to generate as diverse images as possible while maintaining the con-

sistency with given attribute combination. Vedantam et al. (Vedantam et al.,

2018) define this concept as compositional abstraction hierarchy meaning con-

ditionally generated samples should cover unobserved attributes. For example,

if neckline and color is given as a condition, model should be capable of gen-

erate images with diverse sleeve length or pattern. To tackle this problem, we

propose to use Product-of-Gaussian (Hinton, 2002) condition prior as a prior

for GAN’s generator.

As described in Figure 3.3, multiple independent Gaussian distributions are

derived by mapping each attribute vector ai to mean vector µi and diagonal

covariance matrix σi. Then the prior distribution for attribute combination is

obtained by multiplying all the conditional Gaussians. Since each independent
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distribution is Gaussian, the product is itself Gaussian. The resulting Gaussian

distribution is computed as follows:

µ =

(∑
i

µiσ
−1
i

)(∑
i

σ−1
i

)−1

σ =

(∑
i

σ−1
i

)−1

, (3.3)

and the conditional noise vector sampled from this Gaussian prior is mapped

to image space by generator network.

Recently, Product-of-Gaussian is applied to Variational Auto-encoder based

models in context of multimodal data generation (Vedantam et al., 2018; Wu

and Goodman, 2018), but this is the first attempt to exploit Product-of-Gaussian

to encode combination of attributes for GAN model to the best of our knowl-

edge.

3.3.3 Visual-Semantic Embedding

Since the semantic meaning of attributes tend to be domain-specific, the at-

tribute embedding also should be learned in a domain-specific way rather than

naively exploiting word embeddings trained on general text corpus. So we build

a visual-semantic embedding model to learn domain-specific attribute embed-

dings by associating the attributes to corresponding visual features via visual-

semantic embedding learning.

For a pair of image x and a corresponding attribute set y = {y1, y2, ..., yn},

let ei represents an one hot vector of attribute yi and v = F (x) denotes an image

feature vector of an image x produced by a convolutional neural network F and

W is an attribute embedding matrix that we aim to learn. The aggregated

feature vector a of given attribute set is computed by averaging the attribute

feature vectors in the set:
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Table 3.1 Number of images with different number of associated attributes in

Polyvore dataset

# of attributes 1 2 3 4 5 6

# of images 20,734 8,521 2,222 409 50 9

a =
1

n

∑
i

ai, (3.4)

where ai = W · ei is the attribute embedding vector.

Our visual-semantic embedding model tempts to make paired image and

attribute set features more similar than unpaired ones, so we define a similar-

ity measure between image and attributes as cosine similarity, i.e., d(v, a) =

v·a
||v||2·||a||2 ). Following Kiros et al. (2014), we train the image feature extractor F

and the attribute embedding W by minimizing the bi-directional ranking loss

as follows:

∑
v,k

max(0,m− d(v, a) + d(v, ak))+

∑
a,k

max(0,m− d(a, v) + d(a, vk)),
(3.5)

where ak denotes non-matching attribute vectors for image feature v, vk denotes

non-matching image feature vectors for attribute set y and m is some margin.

We use this pre-trained attribute embedding matrix W to extract attribute

vectors for ADGAN’s discriminator and generator.
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Figure 3.4 Number of training images for each attribute in Polyvore dataset
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3.4 Experiment

Dataset To validate proposed model, we collected 31,945 dress images and

associated product title from a popular fashion site polyvore.com. To obtain

attributes associated with each product image, we tokenize the title text into

words and choose 6 criteria for fashion attributes by analyzing the tokenized

words, which are length, sleeve length, neckline, color, pattern, style. Then we

select total 28 attributes which of each belongs to one of 6 criteria. Figure 3.4

shows the image frequency of 28 attributes in each group and Table 3.1 shows

the number of images those with different number of associated attributes.

28,750 image-attribute set pairs are used for training the model and the rest

are used to evaluate it.

Evaluation Setup It is difficult to evaluate the generative models like GANs

because there is no concrete and objective criterion to determine the quality

of generated samples. Inception Score (Salimans et al., 2016) is widely used

to quantify the image quality, which measures the KL divergence between the

marginal distribution and class conditional distribution computed with pre-

trained Inception network. Although Inception Score is widely accepted as
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evaluation metric, fashion images are highly domain-specific, so it is difficult

to evaluate them with Inception network trained on general images (e.g., Im-

ageNet). In addition, Inception score cannot measure the alignment between

generated images and the given conditioning attributes.

Instead we train oracle attribute classifier and use it to judge generated

images whether they are well-aligned with conditioning attributes. Resnet(He

et al., 2016a) is used to map product images to 28 dimensional vector and binary

cross entropy loss is computed for each attribute dimension to be optimized.

Evaluation Metric We verify the quality of generated images, under three

criteria which are correctness, coverage and degree of mode collapse.

Correctness measures how much the generated images are consistent with

the given attributes. Let C = {a1, ..., an} denotes the condition attribute set

and XC = {x1, ..., xm} denotes the set of generated images with given C. We

compute correctness using oracle attribute classifier as follows,

correctness(XC , C) =
1

mn

m∑
i=1

n∑
j=1

ŷaj (xi) (3.6)

where ŷa(x) is binary prediction on attribute a by oracle classifier for input

image x. Well-conditioned generated images get higher correctness score.

Although oracle classifier is able to quantify the correctness, still it is not a

perfect judge. Therefore, we also conduct human evaluation. We randomly select

300 attribute sets from the validation set. ADGAN and StackGAN (baseline)

generates a single synthetic image conditioned on each attribute set. Then we

assemble the images according to each attribute and ask 10 users (not including

any of the authors) to answer whether the images are correspond to given

attribute or not. The average correctness is calculated and we denote this score

as correctnessHuman.
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Besides, it is meaningful to measure how diversely images are generated

while maintaining the consistency with condition attributes. Vedantam et al.

(2018) defines coverage metric to quantify the diversity of generated images.

Main idea is to check that the attributes that are not specified vary across

the generated images by comparing the true distribution pU and the empirical

distribution qU over unobserved attributes U = A\C where A is the set of all the

attributes. We use Jensen-Shannon divergence to compare the two distributions,

so the coverage is defined as follows,

coverage(XC , C) = 1 − JS(pU , qU (XC)) (3.7)

We get pU by normalizing the attribute frequency of training data for at-

tributes in U . qU (XC) is obtained similarly by aggregating the number of at-

tributes those are classified to be true for all the images in XC by oracle clas-

sifier.

3.4.1 Quantitative Result

To validate our proposed ADGAN, we compare our results with Stage-I net-

work of StackGAN (Zhang et al., 2017). While original StackGAN uses LSTM

encoder to obtain conditioning sentence vector, instead of sentence vector, we

average the attribute vectors in the set to make a condition vector c. Stack-

GAN’s generator receives this condition vector c and map it to gaussian mean

µ and covariance vector σ to obtain a gaussian distribution. After c′ is sam-

pled from N(µ, σ), generator uses concatenated vector of c′ and noise vector

z as generators input prior. Discriminator receives the condition vector c and

concatenate the condition vectors to output features from 3rd convolutional

layer.

ADGAN has the same up-sample, down-sample network structures with
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Method Correct CorrectHuman Coverage

Comparison to the baseline.

StackGAN (Zhang et al., 2017) 0.495 0.475 0.919

ADGAN (Ours) 0.698 0.624 0.873

Ablation result for proposed conditional modules.

ADGAN (w.o. attention) 0.530 - 0.930

ADGAN (w.o. PoG) 0.602 - 0.887

Ablation result for attention layers.

ADGAN (attention on 1st) 0.667 - 0.906

ADGAN (attention on 2nd) 0.670 - 0.898

ADGAN (attention on 3rd) 0.698 0.624 0.873

Table 3.2 Quantitative comparison result

StackGAN except for ADGAN’s two components, attentional discriminator and

PoG prior. It is worth noting that our two components are orthogonal to the

GAN’s generator and discriminator design for attribute-to-image generation.

We also validate ADGAN model without each component to test how much

each component contributes to the performance. In addition, ADGAN variants

with attention on different layer are also evaluated.

Table 3.2 shows quantitative results of ADGAN and baseline methods. As

shown in results, ADGAN with attention on 3rd layer achieves the best cor-

rectness score, meaning that ADGAN generates more consistent images with

given attributes than StackGAN. In the perspective of correctness, attentional

discriminator elevates the performance more than PoG prior on generator.

ADGAN also outperforms StackGAN with respect to correctness measured by
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Figure 3.5 Comparison of correctness per attribute
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Figure 3.6 Comparison of correctness per attribute group

human evaluators. It is quite notable that the correctness score measured by

oracle reaches the correctness measured by human users.

A trade-off between correctness and coverage score is observed, since the at-

tributes have dependency to each other. For example, if an image is generated

with attribute skater dress, it is a mini dress with a high probability. This kind

of dependency between attributes makes the empirical distribution move away

from the true distribution. Despite of such trade-off, we discovered that the

Product-of-Gaussian prior increases the generalization capability. As demon-

strated in Table 3.2, ADGAN with PoG prior generates more diverse images

than ADGAN without PoG prior. In Table 3.2, ADGAN (w.o. attention) per-

forms better than StackGAN and ADGAN (attention on 1st) performs better

than ADGAN (w.o. PoG) with respect to coverage metric. Worth mentioning

that the deeper layer on which the attention-plugged, the more extensive the

effects of trade-off, so cautious selection of attention layer is needed.

Figure 3.5 presents the correctness score per attribute. It’s not easy to state
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Figure 3.8 Ablation result of correctness per attribute group

clearly that one model outperforms the other for certain attribute or attribute

group because the results fluctuate over attributes. As mentioned above, overall,

ADGAN performs well. Especially, the attentional discriminator and PoG prior

create synergy when generating images with style related attributes, because

style is related to not only local patterns but also to the compositional features.

For instance, most of skater dresses are pleated mini dresses. For attributes

related to locally repeated patterns, like colors and floral patterns, the models

with attention work well.

3.4.2 Qualitative Result

Besides quantitative evaluation, we also qualitatively examine the samples gen-

erated by the models. Figure 3.9 demonstrates the samples from StackGAN

(top) and ADGAN (bottom) with same color attribute on each row. Both

model generate images well-aligned with black and white, because those col-

ors appear frequently in training set. However, in case of rare attributes (e.g.,
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Skater, Sleeveless, V neck, Blue

Figure 3.11 Images generated by ADGAN with a set of attributes

pink and green), StackGAN’s results fail to maintain consistency with given

condition while ADGAN produces coherent results. Figure 3.10 shows samples

generated by ADGAN. Each column corresponds to each attribute in Figure

3.4 with same order. The result shows that the proposed ADGAN can generate

images that are consistent to the given attribute condition.

One of the important features in multi attributes-to-image generation is a

compositional abstraction ability. A compositional abstraction means that we

can generate images of concepts at different abstraction level with different

subsets of attributes. Figure 3.11 exhibits a sample generation from ADGAN

showing such compositional abstraction ability. Top images are results produced

by ADGAN with different attribute combinations from (bodycon) to (bodycon,

red, longsleeve, floral) adding attributes one by one. The image set in the

first row contains bodycon dresses those vary along different colors and shapes.
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Second row consists of bodycon dresses with red color which are generated under

more specified abstraction level and so on.

3.5 Chapter Summary

In this chapter, we explore a way to improve conditional generative model

for complex multi-attribute conditions. To this end, we propose two modules

for conditional discriminator and conditional generator. We leverage attention

mechanism to the discriminator to better discriminate real and generated im-

ages based on given multiple attributes. We also propose a product-of-Gaussian

based conditional prior for the generator. Both building blocks significantly

boost the controllability on image generation, which is shown by experiment

conducted on fashion images with complex attribute conditions.
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Chapter 4

Multi-scale Contrastive Learning for
Complex Scene Generation

4.1 Motivation

In recent years, generative adversarial networks (GAN) (Goodfellow et al., 2014)

have achieved significant improvements due to extensive studies on network

structures (Radford et al., 2015; Zhang et al., 2019; Brock et al., 2019; Karras

et al., 2019, 2020b; Schonfeld et al., 2020), objective functions (Mao et al.,

2017; Arjovsky et al., 2017; Lim and Ye, 2017a), and regularization techniques

(Gulrajani et al., 2017; Miyato et al., 2018; Mescheder et al., 2018b). Now GAN

models can produce high-quality images that are almost indistinguishable from

real ones, showing impressive results in the wide range of object classes including

human faces (Karras et al., 2019), animals (Brock et al., 2019; Schonfeld et al.,

2020), and cars (Karras et al., 2020b). Despite these successes, when it comes

to more complex images such as scenes with multiple objects, they easily fail

to achieve the same level of realism as in single object images (Casanova et al.,
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2020; Gadde et al., 2021).

In single object images, there is a common layout of each component, al-

lowing it easier for the discriminator to supervise where and how each com-

ponent should be synthesized to result in a realistic image. For instance, each

component of dog’s face, e.g., eyes, nose, and mouth, may vary in shapes and

proportions, but remain in a common layout that forms the face. On the other

hand, natural scene images exhibit much more diverse and complex distribu-

tions as they include a collection of objects in various sizes, shapes, and spatial

locations (Casanova et al., 2020; Sylvain et al., 2021; Hua et al., 2021). There-

fore, it is much harder for the discriminator to learn multi-layered differences

between real and fake images from local semantic structures, such as objects,

to overall scene layouts (Schönfeld et al., 2021; Gadde et al., 2021). As a result,

even state-of-the-art GAN models produce unsatisfactory results of limited dis-

tribution coverage and low synthesis quality with messy layouts and incomplete

internal objects.

In this chapter, we propose a method to improve discriminative ability on

such complex scenes through a self-supervised pretext task assigned to the dis-

criminator. Self-supervised representation learning has been extensively studied

in recent years and shown to yield beneficial representations for various down-

stream tasks (Chen et al., 2020; He et al., 2020; Grill et al., 2020). The progress

continues to generative models and recent studies have shown GAN models

also can be improved by leveraging various self-supervised pretext tasks such

as rotation prediction (Chen et al., 2019; Tran et al., 2019; Hou et al., 2021),

consistency regularization (Zhang et al., 2020; Zhao et al., 2021) and contrastive

learning (Zhao et al., 2020b; Jeong and Shin, 2021; Yang et al., 2021). While

successful, existing studies mainly focus on enhancing image-level global repre-

sentations especially for single-object images, thus the improvement tend to be
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Figure 4.1 Illustration of proposed MsConD

limited for more complex data distributions, such as scene images containing

various local objects.

To better model complex local semantic structures in the scene images,

we propose to enhance local representations as well as the global representa-

tion with auxiliary pretext tasks locally defined and at multiple scales. To this

end, we design a multi-scale discriminator having multi-level branches where

each branch processes local patches of different sizes. Branch at each scale pro-

duces per-pixel auxiliary representations as well as per-pixel discriminator log-

its. These auxiliary representations are used to perform pixel-level contrastive

learning to enhance per-pixel classification task. Both tasks are defined for

each scale level and jointly optimized across all scales, thereby the discrimina-

tor could improve local-to-global discriminative ability to better model local

structures in complex scenes at various scales. Figure 4.1 shows the overall

architecture of proposed method.
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We evaluate our method on several challenging scene image datasets with

metrics for both scene-level and object-level synthesis quality. Compared to

recent state-of-the-art GAN models, our method consistently achieves better

results in terms of visual quality and diversity. In particular, our method signif-

icantly improves synthesis quality of individual objects in the scene, demonstrat-

ing that multi-scale representation learning effectively enhances the adversarial

feedback to better model local semantic structures.

4.2 Related Work

Discriminator Design for GAN. Discriminator’s ability to distinguish be-

tween real and fake images plays a critical role in GAN training, since the

generator entirely relies on the feedback signal passed from the discriminator.

Such ability has been significantly improved with the advances in discrimi-

nator architectures, from multi-layer perceptrons (Goodfellow et al., 2014) to

convolutional networks (Radford et al., 2015; Karras et al., 2018), residual net-

works (Miyato et al., 2018; Karras et al., 2019), and self-attention based models

(Zhang et al., 2019; Brock et al., 2019; Yu et al., 2021). However, even state-of-

the-art models still struggle in modeling complex scenes, since they rely solely

on global discriminator feedback therefore missing high frequency details. To

alleviate the problem, we redesign the discriminator to utilize local feedback on

multiple scales.

Local discriminator feedback has been used in various conditional image

generation tasks (Zhu et al., 2017a; Huang et al., 2018; Park et al., 2019; Demir

and Unal, 2018; Yu et al., 2019) in the form of PatchGAN discriminator (Isola

et al., 2017). To cover multiple scales, Wang et al. (Wang et al., 2018) propose

to use multiple PatchGAN discriminators to process each image interpolated at
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different resolutions. These architectures have been helpful for modeling high

frequency patterns, but they rely on explicit conditions such as segmentation

maps or input images, to model global layouts. In contrast, our method al-

lows to model local-to-global structures by utilizing multi-scale feedback which

emerges from natural hierarchy inherent in the pyramidal features of backbone

network. Recently proposed ProjectedGAN (Sauer et al., 2021) has also verified

the usefulness of multi-scale features, but they focus on mixing multiple levels

of pretrained features rather than utilizing local feedback.

Self-supervised Learning for GAN. Self-supervised learning has been rec-

ognized as one of the most influential methodologies in recent years as it can

learn informative representations from a large amount of unlabeled data. Re-

cent studies have shown that GAN training can also benefit from various self-

supervised pretext tasks. A group of works (Chen et al., 2019; Tran et al.,

2019; Hou et al., 2021) have shown that the rotation prediction task prevents

catastrophic forgetting in GAN and leads to better results. Consistency reg-

ularization (Zhang et al., 2020; Zhao et al., 2021) stabilizes GAN training by

imposing consistency of discriminator output between a clean image and its

augmented version. More recently, several studies have explored the use of the

instance discrimination task (Wu et al., 2018; He et al., 2020; Chen et al.,

2020) as an auxiliary task to further enhance the discriminator (Zhao et al.,

2020b; Jeong and Shin, 2021; Yang et al., 2021). The self-supervised pretext

tasks generally involve various image transformation functions to acquire dif-

ferent views of an image. In GAN training, differentiable image transformations

(Karras et al., 2020a; Zhao et al., 2020a) applied on both real and fake images

have shown to stabilize the training in limited data regimes and improve the

data efficiency. Our work relies on previous findings on improved GAN training
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with self-supervised pretext tasks. However, while all previous studies focus on

enhancing global representation space by integrating image-level tasks, in this

chapter, we seek to enhance region-level representations to improve discrimina-

tive ability on local features.

Dense Representation Learning. Recent studies on self-supervised repre-

sentation learning mainly focus on image-level representations for object-centric

images, i.e., ImageNet (Deng et al., 2009). Despite their success, the image-level

global representations are often sub-optimal for general vision tasks defined on

complex scenes, as globally pooled representations lose spatial information of lo-

cal objects. Therefore, more recent works attempt to learn pixel-level (Pinheiro

et al., 2020; Xie et al., 2021c; Wang et al., 2021b) or region-level (Roh et al.,

2021; Xiao et al., 2021; Xie et al., 2021a) representations and have achieved

meaningful improvements in dense prediction downstream tasks such as object

detection and instance segmentation. We repurpose the dense representation

learning as a mean to aid the real-fake discrimination on multiple scales, thereby

validate its efficacy on improving synthesis quality of local objects in complex

scenes.

4.3 Method

In this section, we describe the proposed method, namely, Multi-scale Con-

trastive Discriminator (MsConD) in detail. We describe the improved discrimi-

nator architecture in Section 4.3.1, followed by multi-scale pixel-level contrastive

learning that further enhances the discriminator in Section 4.3.2 and finally the

full objective function which optimizes the entire network in Section 4.3.3.
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Figure 4.2 Illustration of proposed discriminator architecture

4.3.1 Multi-scale Discriminator with Multi-level Branches

In unconditional image synthesis, a discriminator is typically equipped with sev-

eral sub-sampling layers that progressively downsample the input high-resolution

images into lower resolution features constructing pyramidal feature maps (Rad-

ford et al., 2015; Brock et al., 2019; Zhang et al., 2019; Karras et al., 2019). To

enable discrimination of each local feature in the feature maps, we use branches

for each scale l to translate the intermediate features into corresponding lo-

cal outputs. Each branch consists of three components: residual blocks ϕl
res, a

classification head ϕl
disc, and a projection head ϕl

proj . All components are imple-

mented with 1× 1 convolution layers to process each local feature individually.

Figure 4.2 shows the proposed discriminator design.

Concretely, our discriminator D is composed of backbone network F and
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per-scale branch networks ϕl = {ϕl
res, ϕ

l
disc, ϕ

l
proj}. Given an input image, the

backbone network F produces multi-scale feature maps. We denote the feature

map at scale level l as fl. fl is first transformed into hl of the same shape

by ϕl
res and then hl is processed by two separate head networks, a real/fake

classification head ϕl
disc and a projection head ϕl

proj to produce two outputs U l

and V l.

hl = ϕl
res(fl) ∈ RHl×Wl×Ch (4.1)

Ul = ϕl
disc(hl) ∈ RHl×Wl×1 (4.2)

Vl = ϕl
proj(hl) ∈ RHl×Wl×Cp , (4.3)

where Cp is number of channels of the projection output.

We denote the classification head output Ul and the projection output Vl

for an input image x as Dl
disc(x) and Dl

proj(x), respectively. Dl
disc(x) is used

to compute per-pixel adversarial loss at l-th scale while Dl
proj(x) is used to

perform pixel-level contrastive learning which will be described in the following

section. The adversarial loss at l-th scale is computed by averaging all per-pixel

adversarial losses as follows:

Ll
adv(G,D) = Ex

[
1

HlWl

∑
i,j

log
[
Dl

disc(x)
]
i,j

]

+ Ez

[
1

HlWl

∑
i,j

log

(
1 −

[
Dl

disc(G(z))
]
i,j

)]
, (4.4)

where
[
Dl

disc(x)
]
i,j

refers to the classification output at pixel (i, j). As shown

in Figure 4.2, the global representation at the top of the backbone network

is likewise mapped to the global discriminator output and the global projec-

tion output, which are used to compute the adversarial and contrastive losses,
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Figure 4.3 Illustration of spatially consistent pixel-level contrastive learning in

MsConD

respectively. See Table 7.3 in Appendix for more detailed network architecture.

4.3.2 Multi-scale Contrastive Learning for GAN

The redesigned discriminator learns to differentiate between real and fake im-

ages based on local-to-global region-level decisions. To further enhance the dis-

criminative ability, we propose to assign the discriminator an auxiliary self-

supervised task designed to enrich the region-level representation on which each

decision is performed.

Given a clean image x, its augmented view T (x) is obtained by applying a

differentiable transformation T . Then the respective projection outputs V l
q and

V l
k at l-th scale are extracted through the projection branch:

V l
q = Dl

proj(x) ∈ RHlWl×Cp (4.5)

V l
k = Dl

proj (T (x)) ∈ RHlWl×Cp . (4.6)

Instance discrimination task (Wu et al., 2018; He et al., 2020; Chen et al.,

2020) is a widely adopted pretext task in self-supervised representation learning.
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Typically, it conducts training by contrasting the positive views of an instance

from the negative views which are irrelevant to the instance. In image-level

instance discrimination task, the positive features can be easily obtained by

simply applying random transformations to an image. However, our objective

is to learn local representations to support real-fake decision on individual local

features, thereby an instance for the task no longer represents the whole image

but local regions of an image. In this case, the positive features should be

cautiously identified to ensure sufficient overlap between the regions represented

by the features. Otherwise, it can interfere with representation learning by

associating areas that are completely unrelated to each other in the image.

In this chapter, we identify two feature vectors from V l
q and V l

k as a positive

pair if they are close enough to contain the same region in the image (Xie et al.,

2021c). The spatial closeness is measured by the Euclidean distance between

the coordinates of two feature vectors in the image space. Figure 4.3 shows

an example. Concretely, we warp the pixels in V l
k into the clean image space

to obtain the reference coordinates and compute all-pair Euclidean distances

between the coordinates of feature vectors in the two feature maps V l
q and V l

k .

For each feature vector vq ∈ RCp in V l
q , we define the positive feature set from

V l
k as follows:

pos(vq) = {vk ∈ V l
k : dist(vq, vk) < t}, (4.7)

where dist(vq, vk) denotes the Euclidean distance between the coordinates of

feature vectors vq and vk in the clean image space, and t is predefined distance

threshold.

On the other hand, we construct the negative feature set neg(vq) with the

same level features from other images in the same mini-batch. It is worth noting
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that we use both real and fake images for negative features in order to construct

larger negative set. We empirically observed that this leads to a slight perfor-

mance improvement. With positive and negative feature sets, the contrastive

loss at l-th layer can be formulated as:

Ll
con(x, T (x)) =

∑
vq∈V l

q

− log

∑
vk∈pos(vq)

evq ·vk/τ∑
vk∈pos(vq)

evq ·vk/τ +
∑

vk∈neg(vq)
evq ·vk/τ

, (4.8)

where τ is a temperature hyper-parameter which is set to 0.3. We normalize

the feature vector vq and vk before computing the contrastive loss thus the dot

product between them assesses the cosine similarity between the vectors.

We demand the discriminator to solve the same task for fake images G(z)

and their augmented views T (G(z)). In this way, the discriminator can learn

from infinite samples generated by the model beyond the limited amount real

images (Yang et al., 2021). Finally, the contrastive loss at l-th scale is computed

using contrastive losses applied on both real and fake sample as follows:

Ll
con(D) = Ex

[
Ll
con(x, T (x))

]
+ Ez

[
Ll
con (G(z), T (G(z)))

]
. (4.9)

4.3.3 Full Objective

The total loss for MsConD is calculated using adversarial loss and contrastive

loss summed on all scales as follows:
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Ladv(G,D) =
∑
l

Ll
adv(G,D) (4.10)

Lcon(D) =
∑
l

Ll
con(D) (4.11)

min
G

max
D

Ladv(G,D) − λLcon(D), (4.12)

where λ controls the strength of contrastive loss. We found that λ = 0.2 gives

desirable balance between the two loss terms, and we use this value for all

experiments.

4.3.4 Implementation and Training

The MsConD is implemented upon the resnet-based discriminator of Style-

GAN2 (Karras et al., 2020b). We adopt the training techniques used in Style-

GAN2 including lazy R1 regularization and path length regularization. For

augmentation T , we use differentiable transformations including pixel blitting,

geometric and color transformations following StyleGAN2-ADA (Karras et al.,

2020a). One notable difference is that StyleGAN2 computes the R1 regulariza-

tion loss using the global discriminator output, whereas MsConD computes the

R1 losses for each branch output and regularizes the network with the sum of

the losses. We use Adam optimizer with batch size of 32, learning rate of 0.002,

β1 = 0.0 and β2 = 0.99. All models including the baselines have been trained

for the same number of training steps (10 million images).

4.4 Experiment

Datasets We evaluate the proposed method on three challenging scene image

datasets. Cityscapes (Cordts et al., 2016) contains 25k images of street scenes
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recorded from a driving car in 50 cities. LSUN (Yu et al., 2015) is a large collec-

tion of scene images covering wide range of indoor and outdoor scenes. Among

them, we choose livingroom and kitchen dataset as benchmark datasets since

they exhibit highly complex data distributions derived from diverse scene lay-

outs with various objects. Livingroom and kitchen datasets contain 1.3 million

and 2.2 million scene images, respectively. All images used in the experiments

are resized to 256 × 256 resolution.

Evaluation metrics To quantitatively evaluate the synthesis quality, we use

Frechet inception distance (Heusel et al., 2017a), Kernel inception distance

(Bińkowski et al., 2018), Precision, and Recall (Kynkäänniemi et al., 2019).

Following the previous works (Heusel et al., 2017b; Karras et al., 2020a), all

metrics are calculated using 50,000 fake images and all training images.

Perceptual quality of scene images is largely determined by synthesis quality

of individual objects within the scene. Since there is no object-level label in the

evaluation dataset, we employ a pretrained object detector to identify objects

depicted in both real and generated scenes. Then we calculate FID scores using

the crops of detected objects for each object category. The object crops detected

from 50,000 real images are used to obtain per-category real distributions. For

a fair comparison, we calculate the FID using the same number of object crops

from each model. We use YOLOR (Wang et al., 2021a) object detector trained

on MS-COCO (Lin et al., 2014).

Comparison methods We use several recent competitive models as our

baselines. UnetGAN (Schonfeld et al., 2020) and StyleGAN2 (Karras et al.,

2020b) are utilized to compare different discriminator architectures. ADA (Kar-

ras et al., 2020a) uses differentiable data augmentations, while InsGen (Yang
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et al., 2021) applies image-level instance discrimination upon ADA. Project-

edGAN (Sauer et al., 2021) is a parallel state-of-the-art study using multiple

discriminators to leverage multi-scale features from pretrained networks. We use

officially released code base of baseline methods except for UnetGAN where we

employ better backbone of StyleGAN2.

We use the same StyleGAN2 generator for all methods to fairly compare the

discriminator ability except for ProjectedGAN where the lighter generator, i.e.,

FastGAN (Liu et al., 2021a) generator, has been reported to perform better.

Since we observed that most methods are highly sensitive to the R1 penalty

term (Mescheder et al., 2018b), we carefully explored the best performing R1

weights in the range of 1 to 50 for each method. For ADA and InsGen, we use

the same set of image transformations consisting of pixel blitting, geometric

and color transformations, which have shown the most stable results in the

literature. For other hyper-parameters, we use the same values as originally

proposed in each paper.

4.4.1 Comparison to State-of-the-Art

Scene-level Metrics. Table 4.1 shows the quantitative comparison result us-

ing standard GAN metrics. In terms of FID, our method outperforms all other

baselines, achieving 37%, 35% and 33% relative improvements in each dataset

compared to the best baseline methods. Our method achieves significantly im-

proved recall across all datasets, demonstrating its capability to synthesize di-

verse scene images. Albeit ProjectedGAN achieves the highest precision, we

empirically observed that it produces larger fraction of artifacts than other

methods. This is also verified by its inferior object synthesis quality in Table

4.2. We speculate that the pretrained feature space learned on object-centric

images, i.e., ImageNet, may not be best suited for learning more complex data
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distributions.

Object-level Metrics. To validate if our method improves the synthesis

quality of individual objects in the scene, we measure FID, KID, and IS scores

for top 5 most frequent object categories detected in each data domain. Table

4.2 shows the comparative result. In all object categories, our method achieves

significantly improved metric scores over the baselines. These results validate

that the proposed MsConD effectively incentivizes the generator to improve

local details and produce more realistic objects in the scene images. Figure 4.4

provides visual comparison between samples generated by different methods. As

shown, our method produces more realistic scene details with a well arranged

layout over other methods. See Section 7.2 in Appendix for more result.

4.4.2 Ablation Study

In this section, we conduct an ablation study to investigate how each compo-

nent of MsConD contributes to the generation performance. Figure 4.6 summa-

rizes the ablation results. Figure 4.6 (a) shows scene-level FID when MsConD is

trained with different scales of feature maps. We compare the model with/without

multi-scale contrastive loss Lcon to validate its efficacy. As shown in the result,

in both cases, the generation performance increases as more feature maps are

utilized, yet the performance is prominently boosted through multi-scale con-

trastive learning. We also report the result with contrastive learning but without

distance threshold t to verify the effectiveness of our strategy for positive fea-

ture sampling. In this case, we use all pairs of local features from augmented

images as positive samples without any spatial constraints. The result shows

that the performance gain is far limited without the distance threshold, since

semantically irrelevant local features impede the representation learning.

63



1-4 1-8 1-16 1-32
2

3

4

5

FID
Cityscapes

W/O Lcon

W/O Threshold t

MsConD (Full)

1-4 1-8 1-16 1-32
2

3

4

5

FID
Livingroom

W/O Lcon

W/O Threshold t

MsConD (Full)

(a) Ablating each component of MsConD with varying scales.

0.9 0.7 0.5 0.3 0.1
2

3

4

5
FID

Cityscapes

FID

0.3

0.35

0.4

0.45

0.5

0.55
Recall

Recall

0.9 0.7 0.5 0.3 0.1
2

3

4

5
FID

Livingroom

FID

0.3

0.35

0.4

0.45

0.5

0.55

Recall

Recall

(b) Effect of distance threshold t.

Figure 4.6 Quantitative Ablation Result

To further investigate the effect of distance threshold, we report FID and

Recall with varying thresholds in Figure 4.6 (b). The performance deteriorates

if t is too high or too low. When t is too low, only a narrow range of features

are utilized as positive features, degrading the sample diversity. On the other

hand, if the t is too high, irrelevant features could be treated as the positive

features, and possibly hinder the learning.

Figure 4.7 shows quantitative ablation result for each object category. We
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Figure 4.7 Quantitative ablation result for each object category

observe similar tendency as the scene-level ablation result in Figure 4.6. The

generation performance increases as more feature maps from the backbone lay-

ers are utilized even when multi-scale contrastive learning is not applied. How-

ever, the performance is significantly improved as the contrastive learning is

leveraged as an auxiliary task. The improvement has been consistent across

various object categories validating the efficacy of MsConD in synthesizing lo-

cal objects.

Figure 4.8 shows samples generated by MsConD trained under different
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Figure 4.8 Qualitative ablation result on Livingroom dataset

configurations. When the model is trained without multi-scale adversarial loss

(W/O MS Adv.), local objects tend to be incomplete and discontinued as the

generator is not provided with local feedback. On the other hand, when the

model is trained only with multi-scale adversarial loss (W/O MS Con.), we

observe repetitive patterns often appear in the generated images, which are

known to be a common side-effect of PatchGAN discriminator. These artifacts

are prominently mitigated in the results of MsConD, resulting in more realistic

local objects.
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Figure 4.9 Comparison of training progress on Cityscapes
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4.4.3 Analysis on Training Dynamics

To further understand the training behavior of MsConD, we investigate the

statistics of discriminator logits for real and fake images during the training

process. Figure 4.9 shows the result on Cityscapes. For StyleGAN2, the logit

distributions overlap during the initial training period and then gradually move

away from each other. Therefore, as the training progresses, the discriminator

becomes overly confident and fails to provide meaningful feedback to the gen-

erator, resulting in degraded synthesis quality. To mitigate the overfitting of

discriminator, previous studies mainly focus on developing differentiable image

augmentations (Karras et al., 2020a; Zhao et al., 2020a). Our findings indicate

the problem could be substantially alleviated by utilizing multi-scale adversarial

feedback.

Figure 4.9 (b-d) presents the results when local discriminator feedback is

incorporated by our proposed discriminator. As shown, the logit distributions of

real and fake samples remain within a close range for the entire training period,

indicating that the discriminator can continuously provide informative feedback

without overfitting. Meanwhile, we could observe that the fake logits for higher

frequency part, i.e., D16
disc(x), tend to be unstable with large deviations. This

instability stems from large structural variations of high frequency patterns in

complex scenes. Figure 4.9 (e-g) shows that the auxiliary representation learning

effectively stabilizes the feedback signal, in turn further improves the synthesis

quality.

4.5 Chapter Summary

Despite recent advances of GANs, challenges still remain in modeling more

complex data distributions. One of these challenges lies in learning complex
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and diverse local structures, such as individual objects in scene images. To

mitigate the difficulty, we redesign the discriminator to leverage local feedback

from multi-scale features through multi-level branches. In addition, we propose

to enrich the multi-scale representations through contrastive learning in order

to further enhance the multi-scale GAN feedback. Experimental results show

our method improves the local-to-global discriminative ability, thus effectively

incentivizes the generator to synthesize diverse scene images with realistic de-

tails.
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Chapter 5

Leveraging Pretrained Vision
Models for Complex Scene
Generation

5.1 Motivation

In this chapter, we explore another way to improve the complex scene genera-

tion. As mentioned in previous chapter, modeling the distribution of complex

scenes is still challenging even for state-of-the-art GAN models and this diffi-

culty lies in the high structural complexity of scene images. Therefore, during

GAN training, the discriminator is under the heavy burden of learning complex

structural differences between real and fake scene images to properly guide the

generator.

In the perspective of recognition models, scene understanding tasks have

been extensively studied over the past decades (Zou et al., 2019; Lateef and

Ruichek, 2019). Now we have access to advanced models trained for various

scene understanding tasks. A natural question follows: can we take advantage

70



of these pretrained scene recognition models to relieve the burden of the dis-

criminator in GAN training and enhance its discriminative capability to better

incentivize the generator. In this chapter, we explore a way to leverage pre-

trained scene understanding models to improve GAN models.

While transfer learning has been a ubiquitous process in facilitating down-

stream tasks, it is relatively under-explored for GAN models where most of

GAN models are trained from scratch. There has been a recent study (Sauer

et al., 2021) that utilized an ImageNet pretrained network as a feature extractor

for the discriminator and improved the synthesis quality as well as the conver-

gence speed. However, we observe that the performance gain is far limited for

complex scene images since the utilized pretrained network is trained on object

centric images, i.e., ImageNet (Deng et al., 2009). In this chapter, we explore the

use of pretrained scene understanding models with the aim of improving com-

plex scene generation. As the models trained on different scene understanding

tasks contain distinct knowledge on visual scenes, we propose an feature level

ensemble method to fully utilize the pretrained features from multiple models.

We validate the efficacy of proposed method on two challenging scene image

datasets. Compared to recent GAN models, the proposed method consistently

improves the synthesis quality of complex scenes verified by various generation

metrics. In addition to scene-level metrics, the proposed method significantly

improves object-level synthesis quality, demonstrating the pretrained expert

models substantially aid the discriminator in recognizing meaningful semantic

structures in the scene.
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Figure 5.1 Overview of the proposed method

5.2 Method

5.2.1 Leveraging Pretrained Vision Models

To enhance the discrimination process, we employ pretrained vision models as

powerful feature extractors. We first extract multi-scale features {fi}Li=1 from a

fixed pretrained vision model F and train shallow discriminators {Ci}Li=1 based

on the extracted features. In addition to the original adversarial loss V (G,D),

the adversarial loss calculated using the pretrained models is jointly optimized

to further improve the model:

min
G

max
D,Daux

V (G,D) + V (G,Daux), (5.1)

where Daux(x) =
∑L

i=1Ci(fi) and L is the number of different scales. In this

chapter, we aim to improve the complex scene generation that are challenging

for GAN models. Therefore, we utilize all multi-scale features which are use-

ful for recognition and discrimination on local regions, and accordingly utilize

multiple shallow discriminators to process features of each scale.
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Figure 5.2 Illustration of proposed feature ensemble method

5.2.2 Feature Ensemble across Scales and across Models

Models trained on different vision tasks contain different knowledge on the

images. Especially for complex scene images, there exist various scene under-

standing tasks that require quite different knowledge to solve the task such as

object detection, semantic segmentation, and depth estimation. We aim to fully

leverage these task-specific knowledge or representations to enhance discrimina-

tion process. To this end, we propose to ensemble multi-scale features extracted

from multiple models across scales and across models.

Concretely, we denote the multi-scale features from k-th pretrained model

as {f (k)
i }Li=1. To ensemble features from different models, we use projection

layers to transform the extracted features into integrated feature spaces. We

denote a projection layer that maps j-th scale feature of k-th pretrained model
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into integrated feature space of i-th scale by ϕ
(k)
ji . The integrated feature of i-th

scale can be calculated by summing all the projected features as follows:

fi =
∑
k

∑
j

ϕ
(k)
ji (f

(k)
j ). (5.2)

We observe that the all pair connection across all scales is redundant since

the backbone networks are already designed to reduce the spatial resolution of

features. Therefore, we only utilize the projection networks that are in coarse-

to-fine direction. Concretely, if we index the scales from coarse to fine-grained

features in ascending order we can re-formulate the Equation 5.2 as follows:

fi =
∑
k

∑
j≤i

ϕ
(k)
ji (f

(k)
j ). (5.3)

Coarse-to-fine feedback connection is also successfully leveraged in Feature

Pyramid Networks (Lin et al., 2017) and we extend this idea for feature en-

semble for multi-scale features from multiple models in purpose of enhancing

the discriminator. Figure 5.2 shows the detailed illustration of feature ensemble

method.

5.3 Experiment

Datasets. We use Livingroom and Kitchen dataset from LSUN datasets (Yu

et al., 2015) as the validation datasets. We choose these datasets because they

contain a challenging image distribution that includes a variety of objects. Liv-

ingroom and Kitchen dataset contain 1.3 million and 2.2 million scene images,

respectively. We resize all the images to 256×256 resolution.
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Evaluation Metrics. For quantitative evaluation, we use Frechet inception

distance (FID) (Heusel et al., 2017a), Kernel inception distance (KID) (Bińkowski

et al., 2018), Precision and Recall (Kynkäänniemi et al., 2019) to assess the syn-

thesis quality of generated images. Following the standard setup, all metrics are

calculated using 50,000 fake images and all training images. In addition to scene

level metrics, we also compare object level metrics since the visual quality of

scene images are largely determined by the visual quality of individual objects

in the scene. To assess the object level synthesis quality, we employ an ob-

ject detector to detect objects in the generated scene images and compare the

quality of detected object crops.

Comparison Methods. We compare our method with several recent GAN

models. StyleGAN2 (Karras et al., 2020b) is one of the most successful GAN

models that shows impressive synthesis quality of single object such as human

faces, cars, and horses. Our model uses the same generator network and hyper-

parameters as StyleGAN2. UnetGAN (Schonfeld et al., 2020) is another recent

GAN model that employs multi-scale unet architecture for the discriminator

to improve discriminative ability of the discriminator. For UnetGAN, which is

originally built on top of BigGAN (Brock et al., 2019) network, we modify the

model to suit the better backbone of StyleGAN2 for fair comparison. Specifi-

cally, we change the building blocks to those of StyleGAN2 and apply global

and local R1 regularization, resulting in better results than its official release.

ProjectedGAN (Sauer et al., 2021) is a recent work that utilizes the ImageNet

pretrained network for the discriminator to improve the synthesis quality and

the convergence speed.
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Implementation Details. We use StyleGAN2 generator and discriminator

as the base GAN networks which is used to calculate basic adversarial loss

V (G,D). For auxiliary loss V (G,Daux), we utilize pretrained backbone net-

works which are Swin-Transformer networks (Liu et al., 2021b). Since Swin-

Transformer has shown impressive performance on various dense prediction

tasks, most of the state-of-the-art scene understanding tasks utilize Swin-Transformer

as their backbone network. For simplicity, we employ the pretrained network

having the same network architecture.

For projection layers, we use a sequence of 1×1 convolution layer and up-

sampling layer. It is worth noting that the projection layers are not updated

while training GAN as the aim of projection layers is to permute and reshape

the extracted features rather than adding or modifying the feature space. We

use four scales by default, i.e., L = 4 and the spatial resolutions of multi-scale

features are {8, 16, 32, 64} for the image resolution of 256.

5.3.1 Comparison Result

Scene-level metrics. In Table 5.1, we present the quantitative comparison

result with state-of-the-art GAN models using scene level metrics. As shown in

the result, our method substantially outperforms the baselines for all metrics. In

terms of FID, our method achieves 67% and 52% improvements in each dataset

compared to the best baseline methods. Especially, the recall is significantly

improved, which demonstrates that our method can generate much diverse scene

layouts than the baseline models.

Object-level metrics. Table 5.2 shows the comparison result of the object

level synthesis quality. We report FID and KID of top 5 most frequent object

categories in each data domain. As can be seen in the result, our method ob-

78



L
iv

in
g
ro

o
m

StyleGAN2 (FID=4.64) ProjectedGAN (FID=5.51) FEGAN (Ours) (FID=1.50)
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StyleGAN2 (FID=5.10) ProjectedGAN (FID=4.38) FEGAN (Ours) (FID=1.65)

Figure 5.3 Comparison of generated samples. Red rectangles show imperfect

object structures. Blue rectangles show repetitive stains making messy layouts.
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tains consistently improved results for all object categories. This shows that

our method effectively leverages the pretrained knowledge on various types of

objects to improve the photo-realism of the objects in the generated scene im-

ages.

Qualitative comparison. Figure 5.3 shows the comparison result of samples

generated by different models. All models are able to synthesize coarse layouts

of indoor scenes, but the samples generated by the baselines exhibit unrealistic

objects as well as mottled visual patterns. For example, objects marked with red

rectangles have imperfect structure or blends unnaturally with the background.

Areas inside blue rectangles contain repetitive stains that create messy layouts.

By contrast, our method can generate scene images showing much clear layouts

with realistic details.

5.3.2 Ablation Study

Different pretrained networks. In Table 5.3, we present the result when

using different pretrained networks on Livingroom dataset. In the perspective

of network architecture, transformer based networks outperform convolutional

networks, e.g., EfficientNet (Tan and Le, 2019). As our target training im-

ages are complex scene images, the networks trained on object-centric images,

i.e., ImageNet, are less effective than the networks trained on various scene

understanding tasks. Therefore, we use pretrained networks trained on three

representative scene understanding tasks of semantic segmentation (Liu et al.,

2021b), object detection (Liu et al., 2021b), and depth estimation (Li et al.,

2022) as feature extractors for the discriminator.
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W/O FE Ours

Pretrained Models FID↓ KID↓ FID↓ KID↓

L
iv
in
g
ro
o
m

StyleGAN2 4.64 2.22 4.64 2.22

+ Segmentation 2.35 1.10 2.35 1.10

+ Detection 2.25 1.04 1.95 0.86

+ Depth Estimation 2.20 0.93 1.50 0.54

K
it
ch
en

StyleGAN2 5.10 2.58 5.10 2.58

+ Segmentation 2.61 1.58 2.61 1.58

+ Detection 2.48 1.32 2.04 0.96

+ Depth Estimation 2.40 1.27 1.65 0.70

Table 5.4 Effectiveness of feature ensemble

Effectiveness of feature ensemble. In Table 5.4, we compare the proposed

method with and without feature level ensemble strategy. Without feature level

ensemble, the extracted features from different models are processed indepen-

dently via separate shallow discriminators to compute adversarial losses. We

report the generation performance when pretrained networks are cumulatively

added one by one. As can be seen in the table, the performance gain is sub-

stantially reduced without feature level ensemble, which demonstrates that the

proposed feature level ensemble plays an crucial role in leveraging multi-scale

features from multiple pretrained networks.

5.4 Chapter Summary

This paper proposes a method to utilize pretrained scene understanding mod-

els for complex scene generation. Based on empirical observation that the net-

works trained on scene understanding tasks can provide useful representations

for scene generation, we propose to leverage pretrained features from multiple
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models via feature level ensemble. Quantitative and qualitative experimental re-

sults show that the proposed method can synthesize diverse and realistic scene

images, achieving meaningful improvements compared to recent GAN model on

challenging scene datasets.
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Chapter 6

Conclusion & Future Work

In this dissertation, we study ways to improve complex image generation by

enhancing the discriminator for GAN training. To enhance the discriminative

ability of discriminator, we explore the methods for improvement in three differ-

ent directions: (1) designing a better architecture, (2) designing a new auxiliary

task for the discriminator, and (3) designing a transfer learning method to

leverage pretrained vision models.

In Chapter 3, we propose an advanced architecture for conditional image

generation task designed to process multi-label condition. We introduce con-

ditional modules for each of the generator and discriminator, named ADGAN.

For generator part, we propose a product-of-Gaussian based conditional prior

sampling method. To encode a set of attribute labels, we map the input labels

into corresponding Gaussian distributions and aggregate them to a unified dis-

tribution by product-of-Gaussian calculation. For discriminator, we introduce

an attention-based conditional discriminator to improve the discrimination pro-

cess for given multi-label condition. To do this, we use the attention mechanism
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to acknowledge the discriminator which area to focus on to better discriminate

the image for a given label. We validate our method on fashion image dataset

and show proposed ADGAN outperforms the baseline method, providing better

controllability on image generation task.

In Chapter 4, we design an auxiliary task which is assigned to discriminator

to improve its discriminative ability, therefore better model complex image

distributions such as scenes with multiple objects. Considering the structural

complexity of scene images containing multiple local objects, we build a multi-

scale discriminator that produces loss signals not only for global representation

but also local representations of multiple scales. To further enhance the local-

to-global representations, we design a multi-scale contrastive learning task and

assign the task to the discriminator so that the original binary classification

task benefits from the enhanced representations. To impose spatial consistency

on contrastive learning for local representations, we identify the positive and

negative feature pairs using predefined distance threshold where the distance

is computed between the pixel coordinates of local features. From experiments

on challenging scene image datasets, we observed that the proposed auxiliary

task substantially improves the synthesis quality of generated scene images in

terms of both scene-level and object-level metrics. Through extensive ablation

study, we validated the efficacy of local representation learning and distance

thresholding strategy under various model configurations. While we verify the

proposed auxiliary task on unconditional generation setup, we also expect our

finding could be applied to other conditional image generation tasks since our

method operates in a self-supervised manner.

In Chapter 5, we explore the use of pretrained vision models to aid the

discriminator in learning complex structural difference between real and fake

scene images. We assume that the models trained on various scene understand-
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ing tasks contain useful knowledge which is helpful for discriminative task of

GAN training. Therefore, we sought for improvement of generation quality us-

ing pretrained scene understanding models as powerful feature extractors. Since

the models trained on different tasks contain distinct knowledge on scenes, we

propose to ensemble the features extracted from multiple models to form a set

of unified multi-scale features, which are then used to discriminate real and fake

images. The feature-level ensemble strategy enables efficient utilization of com-

mon and distinct knowledge learned by different models thus further boosts the

synthesis quality as well as diversity of generated scene images. Experiments on

two challenging indoor scene dataset show the proposed method significantly

lower the FID and KID score in both scene-level and object-level evaluation.

As an ablation study, we compare the result when using different pretrained

vision models trained for different tasks involving different datasets. The result

shows that both network architecture and pretraining task affects the usefulness

of pretrained representations, where the models trained on scene understand-

ing tasks and scene image datasets learns the most useful representations. We

also validate the proposed feature ensemble strategy by comparing the results

with or without feature ensemble and we observed meaningful improvement is

achieved by feature level ensemble.

Generative models have a great potential on various synthesis and editing

tasks as well as generative data augmentation for various recognition tasks.

Although recent advances of GAN models enabled photo-realistic synthesis of

various objects, there still exist challenges on modeling more complex image

distributions. We believe that the methods discussed in this dissertation would

help alleviating the burden of discriminator and making it more robust, conse-

quently improving the generation of complex images.

As the future work, we consider three research directions to extend our ap-
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proach. First, while this dissertation consider generative models only for image

data, we could apply our findings to generative models for other data types such

as speech and video. For example, a recent work (Skorokhodov et al., 2022) has

proposed a generative adversarial network for generating long videos based on

StyleGAN architecture. We believe the performance could be further boosted

by leveraging methods proposed in this dissertation.

Since we have investigated the orthogonal directions for improving discrim-

inator learning, the proposed methods can be utilized together to further boost

the generation performance. For examples, the self-supervised auxiliary task

described in Chapter 4 can be integrated to the feature ensemble process in

Chapter 5. While the multi-scale contrastive learning learns beneficial repre-

sentations from stochastic image augmentations, the FEGAN does not utilize

such information, therefore the performance can be further improved by lever-

aging both techniques.

Lastly, we believe the strategies proposed in this dissertation can be also

applied to other types of generative models such as diffusion probabilistic mod-

els (Ho et al., 2020). While different model classes have distinct mechanism to

learn underlying data distribution, the high-level strategies investigated in this

dissertation can be applied commonly. For example, pretrained representations

learned by various vision tasks would be also useful for learning complex data

distributions in unconditional diffusion models. We leave these research themes

as our future work.
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Chapter 7

Appendix

7.1 Detailed Network Architecture

7.1.1 Network Architecture of ADGAN

Table 7.1 and Table 7.2 show the architectural details of generator and discrimi-

nator of ADGAN, respectively. The basic blocks of discriminator and generator

are similar to network used in SNGAN (Miyato et al., 2018). We can apply

attention block to one or more layers of the discriminator. Here we use only one

attention block.

7.1.2 Network Architecture of MsConD

Table 7.3 shows the architectural details of MsConD discriminator. Our dis-

criminator is built upon the backbone resnet-based discriminator used in Style-

GAN2 (Karras et al., 2020b). We use branches to process the feature map at

each level, where each branch consists of three components: a shared block, a

discriminator head and a projection head. The shared block consists of 3 1 × 1
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convolutional layers with residual connections. The shared block translates a

feature map in the backbone network into an intermediate feature map of the

same size. The intermediate feature map is then projected into two different

outputs each by a discriminator head and a projection head, where both head

layers are implemented with 1× 1 convolutional layers. The discriminator head

is a single convolutional layer, while the projection head consists of two con-

volutional layers, i.e., Conv-ReLU-Conv. We set the channel dimension of the

projection output, i.e., Cp, as 256. We use ReLU activation for all layers in

branches.

7.2 Additional Samples

7.2.1 Comparison of additional samples of MsConD

For comparisons to the state of the art models, we provide more uncurated

samples generated by different models in Figure 7.1, 7.2, 7.3. Compared to

baselines, MsConD produces convincing results of more realistic scene images

with improved local details.
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Layer Kernel Output Shape

SNConv, lRelu [3,3,1] h× w × 64

SNConv, lRelu [4,4,2] h
2 × w

2 × 128

SNConv, lRelu [4,4,2] h
4 × w

4 × 256

SNConv, lRelu [3,3,1] h
4 × w

4 × 256

Attention - h
4 × w

4 × 512

SNConv, lRelu [4,4,2] h
8 × w

8 × 512

SNConv, lRelu [3,3,1] h
8 × w

8 × 512

Linear - 1

Table 7.1 Discriminator Architecture of ADGAN

Layer Kernel Output Shape

z - 256

Linear, BN, ReLU [3,3,1] h
16 × w

16 × 512

Upsample - h
8 × w

8 × 512

Conv, BN, ReLU [3,3,1] h
8 × w

8 × 256

Upsample - h
4 × w

4 × 256

Conv, BN, ReLU [3,3,1] h
4 × w

4 × 128

Upsample - h
2 × w

2 × 128

Conv, BN, ReLU [3,3,1] h
2 × w

2 × 64

Upsample - h× w × 64

Conv, BN, ReLU [3,3,1] h× w × 32

Conv, Tanh [3,3,1] h× w × 3

Table 7.2 Generator Architecture of ADGAN
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Type Layer Output Shape

- Image 256 × 256 × 3

backbone ResBlk 256 × 256 × 128

backbone ResBlk 128 × 128 × 256

backbone ResBlk 64 × 64 × 512

backbone ResBlk 32 × 32 × 512

backbone ResBlk 16 × 16 × 512

branch: shared 1 × 1 ResBlk 16 × 16 × 512

branch: disc 1 × 1 Conv 16 × 16 × 1

branch: proj 1 × 1 Conv 16 × 16 × 256

backbone ResBlk 8 × 8 × 512

branch: shared 1 × 1 ResBlk 8 × 8 × 512

branch: disc 1 × 1 Conv 8 × 8 × 1

branch: proj 1 × 1 Conv 8 × 8 × 256

backbone ResBlk 4 × 4 × 512

backbone Flatten 8192

backbone Linear 512

branch: disc Linear 1

branch: proj Linear 256

Table 7.3 Discriminator Architecture of MsConD

91



StyleGAN2 (FID 8.04)

ProjectedGAN (FID 5.07)

InsGen (FID 4.21)

MsConD (Ours) (FID 2.63)

Figure 7.1 Uncurated Samples for Cityscapes
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StyleGAN2 (FID 4.64)

ProjectedGAN (FID 5.51)

InsGen (FID 4.17)

MsConD (Ours) (FID 2.73)

Figure 7.2 Uncurated Samples for Livingroom
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StyleGAN2 (FID 5.10)

ProjectedGAN (FID 4.38)

InsGen (FID 5.76)

MsConD (Ours) (FID 2.88)

Figure 7.3 Uncurated Samples for Kitchen
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초록

Generative Adversarial Network (GAN) 은 최근 몇 년 동안 가장 성공적인 생

성 모델 중 하나이다. 생성기와 판별기를 사용한 적대적 훈련 방식은 이미지와

같은 고차원 데이터 분포를 모델링하는 새롭고 강력한 방법을 제공한다. 이 메커

니즘에서 판별기의 판별 기능은 핵심적인 역할을 한다. 이는 생성기가 판별기가

실제 샘플과 가짜 샘플을 구별해낼 수 있는 능력에 전적으로 의존하여 생성기의

생성 성능을 향상 시킬 수 있기 때문이다. 본 논문에서는 이러한 판별기 학습을

향상시키기 위한 세 가지 방법을 제안함으로써 GAN 모델의 개선을 모색하였다.

먼저, 복잡한 다중 레이블 조건에 대한 조건부 이미지 생성을 개선하기 위해

Attention-based Discriminator (ADGAN)을 제안한다. ADGAN은 판별기가 조

건 레이블과 관련된 이미지 영역에 집중할 수 있도록 Attention 기법을 활용하는

판별기를 제안한다. 또한 다중 레이블 조건을 효율적으로 인코딩하기 위해 가우

시안 곱 기반의 잠재 벡터 샘플링 방법을 제안한다. 제안된 아키텍처는 복잡하고

다양한 속성 라벨에 대해 이미지 생성 프로세스의 제어 가능성을 향상시켰다.

그 다음으로 여러 객체가 있는 장면 이미지와 같이 보다 복잡한 이미지에 대한

판별기 향상 방법에 대해 성능 향상을 모색한다. 장면 이미지는 일반적으로 이미

지의구조적복잡성이높기때문에판별기가실제장면이미지와가짜장면이미지

간의 복잡한 구조적 차이를 구별해야 하기에 학습의 난이도가 높다. 우리는 판별

기의 학습을 돕기 위해 판별기의 로컬 표현을 향상키기기 위한 다중 스케일 대조

학습 (Multi-scale Contrastive Learning)을 설계하고 이를 통해 판별기에 추가

작업으로 부여한다. 이를 통해 이미지의 로컬 구조에 대한 판별기의 판별 능력을

강화하여 결과적으로 장면 생성 성능을 향상시킬 수 있었다.

마지막으로 장면 생성 성능을 더 향상시키기 위해 사전 훈련된 장면 이해 모

델을 활용하여 판별기의 판별 과정을 추가로 지원하는 방법을 탐색합니다. 사전
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훈련된 모델들은 장면 이미지의 복잡한 의미 구조에 대한 풍부한 지식을 학습하고

있으므로 사전 훈련된 표현을 사용하여 판별기의 판별 능력을 증진시켰다. 여러

전문 모델이 담고 있는 공통적인 지식과 모델 별 고유한 지식을 최대한 활용하기

위해 모델로부터 추출된 피쳐들을 앙상블하여 통합된 다중 스케일 기능 세트를

형성하고 이를 판별 과정에 활용할 것을 제안한다.

우리는 다양한 이미지 도메인에서의 성능 평가 및 분석을 통해 제안된 방법들

이 복잡한 이미지 분포 모델링에서 의미 있는 개선을 달성하였다. 이러한 성과가

생성 모델의 문제와 한계를 극복하고 생성모델의 다운스트림 애플리케이션들도

용이하게 하는 데 도움이 될 것으로 기대한다.

주요어: 생성적 적대 신경망, 심층 생성 모델, 이미지 생성, 조건부 이미지 생성,

판별기 강화, 장면 생성, 자기 지도 학습, 전이 학습

학번: 2013-20865

114


	Abstract
	1 Introduction
	1.1  Deep Generative Models
	1.2  Generative Adversarial Networks
	1.3  Scope of Dissertation
	1.4  Contributions 

	2 Preliminaries and Related Work
	2.1  Generative Adversarial Networks
	2.2  Architectural Improvement
	2.3  Objective Functions and Regularization
	2.4  Auxiliary Task 
	2.5  Transfer Learning for GAN  
	2.6  Evaluation of Generative models

	3 Attention-based Discriminator for Multi-label to Image Generation
	3.1  Motivation 
	3.2  Related Work
	3.3  Method
	3.3.1  Multi-label Attention for Discriminator 
	3.3.2  Product-of-Gaussian Condition Prior for Generator
	3.3.3  Visual-Semantic Embedding

	3.4  Experiment 
	3.4.1  Quantitative Result
	3.4.2  Qualitative Result  

	3.5  Chapter Summary

	4 Multi-scale Contrastive Learning for Complex Scene Generation
	4.1  Motivation 
	4.2  Related Work 
	4.3  Method
	4.3.1  Multi-scale Discriminator with Multi-level Branches
	4.3.2  Multi-scale Contrastive Learning for GAN
	4.3.3  Full Objective 
	4.3.4  Implementation and Training 

	4.4  Experiment 
	4.4.1  Comparison to State-of-the-Art 
	4.4.2  Ablation Study
	4.4.3  Analysis on Training Dynamics

	4.5  Chapter Summary 

	5 Leveraging Pretrained Vision Models for Complex Scene Generation 
	5.1  Motivation 
	5.2  Method
	5.2.1  Leveraging Pretrained Vision Models
	5.2.2  Feature Ensemble across Scales and across Models

	5.3  Experiment 
	5.3.1  Comparison Result  
	5.3.2  Ablation Study 

	5.4  Chapter Summary 

	6 Conclusion & Future Work
	7 Appendix
	7.1  Detailed Network Architecture
	7.1.1  Network Architecture of ADGAN
	7.1.2  Network Architecture of MsConD

	7.2  Additional Samples
	7.2.1  Comparison of additional samples of MsConD




<startpage>6
Abstract 1
1 Introduction 9
 1.1  Deep Generative Models 9
 1.2  Generative Adversarial Networks 11
 1.3  Scope of Dissertation 12
 1.4  Contributions  13
2 Preliminaries and Related Work 15
 2.1  Generative Adversarial Networks 15
 2.2  Architectural Improvement 16
 2.3  Objective Functions and Regularization 19
 2.4  Auxiliary Task  20
 2.5  Transfer Learning for GAN   21
 2.6  Evaluation of Generative models 22
3 Attention-based Discriminator for Multi-label to Image Generation 24
 3.1  Motivation  24
 3.2  Related Work 26
 3.3  Method 28
  3.3.1  Multi-label Attention for Discriminator  28
  3.3.2  Product-of-Gaussian Condition Prior for Generator 30
  3.3.3  Visual-Semantic Embedding 31
 3.4  Experiment  33
  3.4.1  Quantitative Result 35
  3.4.2  Qualitative Result   40
 3.5  Chapter Summary 44
4 Multi-scale Contrastive Learning for Complex Scene Generation 45
 4.1  Motivation  45
 4.2  Related Work  48
 4.3  Method 50
  4.3.1  Multi-scale Discriminator with Multi-level Branches 51
  4.3.2  Multi-scale Contrastive Learning for GAN 53
  4.3.3  Full Objective  55
  4.3.4  Implementation and Training  56
 4.4  Experiment  56
  4.4.1  Comparison to State-of-the-Art  60
  4.4.2  Ablation Study 63
  4.4.3  Analysis on Training Dynamics 68
 4.5  Chapter Summary  68
5 Leveraging Pretrained Vision Models for Complex Scene Generation  70
 5.1  Motivation  70
 5.2  Method 72
  5.2.1  Leveraging Pretrained Vision Models 72
  5.2.2  Feature Ensemble across Scales and across Models 73
 5.3  Experiment  74
  5.3.1  Comparison Result   78
  5.3.2  Ablation Study  80
 5.4  Chapter Summary  82
6 Conclusion & Future Work 84
7 Appendix 88
 7.1  Detailed Network Architecture 88
  7.1.1  Network Architecture of ADGAN 88
  7.1.2  Network Architecture of MsConD 88
 7.2  Additional Samples 89
  7.2.1  Comparison of additional samples of MsConD 89
</body>

