creative
comimons

C O M O N S
& X EAlI-HI el Xl 2.0 Gigel=
Ol OtcHe =2 E 2= FR0l 86tH AFSA
o Ol MHE=E= SN, HE, 8E, A, SH & &5 = AsLIC

XS Mok ELICH

MNETEAl Fots BHEHNE HEAIGHHOF SLICH

Higel. M5t= 0 &

o Fot=, 0l MEZ2 THOIZE0ILE B2 H, 0l HAS0 B2 0|8
£ 2ok LIEFLH O OF 8 LICEH
o HEZXNZREH EX2 oItE O 0lelet xAdE=2 HEX EsLIT

AEAH OHE oISt Aele 212 WS0ll 26t g&
71 2f(Legal Code)E OloiotI| &H

olx2 0 Ed=t

Disclaimer =1

ction

Colle


http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

MASTER’s THESIS

Inference Error Reduction for
Parking Occupancy System via
Batch-norm Statistics and Confidence

Boosting
#iA] Aot B4 2 Al RAYS
ol &% A A AR ALHY FE 7 HAa

BY

DUONG TUNG LAM
FEBRUARY 2023

DEPARTMENT OF ELECTRICAL AND
COMPUTER ENGINEERING
COLLEGE OF ENGINEERING
SEOUL NATIONAL UNIVERSITY



MASTER’s THESIS

Inference Error Reduction for
Parking Occupancy System via
Batch-norm Statistics and Confidence

Boosting
#iA] Aot B4 2 Al RAYS
ol &% A A AR ALHY FE 7 HAa

BY

DUONG TUNG LAM
FEBRUARY 2023

DEPARTMENT OF ELECTRICAL AND
COMPUTER ENGINEERING
COLLEGE OF ENGINEERING
SEOUL NATIONAL UNIVERSITY



Inference Error Reduction for
Parking Occupancy System via
Batch-norm Statistics and Confidence Boosting

A7) 7AFE For
g5
2023 A 1 ¢
o] 9 & WEN-SYAN LI w4
59197 A
9 49 9w 1%




Abstract

Although a smart camera parking system concept has existed for decades, a
few approaches have fully addressed the system’s scalability and reliability.
Because the cornerstone of a smart parking system is the ability to detect oc-
cupancy, most current systems have used sensors buried under parking spots
for this task. However, this is extremely costly when expanding the solution to
a large-scale capacity as the price will go up with the number of parking places.
Moreover, as CCTV has been installed in various parking sectors nowadays, it
would be beneficial to exploit occupancy detection through the computer vision
approach. Nevertheless, traditional methods use the classification backbone to
predict spots from a manually labeled grid. This process is time-consuming and
loses the system’s scalability in production. In addition, when considering Deep
Learning approaches, solutions will only partially generalize for some situations
and can potentially cause numerous errors during inference, which massively re-
duces the benefits of using computer vision in a smart camera parking system.
These drawbacks demand a fast and low inference error smart camera parking
system which is the scope of this thesis. In this thesis, the system boosts the
inferencing time by replacing traditional classification methods with a CNN
detector called OcpDet and operates the detection at edge devices for a scal-
able and load balancing structure. Therefore, the OcpDet backbone is powered
by Mobilenet for fastest and lightweight inference, which is friendly for edge
devices. Information from the training error module and the spatial estimation
module were injected into the model to tolerate the false detections that can

occur. The training information is extracted from the OcpDet’s Batch-norm



statistics to tell whether the captured scene matches the training knowledge.
If the scene is out of domain knowledge, its capture is collected for model
improvement through active learning iterations and conducting further inspec-
tions. Meanwhile, the spatial knowledge averts false detections and suppresses
wrong-located bounding boxes during inference through a confidence boosting
technique. Based on the enhanced results, it can be treated as a spatial error
for a scene and combined with its training error to decide whether to skip it in
the outcome. In the experiment, the system was benchmarked on the existing
PKLot dataset and reached competitive results compared to slow classification
solutions. To measure the scalability and reliability of the system, an additional
SNU-SPS dataset was created, in which the system performance is challenged
from various views and conduct system evaluation in parking assignment tasks.
For these tasks, a simulation from multi-edge cameras of different parking lots
surrounding the SNU campus was conducted, and gathered the parking de-
tection information through a message-broker protocol. The result from the
SNU-SPS dataset shows that the thesis’s approach is promising for a real-world

application with a small error trade-off.
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Chapter 1

Introduction

According to the 2018 UN media, 68% of the world’s population will move to
urban areas by 2050[28]. This dense population in towns and cities directly leads
to an increase in the number of cars and other vehicles, which raised a major
concern about parking management on its efficiency. Letting drivers wander in
the city to find an appropriate parking slot in a tight city space causes significant
air pollution and wastes drivers’ time and energy. It also leaves empty spaces
in parking lots and varies statistical measurements on parking occupancy rate,
which trouble operators to exploit their facility for revenue. In addition, these
factors may worsen, particularly during peak hours when the flow density is at
its maximum. For real concrete evidence, a recent report by INRIX [14] shows
that on average, a typical American driver spends 17 hours a year looking for a
parking space, which can go up to 107 hours when addressing a dense population
city like New York. From [32] analysis, the exceeding of CO2 emissions can rise
nearly three times due to this problem. Therefore, a stable future city needs

a Smart Parking System (SPS) that can link drivers and parking operators



and benefit both sides. By suggesting optimal parking places to drivers and
managing their destination, a future SPS not only minimizes vehicle emissions
(via decremented delays in finding the vacant parking spot [1]), but also provides
operators a reliable number of customers to boost revenues through e.g. dynamic
pricing [33].

Regardless of potential promises, most SPS functionalities are strictly bounded
by the performance of correctly determining the occupancy of a parking lot.
Hence, the current parking system relies heavily on sensors as the first layer of
the system [1]. However, despite its high precision, this turns out to be expen-
sive when scaling up the parking lot size for future perspective, as each sensor
(magnetometer/ultrasonic sensor)[33] is designed to operate solely on a single
parking spot. An effective solution for this drawback is applying computer vi-
sion (CV) to occupancy detection. A single camera can cover multiple parking
locations and eliminate the need for a sensor per parking spot[2]. Furthermore,
because most parking lots nowadays have security cameras, it reduces installa-
tion and maintenance costs and supports multiple additional tasks for better
parking management, such as wrong parking placement, abnormal behavior,
and theft detection [39] with which sensors fail to cope.

Although computer vision is promising, no datasets exist for a full CV-SPS
intention. Most popular datasets PKLot[15], and CNRPark-Ext[3] and their
solutions [39, 4, 38, 30, 3| are constrained to a small number of parking lots and
treat each parking spot as a binary classification image. Regarding performance,
there are three main drawbacks to this type of dataset and their following re-
search. First, it limits solutions to operate in the classification scheme solely.
Second, when the number of slots increases, reliable deep-learning classifica-
tion solutions [38, 30] require multiple forward passes and need to be faster to

run in real-time feedback to drivers or to stack more additional tasks. Lastly,



a parking operator using solutions from this dataset must reannotation every
parking spot for new installation. For example, an operator is in charge of three
parking lots with at least 300 parking spots in each facility. He must perform
900 annotations to use the solution, and this procedure will be conducted again
when the positions of the cameras change. Therefore, an automatic parking
space localization and classification solution for a scalable CV-SPS is needed to
deal with the future urban population. Moreover, when considering the func-
tionalities of SPS in these datasets, there is no information on the parking
location or surrounding traffic in this dataset as they only focus on occupancy
results. It creates a big gap between existing data and the SPS’s scope in the
CV paradigm.

Aware of those flaws in current CV approaches and the importance of CV
in future SPS, the thesis poses a complete CV-SPS with a new SPS-based
dataset called SNU-SPS. For the CV-SPS, it is separated into four layers and
demonstrated in Fig 1.1 and extended to distributed edge services to provide a
flexible and scalable architecture.

The first layer is the occupancy detection layer which aims to capture park-
ing spot statuses at the edge level by a deep learning object-detector called
OcpDet. Changing the scope to object detection instead of classification and
providing results at the edge services lifts the system’s performance to real-time
operation, produces results frame by frame and avoid delay when solving all in-
ferences at the central server. To serve for the edge devices which requires light
weight model, the OcpDet inherits the Mobilenet [35] as the backbone. However,
most modern object detectors are not error-free and can be potentially wrong
in a real-world inference due to the variant of the environment (i.e the different
views of CCTYV installation, the color of the parking spot, the brightness and

the contrast of the observations throughout the day, etc). Hence, to maintain
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a reliable SPS, a result filter follows by the detection layer as the second layer.
A wrong detection or inference error result can be relayed on two main factors:
spatial error or incorrect determination in the visual observation and an out-
of-domain capture input. Under this awareness, the filter layer addresses two
additional results from two modules of OcpDet: the spatial estimator module
and the training error module, to create a complete contradiction for the results
in both visual information and training knowledge perspective.

The training error module catches the training difference of an inference
frame by injecting domain self-awareness without substantial delay for model
interpretation. Instead of creating disagreement from multi-model inference or
multi-forward passes, which causes a massive delay in the system judgment,
the module emphasizes the likelihood of a sample falling into the training and
target domains. As Batch Normalization layers [21] appear in every current
SOTA model, the training error module takes them as reference statistics for
training data [10, 11] to extract domain samples. Hence, the model can continu-
ously measure the difference between observed data samples and its previously
extracted domain information, which assures the model performance interpre-
tation is stable in the training knowledge. In the meantime, the spatial error
can only be replicated by a reference groundtruth, which is unavailable during
inferencing. During inspectation, the spatial error can be formalized as low con-
fidence activation in final detections. Therefore, the spatial estimator module
aims to create the groundtruth or the precise detections by averting false de-
tections by enhancing low confidence activation and suppress the incorrect high
confidence. This procedure is considered as a confidence boosting method. As
most modern detectors rely on anchor boxes for detection, the module is cre-
ated to predict a separated head of active anchors in the scene as a supplement

measurement to boost and suppress the main detection results. Based on the



final consequence change in predictions, the spatial error module analysis it as
the spatial error during interpretation.

These errors are then aggregated as a single score. Inferences with high
error accumulation will be marked as unusable information and collected for
fine-tuning and retraining the detection model in an active learning manner.
As the system emphasizes on improving model through active learning. The
new and untrusted samples are ranked in the most impact sample to the model
improvement knowledge. These samples are then added to the training pipeline
for improving the OcpDet. In the meantime, only correct/believable detection
results are stored and analyzed in the third layer as the aggregation layer and
transparent to operators and drivers. From this layer, the last layer can sup-
port applications such as optimal routing for drivers or alert operators about
upcoming occupied parking slots. SNU-SPS dataset is created to support this
idea of the system. It contains parking slots captured from multiple parking
lots at various angles, ranges, and positions with different light and contrast
settings to train the detectors. Furthermore, it is also attached with parking lot
GPS and surrounding traffic information for system performance analysis.

The proposed system is extensively tested on the SNU-SPS dataset for effi-
ciency evaluation and conduct detection measurements with the popular park-
ing datasets PKLot[15] for a detailed benchmark. The results from the exper-
iment raise a competitive performance compared to exhaustive classification
methods and promise a small error trade-off for applications. In addition, to
prove the robustness of the capturing the inference error for model improve-
ment in active learning manner, additional experiment is tested extensively on
the SNU-SPS dataset for improving model accuracy and hinted a potential of

this approach when the data expansion is provided.



Chapter 2

Related Work

2.1 Deep Learning Automatic Parking Occupancy De-

tection

Because most previous work focuses on solving the Smart Parking System (SPS)
occupancy task as image classification from datasets [15, 3] with manual label
mask/grids location of a parking lot, none of the available datasets could be
found for automatic parking space detection. It leads to a small amount of effort
on this topic. It was found that there are currently two main approaches to this
topic: a mask-based method and a detector-based method.

A mask-based method aims to provide parking patches directly from cap-
tures and perform binary classification for the occupancy. The perspective trans-
formation method [7, 9, 29] is usually used in this scheme to bring the parking lot
to a 2D grid presentation. Therefore, it can save time for self-annotating park-
ing locations and exploit the classification machine-learning and deep-learning

backbones. However, since the perspective projection process is highly depen-



dent on the camera setting to the parking lot, classification models need to
be retrained for different camera settings, which questions the scalability of
those methods. Notice this behavior, [26] has introduced a GAN approach that
generates the parking place’s masks from a team of drones, but there is no
comprehensive measurement of the correctness of these masks. In addition, this
method requires a top-view capture of the lot, making it unrealistic for indoor
parking facilities.

In contrast to mask-based solutions, detector-based approaches perform de-
tection and classification tasks in a single process by a CNN architecture instead
of separating them into two processes, which maintains flexibility and fast infer-
ence for CV-SPS infrastructure. The CNN architecture in this realm regresses
a parking slot as a foreground or a region of interest and optimizes its clas-
sification score. This procedure can be classified into two-stage and one-stage
detectors. While the two-stage detector, such as Faster RCNN [34] focuses on
the first stage to propose the regions of interest and performs classification on
those regions in the second stage, the one-stage detector combines both tasks
by grid-anchor regressions. However, because an empty or small parking slot
is easily confused as a part of the image’s background, both of these archi-
tectures face a lot of flaws [31]. Most recent works [24] only used detectors to
find a parked car in the parking lot and determine the occupancy rate by a
preowned parking lot’s capacity and location. This approach relaxes the prob-
lems into the well-known car detection, but it limits the extension of the SPS
for letting drivers know the location of the parking slot. Recent developments
in new architectures such as YOLO [6], and RetinaNet [27] have opened some
flexibilities in the small object capture. The idea of using a drone’s captures
is also used by [20]. The author performs the car detection at the top-view

by Faster RCNN and YOLO and combines it with the layout proposal. This



method faces the same drawback as [26] and is restricted for car detections. For
a complete occupancy detection from a detector, only [31] has been conducted
on a RetinaNet on PKLot [15] dataset. However, the results show much confu-
sion between moving cars and occupied parking slots. While the main reason
for this inefficiency is the nature of the PKLot dataset itself (partial area of
the parking lot is annotated), the method’s performance can be improved if
there is an attention mechanism on the parking lot region. In addition, there
is a potential non-optimized model design as there is no information on the
grid-anchor feature selection provided. In constrast to this, the OcpDet is well-
built with spatial error awareness, which emphasize the important of capturing

parked vehicles and blank spots.

2.2 Deep Model Uncertainty

As a model performance is a reflection of the coverage of the training dataset,
recent research tends to capture the model error or inference error in the wild by
measuring its uncertainty /stability or contradiction. This type of model error
capture has usually been integrated with the active learning method, which
helps to select the most contributed samples from an additional growing set
to improve the model overall performance. However, most works focused on
image classification [5, 12], and little attention has been drawn to the general
task-agnostic such as object detection. Extending the scope for smart parking
system, a model determination should be constrained to a single-forward pass,
which limits the available work. It was found that recent work on catching deep
model uncertainty divided into two main branches: training-domain base and

non-training-domain base.



2.2.1 Non-training domain base

The methods aim to produce a score for an inference sample for selection. The
non-training domain splits into single-forward and multi-forwards to determine
this score.

For single-forward approaches, [8, 40] proposed a simple solution by combin-
ing the marginal score of classification scores in one image and can be treated
as a pixel scores aggregation in instance segmentation. Despite this simple im-
plementation, according to Gal [18], a model can be uncertain in its predictions
even with a high softmax output, which means using the output interpretation
is not a solid factor in determining model uncertainty. Instead of relying on
the margin or the entropy of the output prediction like previous approaches,
[41] tackled the problem by estimating the model stability from its training
behavior. This estimation comes from additional regression layers that capture
a training pair difference. Even so, it requires a model to increase the number
of parameters and may affect the model convergence during training.

Different from the single-forward methods, multi-forward solutions aim to
create a contrast in the inference. [22, 37| represent the model uncertainty as
contextual disparity of the image. An image’s contextual disparity is extracted
by the stability of a category prediction from an image and its similar version (a
next frame [37], or its augmentation [22]). However, these approaches increase
the computational time twice as each score result can only be obtained after two
inferences. Meanwhile, [19, 5, 12, 17] share the same path of scoring unlabeled
images by gathering inferences from an ensemble of N neural networks. This
procedure leads to N times slower inference in the worst case and causes a huge
computation burden. Especially, when solving this at the edge device, it causes

a burden on computation due to the hardware limitation.
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2.2.2 Training domain base

Solutions from this branch compare the new inference samples with the training
information representation, which allows them to execute in a single forward
manner. From this concept, Sener [36] follows a distribution manner to select
new image samples through their intermediate feature distance in terms of Core-
Set representation. The intuition is learning over a representative subset from
the whole pool samples. Following this idea, [37] replaces the feature distance
with the contextual disparity. However, both methods are strictly limited by
the number of training samples. Each new addressing image sample has to be
compared with M training feature information, which is heavily computational
when M reaches millions of samples. Furthermore, the determination of domain
difference from both methods is not robust. It selects an inference sample by the
error difference to a training sample instead of an inference sample to the whole
training dataset knowledge. Choi [13] approached the problem differently by
replacing the original localization and classification output heads of a detector
with their density estimation to evaluate the uncertainty of the results, which is
implicitly a statistical comparison module to the training domain. However, to
implement this method on edge is difficult due to a whole structure modification
and can not exploit the existed edge inference framework.

Compared with these methods, the system training error module can be
categorized as another training-domain base approach as it replicates the com-
parison through Batch-norm information. By extracting the training domain
from Batch Normalization layers and using it as a reference statistic for new
data sample selection, none of the architecture modifications like [13] or in-
creasing model parameters [41]. Moreover, it preserves the single forward data

selection without multi-forward passes, or ensembles, significantly reducing the
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computation, which is tremendously important for the edge device inference.
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Chapter 3

SNU-SPS Dataset Description

_7 7 o
SO A

Figure 3.1 SNU-SPS dataset images representation from various indoor and
outdoor views. Annotation colors (Red: Occupied, Green: Available, Blue: Re-

stricted and Yellow: Illegal)

The SNU-SPS dataset contains nearly 3500 images to support the full scope

of CV-SPS. Those images are captured from various views, heights (1-3m), and
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Total Total Classes

Set Type
Images Labels Available Occupied Illegal Restricted
Train 2848 18263 7229 10596 396 42
Test 574 2747 1291 1336 36 84

Table 3.1 Training and Testing Sets

light conditions in indoor and outdoor parking lots at a full HD resolution. Each
parking lot has different spot background colors, light conditions, and capture
alignments. The total images were manually checked, labeled, and attached by

GPS to the corresponding parking slot.

3.1 Image Acquisition

All images are captured with a full-HD resolution. For the training set, it is
captured randomly for one month in 15 parking lots. Meanwhile, the test set is
captured consecutively in 6 parking lots from 3-6 pm through 5 working days.
Those parking lots have been selected randomly and have different sizes and
scales as well as background parking spots’ colors. It should also be noted that
none of the six parking lots are in the training set. Moreover, test samples
contain various weather conditions (sun/rain/cloudy) and have corresponding
surrounding traffic measurements from the open Korean government website
http://www.utic.go.kr. This is to serve for further future SPS tasks and bench-

marks.
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3.2 Labeling

For each parking sector, parking spots were labeled as available/ occupied/
illegal/ restricted and hid vehicle license plates for privacy concerns. Each an-
notation is covered by four key points that specify the localization of a parking
lot. The wrapping bounding boxes were formulated from these key points. Espe-
cially, optional image masks for the test set are provided to filter out overlapping
areas and non-important localization among capture among parking lots. The
intention is to maintain the system’s constraints and preserve a better parking

assignment benchmark.
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Chapter 4

Occupancy Parking System

As shown in Fig 1.1, a parking lot is divided into sectors to create a scalable and
efficient CV-SPS. Each sector is controlled and well-observed by a camera and
has non-overlapped observing areas among cameras. This constraint reduces
the complexity of the problem by duplicating observation or high occlusion.
Assuming the parking lot can be set up with this requirement, the overall system
architecture consists of four layers: an occupancy detection layer, a result filter
layer, an aggregation layer, and an application layer. The collection layer is
responsible for gathering the detection results from distributed cameras in the
parking lot as well as their potential error info during inference. Then, these
results are propagated to the filter layer to cleanse for reliable results. Non-
trusted results are masked out as non-usable spaces. This filtered information
is stored in the aggregation layer that acts as the system’s middleware. From
this layer, the application layer can receive reliable SPS support. Users can
have a transparent measurement of the current occupancy capacity of a parking

lot, while model engineers can access and inspect poor performance behavior
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in specific sectors. Especially, optimal routings and parking assignments can

execute with high precision by correctly capturing vacant spots.

Realtime Parking Dashboard v

Space Usage Observation @ Change O Add O Remove Number of Active Edges: ©147.46.67.14:20353: 4w
Selected Coordinates: 37.45578013,126.95150645 ©147.46.67.14:60568: 4w

Select Parking Lot [147.46.67.14:20353 v 4 / 4 ©147.46.67.14:52682: 4t
I oceupiea [ vatatie ® Normal Order O VIP Order ©147.46.67.14:52218: 28

D& I Total 14 Available Spots
| % 9 from 8 Camera(s)
Observation Time % \ >
=i
Realtime Info: (1 hour) ¥
Parking Average
TOTAL OCCUPIED LOTS: 0CCUPIED:
TOTAL AVAILABLE LOTS: AVAILABLE: =]
. / Show All Edge Parking Spots

Figure 4.1 Smart Parking Management Dashboard Website Visualization

4.1 Occupancy Detection Layer

When addressing parking occupancy as an object detector, the most arous-
ing problem is the confusion of the parking slots with the image background
information, such as moving cars or blank spots. The only meaningful visual
information is the thin lines separating spots. However, it is usually missed at
the lower level of deep neural networks. Thus, RetinaNet[27] is a promised so-
lution due to its feature pyramid network (FPN). In short, the FPN backbone
combines standard convolutional network lower features with lateral connec-
tions of early-level features. This simple characteristic allows the network to
construct rich, multi-scale object features, which maintain the impact of the
line features in the network. However, from [31] results, despite capturing good

center localization, traditional RetinaNet could not expand the parking space
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tightly when the mAP dropped dramatically from 63.64 to 4.75 when raising
from 0.5 to 0.75 precision. This behavior can be caused by non-optimized an-
chor grid features and a lack of a location attention mechanism. Moreover, the
Resnet backbone is quite heavy for computation and may not be able to scale

up with other additional SPS tasks, limiting the scope of CV-SPS.

N
Lsize = ZDiJg/Di’c (41)
1=0

Noticing this limitation, the heavy Resnet backbone is replaced with a
lightweight Mobilenet[35] backbone for faster inference and to build up a new
model from this architecture called OcpDet. To make the model focus more on
the line attribution information, instead of solely detecting the bounding boxes
by their centers and sizes, OcpDet was trained with four additional points as
the four key points described in the SNU-SPS dataset. Therefore, OcpDet also
predicts the key points of parking slots in the localization head. A new loss
function Lg;.e, which aims to maximize the predicted coverage boxes to their
corresponding predicted key points, has been designed from this scope. These NV
key points are treated as anchors which pull the box corners closer to them. In
equation 4.1, the distance between a box corner p to its corresponding keypoint
k is denoted as D), ; and the distance between a box corner p to the center c is
denoted as D,, .. However, as the goal is detecting the localization of the park-
ing spots, the loss function Lg;.. is treated as a regularizer during the training

stage, which makes the key points regression omitted in the inference phase.

4.2 Result Filter

The scope of the system is not only focusing on providing detection results of

the parking spots but also estimating the error of its interpretation in terms of
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spatial information and training knowledge awareness. Hence, these tasks are
responsible by two corresponding modules: the spatial estimator module and
the training error module, which have been injected into OcpDet as additional

features as shown in Fig 4.2.

4.2.1 Spatial Estimator Module

Because OcpDet is a deep learning object detector, it uses anchor boxes to
provide detection results. Anchor boxes are formed by dividing an image into
patches and represent as different scale levels for classification prediction and lo-
calization regression. From these predesigned anchors, the parking spots can be
determined by their corresponding activation score and filter out low-confident
locations by a threshold. Because of this mechanism, well-determined locations
may be missed out, which leads to incorrect visual information. However, to
capture this error without human supervision is difficult as there is no existed
groundtruth during inferencing.

The spatial estimator module overcomes this problem by providing addi-
tional heads that predict anchors that can be active in the scene. As the park-
ing lot layout is usually aligned, equally separated, and non-overlapped among
spots, it is very convenient to wrap a parking slot in one single anchor patch rep-
resentation (i.e non overlapping object will occur). Based on this characteristic,
the spatial module can create an anchor activation mask from each level feature
generator of FPN as demonstrated in Fig 4.3 and rely on this representation to
enhance or suppress the confidence of anchors i.e confidence boosting. Through
this confidence boosting, the final outcome can be treated as the groundtruth
of the inference and provide spatial error estimation.

In detail, a residual convolution block is attached for each of the N feature

levels. The last channel is averaged to get a 2D map of anchor patches to avoid
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Figure 4.3 The Module Architecture for the Spatial Estimatior Module

insufficient computations. A flattening map, such as the fully connected layer,
can reach huge connections for early-level features. For example, a 256x256
anchor can cost 65k connection and additional 65 parameters for a dense layer.
With that intuition, as parking slots are in the foreground, this 2D prediction
is triggered by a sigmoid activation and is treated as a binary classification (Fig
4.3). As demonstrated in Fig 4.2, from this activation map, an anchor mask,
which acts as a confidence boosting, is created for parking slot locations as
a reference for the model spatial outputs. To train this activation map, each
map M from N feature levels is compared with its corresponding classification
target map C in the classification head by a e difference as a loss function.
Therefore, this loss can act as a regularizer for the model to provide attention
to the foreground region of the model. Moreover, as the anchor mask head is
not directly connected to the localization head prediction, it gives the model
another degree of freedom to operate while implicitly improving the localization

through top-level features.
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4.2.2 Training Error Module

The key novelty of the training error module is extracting and combining the
training knowledge of the neural network into the model inference phase. Thus,
more factual information can be relied on than just model output uncertainties
(bounding boxes, classification scores, etc). Thus, the system aims to extract
this knowledge through Batch Normalization layers [21], which is famous in
architecture nowadays for reducing the covariance error during training.

A model ® is assumed to consist Batch Normalization layers [21]. An input
x is generally transformed into z’ by a layer f, such as a convolutional layer or
a fully-connected layer. The transformed information z’ is then fed into a Batch
Normalization layer. This layer analyzes the mean (u) and the variance (o?)
of the total N representation of x in a single batch and re-center and re-scale
them by these mean and variance i.e normalization. This procedure extends to
repeat for lower layers of the model, making each Batch Normalization layer a
recording statistic of a fraction of the model knowledge.

The idea of resembling Batch Normalization layers as the training knowl-
edge of the model has been introduced in data distillation [10, 11]. Distillation
re-constructs the training dataset by minimizing the difference of each convo-
lutional layer’s output with the Batch Normalization statistic from a batch of
gaussian images. This procedure forces the transformation z’ to regress to the
high-population information model received during the training. Therefore, it
indicates that input will fall into the training knowledge if the distillation loss
is low and quickly converges, while non-familiar information will raise this loss.
Our method inherits this motivation, taking the Batch Normalization layers
to link information to the training knowledge. However, directly applying dis-

tillation in inferencing is ineffective. First, creating distillation loss for every
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sample is expensive because each inference must be detached, and the model
must be trained to tune a captured input’s pixels repeatedly. Second, as the
output information at a layer j is not in the corresponding statistics y; and o,
it does not guarantee its following output transformation at a layer k£ will not
near the up due to some non-linear activations. Therefore, it makes a model
mistake information in final task decision layers such as softmax [18]. Lastly,
because a model can have hundreds of Batch Normalization layers, addressing
every Batch-norm layer is insufficient in terms of memory and computation, as a
model must store every previous layer’s output for comparison before finalizing
the training error outcome.

Hence, to cut the edge with the distillation scope, information should only be
obtained from specific/sensitive Batch Normalization layers that can potentially
get information out of their statistics. By addressing these layers, untrustable
layer transformations are focused and used to conduct a direct statistic compar-
ison and reduce the computational overhead from O(M) to O(M’) as M’ is the
sensitive subset of M layers. The process of selecting those Batch Normalization

layers is summarized in Algorithm 1 and is demonstrated below.

M
Laist = > | ttm — paogm 2 + || 0m + 0 m |12 (4.2)

m=1

At first, the distillation training process of [10] by the loss function Eq 4.2
is mimicked to choose these sensitive candidates by feeding a random gaussian
image GI for N epochs. Then, each u,, and o,, of each batch norm layer in
the last n epochs is stored in N where distillation nearly reaches the plateau.
This procedure results in two arrays for mean record BNpeqn and standard
deviation record BNy with the same size M x n. Finally, a z-test formula is

applied to find the maximum distribution difference among records of each layer
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as their expected sensitivity values and select the top M’ layers. It is assumed
that insensitive layer distribution should be stable at the end of the distillation.
Hence, these sensitive Batch Normalization layers are determined and attached

to the training error module.

E(M',I) = max || En—lom ), (4.3)
meM’ " Om + 0o m

Because the statistic size of each Batch-norm layer is different, a training
error module is created to estimate the information error during the inference.
A z-test function conducts the estimation as a normalization function from the
convolutional layers’ outputs of each Batch-norm layer. Then, a max aggrega-
tion is set to compare the final value of each module and represent the maximum
value as the image’s global error value E as demonstrated in Eq 4.3.

However, from the training perspective, it is difficult for the training process
to transform every data sample to match closely the mean and variance of each
Batch Normalization, especially among different batches. Therefore, the model
normally will bring the transformation x to a proportional difference of these
statistics and optimize learning parameters ¢ from this gap. For example, for
a quick benchmark in Fig 4.4(left), none of the transformation convolutional
outputs match the corresponding batch norm statistic layer through z-test com-
parison. Therefore, when the training dataset is available, those training sam-
ples are passed through F Eq 4.3 as the training reference instead of using a
Batch-norm layer’s mean and variance as the reference. As shown in the module
design Fig 4.5 below, the global error E is compared with a training reference
error for new coming samples to determine the final value error. This compari-
son is made by normalizing E with the corresponding batch norm error mean

w1 and its variance o.

24 Sk



Algorithm 1: Sensitive BN layers selection:

input: epochs N, random gaussian image GI, sensitivity S, number of
selected sensitive layers M’

14 0;

n < 0;

while i < N do
optimize(Lgist,GT)

if start plateau then
n <+ N —1;

end

if n # 0 then

for m«+1to M 1do
BNpean[m][i — n] < pim;
BNgalml[i = n] <om;

end

end

end
; while m < M do

J < argmin(BNmyean|m));

BNnean [m] —BNmean [m] []] )
BN, a[m]?+ BN, q[m|[j]2

)

Sim] = max(

end

; return rank (S, M’)
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on on selected sensitive layer

4.2.3 Filter Information

After obtaining the detection results with two additional predictions from the
spatial and training error modules, the occupancy detections are analyzed and
filtered out. To check the correctness in terms of spatial information, the active
anchor mask S is passed through a tanh activation, which guides low activation
values to below zero and hightlights the rest. Then, instead of immediately ap-
plying on the N’ bounding boxes that have higher activation confidence than

the object detection threshold, the prediction P from the foreground N detec-
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tions are added with this activated information as the final outcome P’ (Eq.
4.4).

P' = P +tanh(S) (4.4)
M .
1 D;NR 1, ifv>y
Ertspatiar =1 - 37 Z 1(Trj-) st 1(v) = _ (4.5)
i=0 v, otherwise
Erriota = malﬂ(Ethmmg, Errspatial) (4‘6)

Based on the new bounding boxes having been retrieved, suppressed, and
filtered by a traditional object detection threshold, the new strong-belief M
candidate boxes are formed as demonstrated in Fig 4.2. They are compared

with N’ bounding boxes by overlapping. To reduce the complexity M x N’, N’
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is treated as a unified region R. This region is compared with D; area coverage
from M bounding boxes. From an array of overlapping ratios, the spatial error
Errgpatiar is estimated for each frame capture detection as demonstrated in Eq.
4.5 by an overlapping threshold ~.

However, because the spatial information can still be affected by uncov-
ered knowledge input, this spatial error is combined with the training error
Erryraining as the outcome of the detection failure estimation. To keep the error
regardlessly robust, the maximum aggregation is selected as a final error score
Erryotqr for the inference (in Eq. 4.6). From this score, the aggregation can filter
out untrustable information during detection, mark them as a failure in the

corresponding categories and collect for active learning iterations.

4.3 Aggregation Layer

As the SPS gathers information from multiple devices for application layers, it
has to cope with failures in both occupancy determination and concurrency of
information from each device (node of the system). While the previous result
filter layer has handled the first obstacle, the latter can cause a huge drawback
in terms of application as the outcome of each observation can mismatch in
time stamp and provide unstable state predictions for parking spots.

To tolerate this problem, the system attaches the timestamp attribute of
each observation to its model inference output before transmitting back to the
aggregation layer. Due to the network or the crashing situation that could
happen at each node, the system has different protocols to handle delay and
non-response nodes. At first, a timeout counter is set to wait for all devices out-
come messages. During this process, each timestamp is normalized to ’seconds’.

Outputs containing the same timestamp will be grouped as the final observation
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of the system. In each group, multiple outcomes from the same camera will be
accumulated as one final result (i.e only overlapped information among these
results will be kept). This approach reduces unstable predictions during the
run of a device and provides consistent information. When the timeout counter
reaches its limit, any group missing a device’s output information can borrow
its closest neighbor within 5 seconds as recovery information. If the information
can not be retrieved or the node fails to deliver to the system continuously, it
will be marked as crashed or unavailable sectors for future inspections.

The data management layer can be formed from this aggregation behavior
and adopt a heterogeneous structure with multiple databases. NOSQL and SQL
databases are used to achieve high performance in both real-time applications
and analysis queries. Specifically, the most frequently accessed data are stored in
the in-memory caching subsystem so that the data can be accessed and updated
frequently. This type of subsystem can achieve a milliseconds latency and a
high throughput in data updating and can exchange by using an in-memory
key-value data structure. Furthermore, using caching information reduces the
pressure of the database as it acts like the fast-accessing media component
in the system. Therefore, a real-time application like the parking assignment
can keep providing surrounding parking statuses while the users check these
statuses simultaneously through the web browser without waiting for the final
aggregation information. Then, only the structured and fully-aggregated data
are stored in RDBMS and accessed with SQL. Meanwhile, all the data generated
from the previous layer are archived in the NOSQL big data storage subsystem,
which supports only the non-realtime offline data processing applications such
as the duration of a vehicle parked, the average occupant space throughout a

day, etc.
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4.4 Optimal Routing Parking Assignment

At the system’s application layer, optimal routing and parking assignments are
chosen as a modern CV-SPS fundamental task. A conventional way to solve the
association between the predicted vacant spot and new parking requirements
is to treat it as an assignment problem that can be solved using the Hungarian
algorithm. N available parking slots stored in the middleware layer will be as-
signed as the targets for M parking requirements, forming a M x N matrix. As
the Hungarian algorithm only accepts a square matrix, a standard approach is
to add to M dummy requests or N targets depending on which size is smaller.
However, this can lead to redundant optimization when the gap between M and
N is diverse. Therefore, a prioritized protocol based on the number of available
spots with the number of requests is provided. If M is much bigger than N, the
assignment’s top N early requests will be selected. Meanwhile, if M is much
smaller than IV, M slots will be registered from parking lots as having low occu-
pancy rates. In addition, to conduct a sufficient assignment from M x N matrix,
each element is scored by cost assignment for ranking and minimizing the as-
signment budget. Therefore, taking into account the intention of reducing CO2
emission and maximizing the parking profit for the operator, a cost function C
is formulated which takes three main factors: time traveling, parking distance,
and parking price with v as the weight controller. To reduce the complexity of

the matrix, only the optimal routing distance has been addressed.

C= 'YCprice + (1 - '7)(Ct7“avel + Cdistance) (47)
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Chapter 5

Experiments

In this chapter, experiments have been conducted to estimate the performance
of the system and its efficiency in a real-world scenario. As the main scope
of the thesis is inference error reduction and provide precise predictions, the
aggregation layer benchmark is excluded and the following experiments are
conducted. First, the overall performance of the system and the impact of using
the spatial module and reference key points for improving parking localization
are studied. Second, the effectiveness of filtering out unstable inference to the
model’s actual performance is investigated. Third, based on the filtered out
samples, the impact of adding these samples to the training pipeline is also
investigate. Finally, the application impact of the system on two primary SPS

tasks: optimal routing and parking assignment tasks is analyzed.
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5.1 Experimental Setup

5.1.1 Dataset settings

PKLot dataset [15] and proposed SNU-SPS dataset is used for the solutions
benchmark. CNRPark-Ext[3] is not addressed because this dataset’s parking
spot border lines are faded and not consistently visible. PKLot dataset con-
tains three sub-datasets captured from a high view: PUCPR, UFPRO05, and
UFPRO04, which leads to a small scale of parking spots. All of these sub-dataset
parking locations are partially annotated. Thus, masks for each sub-dataset to
clip out non-annotated parking regions are provided to avoid false positives
during training and make it suitable for the detection benchmark. The dataset
from each sub-dataset is split in half for training and testing, as the PKLot au-
thors suggested. For the SNU-SPS, the test set is separated as described in the
previous chapter. However, due to a small label of illegal and restricted classes
in the dataset, the test set is only addressed with two classes: occupied and
available. In addition, because the scope of the SNU-SPS dataset is to detect
correctly in a sector, only medium and large ground truths are addressed in the
test set. During the assignment application test, the detection will be filtered

out of overlapping areas by our provided masks.

5.1.2 Training settings

For experiments, with the scope of an efficient and quick response in the first
system layer, the single-stage object detector: SSD-Mobilenet (denoted MBN),
Mobilenet-FPN (our model backbone, denoted MBN-FPN), and OcpDet, is
addressed. The training engine for these models is Tensorflow Object Detection
API, a public open source and friendly for the edge model deployment. The

training protocol for those detectors is 25000 iterations with a batch size of 48
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by SGD optimizer. To keep the detection robust to the small parking spots,

high-resolution 896-pixel input is used instead of the traditional 300-pixel or

640-pixel. This setting is applied for both datasets, PKLot and SNU-SPS.

5.2 Detection Layer Performance

33

Recall mAP Classification Score
Method Test Set
(0.5:0.95) 0.5 0.75 (0.5:0.95) Occupied Available
OcpDet 0.88 0.98 0.98 0.84 0.98 0.98
MBN-FPN 0.76 0.86 0.85 0.72 0.83 0.90
PUCPR
MBN([35] 041 048 035  0.31 0.49 0.46
Classifier[38] - - - - 0.99 0.99
OcpDet 0.98 0.99 0.99 0.97 0.99 0.99
MBN-FPN 0.84 0.93 0.90 0.82 0.93 0.94
UFPRO05
MBN|35] 0.42 0.51 0.42 0.37 0.50 0.53
Classifier[38] - - - - 0.99 0.99
OcpDet 0.96 0.99 0.99 0.93 0.99 0.99
MBN-FPN 0.83 0.95 0.90 0.79 0.95 0.96
UFPRO04
MBN][35] 0.43 0.52 0.44 0.36 0.51 0.53
Classifier[38] - - - - 0.99 0.99
OcpDet 0.56 0.81 0.48 0.47 0.83 0.80
MBN-FPN 0.54 0.77 0.46 0.45 0.80 0.74
MBN|35] 0.51 0.71 0.48 0.44 0.73 0.69
Classifier[38] SNU-SPS - - - - 0.86 0.85
Table 5.1 PKLot and SNU-SPS Detection Benchmark
] S o)) 3% 37
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In this part, the efficiency of the spatial module and the localization improve-
ment of additional reference key points is studied. The main metric for the de-
tection evaluation is mAP(mean average of precision) and recall ranging from
0.5 to 0.95 IoU(intersection over union). Meanwhile, as the classification task
is the side task to benchmark with a classification approach, the mAP(0.5) is
addressed from each class for the comparison. As results are summarized in Ta-
ble 5.1, the performance of the localization attention leads in all data settings.
[31] solution is not compared because of its insufficient model’s performance.

In the PKLot dataset, MBN struggles to learn the features because it lacks
top feature generation from the grid and lines to capture the small objects.
Meanwhile, thank the FPN, both MBN-FPN and OcpDet outperform MBN in
this dataset. Due to the fixed location of the parking lot’s captures, OcpDet
can strongly overfit the position of each parking space and turn it into a grid
classifier. As demonstrated in Fig 5.1, the localization guidance from the an-
chor mask generations helps the anchor patches avoid negative samples that
do not belong to the parking area. The model can boost the performance to
near perfection using the anchor mask head during training. In addition, by
using additional key points, the approach improves localization detection and
preserves its tightness among scales.

In contrast to the unchanged parking layout of the PKLot dataset, the SNU-
SPS creates more challenges for the model to select the correct anchor patch
due to its various capture positions. This various view-points make not only
OcpDet but also other detectors struggle. In this dataset, both the reference
key points and the anchor mask generator are inefficient as the model grid
is not stationary. Despite the challenge of adaptability, when looking into the
activation of the anchor mask through different scales of the spatial module

in Fig 5.1, the obtained mask on the parking lot still has denser attention
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than other foreground predictions. Combined with the impact of reference key
points, OcpDet leaves a gap of nearly 5% on mAP(0.5) to original MBN-FPN
and 10% to MBN. Moreover, in the first row of Fig 5.1, it shows that OcpDet
is not sensitive to the car appearance. The prediction only activates inside in
the parking zone where the lines are visible.

To deeply understand the impact of the spatial estimator module, the way
of predicting the foreground from hor-grid features through the FPN is inves-
tigated. It has been shown that regardless of the grid’s anchor box size, it will
be considered a foreground if the classification activation is switched on. As
the pixel activation map through the class activation map (HiRes-GradCam)
[16] can help researchers understand which pixel contributes to the final deci-
sion. This method is implemented in this experiment. As demonstrated in Fig
5.2, there is a high density of pixel activations at each middle of parking slots
whenever the model predicts the location class, which is reasonable as a class
determination belongs to what has inside a parking border. The class confi-
dence is reduced when the number of surrounding activation maps is dimmed
Fig 5.2-a and disappears in Fig 5.2-b. This visualization once again shows that
the activation map only produces a reliable decision when pixel activation falls
inside a parking spot, which implies the spatial module’s activation can evade

this problem by adding its activation of the anchor mask prediction.

5.3 Result Filter Layer Performance

To evaluate the result filter efficiency, OcpDet is addressed solely on SNU-SPS
as there is still room for model improvement. The error of an inference sample
is calculated from the formula Eq 4.6. As the original performance mAP is

0.81, there is roughly 19% of the data is incorrectly determined. A maximum
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20% of the test set is allowed from the test set to emphasize the effectiveness
of filtering out poor results from the pool. By limiting the number of samples,
the experiment avoids removing low inference error sample and gives a fair
benchmark with other approaches. For the purpose of testing out the benefit
of the spatial module and the training error module, the overlapping ~ of the
spatial module is locked at 0.7, while the number of sensitive batch-norm layers
of the training error module is 5. In Table 5.2, the results are summarized
on result filter using: only the spatial module OcpDetgpqtiar, only the training
error module OcpDety., both modules with the max aggregation OcpDet, gz
To keep the experiment robust, the results from using the average aggregation
OcpDet g and applying the elegant solution Learning Loss [41] OcpDety and
Contextual Disparity [37] OcpDetqcs are also used. The benchmark on [36]
and [13] have been omitted from the experiment due to their low-scalability
[36] and mon-frendly edge deployment [13]. For a fair performance at the edge
level, Jetson-Nano has been chosen as the edge benchmark device for FPS
inference. The final FPS is calculated after passing all the images from the test
set through the OcpDet model.

According to the experiment, the result filter layer has boosted the model’s
overall accuracy, proving that the filter can ensure a better quality for the detec-
tor regardless of which module dominates. Moreover, the max aggregation also
shows a better factor balance than the average aggregation method. For a close
inspection, although the spatial filter can score and remove unreliable results,
its behavior is still affected by the impact of the input on the model knowledge.
Thus, its results are slightly lower than the training error module’s approach.
In addition, the experiment has also shown that using the training error can
strongly boost the model performance and avoid mistakes. It proves that using

the batch norm layers as a reference can be better instead of predicting the
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model error directly like [41] approach or two-times inference comparison like
[22]. However, it also shows that using the training error module is expensive
for the inference. Due to the heavy tensor acquisition during the computation
for the error, it takes away nearly 2 FPS performance. This drawback can tem-
porarily be avoided by omitting the training-error module and using the solely
the spatial module, which is at the third of the ranking performance in the

benchmark.

5.4 Active Learning Performance

In this section, the active learning performance is benchmarked by randomly
splitting the training dataset into three parts. The first part contains 2000 im-
ages. Meanwhile, the second part and the last part is equally divided 424 images.
The scope of this experiment to the impact of adding high inference error on
the model improvement through active learning steps. Under this intention, the
test set is treated as the evaluation of the model after active learning steps. At
first, the OcpDet is trained with the first part of the training set and evaluated
as the initial performance (step #0). The second and third parts of the train-
ing set are treated as the inference environment. Under this setting, a trained
OcpDet inferences on the two inference environment and high inference error
samples are chosen to append to the training pool, which is an active learning
step. This procedure has been introduced in various active learning benchmark
[37, 13, 23]. However, the number of added samples is limited based on the
performance of the previous step, which is the procedure of the result filter
benchmark. This experiment is conducted five times for a well-defined evalu-
ation on the same methods having been introduced at part 5.3. The result is

summarized in Table 5.3.
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Active Learning Step (0.5 mAP)
Method

#0 #1 #2

OcpDetgpariar 0.7240.23  0.78+0.18  0.83+0.21
OcpDetye  0.7240.23  0.79+0.12  0.8540.15
OcpDety[41]  0.7240.23 0.77+0.16 0.8340.09
OcpDeteges[37)  0.7240.23  0.7840.11  0.84-£0.16
OcpDetpar  0.7240.23  0.79+0.17  0.8540.12
OcpDetayy,  0.7240.23  0.78+0.15 0.8340.16

Table 5.3 Two Steps of Active Learning Performance on the OcpDet by SNU-
SPS Detection Benchmark

As demonstrated in Table 5.3, using training error information is highlighted
as the best approach for active learning. By leading at every step, it consist less
data than other approaches to reach the best knowledge for the model. More-
over, the method preserves a stable and low variance for the model learning,
which is contrasted to the spatial error. Other results from the spatial error
through aggregation also hints a lower performance in addressing active learning
performance. This outcome shows the spatial error information is not a straight
way for improving model knowledge and should stay as a way for reducing the
inference error. In the mean time, [22] once again shows better performance
than [41] method and closely matches the training error information approach.
However, it costs more data and infenrences, which is a big drawback for future
active learning steps. Hence, further expansion on dataset can draw the gap

between two approaches.
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5.5 Optimal Routing and Parking Assignment

To make a comprehensive benchmark on the impact of detection results on
the assignment application layer, the traffic information over two months from
the Korean government website http://www.utic.go.kr is collected. This traffic
information is associated with the test set to form a close-loop simulation. In
the simulation, each day from 3 to 6 pm, there will be fixed 100 requirements for
booking a vacant spot to 6 available parking lots in the test set. The suggested
optimal road for each request will be assigned from the MapQuest API. A

correct spot assignment is considered by the Hungarian assignment [25] from

the benchmark.

® Assignment Error

0.4
® Cost Error

the masked-out test label. This assignment is treated as the ground truth for
0.35
0.3

adiia

day 1 day 2 day 3 day 4 day 5

Figure 5.3 The cost errors and the assignment errors: averaging simulation for

5 days at 6 parking lots

Then, two evaluation metrics are computed: cost error and assignment error.

The cost error is computed by the absolute error of the ground truth assignment
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cost Uy ; and the vacancy detection assignment cost C),;, which is designed by
Eq. 5.1. The assignment cost is computed after getting the assignments. From
each assigned parking lot in 6 parking lots, the total number of booked slots IV
is computed and compared between the ground truth N, ;; and the detection
N,,i j by an absolute error. To keep a fair comparison among days of simulation,
the two values are normalized from 0 to 1 and + is set to 0.5.

Fach day simulation will be performed from the same corresponding week-
day in the traffic simulation. Thus, each simulation for a day is repeated at
least eight times to capture the model’s average performance due to different

traffic statuses across two months.

C= ’chrice + (1 - '7)(Ct7”avel + Cdistance) (5.1)
6 6 6
Coi—Chi N.::— N. ..
E’F'rcost — Z w ET‘Tassign - Z Z | gﬂdN ] 9t | (52)
=3 g i=3 j=1 gt

From Fig. 5.3, the system allows the system to operate at most 40% er-
ror for the cost-minimizing budget while maintaining at least 70% correct on
assignment. Because the cost error is proportional to the traveled distance,
wrong assignments on far-distance drives can cause a huge gap in the optimal
cost. Meanwhile, the error is not much in terms of matching the number of
assignments. From these metrics, operators will benefit the most as their va-
cant spaces will automatically be assigned with a minimal error. In contrast,
some drivers may get some disadvantages from the system assignment. Further
improvement needs to be done on the driver metric has to be addressed for a

throughout value benchmark.
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Chapter 6

Conclusion & Future Work

This thesis proposes a novel end-to-end CV-SPS with a detailed benchmark
on both old and new datasets and stress test simulations. Even though the
proposed dataset is small, it shows challenging factors, and it is the first dataset
for computer vision with full CV-SPS scope. Moreover, the system has proved its
efficiency for the CV-SPS scope and can close the gap to the classifier approach
when addressing stationary views. The system also provides a novel filtering
method that preserves better model interpretation performance by injecting
two new modules: the training error module and the spatial estimator module.
Especially, it provides better performance than uncertainty capture methods
without requiring multiple passes for determination. The system also proves
to operate with reliable performance when the connection is stable, and the
capture results do not dynamically change between seconds.

However, there are still plenty of drawbacks for the system. Due to the
limited size of the dataset, the performance of the approach has not been ad-

dressed to illegal parking and restricted parking classes. Moreover, active learn-
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ing performance can only been conducted for limited steps. Therefore, in the
future, further expansion will be made on the dataset to increase the size of the
dataset and assist a better and more realistic measurement of the aggregation
layer performance. The dataset will also be improved with additional functional
information for SPS, such as vehicle reidentification or parking type selection
for a complete intelligent application. Moreover, the OcpDet will also be ad-
dressed and optimized to improve edge devices’ performance and make it robust
to speed-sensitive speed inference applications. Lastly, the system should move
from the centralized system to the distributed system to maximize the benefit
and the scalability of system. In the current design, if the central server fails or

crashes, it is impossible to maintain the service and the applications.
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