

저 시-비 리- 경 지 2.0 한민

는 아래 조건 르는 경 에 한하여 게

l 저 물 복제, 포, 전송, 전시, 공연 송할 수 습니다.

다 과 같 조건 라야 합니다:

l 하는, 저 물 나 포 경 , 저 물에 적 된 허락조건
 명확하게 나타내어야 합니다.

l 저 터 허가를 면 러한 조건들 적 되지 않습니다.

저 에 른 리는 내 에 하여 향 지 않습니다.

것 허락규약(Legal Code) 해하 쉽게 약한 것 니다.

Disclaimer

저 시. 하는 원저 를 시하여야 합니다.

비 리. 하는 저 물 리 목적 할 수 없습니다.

경 지. 하는 저 물 개 , 형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

Ph.D. DISSERTATION

Finding Highly Similar Regions of Genomic

Sequences through Homomorphic Encryption

동형암호를 이용한 유전체 서열에서의 매우 유사한 영역을

찾는 알고리즘

FEBRUARY 2023

DEPARTMENT OF COMPUTER SCIENCE AND

ENGINEERING

COLLEGE OF ENGINEERING

SEOUL NATIONAL UNIVERSITY

Magsarjav Bataa

Finding Highly Similar Regions of Genomic Sequences

through Homomorphic Encryption

동형암호를 이용한 유전체 서열에서의 매우 유사한

영역을 찾는 알고리즘

지도교수 박 근 수

이 논문을 공학박사학위논문으로 제출함

2022 년 12 월

서울대학교 대학원

컴퓨터 공학부

Magsarjav Bataa

Magsarjav Bataa의 박사학위논문을 인준함

2022 년 12 월

위 원 장 김 선 (인)

부위원장 박 근 수 (인)

위 원 천 정 희 (인)

위 원 송 용 수 (인)

위 원 김 현 준 (인)

Abstract

Finding Highly Similar Regions of Genomic

Sequences through Homomorphic

Encryption

Magsarjav Bataa

Department of Computer Science

and Engineering

College of Engineering

The Graduate School

Seoul National University

Finding highly similar regions of genomic sequences is a basic computation of

genomic analysis. Genomic analyses on a large amount of data are efficiently

processed in cloud environments, but outsourcing them to a cloud raises con-

cerns over the privacy and security issues. Homomorphic encryption is a pow-

erful cryptographic primitive that preserves privacy of genomic data in various

analyses processed in an untrusted cloud environment.

First, we present an efficient algorithm for finding highly similar regions

of two homomorphically encrypted sequences, based on the Smith-Waterman

recurrence. With the efficient location retrieval, parallel computations, and a

proper HE scheme, it shows good performances in the experiment so as to be

useful in practice.

i

Second, we also propose an efficient algorithm for finding highly similar

regions of two sequences represented by homomorphically encrypted variants,

and conduct extensive experiments and parameter sensitivity analysis on real

and synthetic datasets to show its performance. In the experiment, it finds

highly similar regions of the sequences in real datasets in a feasible time.

Keywords: sequence alignment; homomorphic encryption; highly similar re-

gion; local alignment; privacy-preserving computation

Student Number: 2018-38143

ii

Contents

Abstract i

Contents iii

List of Figures vi

List of Tables vii

1 Introduction 1

1.1 Background . 1

1.2 Contribution . 3

1.3 Organization . 5

2 Preliminaries 6

2.1 Highly Similar Regions . 6

2.2 Smith-Waterman Algorithm . 7

2.3 Representation of Pair of Sequences 8

2.4 Bit-wise HE scheme . 10

2.5 Word-wise HE scheme . 11

2.6 Problem Statement . 13

iii

2.7 Related Work . 13

3 Homomorphic Circuits 15

3.1 Implementation . 15

3.2 Analysis . 19

4 Finding Optimal HSR 21

4.1 Algorithm Overview . 22

4.2 Data Encoding . 25

4.3 Homomorphic Computation of Algorithm 27

4.4 Complexity Analysis . 30

4.5 Performance Evaluation . 31

5 Finding Approximate HSR 35

5.1 Approximate HSR . 37

5.2 Algorithm Overview . 38

5.3 Homomorphic Computation of Bit-wise Algorithm 44

5.3.1 Data Encoding . 44

5.3.2 Computing Scores of Regions 46

5.3.3 Finding HSR . 46

5.3.4 Complexity Analysis . 48

5.4 Homomorphic Computation of Word-wise Algorithm 50

5.4.1 Data Encoding . 50

5.4.2 Computing Scores of Regions 51

5.4.3 Finding Score of HSR . 53

5.4.4 Complexity Analysis . 54

5.5 Performance Evaluation . 57

5.5.1 Sensitivity Analysis . 60

iv

5.5.2 Comparing with Optimal HSR Algorithm 65

5.5.3 Quality of HSR . 66

6 Conclusion 70

요약 81

v

List of Figures

2.1 Highly similar regions of two DNA sequences 6

2.2 Lists of variants . 9

4.1 Starting and ending positions of HSR 24

4.2 Comparison between four versions of our algorithm 32

5.1 Alignment between two DNA sequences represented by lists of

variants . 37

5.2 Two ways to align variant region 38

5.3 Alignment consists of two gaps 41

5.4 Lengths, scores, and locations of variant and matched regions in

Figure 5.1 . 44

5.5 Encoding of variants . 51

5.6 Running example of Algorithm 7 52

5.7 Running example of Algorithm 8 54

5.8 Varying |X| . 62

5.9 Varying parameters . 63

5.10 Comparing with L-SEQ and N-SEQ 65

5.11 Quality of HSR . 68

vi

List of Tables

3.1 Spans and works of sequential and parallel circuits 20

5.1 Number of circuits in parallel region (lines 5-12) of Algorithm 5 . 48

5.2 Number of homomorphic operations in Algorithm 7 (β = ⌈walt/6⌉) 55

5.3 Depth of homomorphic multiplication in Algorithm 7 (β = ⌈walt/6⌉) 57

5.4 Characteristics of datasets . 58

5.5 Parameters of HE schemes . 59

5.6 Specifications of WD . 60

5.7 Experiment settings . 61

5.8 Experiment parameters . 67

vii

Chapter 1

Introduction

1.1 Background

Due to the advancements in genomic sequencing technology over the past

decade, genomic data are widely used in many different areas such as health-

care, biomedical research, and forensics. Human genomic data can reveal sensi-

tive information of individuals, and therefore, protecting its privacy is becom-

ing important in the applications. The privacy threats, attacking schemes, and

privacy-preserving methods for genomic data were studied in [4, 71, 55].

Genomic analyses on a large amount of data are efficiently processed in

cloud computing environments, but outsourcing genomic data to a cloud raises

concerns over the privacy and security issues. Homomorphic Encryption (HE) is

considered as one of the promising solutions for secure outsourced computation

over genomic data [50]. HE is a cryptographic primitive that allows compu-

tations to be performed on encrypted data without decryption. Since Fully

Homomorphic Encryption (FHE) [38] with support for an unlimited number

1

of addition and multiplication operations was introduced in 2009, several FHE

schemes have been proposed and used in various applications. According to

the provided operations, they can be classified into two categories: bit-wise

and word-wise [25]. Generally, additions and multiplications of the word-wise

HE schemes such as BGV [14] and HEAAN [24] are much faster than non-

polynomial operations such as min/max, comparison, and equality test since

they are often implemented by many additions and multiplications that are

built-in operations. On the other hand, built-in operations of the bit-wise HE

schemes such as FHEW [35] and TFHE [27] are logic gates such as NAND and

NOT, and thus the non-polynomial operations can be implemented by them

simply, and run faster than additions and multiplications which often consist

of a number of logic gates to be executed sequentially.

Extensive research has been done to preserve privacy of genomic data us-

ing HE in various analyses: Hamming distance [48], edit distance [26, 48], lo-

gistic regression [21, 45, 13, 18, 51], genome-wide association studies (GWAS)

[50, 8, 64, 46, 9, 56], and others [59, 19, 49, 67]. In particular, Cheon et al. [26] de-

scribed how to compute edit distance between two homomorphically encrypted

sequences. Kim and Lauter [48] proposed methods to compute Hamming dis-

tance and approximate edit distance between two homomorphically encrypted

sequences represented by Variant Call Format (VCF) files. Moreover, HE is

used to preserve the privacy of user data in AI/ML services. Most studies con-

sider neural network training/inference with HE [43, 20, 34, 11, 10, 17, 54] while

some works focus on specific tasks such as recognizing human action [47] and

detecting COVID-19 [70] using HE.

In addition to HE, secure multiparty computation (SMPC) approaches are

used to protect the privacy of user data in genomic analyses [42, 30, 12, 33, 31].

Solutions based on SMPC often require high communication costs which limit

2

their applications. Unlike the SMPC, HE does not require any interaction dur-

ing the computation. Therefore, HE is more suitable for cloud computing en-

vironments where genomic analyses are mostly performed. Moreover, most HE

schemes are based on strong security assumptions that are considered resistant

to attack by even quantum computers. Even though HE is generally considered

less efficient than SMPC, it has become more practical due to recent improve-

ments.

Similarity between two genomic sequences may indicate functional, struc-

tural and/or evolutionary relationships between them, and it is mostly com-

puted by hamming distance, edit distance, and sequence alignment algorithms.

Finding highly similar regions (HSR) of two genomic sequences is a basic step of

many applications such as homology (common ancestry) detection [60, 68, 22],

database search [16, 37, 53], read alignment [3, 52, 41], and ancient DNA restora-

tion [63]. For instance, in the context of whole human genome resequencing, a

massive number of short reads generated by next-generation sequencing tech-

nologies are required to accurately resequence an individual genome, and it

creates a problem of aligning those reads to a reference genome [41]. For the

given read and the reference genome, HSR between them indicate the correct

location of the read on the reference genome, and they are commonly computed

by genome alignment tools employing the Smith-Waterman algorithm [66, 39].

1.2 Contribution

In this thesis we present an efficient algorithm [5] that finds HSR of two ho-

momorphically encrypted genomic sequences, based on the Smith-Waterman

recurrence. It includes an efficient method of finding the location of HSR by

storing the location of the sources where each score comes from, in order to

3

avoid costly conditional branching in the backtracking. To reduce computation

time, we use two level parallel computations: one for filling the entries of the

dynamic programming recurrence, and the other for implementing the circuits.

With the efficient location retrieval, parallel computations, and a proper HE

scheme, our implementation shows good performances in the experiment so as

to be useful in practice.

We also propose an efficient algorithm [6] that finds HSR of two genomic

sequences represented by homomorphically encrypted variants. First, we align

regions of the sequences and compute their scores efficiently. Second, we find

HSR from the aligned regions utilizing classic algorithms for the maximum

subarray problem. Furthermore, we describe how to implement our algorithm

using the bit-wise and word-wise HE schemes. Finally we conduct extensive

experiments and parameter sensitivity analysis on real and synthetic datasets

to show the performance of our algorithm. The experiments show that it out-

performs the previous algorithm by up to 2 orders of magnitude in terms of

elapsed time, while the score accuracy of HSR is over 91% compared with the

Smith-Waterman algorithm. In particular, it takes 2 minutes to find the score

and location of HSR of two homomorphically encrypted sequences with length

30,000 bps each in a real dataset. Overall, it obtains HSR of the sequences in a

feasible time. In addition, the experiments show that the bit-wise implementa-

tion using the TFHE scheme is faster than the word-wise implementation using

the HEAAN scheme for the short sequences. However, the word-wise implemen-

tation outperforms the bit-wise implementation as the sequences get longer.

4

1.3 Organization

The thesis is organized as follows. Chapter 2 provides problem statements and

two types of HE schemes. Chapter 3 describes homomorphic circuits used in

the algorithms. Chapters 4 and 5 present algorithms for finding optimal and

approximate HSR, respectively. Chapter 6 concludes the thesis.

5

Chapter 2

Preliminaries

2.1 Highly Similar Regions

X A T A A T A A T A C T G A G A A − − G C A A A G T T

Y A T C C A C T A − T G A G A C C C G C A A T A C C T

align M S MM − MMMMM S MMMM

score 5 -3 5 5 -9 5 5 5 5 5 -3 -9 -1 5 5 5 5

Figure 2.1: Highly similar regions of two DNA sequences

For a pair of genomic sequences, the problem of finding a local alignment is

to determine and align highly similar regions of them such that the alignment

score is the maximum with respect to a scoring scheme. Highly similar regions

(HSR) of two sequences with affine gap penalties are commonly computed by

the Smith-Waterman algorithm (SW) [66, 39]. For example, the shadowed bases

in Figure 2.1 indicate the HSR of DNA sequences X and Y of lengths 24 and 25,

respectively. In the figure, row align shows the alignment between the HSR. In

6

the alignment, M denotes a match, S denotes a mismatch, and − (dash) denotes

a gap. Row score shows the corresponding scores for the matches, mismatches,

and gaps in the alignment. Here, we use a scoring scheme {sm/ss, go, ge} where

the match score sm = 5, mismatch score ss = −3, gap opening penalty go = −9,

and gap extending penalty ge = −1, as in [44]. In this example, the alignment

score is 35 (i.e., sum of the scores), and the regions start from the sixth base of

X and fifth base of Y, and end at the twentieth bases of X and Y.

2.2 Smith-Waterman Algorithm

Given a pair of genomic sequences and a scoring scheme, the SW algorithm

finds an optimal local alignment between the two sequences, allowing gaps. An

arbitrary gap penalty was used in the original SW algorithm [66]. Later, Gotoh

[39] and Altschul [2] improved the algorithm for the affine gap penalty.

Let ge be the (negative) gap extension penalty, go be the (negative) gap

opening penalty, X = X1 . . . Xn and Y = Y1 . . .Ym be the sequences to be

aligned. Furthermore, let sim(Xi,Yj) be the similarity score defined as

sim(Xi,Yj) =

sm if Xi = Yj

ss if Xi ̸= Yj

where sm is the (positive) score for a match and ss is the (negative) score for a

mismatch.

In the SW algorithm, the trace-back matrices H,P, and Q are initialized

first. The size of each matrix is (n + 1) × (m + 1) with 0-based indexing. The

first rows and columns are filled as

Hi,0 = 0, Qi,0 = 0 for i = 0, . . . , n

H0,j = 0, P0,j = 0 for j = 0, . . . ,m.
(2.1)

7

Next, the matrices are filled by the recursions as

Pi,j = max

Pi−1,j + ge

Hi−1,j + go

(2.2)

Qi,j = max

Qi,j−1 + ge

Hi,j−1 + go

(2.3)

Hi,j = max

Pi,j

Qi,j

Hi−1,j−1 + sim(Xi,Yj)

0

(2.4)

for i = 1, . . . , n and j = 1, . . . ,m.

Finally, an optimal local alignment can be retrieved by the backtracking

using the trace-back matrices. The backtracking starts from the highest score

in H, traverses through the source of the current score in H,P , or Q recursively

according to the trace-back matrices until 0 encounters in H.

2.3 Representation of Pair of Sequences

Suppose we have two genomic sequences X and Y stored in Variant Call Format

(VCF) [32] files along with a same reference genome R. Then they can be

represented as a pair of lists X and Y which summarize their variants compared

with R, as shown in Figure 2.2. More specifically, X and Y are lists of variants,

and each variant in the lists represents a variable-length substitution (e.g.,

insertion, deletion, or substitution) at given position of R. In the lists, column

pos stores the positions of R in an increasing order, column reflen stores

8

X Y

i pos reflen altlen alt i pos reflen altlen alt

1 3 1 3 AAT 1 3 4 2 CC

2 10 2 0 - 2 10 1 1 A

3 13 3 2 AG 3 13 4 2 AG

4 18 0 0 - 4 18 0 3 CCC

5 22 4 2 AG 5 22 5 4 TACC

Figure 2.2: Lists of variants

the lengths of reference bases, column altlen stores the lengths of alternate

bases, and column alt stores alternate bases. For example, in Figure 2.2, the

second variant in X, the second and fourth variants in Y (i.e., X2, Y2, and Y4)

represent a deletion of two bases, a single nucleotide polymorphism (SNP), and

an insertion of three bases (CCC) on the reference genome, respectively. For

a variant x in X (i.e., x = Xi), x.pos, x.reflen, x.altlen, and x.alt denote

the position of R, the length of reference bases, the length of alternate bases,

and alternate bases, respectively (same for a variant y in Y). For example,

when x = X1 in Figure 2.2, x.pos = 3, x.reflen = 1, x.altlen = 3, and

x.alt = AAT. For simplicity, we can make both columns of pos in X and Y the

same by arranging the variants according to their positions and inserting empty

variants (X4 in Figure 2.2). We assume that there is no variant whose length of

the reference bases overlaps with its next position. If exists, it can be divided

into two or more variants so that each of them satisfies the assumption. This

representation can be obtained from the VCF files by simple preprocessing.

9

2.4 Bit-wise HE scheme

The Torus Fully Homomorphic Encryption (TFHE) scheme was introduced in

[27], and the TFHE library [28] was released to public in 2016. The TFHE

scheme supports homomorphic evaluations of binary gates, negation, and mul-

tiplexer. It automatically performs bootstrapping after each evaluation to keep

the ciphertext noise small. Therefore, we can ignore the depth, which is the

main obstacle for performing computation using most HE schemes. The TFHE

scheme consists of the following homomorphic gates. Note that we use the sym-

metric version of THFE.

• sk, ck ← KeyGen(λ): For a security parameter λ, it outputs a secret key

sk and a cloud key ck.

• m ← Enc(m, sk): For a plain bit m and a secret key sk, it outputs a

ciphertext m which is an encrypted m.

• m ← Dec(m, sk): For a ciphertext m and a secret key sk, it outputs a

plain bit m which is a decrypted m.

• m1 ⊕m2 ← Xor(m1,m2, ck): For ciphertexts m1,m2, and a cloud key ck,

it outputs a ciphertext which is a homomorphic evaluation of the logical

XOR gate. Similarly, the input and output of other binary gates such as

And, Or, and Xnor are defined in the same way as Xor.

• ¬m ← Not(m, ck): For a ciphertext m, and a cloud key ck, it outputs a

ciphertext which is a homomorphic evaluation of the negation.

• m3 ← Mux(s,m1,m2, ck): For ciphertexts s,m1,m2, and a cloud key ck,

it outputs a ciphertext m3 which is a homomorphic evaluation of the

multiplexer, i.e., m3 = m1 if s = 1, and m3 = m2 if s = 0.

10

• m ← Const(m, ck): For a plain bit m and a cloud key ck, it outputs a

ciphertext m. This gate converts a bit to a ciphertext, whose plaintext m

is known to the public.

2.5 Word-wise HE scheme

The HEAAN scheme was introduced in [24]. The scheme supports an approx-

imate computation of real numbers in an encrypted state. Even though it is a

leveled HE scheme, an efficient bootstrapping method was introduced in [23].

In HEAAN, a plaintext m is a real vector of size n, i.e., m = (m1,m2, . . . ,mn)

(mi ∈ R), and we denote its ciphertext vector by m where mi is an encrypted

mi for 1 ≤ i ≤ n. The scheme consists of the following operations.

• sk, pk, ek ← KeyGen(N,λ, l, q): For a ring dimension N , a security pa-

rameter λ, a level parameter l, and a number of quantization bits q, it

outputs a secret key sk, a public key pk, and an evaluation key ek.

• m← Enc(m, pk): For a plaintext vector m and a public key pk, it outputs

a ciphertext vector m.

• m← Dec(m, sk): For a ciphertext vector m and a secret key sk, it outputs

a plaintext vector m which is a decrypted m.

• c ← Add(a, b): For ciphertext vectors a and b, it outputs a ciphertext

vector c where ci = ai + bi.

• c← Subtract(a, b): For ciphertext vectors a and b, it outputs a ciphertext

vector c where ci = ai − bi.

• c ← Multiply(a, b, ek): For ciphertext vectors a, b, and an evaluation key

ek, it outputs a ciphertext vector c where ci = ai· bi.

11

• c ← MultiplyConst(a, t): For a ciphertext vector a and a real vector t, it

outputs a ciphertext vector c where ci = ai· ti. The second argument t

can be a real number, not a vector. In such a case, ci = ai· t.

• c ← LeftRotate(a, t, ek): For a ciphertext vector a, an integer t, and an

evaluation key ek, it outputs a ciphertext vector c where c is equal to

vector a rotated left by t slots, i.e., c = (at+1, . . . , an, a1, a2, . . . , at).

• c ← RightRotate(a, t, ek): For a ciphertext vector a, an integer t, and

an evaluation key ek, it outputs a ciphertext vector c where c is equal to

vector a rotated right by t slots, i.e., c = (an−t+1, . . . , an, a1, a2, . . . , an−t).

In addition to the above built-in operations, we privately communicated

with the authors of HEAAN and obtained the implementations of the following

operations.

• c, g ← MinMax(a, b, u, ek): For ciphertext vectors a, b, an iteration number

u, and an evaluation key ek, it outputs ciphertext vectors c and g where

ci = max(ai, bi) and gi = min(ai, bi). Note that ai and bi must be real

numbers between -1 and 1, inclusive [25].

• c ← Equals(a, b, ek): For ciphertext vectors a, b, and an evaluation key

ek, it outputs a ciphertext vector c where ci = 1 if ai = bi, and ci = 0

otherwise. Note that ai and bi must be integers between 0 to 70.

• c ← EqualsZero(a, ek): For a ciphertext vector a, and an evaluation key

ek, it outputs a ciphertext vector c where ci = 1 if ai = 0, and ci = 0

otherwise. Note that ai must be an integer between 0 to 70.

The above operations are performed on each slot of the input vector(s) in

parallel (i.e., in a SIMD manner) [24]. Note that the ring dimension N and

12

size n of a plaintext vector are required to be powers of two and n ≤ N/2 in

HEAAN.

2.6 Problem Statement

Optimal HSR. Given two homomorphically encrypted genomic sequences,

find HSR of them (the SW solution) efficiently without revealing any informa-

tion of the sequences (Chapter 4).

Approximate HSR. Given two genomic sequences represented by a pair of

lists of homomorphically encrypted variants (as described in Section 2.3), find

HSR of them (which approximate the SW solution) efficiently without revealing

any information of the sequences (Chapter 5).

2.7 Related Work

Edit Distance. Cheon et al. [26] described a way to compute (optimal) edit dis-

tance between two homomorphically encrypted sequences based on the Wagner-

Fisher algorithm [69]. It is similar to the first problem (Optimal HSR) with

respect to the computation method because both problems are solved by DP

recurrences. Since computing the edit distance of only two sequences is ineffi-

cient in [26], the experiment was done for multiple pairs of sequences in order

to reduce the amortized time, which is equal to the total running time divided

by the number of pairs. In particular, it takes around 5 hours for 682 pairs of

DNA sequences with lengths 8.

Hamming Distance and Approximate Edit Distance. Kim and Lauter

[48] proposed methods to compute Hamming distance and approximate edit dis-

tance between two homomorphically encrypted sequences represented by VCF

files. Both problems are similar to the second problem (Approximate HSR) in

13

terms of the input representations and computation approaches. They compute

the distance between each pair of variants at the same position based on the

set difference metric in encrypted states and then compute the total distance

by accumulating them in plain states (non-encrypted) to achieve better per-

formance. It takes around two minutes to compute the Hamming distance and

approximate edit distance of the two sequences represented by 5,000 encrypted

variants.

14

Chapter 3

Homomorphic Circuits

In this chapter, we discuss homomorphic circuits which perform polynomial

and non-polynomial operations over encrypted bits, implemented by the built-

in gates in TFHE. We consider both sequential and parallel implementations

of the circuits.

3.1 Implementation

We assume that input and output of the circuits are a ciphertext or ciphertext

array of length w which is an encrypted bit or integer represented by two’s

complement, respectively. For instance, if a is a ciphertext array of length w, ai

is an encrypted i-th bit in the two’s complement representation of an integer a.

The bit length w is not required to be a power of two in the circuits. Note that

the cloud key ck is omitted from the input of each circuit and homomorphic

gate for simplicity.

• c ← Add(a, b): For ciphertext arrays a and b of length w, it outputs a

15

Algorithm 1 Compare(a, b)

1: aw ← Not(aw)

2: bw ← Not(bw) ▷ Flipping sign bits

3: for i← 1 to w parallel do

4: si ← Xnor(ai, bi)

5: for i← 1 to ⌈logw⌉ do

6: for j ← 1 to w by 2i parallel do

7: if j + 2i−1 ≤ w then

8: sj ← And(sj , sj+2i−1)

9: aj ← Mux(sj+2i−1 , aj , aj+2i−1)

10: c← Or(s1, a1)

11: return c

ciphertext array c of size w where c = a + b. Its sequential computation

can be implemented recursively as ci = Xor(Xor(ai, bi), ri−1) where ri =

Xor(And(ai, bi),And(Xor(ai, bi), ri−1)) and r0 = 0 for i = 1, . . . , w, as a

Ripple-carry adder (RCA). To implement the parallel one, we use Carry-

lookahead adder (CLA)[15, 40]. In the first step, CLA computes generate

bits gi = And(ai, bi) and propagate bits pi = Xor(ai, bi) in parallel. The

sum c can be expressed by the bits as ci = Xor(pi, ri−1) where ri =

Or(gi,And(pi, ri−1)) and r0 = 0 for i = 1, . . . , w. In order to calculate them

in parallel, we need the group generate bits Gi and the group propagate

bits Pi defined by the recursion

(Gi, Pi) =

(g1, p1) if i = 1

(gi, pi) ◦ (Gi−1, Pi−1) if i = 2, . . . , w

16

Algorithm 2 MultiplyConst(a, t)

1: c← EncConst(0)

2: for i← 1 to ⌈log(|t|+ 1)⌉ do ▷ |t| denotes absolute value of t

3: if |t|i = 1 then ▷ |t|i denotes i-th bit of |t|

4: c← Add(c, a)

5: for j ← w to 2 do

6: aj ← aj−1

7: a1 ← Const(0)

8: if t < 0 then

9: for i← 1 to w do

10: ci ← Not(ci)

11: c← Add(c,EncConst(1))

12: return c

where operator ◦ is defined as

(g, p) ◦ (ĝ, p̂) = (Or(g,And(p, ĝ)),And(p, p̂))

for any bits g, p, ĝ and p̂. In the second step, CLA computes (Gi, Pi) for

i = 1, . . . , w−1 in parallel. This type of calculation is called prefix sum or

scan. Among several ways to calculate the prefix sum in parallel, we use

Sklansky’s implementation [65]. In the final step, the sum is computed by

c1 = p1 and ci = Xor(pi, Gi−1) in parallel for i = 2, . . . , w since ri = Gi.

• c ← Compare(a, b): For ciphertext arrays a and b of length w, it outputs

a ciphertext c where c = 1 if a > b, and c = 0 otherwise. If we flip

both the sign bits aw and bw, we can compare them as unsigned integers.

Its sequential computation can be implemented recursively as c = rw

where ri = Mux(si, ri−1, ai), si = Xnor(ai, bi), and r0 = 1 for i = 1, . . . , w.

17

Moreover, rw can be computed in parallel using a binary tree order as

shown in Algorithm 1. In the algorithm, And and Mux at lines 8 and 9

can also be computed in parallel since there is no data dependency.

• c ← EncConst(m): For an integer m, it outputs a ciphertext array c of

length w where c = m (represented by two’s complement). It can be

implemented using Const simply.

• c ← Equals(a, b): For ciphertext arrays a and b of length w, it outputs

a ciphertext c where c = 1 if a = b, and c = 0 otherwise. Its se-

quential implementation can be computed recursively as c = ew where

ei = And(ei−1,Xnor(ai, bi)) and e0 = 1 for i = 1, . . . , w. Moreover, we can

compute ew in parallel using a binary tree order.

• c ← EqualsZero(a): For a ciphertext array a of length w, it outputs a

ciphertext c where c = 1 if a = 0, and c = 0 otherwise. It can be imple-

mented using a smaller number of gates compared to Equals.

• c ← Subtract(a, b): For ciphertext arrays a and b of length w, it outputs

a ciphertext array c of length w where c = a − b. Its sequential and

parallel computations can be implemented similarly to Add since we use

two’s complement for representing the integers. In the first step of parallel

implementation, the group generate and propagate bits in Add should be

changed to gi = And(ai,Not(bi)), and pi = Xnor(ai, bi) for i = 1, . . . , w.

In the second step, calculating the prefix sum is exactly same as the

addition. In the final step, the result is computed as c1 = p1 and ci =

Xor(pi,Xor(Gi−1, Pi−1)) in parallel for i = 2, . . . , w.

• c ← SubtractOne(a): For a ciphertext array a of length w, it outputs a

ciphertext array c of length w where c = a − 1. It can be implemented

18

using fewer gates compared to Subtract.

• c← MultiplyConst(a, t): For a ciphertext array a of length w and an integer

t, it outputs a ciphertext array c of length w where c = a· t. It can be

implemented as a simple binary multiplier, as described in Algorithm 2,

where Add in line 11 can be implemented similarly to SubtractOne, using

fewer gates compared to Add.

• c← Select(s, a, b): For a ciphertext s, ciphertext arrays a and b of length

w, it outputs a ciphertext array c of length w where c = a if s = 1, and

c = b if s = 0. It can be implemented using Mux simply.

• c← SelectZero(s, a): For a ciphertext s and a ciphertext array a of length

w, it outputs a ciphertext array c of length w where c = a if s = 1, and

c = 0 if s = 0. It can be implemented using fewer gates compared to

Select.

3.2 Analysis

Based on the running times of the built-in gates in TFHE, we estimate the span

and work of each circuit. We use the CPU time of each binary gate as the unit

cost of our estimation. Mux is regarded as 2 binary gates while Const and Not

can be regarded as 0 because they are executed in less than a millisecond.

Table 3.1 shows the spans and works of sequential and parallel implemen-

tations of the circuits. For the parallel implementation of a circuit, the span

is the number of the longest series of gates that have to be performed sequen-

tially. Moreover, the work is the total number of gates used in the circuit. For

the sequential implementation of a circuit, its span and work are the same.

For example, in Algorithm 1, the span of the flipping bits in lines 1-2 is 0, the

19

Table 3.1: Spans and works of sequential and parallel circuits

Circuit Sequential Parallel

Span Work

Add 5w 2⌈log (w − 1)⌉+ 2 3⌈w−1
2 ⌉⌈log (w − 1)⌉+ 3w − 1

Compare 3w 2⌈logw⌉+ 2 4w − 2

Equals 2w − 1 ⌈logw⌉+ 1 2w − 1

EqualsZero w − 1 - -

MultiplyConst 5⌈log (|t|+ 1)⌉w + 2w - -

Select 2w 2 2w

SelectZero w 1 w

Subtract 5w 2⌈log (w − 1)⌉+ 3 3⌈w−1
2 ⌉⌈log (w − 1)⌉+ 4w − 2

SubtractOne 2w - -

span of the loop in lines 3-5 is 1, the span of the double loop in lines 5-9 is

2×⌈logw⌉ (the maximum cost of Mux and And is 2, and they are performed in

parallel), and the span of Or at line 10 is 1. Thus their sum, 2⌈logw⌉+ 2, will

be the span of parallel implementation of Compare. Furthermore, the work of

the flipping bits in lines 1-2 is 0, the work of the loop in lines 3-5 is w, the work

of the double loop in lines 5-9 is 3× (w− 1), and the work of Or at line 10 is 1.

Thus their sum, 4w − 2, will be its work. The sequential computation of Com-

pare can be implemented using a smaller number of gates, 3w, compared to its

parallel implementation. Note that the parallel implementations of EqualsZero,

MultiplyConst, and SubtractOne are not used in the algorithms.

20

Chapter 4

Finding Optimal HSR

Given two homomorphically encrypted sequences, we find the score and location

(starting and ending positions) of HSR between them in encrypted forms using

the SW algorithm. We assume that the score and location of HSR are the same

as those of an optimal local alignment obtained by the SW algorithm (see Figure

4.1).

Finding Starting Positions. In SW, an optimal local alignment of two se-

quences is obtained by backtracking using the scores in the trace-back matrices.

In our case, the homomorphic computation of backtracking is extremely heavy

due to a lot of conditional branching, and it makes finding the starting posi-

tions of HSR expensive. Therefore, we propose a lighter method that retrieves

the two starting positions of HSR efficiently based on an idea derived from the

backtracking of SW. In the backtracking, the trace-back matrices (Section 2.2)

store the direction information as to where each score comes from. In contrast,

we store the location of the source where each score starts from. In other words,

we keep the origin of each score in additional matrices. It allows us to find the

21

starting positions of HSR directly without backtracking. Unlike SW, the actual

local alignment of the two sequences can not be retrieved by our algorithm since

it does not employ backtracking.

Finding Score and Ending Positions. Since an optimal local alignment

ends at the highest score stored in the trace-back matrix of SW, we can obtain

the score and two ending positions of HSR by finding the maximum score of

the matrix while keeping its location.

Organization. The rest of the chapter is organized as follows. Section 4.1

gives an overview of our approach. Section 4.2 describes how we encode the

data for homomorphic computation. Section 4.3 introduces the homomorphic

computation of our algorithm. Section 4.4 presents the complexity analysis of

our algorithm. Section 4.5 shows the experimental results of our algorithm.

4.1 Algorithm Overview

We store the location of the source where each score starts from in extra ma-

trices. According to (2.2)-(2.4), the source of a score in H can be in H,P, or

Q. Therefore, we use extra matrices Hx, Hy, P x, P y, Qx, and Qy to store the

source since its location is expressed by two positions, one in X and the other

in Y. Our algorithm consists of the following two steps.

(1) Filling Matrices. First we initialize H,P , and Q as in (2.1) and the extra

matrices as in the following.

Hx
i,0 = i,Hy

i,0 = 0, Qx
i,0 = i, and Qy

i,0 = 0 for i = 0, . . . , n

Hx
0,j = 0, Hy

0,j = j, P x
0,j = 0, and P y

0,j = j for j = 0, . . . ,m
(4.1)

Next we fill H,P , and Q as in (2.2)-(2.4) and the extra matrices by the recur-

22

sions

P x
i,j =

P x
i−1,j if Pi,j = Pi−1,j + ge

Hx
i−1,j if Pi,j = Hi−1,j + go

(4.2)

P y
i,j =

P y
i−1,j if Pi,j = Pi−1,j + ge

Hy
i−1,j if Pi,j = Hi−1,j + go

(4.3)

Qx
i,j =

Qx

i,j−1 if Qi,j = Qi,j−1 + ge

Hx
i,j−1 if Qi,j = Hi,j−1 + go

(4.4)

Qy
i,j =

Qy

i,j−1 if Qi,j = Qi,j−1 + ge

Hy
i,j−1 if Qi,j = Hi,j−1 + go

(4.5)

Hx
i,j =

Hx
i−1,j−1 if Hi,j = Hi−1,j−1 + sim(Xi,Yj)

P x
i,j if Hi,j = Pi,j

Qx
i,j if Hi,j = Qi,j

i if Hi,j = 0

(4.6)

Hy
i,j =

Hy
i−1,j−1 if Hi,j = Hi−1,j−1 + sim(Xi,Yj)

P y
i,j if Hi,j = Pi,j

Qy
i,j if Hi,j = Qi,j

j if Hi,j = 0

(4.7)

for i = 1, . . . , n and j = 1, . . . ,m.

(2) Finding HSR. To report the score and location of HSR, we find the

maximum score of H since the optimal alignment ends at it. Assume that the

maximum score is stored at indices i∗ and j∗ in H, i.e., Hi∗,j∗ is the maximum

23

score. Then i∗ and j∗ will be ending positions of the HSR, in X and Y, respec-

tively. Moreover, Hx
i∗,j∗ + 1 and Hy

i∗,j∗ + 1 will be the starting positions of the

HSR since the source location (i.e., the starting positions) of score at Hi∗,j∗ is

stored at Hx
i∗,j∗ and Hy

i∗,j∗ .

𝐻
0 1 2 3 4 5 6 7 8 9

- A G A T G C A G G

0 - 0 0 0 0 0 0 0 0 0 0

1 T 0 0 0 0 5 0 0 0 0 0

2 A 0 5 0 5 0 2 0 5 0 0

3 T 0 0 2 0 10 1 0 0 2 0

4 C 0 0 0 0 1 7 6 0 0 0

5 A 0 5 0 5 0 0 4 11 2 1

6 T 0 0 2 0 10 1 0 2 8 0

7 A 0 5 0 7 1 7 0 5 0 5

𝐻𝑥
0 1 2 3 4 5 6 7 8 9

- A G A T G C A G G

0 - 0 0 0 0 0 0 0 0 0 0

1 T 1 1 1 1 0 1 1 1 1 1

2 A 2 1 2 1 2 0 2 1 2 2

3 T 3 3 1 3 1 1 1 3 1 3

4 C 4 4 4 4 1 1 1 4 4 4

5 A 5 4 5 4 1 5 1 1 1 1

6 T 6 6 4 6 4 4 4 1 1 6

7 A 7 6 7 4 4 4 7 4 7 1

𝐻𝑦
0 1 2 3 4 5 6 7 8 9

- A G A T G C A G G

0 - 0 1 2 3 4 5 6 7 8 9

1 T 0 1 2 3 3 5 6 7 8 9

2 A 0 0 2 2 4 3 6 6 8 9

3 T 0 1 0 3 2 2 2 7 6 9

4 C 0 1 2 3 2 2 2 7 8 9

5 A 0 0 2 2 2 5 2 2 2 2

6 T 0 1 0 3 2 2 2 2 2 9

7 A 0 0 2 0 2 2 6 2 8 2

Figure 4.1: Starting and ending positions of HSR

For example, Figure 4.1 shows H,Hx, and Hy matrices for the DNA se-

quences X = TATCATA and Y = AGATGCAGG where sm = 5, ss = −3, go =

−9, and ge = −1. In the figure, the shaded scores in H represents the optimal

local alignment ending at i∗ = 5 and j∗ = 7 with score H5,7 = 11. The indices

inside the boxes in H represent the ending positions, and the positions inside

the boxes in Hx and Hy represent its source location in X and Y, respectively.

In other words, the score of HSR is 11, it starts from the positions Hx
5,7+1 = 2

24

and Hy
5,7 + 1 = 3, and ends at 5 and 7, in X and Y, respectively.

4.2 Data Encoding

Since TFHE allows only bit-by-bit encryption, all the data used in the compu-

tation must be encoded by bit arrays. We have three different types of data to

encode.

The first one is the sequences X and Y. Assume that they are defined over

an alphabet Σ. Then a single base Xi or Yj can be encoded by walp = ⌈log |Σ|⌉

bits. Thus X of length n and Y of length m are encoded by bit arrays of lengths

walp × n and walp ×m, respectively. Note that log denotes a logarithm to the

base two.

The second one is integer scores in H,P, and Q matrices in (2.1)-(2.4). Since

the scores in the matrices can be negative, we use the two’s complement for

representing them. Assume that wsco is the bit length of the two’s complement

representation. Then each score can be encoded as a bit array of length wsco

which can be calculated by the following equation based on the lengths of the

sequences and scoring scheme.

wsco = max

⌈log(min(n,m)× sm + 1)⌉+ 1

⌈log(max(−go − ge,−ss))⌉+ 1

(4.8)

Here, the expressions at the first and second rows in (4.8) are the bit lengths of

the maximum and minimum scores that can be encountered during the compu-

tation, respectively. The maximum possible score is min(n,m) × sm when one

sequence is a substring of the other. Therefore we need ⌈log(min(n,m)× sm +

1)⌉+1 bits to represent it. The minimum possible score that can be stored in the

matrices is go according to (2.2)-(2.4) since the scores in H are non-negative.

However, we may encounter the scores go + ge and ss during the computations

25

in (2.2)-(2.4). Therefore, we need ⌈log(max(−go−ge,−ss))⌉+1 bits to represent

the minimum score.

The last one is integer positions in Hx, Hy, P x, P y, Qx, and Qy matrices

in (4.1)-(4.7). Since the positions of the sequences are non-negative and not

greater than n and m, they can be encoded as bit arrays of lengths

wpos = ⌈log(max(n,m) + 1)⌉, (4.9)

like unsigned integers. Note that the walp, wsco, and wpos are not required to be

a power of two in our algorithm.

26

4.3 Homomorphic Computation of Algorithm

Algorithm 3 SW-Score(X,Y, {sm/ss, go, ge})
1: Initialize H,P,Q,Hx, Hy, P x, P y, Qx, and Qy ▷ By (2.1) and (4.1)
2: for d← 1 to n+m− 1 do
3: start← max(1, d−m+ 1)
4: end← min(d, n)
5: for k ← start to end parallel do
6: i← k
7: j ← d− k + 1
8: T1 ← Add(Pi−1,j , ge)
9: T2 ← Add(Hi−1,j , go)

10: S ← Compare(T1, T2)
11: Pi,j ← Select(S, T1, T2)
12: P x

i,j ← Select(S, P x
i−1,j , H

x
i−1,j)

13: P y
i,j ← Select(S, P y

i−1,j , H
y
i−1,j)

14: T1 ← Add(Qi,j−1, ge)
15: T2 ← Add(Hi,j−1, go)
16: S ← Compare(T1, T2)
17: Qi,j ← Select(S, T1, T2)
18: Qx

i,j ← Select(S,Qx
i,j−1, H

x
i,j−1)

19: Qy
i,j ← Select(S,Qy

i,j−1, H
y
i,j−1)

20: S ← Compare(Pi,j , Qi,j)
21: Hi,j ← Select(S, Pi,j , Qi,j)
22: Hx

i,j ← Select(S, P x
i,j , Q

x
i,j)

23: Hy
i,j ← Select(S, P y

i,j , Q
y
i,j)

24: E ← Equals(Xi,Yj)
25: T1 ← Select(E, sm, ss)
26: T2 ← Add(Hi−1,j−1, T1)
27: S ← Compare(T2, Hi,j)
28: Hi,j ← Select(S, T2, Hi,j)
29: Hx

i,j ← Select(S,Hx
i−1,j−1, H

x
i,j)

30: Hy
i,j ← Select(S,Hy

i−1,j−1, H
y
i,j)

31: S ← Compare(Hi,j , 0)
32: Hi,j ← Select(S,Hi,j , 0)
33: Hx

i,j ← Select(S,Hx
i,j , i)

34: Hy
i,j ← Select(S,Hy

i,j , j)

35: return H,Hx, Hy

27

We describe the homomorphic computation of our algorithm using the circuits

in Chapter 3.

(1) Filling Matrices. SW-Score in Algorithm 3 takes a scoring scheme

{sm/ss, go, ge}, ciphertext arrays X of length n and Y of length m where the

sequences X and Y are encrypted into as input, and outputs matrices H,Hx,

and Hy filled with the encrypted scores and positions. More specifically, Xi

is encrypted Xi, which is a ciphertext array of length walp. In the algorithm,

sm, ss, go, and ge are represented by two’s complement and encoded as bit arrays

with lengths wsco. The lines over the variables denote their ciphertexts which are

encrypted by EncConst of the TFHE scheme. For instance, go denotes encrypted

go.

First, the first rows and columns of the matrices are initialized according to

(2.1) and (4.1) in line 1. Then we fill the matrices according to (2.2)-(2.4) and

(4.2)-(4.7) in lines 2-34. To reduce the running time, we use the anti-diagonal

parallel computation for the filling. Since elements on an anti-diagonal of the

matrices depend on the elements on the previous anti-diagonal, they can be

computed in parallel as described in line 5. The matrices have n+m− 1 anti-

diagonals, and each anti-diagonal can have at most min(n,m) elements that

can be calculated simultaneously. Here, all the outputs except the indices (lines

6 and 7) are encrypted, so they do not leak any information.

28

Algorithm 4 SW-Find(H,Hx, Hy, ck)

1: Initialize Ex and Ey ▷ By (4.10)

2: for d← 1 to ⌈log(n×m)⌉ do

3: for k ← 1 to n×m by 2d parallel do

4: i← ⌊k−1
m ⌋+ 1

5: j ← (k − 1) (mod m) + 1

6: i′ ← ⌊k+2d−1−1
m ⌋+ 1

7: j′ ← (k + 2d−1 − 1) (mod m) + 1

8: if i′ ≤ n then

9: S ← Compare(Hi,j , Hi′,j′)

10: Hi,j ← Select(S,Hi,j , Hi′,j′)

11: Hx
i,j ← Select(S,Hx

i,j , H
x
i′,j′)

12: Hy
i,j ← Select(S,Hy

i,j , H
y
i′,j′)

13: Ex
i,j ← Select(S,Ex

i,j , E
x
i′,j′)

14: Ey
i,j ← Select(S,Ey

i,j , E
y
i′,j′)

15: return H1,1, H
x
1,1, H

y
1,1, E

x
1,1, E

y
1,1

(2) Finding HSR. SW-Find in Algorithm 4 takes the output of SW-Score

as input, and outputs the encrypted score, two starting positions, and two

ending positions of the HSR. First, we use two extra matrices Ex and Ey for

keeping the ending positions of HSR and initialize as follows.

Ex
i,j = i, Ey

i,j = j for i = 1, . . . , n and j = 1, . . . ,m (4.10)

Then we find the maximum score of H in parallel using a binary tree order

while keeping the starting and ending positions of the HSR corresponding to

the current maximum score as in lines 2-14. Finally, the encrypted maximum

score, two starting positions, and two ending positions in X and Y of HSR will

29

be stored at H1,1, H
x
1,1, H

y
1,1, E

x
1,1, and Ey

1,1, respectively.

Note that bit lengths wsco, wpos, walp, and a cloud key ck are omitted from

the input of the algorithms and circuits for simplicity’s sake.

4.4 Complexity Analysis

We analyze the spans and works of Algorithms 3 and 4. The unit of our analysis

is a binary gate of TFHE as in Table 3.1. The span and work of Algorithm 3

are α × (n +m − 1) and β × nm where α and β denote the span and work of

its parallel region (lines 6-34), respectively. Since 5 Add, 5 Compare, 16 Select,

and 1 Equals are used in the parallel region,

α = 5× (2⌈log (wsco − 1)⌉+ 2) + 5× (2⌈logwsco⌉+ 2)

+ 16× 2 + (⌈logwalp⌉+ 1)

= 10⌈log (wsco − 1)⌉+ 10⌈logwsco⌉+ ⌈logwalp⌉+ 53

β = 5× (3⌈wsco − 1

2
⌉⌈log (wsco − 1)⌉+ 3wsco − 1)

+ 5× (4wsco − 2) + 10× (2wpos) + 6× (2wsco) + (2walp − 1)

= 15⌈wsco − 1

2
⌉⌈log (wsco − 1)⌉+ 47wsco + 20wpos + 2walp − 16

according to Table 3.1 if the parallel circuits are used in the algorithm. Other-

wise, i.e., when the sequential circuits are used,

α = β = 5× 5wsco + 5× 3wsco + 6× 2wsco + 10× 2wpos + 2walp − 1

= 52wsco + 20wpos + 2walp − 1

according to Table 3.1. In other words, the span and work of SW-Score with

the parallel circuits are O((n + m) log (wscowalp)) and O(nm(wsco logwsco +

wpos+walp)), respectively. With the sequential circuits, they areO((n+m)(wsco+

wpos + walp)) and O(nm(wsco + wpos + walp)), respectively.

30

Since Algorithm 4 finds the maximum score of matrix H in parallel using a

binary tree order, its span and work are γ × ⌈log nm⌉ and δ × (nm− 1) where

γ and δ denote the span and work of the parallel region (lines 4-14) of the

algorithm, respectively. If we use the parallel circuits in the Algorithm 4,

γ = (2⌈logwsco⌉+ 2) + 5× 2 = 2⌈logwsco⌉+ 12

δ = (4wsco − 2) + (2wsco) + 4× (2wpos) = 6wsco + 8wpos − 2

otherwise (i.e., with the sequential circuits),

γ = δ = 3wsco + 2wsco + 4× 2wpos = 5wsco + 8wpos

according to Table 3.1. Thus, the span and work of SW-Find with the parallel

circuits are O(log(nm) log (wsco)) and O(nm(wsco + wpos)), respectively. With

the sequential circuits, they are O(log(nm)(wsco + wpos)) and O(nm(wsco +

wpos)), respectively.

4.5 Performance Evaluation

Here we present experimental results to show the performance of our algorithm.

We compare four versions of our algorithm:

• L-PAR: Reports the score and location of HSR using the parallel circuits.

• L-SEQ: Reports the score and location of HSR using the sequential cir-

cuits.

• N-PAR: Reports the score of HSR without the location using the parallel

circuits.

• N-SEQ: Reports the score of HSR without the location using the sequen-

tial circuits.

31

5 10 20 30 40 50
0

500

1,000

1,500

2,000

2,500

3,000

3,500

Lengths of sequences n and m (n = m)

E
la
p
se
d
T
im

e
(s
ec
)

(a) Elapsed time

5 10 20 30 40 50
0

10

20

30

40

50

60

Lengths of sequences n and m (n = m)

M
em

o
ry

U
sa
ge

(G
B
)

L-PAR L-SEQ N-PAR N-SEQ

(b) Memory usage

Figure 4.2: Comparison between four versions of our algorithm

We implement them in C++ using the TFHE library [28] and OpenMP. The

experiments are conducted on a machine with two Intel Xeon Silver 4114 2.20

GHz CPUs (32 cores) and 256GB RAM running Debian Linux. Each binary

gate of TFHE such as And, Or, Xor, and Xnor takes 22 milliseconds, and Mux

takes 44 milliseconds on a single core of the server.

The security of TFHE relies on the hardness of the TLWE assumption

which is a generalization of the Learning with Errors (LWE) problem over the

torus [27]. The originally proposed security parameter in [27], λ = 110 bit, has

been updated to λ = 128 bit due to the new estimates and attack models in

[29]. Therefore, we use the recent one in the experiments. Since we use DNA

sequences in the experiments, the bases can be encoded by walp = 2 bits as

A = 002, C = 012, G = 102, and T = 112. For the scoring scheme, we use

{5/− 3,−9,−1} as in [44]. Furthermore, the bit lengths wsco ∈ {6, 7, 8, 9} and

wpos ∈ {3, 4, 5, 6} are used in the experiments, according to (4.8) and (4.9),

32

respectively.

In the experiment, we measure the average elapsed times and peak mem-

ory usages of the four versions in the different lengths of sequences n,m ∈

{5, 10, 20, 30, 40, 50}. Figure 4.2 shows the result of the experiment. In Fig-

ure 4.2a, the N-PAR and N-SEQ are faster than L-PAR and L-SEQ because

the computations in (4.1)-(4.7) and keeping the location during the finding

maximum (lines 11-14 in Algorithm 4) are excluded from Algorithms 3 and 4,

respectively, in both N-PAR and N-SEQ. Since both the homomorphic circuits

and the algorithms are performed in parallel in L-PAR and N-PAR, the nested

parallelism of OpenMP is enabled in the experiment. L-SEQ outperforms L-

PAR in n,m > 40, and N-SEQ outperforms N-PAR in n,m ≥ 30. The reason

is that when the number of the upper level threads (i.e., line 5 in Algorithm

3 and line 3 in Algorithm 4) is less than the number of the cores (32), we can

get the speedup of the parallel circuits. However, when it becomes greater than

the number of the cores, we cannot get the speedup due to the overhead. Thus,

L-SEQ and N-SEQ outperform L-PAR and N-PAR as the sequences get longer

(i.e., longer than the number of cores), respectively. Note that the light and

bright colored sections of each bar in Figure 4.2a indicate the average elapsed

times of SW-Score and SW-Find, respectively.

In Figure 4.2b, the peak memory usages of L-SEQ and N-SEQ are less than

a gigabyte whereas those of L-PAR and N-PAR reach to several gigabytes due to

the nested parallelism. Therefore, there is a trade-off between time and memory

in using the sequential and parallel circuits when n,m ≤ 40.

Computing the edit distance of homomorphically encrypted sequences [26] is

similar to our problem with respect to the computation methods. Since comput-

ing the edit distance of only two sequences is inefficient in [26], the experiment

is done for multiple pairs of sequences in order to reduce the amortized time

33

which is equal to the total running time divided by the number of pairs. In par-

ticular, it takes 5 hours 13 minutes for 682 pairs of DNA sequences of lengths

n,m = 8 when λ = 80 bit. In addition, the lengths are limited to n,m = 8

due to the huge memory requirement in [26]. Even though the finding HSR

is more costly computation than the edit distance, our implementation shows

much better performances for a pair of sequences so as to be more practical.

34

Chapter 5

Finding Approximate HSR

Given two genomic sequences represented by lists of encrypted variants, we

find the score and location of HSR between them approximately in encrypted

forms. Unlike the previous problem in Chapter 4, we assume that the two input

sequences are aligned to the same reference genome, and both are stored in

VCF files, i.e., represented by lists of variants as described in Section 2.3. Then

we define the approximate HSR of the two sequences, and propose an approach

to find its score and location.

Since the two sequences have already been aligned to the same reference

genome, we can align one sequence to the other based on the provided infor-

mation, i.e., the variants. From our observations, two types of regions alternate

in the alignment between them (see Figure 5.1); one appears around each pair

of variants at the same positions; we call it a variant region (e.g., shadowed

regions in Figure 5.1), and the other appears between those variant regions;

we call it a matched region (e.g., non-shadowed regions in Figure 5.1). To find

the HSR of the alignment, we need the total score of each region. Computing

35

the total score of each matched region is straightforward because it consists

of only matches. However, computing the total score of each variant region is

complicated because aligning the two subsequences in the variant region is re-

quired. We briefly describe our approaches for aligning the variant regions and

finding the HSR of the alignment from the total scores of all the regions in the

following.

Aligning Variant Region. To compute the total score of each variant region,

we need to align each pair of variants at the same positions in the input lists.

Since aligning a pair of variants using their individual bases is expensive in HE

(i.e., global alignment by the Needleman–Wunsch algorithm [58] is needed), we

present a method to align them efficiently. In our method, we assume that the

alignment consists of two parts; a gap and consecutive matches/mismatches. In

other words, the alignment consists of a gap (with any length) and consecutive

matches if the two alternate bases of the pair are exactly the same, and it

consists of a gap and consecutive mismatches otherwise. By this assumption,

we can obtain the lengths of the gap and matches/mismatches efficiently. Once

we have these lengths in each variant region, we can compute the starting and

ending positions of each matched region simply. Moreover, the total scores of

all the regions can be computed for a scoring scheme directly based on those

lengths and positions.

Finding HSR. We assume that the HSR of the two sequences is identical

to a contiguous subarray with the largest sum within the array of the total

scores (e.g., the last row in Figure 5.4). More specifically, the score of HSR is

equal to the sum of scores in the contiguous subarray, and the location of HSR

is equivalent to the starting and ending positions of the subarray. Since it is

a classic problem; called the maximum subarray problem, we can obtain the

score and location of HSR using the known algorithms for the problem.

36

Organization. The remaining of this chapter is organized as follows. Section

5.1 defines the approximate HSR. Section 5.2 gives an overview of our approach.

Sections 5.3 and 5.4 introduce the homomorphic computations of our algorithm

using the bit-wise and word-wise HE schemes, respectively. Section 5.5 shows

the experimental results of our algorithm.

5.1 Approximate HSR

pos 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

R A T G A A T A C T C T G C T T A A G C A A G C G G T T

X A T A A T A A T A C T − − G A G − A A G C A A − − A G T T

Y A T C C − − − − A C T A T G A G − − A C C C G C A A − T A C C T

align M M S S − − − − M M M − − M M M − M − − − M M M M − S S S M

score 5 5 -3 -3 -9 -1 -1 -1 5 5 5 -9 -1 5 5 5 -9 5 -9 -1 -1 5 5 5 5 -9 -3 -3 -3 5

Figure 5.1: Alignment between two DNA sequences represented by lists of vari-

ants

Since two sequences represented by lists X and Y are individually aligned to

reference genome R already, they can be aligned with each other, for example, as

shown in Figure 5.1. This alignment can be obtained from the lists by aligning

each pair of variants at the same positions. Then we can approximate the HSR

of them obtained by SW as a highly similar region of this alignment with the

largest sum of scores. For example, row align in Figure 5.1 shows an alignment

that is derived from X and Y in Figure 2.2. In the figure, row pos shows the

positions of R, and row score shows the corresponding scores for the matches,

mismatches, and gaps of the alignment. The alternate bases in Figure 2.2 are in

boldface in X and Y. In this alignment, a HSR lies between reference positions

7 and 21, and its score is 25 (sum of the scores in the region). Here, we use the

37

R

X

Y

align

𝑥. reflen

𝑙𝑔

𝑥. altlen

𝑦. altlen

𝑦. reflen

𝑙𝑚

|𝑥. alt’|

(a) |x.alt′| ≥ |y.alt|

R

X

Y

align

𝑥. reflen

𝑦. reflen

𝑥. altlen

𝑙𝑚𝑙𝑔

𝑦. altlen

|𝑥. alt’|

(b) |x.alt′| < |y.alt|

Figure 5.2: Two ways to align variant region

same scoring scheme as in Figure 2.1.

5.2 Algorithm Overview

Our algorithm for finding approximate HSR consists of the following two steps.

(1) Computing Scores of Regions. There are two types of regions of the

alignment between X and Y in Figure 5.1: shadowed and non-shadowed. A

shadowed region appears at the position of a pair of variants; we call it a variant

region. A variant region may consist of matches, mismatches, and gaps. A non-

shadowed region can appear before the first, after the last, and between two

variant regions; we call it a matched region since it consists of only matches.

Therefore, instead of computing the scores letter by letter, we compute the

total score of each variant and matched regions. To compute them, we need to

align a pair of variants in each variant region and compute the location of each

matched region. Note that there are |X| variant regions and |X| + 1 matched

regions in the alignment, where |X| denotes the number of the variants in X

(|X| = |Y|).

a) Aligning variant region: Let x and y be a pair of variants in X and

38

Y at the same positions, i.e., x = Xi and y = Yi for 1 ≤ i ≤ |X|. Assume

first that x.reflen ≤ y.reflen. Let x.alt′ denote the concatenation of x.alt

and the difference of reference bases in x and y. Our task is to align x.alt′

and y.alt. For example, in Figure 5.1, when x = X1 and y = Y1, we need to

align x.alt′ = AATAAT and y.alt = CC, where the last three bases of x.alt′,

AAT, is the difference of their reference bases GAAT and G. In homomorphic

encryption, computing an alignment using individual bases is expensive. There-

fore, we propose an approach to align them efficiently. Depending on |x.alt′|

and |y.alt|, we align them in two different ways as illustrated in Figure 5.2.

In the figure, the green colored parts of R and X indicate the reference and

alternate bases of x, respectively, and the blue colored parts of R and Y in-

dicate the reference and alternate bases of y, respectively. Figure 5.2a shows

the way to align if |x.alt′| ≥ |y.alt|, and Figure 5.2b shows the other way to

align, i.e., if |x.alt′| < |y.alt|. In the figures, the alignment between x.alt′ and

y.alt consists of only two parts; a gap (the yellow colored part) and consecu-

tive matches/mismatches (the red colored part). Let lg be the length of the gap

and lm be the length of consecutive matches/mismatches of the alignments (we

decide lm is the length of either matches or mismatches later). In Figure 5.2a,

we can see that lm = |y.alt| and lg = |x.alt′| − |y.alt|, i.e.,

lm = y.altlen (5.1)

lg = x.altlen+ (y.reflen− x.reflen)− y.altlen (5.2)

since |x.alt′| = x.altlen+(y.reflen−x.reflen). For example, the first variant

region, X1 and Y1, is aligned by this way in Figure 5.1, thus lm = 2 and

lg = 3+(4−1)−2 = 4 according to (5.1) and (5.2), i.e., lm = |y.alt| = |CC| = 2

and lg = |x.alt′| − |y.alt| = |AATAAT| − |CC| = 4. Moreover, in Figure 5.2b,

39

lm = |x.alt′| and lg = |y.alt| − |x.alt′|, i.e.,

lm = x.altlen+ (y.reflen− x.reflen) (5.3)

lg = y.altlen− x.altlen− (y.reflen− x.reflen). (5.4)

For example, the last variant region, X5 and Y5, is aligned by this way in Figure

5.1, thus lm = 2+(5−4) = 3 and lg = 4−2− (5−4) = 1 according to (5.3) and

(5.4), i.e., lm = |x.alt′| = |AGT| = 3 and lg = |y.alt| − |x.alt′| = |TACC| −

|AGT| = 1. Note that if |y.alt| = |x.alt′|, (5.1) and (5.3) are equivalent, (5.2)

and (5.4) as well.

Now let us consider the case x.reflen > y.reflen. This case can be handled

by swapping x and y in Figures 5.2a, 5.2b, and (5.1)-(5.4). Therefore, we have

four different ways to align in the general case, i.e., each of lm and lg can be

expressed by the four different equations. By observing the symmetry of x and

y in the equations, we can combine the four equations into one, which is more

suitable for HE, i.e.,

lm = lref + lmin (5.5)

lg = lmax − lmin (5.6)

where lref , lmax, and lmin are defined as

lref = max(x.reflen, y.reflen) (5.7)

lmax = max(x.altlen− x.reflen, y.altlen− y.reflen) (5.8)

lmin = min(x.altlen− x.reflen, y.altlen− y.reflen). (5.9)

If x.alt and y.alt are exactly the same, the alignment consists of a gap of

length lg and consecutive matches of length lm (e.g., the alignment between X3

and Y3 in Figure 5.1). Otherwise (i.e., at least one mismatch appears between

x.alt and y.alt or their lengths are different), the alignment consists of a gap of

40

R

X

Y

align

𝑥. reflen

𝑦. reflen

𝑙𝑔𝑦

𝑦. altlen

𝑥. altlen

𝑙𝑔𝑥

|𝑥. alt′|

(a) Alignment

pos … 20 21 22 23 24 25 26 27

R … A A G C G G T T

X … A A − − A G T T

Y … A A T A C C − T

align …MM − − − − − − − M

score … 5 5 -9 -1 -1 -1 -9 -1 -1 5

(b) Aligning X5 and Y5

Figure 5.3: Alignment consists of two gaps

length lg and consecutive mismatches of length lm (e.g., the alignment between

X1 and Y1 in Figure 5.1). Therefore, the total score of the alignment, denoted

by v′, with respect to a scoring scheme {sm/ss, go, ge} can be computed as

v′ = W (lg) +

lm × sm if x.alt = y.alt

lm × ss if x.alt ̸= y.alt

(5.10)

whereW is an affine gap penalty function for a gap of length l defined as follows.

W (l) =

0 if l = 0

(l − 1)× ge + go if l > 0

(5.11)

For example, lm, lg, and v′ of each variant region of the alignment in Figure

5.1, computed according to (5.5)-(5.11), can be shown in Figure 5.4.

In addition, we consider another way to align a variant region, in which the

alignment consists of two gaps, without any matches or mismatches (as indels),

as illustrated in Figure 5.3a. Depending on a scoring scheme, the total score of

this alignment can be higher than v′, the total score of the previous way to align.

Similarly to the previous way to align, let us assume x.reflen ≤ y.reflen. Let

lgx and lgy be the lengths of the two gaps that appear in Y and X, respec-

41

tively (i.e., the lengths of the purple and orange colored parts of the align-

ment in Figure 5.3a). In the figure, lgx = |x.alt′| and lgy = |y.alt|, i.e.,

lgx = x.altlen + (y.reflen − x.reflen) and lgy = y.altlen. In the other

case x.reflen > y.reflen, lgx = x.altlen and lgy = y.altlen + (x.reflen −

y.reflen). Considering the symmetry of x and y, we obtain the following equa-

tions that express them in the general case.

lgx = x.altlen+ (lref − x.reflen) (5.12)

lgy = y.altlen+ (lref − y.reflen) (5.13)

where lref is defined in (5.7). Figure 5.3b shows the variant region, X5 and Y5,

aligned by this way. Thus lgx = 2+5−4 = 3 and lgy = 4+5−5 = 4 according to

(5.12) and (5.13), i.e., lgx = |x.alt′| = |AGT| = 3 and lgy = |y.alt| = |TACC| =

4, as highlighted in purple and orange colors in the figure, respectively. Let v′′

be the total score of this alignment. Then it can be computed simply as

v′′ = W (lgx) +W (lgy). (5.14)

For example, lgx, lgy, and v′′ of each variant region of the alignment in Figure

5.1, computed according to (5.12)-(5.14), are also shown in Figure 5.4.

Finally, the higher one of v′ and v′′ will be selected as the total score of the

variant region, and we denote it by v, i.e.,

v = max(v′, v′′). (5.15)

b) Computing location of matched region: Let x, y and x′, y′ be pairs

of variants in two consecutive variant regions, i.e., x = Xi, y = Yi, x
′ = Xi+1

and y′ = Yi+1 for 1 ≤ i < |X|, and let s, e, and m be the starting position,

ending position, and total score of the matched region between the two variant

42

regions, respectively. Then they can be computed as

s = max(x.reflen, y.reflen) + x.pos (5.16)

e = x′.pos− 1 (5.17)

m = (e− s+ 1)× sm (5.18)

where sm is the match score of a scoring scheme. For the first matched region,

we use s = 1 and x′ = X1, and for the last matched region, we use x = X|X|,

y = Y|X|, and e = |R|. For example, in Figure 5.1, the matched region between

X4,Y4 and X5,Y5 starts from position s = max(0, 0) + 18 = 18 and ends at

position e = 22 − 1 = 21, thus, its total score m = (21 − 18 + 1) × 5 = 20,

according to (5.16)-(5.18). Moreover, s, e, and m of each matched region of the

alignment in Figure 5.1 are shown in Figure 5.4.

(2) Finding HSR. Now we find a HSR between X and Y. It is equivalent

to finding a contiguous subarray with the largest sum from the total scores

of variant and matched regions. This problem is called the maximum subarray

problem [7], and linear time sequential and logarithmic time parallel algorithms

are proposed in [7, 61]. Homomorphic computations of our algorithms for finding

a HSR based on [7] and [61] are described in Sections 5.3 and 5.4, respectively.

For example, Figure 5.4 shows the lengths, total scores and locations of

variant and matched regions of the alignment in Figure 5.1, computed according

to (5.5)-(5.18). In the figure, row m ∪ v shows the total score of each region.

Here, a HSR (i.e., contiguous subarray with the largest sum) from the total

scores in m ∪ v starts from position s = 7 and ends at position e = 21 (the

shadowed scores), and its score is 25 (sum of the shadowed scores), as in Figure

5.1.

43

i 1 2 3 4 5

lm 2 0 2 0 3

lg 4 2 1 3 1

v′ -18 -10 1 -11 -18

lgx 6 0 3 0 3

lgy 2 2 2 3 4

v′′ -24 -10 -21 -11 -23

v -18 -10 1 -11 -18

s 1 7 12 17 18 27

e 2 9 12 17 21 27

m 10 15 5 5 20 5

m ∪ v 10 -18 15 -10 5 1 5 -11 20 -18 5

Figure 5.4: Lengths, scores, and locations of variant and matched regions in

Figure 5.1

5.3 Homomorphic Computation of Bit-wise Algorithm

We present a homomorphic computation of our algorithm using the bit-wise

HE scheme in Section 2.4.

5.3.1 Data Encoding

Since the TFHE scheme allows only bit-by-bit encryption, all the data used in

the computations must be encoded by bit arrays. In X and Y, we have two types

of data in each variant. The first one is integers in pos, reflen, and altlen

columns. To encode the integers, we use two’s complement for representing

them. Thus, each of them can be encoded by a bit array of length wint, where

44

Algorithm 5 BT-Score(X,Y, |R|, {sm/ss, go, ge})
1: S1 ← EncConst(1)

2: E1 ← SubtractOne(X1.pos)

3: M1 ← MultiplyConst(E1, sm)

4: for i← 1 to |X| parallel do

5: Vi ← BT-VarScore(Xi,Yi, {sm/ss, go, ge}) ▷ by (5.5)-(5.15)

6: Si+1 ← Add(lref ,Xi.pos)

7: if i < |X| then

8: T ← Xi+1.pos

9: else

10: T ← EncConst(|R|+ 1)

11: Ei+1 ← SubtractOne(T)

12: Mi+1 ← MultiplyConst(Subtract(T, Si+1), sm)

13: return V,M, S,E

wint is a bit length of the representation calculated as follows.

wint = max

⌈log ((|R|+ |X| × b)× sm + 1)⌉+ 1

⌈log (|X| × |W (a+ b) + max((a+ b)× ss,W (b))|)⌉+ 1

(5.19)

where a and b denote the maximum values in reflen and altlen columns,

respectively. In (5.19), the first and second rows are the bit lengths of the max-

imum and minimum scores which can be encountered during the computation,

respectively. The second type of data is alternate bases in alt columns. Assume

that they are defined over an alphabet Σ. Then, the alternate bases can be en-

coded by bit arrays of length walt = ⌈log |Σ|⌉ × k, where k is a fixed length for

the alternate bases.

45

5.3.2 Computing Scores of Regions

BT-Score in Algorithm 5 takes lists of encrypted variants X and Y (variants

in X and Y encrypted by the TFHE scheme as described above), |R|, and a

scoring scheme as input, and outputs the total scores of variant and matched

regions with locations. In the algorithm, list V of size |X| stores the total scores

of variant regions (i.e., row v in Figure 5.4), list M of size |X|+1 stores the total

scores of matched regions (i.e., row m in Figure 5.4), lists S and E of size |X|+1

store the starting and ending positions of matched regions (i.e., rows s and e

in Figure 5.4), respectively. Initially, we compute the starting position, ending

position, and total score of the first matched region (lines 1-3). Algorithm BT-

VarScore computes the total score of a variant region for a given scoring

scheme according to Equations (5.5)-(5.15) (line 5). Next, the starting position,

ending position, and total score of a matched region are computed according

to (5.16)-(5.18) in lines 6, 7-11, and 12, respectively. In line 6, lref denotes

the encrypted lref computed in BT-VarScore according to (5.7). Since there

are no overlapping positions between variant regions, the above computations

can be performed in parallel as described in line 4. In Algorithm 5, we use

the sequential circuits because using the parallel circuits may incur overhead

due to the nested parallel computations. Note that BT-VarScore can be

implemented using the sequential circuits in Chapter 3 simply according to the

equations.

5.3.3 Finding HSR

BT-Find in Algorithm 6 takes the output of BT-Score as input, and outputs

the score, starting position, and ending position of a HSR. More specifically, it

finds a contiguous subarray with the largest sum from the total scores in V and

46

Algorithm 6 BT-Find(V,M, S,E)

1: m←M1

2: s← S1

3: e← E1

4: score← m

5: start← s

6: for i← 1 to |V | do

7: t← Add(score, Vi)

8: c← Not(tw) ▷ tw is the sign (i.e. leftmost) bit of t

9: score← Add(SelectZero(c, t),Mi+1) ▷ If t < 0, then score←Mi+1

10: start← Select(c, start, Si+1)

11: c← Compare(score,m)

12: m← Select(c, score,m)

13: s← Select(c, start, s)

14: e← Select(c, Ei+1, e)

15: return m, s, e

M while keeping track of its starting and ending positions in S and E, based

on Kadane’s algorithm [7]. Unlike [7], BT-Find iterates only |V | times whereas

Kadane’s algorithm iterates |V |+ |M | times. The reason is that a HSR always

starts from and ends at matched regions (i.e., in M) because the total score of

a matched region is always non-negative. Since Algorithm 6 is sequential, we

use the parallel circuits in Chapter 3 in lines 7-14 to improve the performance.

In Algorithms 5 and 6, all the outputs except the indices are encrypted, so

they do not leak any information. Note that bit lengths wint, walt, and a cloud

key ck are omitted from the input of the algorithms and circuits for simplicity’s

sake.

47

Table 5.1: Number of circuits in parallel region (lines 5-12) of Algorithm 5

Circuit Line 5 (BT-VarScore) Line Line Total

Eq. (5.5) (5.6) (5.7) (5.8) (5.9) (5.10) (5.11) (5.12) (5.13) (5.14) (5.15) 11 12

Add 1 - - - - 2 1 1 1 3 - - - 8

Compare - - 1 1 - - - - - - 1 - - 3

Equals - - - - - 2 - - - - - - - 2

EqualsZero - - - - - 1 1 - - 2 - - - 3

MultiplyConst - - - - - 3 1 - - 2 - - 1 6

Select - - 1 1 1 1 - - - - 1 - - 5

SelectZero - - - - - 1 1 - - 2 - - - 3

Subtract - 1 - 2 - - - - - - - - 1 4

SubtractOne - - - - - 1 1 - - 2 - 1 - 4

5.3.4 Complexity Analysis

We analyze the spans and works of Algorithms 5 and 6. The unit of our analysis

is a binary gate of TFHE as in Table 3.1. Table 5.1 shows the number of

the circuits used in the parallel region (lines 5-12) of Algorithm 5. Since BT-

VarScore in line 5 computes the total score of a variant region according

to Equations (5.5)-(5.15), we show the number of circuits for each equation

in separate columns with the equation numbers in the table. In columns (5.7),

(5.8), and (5.15), finding the minimum or maximum of two (encrypted) integers

can be implemented by two circuits Compare and Select. In column (5.9), one

Select is enough to find the minimum by reusing the outputs in (5.8). In column

(5.10), to check x.alt = y.alt, we use two Equals: one for x.alt and y.alt of

bit length walt, and the other for x.altlen and y.altlen of bit length wint.

Then we merge their results into one variable using And. Since the number of

the circuits in column (5.11) (the gray colored number) is included in columns

48

(5.10) and (5.14), it is excluded from the total number in the last column. In

columns (5.12) and (5.13), we need one Add in each column by reusing the

outputs in (5.8). The computations in lines 7-10 of Algorithm 5 can be ignored

because their running times are negligible. Let us denote by λ the span of the

parallel region (lines 5-12) of Algorithm 5. Since we use the sequential circuits

inside the parallel region, λ can be calculated from Table 5.1 using Table 3.1 as

λ =8× 5wint + 3× 3wint + ((2walt − 1) + (2wint − 1) + 1)

+ 3× (wint − 1) + 6× (5αwint + 2wint)

+ 5× 2wint + 3× wint + 4× 5wint + 4× 2wint

=30αwint + 107wint + 2walt − 4

(5.20)

where α = ⌈log(|t|+1)⌉ and t is a multiplicand of MultiplyConst in Algorithm 2.

Thus its work, i.e., the total number of the homomorphic gates in the parallel

region, is equal to λ × |X|. Therefore, considering the two circuits in lines 2

and 3, the span and work of Algorithm 5 are λ + 5αwint + 4wint and λ ×

|X| + 5αwint + 4wint, respectively. In other words, the span and work of BT-

Score are O(wint+walt) and O(|X|(wint+walt)), respectively. Since we use six

MultiplyConst in each iteration of Algorithm 5, we can estimate α for a scoring

scheme {sm/ss, go, ge} as follows.

α =
2⌈log(|sm|+ 1)⌉+ ⌈log(|ss|+ 1)⌉+ 3⌈log(|ge|+ 1)⌉

6
(5.21)

For example, α = 11
6 for scoring scheme {5/− 3,−9,−1} according to (5.21).

Now we analyze the span and work of Algorithm 6. Each iteration of the

algorithm consists of two Add, one Compare, four Select, and one SelectZero.

Thus its span is equal to(
2× (2⌈log (wint − 1)⌉+ 2) + (2⌈logwint⌉+ 2) + 4× 2 + 1

)
× |X|

=
(
4⌈log (wint − 1)⌉+ 2⌈logwint⌉+ 15

)
× |X|

(5.22)

49

and its work is(
2× (3

⌈
wint − 1

2

⌉
⌈log (wint − 1)⌉+ 3wint − 1)

+ (4wint − 2) + 4× 2wint + wint

)
× |X|

=
(
6

⌈
wint − 1

2

⌉
⌈log (wint − 1)⌉+ 19wint − 4

)
× |X|

(5.23)

according to Table 3.1 (the parallel circuits) since |V | = |X|. In other words,

the span and work of BT-Find are O(|X| logwint) and O(|X|wint logwint), re-

spectively.

Since walt is a fixed length, we can conclude that BT-Score and BT-Find

use O(|X|wint) and O(|X|wint logwint) homomorphic gates, respectively.

5.4 Homomorphic Computation of Word-wise Algo-

rithm

We present a homomorphic computation of our algorithm using the word-wise

HE scheme in Section 2.5.

5.4.1 Data Encoding

Since the HEAAN scheme supports computation of real numbers, we do not

need a special encoding for integers in columns pos, reflen, and altlen of X

and Y. Instead, integers in each column must be stored into a single plaintext

vector with n slots. Since nmust be a power of two, we select n = 2⌈log(2|X|+1)⌉+1.

To obtain the total scores of matched and variant regions in different slots of

two ciphertext vectors (i.e., at the odd and even slots, as shown in Figure 5.6),

we store variants in X and Y at the even slots of plaintext vectors as shown in

Figure 5.5 (variants in X are omitted in the figure). Moreover, because of the

limited input range of Equals (between 0 and 70), we divide alternate bases in

50

#slot 1 2 3 4 5 6 7 8 9 10 11 12 . . . 32

Y.pos 0 3 0 10 0 13 0 18 0 22 0 0 . . . 0

Y.reflen 0 4 0 1 0 4 0 0 0 5 0 0 . . . 0

Y.altlen 0 2 0 1 0 2 0 3 0 4 0 0 . . . 0

Y.alt1 0 20 0 0 0 8 0 21 0 49 0 0 . . . 0

Y.alt2 0 0 0 0 0 0 0 0 0 16 0 0 . . . 0

Figure 5.5: Encoding of variants

column alt into ⌈walt/6⌉ plaintext vectors where walt denotes a bit length of

the alternate bases (⌊log 71⌋ = 6), the same as in the bit-wise algorithm, i.e.,

walt = ⌈log |Σ|⌉ × k where k is a fixed length.

For example, Figure 5.5 shows the encoding of variants in Y in Figure 2.2

(variants in X in Figure 2.2 can be encoded in the same way as in Y). In the

figure, the variants are stored at the even slots of the plaintext vectors. We

select k = 4, thus walt = 2 × 4 = 8. Therefore the alternate bases can fit in

two vectors since ⌈walt/6⌉ = 2. For instance, AG is encoded by two 6 bits as

0010002 = 8 and 0000002 = 0 since a DNA base can be encoded by 2 bits as

A = 002, C = 012, G = 102, and T = 112. Even though AGA can be encoded

the same as AG, their lengths (i.e., altlen) are different. Thus, there is no

ambiguity when checking equality between them.

5.4.2 Computing Scores of Regions

WD-Score in Algorithm 7 takes lists of encrypted variants X and Y, |R|,

and a scoring scheme as input, and outputs the total scores of variant and

matched regions. In the algorithm, a vector V stores the total scores of variant

regions at its even slots, and a vector M stores the total scores of matched

51

Algorithm 7 WD-Score(X,Y, |R|, {sm/ss, go, ge})

1: V ←WD-VarScore(X,Y, {sm/ss, go, ge}) ▷ by (5.5)-(5.15)

2: P ← (−1, 0, . . . , 0, |R|+ 1, 0, . . . , 0) ▷ Set |R|+ 1 at the slot 2|X|+ 1

3: S ← RightRotate(Add(X.pos, lref), 1)

4: E ← Add(LeftRotate(X.pos, 1), P)

5: M ← MultiplyConst(Subtract(E,S), sm)

6: return V,M

regions at its odd slots, as shown in Figure 5.6. Algorithm WD-VarScore

computes the total scores of variant regions according to (5.5)-(5.15), and it

can be implemented simply using the operations in Section 2.5. We compute

the total scores of matched regions according to (5.16)-(5.18) as in lines 2-5. In

line 3, lref denotes the encrypted lref computed in WD-VarScore according

to (5.7).

#slot 1 2 3 4 5 6 7 8 9 10 11 12 . . . 32

V 0 -18 0 -10 0 1 0 -11 0 -18 0 - . . . -

lref 0 4 0 2 0 4 0 0 0 5 0 - . . . -

P -1 0 0 0 0 0 0 0 0 0 28 - . . . -

S 0 0 7 0 12 0 17 0 18 0 27 - . . . -

E 2 0 10 0 13 0 18 0 22 0 28 - . . . -

M 10 0 15 0 5 0 5 0 20 0 5 - . . . -

Figure 5.6: Running example of Algorithm 7

For example, Figure 5.6 shows the running example of WD-Score which

takes the encrypted variants in X and Y in Figure 2.2, and the scoring scheme

in Figure 2.1 as input. In the algorithm, slots from 2|X|+ 2 to n of the vectors

52

Algorithm 8 WD-Find(V,M)

1: mask ← (1, . . . , 1, 0, . . . , 0) ▷ Set 1 at the first 2|X|+ 2 slots

2: minf ← (0, . . . , 0,−1, . . . ,−1) ▷ Set -1 at the slots from 2|X|+ 3 to n

3: mv ← MultiplyConst(Add(V,M),mask)

4: psum← RightRotate(mv, 1)

5: for i← 1 to log n− 1 do

6: t← RightRotate(psum, 2i−1)

7: psum← Add(psum, t)

8: smax← Add(MultiplyConst(psum,mask),minf)

9: for i← 1 to log n− 1 do

10: t← LeftRotate(smax, 2i−1)

11: , smax← MinMax(smax, t, d)

12: sub← MultiplyConst(Subtract(smax, psum),mask)

13: for i← 1 to log n− 1 do

14: t← LeftRotate(sub, 2i−1)

15: , sub← MinMax(sub, t, d)

16: return sub

are not used, i.e., from 12 to 32 in the figure (denoted by dashes). They will be

used in the next step, i.e., in WD-Find.

5.4.3 Finding Score of HSR

Since Kadane’s algorithm [7] is sequential, it cannot be implemented efficiently

using the HEAAN scheme in which the operations are performed on the slots

of vectors in parallel. Therefore, we derive Algorithm 8 based on a parallel

algorithm for the maximum subsequence sum in [61]. It takes the output of

WD-Score as input, and outputs the encrypted score of a HSR (i.e., sum of

53

scores in a contiguous subarray with the largest sum from the total scores in V

andM). At the end of the algorithm, the score will be stored at the first slot of a

vector sub in Algorithm 8. Unlike the bit-wise algorithm, here we find the score

without starting and ending positions because keeping track the location of a

HSR using HEAAN requires a large amount of homomorphic computations.

#slot 1 2 3 4 5 6 7 8 9 10 11 12 13 . . . 32

mv 10 -18 15 -10 5 1 5 -11 20 -18 5 - 0 . . . 0

psum 0 10 -8 7 -3 2 3 8 -3 17 -1 4 - . . . -

smax 17 17 17 17 17 17 17 17 17 17 4 4 - . . . -

sub 25 25 25 20 20 20 20 20 20 5 5 0 - . . . -

Figure 5.7: Running example of Algorithm 8

For example, Figure 5.7 shows the running example of WD-Find which

takes the total scores in Figure 5.6 as its input. The score of a HSR which we

are looking for, 25, is stored at the first slot of vector sub.

In Algorithms 7 and 8, all the outputs are encrypted, so they do not leak

any information. Note that walt, and an evaluation key ek are omitted from the

input of the algorithms and operations for simplicity.

5.4.4 Complexity Analysis

We analyze the number of homomorphic operations used in Algorithms 7 and

8. Here, we assume that the size n of a plaintext vector is always not greater

than N/2, the total number of slots in HEAAN (N is a ring dimension), i.e.,

integers in each column pos, reflen, and altlen can fit into a single plaintext

vector. Table 5.2 shows the number of operations used in Algorithm 7. Similarly

to Table 5.1, we show the number of operations for each equation in WD-

54

Table 5.2: Number of homomorphic operations in Algorithm 7 (β = ⌈walt/6⌉)

Operation Line 1 (WD-VarScore) Line Line Line Total

(5.5) (5.6) (5.7) (5.8) (5.9) (5.10) (5.11) (5.12) (5.13) (5.14) (5.15) 3 4 5

Add 1 - - - - 3 1 1 1 3 - 1 1 - 11

Equals - - - - - β + 1 - - - - - - - - β + 1

EqualsZero - - - - - 1 1 - - 2 - - - - 3

MinMax - - 1 1 - - - - - - 1 - - - 3

Multiply - - - - - β + 3 1 - - 2 - - - - β + 5

MultiplyConst - - 3 3 - 3 1 - - 2 3 - - 1 15

LeftRotate - - - - - - - - - - - - 1 - 1

RightRotate - - - - - - - - - - - 1 - - 1

Subtract - 1 - 2 - 3 2 - - 4 - - - 1 11

VarScore in separate columns with the equation numbers in Table 5.2. In

columns (5.7), (5.8), and (5.15), we need to scale down the two inputs of MinMax

into the interval [−1, 1] by usingMultiplyConst, and to scale up its result by using

MultiplyConst again, and therefore, three MultiplyConst are used in each column.

In column (5.9), we do not need any operation because the minimum is already

found in column (5.8). In column (5.11), an affine gap penalty function W (l)

can be computed as follows, using Add, EqualsZero, Multiply, MultiplyConst, and

Subtract.

W (l) = (1− EqualsZero(l))×
(
(l − 1)× ge + go

)
(5.24)

In column (5.10), since x.alt and y.alt are divided into ⌈walt/6⌉ vectors, we

need the same number of Equals to check x.alt = y.alt. Moreover, we need one

more Equals to check x.altlen = y.altlen. To merge these results of Equals

into one variable, we need to multiply all of them. Let us denote by e the result

of the multiplications. Then v′ in (5.10) can be computed as follows, using Add,

55

Multiply, MultiplyConst, and Subtract.

v′ = W (lg) + e× (lm × sm) + (1− e)× (lm × ss) (5.25)

Since the number of the circuits in column (11) (the gray colored number) is

included in columns (10) and (14), it is excluded from the total number in

the last column. In the table, the total number of homomorphic operations in

Algorithm 7 does not depend on |X|, i.e., WD-Score uses O(1) homomorphic

operations since walt is a fixed length that can be selected empirically.

Now we analyze the number of operations in Algorithm 8. We can count

them directly from the algorithm, i.e., we use one Subtract, 3 MultiplyConst,

log n RigthRotate, log n + 1 Add, 2 log n − 2 LeftRotate, and 2 log n − 2 Min-

Max. In addition, we use four more MultiplyConst to scale up and down smax

and sub right before and after the last two loops (for MinMax), in the same

way as in columns (5.7),(5.8), and (5.15). Overall, WD-Find uses O(log |X|)

homomorphic operations since n = 2⌈log(2|X|+1)⌉+1.

Since HEAAN is a leveled HE scheme, we also consider an important factor,

the depth of homomorphic multiplication of the two algorithms. The depth of

operationMultiply in the HEAAN scheme is regarded as 1, and the other built-in

operations are 0. For the additional operations, we denote the depth of MinMax

by dM and Equals/EqualsZero by dE in the following. Table 5.3 shows the depths

of variables used in Algorithm 7. We show the depth of each variable in WD-

VarScore with the equation number in the table. The largest one in the table

is the depth of V , and thus max(dM , β) + dM + dE + 1 will be the depth of

Algorithm 7, i.e., the multiplicative depth of WD-Score is O(dM +dE+walt).

The depth of Algorithm 8 is equal to 2×dM × (log n− 1) = 2dM⌈log(2|X|+1)⌉

since it uses only MinMax in the two loops. In other words, the multiplicative

depth of WD-Find is O(dM log |X|). Therefore, the total depth of our word-

56

Table 5.3: Depth of homomorphic multiplication in Algorithm 7 (β = ⌈walt/6⌉)

Variable Equation/Line Depth

lref (5.7) dM

lm (5.5) dM

lg (5.6) dM

W (5.11) dE + 1

x.alt = y.alt (5.10)
dE + β

(i.e., e in (5.25))

v′ (5.10) max(dM , dE + β) + 1

v′′ (5.14) dE + dM + 1

v (i.e., V in Line 2) (5.15) max

max(dM , dE + β) + 1

dE + dM + 1

+ dM

S Line 3 dM

E Line 4 0

M Line 5 dM

wise implementation is 2dM⌈log(2|X|+1)⌉+max(dM , ⌈walt/6⌉) + dM + dE +1

since WD-Find takes the output of WD-Score as input.

5.5 Performance Evaluation

We present experimental results to show the performances of our algorithms.

In the experimental results, BT stands for the bit-wise algorithm, i.e., the com-

bination of BT-Score and BT-Find, and WD stands for the word-wise algo-

rithm, i.e., the combination of WD-Score and WD-Find. Both BT and WD

are implemented in C++. We use OpenMP for the parallel computations in

57

BT. Experiments are conducted on a machine with two Intel Xeon Silver 4114

2.20GHz CPUs (32 cores) and 256GB memory running Debian Linux.

Datasets. We use a synthetic dataset SYN and two real datasets PGP and

Table 5.4: Characteristics of datasets

Dataset |X|, |Y| |R| Distribution of variants

SNP Insertion Deletion Substitution Empty

SYN 1.6K 10K 52% 5% 12% 4% 26%

PGP 28K 14M 57% 5% 4% 4% 29%

IDASH 14K 249M 48% 10% 11% 1% 29%

IDASH in the experiments. To generate SYN, we select a genomic sequence

from NCBI database as the reference genome R and use its first 10K bases (i.e.,

|R| = 10K). Then we generate 1.6K variants in X and Y along R randomly with

the similar distributions of variants as in PGP and IDASH. PGP consists of

the complete genomics data of two participants of Personal Genome Project.

More specifically, PGP stores the variants in Chromosome 1 of two participants

hu0D879F and hu9385BA. IDASH is a dataset for a task given at iDASH Pri-

vacy & Security analysis challenge, which is used in [48]. The characteristics of

the datasets are summarized in Table 5.4. In the table, we show the percentage

of SNP in each dataset separately from substitution. Note that each dataset

consists of two lists of variants X and Y (|X| = |Y|) as shown in Figure 2.2.

Parameters of HE schemes. The security of TFHE relies on the hardness

of the TLWE assumption which is a generalization of the Learning with Errors

(LWE) problem over the torus [27]. In TFHE, we use the security parameter

λ = 128 proposed in [29] according to an LWE estimator in [1]. The security of

HEAAN relies on the hardness of the RLWE assumption [24]. In HEAAN, we

58

Table 5.5: Parameters of HE schemes

Parameter SYN PGP IDASH

TFHE

wint 11-18 20-24 25-32

walt 24 24 24

HEAAN

N 216 216 216

n 25-211 25-211 25-211

l 71-107 65-118 112-148

q 29-32 32-39 45-52

u 7-13 15-16 17-23

walt 24 24 24

use the security parameter λ ≥ 128 determined by the LWE estimator [1], based

on a ring dimension N , a level parameter l, and a number of quantization bits

q. Since HEAAN outputs an approximate result, we select l, q, and a number of

iteration u empirically so that the computation error is extremely small. A bit

length of two’s complement representation wint for the homomorphic circuits

used in BT is computed according to (5.19) for each dataset. We fix the length of

alternate bases to walt = 24 bits in both BT and WD. The selected parameters

are given in Table 5.5.

Specifications of WD. Table 5.6 shows the multiplicative depth, the number

of bootstrapping performed, and the size of unit ciphertext of WD in the exper-

iment. Since the depth of MinMax dM = 5u (u is the number of iterations) and

the depth of Equals/EqualsZero dE = 18, the depth of WD reaches 2,779 in the

experiment. However, thanks to the automatically performed bootstrapping in

59

Table 5.6: Specifications of WD

SYN PGP IDASH

Multiplicative depth 439-1,579 919-1,939 1,039-2,779

Number of bootstrapping 11-23 11-23 11-24

Size of unit ciphertext (MB) 32-54 33-72 79-121

MinMax, Equals, and EqualsZero of the HEAAN scheme, we use much smaller

depths for l instead of the actual multiplicative depths in the table. Since boot-

strapping is the slowest operation of the word-wise HE schemes and the most

time consuming part of our computation, we use the HEAAN scheme rather

than the other schemes such as BGV[14] and BFV [36] because of its efficient

bootstrapping.

5.5.1 Sensitivity Analysis

The performances of BT and WD are evaluated in several aspects: (1) varying

the number of variants, (2) varying the length of reference genome, (3) varying

the length of alternate bases, (4) varying the scoring scheme, (5) varying the

genome complexity, and (6) varying the number of cores. Table 5.7 shows the

parameters of the experiments. Values in boldface in the table are used as de-

fault parameters. Since the elapsed times and memory usages of the encryption,

decryption, and key generation of TFHE and HEAAN are negligible compared

to the evaluation, we report the performances of the evaluation only, i.e., BT

and WD here. To report the average elapsed times and memory usages of BT

and WD, we conduct the experiment three times and take their average.

Varying Number of Variants. In this experiment, we measure the average

elapsed times and the average peak memory usages of BT and WD in the dif-

60

Table 5.7: Experiment settings

Parameter Value

Number of variants |X| 10, 20, 50, 100, 200, 500, 1000

Length of reference genome |R| 3K, 10K, 100K, 1M

Length of alternate bases k

(i.e., k = walt/2)

1, 3, 6, 12, 24, 48

Scoring scheme {3/-2,-11,-1}, {5/-3,-9,-1}, {5/-4,-10,-4}

Genome complexity 0.1, 0.5, 0.9

Number of cores 1, 2, 4, 8, 16, 32

ferent numbers of variants for SYN, PGP, and IDASH. Since a homomorphic

computation generally takes a long time for larger instances, we set a 4-hour

(≈ 14, 000s) time limit. If some experiment reaches the limit, we record its

elapsed time as 4 hours. To vary |X|, we use the first 10 to 1,000 variants in

each dataset. Figure 5.8 shows the result of the experiment. In Figures 5.8a

and 5.8b, BT outperforms WD when |X| ≤ 500 for SYN and PGP. In par-

ticular, BT takes 2 minutes when |X| = 10 (|X|, |Y| ≈ 30, 000 bps) for PGP.

In Figure 5.8c, even though BT outperforms WD in all |X| for IDASH, the

gap between their elapsed times reduces significantly as |X| gets larger. The

reason is that WD uses O(log |X|) homomorphic operations, whereas BT uses

O(|X|wint logwint) homomorphic gates. These growths of complexities can be

observed in the three figures. Generally, WD computes the total scores of each

region efficiently while BT effectively finds a HSR. Furthermore, the average

elapsed time of WD-Score gradually increases even though it uses constant

number of homomorphic operations. The reason is that the bigger parameters

for HEAAN in the larger |X| make the operations slower. In Figures 5.8d, 5.8e,

61

10 20 50 100 200 500 1000

2,000

4,000

6,000

8,000

10,000

12,000

14,000

E
la
p
se
d
T
im

e
(s
ec
)

(a) SYN

10 20 50 100 200 500 1000

2,000

4,000

6,000

8,000

10,000

12,000

14,000

BT-Score BT-Find WD-Score WD-Find

(b) PGP

10 20 50 100 200 500 1000

2,000

4,000

6,000

8,000

10,000

12,000

14,000

(c) IDASH

10 20 50 100 200 500 1000

5

10

15

20

25

M
em

or
y
U
sa
ge

(G
B
)

(d) SYN

10 20 50 100 200 500 1000

5

10

15

20

25
BT WD

(e) PGP

10 20 50 100 200 500 1000

5

10

15

20

25

(f) IDASH

Figure 5.8: Varying |X|

and 5.8f, WD uses memory 10-25 times more than BT because of the size of

unit ciphertext. The size of unit ciphertext is a few KB in TFHE while it takes

several MB in HEAAN (see Table 5.6). Therefore, there is a time memory trade-

off between BT and WD. In general, both BT and WD run slower for IDASH

than SYN and PGP. This is because the much longer R of IDASH requires

the bigger parameters for HE schemes that lead to the poor performance. Note

that the parameters of HE schemes used in the experiment are summarized in

Table 5.5. Since HEAAN is an approximate HE scheme, the two scores of a

HSR computed by BT and WD for the same input can be slightly different. In

the experiment, the differences between them (i.e., the errors in WD) are less

than 0.02% of the actual scores for the three datasets.

Varying Length of Reference Genome. We measure the average elapsed

62

3K 10K 100K 1M

1,000

2,000

3,000

4,000

5,000

6,000

7,000

E
la
p
se
d
T
im

e
(s
ec
)

(a) Varying |R|

1 3 6 12 24 48

1,000

2,000

3,000

4,000

E
la
p
se
d
T
im

e
(s
ec
)

BT WD

(b) Varying k

3/-2,-11,-1 5/-3,-9,-1 5/-4,-10,-4

1,000

2,000

3,000

4,000

E
la
p
se
d
T
im

e
(s
ec
)

(c) Varying scoring scheme

0.1 0.5 0.9

1,000

2,000

3,000

4,000

E
la
p
se
d
T
im

e
(s
ec
)

(d) Varying genome complexity

1 2 4 8 16 32

2,000
4,000
6,000
8,000
10,000
12,000
14,000
16,000
18,000
20,000

E
la
p
se
d
T
im

e
(s
ec
)

(e) Varying number of cores

Figure 5.9: Varying parameters

times of BT and WD in the different lengths of R for SYN. We fix |X| = 500

and vary |R| from 3K to 1M. To vary |R|, we simply increase the positions in

column pos in SYN. Figure 5.9a shows the result of the experiment. When |R|

increases, the elapsed times of BT and WD are increased in the figure. The

reason is that the larger positions require bigger parameters for HE schemes

what cause the slower elapsed times.

Varying Length of Alternate Bases. We measure the average elapsed time

in the different lengths of alternate bases for SYN. To vary k, we change pa-

rameter walt from 2 to 96 in both BT and WD since k = walt/2. Figure 5.9b

shows the result of the experiment. The average elapsed time of BT remains

the same in every k since walt has almost no effect on the span and work of

BT-Score (i.e., in Equation (5.20)). However, even though walt slightly affects

63

the numbers of equality check and multiplication operations in WD-Score (see

Table 5.2), the average elapsed time of WD increases in the larger k due to the

costly equality check operation of HEAAN.

Varying Scoring Scheme. We measure the average elapsed time in the dif-

ferent scoring schemes for SYN. We select three widely used scoring schemes for

nucleotide sequences in FASTA [57] and [44] (see Table 5.7). Figure 5.9c shows

the result of the experiment. The average elapsed time of BT in the first scoring

scheme is a little bit shorter than the other two because of the smaller wint on

which the spans and works of BT-Score and BT-Find highly depend. In other

words, wint for the match score sm = 3 is shorter than for sm = 5 according

to (5.19). The average elapsed time of WD remains the same in all the scoring

schemes because the difference between match scores 3 and 5 is too small to

affect the parameters of HEAAN.

Varying Genome Complexity. We measure the average elapsed time in

the three different genome complexities. For the genome complexity, we use

a length-sensitivity measure Dk [62] which is a rate of distinct substrings of

length k in R, defined as follows.

Dk(R) =
|{s : f(s) > 0. |s| = k}|

|R| − k + 1

where f(s) is the number of occurrences of a substring s in R. We use D12 in

the experiment. To vary the genome complexity, we use two other synthetic

datasets generated similarly to SYN. To generate them, we select two genomic

sequences with the genome complexities 0.1 and 0.5 from NCBI database as the

reference genomes, then generate the variants for the two datasets in the same

way as we do for SYN. Note that the genome complexity of R of SYN is 0.9.

Figure 5.9d shows the result of the experiment. In the figure, we can observe

that the different genome complexities have no effect on the average elapsed

64

10 20 50

101

102

103

104

105

106

Number of variants (|X| = |Y|)

E
la
p
se
d
T
im

e
(s
ec
)

BT N-BT WD L-SEQ N-SEQ

10 20 50

101

102

103

104

105

Number of variants (|X| = |Y|)

M
em

or
y
U
sa
ge

(M
B
)

Figure 5.10: Comparing with L-SEQ and N-SEQ

times of BT and WD.

Varying Number of Cores. We measure the average elapsed time in the dif-

ferent numbers of cores for SYN. Figure 5.9e shows the result of the experiment.

In general, the average elapsed times decrease as the number of cores increases

since the algorithms in both BT and WD are designed to take advantage of

parallelism. In particular, the speedups of BT and WD are 9.7 and 5.3 in 16

cores, respectively. Furthermore, WD is 1.4-2 times faster than BT when the

number of cores is less than 16. In 16 and 32 cores, their average elapsed times

are almost equal. To measure the speedups, we do not set a time limit in the

experiment. Note that we use the sequential circuits in BT-Find when running

BT on a single core.

5.5.2 Comparing with Optimal HSR Algorithm

We compare the average elapsed times and peak memory usages of BT and

WD with L-SEQ and N-SEQ (Chapter 4) in the different numbers of variants

for SYN. Similarly to N-SEQ, N-BT is a version of BT that finds only the

65

score without the positions, i.e., the computations related to lists S and E are

excluded from BT-Score and BT-Find. Since L-SEQ and N-SEQ take two

sequences as inputs, not lists of variants, we use the corresponding sequences of

the variants in SYN to measure their performances. Figure 5.10 shows the result

of the experiment. Since L-SEQ and N-SEQ take large amounts of time and

memory, we use the logarithmic scale to display the elapsed time and memory

usage in the figures. Furthermore, the number of variants is limited to 50 due

to the huge elapsed times of L-SEQ and N-SEQ. In this experiment, BT, N-BT,

and WD outperform L-SEQ and N-SEQ in the average running times by up to

2 orders of magnitude while consuming less memories.

5.5.3 Quality of HSR

Since our algorithm finds HSR approximately to SW, it is important to take

into account the quality of the obtained region, i.e., how closely our algorithm

finds the HSR. To express the quality, we measure the score and location accu-

racies of our result by comparing with the HSR obtained by SW. To measure

the accuracies in the experiment, we split variants in a dataset into subsets by

their positions so that subsequences of the reference genome for the subsets

have equal length r (we call r subreference length). If there is a variant region

that lies in two subsequences (i.e., a variant region is not fully contained in

one subsequence), that pair of variants is excluded from the subset. Then for

each subset, we find the score, starting position, and ending position by our

algorithm and the score, two starting positions, and two ending positions of the

HSR by SW. To compute the score accuracy, we calculate the Mean Absolute

Percentage Error (MAPE) between the scores obtained by our algorithm and

SW. To compute the location accuracy, we calculate the percentage of the start-

ing (ending) positions that are “correct”. To decide whether a starting (ending)

66

Table 5.8: Experiment parameters

Parameter Value

Average number of variants 3, 5, 10, 20

Scoring scheme {3/-2, -11, -1}, {5/-3, -9, -1}, {5/-4, -10, -4}

Genome complexity 0.1, 0.5, 0.9

Dataset SYN, PGP, IDASH

position is “correct”, we check that the starting position of our result and the

two starting (ending) positions obtained by SW lie in exactly the same matched

region. If these three starting (ending) positions lie in the same matched region,

it is regarded to be “correct”. If a starting (ending) position obtained by SW

lies inside a variant region, we assume that it lies in its next (previous) matched

region. The reason we use this metric is that SW retrieves the location of the

regions letter by letter, while our algorithm retrieves it variant by variant and

a starting (ending) position of the our result always lies in a matched region.

Furthermore, the accuracies are measured in several aspects: (1) varying

the average number of variants in subsets, (2) varying the scoring scheme, (3)

varying the genome complexity, and (4) varying the dataset. Table 5.8 shows

the parameters of the experiments. Values in boldface in Table 5.8 are used as

default parameters. Figure 5.11 shows the result of the experiments. To vary

the average number of variants in subsets, we select the subreference length r

between 20 and 130 for SYN in Figure 5.11a. In the figure, the score and position

accuracies remain the same in the different average numbers of variants. Figure

5.11b shows the result of the experiment in the three different scoring schemes

for SYN. In the figure, the location accuracies in the default scoring scheme

are slightly better than the other two. To vary the genome complexity, we use

67

3 5 10 20

10
20
30
40
50
60
70
80
90
100

A
cc
u
ra
cy

(%
)

(a) Varying average number of variants

3/-2,-11,-15/-3,-9,-15/-4,-10,-4

10
20
30
40
50
60
70
80
90
100

A
cc
u
ra
cy

(%
)

score start-pos end-pos both-pos

(b) Varying scoring scheme

0.1 0.5 0.9

10
20
30
40
50
60
70
80
90
100

A
cc
u
ra
cy

(%
)

(c) Varying genome complexity

SYN PGP IDASH

10
20
30
40
50
60
70
80
90
100

A
cc
u
ra
cy

(%
)

(d) Varying dataset

Figure 5.11: Quality of HSR

the other two datasets used in Figure 5.9d. We can conclude that the genome

complexity does not affect the accuracies in Figure 5.11c. In Figures 5.11a,

5.11b and 5.11c, the score accuracy is 91-96%, the starting and ending position

accuracies are 81-90%. When we consider the case that both starting and ending

positions are correct, its accuracy is 70-78% in the figures. To fix the average

number of variants to 3 (default value) in PGP, we select r = 1000, much longer

than the lengths used in SYN. Moreover, when we select r = 1000 for IDASH,

most subsets are empty because of the extremely long matched regions between

the variants. Therefore, we use the non-empty subsets in the experiment for

IDASH. In Figure 5.11d, the score and position accuracies are more than 99%

68

for PGP and IDASH because of the long matched regions between the variants

that lead to the trivial alignment (i.e., the starting and ending positions are 1

and |R|, respectively).

69

Chapter 6

Conclusion

We propose an algorithm that finds HSR of two homomorphically encrypted

genomic sequences, based on the Smith-Waterman recurrence. With the efficient

location retrieval, parallel computations, and a proper HE scheme, it shows good

performances in the experiment so as to be useful in practice.

We also propose an algorithm that finds HSR of two genomic sequences

represented by homomorphically encrypted variants and describe how to im-

plement it using the bit-wise and word-wise HE schemes. Moreover, we conduct

extensive experiments and parameter sensitivity analysis on real and synthetic

datasets to show its performance. The experiments show that it outperforms

the previous algorithm by up to 2 orders of magnitude in terms of elapsed

time, while the score accuracy of HSR is over 91% compared with the Smith-

Waterman algorithm. In particular, it takes 2 minutes to find the score and lo-

cation of HSR of two homomorphically encrypted sequences with length 30,000

bps each in a real dataset. Overall, it obtains HSR of the sequences in a feasible

time.

70

Bibliography

[1] M. R. Albrecht, R. Player, and S. Scott. On the concrete hardness of

learning with errors. Journal of Mathematical Cryptology, 9(3):169–203,

2015.

[2] S. F. Altschul and B. W. Erickson. Optimal sequence alignment using

affine gap costs. Bulletin of Mathematical Biology, 48:603–616, 1986.

[3] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. Basic

local alignment search tool. Journal of Molecular Biology, 215(3):403–410,

1990.

[4] M. Aziz, M. N. Sadat, D. Alhadidi, S. Wang, X. Jiang, C. L. Brown, and

N. Mohammed. Privacy-preserving techniques of genomic data-a survey.

Briefings in Bioinformatics, 20(3):887–895, 2019.

[5] M. Bataa, S. Song, K. Park, M. Kim, J. H. Cheon, and S. Kim. Homomor-

phic computation of local alignment. In IEEE International Conference

on Bioinformatics and Biomedicine, pages 2167–2174, 2020.

[6] M. Bataa, S. Song, K. Park, M. Kim, J. H. Cheon, and S. Kim. Finding

highly similar regions of genomic sequences through homomorphic encryp-

tion. Submitted, 2022.

71

[7] J. Bentley. Programming pearls: Algorithm design techniques. Communi-

cations of the ACM, 27(9):865–873, 1984.

[8] M. Blatt, A. Gusev, Y. Polyakov, and S. Goldwasser. Secure large-scale

genome-wide association studies using homomorphic encryption. Proceed-

ings of the National Academy of Sciences, 117(21):11608–11613, 2020.

[9] M. Blatt, A. Gusev, Y. Polyakov, K. Rohloff, and V. Vaikuntanathan.

Optimized homomorphic encryption solution for secure genome-wide asso-

ciation studies. BMC Medical Genomics, 13(7):1–13, 2020.

[10] F. Boemer, A. Costache, R. Cammarota, and C. Wierzynski. Ngraph-he2:

A high-throughput framework for neural network inference on encrypted

data. In Proceedings of the 7th ACM Workshop on Encrypted Computing

and Applied Homomorphic Cryptography, pages 45–56, 2019.

[11] F. Boemer, Y. Lao, R. Cammarota, and C. Wierzynski. Ngraph-he: A

graph compiler for deep learning on homomorphically encrypted data.

In Proceedings of the 16th ACM International Conference on Computing

Frontiers, pages 3–13, 2019.

[12] D. Bogdanov, L. Kamm, S. Laur, and V. Sokk. Implementation and eval-

uation of an algorithm for cryptographically private principal component

analysis on genomic data. IEEE/ACM Transactions on Computational

Biology and Bioinformatics, 15(5):1427–1432, 2018.

[13] C. Bonte and F. Vercauteren. Privacy-preserving logistic regression train-

ing. BMC Medical Genomics, 11(4):13–21, 2018.

72

[14] Z. Brakerski, C. Gentry, and V. Vaikuntanathan. (Leveled) Fully Homo-

morphic Encryption without Bootstrapping. In Innovations in Theoretical

Computer Science Conference, pages 309–325, 2012.

[15] R. P. Brent and H. T. Kung. A regular layout for parallel adders. IEEE

Transactions on Computers, C-31:260–264, 1982.

[16] D. L. Brutlag, J.-P. Dautricourt, S. Maulik, and J. Relnh. Improved sensi-

tivity of biological sequence database searches. Bioinformatics, 6(3):237–

245, 1990.

[17] A. Brutzkus, R. Gilad-Bachrach, and O. Elisha. Low latency privacy pre-

serving inference. In Proceedings of the 36th International Conference

on Machine Learning, volume 97 of Proceedings of Machine Learning Re-

search, pages 812–821, 2019.

[18] S. Carpov, N. Gama, M. Georgieva, and J. R. Troncoso-Pastoriza. Privacy-

preserving semi-parallel logistic regression training with fully homomorphic

encryption. BMC Medical Genomics, 13(7):1–10, 2020.

[19] G. S. Çetin, H. Chen, K. Laine, K. Lauter, P. Rindal, and Y. Xia. Private

queries on encrypted genomic data. BMC Medical Genomics, 10(2):1–14,

2017.

[20] H. Chen, W. Dai, M. Kim, and Y. Song. Efficient multi-key homomorphic

encryption with packed ciphertexts with application to oblivious neural

network inference. In Proceedings of the 2019 ACM SIGSAC Conference

on Computer and Communications Security, pages 395–412, 2019.

73

[21] H. Chen, R. Gilad-Bachrach, K. Han, Z. Huang, A. Jalali, K. Laine, and

K. Lauter. Logistic regression over encrypted data from fully homomorphic

encryption. BMC Medical Genomics, 11(4):3–12, 2018.

[22] J. Chen, M. Guo, X. Wang, and B. Liu. A comprehensive review and com-

parison of different computational methods for protein remote homology

detection. Briefings in Bioinformatics, 19(2):231–244, 2016.

[23] J. H. Cheon, K. Han, A. Kim, M. Kim, and Y. Song. Bootstrapping

for approximate homomorphic encryption. In Advances in Cryptology–

EUROCRYPT, pages 360–384, 2018.

[24] J. H. Cheon, A. Kim, M. Kim, and Y. Song. Homomorphic encryp-

tion for arithmetic of approximate numbers. In Advances in Cryptology–

ASIACRYPT, pages 409–437, 2017.

[25] J. H. Cheon, D. Kim, D. Kim, H. H. Lee, and K. Lee. Numerical method

for comparison on homomorphically encrypted numbers. In Advances in

Cryptology–ASIACRYPT, pages 415–445, 2019.

[26] J. H. Cheon, M. Kim, and K. Lauter. Homomorphic computation of edit

distance. In Financial Cryptography and Data Security, pages 194–212,

2015.

[27] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène. Faster fully homo-

morphic encryption: Bootstrapping in less than 0.1 seconds. In Advances

in Cryptology–ASIACRYPT, pages 3–33, 2016.

[28] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène. TFHE: Fast fully

homomorphic encryption library, 2016. https://tfhe.github.io/tfhe/.

74

[29] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène. Tfhe: Fast fully

homomorphic encryption over the torus. Journal Of Cryptology, 33(1):34–

91, 2020.

[30] H. Cho, D. J. Wu, and B. Berger. Secure genome-wide association analysis

using multiparty computation. Nature Biotechnology, 36:547–551, 2018.

[31] S. D. Constable, Y. Tang, S. Wang, X. Jiang, and S. Chapin. Privacy-

preserving gwas analysis on federated genomic datasets. BMC Medical

Informatics and Decision Making, 15(5):1–9, 2015.

[32] P. Danecek, A. Auton, G. Abecasis, C. Albers, E. Banks, M. DePristo,

R. Handsaker, G. Lunter, G. Marth, S. Sherry, G. McVean, R. Durbin,

and 1000 Genomes Project Analysis Group. The variant call format and

vcftools. Bioinformatics, 27(15):2156–2158, 2011.

[33] M. De Cock, R. Dowsley, A. C. Nascimento, D. Railsback, J. Shen, and

A. Todoki. High performance logistic regression for privacy-preserving

genome analysis. BMC Medical Genomics, 14(23):1–18, 2021.

[34] N. Dowlin, R. Gilad-Bachrach, K. Laine, K. Lauter, M. Naehrig, and

J. Wernsing. Cryptonets: Applying neural networks to encrypted data

with high throughput and accuracy. In Proceedings of the 33rd Inter-

national Conference on International Conference on Machine Learning -

Volume 48, pages 201–210, 2016.

[35] L. Ducas and D. Micciancio. Fhew: Bootstrapping homomorphic encryp-

tion in less than a second. In Advances in Cryptology–EUROCRYPT, pages

617–640, 2015.

75

[36] J. Fan and F. Vercauteren. Somewhat practical fully homomorphic en-

cryption. Cryptology ePrint Archive, Paper 2012/144, 2012.

[37] R. Fuchs and P. Stoehr. EMBL–Search: a CD–ROM based database query

system. Bioinformatics, 9(1):71–77, 1993.

[38] C. Gentry. Fully Homomorphic Encryption Using Ideal Lattices. In Annual

ACM Symposium on Theory of Computing, pages 169–178, 2009.

[39] O. Gotoh. An improved algorithm for matching biological sequences. Jour-

nal of Molecular Biology, 162(3):705–708, 1982.

[40] T. Han and D. A. Carlson. Fast area-efficient vlsi adders. In 1987 IEEE

8th Symposium on Computer Arithmetic (ARITH), pages 49–56, 1987.

[41] N. Homer, B. Merriman, and S. F. Nelson. Bfast: An alignment tool for

large scale genome resequencing. PLoS ONE, 4(11):e7767, 2009.

[42] K. A. Jagadeesh, D. J. Wu, J. A. Birgmeier, D. Boneh, and G. Bejerano.

Deriving genomic diagnoses without revealing patient genomes. Science,

357(6352):692–695, 2017.

[43] X. Jiang, M. Kim, K. Lauter, and Y. Song. Secure outsourced matrix

computation and application to neural networks. In Proceedings of the 2018

ACM SIGSAC Conference on Computer and Communications Security,

pages 1209–1222, 2018.

[44] A. Khajeh-Saeed, S. Poole, and J. Blair Perot. Acceleration of the smith–

waterman algorithm using single and multiple graphics processors. Journal

of Computational Physics, 229(11):4247–4258, 2010.

76

[45] A. Kim, Y. Song, M. Kim, K. Lee, and J. H. Cheon. Logistic regression

model training based on the approximate homomorphic encryption. BMC

Medical Genomics, 11(4):23–31, 2018.

[46] D. Kim, Y. Son, D. Kim, A. Kim, S. Hong, and J. H. Cheon. Privacy-

preserving approximate gwas computation based on homomorphic encryp-

tion. BMC Medical Genomics, 13(7):1–12, 2020.

[47] M. Kim, X. Jiang, K. Lauter, E. Ismayilzada, and S. Shams. Secure hu-

man action recognition by encrypted neural network inference. Nature

Communications, 13(4799), 2022.

[48] M. Kim and K. Lauter. Private genome analysis through homomorphic

encryption. BMC Medical Informatics and Decision Making, 15(5):1–12,

2015.

[49] M. Kim, Y. Song, and J. H. Cheon. Secure searching of biomarkers

through hybrid homomorphic encryption scheme. BMC Medical Genomics,

10(2):69–76, 2017.

[50] M. Kim, Y. Song, B. Li, and D. Micciancio. Semi-parallel logistic regression

for gwas on encrypted data. BMC Medical Genomics, 13(7):1–13, 2020.

[51] M. Kim, Y. Song, S. Wang, Y. Xia, and X. Jiang. Secure Logistic Regres-

sion Based on Homomorphic Encryption: Design and Evaluation. JMIR

Medical Informatics, 6(2):e19, 2018.

[52] B. Langmead and S. L. Salzberg. Fast gapped-read alignment with bowtie

2. Nature Methods, 9(4):357–359, 2012.

77

[53] Y. Liu, A. Wirawan, and B. Schmidt. Cudasw++ 3.0: accelerating smith-

waterman protein database search by coupling cpu and gpu simd instruc-

tions. BMC Bioinformatics, 14(1):1–10, 2013.

[54] Q. Lou and L. Jiang. She: A fast and accurate deep neural network for

encrypted data. In Proceedings of the 33rd International Conference on

Neural Information Processing Systems, 2019.

[55] D. Lu, Y. Zhang, L. Zhang, H. Wang, W. Weng, L. Li, and H. Cai. Methods

of privacy-preserving genomic sequencing data alignments. Briefings in

Bioinformatics, 22(6), 2021. bbab151.

[56] W.-J. Lu, Y. Yamada, and J. Sakuma. Privacy-preserving genome-wide

association studies on cloud environment using fully homomorphic encryp-

tion. BMC Medical Informatics and Decision Making, 15(5):1–8, 2015.

[57] F. Madeira, Y. M. Park, J. Lee, N. Buso, T. Gur, N. Madhusoodanan,

P. Basutkar, A. R. N. Tivey, S. C. Potter, R. D. Finn, and R. Lopez. The

embl-ebi search and sequence analysis tools apis in 2019. Nucleic acids

research, 47(W1):W636–W641, 2019.

[58] S. B. Needleman and C. D. Wunsch. A general method applicable to the

search for similarities in the amino acid sequence of two proteins. Journal

of Molecular Biology, 48(3):443–453, 1970.

[59] S. Park, M. Kim, S. Seo, S. Hong, K. Han, K. Lee, J. H. Cheon, and

S. Kim. A secure snp panel scheme using homomorphically encrypted k-

mers without snp calling on the user side. BMC Genomics, 20:163–174,

2019.

78

[60] W. R. Pearson. An introduction to sequence similarity (“homology”)

searching. Current Protocols in Bioinformatics, 42(1):3.1.1–3.1.8, 2013.

[61] K. Perumalla and N. Deo. Parallel algorithms for maximum subsequence

and maximum subarray. Parallel Processing Letters, 5(3):367–373, 1995.

[62] V. Phan, S. Gao, Q. Tran, and N. S. Vo. How genome complexity can

explain the difficulty of aligning reads to genomes. BMC Bioinformatics,

16(17):1–15, 2015.

[63] M. Poullet and L. Orlando. Assessing dna sequence alignment methods for

characterizing ancient genomes and methylomes. Frontiers in Ecology and

Evolution, 8, 2020.

[64] J. J. Sim, F. M. Chan, S. Chen, B. H. Meng Tan, and K. M. Mi Aung.

Achieving gwas with homomorphic encryption. BMC Medical Genomics,

13(7):1–12, 2020.

[65] J. Sklansky. Conditional-sum addition logic. IRE Transactions on Elec-

tronic Computers, EC–9:226–231, 1960.

[66] T. F. Smith and M. S. Waterman. Identification of common molecular

subsequences. Journal of Molecular Biology, 147(1):195–197, 1981.

[67] J. S. Sousa, C. Lefebvre, Z. Huang, J. L. Raisaro, C. Aguilar-Melchor, M.-

O. Killijian, and J.-P. Hubaux. Efficient and secure outsourcing of genomic

data storage. BMC Medical Genomics, 10(2):15–28, 2017.

[68] J. Söding. Protein homology detection by HMM–HMM comparison. Bioin-

formatics, 21(7):951–960, 2004.

[69] R. A. Wagner and M. J. Fischer. The string-to-string correction problem.

J. ACM, 21(1):168–173, 1974.

79

[70] F. Wibawa, F. O. Catak, M. Kuzlu, S. Sarp, and U. Cali. Homomorphic

encryption and federated learning based privacy-preserving cnn training:

Covid-19 detection use-case. In Proceedings of the 2022 European Inter-

disciplinary Cybersecurity Conference, pages 85–90, 2022.

[71] A. M. Yakubu and Y. P. Chen. Ensuring privacy and security of genomic

data and functionalities. Briefings in Bioinformatics, 21(2):511–526, 2019.

80

요약

유전체 분석의 기초적인 연산 중 하나는 유전체 서열에서 높은 유사도를 가지는

부분을 찾는 것이다. 클라우드 환경에서는 대량의 유전체 데이터를 효율적으로

처리할 수 있지만, 클라우드로 외주하는 것은 개인 정보 및 보안 문제가 발생할

수 있다. 동형 암호 체계는 신뢰할 수 없는 클라우드 환경에서 처리되는 다양한

분석에서 유전체 데이터의 개인 정보를 보존하는 강력한 암호화 기법이다.

먼저본논문에서는스미스-워터만알고리즘을기반으로동형암호화된두서열

간의 유사도가 높은 부분을 찾는 효율적인 알고리즘을 제안한다. 효율적인 위치

탐색,병렬연산과적절한동형암호구성을갖추고있으므로실험에서좋은성능을

보여 실제로도 유용할 것이다.

다음으로는 두 동형암호화된 시퀀스 사이에서 고도로 흡사한 부분을 찾는 효

율적인 알고리즘을 제시하였다. 알고리즘의 성능을 보이기 위해 실제와 합성 데

이터셋에 대해 광범위한 실험을 실시했고 매개변수 응용 정도 분석을 수행하여

성능을 제시하였다. 실험에서는 실제 데이터셋에서 시퀀스와 매우 유사한 영역을

적절한 시간 안에 찾을 수 있었다.

주요어:문자어정렬;동형암호;높은유사도영역;부분정렬;개인정보보호연산

학번: 2018-38143

81

	1 Introduction
	1.1 Background
	1.2 Contribution
	1.3 Organization

	2 Preliminaries
	2.1 Highly Similar Regions
	2.2 Smith-Waterman Algorithm
	2.3 Representation of Pair of Sequences
	2.4 Bit-wise HE scheme
	2.5 Word-wise HE scheme
	2.6 Problem Statement
	2.7 Related Work

	3 Homomorphic Circuits
	3.1 Implementation
	3.2 Analysis

	4 Finding Optimal HSR
	4.1 Algorithm Overview
	4.2 Data Encoding
	4.3 Homomorphic Computation of Algorithm
	4.4 Complexity Analysis
	4.5 Performance Evaluation

	5 Finding Approximate HSR
	5.1 Approximate HSR
	5.2 Algorithm Overview
	5.3 Homomorphic Computation of Bit-wise Algorithm
	5.3.1 Data Encoding
	5.3.2 Computing Scores of Regions
	5.3.3 Finding HSR
	5.3.4 Complexity Analysis

	5.4 Homomorphic Computation of Word-wise Algorithm
	5.4.1 Data Encoding
	5.4.2 Computing Scores of Regions
	5.4.3 Finding Score of HSR
	5.4.4 Complexity Analysis

	5.5 Performance Evaluation
	5.5.1 Sensitivity Analysis
	5.5.2 Comparing with Optimal HSR Algorithm
	5.5.3 Quality of HSR

	6 Conclusion
	요약

<startpage>11
1 Introduction 1
 1.1 Background 1
 1.2 Contribution 3
 1.3 Organization 5
2 Preliminaries 6
 2.1 Highly Similar Regions 6
 2.2 Smith-Waterman Algorithm 7
 2.3 Representation of Pair of Sequences 8
 2.4 Bit-wise HE scheme 10
 2.5 Word-wise HE scheme 11
 2.6 Problem Statement 13
 2.7 Related Work 13
3 Homomorphic Circuits 15
 3.1 Implementation 15
 3.2 Analysis 19
4 Finding Optimal HSR 21
 4.1 Algorithm Overview 22
 4.2 Data Encoding 25
 4.3 Homomorphic Computation of Algorithm 27
 4.4 Complexity Analysis 30
 4.5 Performance Evaluation 31
5 Finding Approximate HSR 35
 5.1 Approximate HSR 37
 5.2 Algorithm Overview 38
 5.3 Homomorphic Computation of Bit-wise Algorithm 44
 5.3.1 Data Encoding 44
 5.3.2 Computing Scores of Regions 46
 5.3.3 Finding HSR 46
 5.3.4 Complexity Analysis 48
 5.4 Homomorphic Computation of Word-wise Algorithm 50
 5.4.1 Data Encoding 50
 5.4.2 Computing Scores of Regions 51
 5.4.3 Finding Score of HSR 53
 5.4.4 Complexity Analysis 54
 5.5 Performance Evaluation 57
 5.5.1 Sensitivity Analysis 60
 5.5.2 Comparing with Optimal HSR Algorithm 65
 5.5.3 Quality of HSR 66
6 Conclusion 70
요약 81
</body>

