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Abstract 

 
 

Area reduction is one of the most critical objectives in 

semiconductor design since it improves profitability due to 

increasing net die per wafer. Although there exist various 

commercial tools, memory design requires the full custom design 

flow to reduce the area because the place and route (P&R) 

functionality in the tools are not effective in the dram design flow. 

Furthermore, one-dimensional (1D) layout is indispensable due to 

the presence of peripheral regions. Inspired by the above, we 

propose a new framework to minimize the wire length in the 

standard cell’s 1D layout. The framework consists of the heuristic 

algorithm, which efficiently places standard cells to minimize the 

overall wire length of a 1D unit block composed of multiple standard 

cells and a Clustering algorithm. Through the cooperation of three 

algorithms, it obtains the 26.6% improved total wire length on 502 

units consisting of 3 to 98 standard cells designed by human 

experts. 

 

Keyword: 1D placement, permutation, wire length, optimization, 

clustering 
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Chapter 1. Introduction 
 

In general, the area utilization of ASIC chips is difficult to 

exceed 70%, but the memory chip is more than 90%. In ASIC 

design flow, the standard cell placement process is performed by 

commercial tools that use force-directed methods to alleviate the 

probability of design rule constraints (DRC) violations, such as 

maximum fanout and maximum transition time, and to prevent 

routing congestion. However, the gap between cells induced by the 

force-directed method aggravates the chip area’s utilization. On the 

other hand, in the memory design process, all cells, including 

standard cells and customized cells, are placed by human experts 

who use know-how based on their experience. They usually abut 

standard cells in a 1D manner according to the functions and stack 

them to generate 2D designs. The reasons for the difference 

between the two design flows come from that the production cost of 

relatively high-selling memory is more important than the 

production cost of ASIC chips and the clock frequency of memory is 

several times slower than that of ASIC chips.  

Abutment of standard cells looks like a straightforward and 

efficient strategy to reduce the area of chips but reducing cell 

distance increases the possibility of routing congestion. The 

congestion may result in undesirable phenomena such as timing 

violation due to longer wire lengths to avoid congestion and 

crosstalk. To address the issue, efficient cell placement is 

necessary to reduce the semiconductor wire’s length. The 

optimized wire length can improve SI (Signal Integrity) and PI 

(Power Integrity) characteristics, ease of routing, maximum 

transition time reduction, and higher frequency. 

And as mentioned in [3] and [9], the placement for wire length 

minimization is a well-known NP-hard problem and a kind of 

combinatorial optimization problem. Various algorithms, such as 

genetic algorithms and simulation annealing (SA, [3]), are widely 

used to solve this problem by combining with the heuristic search 
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algorithms. However, heuristic algorithms used in SA to search 

local optima in commercial tools have yet to be disclosed. Although 

[1] and [4] are one of the most powerful heuristic search 

algorithms to search local optima in Max-Cut problem and 

Traveling Salesman Problem (TSP), respectively, they cannot be 

applied directly to the 1D placement problem due to the difference 

of problems. 

In this paper, we first introduce the 1D placement problem and 

propose three novel algorithms, a heuristic optimization algorithm 

and a Clustering algorithm, which efficiently place standard cells to 

minimize the total wire length of a 1D unit block consisting of 

multiple standard cells. 
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Chapter 2. Related Work 
 

2D placement of macro cells such as SRAM, and analog blocks 

has been studied for a long time. In [8], the sequence pair 

representation and min-cost flow are used to minimize total wire 

length. But there is no information of the processing time for many 

cells and just focusing on optimizing the wire lengths in the post-

floorplanning phase. The reinforcement learning (RL) algorithm is 

used for placement in [6]. However, they also focused only on the 

floor planning level and only used force direction methods to place 

standard cells. 

In [7], the author introduces a new Clustering method using 

connectivity and distance-based cell grouping to place standard 

cells efficiently. Limiting the number of cells in the cluster to 2k or 

4k is a decision that does not consider the design, so it is difficult to 

obtain optimal results, and it is hard to produce good results in a 

short time due to a large number of cells. 

As mentioned in the previous section, the placement problem is 

an NP-hard problem. 6 NP-hard problems, including 

TSP(Traveling Salesman Problem), are introduced in [5] and 

various reinforcement learning methods were used to attempt to 

solve the problem. However, as seen in the paper, the most 

powerful algorithm known to solve the TSP problem is the 

LKH(Lin–Kernighan–Helsgaun) introduced in [2]. Therefore, it can 

be seen that designing an efficient heuristic algorithm is valuable in 

solving 1D placement problems 
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Chapter 3. Contributions 
 

To the best of our knowledge, this is the first work to solve 1D 

circuit placement problems with the following contributions: 

⚫ A new heuristic algorithm, Greedy-K, solves 1D 

placement problems quickly and efficiently compared to 

the genetic algorithm. 

⚫ A flexible Clustering algorithm for 1D placement 

problems achieves better results in the units with a 

large number of cells. 

⚫ We identified that Cell Flipping and DFS&BFS 

Initialization is effective in 1D placement problems. 

⚫ We compared the results of the above algorithms with 

502 units consisting of 3 to 98 standard cells created by 

human experts. 
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Chapter 4. Problem Definition 
 

 
Figure 1 An example of a circuit, 4:1 Multiplexer (Mux) 

 

 
Figure 2 A graph representation of 4:1 Mux 

 

 
Figure 3 1D placement of 4:1 Mux 

 

1D placement problem is a permutation problem. To minimize 

the total wire length (TWL) of the target unit block, you must first 

convert a netlist containing the connection information of the circuit 

and wire into a graph, such as Fig. 1 and Fig. 2. Then, we can 
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assign a unique number to each cell converted to a node in the 

graph and list the number of nodes as a one-dimensional vector to 

determine the arrangement order of each circuit as shown in Fig. 3. 

Since information about the height and width of each cell and its 

port can be obtained from the physical library in the Process Design 

Kit (PDK), the total wire length can be calculated given the order of 

cells and wire connection information. By randomly changing the 

order of numbers and obtaining the sum of the wire lengths, the 

sum of the wire lengths reduced more than before can be obtained. 

However, since it is difficult to obtain a good result quickly from a 

randomly placed permutation, a local optimal solution close to the 

random permutation can be quickly obtained in a limited time by 

applying a heuristic algorithm called Local Optimization algorithm. 
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Chapter 5. Methodology 
 

In general, algorithms such as GA and SA are used to improve 

the solution in candidates generated by random numbers to solve 

the NP-hard problem. We intend to use GA as a control for Local 

Optimization and as an assistant for Local Optimization. 
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5.1. Structure of Genetic Algorithm 
 

 
Figure 4 Structure of Genetic Algorithm 

 

The structure of GA is in Fig. 오류! 참조 원본을 찾을 수 

없습니다.4. A number of solution candidates are generated with a 

random number in Population Initialization step. And, two candidates 

called parents are selected to create a better solution in Selection 

step. In Crossover step, two parents are mixed to generate an 

offspring. This step uses either Partially Matched Crossover or 

Ordered Crossover, but there is no performance difference. In 

Mutation step, the two random numbers swap positions, and the 

number of times the two are chosen can be adjusted, and Local 

Optimization algorithms can be applied to the offspring after 

Mutation step. Changing the number of runs from Selection to 

Mutation can determine the number of offspring, and the ratio of 

offspring to Greedy-K population is usually set between 10% and 

20%. After generating offspring, Among the candidates in the 

population, candidates whose quality is lower than that of the 

offspring are exchanged with the offspring, thereby increasing the 
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quality of the entire population. The procedure described so far is 

referred to as the first generation, and a locally optimal solution can 

be found by repeatedly executing the generation. 

 

5.2 MultiStart 
 

 
Algorithm 1 MultiStart 

 

MultiStart means that the Local Optimization algorithm is 

applied to randomly generated candidates without GA or SA as 

shown in Algorithm 1. We evaluated the performance of Local 

Optimization in Section 6. 

 

 

5.3 Greedy-K: New Local Optimization Algorithm 
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Algorithm 2 Greedy-K 

 

The Local Optimization algorithm is essential to find optimal 

solutions in spaces with near-infinite search ranges quickly. We 

designed a novel Local Optimization algorithm to solve the 1D 

placement problem quickly and efficiently. 

As mentioned on line 3 in Algorithm 2, we need to determine 

the order of cells to move, and for this, we use the method shown in 

Fig. 5. The sum of the lengths of the left and right wires connected 
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to the cells is calculated, and the movement order of each cell is 

determined by arranging them in descending order based on the 

value obtained by subtracting two numbers. For simplicity, the 

weight values in Fig. 5 are shown as values without direction. 

Between the experimental result of determining the movement 

order by subtracting the sum of the lengths of both wires and the 

experimental result of adding the sum of the lengths of both wires, 

the former result was better. 

In order to increase the efficiency of the operation, a 

parameter ’k’ as shown in Algorithm 2 is provided to control the 

number of cells to be moved so that the results sorted by wire 

length can be used multiple times. If you want to use only the latest 

sorting results, you can set k to 1. Through experiments, it was 

confirmed that an optimal value can be found by setting only the 

parameter k at 40% of the permutation length for a relatively short 

candidate with a permutation length of 50 or less. 

 

 

Figure 5 An example of calculating the weight of cells 

 

 

5.4 Clustering for 1D Placement Problems 
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Figure 6 Example of color-coded clusters 

 

 

Figure 7 Clustering viewed at the cell level 

 

As the number of cells increases, the processing time increases 

rapidly due to the exponentially increasing search space. To 

solve this problem, we combine a number of closely connected cells 

into one cluster, reducing the size of the search space so that the 
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optimal solution can be found quickly. Nodes with a degree of 2 or 

less of nodes are unlikely to have a negative effect on the sum of 

the total wire length even if they are grouped into one cluster and 

moved together, so we decided to combine them into one cluster. 

In general, nodes with a node degree of 2 or less appear in the 

leaf node of the graph, sometimes inside the graph. In addition, the 

algorithm was designed so that complex nodes with node degrees of 

3 or more can be grouped into clusters to see what effect it will 

have if it is optimized. Therefore, the criterion of our Clustering 

algorithm is the node degree. In Fig. 6 and 7, which shows an 

example of clustering, there are four green clusters consisting of 

nodes with a degree of 2 or less and one orange cluster consisting 

of nodes with a degree of 3 or more. The Local Optimization 

algorithm is applied separately to each cluster, and after applying 

the Local Optimization algorithm to the cluster, the GA algorithm 

and the Local Optimization algorithm are applied using the cluster 

and nodes not included in the cluster. Since the user can adjust the 

upper and lower limits of the node degree, which is the criterion for 

Clustering as shown in Algorithm 3, it is possible to create and 

experiment with various clusters. 
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Algorithm 3 Clustering according to the degree of nodes 

 

 

5.5 Cell Flipping 
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Figure 8 Wire length calculation methods of Cell Flipping 

 

The standard cell can be reversed horizontally along the 

vertical axis to reduce the length of the wire connected to the cell. 

We call this function as Cell Flipping and apply it after cell 

placement. Prior to this algorithm, flips were determined by experts 

but were automated by Cell Flipping. In Fig. 8, the grey color 

square indicates the contact of a port before the flip, and the blue 

square box indicates the contact of a port after the flip. The wire 

length of the cell can be calculated by comparing the port positions 

before and after the flip. 

 

 

5.7 DFS&BFS Initialization 
 

 

Figure 9 An example of DFS Initialization with simple circuit 
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DFS&BFS Initialization algorithm is one of the well-known 

algorithms that use the topology of a circuit to generate initial 

candidates as shown in Fig. 9. Compared to random initialization, 

there is an effect of improving the quality of initial candidates. If 𝑁 

cells are candidates, DFS&BFS Initialization algorithm can generate 

𝑁 candidates from DFS and BFS, respectively, using all elements as 

the root. We have limited the number of candidates generated in 

DFS and BFS respectively to not exceed one-third of the 

population for the diversity of the candidates. For example, if the 

number of candidates in a population is 30, DFS will generate 10 

candidates, BFS will generate another 10 candidates, and the rest 

will be randomly generated. 
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Chapter 6 Experimental Results 
 

We validate the algorithm introduced in Section 5 using 502 unit 

blocks consisting of 3 to 98 standard cells. 

 

 

6.1 Test Environment and Condition 
 

 
Table 1 Server specification used for validation 

 
Table 2 Hyperparameters of Genetic Algorithm 

 

 

For validation, we used three types of servers as shown in 

Table 1 and python3.9 to create a framework that can operate the 

algorithm introduced in Section 5. Table 2 shows the 

hyperparameters used in the framework. If some test cases use the 

value different from the default value, it will be described in this 

paper. 

The data set has 502 unit blocks that consist of 3 to 98 cells. 

50% of units only have under 8 cells and 80% of units have the 

number of cells under 40. The program termination condition is 

when the TWL difference between the best candidate and the worst 

candidate is less than 1e-4, and the sum of the number of best 

candidates and the worst candidates exceeds the population or the 

number of best candidates exceeds 70% of the population. The unit 

of length is micrometer and the default unit of time is second. 
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6.2 Performance of DFS&BFS Initialization 
 

 
Figure 10 Performance comparison between DFS&BFS initialization and the 

random initialization 

 

We evaluated the DFS&BFS Initialization algorithm in 124 units 

of 3 to 96 cells. As shown in Fig. 10, 16% of TWL improvement 

was confirmed by applying the DFS&BFS Initialization algorithm, 

and it became an algorithm basically applied in all tests of this paper. 

 

 

6.3 Performance of Cell Flipping 
 

 
Figure 11 Normalized TWL comparison of expert and Greedy-K according 

to the flip operation using 502 units 
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As shown in Fig. 11, the Cell Flipping algorithm improves TWL 

by 6% compared to the case before applying Cell Flipping in both 

human-designed results and the algorithm’s design results. In this 

test, Cell Flipping was applied to all 502 units with the DFS&BFS 

Initialization algorithm, and it was also decided to apply Cell Flipping 

to all test cases in this paper. 

 

 

6.4 GA vs. Greedy-K vs. GA+Greedy-K 
 

 
Figure 12 Performance comparison, PureGA vs. MultiStart(Greedy-K) vs. 

GA+Greedy-K. Optimal value is 88.64. 

 

In Fig. 12, ga means pure GA to which the Greedy-K algorithm is 

not applied, and mult means MultiStart and the Greedy-K, Local 

Optimization, algorithm applied to a population without GA operation 

and ga+lo means that GA and the Greedy-K algorithm are applied 

to the population together. And, the numbers after pureGA, mult, 

and ga+lo indicate the number of populations and the number of 

offspring generated after one iteration as shown in Table 2. For 

example, mult_p128,s128 means that the total number of 

populations used in MultiStart is 128, and the entire population is 
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subject to improvement for each iteration. For the evaluation of Fig. 

12, we used a circuit that has 29 cells and 36 wires. As shown in 

the Fig. 12, when 100 iterations are performed, pure GA can see 

slow improvement in quality, and when opting GA and Greedy-K 

are applied together, it can be seen that the local optimal solution is 

reached the fastest. From this, it can be seen that GA prevents 

Greedy-K from quickly falling into the local optima and allows a 

better solution to be found. Pure GA can find the optimal solution 

when the cell length of the candidate is short, but through the 

inverter chain test, the inverter connected serially, we found that if 

the cell length of the candidate exceeds 50, GA never finds the 

optimal solution. However, a chain test using a circuit in which the 

inverter is connected in series found that if the candidate cell length 

exceeds 50, GA does not find an optimal solution. And, the 

difference in execution time between pure GA and GA+Greedy-K 

is up to 2,500x. Note that all tests are applied with both GA and 

Greedy-K unless otherwise noted. 

 

 

Figure 13 Performance of GA+Greedy-K according to the number of 

population and selection 

 

Typically, in the selection step of GA, 10 40% of the population 

is selected to produce offspring, but in our evaluation, the same 
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number of selections as the population is evaluated to yield better 

results. In the ga+lo(16) in Fig. 13, the number of populations was 

set to 64 and the number of selections to 16, and the number of 

selections and the number of the population were the same in the 

remaining test cases. And we can know that the execution time 

increases with the number of populations and selections. 

 

 

6.5 Human Experts vs. Cell Flipping vs. Clustering 
 

 

Table 3 Performance comparison, Human expert vs. Flip, Leaf node 

clustering vs. Flip, Leaf + Low-degree clustering vs. Flip in 502 units test. 

Leaf=Flip+Leaf, Leaf+Low-Degree=Flip+Leaf+Low-Degree. 

 
 

Figure 14 Overall enhancement rate comparison between Cell Flipping, 

DFS&BFS Initialization, Leaf, and Leaf+Low-Degree in 502 units test 
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In Table 3, Baseline means the result by human expert and Cell 

Flipping means that the Cell Flipping algorithm is applied to 502 

Units, and Leaf means that nodes that meet the condition of node 

degree 2 or less are clustered from leaf nodes in the graph, and 

then tested using the netlist. Leaf+Low-Degree means that in 

addition to the leaf clustering condition, nodes with a node degree of 

2 are found and clustered inside of the graph, and then tested using 

the netlist. From the table, we can see that even with small 

populations and small selections, the Clustering algorithm can yield 

better results in some units. In Fig. 14, we can see the performance 

of each algorithm and the performance of algorithm combinations. In 

the case of DFS&BFS Initialization test, 124 units are used and the 

performance of 502 units test are estimated from the result. And 

once again, we can see that the larger the population and selection, 

the better the result. Extracting and merging the best results from 

each test case, we achieved 27.97% improvement. Due to the 

nature of genetic algorithms using randomness, the more tests are 

performed, the better the probability of getting better results, even 

under the same test conditions. 

 

6.6 Parallel Processing 
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Figure 15 Parallelized performance according to the number of 

CPUs(IntelXeon E5-2620 v4@2.10GHz, 16 core 32 threads). Test condition: 

Cell length=29, Population=128, number of selection=32, iteration=2,000 

 

We parallelized the operations from Selection to Local 

Optimization in Fig. 15 using multiple CPU cores and achieved 

13.06x faster performance compared to a single-core execution 

environment in the 200 inverter chain test. 
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Chapter 7 Conclusion 
 

We first addressed the 1d placement problem in depth for the 

full custom design flow. To minimize the total wire length of the 

units consisting of 3 to 98 standard cells, we devised a novel Local 

Optimization algorithm, Greedy-K, and it shows distinguished 

performance. And we identified that Cell Flipping and DFS&BFS 

Initialization algorithms significantly contribute to minimize the TWL. 

Using these techniques, we achieved a 27.97% improvement in 

TWL compared to human experts. We also found that parallel 

processing technique is essential for fast runtime. 
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Abstract 

 면적 감소는 웨이퍼당 Netdie 증가로 수익성을 높이기 때문에 

반도체 설계에서 가장 중요한 목표 중 하나이다. ASIC 설계를 위한 

면적 최적화를 지원하는 다수의 상업용 툴이 존재하지만, 메모리 설계 

분야에서는 Full Custom Design Flow를 이용해서 chip의 면적을 

줄이고 있다. 이는 설계 관련 데이터에 대한 공유를 엄격히 제한하는 

메모리 설계 회사의 보안 규정으로 인해, 상용 툴 제작 업체가 메모리 

설계 분야에 관련된 최적화 툴을 개발하지 못했음에 기인한다. 특히, 

메모리의 Peripheral 영역을 설계하기 위해서 표준 셀을 

1차원(1D)으로 배치하는 절차가 존재하는데, 이 또한 지원하는 툴이 

없는 실정이다. 위의 내용에서 영감을 받아 표준 셀의 1차원 배치를 

위한 레이아웃에서 와이어 길이를 최소화하는 새로운 프레임워크를 

제안한다.  

표준 셀을 1차원으로 배치하기 위한 프레임워크는 다음과 같은 

알고리즘으로 구성되는데, 여러 표준 셀로 구성된 1D 단위 블록의 전체 

와이어 길이를 최소화하기 위해 표준 셀을 효율적으로 배치하는 

휴리스틱 알고리즘, Clustering 알고리즘 및 클럭 제거-재구성 

알고리즘이 프레임워크의 그 핵심이다. 이 세 가지 알고리즘을 

적용함으로써, 전문가들이 설계한, 3~98개의 표준 셀로 구성된 502개 

유닛 블록의 총 와이어 길이를 27.97% 개선하는 성과를 달성했다. 
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