

저 시-비 리- 경 지 2.0 한민

는 아래 조건 르는 경 에 한하여 게

l 저 물 복제, 포, 전송, 전시, 공연 송할 수 습니다.

다 과 같 조건 라야 합니다:

l 하는, 저 물 나 포 경 , 저 물에 적 된 허락조건
 명확하게 나타내어야 합니다.

l 저 터 허가를 면 러한 조건들 적 되지 않습니다.

저 에 른 리는 내 에 하여 향 지 않습니다.

것 허락규약(Legal Code) 해하 쉽게 약한 것 니다.

Disclaimer

저 시. 하는 원저 를 시하여야 합니다.

비 리. 하는 저 물 리 목적 할 수 없습니다.

경 지. 하는 저 물 개 , 형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

Master’s Thesis

Greedy-K: A New Local

Optimization Algorithm for

Solving 1D Circuit Placement

Problems

회로의 1차원 배치문제 해결을 위한 새로운

지역최적화 알고리즘

February 2023

Graduate School of Engineering

Seoul National University

 Department of Computer Science and Engineering

Hyung Dal Kwon

Greedy-K: A New Local

Optimization Algorithm for

Solving 1D Circuit Placement

Problems

Jae Jin Lee

Submitting a master’s thesis of
Engineering

February 2023

Graduate School of Engineering

Seoul National University

 Department of Computer Science and Engineering

Hyung Dal Kwon

Confirming the master’s thesis written by

Hyung Dal Kwon

February 2023

Chair (Seal)

Vice Chair (Seal)

Examiner (Seal)

 i

Abstract

Area reduction is one of the most critical objectives in

semiconductor design since it improves profitability due to

increasing net die per wafer. Although there exist various

commercial tools, memory design requires the full custom design

flow to reduce the area because the place and route (P&R)

functionality in the tools are not effective in the dram design flow.

Furthermore, one-dimensional (1D) layout is indispensable due to

the presence of peripheral regions. Inspired by the above, we

propose a new framework to minimize the wire length in the

standard cell’s 1D layout. The framework consists of the heuristic

algorithm, which efficiently places standard cells to minimize the

overall wire length of a 1D unit block composed of multiple standard

cells and a Clustering algorithm. Through the cooperation of three

algorithms, it obtains the 26.6% improved total wire length on 502

units consisting of 3 to 98 standard cells designed by human

experts.

Keyword: 1D placement, permutation, wire length, optimization,

clustering

Student Number: 2021-27781

 ii

Table of Contents
Greedy-K: A New Local Optimization Algorithm for Solving

1D Circuit Placement Problems ... i

Greedy-K: A New Local Optimization Algorithm for Solving

1D Circuit Placement Problems ... i

Abstract .. i

Chapter 1. Introduction .. １

Chapter 2. Related Work .. ３

Chapter 3. Contributions .. ４

Chapter 4. Problem Definition ... ５

Chapter 5. Methodology ... ７

5.1. Structure of Genetic Algorithm ... ８

5.2 MultiStart ... ９

5.3 Greedy-K: New Local Optimization Algorithm ９

5.4 Clustering for 1D Placement Problems １１

5.5 Cell Flipping .. １４

5.7 DFS&BFS Initialization ... １５

Chapter 6 Experimental Results .. １７

6.1 Test Environment and Condition １７

6.2 Performance of DFS&BFS Initialization １８

6.3 Performance of Cell Flipping ... １８

6.4 GA vs. Greedy-K vs. GA+Greedy-K １９

6.5 Human Experts vs. Cell Flipping vs. Clustering ２１

6.6 Parallel Processing ... ２２

Chapter 7 Conclusion ... ２４

Table of Figures

Figure 1 An example of a circuit, 4:1 Multiplexer (Mux) ５

Figure 2 A graph representation of 4:1 Mux ５

Figure 3 1D placement of 4:1 Mux .. ５

Figure 4 Structure of Genetic Algorithm ... ８

Figure 5 An example of calculating the weight of cells １１

Figure 6 Example of color-coded clusters １２

Figure 7 Clustering viewed at the cell level １２

Figure 8 Wire length calculation methods of Cell Flipping １５

Figure 9 An example of DFS Initialization with simple circuit １５

Figure 10 Performance comparison between DFS&BFS initialization

and the random initialization .. １８

 iii

Figure 11 Normalized TWL comparison of expert and Greedy-K

according to the flip operation using 502 units １８

Figure 12 Performance comparison, PureGA vs. MultiStart(Greedy-

K) vs. GA+Greedy-K. Optimal value is 88.64. １９

Figure 13 Performance of GA+Greedy-K according to the number

of population and selection .. ２０

Figure 14 Overall enhancement rate comparison between Cell

Flipping, DFS&BFS Initialization, Leaf, and Leaf+Low-Degree

in 502 units test .. ２１

Figure 15 Parallelized performance according to the number of

CPUs(IntelXeon E5-2620 v4@2.10GHz, 16 core 32 threads).

Test condition: Cell length=29, Population=128, number of

selection=32, iteration=2,000 .. ２３

Table of Algorithms

Algorithm 1 MultiStart .. ９

Algorithm 2 Greedy-K .. １０

Algorithm 3 Clustering according to the degree of nodes １４

Table of Tables

Table 1 Server specification used for validation １７

Table 2 Hyperparameters of Genetic Algorithm １７

Table 3 Performance comparison, Human expert vs. Flip, Leaf node

clustering vs. Flip, Leaf + Low-degree clustering vs. Flip in

502 units test. Leaf=Flip+Leaf, Leaf+Low-

Degree=Flip+Leaf+Low-Degree. ... ２１

 １

Chapter 1. Introduction

In general, the area utilization of ASIC chips is difficult to

exceed 70%, but the memory chip is more than 90%. In ASIC

design flow, the standard cell placement process is performed by

commercial tools that use force-directed methods to alleviate the

probability of design rule constraints (DRC) violations, such as

maximum fanout and maximum transition time, and to prevent

routing congestion. However, the gap between cells induced by the

force-directed method aggravates the chip area’s utilization. On the

other hand, in the memory design process, all cells, including

standard cells and customized cells, are placed by human experts

who use know-how based on their experience. They usually abut

standard cells in a 1D manner according to the functions and stack

them to generate 2D designs. The reasons for the difference

between the two design flows come from that the production cost of

relatively high-selling memory is more important than the

production cost of ASIC chips and the clock frequency of memory is

several times slower than that of ASIC chips.

Abutment of standard cells looks like a straightforward and

efficient strategy to reduce the area of chips but reducing cell

distance increases the possibility of routing congestion. The

congestion may result in undesirable phenomena such as timing

violation due to longer wire lengths to avoid congestion and

crosstalk. To address the issue, efficient cell placement is

necessary to reduce the semiconductor wire’s length. The

optimized wire length can improve SI (Signal Integrity) and PI

(Power Integrity) characteristics, ease of routing, maximum

transition time reduction, and higher frequency.

And as mentioned in [3] and [9], the placement for wire length

minimization is a well-known NP-hard problem and a kind of

combinatorial optimization problem. Various algorithms, such as

genetic algorithms and simulation annealing (SA, [3]), are widely

used to solve this problem by combining with the heuristic search

 ２

algorithms. However, heuristic algorithms used in SA to search

local optima in commercial tools have yet to be disclosed. Although

[1] and [4] are one of the most powerful heuristic search

algorithms to search local optima in Max-Cut problem and

Traveling Salesman Problem (TSP), respectively, they cannot be

applied directly to the 1D placement problem due to the difference

of problems.

In this paper, we first introduce the 1D placement problem and

propose three novel algorithms, a heuristic optimization algorithm

and a Clustering algorithm, which efficiently place standard cells to

minimize the total wire length of a 1D unit block consisting of

multiple standard cells.

 ３

Chapter 2. Related Work

2D placement of macro cells such as SRAM, and analog blocks

has been studied for a long time. In [8], the sequence pair

representation and min-cost flow are used to minimize total wire

length. But there is no information of the processing time for many

cells and just focusing on optimizing the wire lengths in the post-

floorplanning phase. The reinforcement learning (RL) algorithm is

used for placement in [6]. However, they also focused only on the

floor planning level and only used force direction methods to place

standard cells.

In [7], the author introduces a new Clustering method using

connectivity and distance-based cell grouping to place standard

cells efficiently. Limiting the number of cells in the cluster to 2k or

4k is a decision that does not consider the design, so it is difficult to

obtain optimal results, and it is hard to produce good results in a

short time due to a large number of cells.

As mentioned in the previous section, the placement problem is

an NP-hard problem. 6 NP-hard problems, including

TSP(Traveling Salesman Problem), are introduced in [5] and

various reinforcement learning methods were used to attempt to

solve the problem. However, as seen in the paper, the most

powerful algorithm known to solve the TSP problem is the

LKH(Lin–Kernighan–Helsgaun) introduced in [2]. Therefore, it can

be seen that designing an efficient heuristic algorithm is valuable in

solving 1D placement problems

 ４

Chapter 3. Contributions

To the best of our knowledge, this is the first work to solve 1D

circuit placement problems with the following contributions:

⚫ A new heuristic algorithm, Greedy-K, solves 1D

placement problems quickly and efficiently compared to

the genetic algorithm.

⚫ A flexible Clustering algorithm for 1D placement

problems achieves better results in the units with a

large number of cells.

⚫ We identified that Cell Flipping and DFS&BFS

Initialization is effective in 1D placement problems.

⚫ We compared the results of the above algorithms with

502 units consisting of 3 to 98 standard cells created by

human experts.

 ５

Chapter 4. Problem Definition

Figure 1 An example of a circuit, 4:1 Multiplexer (Mux)

Figure 2 A graph representation of 4:1 Mux

Figure 3 1D placement of 4:1 Mux

1D placement problem is a permutation problem. To minimize

the total wire length (TWL) of the target unit block, you must first

convert a netlist containing the connection information of the circuit

and wire into a graph, such as Fig. 1 and Fig. 2. Then, we can

 ６

assign a unique number to each cell converted to a node in the

graph and list the number of nodes as a one-dimensional vector to

determine the arrangement order of each circuit as shown in Fig. 3.

Since information about the height and width of each cell and its

port can be obtained from the physical library in the Process Design

Kit (PDK), the total wire length can be calculated given the order of

cells and wire connection information. By randomly changing the

order of numbers and obtaining the sum of the wire lengths, the

sum of the wire lengths reduced more than before can be obtained.

However, since it is difficult to obtain a good result quickly from a

randomly placed permutation, a local optimal solution close to the

random permutation can be quickly obtained in a limited time by

applying a heuristic algorithm called Local Optimization algorithm.

 ７

Chapter 5. Methodology

In general, algorithms such as GA and SA are used to improve

the solution in candidates generated by random numbers to solve

the NP-hard problem. We intend to use GA as a control for Local

Optimization and as an assistant for Local Optimization.

 ８

5.1. Structure of Genetic Algorithm

Figure 4 Structure of Genetic Algorithm

The structure of GA is in Fig. 오류! 참조 원본을 찾을 수

없습니다.4. A number of solution candidates are generated with a

random number in Population Initialization step. And, two candidates

called parents are selected to create a better solution in Selection

step. In Crossover step, two parents are mixed to generate an

offspring. This step uses either Partially Matched Crossover or

Ordered Crossover, but there is no performance difference. In

Mutation step, the two random numbers swap positions, and the

number of times the two are chosen can be adjusted, and Local

Optimization algorithms can be applied to the offspring after

Mutation step. Changing the number of runs from Selection to

Mutation can determine the number of offspring, and the ratio of

offspring to Greedy-K population is usually set between 10% and

20%. After generating offspring, Among the candidates in the

population, candidates whose quality is lower than that of the

offspring are exchanged with the offspring, thereby increasing the

 ９

quality of the entire population. The procedure described so far is

referred to as the first generation, and a locally optimal solution can

be found by repeatedly executing the generation.

5.2 MultiStart

Algorithm 1 MultiStart

MultiStart means that the Local Optimization algorithm is

applied to randomly generated candidates without GA or SA as

shown in Algorithm 1. We evaluated the performance of Local

Optimization in Section 6.

5.3 Greedy-K: New Local Optimization Algorithm

 １０

Algorithm 2 Greedy-K

The Local Optimization algorithm is essential to find optimal

solutions in spaces with near-infinite search ranges quickly. We

designed a novel Local Optimization algorithm to solve the 1D

placement problem quickly and efficiently.

As mentioned on line 3 in Algorithm 2, we need to determine

the order of cells to move, and for this, we use the method shown in

Fig. 5. The sum of the lengths of the left and right wires connected

 １１

to the cells is calculated, and the movement order of each cell is

determined by arranging them in descending order based on the

value obtained by subtracting two numbers. For simplicity, the

weight values in Fig. 5 are shown as values without direction.

Between the experimental result of determining the movement

order by subtracting the sum of the lengths of both wires and the

experimental result of adding the sum of the lengths of both wires,

the former result was better.

In order to increase the efficiency of the operation, a

parameter ’k’ as shown in Algorithm 2 is provided to control the

number of cells to be moved so that the results sorted by wire

length can be used multiple times. If you want to use only the latest

sorting results, you can set k to 1. Through experiments, it was

confirmed that an optimal value can be found by setting only the

parameter k at 40% of the permutation length for a relatively short

candidate with a permutation length of 50 or less.

Figure 5 An example of calculating the weight of cells

5.4 Clustering for 1D Placement Problems

 １２

Figure 6 Example of color-coded clusters

Figure 7 Clustering viewed at the cell level

As the number of cells increases, the processing time increases

rapidly due to the exponentially increasing search space. To

solve this problem, we combine a number of closely connected cells

into one cluster, reducing the size of the search space so that the

 １３

optimal solution can be found quickly. Nodes with a degree of 2 or

less of nodes are unlikely to have a negative effect on the sum of

the total wire length even if they are grouped into one cluster and

moved together, so we decided to combine them into one cluster.

In general, nodes with a node degree of 2 or less appear in the

leaf node of the graph, sometimes inside the graph. In addition, the

algorithm was designed so that complex nodes with node degrees of

3 or more can be grouped into clusters to see what effect it will

have if it is optimized. Therefore, the criterion of our Clustering

algorithm is the node degree. In Fig. 6 and 7, which shows an

example of clustering, there are four green clusters consisting of

nodes with a degree of 2 or less and one orange cluster consisting

of nodes with a degree of 3 or more. The Local Optimization

algorithm is applied separately to each cluster, and after applying

the Local Optimization algorithm to the cluster, the GA algorithm

and the Local Optimization algorithm are applied using the cluster

and nodes not included in the cluster. Since the user can adjust the

upper and lower limits of the node degree, which is the criterion for

Clustering as shown in Algorithm 3, it is possible to create and

experiment with various clusters.

 １４

Algorithm 3 Clustering according to the degree of nodes

5.5 Cell Flipping

 １５

Figure 8 Wire length calculation methods of Cell Flipping

The standard cell can be reversed horizontally along the

vertical axis to reduce the length of the wire connected to the cell.

We call this function as Cell Flipping and apply it after cell

placement. Prior to this algorithm, flips were determined by experts

but were automated by Cell Flipping. In Fig. 8, the grey color

square indicates the contact of a port before the flip, and the blue

square box indicates the contact of a port after the flip. The wire

length of the cell can be calculated by comparing the port positions

before and after the flip.

5.7 DFS&BFS Initialization

Figure 9 An example of DFS Initialization with simple circuit

 １６

DFS&BFS Initialization algorithm is one of the well-known

algorithms that use the topology of a circuit to generate initial

candidates as shown in Fig. 9. Compared to random initialization,

there is an effect of improving the quality of initial candidates. If 𝑁

cells are candidates, DFS&BFS Initialization algorithm can generate

𝑁 candidates from DFS and BFS, respectively, using all elements as

the root. We have limited the number of candidates generated in

DFS and BFS respectively to not exceed one-third of the

population for the diversity of the candidates. For example, if the

number of candidates in a population is 30, DFS will generate 10

candidates, BFS will generate another 10 candidates, and the rest

will be randomly generated.

 １７

Chapter 6 Experimental Results

We validate the algorithm introduced in Section 5 using 502 unit

blocks consisting of 3 to 98 standard cells.

6.1 Test Environment and Condition

Table 1 Server specification used for validation

Table 2 Hyperparameters of Genetic Algorithm

For validation, we used three types of servers as shown in

Table 1 and python3.9 to create a framework that can operate the

algorithm introduced in Section 5. Table 2 shows the

hyperparameters used in the framework. If some test cases use the

value different from the default value, it will be described in this

paper.

The data set has 502 unit blocks that consist of 3 to 98 cells.

50% of units only have under 8 cells and 80% of units have the

number of cells under 40. The program termination condition is

when the TWL difference between the best candidate and the worst

candidate is less than 1e-4, and the sum of the number of best

candidates and the worst candidates exceeds the population or the

number of best candidates exceeds 70% of the population. The unit

of length is micrometer and the default unit of time is second.

 １８

6.2 Performance of DFS&BFS Initialization

Figure 10 Performance comparison between DFS&BFS initialization and the

random initialization

We evaluated the DFS&BFS Initialization algorithm in 124 units

of 3 to 96 cells. As shown in Fig. 10, 16% of TWL improvement

was confirmed by applying the DFS&BFS Initialization algorithm,

and it became an algorithm basically applied in all tests of this paper.

6.3 Performance of Cell Flipping

Figure 11 Normalized TWL comparison of expert and Greedy-K according

to the flip operation using 502 units

 １９

As shown in Fig. 11, the Cell Flipping algorithm improves TWL

by 6% compared to the case before applying Cell Flipping in both

human-designed results and the algorithm’s design results. In this

test, Cell Flipping was applied to all 502 units with the DFS&BFS

Initialization algorithm, and it was also decided to apply Cell Flipping

to all test cases in this paper.

6.4 GA vs. Greedy-K vs. GA+Greedy-K

Figure 12 Performance comparison, PureGA vs. MultiStart(Greedy-K) vs.

GA+Greedy-K. Optimal value is 88.64.

In Fig. 12, ga means pure GA to which the Greedy-K algorithm is

not applied, and mult means MultiStart and the Greedy-K, Local

Optimization, algorithm applied to a population without GA operation

and ga+lo means that GA and the Greedy-K algorithm are applied

to the population together. And, the numbers after pureGA, mult,

and ga+lo indicate the number of populations and the number of

offspring generated after one iteration as shown in Table 2. For

example, mult_p128,s128 means that the total number of

populations used in MultiStart is 128, and the entire population is

 ２０

subject to improvement for each iteration. For the evaluation of Fig.

12, we used a circuit that has 29 cells and 36 wires. As shown in

the Fig. 12, when 100 iterations are performed, pure GA can see

slow improvement in quality, and when opting GA and Greedy-K

are applied together, it can be seen that the local optimal solution is

reached the fastest. From this, it can be seen that GA prevents

Greedy-K from quickly falling into the local optima and allows a

better solution to be found. Pure GA can find the optimal solution

when the cell length of the candidate is short, but through the

inverter chain test, the inverter connected serially, we found that if

the cell length of the candidate exceeds 50, GA never finds the

optimal solution. However, a chain test using a circuit in which the

inverter is connected in series found that if the candidate cell length

exceeds 50, GA does not find an optimal solution. And, the

difference in execution time between pure GA and GA+Greedy-K

is up to 2,500x. Note that all tests are applied with both GA and

Greedy-K unless otherwise noted.

Figure 13 Performance of GA+Greedy-K according to the number of

population and selection

Typically, in the selection step of GA, 10 40% of the population

is selected to produce offspring, but in our evaluation, the same

 ２１

number of selections as the population is evaluated to yield better

results. In the ga+lo(16) in Fig. 13, the number of populations was

set to 64 and the number of selections to 16, and the number of

selections and the number of the population were the same in the

remaining test cases. And we can know that the execution time

increases with the number of populations and selections.

6.5 Human Experts vs. Cell Flipping vs. Clustering

Table 3 Performance comparison, Human expert vs. Flip, Leaf node

clustering vs. Flip, Leaf + Low-degree clustering vs. Flip in 502 units test.

Leaf=Flip+Leaf, Leaf+Low-Degree=Flip+Leaf+Low-Degree.

Figure 14 Overall enhancement rate comparison between Cell Flipping,

DFS&BFS Initialization, Leaf, and Leaf+Low-Degree in 502 units test

 ２２

In Table 3, Baseline means the result by human expert and Cell

Flipping means that the Cell Flipping algorithm is applied to 502

Units, and Leaf means that nodes that meet the condition of node

degree 2 or less are clustered from leaf nodes in the graph, and

then tested using the netlist. Leaf+Low-Degree means that in

addition to the leaf clustering condition, nodes with a node degree of

2 are found and clustered inside of the graph, and then tested using

the netlist. From the table, we can see that even with small

populations and small selections, the Clustering algorithm can yield

better results in some units. In Fig. 14, we can see the performance

of each algorithm and the performance of algorithm combinations. In

the case of DFS&BFS Initialization test, 124 units are used and the

performance of 502 units test are estimated from the result. And

once again, we can see that the larger the population and selection,

the better the result. Extracting and merging the best results from

each test case, we achieved 27.97% improvement. Due to the

nature of genetic algorithms using randomness, the more tests are

performed, the better the probability of getting better results, even

under the same test conditions.

6.6 Parallel Processing

 ２３

Figure 15 Parallelized performance according to the number of

CPUs(IntelXeon E5-2620 v4@2.10GHz, 16 core 32 threads). Test condition:

Cell length=29, Population=128, number of selection=32, iteration=2,000

We parallelized the operations from Selection to Local

Optimization in Fig. 15 using multiple CPU cores and achieved

13.06x faster performance compared to a single-core execution

environment in the 200 inverter chain test.

 ２４

Chapter 7 Conclusion

We first addressed the 1d placement problem in depth for the

full custom design flow. To minimize the total wire length of the

units consisting of 3 to 98 standard cells, we devised a novel Local

Optimization algorithm, Greedy-K, and it shows distinguished

performance. And we identified that Cell Flipping and DFS&BFS

Initialization algorithms significantly contribute to minimize the TWL.

Using these techniques, we achieved a 27.97% improvement in

TWL compared to human experts. We also found that parallel

processing technique is essential for fast runtime.

 ２５

Bibliography

[1] Charles M Fiduccia and Robert M Mattheyses. 1988. A linear-

time heuristic for improving network partitions. In Papers on

Twenty-five years of electronic design automation. 241–247.

[2] Keld Helsgaun. 2017. An extension of the Lin-Kernighan-

Helsgaun TSP solver for constrained traveling salesman and vehicle

routing problems. Roskilde: Roskilde University (2017), 24–50.

[3] Lalin L Laudis, Shilpa Shyam, V Suresh, and Ajay Kumar. 2018.

A study: Various NP-hard problems in VLSI and the need for

biologically inspired heuristics. In Recent findings in intelligent

computing techniques. Springer, 193–204.

[4] Shen Lin and Brian W Kernighan. 1973. An effective heuristic

algorithm for the traveling-salesman problem. Operations research

21, 2 (1973), 498–516.

[5] Nina Mazyavkina, Sergey Sviridov, Sergei Ivanov, and Evgeny

Burnaev. 2021. Reinforcement learning for combinatorial

optimization: A survey. Computers & Operations Research 134

(2021), 105400.

[6] Azalia Mirhoseini, Anna Goldie, Mustafa Yazgan, Joe Jiang,

Ebrahim Songhori, ShenWang, Young-Joon Lee, Eric Johnson,

Omkar Pathak, Sungmin Bae, et al. 2020. Chip placement with deep

reinforcement learning. arXiv preprint arXiv:2004.10746 (2020).

[7] Soheil Nazar Shahsavani, Alireza Shafaei, and Massoud Pedram.

2018. A placement algorithm for superconducting logic circuits

based on cell grouping and super-cell placement. In 2018 Design,

Automation & Test in Europe Conference & Exhibition (DATE).

IEEE, 1465–1468.

[8] Xiaoping Tang, Ruiqi Tian, and Martin DF Wong. 2005. Optimal

redistribution of white space for wire length minimization. In

Proceedings of the 2005 Asia and South Pacific Design Automation

Conference. 412–417.

[9] Junchi Yan, Xianglong Lyu, Ruoyu Cheng, and Yibo Lin. 2022.

Towards Machine Learning for Placement and Routing in Chip

Design: a Methodological Overview. arXiv preprint

 ２６

arXiv:2202.13564 (2022).

 ２７

Abstract

 면적 감소는 웨이퍼당 Netdie 증가로 수익성을 높이기 때문에

반도체 설계에서 가장 중요한 목표 중 하나이다. ASIC 설계를 위한

면적 최적화를 지원하는 다수의 상업용 툴이 존재하지만, 메모리 설계

분야에서는 Full Custom Design Flow를 이용해서 chip의 면적을

줄이고 있다. 이는 설계 관련 데이터에 대한 공유를 엄격히 제한하는

메모리 설계 회사의 보안 규정으로 인해, 상용 툴 제작 업체가 메모리

설계 분야에 관련된 최적화 툴을 개발하지 못했음에 기인한다. 특히,

메모리의 Peripheral 영역을 설계하기 위해서 표준 셀을

1차원(1D)으로 배치하는 절차가 존재하는데, 이 또한 지원하는 툴이

없는 실정이다. 위의 내용에서 영감을 받아 표준 셀의 1차원 배치를

위한 레이아웃에서 와이어 길이를 최소화하는 새로운 프레임워크를

제안한다.

표준 셀을 1차원으로 배치하기 위한 프레임워크는 다음과 같은

알고리즘으로 구성되는데, 여러 표준 셀로 구성된 1D 단위 블록의 전체

와이어 길이를 최소화하기 위해 표준 셀을 효율적으로 배치하는

휴리스틱 알고리즘, Clustering 알고리즘 및 클럭 제거-재구성

알고리즘이 프레임워크의 그 핵심이다. 이 세 가지 알고리즘을

적용함으로써, 전문가들이 설계한, 3~98개의 표준 셀로 구성된 502개

유닛 블록의 총 와이어 길이를 27.97% 개선하는 성과를 달성했다.

	Chapter 1. Introduction
	Chapter 2. Related Work
	Chapter 3. Contributions
	Chapter 4. Problem Definition
	Chapter 5. Methodology
	5.1. Structure of Genetic Algorithm
	5.2 MultiStart
	5.3 Greedy-K: New Local Optimization Algorithm
	5.4 Clustering for 1D Placement Problems
	5.5 Cell Flipping
	5.7 DFS&BFS Initialization

	Chapter 6 Experimental Results
	6.1 Test Environment and Condition
	6.2 Performance of DFS&BFS Initialization
	6.3 Performance of Cell Flipping
	6.4 GA vs. Greedy-K vs. GA+Greedy-K
	6.5 Human Experts vs. Cell Flipping vs. Clustering
	6.6 Parallel Processing

	Chapter 7 Conclusion

<startpage>7
Chapter 1. Introduction １
Chapter 2. Related Work ３
Chapter 3. Contributions ４
Chapter 4. Problem Definition ５
Chapter 5. Methodology ７
 5.1. Structure of Genetic Algorithm ８
 5.2 MultiStart ９
 5.3 Greedy-K: New Local Optimization Algorithm ９
 5.4 Clustering for 1D Placement Problems １１
 5.5 Cell Flipping １４
 5.7 DFS&BFS Initialization １５
Chapter 6 Experimental Results １７
 6.1 Test Environment and Condition １７
 6.2 Performance of DFS&BFS Initialization １８
 6.3 Performance of Cell Flipping １８
 6.4 GA vs. Greedy-K vs. GA+Greedy-K １９
 6.5 Human Experts vs. Cell Flipping vs. Clustering ２１
 6.6 Parallel Processing ２２
Chapter 7 Conclusion ２４
</body>

