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Abstract

A rich repertoire of motion data is required to make the virtual character move

like a real human. To efficiently acquire motion data, there has been many re-

searches on motion editing algorithm that modifies the source motion to satisfy

the novel task/condition. The purpose of this study is to generate various mo-

tions through physics-based motion editing. Physics-based character animation

is a method of generating motion by moving a character in a physical environ-

ment. Combining motion editing and physics-based animation has merit that

the physically simulated character can explore novel task/condition deviating

from the source motion. The key challenge is to design an algorithm that en-

courages deformation in desirable directions while inhibiting deformation in

unnecessary directions. By combining motion optimization with physics sim-

ulation, we have significantly increased the quality and diversity of generated

motion.

Our thesis propose three physics-based approach that edit motion for var-

ious tasks/conditions and motions. The first work propose an algorithm that

creates a motion that satisfies a wide task space from a single motion clip. Si-

multaneous learning of motion parameterization and motor skills significantly

improves the performance and visual quality of learned motor skills. The sec-

ond work provides an algorithm that creates the animation for a new character

by combining multiple characters and motion clips. Our algorithm finds proper

spatial and temporal alignments of its composing parts considering physical

properties of the character and the motion. The third work discusses motion

synthesis for style which is an implicit task. Our algorithm searches the style
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feature directly from the source motions and correct the style feature in the

physical environment to enable style transfer from a small number of motion

data. We demonstrate the versatility of our physics-based motion editing algo-

rithms with highly dynamic motor skills for novel conditions, body structures

and styles.

Keywords: Computer Animation, Physics Simulation, Physics-based Control,

Data-Driven Animation, Deep Reinforcement Learning, Motion Synthesis, Mo-

tion Editing

Student Number: 2017-25468
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Chapter 1

Introduction

Movements of a real human are very diverse, from everyday movements such as

walking, running, and interacting with objects to dynamic movements such as

dancing, gymnastics, and various exercises. Reproducing these rich movements

of real human with a virtual character is a key challenge in the field of computer

animation. The quality and amount of motion data greatly affects life-likeness

of the character’s movement. Most widely used method to obtain new motion

data is by motion capture or manual key-framing. Motion capture requires

a laborious process of recruiting actors, setting up the camera, capturing, and

post-processing. Manual key-framing is also time consuming in that artists have

to draw all the frames. It is practically impossible to acquire all necessary motion

data by the above method.

Motion synthesis that generates new motions from existing motions has

always been an important topic. The purpose of motion synthesis is diverse:

interpolating motion to match user input, generating smooth transitions be-

tween motions, or discovering motions that satisfy new tasks. Among them, we
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are interested in editing the motion to satisfy the novel task and condition. To

build good motion editing system, three things should be considered. The most

fundamental element is diversity. The system must be able to edit the motion

widely outside the given data range. To do so, the system should be able to

handle broad range of motions and tasks/conditions. The conditions and tasks

that are the objective of the motion editing can be very divergent. They can be

the character configurations such as body length and mass distribution, space-

time constraints such as velocity or position of end effectors, and environmental

conditions such as gravity and the weight of interacting objects.

The second is the quality of the motion. The quality is determined com-

prehensively by how well the generated motion preserves various elements of

original motion. Elements such as shape/trajectory of the joint rotation, and

contact with the ground or object have a great influence on the semantic and

human-likeness of the motion. The physical properties of the motion such as

gravity, frictional force, the maximum force and the mass distribution of the

character are another important elements. These elements are not explicitly

shown in the motion, but they affect the physical plausibility of the movement

and make the movement realistic. The third is speed. A system that can gen-

erate a new motion as quickly as possible is a better system if diversity and

quality are guaranteed. The purpose of this thesis is to improve the diversity

of motion editing systems without compromising the other two factors as much

as possible.

In motion editing problems, the motion is optimized to satisfy the given task

and preserve the quality. Most of the previous work on motion editing use a

data-driven approach. These methods directly control the rotation of each joint

through spacetime optimization or learning network. The quality of the motion

can be evaluated from selected properties of a source motion such as shape
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and contact event, or from the overall similarity with the given motion dataset.

Because physical plausibility is not specifically considered, the generated motion

violates the laws of physics when it deviates from the motion dataset.

Physics-based character animation is a method of generating motion by

moving a character in a physical environment. Instead of directly controlling

the joints, these methods apply force to each joint, causing the joint to move ac-

cording to the laws of physics. Combining motion editing and physics-based an-

imation has merit that the generated motion always follows the laws of physics

even if it deviates a lot from the source motion. This nature of physics-based

animation allows for the discovery of new motions. However, due to the high

complexity of the physics simulation, it was difficult to generate a rich repertoire

of full body motion in the physical environment. Physics-based motion editing

approaches used a simplified model or limited the range of motions that can be

reproduced. These limited the diversity in a different way from the kinematic

approach.

Recent deep reinforcement learning based policy learning approaches have

achieved significant improvements in terms of stability, performance and scal-

ability of control. Deep reinforcement learning made it possible to reproduce

high-quality, highly dynamics motor skills by learning their control policies [1].

Recent studies demonstrated that DRL-based continuous control is not encum-

bered by the structure of the dynamics system and the type of motor skills.

In this thesis, we propose novel algorithms that generate various motions

in the physical environment based on the high representation power of DRL.

The key challenge is to the quality of the synthesized motion. Physics-based

simulation itself does not guarantee that it will produce a human-like motion.

As the motion deviates from the original motion, the movement of each joint

becomes different from that of a real human. Therefore, the deformation of the
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motion cannot be entirely left to the physics simulation, and other methods

are needed to encourage deformation in desirable directions while refraining

deformation in unnecessary directions. To solve this problem, we used motion

optimization along with physics simulation. We allowed some degree of freedom

of motion to be freely deformed during the physics simulation process, and

the rest to be constrained to motion optimization results. We designed proper

optimization objectives for preserving the shape and the important events such

as contact of the motion. We devised efficient methods to reduce the time for

motion optimization. We propose three physics-based approach that edit motion

for various tasks/conditions and motions. The first work propose an algorithm

that creates a motion that satisfies a wide task space from a single motion

clip, and the second work provides an algorithm that creates a new character

and motion by combining multiple characters and motion clips. The third work

introduces a method for style transfer from a small number of motion data.

Except for the issues mentioned above, there is an additional problem with

how to formulate the task when editing for the implicit tasks. In the first two

work, the task can be defined as a constant value so it is a simple process to

evaluate how close the task of the generated motion and the task of the source

motion are. On the other hand, a task such as style is implicitly inherent in

motion so it is difficult to formulate it as a constant value. Style transfer problem

has been mainly approached in a data-driven way, which infers a stylized motion

from a model trained with a large amount of motion data. Adapting physics

based simulation to motion style transfer can correct physical errors occurs

in the process of applying the style, so more diverse stylized motions can be

created. Finding an appropriate style representation suitable for a physics-based

approach is another topic in this paper.

Learning a family of motor skills from a single motion clip. In

4



Figure 1.1: The parameterized motor skills of obstacle jump, jump, backflip,

cartwheel and kick motions generated from single motion clip.

chapter 3, we present a new algorithm that learns a parameterized family of

motor skills from a single motion clip. The motor skills are represented by a

deep policy network, which produces a stream of motions in physics simulation

in response to user input and environment interaction by navigating continu-

ous action space. Three novel technical components play an important role in

the success of our algorithm. First, it explicitly constructs motion parameteriza-

tion that maps action parameters to their corresponding motions. Simultaneous

learning of motion parameterization and motor skills significantly improves the

performance and visual quality of learned motor skills. Second, continuous-time

reinforcement learning is adopted to explore temporal variations as well as spa-

tial variations in motion parameterization. Lastly, we present a new automatic

curriculum generation method that explores continuous action space more ef-

ficiently. We demonstrate the flexibility and versatility of our algorithm with

highly dynamic motor skills that can be parameterized by task goals, body

proportions, physical measurements, and environmental conditions.

Learning Virtual Chimeras by Dynamic Motion Reassembly. In

chapter 4, we present a novel algorithm that creates and animates chimeras by

dynamically reassembling source characters and their movements. The Chimera

is a mythological hybrid creature composed of different animal parts. Compos-
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Figure 1.2: Physically synthesized locomotion of various chimeras generated

from four source character and their walking motion.

ing different animal parts have a great impact on the dynamics of individual

part motion because the body and motion of a creature are closely related to

each other. We found that finding proper spatial and temporal alignments of its

composing parts is key to the chimera motion. Our algorithm exploits a two-

network architecture: part assembler and dynamic controller. The part assem-

bler is a supervised learning layer that searches for the spatial alignment among

body parts, assuming that the temporal alignment is provided. The dynamic

controller is a reinforcement learning layer that learns robust control policy for

a wide variety of potential temporal alignments. These two layers are tightly

intertwined and learned simultaneously. The chimera animation generated by

our algorithm is energy efficient and expressive in terms of describing weight

shifting, balancing, and full-body coordination. We demonstrate the versatility

of our algorithm by generating the motor skills of a large variety of chimeras

from limited source characters.

Learning Style Transfer from Minimal Motion Data While chapter

3 and 4 synthesize motion for a task/condition that can be expressed explicitly

as a specific value, chapter 5 discusses motion synthesis for style which is an

implicit task. Researchers have successfully conducted style transfer of diverse

motion and styles by learning-based methods. Since this method depends on
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Figure 1.3: Input motion and stylized motion generated by our system.

the distribution of training data, it limits the skeleton structure and the range

of styles that can be generated. We propose an algorithm for style transfer

from a minimum amount of motion data. Our system consists of two sequential

processes. Our algorithm first searches the style feature to be applied to the each

frame of the input motion from the source motion pair. This search process is

performed adaptively according to the similarity with the source motion, so

that synthesizing can be performed efficiently from a small amount of data.

Then synthesized motion is deformed in space and time to add proper physical

effects and corrects errors related to interpenetration and timing. We adopt

the work of Lee et al [2] to simulate a character in a physical environment and

compensate for the lack of information about movement. We demonstrate the

effectiveness of our system by generate diverse stylized motions from locomotion

pair of 6 seconds.
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Chapter 2

Background

High-quality motion capture data serve as building blocks of expressive char-

acter animation in movies, video games, and digital media. Each motion clip

captures the motion of a specific subject in a specific environment and in a

specific mood and style. In the field of computer graphics and computer vi-

sion, various studies have been conducted to increase the efficiency of motion

data generation. Section 2.1 discusses researches on motion reconstruction from

video or sensors, and section 2.2 introduces researches on synthesizing existing

motions to generate new motion. Finally, section 2.3 provides background on

motion generation with physics-based simulation.

2.1 Human Motion Reconstruction

The traditional motion capture process involves attaching dozens of markers

to the body, calibrating the camera, capturing the motion, and manual post-

processing. In order to improve the convenience of the process of motion capture,
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various markerless motion capture methods have been introduced to simplify

the process of motion capture. Two main directions are to reconstruct motions

with minimal sensors without attaching markers and to reconstruct motions

from 2d video.

Diverse types of sensors have been used to replace markers. Representatively,

many studies have been conducted on attaching IMU sensors to the body [3,

4, 5], and using head mount displays like AR/VR devices [6, 7, 5]. As the

number of sensors decreases, the convenience increases but sensor-based motion

capture alone cannot provide sufficient information about motion. A method of

inferring motion from physical simulation or existing motion data is used to fill

the missing information.

Video-based motion reconstruction has an advantage in that it can utilize

many existing videos and does not require any equipment other than a camera.

Various studies on motion reconstruction from video have been conducted in

the computer vision community. Early approaches track the video motion from

a statistical model learned with source motion data [8, 9]. Recently, deep learn-

ing models such as CNN, LSTM, and transformer are used to reconstruct the

character’s pose for various motions [10, 11, 12]. With the advent of SMPL [13],

many researches that recover meshes of characters as well as joint position have

been introduced [12, 14, 15]. On the other hand, physics-based simulation is

adopted to generate motion for a moving camera or to reconstruct dynamic

motion [16, 17].

2.2 Motion Synthesis

There is a large array of literature that explores the adaptation and reuse of

motion capture data to deal with new conditions. We briefly introduce three
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motion synthesis techniques widely used in computer graphics: blending, opti-

mization and splicing. Additionally, we provide the history of motion synthesis

for three specific tasks and conditions which are related to our work.

Large motion datasets are a valuable source of constructing continuous, pa-

rameterized spaces of motion. Motion blending according to blending weights is

a frequently used technique for character animation. RBF (Radial Basis Func-

tion) interpolation has been popular in early studies to deal with multivariate

interpolation [18, 19, 20]. Learning-based techniques, such as GPLVM (Gaus-

sian Process Latent Variable Model), allow more flexibility to learn a generative

dynamic model from unorganized motion data [21, 22, 23]. Recently, deep learn-

ing approaches prevail in constructing scalable generative models from large,

unorganized motion datasets [24, 25, 26].

Motion Optimization has been widely used in motion editing problems to

transform a given motion task into a novel task. In this method, it is impor-

tant to design appropriate objectives. The objectives in motion optimization

problems commonly minimize the difference between the source motion and

the generated motion, and the difference between the target task and the task

of the generated motion [27, 28]. The variables for optimization are the degree

of the freedoms of the movement, and they can be designed in various ways

from the transformation of a single joint to the full body pose. The higher

the dof, the greater diversity of the generated movement, but also the greater

the possibility that the movement will be distorted unintentionally. In order

to maintain the quality of motion, abstracted forms like control points of mul-

tilevel spline, or root or COM trajectory of the motion were used instead of

fullbody pose [29, 30, 31].

Motion Splicing techniques synthesize the motion of articulated characters

by implanting different source motions for each body part. The key challenge
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of kinematic splicing/transplanting approaches is the decision mechanism that

tells us if the new combination of body parts is visually acceptable or not. Rule-

based [32, 33], analogy-based [34], and neural network-based [35] methods have

been studied. The motion puzzle system recently developed by Jang et al. [36]

locally transfers different styles for each body part through an attention-based

neural network model.

Motion editing and motion reconstruction are both used for the motion

generation, but motion reconstruction aims to reproduce the actual human’s

movement as much realistic as possible, and motion editing aims to discover

motion different from existing motions. Motion reconstruction can create mo-

tion without a user-defined goal or task. Therefore, motion reconstruction has

the advantage of conveniently reproducing various types of daily movements.

On the other hand, motion editing can deal with wider range of motion be-

cause it can even generate the motion of imaginary character or in dangerous

situation that is difficult to obtain from human movement.

2.2.1 Physics-Motivated Motion Editing

The data-driven motion editing methods mentioned above have difficulty deal-

ing with dynamic motions or tasks. In order to compensate for these shortcom-

ings, various studies have been conducted on reflecting the physical properties

of motion in the motion editing process. Because of high complexity of physics

simulation, previous methods used a simplified model or physics-motivated con-

straints rather than directly simulating character in the physics environment.

McCann et al. [37] designed optimization terms for contact force to change the

timing of the motion sequence. Pollard and Behmaram-Mosavat [38] calculated

the simplified force model from kinematic motion data to control force of the

motion. Modifying the COM trajectory rather than full body motion are meth-
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ods usually chosen to edit the physical measures like momentum or the external

force of dynamic motions [39, 30, 40]. Our DRL-based work performs full body

motion control in physics simulation and deals with much diverse motions and

tasks with a single framework.

2.2.2 Motion Retargeting

Motion retargeting methods transfer the motion of one character to another

while maintaining the semantics of the original motion as much as possible [41,

31, 42, 43, 44, 45]. Contact and interaction events between characters are com-

monly selected as key aspects to be preserved for motion retargeting [41, 42, 43,

44, 29]. Most retargeting algorithms assumed that the structures of the source

and target characters are similar. On the other hand, Hecker et al. [46] encoded

motion data in a morphology-independent form and had it reproduced in vari-

ous characters with different skeleton structures. The motion puppetry system

by Seol et al. [47] retargets the motion of human actors to imaginary creatures

by learning the direct mapping between them. Wampler et al. [48] synthesized

the gaits of a wide range of new creatures by learning coherent patterns from

motion databases. Aberman et al. [49] generated character-agnostic motions by

decomposing the motions into latent components. Our work reassembles the

motions of multiple characters according to the user’s intention so that the

structure of the target character is not constrained by the those of the source

characters.

2.2.3 Motion Style Transfer

Motion style transfer is a motion synthesis method that applies the style of the

source motion to the target motion. The key to this technique is how to extract

style features while preserving the contents of the motion. Previous work is di-
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vided into a method of directly extracting the difference from base motions and

a stylized motions [50], and a method of inferring a feature from a large amount

of motion data with diverse styles [51, 52, 36]. These data-driven methods does

not guarantee physical correctness of the stylized motion. Adapting physics

based simulation to motion style transfer can correct physical errors occurs in

the process of applying the style. The work of Ma et al. [53] reproduced a styl-

ized dynamic motion in a physics-based method through designing a heuristic

reward. In Chapter 5, we designed the algorithm that learns the stylized motion

in the physical environment from a small amount of source motion pairs.

2.3 Physics-based Control and Simulation

Physics-based character simulation and control have many advantages over

kinematic/data-driven approaches. Physics-based method guarantees the gen-

erated motion is physically correct, generate interaction between the character

and the environment such as terrain or obstacles, and make it possible to con-

trol elements that implicitly affects the motion, such as muscles. Designing

high dimensional control system of an articulated body model has been a long-

standing challenge in computer graphics. Early methods simplified complex

problems by using hand crafted state transition rules and simplified models like

lower-body-only models or inverted pendulum models [54, 55, 56]. These meth-

ods are combined with trajectory optimization to generate proper feedback

for the simulation result. Trajectory optimization is the process of minimiz-

ing some performance measure, such as total joint torque and metabolic en-

ergy expenditure, while satisfying a set of constraints. Model predictive control

(MPC), which solves trajectory optimization for a finite time-horizon repeat-

edly and execute only the first step of the trajectory to proceed, has also been
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studied in computer graphics literature [57, 58]. Since the dynamics of articu-

lated bodies are not smooth at collision and contact, derivative-free, sampling

based optimization methods, such as CMA-ES (Covariant Matrix Adaptation

Evolutionary Steps), have often been exploited to address trajectory optimiza-

tion [59, 60, 61, 62, 63].

Deep reinforcement learning based policy learning approaches have achieved

significant improvements in terms of stability, performance and scalability of

control. Although DRL is capable of learning complex motor skills from scratch

without any reference motion to imitate, [64], the best human-like motor skills

are often achieved when high-quality motion capture data are provided as

a reference [1]. Recent studies demonstrated that DRL could learn an inte-

grated control policy equipped with many heterogeneous motor skills from

data-driven motion generators [65, 66]. Won et al. [67] demonstrated the scal-

ability of DRL by learning a large-scale control policy from eight hours of mo-

tion data. The DRL-based methods have further been explored to diverse body

shapes/proportions [68, 69], anatomical body modeling [70, 71], visiomotor con-

trol [72], improving controllability [73, 74] and animal locomotion [75, 76, 77,

78, 79]. To generate high-quality motion, deep reinforcement learning requires

a delicate reward design. To reduce this burden, various GAIL-based method

has been introduced recently [80, 81]. These methods evaluate the naturalness

of simulated motion through a discriminator instead of a well-designed reward.

2.3.1 Discovering New Motor Skills

The physics-based approaches can reproduce novel motions without full refer-

ence motion unlike kinematic-based approaches. This is possible because move-

ment is generated according to the physical properties of the character during

the physics simulation. Generating motions from scratch by physics simulation

14



has enabled various studies for cases where it is difficult to obtain reference

motions. Mordatch et al. [82] and Al Borno et al. [83] generates full body move-

ments with complex contact by sampling-based optimization. Yu et al. [84] and

Kry et al. [85] simulated energy-efficient locomotion for various morphologies.

The locomotion of soft bodies [76, 86, 87] and elastic models [88, 89, 90] have

also been studied. Recently, DRL-based methods boost exploration and enable

discovery of more complex motor skills, such as athletic movements, get-ups in

various conditions and chopstick motions with diverse styles [91, 92, 93]. The

method of discovering new motor skills without reference motion requires a del-

icate design of the mechanism of a movement. Use of partial reference motion

can increase the diversity of generated motions and can make the character

move according to the user’s intentions [17, 75]. Discovering new motor skills

by exploring physics environment is an attractive option given the nature of

the motion editing problem, which requires generating novel motions from a

limited amount of motion. Our work applies DRL-based physic simulation to

the motion editing problem and increases the diversity of generated motion.
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Chapter 3

Learning a Family of Motor Skills
from a Single Motion Clip

3.1 Overview

Humans can learn new motor skills from a demonstration. A student observes

an instructor performing a punch and learns to imitate the movement by pro-

viding adequate actuation torques at joints. Furthermore, the student may also

learn to repurpose the learned motor skill for striking in different directions

and forces. The key technical challenge of such generalization is repurposing

motor skills based on physical and biological principles. For example, to punch

harder, it is advisable to pull the arm back more and then swing the arm faster

to generate bigger momentum. Making a change to the task requires harmo-

nious coordination of the arm swing trajectory and its timing, linear/angular

momentum, and force/torque at joints. Previous approaches often exploited a

comprehensive set of motions to describe how motor skills generalize. Collecting

such large datasets requires considerable time and effort.
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In this paper, we present a new approach to construct a parameterized

family of motor skills from a single motion clip. Our algorithm generalizes a

base motor skill, that mimics the reference motion, to generate a wide variety

of skills that meet novel conditions and goals. The parameterized motor skills

are represented by a deep policy network, which produces a stream of motions

in physics simulation in response to user input and environment interaction by

navigating continuous task space.

Specifically, we need to address two sub-problems. One is to learn a motor

skill that mimics an input motion, and the other is to adapt the input motion

in a physically valid manner for a range of conditions and tasks, which form a

continuous task space. Previously, the former has been addressed using Deep

Reinforcement Learning (DRL) [1, 65, 66], while the latter has been formulated

as nonlinear trajectory optimization [82, 94, 58]. The brute-force algorithm

would sample a condition/task parameter from the task space, run a trajectory

optimization algorithm to adapt the input motion clip to meet the condition and

run a DRL algorithm to learn a motor skill for the adapted motion. This process

should repeat for a dense set of condition/goal parameters so the brute-force

algorithm could be prohibitively slow for large task spaces. Our new algorithm

achieves considerable performance improvements over the brute-force algorithm

by effectively reusing experience tuples and planning task space exploration.

Our learning algorithm includes novel technical components. First, it ex-

plicitly constructs motion parameterization as a deep network in the learning

process to allow a family of motor skills to be learned concurrently while sharing

simulation experiences. The parameterization network also allows trajectory op-

timization to be incorporated seamlessly into reinforcement learning. Secondly,

we adopt continuous-time reinforcement learning to explore temporal variations

of the reference motion as well as its spatial variations. Thirdly, we present a
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new automatic curriculum generation method to explore continuous task space

more efficiently. It rapidly explores unvisited regions in the task space, while

steadily maintaining already visited regions not to forget previously learned

motor skills.

We will demonstrate the flexibility and versatility of our algorithm with

highly dynamic motor skills. Our algorithm provides great flexibility in choos-

ing condition/task parameters, which we simply call task parameters for brevity,

that can be selected from task goals (e.g., target position), body proportions

(e.g., height and limb lengths), physical measurements and quantities (e.g.,

linear/angular velocities, linear/angular momentum, time duration, impact, ki-

netic energy, mass, inertia, gravity), and environment conditions (e.g., obstacle

heights). Our characters are simulated and controlled interactively to perform

a range of motor skills in the real-time physics simulation.

3.2 Motion Parameterization

The reference motion m(t) is represented by a sequence of full-body poses

at discrete time instances. Given reference time φ ∈ [0, T ], the motion m(φ)

can be considered as a continuous, piecewise linear function that maps time

to full-body pose. The poses at discrete time instances interpolate linearly to

construct inbetween poses in the continuous time domain. The full-body pose

of an articulated figure is represented by a heterogeneous array (p0, q1, · · · , qL),

where p0 ∈ R3 and q1 ∈ S3 are the position and orientation of the body root,

respectively, and the other unit quaternions qi’s for i > 1 are joint angles.

The motion is supposed to take place under certain body conditions (e.g.,

height, weight, and maximum strength at joints) and physical conditions (e.g.,

gravity and friction coefficients), and may have task goals (e.g., jump height and
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punch targets). We can construct task spaceA by selecting several parameters of

interest from body conditions, physical conditions, and task goals. The reference

motion corresponds to the origin of the task space, and each parameter axis

corresponds to the change in motion according to the parameter change. Each

parameter vector a ∈ A corresponds to a parametrically-varied motion ma,

which looks similar to the reference motion but satisfies new conditions and

tasks represented by a. This mapping constructs a parameterized family of

motions M = {ma|a ∈ A}. Hereafter, we denote the reference motion by m0.

The spatiotemporal variant ma of the reference motion is represented by

motion displacement mapping and time warping.

ma(t) = (m0 ⊕ d)(φ(t)), (3.1)

where d(φ) = (d0(φ), · · · , dL(φ)) adds motion displacements to the reference

motion to modify its spatial trajectory and joint angles such that

m0 ⊕ d = (p0 + d0, q1 exp(d1), · · · , qL exp(dL)), (3.2)

where d0 ∈ R3 is the linear displacement of the root position, d1 is its angular

displacement, and di for i > 1 is the angular displacement of a joint. Please

refer to [31] for a detailed description of motion displacement mapping. The

time warp function φ(t) reparameterizes the motion to accelerate, deaccelerate,

and change the timing of the task (see Figure 3.1). The time warp should be

strictly monotonic everywhere to avoid traveling backward and stalling in time.

We construct a monotonically increasing function by accumulating positive time

increments exp(τk) such that

φi =
∑

0≤k≤i−1

exp(τk), (3.3)

where φ0 = 0. exp(τk) is always positive regardless of the value of τk. From

the discrete samples φi, a continuous, piecewise linear, monotonic function φ(t)
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Figure 3.1: Visualization of motion displacement mapping and time warping.

The gray curves represent the y position of the pelvis over time in the Jump

motion, and the blue curve represents the motion displacement between the two

gray curves. The graph in the upper right corner shows the mapping between

φ and t.

can be constructed by linear interpolation. Each motion ma is represented by

the trace of motion displacements and time increments over the duration of the

motion.

Motion parameterization is constructed explicitly by learning a multilayer

perceptron that maps parameter a to motion ma. We will discuss the learning

procedure in the following sections.

3.3 Learning Motor Skills

It has been demonstrated in previous studies that deep reinforcement learn-

ing can learn a motor skill that mimics input motion capture data in physics

simulation [1]. The motor skill is represented by a deep policy network π that
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generates actions (e.g., joint torques, muscle activations, or PD targets) at any

states (e.g., joint angles, end-effector positions, and/or proprioceptive sensing).

Our learning algorithm is also based on imitation learning but fundamentally

different from the previous formulation in three aspects. First, our algorithm

learns a policy network πa that represents (infinitely many) motor skills param-

eterized by a ∈ A. Second, parameterized motions ma to imitate are not known

at the beginning of learning. Our algorithm learns both parameterized motions

ma and their motor skills πa simultaneously. Lastly, we adopt continuous-time

reinforcement learning to allow the timing of parameterized motions to deviate

from the reference motion by learning their time warp functions explicitly. In

this section, we will discuss how these issues are dealt with.

3.3.1 State and Action

The state of the agent includes the positions and velocities of joints/end-effectors

/task goals with respect to a local, moving coordinate system, and the height

and up-vector of the pelvis (the root of the articulated tree) with respect to

a world, reference coordinate system. The state also includes task parameter

a, the current reference time φ, and a full-body pose (e.i. joint positions and

velocities) at the next frame φ+ ∆φ. As discussed by Park et al. [65], the rich

state description including its future prediction supplements a scalar value φ to

disambiguate phases in long motion data. In our formulation, the future frame

from the reference motion serves as a future prediction.

The action of the agent is defined by spatial displacement d and time in-

crement τ .

(dt, τt) = πa(st). (3.4)

This action makes transition to its subsequent state by advancing reference and

simulation time φ′ = φ + exp(τt) and t′ = t + ∆t, where ∆t is constant. The
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state update by spatial displacement uses PD control in physics simulation,

where the displaced pose m0(φ′) ⊕ dt serves as a PD target to generate joint

torques. Advancing the dynamics simulation by time ∆t updates the state at

the next time instance.

3.3.2 Reward

The goal of reinforcement learning is to find the optimal policy that maximizes

the expected cumulative reward. If the agent follows the optimal policy π∗a in

physics simulation, it will act out the reference motion approximately while sat-

isfying the conditions and tasks denoted by a. The trace of spatial displacements

and time increments forms the optimal motion m∗a for parameter a.

The reward includes two terms for motion tracking and conditions/tasks

enforcement.

r = wtrackingrtracking + wtaskrtask, (3.5)

The agent receives tracking rewards rtracking if it imitates the reference mo-

tion ma accurately, while it receives task rewards rtask if it achieves the condi-

tions/tasks represented by parameter a.

The tracking reward includes four sub-terms

rtracking = wqrq + weeree + wcomrcom + wtimertime, (3.6)

which respectively penalize the discrepancies in joint angles, end-effector po-

sitions, COM (center of mass), and time between the reference motion and
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simulation.

rq = exp
(
− 1

σ2
q

∑
i∈joints

‖ log(q−1
i q̂i) ‖2

)
ree = exp

(
− 1

σ2
ee

∑
j∈ee

‖ x̂j − xj ‖2
)

rcom = exp
(
− 1

σ2
com

‖ x̂com − xcom ‖2
)

rtime = exp
(
− 1

σ2
time

‖ (exp(τ̂t)− exp(τt) ‖2
)
,

(3.7)

where qj ∈ S3 are joint angles, xj ∈ R3 are joint positions, xcom ∈ R3 is the

center of mass of the full-body. The hat symbol indicates measurements from

ma. In our experiments, weights are common for all examples: σq = 3.16, σee =

0.8, σcom = 0.35, σtime = 0.1, wq = 0.28, wee = 0.28, wcom = 0.28, and wtime =

0.16.

The task reward is defined by a similar form.

rtask = exp
(
− 1

σ2
task

‖ x̂task − xtask ‖2
)
, (3.8)

where xtask can be any measurement taken from the simulation including posi-

tion, orientation, linear/angular velocity, linear/angular momentum, time du-

ration, impact, pressure, and kinetic energy for a certain duration. We can

have great flexibility in choosing parameters and defining their corresponding

rewards. Any parameter with a zero range serves as a constraint. We use con-

straints to specify invariant factors that a family of parameterized motions

should commonly satisfy.

There are two types of rewards: continuous and spike. The continuous re-

wards are received uninterruptedly over a certain period of time, while the spike

reward is received instantly when a certain condition is satisfied. All tracking

rewards are continuous. The task reward can be either of the two types. A

reward defined over a duration (e.g., total joint torque or total kinetic energy
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during a time interval) is spike because the reward is received instantly when the

simulation reaches the end of the duration. In our experiments, wtracking = 1.0

and wtask = 10.0 for spike rewards, and wtracking = 0.9 and wtask = 0.1 for

continuous rewards. wtracking = 1.0, if the task is not defined.

Physical quantities (e.g., mass, inertia, gravity) and body proportions (e.g.,

limb length) can also be chosen to form motion parameterization. In this case, it

is not necessary to define corresponding rewards, but the changes in quantities

and proportions are reflected in physics simulation and state transitions.

3.3.3 Variable Time-Step Policy Update

The learning algorithm is episodic. It generates many episodes of physics simu-

lation tracking parameterized motions and collects experience tuples to update

the value and policy networks. The Proximal Policy Optimization (PPO) is a

popular policy-gradient method that addresses discrete-time Markov decision

problems with uniform time steps. We derive its variant to address variable

time-step problems. The length of time steps critically affects how rewards are

discounted over time and how generalized advantages are estimated. Given a

time step ∆φ = exp(τt), the discount factor during [φ, φ+∆φ] is γ∆φ. Similarly,

generalized advantage estimation (GAE) parameter during the time interval is

λ∆φ. Provided that both continuous rewards rc and spike rewards rs are given,

GAE with variable time stepping is

δ(φ) =

∫ ∆φ

0
γυRc(φ+ υ)dυ +Rs(φ) + γ∆φV (φ+ ∆φ)− V (φ)

A(φ) = δ(φ) + γ∆φλ∆φA(φ+ ∆φ). (3.9)

Here, the continuous rewards are integrated and discounted over the time in-

terval, while the spike rewards are estimated instantly. This modified PPO

algorithm makes policy learning invariant under time warping and therefore
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Figure 3.2: The elapsed time and the reward graphs. T is elapsed simulation

time, and Φ is elapsed reference time. The reward is received once in the first

row and the reward is added every time step in the second row. The red lines

are the baseline discounted reward and cumulative rewards at Φ = 6 when

time step ∆φ = 1, respectively. With our variable time step policy update, the

discounted reward and cumulative rewards are invariant under reference time

step. In this figure, we set R = 1 and γ = 0.8.
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prevents ma from unintentionally speeding up or slowing down regardless of

their conditions/tasks (see Figure 3.2).

3.4 Motion Optimization

Finding any motion ma that satisfies the conditions/tasks given by a while

minimizing the deviation from the reference motion m0 can be formulated as

trajectory optimization. The brute-force construction of motion parameteri-

zation requires solving this trajectory optimization for a continuous domain

a ∈ A. In this work, we do not optimize individual motions one-by-one, but

learn the parameter-to-motion mapping gradually in a supervised manner. Since

we reuse simulation episodes generated during reinforcement learning, motion

parameterization can be constructed at a fraction of the computation cost of

reinforcement learning.

3.4.1 Fitness

Each simulation episode generated by policy πa forms the trace of motion dis-

placements and time increments {(dt, τt)|t = 0, · · · , T}, which can be converted

into a motion using Equation (3.1). We align the root trajectory of the episode

with that of the m0 before converting. Though the goal a is pursued in the

simulation, many episodes do not achieve this intended goal if the policy is

sub-optimal. Since we are dealing with a continuous target domain, we use the

insight of hindsight experience replay to reuse simulation rollouts [95]. The sub-

optimal episode is useful if we retrospectively imagine that the agent was trying

to achieve the goal a′ ∈ A they actually ended up with. This episode can be

used to learn the correlation between a′ and ma′ if the episode represents a
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Figure 3.3: Curriculum of learning jumps parameterized by gravity and kine-

matic energy. (Top) The blue and red plots, respectively, represent the change

in mean marginal value and exploration rate as learning progresses. The peach

and blue shades, respectively, represent the exploration and refinement phases.

(Middle) The elite episodes are shown as black dots and their density is shown

as red-to-blue shades. (Bottom) The fitness values of the elite episodes.
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quality motion. The motion quality is measured using a fitness function

F = fpose · fvelocity · fcontact · fdrag + wconstraint · rconstraint, (3.10)

which compares the poses, velocities, and contact states of the episode to the

reference motion m0.

fpose = exp
(
− 1

σ2
pose

1

T

T∑
φ=0

∑
i∈joints

‖ log(qi(φ)−1q̄i(φ)) ‖2
)

fvelocity = exp
(
− 1

σ2
velocity

1

T

T∑
φ=0

∑
i∈joint

‖ v̄i(φ)− vi(φ) ‖2

max(V, ‖ v̄i(φ) ‖2)

)

fcontact = exp
(
− 1

σ2
contact

1

T

T∑
φ=0

∑
j∈ee

C̄j(φ) ‖ ȳj(φ)− yj(φ) ‖2
)

fdrag = exp
(
− 1

σ2
drag

1

T

T∑
φ=0

∑
j∈ee

C̄j(φ)C̄j(φ− 1) ‖ Tj(φ) ‖2
)
,

where q and v are joint positions and velocities with respect to the body local

coordinate system. y is the height of the end-effector from the ground surface.

Cj(φ) ∈ {0, 1} is a Boolean flag that indicates the contact state of the j-th joint

at time φ. Tj(φ) is the translation of the end-effector in the xz plane. The bar

over a symbol indicates that the value is measured from the reference motion

m0. V is a constant that prevents vanishing denominators. The fitness function

takes into account constraints (zero-range parameters) to evaluate if the episode

satisfies the desired qualities specified by the user. In our experiments, the

weights are σpose = 2.67, σvelocity = 75.5, σcontact = 1.3, σdrag = 0.7, wconstraint =

0.1 and V = 0.5.

3.4.2 Parameterization Network

The policy learning algorithm in the previous section generates a large number

of good episodes with its fitness value above a user-specified threshold. These
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episodes serve as training data for learning a parameterization MLP Pθ that

takes the parameter a as input and outputs ma such that

Pθ(a) = {(dt, τt)|t = 0, · · · , T}. (3.11)

The MLP is a simple regression network that learns the nonlinear mapping

between parameters and motions minimizing the loss

θ = argmin
θ

∑
t

‖dt − d∗t ‖2 + (τt − τ∗t )2, (3.12)

which measures the discrepancy between training data and network outputs.

The MLP is learned in parallel with policy learning.

Since the performance of the MLP largely depends on the quality of its

training data, feeding the MLP learning with consistently high fitness episodes

is necessary. To do so, we maintain a list of elite episodes E. Since policy

learning generates simulation episodes in an arbitrary order, it is important

to ensure that new episodes do not override previous ones with higher fitness

values. Whenever a new, above-threshold episode with parameter a and fitness

F is generated, we compare it with its neighbors within radius r in the elite

set. Let a′ and F ′ be the parameter and fitness of a neighbor, respectively. The

weighted distance between a and a′ is within r

(a− a′)>A(a− a′) < r2 (3.13)

in the neighborhood, where A is a diagonal weight matrix. The radius r controls

the granularity of samples in the elite set. In our experiments, we set A = I

and r = 0.1. If the new episode is better than any of its neighbors (F > F ′),

the new episode will be used to update the parameterization network and be

included in the elite set to replace the inferior neighbors. Otherwise, the new

episode is dismissed. In this way, every episode in the elite set is the best in its

29



neighborhood, and the parameterization network is progressively updated with

a series of monotonically-improving training data. We experimentally found

that the quality of the converged motion is not sensitive to the threshold of

fitness. In our experiments, we set the value 0.1 to exclude completely failed

episodes. The elite set is stored in a k-d tree so that neighborhood searches can

be performed efficiently.

3.4.3 Bootstrapping

In the early stages of learning, the premature parameterization network may

generate low-quality motions, which negatively affect subsequent motor skill

learning. To bootstrap network learning, two strategies are adopted. First, we

start by training a tracking controller (a.k.a. policy π0) that mimics the original

reference m0 until the learning curve plateaus. This base policy provides a

good starting point to explore similar motor skills in motion parameterization.

Second, we use a more reliable proxy to replace the network outputs Pθ(a) until

the regression loss decreases below the threshold. The proxy is computed by

locally linear regression of elite episodes. To do so, we take k-nearest neighbors

of a in the elite set E and linearly interpolate them with weights

wk = Fk · exp
(
− 1

σ2
k

(ak − a)TA(ak − a)
)
. (3.14)

The weights take into account both distance in the task space and fitness values.

The k-nearest neighbor interpolation always generates decent quality motions

because the neighbors to be interpolated are chosen from the elite set. We set

k = 5, σk = 0.28 in our experiments.

Once the regression loss goes below the threshold, the system chooses out-

puts randomly between direct network outputs and locally-linear estimates. In

this way, motor skill learning is consistently provided with high-quality motions
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to imitate while progressively learning motion parameterization.

3.5 Curriculum Generation

The order in which the learning algorithm explores the task space is important

because motor skills are learned over a continuous domain. Uniform random

sampling often fails when the RL algorithm tries to learn motor skills far away

from the reference motion. A popular approach to overcome this problem is

to use curriculum learning [96]. The policy for harder (far from the reference

motion) motor skills is discoverable after mastering easier (near the reference

motion) motor skills. Curriculum learning suggests that the learning algorithm

needs to explore the task space in a near-to-far order, mastering easy ones

and proceeding to harder ones. This simple curriculum needs elaboration to

address two issues. First, mastering a (even easy) motor skill is computationally

demanding. Mastering one by one to cover the entire task space is impractical, if

not impossible. Second, even if motor skills are learned up to a certain threshold

in the early stages of learning, policies may forget the skills while learning the

others. Perhaps, mastering individual motor skills early on is not necessary.

More importantly, easier ones should be mixed in while learning harder ones to

avoid forgetting.

In this section, we present a new automatic curriculum generation method

that allows the learning algorithm to rapidly explore unvisited regions in the

task space while continuously refining already visited regions not to forget (see

Figure 3.3). The method alternates between exploration phases and refinement

phases. A batch of action parameters are picked from less visited regions in

exploration phases, whereas they are picked from heavily visited regions in

refinement phases. In our experiments, each batch includes 20 task parameters.
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The motor skill learner produces 30 simulation episodes for each parameter

and updates the value/policy networks based on the episodes. We estimate the

density at parameter a ∈ A by kernel density estimation.

density(a) ∝
∑

ak∈neighbor(a)

exp
(
− (ak − a)TA(ak − a)

)
, (3.15)

If the density is above a user-specified threshold, parameter a is in the heavily

visited region Ah ⊂ A. Otherwise, it is in the less visited region Al = A \ Ah.

3.5.1 Marginal Value and Exploration Rate

Catching up with how well each task parameter is achieved and deciding when

to make transitions between the phases are the keys to robust and efficient

learning. Ideally, the method should be independent of the choice of reference

motions and task parameters and should not require careful parameter tuning.

We use two measures, marginal value and exploration rate. The state of the

agent is high-dimensional, and only a few of the dimensions are selected to

form task space. Let state s = (sa, sb) be a composition of task parameters

sa and the rest of the parameters sb. Marginalizing sb, the value function is

reduced to

V̄ (sa) =

∫
sb

V (sa, sb) dsb. (3.16)

Here, we assume uniform density of sb. The marginal value function V̄ (sa) esti-

mates how much rewards will be received if the agent follows the current policy

pursuing task a. The mean marginal value over A is V̄ (A) = Ea∈A(V̄ (sa)).

The exploration rate estimates how successful the rollout of simulation episodes

was in discovering new motions and improving motor skills. We define the ex-

ploration rate by a number of new episodes added to the elite set for a single

batch. To prevent the exploration rate from increasing meaninglessly, the ex-

32



ploration rate increases when the fitness of new episode is clearly higher than

those of dropped ones. We set the threshold 0.02.

3.5.2 Exploration and Refinement

The goal of exploration phases is the expansion of Ah by visiting its surrounding

areas. To explore the task space gradually in a near-to-far order, a batch of

task parameters B are sampled in the surrounding area As where the density

is between D′ and D for D′ < D. As is part of Al and adjacent to Ah. In

exploration phases, the exploration rate is proportional to the mean marginal

value V̄ (B), because the control policy is likely to improve if many good episodes

are discovered. Similarly, the exploration rate and the average fitness value

tend to be proportional to each other. D and D′ decide how aggressively or

conservatively we want the explore. In our experiments, D = 0.8 and D′ = 0.2.

The goal of refinement phases is to improve the policy gradually and evenly

across Ah while avoiding forgetting. We use an MCMC (Markov Chain Monte

Carlo) method with multiple starting points [68] to sample a batch of task

parameters in Ah. The MCMC algorithm with a probability distribution

p(sa) = exp(−k
V̄(sa)− µ

µ
) (3.17)

samples more where the marginal value is low and therefore continuously pur-

sues a state where marginal values are evenly distributed across Ah. In our

experiments, the constant k is 10.

3.5.3 Transition Criteria

Our learning algorithm monitors the change of exploration rates in Ah and its

surrounding area As by occasionally taking samples. The exploration rate tends

to decrease in exploration phases. The transitioning to a refinement phase occurs
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when the exploration rate in As becomes smaller than the exploration rate in

Ah. In refinement phases, the samples drawn from Ah influence not only Ah
but also its surrounding areas As. Therefore, the mean marginal value and the

exploration rate in As improves gradually during refinement. The transitioning

to an exploration phase occurs when the exploration rate in As becomes larger

than the exploration rate in Ah.

3.6 Experiments

Our simulation system is written in C++ and based on DART dynamics toolkit [97].

Reinforcement learning and regression networks are written in Python and

based on Tensorflow library [98]. The base model of our animated characters

is 1.65 m tall and weighs 61.6 kg consisting of rigid bones connected by 21

ball-and-socket joints. The articulated skeleton is actuated by joint torques,

which are computed by linear-time stable PD controllers [99]. The PD gains

are kp = 600 and kd = 49. The simulation time step is 150 Hz, and the control

time step is 30 Hz.

The policy network has four fully-connected layers of 1024 ReLU nodes.

The value network and the parameterization network have two fully-connected

layers of 512 ReLU nodes. The clipping range of PPO is 0.2, the learning rate

of the policy function is 0.0002, the learning rate of value/parameterization

networks is 0.001, the discount factor is γ = 0.95, and the GAE parameter is

λ = 0.95. The minibatch size of the policy and value networks is 1024. The

minibatch size of the marginal value and parameterization network is 128. The

parameterization network is updated 10 times every ten policy updates. The

MCMC algorithm draws 1000 samples for every five policy updates.

We used motion data available on public motion databases including Mix-
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Table 3.1: Hyperparameters and performance statistics.

skills task parameters range constraints N ER

Backflip
angular velocity [0.5, 2.0] angular momentum

2.1M 0.9
height [0.8, 1.3] rotation

BoxJump
distance [1.0, 2.15]

- 2.2M 0.91
height [-0.9, 0.9]

Cartwheel

length of arms [0.65, 1.65]

rotation 3.5M 1
length of legs [0.65, 1.65]

width of arms [1.0, 2.0]

width of legs [1.0, 1.6]

Dodge angle [-1.5, 1.5] - 0.2M 1

Jump
energy [0.8, 1.8]

foot contact 1.65M 0.92
gravity [0.2, 1.65]

ObstacleJump height of obstacle [0.9, 3.0] - 0.5M 1

Pivot rotation [0.8, 2.5] - 0.12M 1

Punch

angle [0.0, 1.0]

- 4.2M 0.72
distance [0.8, 1.4]

force [1.0, 5.5]

height [0.9, 1.1]

Push mass of object [0.5, 10] distance 0.7M 1

SideKick

angle [0.0, 0.8]

- 1.52M 0.81force [1.0, 6.0]

kick height [0.9, 1.1]

SpinKick
kick height [0.5, 1.5]

- 0.93M 1
rotation [0.5, 2.0]

Swing height of obstacle [1.0, 1.55] - 1.5M 1

WallJump height of obstacle [0.9, 2.0] - 1M 1
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amo [100] and CMU motion databases [101]. The computation time for learning

varies depending on the dimension and range of task spaces. It takes 12 hours

to 72 hours on a single PC with AMD Ryzen 9 3950x (3.5 GHz, 16 cores).

Since sequential computation for physic simulation is hard to benefit from the

parallelization power of GPU, most of the computation is done in the CPU.

3.6.1 Motor Skills and Their Parameterization

We conducted experiments with various motor skills. The task parameters, hy-

perparameters, and performance statistics are summarized in Table 3.1. The

total number N of episodes the algorithm generated measures computational

efficiency. ER (exploration ratio), which is the percentage of the heavily visited

regions in the task space, measures how successful the algorithms are in explor-

ing the task space. The unit of each task parameter is a multiple of that in the

reference data. Exceptionally, the unit of angle parameter is radian, and the

unit of height parameter in BoxJump is meter. Some reward terms and fitness

terms look similar and are sometimes interchangeable. The rule of thumb is

that the reward function is designed to learn motor skills. The reward function

includes essential terms that are necessary for all examples. In contrast, the

fitness function is designed to improve the visual quality of simulation results

and can be customized for individual examples.

The Jump example takes two task parameters: gravity and kinetic energy

(see Figure 3.3). The X-axis of the task space represents the gravity ranging

from 0.5G to 1.65G. The Y-axis represents the kinetic energy ranging from 0.9E

to 1.7E. Here, G is the gravity on Earth, and E is the full-body kinetic energy

at the onset of jump in the reference motion. Higher kinetic energy and lower

gravity result in higher jumps.

The SpinKick example has two task parameters: kick height and angular
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momentum about the vertical axis. The kick height is 1.5 meters, and the

spinning angle is 6.0 radians in the reference motion. The task space spans the

range of [0.75, 2.25] meters and [3.0, 12.0] radians. The character spins in the

air in the reference motion.

The Punch skills parameterized by four parameters (distance, height, angle,

impact) allows the character to throw a punch in the desired position with the

desired power. We measure the impact between the fist and the target object

by actually placing the object at the strike point predicted from the current

trajectory in the physics simulation. The after-impact momentum of the object

estimates the punch impact.

The Backflip skills are parameterized by jump height and angular velocity.

The angular velocity parameter is calculated as the average angular velocity of

the torso during the body is in the air. Since the whole-body angular momentum

is preserved while the body is in the air, the angular velocity and the moment

of inertia of the whole-body are inversely proportional to each other. Using

our learning algorithm, the simulated character learned to squeeze its body to

reduce its moment of inertia and consequently increase the angular velocity.

Motion parameterization maps angular velocity parameters to the degree of

whole-body extension.

The Cartwheel example demonstrates task parameterization by body condi-

tions such as limb lengths and weights. Specifically, we selected four parameters,

the length and radius of the arms and the legs. The weight is proportional to

the length and the square of the radius. The total rotation angle for the du-

ration of Cartwheel is constrained to prevent over-rotation and under-rotation.

The angular velocity of the learned cartwheel varies nonlinearly depending on

the mass distribution on limbs.

In the Push motion data, the simulated character pushes forward a box
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Table 3.2: Comparison of ablated algorithms.

skills parameters A1 A2 A3

spinkick
kick height [0.5, 1.5] [0.5, 1.5] [0.5, 1.5]

rotation [0.725, 1.3] [0.5, 2.0] [0.5, 2.0]

jump gravity [0.4, 1.65] [0.3, 1.65] [0.2, 1.65]

weighing 18kg. The Push skill is parameterized by the mass of the box ranging

from 9kg to 180kg. We force the hands to stick to the box when they are close

enough to the box within a certain phase. The total moving distance is fixed as

a constraint regardless of the box weight. As the mass increases, the simulated

character moves slowly and leans more on the box.

3.6.2 Ablations

In this section, we conduct ablation studies to demonstrate the effectiveness of

our approach. Our algorithm is reduced to the DeepMimic algorithm [1] if mo-

tion parameterization is removed. So, the DeepMimic algorithm is considered as

the baseline of comparison (A1). The second algorithm allows spatial variations

in motion parameterization while the task timing is fixed (A2). Our algorithm

allows both temporal and spatial variations in motion parameterization (A3).

We compared the three algorithms for Jump and SpinKick examples. To

simplify the experiments, the kinetic energy parameter is fixed in the compari-

son. All parameters and reward weights were tuned for the best performance of

the A1 algorithm. ∆φ was set to a constant for the A2 algorithm to disable time

warping. We adopted a simple curriculum generation method that explores the

task space in a near-to-far order while alternating exploration and refinement

phases of fixed duration. We measured the ratio of successfully explored regions
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Figure 3.4: The snapshots on timeline of jumping in different gravity settings

with (left) A2 and (right) A3 algorithms. The dotted lines align the same phases

in the jump motion. The time warping graph for each timeline is represented

by a line of the same color in Figure 3.5.

Figure 3.5: The reference time and delta graphs for jumps in different gravity

settings.
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in the task space. The learning algorithm terminates when the exploration rate

goes down to zero and the mean marginal value plateaus.

As expected, our algorithm (A3) successfully explored wider ranges in task

spaces than the other algorithms (see Table 3.2). For the SpinKick example,

it is relatively easy to change kick height, thus even the baseline algorithm

explored the full range of kick heights. However, The baseline algorithm is not

suitable to deal with large changes in full-body dynamics such as adjusting

spinning angle and jump height. The comparison shows that our algorithm

better deals with large changes in full-body dynamics. Our algorithm manifests

exaggeration of anticipation and follow-through effects before and after the

jump. The simulation results are best viewed in the accompanied video.

Figure 3.4 demonstrates the effectiveness of timewarping. The character is

supposed to jump higher in the low gravity setting (0.4G). Although both A2

(no timewarp) and A3 (ours) algorithms generate higher jumps as expected, the

result of A3 looks much better than the result of A2 because the A2 simulation

does not align with the reference motion. In the figure (top, left), the pose in the

middle of jumping matches the after-landing pose in the reference motion. This

misalignment is noticeable in the simulation. Figure 3.5 shows the timelines for

the range of gravity settings. Our algorithm learned to speed-up or slow-down

appropriately to deal with gravity changes.

3.6.3 Comparison of Curriculum Methods

In this section, we compare our curriculum generation method to other methods

to demonstrate its effectiveness. The baseline algorithm draws task parameters

randomly from the task space without exploration and refinement phases. The

second algorithm explores the entire task space first (ER=1) and moves on

to the refinement phase. The third algorithm masters motor skills at heavily
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visited regions and proceeds to the next exploration phase. The mastery of

motor skills is determined based on the threshold of mean marginal values.

We also set a time limit at each phase so that the algorithm can move on.

The mastering algorithm could be extremely slow without timeout. The fourth

algorithm exploits the alternation between exploration and refinement phases

and draws a constant amount of samples (20 value/policy updates) at each

phase. Our algorithm uses the transition rules explained in Section 3.5.

We conducted experiments with four examples: SpinKick, Dodge, Jump

and Push (see Figure 3.6). The SpinKick and Dodge are easier than Jump and

Push examples. The ranges of task space are the same as Table 3.1 except for

Jump. We fixed the kinetic energy parameter to simplify the experiment. The

baseline algorithm expands quickly in the beginning for the easy examples but

slows down as the probability of exploring heavily visited regions increases.

The exploration-only algorithm performs well for the easy examples because

intermittent refinement is not essential for robust exploration. Even though the

exploration-only algorithm reaches ER=1 first in Spinkick example, it is not the

fastest in the group because it has to spend some time in the refinement phase.

The aggressive algorithms (baseline and exploration-only) often fail to explore

the task space for the harder examples. For example, the baseline algorithm

explored only 43% of the task space for Jump on average, and the exploration-

only algorithm explored 87% for Jump and 80% for Push. On the other hand,

the conservative algorithms (alternating and mastering) perform well for the

challenging examples without being stuck in premature convergence. The re-

finement phases play an important role in incrementally refining motor skills

and making the exploration phases gradually expand from the well-refined heav-

ily visited regions. Our algorithm performs well regardless of the difficulty level

and the type of examples because it seeks a good balance between performance
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Figure 3.6: The explored ratio in the task space for four different motor skills.

The colored line is the average value of multiple attempts. The lower border re-

maining the same over time means one or more attempts got stuck in premature

convergence.

and quality while being consistently successful in exploration.

3.6.4 Joint Torque Limits

In our experiments, setting reasonable joint torque limits is essential to con-

struct believable motion parameterization (see Table 3.3). The character sim-

ulated without torque limits use superhuman forces to achieve goals or tasks

in unrealistic ways. The superhuman character does not need to make bigger

moves to generate more power. Motion parameterization can learn interesting,

dynamically-realistic variants of the reference motion when the character has

human physical abilities.

We conducted experiments to demonstrate the effects of joint limits on

two motor skills: Punch and Push. We set joint torque limits heuristically.

When the torque computed by a PD servo is beyond its limit, the computed

torque is clipped by the limit. Figure 3.7 shows the simulation of the reference

motion at the top row. The superhuman character in the second row can punch

harder and push the heavier box without changing its moves. The motion of the

superhuman character is almost identical to the reference motion. Our character
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Table 3.3: The range of joint torque.

Joint Torque range (N ·m)

Hips [0, 0]

Spine [-300, 300]

Spine1, Spine2 [-150, 150]

Neck, Head [-75, 75]

Shoulders, Arms [-150, 150]

ForeArms, Hands [-90, 90]

UpLegs [-300, 300]

Legs [-225, 225]

Feet [-145, 145]

Toes [-90, 90]

with limited power learned that it could make a stronger punch impact when

it takes a wider stance and a longer swing path. It also learned to lean more to

push heavier boxes.

3.7 Discussion

We presented a new learning-based framework to construct a rich variety of

parameterized motor skills learned from motion capture data. The key to the

success of our approach is learning motor policies and motion parameterization

concurrently. The concurrent learning approach achieves both computational

efficiency and coherent visual quality over a wide range of the parameter do-

main. The databases of parameterized human motions are readily available to

the public [100]. We envision that the databases of parameterized motor skills

for physics simulation will be available soon to the public as well.
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Figure 3.7: The snaps of motor skills with/without torque limits. The first

row is the simulation results tracking original reference, the second row is the

simulation results without joint limit in harder/heavier settings, and the third

row is the simulation results with joint limit in harder/heavier settings. The

maximum velocity of the object after a stroke and the mass of the object are

written on the figure.

Our algorithm is particularly effective when the reference motion is highly

dynamic and energetic because dynamics effects are easily visualized, manipu-

lated, and amplified in the motion parameterization. An interesting observation

is that the effectiveness of exploration along the energy/dynamics axis is not

symmetric. Exploration in one direction may be rapid, but not in the oppo-

site direction. The algorithm easily deals with motor skills in heavier, faster,

and stronger settings than the reference motion, while it sometimes struggles

in lighter, slower, and weaker settings. The rationale is not clear yet. Perhaps,

infusing more energy happens naturally as required by parameter settings, but

reducing the level of energy requires more than parameter settings such as en-

ergy minimization/regularization.

There are many exciting directions to explore in future work. Currently,

parameterized motor skills are learned for individual motion clips. It requires
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extra efforts to allow transitioning between motor skills that are learned inde-

pendently from each other. Ideally, we wish to learn multiple, integrated motor

skills simultaneously from unorganized motion datasets [65].

Although our system runs successfully with various task types (ranging from

static to highly energetic) and various parameter types (including body/physics

/environment conditions), the current system implementation does not scale

well with the dimension of the task space. We have tested up to four dimensions

so far. Dealing with massively-parameterized motor skills will be an interesting

challenge. The complexity of the real world problem requires many parame-

ters for accurate modeling. Musculoskeletal gait is a good example [70]. There

are many anatomical elements in the human musculoskeletal system (such as

bones and muscles), and the condition of each element (such as bone length and

muscle strength) affects gait. In this case, the dimension of the task space is pro-

portional to the number of bones and muscles, which is close to 1000. Scalable

algorithms would open up new possibilities in many practical applications.
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Chapter 4

Learning Virtual Chimeras by
Dynamic Motion Reassembly

4.1 Overview

The Chimera is a mythological hybrid creature composed of different animal

parts. Such imaginary creatures frequently appear in many video games and

movies. Although motion capture is not eligible for imaginary creatures, we

have good knowledge of how each animal part moves in animal motion capture.

We are interested in learning the motions of chimeras, given that the motions

of individual parts are provided. The body and motion of a creature are closely

related to each other. Even a small change in body proportion can have a

substantial impact on the way it moves. Composing different animal parts can

have a greater impact on the dynamics of individual part motion. We found that

the dynamics of a chimera’s movement are highly dependent on the spatial and

temporal alignments of its composing parts.

In this paper, we present a novel algorithm that creates and animates

46



highly-varied characters, which we call chimeras, from a collection of source

animal/human characters and their motion data. Our algorithm based on deep

reinforcement learning (DRL) learns the best spatial and temporal alignments

of body parts while preserving the style and/or semantics of the source mo-

tions as much as possible. The ANN (Artificial Neural Network) policy thus

learns to control the chimera in physics-based simulation. The source data can

be either motion captured or keyframed by artists. We will demonstrate the

efficacy of our algorithm with a broad range of dynamic movements, including

multi-legged locomotion, jump, kick, and punch in a variety of hybrid forms.

Our algorithm exploits a two-level network architecture: part assembler

and dynamic controller. The part assembler is a supervised learning layer that

searches for the spatial alignment among body parts on a frame-by-frame basis,

assuming that the temporal alignment is provided. The dynamic controller is a

reinforcement learning layer that learns robust control policy for a wide vari-

ety of potential temporal alignments. These two layers are tightly intertwined

and learned simultaneously in the learning phase. The key technical component

is multi-dimensional timewarp functions that allow the timeline of individual

parts to be scaled, shifted, and warped, separately. Our algorithm is more flex-

ible and stable than alternative methods. The chimera animation generated by

our algorithm is energy efficient and expressive in terms of describing weight

shifting, balancing, and full-body coordination. We will also demonstrate that

our algorithm can discover natural gait in biped, quadruped, and insect forms.

4.2 Building Chimeras

The body of the animated character is represented by a tree-type articulation

of rigid links connected by either revolute or ball-and-socket joints. A segment
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Figure 4.1: System overview

of character animation is given as a tuple A = {B, T,M}, where B is a list of

body links, T is a list of rigid transformations between parent-child links, and

M is a sequence of joint angles and root translations/rotations varying over

time. Without loss of generality, we assume that M(t) is a continuous function

of time. The motion data including samples at discrete times are considered a

continuous, piecewise-linear function.

The part animation Â = {B̂, T̂ , M̂} is a subset of A, where B̂ ⊂ B is a

connected sub-tree of the body links, T̂ ⊂ T is a collection of transformations

between body links in B̂, and M̂ is a time series of joint angles of B̂. The

chimera is constructed by taking part animations from a collection of source

animations and composing these part animations. In Figure 4.1, we took the

two legs and the tail from the T-rex (Â1), the trunk, the head, and the left arm

from the human (Â2), the right arm from the bear (Â3). Simply specifying the

transformations at attachment points generates an initial composition of the

part animations.

Ainitial = (B̂1 ∪ B̂2 ∪ B̂3, T̂1 ∪ T̂2 ∪ T̂3 ∪ {T12, T23}, M̂1 ∪ M̂2 ∪ M̂3),

where T12 and T23 are transformations at attachment points. Any structural
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variation is feasible as long as the chimera’s skeleton maintains a tree-structure

with a unique root node and no cyclic paths. This brute-force composition is

hardly ideal because of spatial and temporal mismatches. The body-body and

body-environment contact in the source animations may not be preserved, un-

expected interpenetration may happen, and the source animations may have

different timings and cyclic patterns. The initial composition should be further

refined to achieve better alignments in space and time among part animations.

Through physics-based processing and learning, chimera animations are ex-

pected to satisfy the following requirements.

• Chimera animations should exhibit appropriate physical effects, such as

shifting weight, maintaining balance, and conserving momentum.

• Part animations should be coordinated and synchronized in time for the

chimera to be energy efficient and effective in terms of accomplishing

tasks.

• Chimera animations should preserve the spatial/geometric context of the

source animations, which include contact timing and interpenetration pre-

vention.

We present a new DRL algorithm that learns a control policy mimicking

the composition of part animations. The policy controls the chimera in physics-

based simulation to generate physically valid motions. Specifically, our algo-

rithm is equipped with two technical components, part-wise timewarping and

optimization-based part assembly, for achieving better spatial and temporal

alignments. The timewarp φi(t) is a monotonically increasing function that

maps the timeline t ∈ R of the chimera animation to the timeline φi ∈ R of

its i-th part animation (see Figure 4.2). Our algorithm learns the policy condi-

tioned by multi-dimensional phase alignments Φ = (φi) ∈ RN , where N is the
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number of part animations and eventually determines the best time alignments

among part animations.

Given multi-dimensional phase Φ(t) at any time frame t, enhancing spatial

integrity between body parts can be formulated as a non-linear optimization

problem similar to motion retargeting. The joint angles in individual parts

should be retargeted to the chimera’s body while maintaining the key aspects

of the source animations. Although the computational cost of this per-frame

optimization is moderate, the optimization is invoked iteratively to generate

assembled pose for varying phase alignments in policy learning. To reduce the

computational burden of policy learning, we learn a regression network that

mimics this optimization procedure in a supervised manner. The use of the

regression network achieves a ten-thousandfold increase in computational effi-

ciency.

4.3 Part Assembly

The part assembler takes phase assignment Φ = (φi) at a frame as input and

generates a pose of the chimera satisfying spatial constraints. Let Minitial(Φ)

be an initial full-body pose constructed by composing parts M̂i(φi) for i in

a brute-force manner. Let Moptimized(Φ) be the optimized pose, which will be

feedback to the policy learner as a reference pose to track. The optimization

problem has three objectives.

Moptimized(Φ) = argminEcontact + Eglobal + Ereg. (4.1)

We use a derivative-free optimization method, CMA-ES, to solve this optimiza-

tion problem [102].

Contact is an important visual cue that also has a significant impact on the

dynamics of articulated systems. Any type of contact events in part animations
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Figure 4.2: Temporal alignments of the motions. In the timeline on the left, the

sky blue and purple lines temporally map the frames in each timeline of the

source motion. The connected colored lines are mapped to the time of Mchimera

by the black dashed lines. When the interval between t−∆t and t is widened,

the transition from the first gray area to the second gray area proceeds slowly.

Conversely, when the interval is narrowed, the transition proceeds quickly.
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should be reproduced in the chimera animation as well. The contact objective

includes two terms.

Econtact =
∑

p∈points

min(h(p), 0)2 +
∑

c∈contacts

(dist(pc)− kc)2. (4.2)

The first term prevents any point on the body from penetrating the ground,

where h(p) is the height from the ground. The second term continuously mod-

ulates the distance between the body and the contact point around a contact

event using an importance-based approach [42]. Here, pc is the point on the

body in contact with the ground surface or any object when the contact occurs

at time φc. The target distance kc is modulated based on the importance wc at

the current time φ such that

kc = (1− wc)dist(pc) + wcdist(p̂c),

wc = max(1− |φ− φc|
σ

, 0),
(4.3)

where dist(pj) is the distance to the estimated contact point in the optimized

pose, dist(p̂j) is the actual distance to the contact point in the source anima-

tion. σ is a constant that controls the distribution of importance. With high

importance wc = 1, the contact constraint is strictly enforced in the opti-

mized pose. With lower values, the contact constraints are gently guided. This

importance-based approach allows the frame-by-frame optimization framework

to continuously deal with the discrete nature of contact constraints.

In the initial composition Minitial(Φ), the root of one body part is attached

to the other through a parent-child relationship. Therefore, the global trajectory

of the child body part in the composition can be quite different from its global

trajectory in the source animation. We sometimes want to preserve the global

trajectories of the part as well as its internal joint angles (see Figure 4.3). Eglobal
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Figure 4.3: Arm transplanting with respect to the local coordinate system vs

the global coordinate system. The dark green colored body is the root of the

transplanted arm.

serves this purpose.

Eglobal =
∑
i∈N
‖ log(q̄−1

i qi) ‖2, (4.4)

where qi ∈ S3 is the root orientation of the body part in the initial composition,

q̂i ∈ S3 is the root orientation in the source animation, q̄i = slerp(Riq̂i, qi, ai)

is the calibrated root orientation. Ri ∈ S3 is a calibration transformation that

matches the facing direction of the source animation and the composite anima-

tion. ai is a user-specified parameter. slerp stands for spherical linear interpo-

lation [103]. If ai = 1, the part animation is defined with respect to the local,

body-attached coordinate system of its parent. If ai = 0, the part animation is

represented and transferred in the global, reference coordinate system.

We use two types of regularization terms to avoid excessive deviation of the

source animations and maintain temporal coherence.

Ereg =‖ p− p̂ ‖2 +wreg

∑
Φk∈neighbor(Φ)

‖ p− pΦk
‖2, (4.5)
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where p is the generalized coordinate of the optimized pose, p̂ is the gener-

alized coordinate of the initial composition Minitial(Φ). Our system maintains

the results of part assembly during policy learning. The second term exploits

the previous record to maintain frame-by-frame coherence for the per-frame

optimization. The second term is evaluated for the neighborhood of Φ within a

user-specified threshold ∆Φ.

4.3.1 Training

Policy learning we will discuss in the next section generates numerous phase Φ

tuples that need to be evaluated through part assembly. Repeated computation

can be circumvented by storing the computation results in the training datasets

and incrementally learning a regression network that imitates the function of

the optimization-based part assembler. We use kernel density estimation to

collect phase samples uniformly over the phase space. Given a phase alignment

Φ, the optimization is performed and added to the training dataset only when

the density around Φ is lower than a threshold. The density is estimated by

density(Φ) ∝
∑

Φk∈neighbor(Φ)

exp
(
− 1

N
(Φk − Φ)T (Φk − Φ)

)
. (4.6)

The training dataset is stored as a k-d tree such that it allows efficient neigh-

borhood search.

The regression network Pθ is a feedforward network with fully-connected

layers.

Pθ(Φ) = dΦ, (4.7)

The regression network learns a mapping between phase alignment Φ and op-

timized pose Moptimized(Φ) such that Moptimized(Φ) = Minitial(Φ) + dΦ. Note

that learning a pose displacement is easier and more accurate than learning an
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optimized pose directly. The network is trained to minimize the loss

θ = argmin
θ

∑
Φ

‖dΦ − d∗Φ‖2, (4.8)

where dΦ and d∗Φ, respectively, are pose displacements generated by the regres-

sion network and by part assembly optimization.

4.4 Policy Learning

For simplicity of explanation, we assume that individual part animations are

either periodic (e.g., a cycle of locomotion) or a single execution of aperiodic

motion (e.g., jump, punch, and kick). Both can be denoted by a periodic func-

tion

M̂i(φ+ Li) = M̂i(φ), (4.9)

Li is either the period for periodic motions or the time duration for aperiodic

motions.

The multi-dimensional timewarp functions Φ = (φ1, · · · , φN ) align part an-

imations in the composition. Each timewarp function maps the timeline of the

chimera animation to the timeline of a part animation. In other words, the

timeline of the part animation is scaled, shifted, and timewarped by φ−1
i and

thus aligned with the other part animations. The timewarp functions have re-

quirements.

• The timewarp functions increase monotonically.

• All timewarped animations have the same period.

The first requirement prevents time from flowing backward. The second re-

quirement guarantees that all part animations align precisely to form a periodic

animation for the chimera. Note that we do not explicitly construct timewarp
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functions φi(t) or their inverses. We instead learn a control policy π conditioned

on phases. The control policy performs two roles. First, it informs the proper

combinations of joint actuation to track the target pose, which is obtained

through part assembly. Second, it generates phase increments for the next time

instance. Repeating this until the end of the episode completes the timewarp

of part animations. The key technical challenge is the design of states, actions,

and rewards for reinforcement learning that satisfy the timewarp requirements.

Our learning algorithm is episodic. Each simulation episode includes about

ten cycles of physically-simulated movements driven by the policy. Our learning

algorithm collects experience tuples from the episodes to update the value and

policy networks.

4.4.1 State and Action

As reported by Park et al. [65], DRL with imitation rewards requires rich,

descriptive state representations to uniquely identify individual states. In our

system, the state consists of the body configuration (including generalized co-

ordinates, generalized velocities, joint positions, the body up-vector, and the

root height) at the current time t, the current phase Φ = (φ1, · · · , φN ), and

joint positions at the predicted next pose M(Φ + ∆Φ) computed in the local,

body-attached coordinate frame, where ∆Φ is a user-provided constant.

The action specifies the spatial displacement D and phase increments Ψ =

(ψ1, · · · , ψN ).

(Dt, ψt) = π(st). (4.10)

The action updates the phases at the next time step by Φ(t + ∆t) = Φ(t) +

(exp(ψ1), · · · , exp(ψN )). This update rule ensures that the timewarp functions

increase monotonically because exp(ψi) is always positive. The reference pose is

Mref(Φ(t)) = Moptimized(Φ(t)) +Dt, which is fed into PD controllers to actuate
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joints.

4.4.2 Reward

The objective of reinforcement learning is to learn the optimal policy that

maximizes the discounted cumulative reward. We use two types of rewards:

Continuous and spike. Continuous rewards are given over a period of integrable

time duration, while spike rewards are given at discrete time instances. This

classification is necessary to handle the variable time-step RL formulation [2].

Our reward function consists of four reward terms.

r = wtrackingrtracking + wenergyrenergy + walignralign + wtaskrtask. (4.11)

The tracking reward is for imitating a sequence of optimized poses.

rtracking = rq · ree, where

rq = exp
(
− 1

σ2
q

∑
j∈joints

‖ log(q−1
j q̂j)‖2

)
,

ree = exp
(
− 1

σ2
ee

∑
j∈ee

‖p̂j − pj‖2
)
.

(4.12)

rq and ree penalize the differences in joint angles and end-effector positions,

respectively. The hat symbol stands for measures in the optimized poses.

The energy reward is for favoring energy-efficient movements.

renergy = −reffort − rCoT, where

reffort =
∑
j∈dof

|q̈j |2,

rCoT =

∑
j∈dof |τj · q̇j |
m‖v‖

.

(4.13)

q̇j and q̈j , respectively, are the angular velocity and acceleration of each joint.

‖v‖ is the distance the chimera travels in ∆t. m is the body mass and τi is joint
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torque. The cost of transport (CoT) is a dimensionless measure that evaluates

how efficiently a dynamical system is moving from one place to another. Bio-

logical studies have shown that animals tend to minimize CoT when walking

and running [104, 105]. Both rtracking and renergy are continuous rewards.

Let ω be the estimated period of the episode.

ω =
1

N

∑
i

φi
Li
. (4.14)

The align rewards are received instantaneously whenever the simulation episode

completes a cyclic period (e.i., ω reaches an integer number).

ralign = exp
(
− 1

σ2
align

∑
i

(cos(φ∗i )− cos(φi))
2 + (sin(φ∗i )− sin(φi))

2
)
, (4.15)

where φ∗i are values from the previous period. The align rewards are maximized

when the timewarp functions are precisely synchronized with each other.

The user can specify any motion features to control, such as moving direc-

tion, velocity, and punch/kick impact, and design reward functions accordingly.

In our experiments, two types of task rewards are used.

rtask = exp
(
− ‖v − (v · d̂)d̂‖2

σ2
dir

)
+ exp

(
− ‖max(f̂ − f, 0)‖2

σ2
force

)
(4.16)

where d̂ is the target moving direction and f̂ is the target contact force at punch

impact. The task rewards can be either continuous or spike, depending on how

we design reward functions.

4.4.3 Policy Update

We use the variable time-step PPO (Proximal Policy Optimization) algorithm

to update the value and policy networks [2]. This algorithm is stable and invari-

ant under the choice of time steps. Let Rc and Rs, respectively, be the sum of
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Figure 4.4: The phase density in queue A for the humanoid walking example

in section 4.5.3. The X-coordinate represents the phase of the right leg, and

the Y-coordinate represents the phase of the rest of the body. At the beginning

of learning, the area around the initial phase alignments is densely populated.

As the learning progresses, RL searches for better phase alignments and the

high-density areas move accordingly.

continuous and spike rewards. Generalized Advantage Estimation (GAE) with

variable time step ∆ω is

δ(Φ) =

∫ ∆ω(Φ)

0
γυRc(Φ)dυ +Rs(Φ) + γ∆ω(Φ)V (Φ + ∆Φ)− V (Φ),

where γ is the discount factor and ∆Φ = (exp(ψ1), · · · , exp(ψN )).

4.4.4 Visit-based State Initialization

Where to begin each episode on the phase space has a big impact on the per-

formance and convergence of learning. Peng et al. [1] suggested choosing initial

states randomly along the reference trajectory. Won et al. [68] proposed an

MCMC (Markov Chain Monte Carlo) method that samples initial states based

on value functions. The curriculum learning method by Lee et al. [2] suggested

alternating between exploration and refinement phases based on values and

sample density. We present an alternative state initialization method that is

particularly suitable for learning multi-dimensional phases. The key insight is
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that recently visited tuples would probably have better phase alignments be-

cause the control policy improves gradually throughout the learning process.

So, we sample initial states unbiasedly from recently visited tuples.

To implement our visit-based state initialization, we use two priority queues

A and B. Queue A stores phase tuples recently visited by RL. The density of

samples in A is continuously monitored. The density is estimated by using

Equation (4.6). If the density around a tuple in A is beyond a certain thresh-

old α, this tuple is considered a candidate for the initial states of subsequent

episodes (see Figure 4.4). This tuple is moved to queue B if the density around

the tuple in B is below a certain threshold β. Queue B maintains the candidates

and facilitates uniform sampling of initial states. The tuples in B are uniformly

populated within the threshold β. With a high threshold α, RL tends to re-

visit phases near the best-so-far policies. With a lower threshold, RL can be

adventurous to explore the phase space more aggressively. In our experiments,

α is density above the top 30 percent of the tuples in the current queue A and

β = 0.5. Queues A and B accommodate up to 2.5 × 105 and 5 × 102 tuples,

respectively.

4.5 Experiments

In our system, the optimization and physics simulation parts are written in

C++. The simulation system is based on Dart [97] and linear-time stable PD

controllers [99]. The simulation timestep is 120 Hz and the control timestep

is 30 Hz. The reinforcement learning and the assembler network are written

in Python with TensorFlow2 [98]. The policy network consists of four fully-

connected layers of 1024 nodes, and the value network and the assembler net-

work have two fully-connected layers of 512 nodes with ReLU activation. The
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Table 4.1: Learning parameters.

Learning rate of policy network [5e-5, 2e-4, 5e-5]

Learning rate of value/assembler network 1e-3

Discount factor (γ) 0.95

GAE and TD (λ) 0.95

Clip parameter (ε) 0.2

# of tuples per policy update 25000

Batch size for policy/value update 512

Batch size for assmebler update 128

Table 4.2: Properties of the source characters.

Properties Humanoid Bear Horse T-rex

Height (m) 1.75 1.59 1.73 2.48

Weight (kg) 60.8 235 210.8 386

links 22 22 30 25

Degree of freedom 69 69 93 78
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learning parameters are summarized in Table 4.1. The learning rate of the pol-

icy network is 5×10−5 at the beginning of learning. The learning rate increases

gradually to its maximum 2 × 10−4 when one million tuples are collected and

then it decreases down to 5× 10−5 again.

We use four source characters for our demonstrations: Humanoid, Bear,

Horse and T-rex (See Figure 4.5). The humanoid, the bear and the T-rex are

bipedal, while the horse is quadrupedal. The humanoid and the bear have the

same skeletal structure. The details of each character are summarized in Ta-

ble 4.2. We designed chimeras from these source characters using our interactive

skeleton editor, which allows copy-and-paste of body parts. The humanoid and

the bear have four action skills { walk, run, jump, punch }. The horse has five

action skills { walk, trot, run, jump, kick }, while the T-rex has two action

skills { walk, tail-swing }. Each motion clip is short, less than 5 seconds. The

characters and motion sets are available at the Unreal marketplace.

We used a Nvidia RTX 3070 to train our chimeras. It took 2 to 8 hours and

5 million to 30 million tuples to learn a single chimera motion. The training

time mainly depends on mass distribution and the number of part animations.

Policy learning is easier and more efficient with well-balanced body designs. A

biased mass distribution makes it difficult to balance.

4.5.1 Chimeras and their Motor Skills

We generated a diverse set of chimera animations from the source characters

(see Figure 4.6). The source body parts are resized to fit the design of chimera.

The body mass is scaled in proportion to the volume change. Body parts in the

same color share the same phase function. Body parts in different colors move in

different phases although they come from the same source character. Chimeras

can have highly variable structures, from well-known ones such as centipedes,
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Figure 4.5: Four source characters. Bear, humanoid, horse and T-rex (left to

right).

four-legged dinosaurs and centaurs to exotic ones such as six-armed humanoids,

two-headed bears and eight-legged horses (see Figure 4.6 and Figure 4.7). All

chimeras are physically simulated and interactively controllable. The results are

best viewed in our video. In the video, the chimeras in gray with colored borders

represent the kinematic composition of part animations, while the fully colored

chimeras show the final motion learned through our system.

The Bear-Legged Racing features four chimeras: The four-legged T-rex, the

bear with extra spinal nodes, the short-legged quadruped, and the bear-legged

humanoid with the T-rex tail. All source characters have running motions along

a straight line. The learned motor skills are parameterized by the target direc-

tion such that chimeras can steer along the curved track.

The Centaur consists of the upper-body of the humanoid and the lower-

body of the horse. Even though the torso and the two arms are taken from

the same humanoid, we separated them into different body parts (the torso φ1,

the right arm φ2, the left arm φ3, and the horse lower-body φ4) so that their
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Figure 4.6: Snapshots of chimeras.
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Figure 4.7: Snapshots of the bear-legged racing, the centaur running on uneven

terrain, the bear-armed humanoid and the treant (top to bottom).
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phases can align differently according to the gaits of the horse. When the human

upper-body is paired with the horse walking, the arm swing of human walking

is reproduced. When the human upper-body is paired with horse galloping, the

swing phases of the arms are synchronized to match the phases of the front legs.

The states of the centaur include the heightmap around the body so that the

centaur can walk and run on randomly-generated uneven terrain. The centaur

also learned to jump over obstacles.

The Bear-Armed Humanoid has the bear’s right arm transplanted on the

humanoid. It is equipped with various motor skills including { walk, run, attack,

attack while walking, attack while running, attack while jumping }. It can also

steer while walking and running. This example shows how periodic locomotion

and aperiodic action can be combined and synchronized. To simulate the tran-

sitioning between actions, we trained additional policies that track interpolated

motions.

The Treant consists of the right/left arms of the humanoid, two front legs

and two hind legs of the horse, and the torso. The torso has no source motions

and the compliant trunk joints respond freely to limb movements. The treant is

equipped with four motor skills including { walk, punch, kick, and jump }. The

walk motion is generated by combining horse galloping and humanoid walking.

The punch motion is taken from the humanoid punching, while the kick motion

is taken from the horse kicking the hind legs.

4.5.2 Ablation on Part Assembler

We conducted ablation studies on objective terms we designed for the part as-

sembler. Three examples were used for the studies: The bear-armed humanoid

attacking while running, The half-bear walking, and the eight-legged horse

jumping. We compared the results optimized with a subset of the objectives
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Figure 4.8: Snapshots of ablations on the part assembler
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and the results optimized with all objectives. Figure 4.8 shows the effectiveness

of each objective term.

Without the global term, the context of source part motions in the global

coordinate system is not preserved. The bear-armed humanoid punches in the

wrong direction, the half-bear swings only halfway, and the spine of the horse

curves towards the ground (see the second row of Figure 4.8). Without the

contact term, the contact information of source animations is not preserved.

The attack motion hits in the air, the short leg of the half-bear does not touch

the ground, and the horse legs penetrate through the ground (see the third row

of Figure 4.8). Without the regularization term, the resulting motion deviates

from the source animations and often looks noisy due to the lack of tempo-

ral coherence. Our algorithm including all objective terms generated the best

results preserving the context of source animations. The results can be best

viewed in the supplementary video.

4.5.3 Natural Gait Discovery

In this section, we validate the effectiveness of our algorithm by comparing it

with baseline algorithms. The baseline B1 algorithm imitates the initial compo-

sition by DRL, but does not allow time warping [1]. The baseline B2 algorithm

uses a single timewarp function for the whole body [2]. Our algorithm uses

multi-dimensional timewarp functions to search for part-wise temporal align-

ments. We compared the three algorithms in terms of CoT and average torque

over a period over all joints (see table 4.3).

The test sets were designed to verify if our algorithm can discover natural

gait patterns. To do so, we separated the humanoid character into two body

groups, the right leg and the others, such that the right leg and the left leg can

have different phases. The source motion of the right leg is the mirror reflection
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Table 4.3: Energy efficiency.

Task Property B1 B2 Ours

Humanoid - walk
CoT 18.14 20.17 9.62

Torque (N ·m) 155.59 171.99 144.00

Humanoid - run
CoT - - 20.68

Torque (N ·m) - - 273.63

Horse - velocity
CoT - 16.13 11.38

Torque (N ·m) - 947.61 794.16

Six-legged - walk
CoT 11.63 10.43 8.15

Torque (N ·m) 351.76 363.80 318.60

of the humanoid walking motion. Therefore, in the initial animation, both legs

move back and forth synchronously (see Figure 4.4(left)). The baseline B1 and

B2 algorithms result in hopping motions because part-wise phase aligning is

unavailable. Our algorithm successfully recovered a natural biped gait with

its two legs swinging alternatingly (see Figure 4.4(right)). As expected, our

algorithm generated more energy-efficient motions than the baseline algorithms.

Multi-dimensional timewarping also achieves better flexibility, better stability,

and better computationally efficiency even with more parameters to optimize.

A similar result was obtained with the running motion.

Horses perform different gaits depending on their moving speed. For exam-

ple, horses walk at low speed and trot at higher speed. We tested if our algorithm

could discover the trot gait starting from the walking gait. The horse character

is set up to have five body groups: the torso and four limbs. Each body group is

assigned an individual phase. The initial animation is a cycle of a horse walking.
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Figure 4.9: The change of quadrupedal gait according to the change of speed.

The target velocity is 1.0 m/s in the upper graph and 2.4 m/s in the lower

graph. Each line represents a sequence of contacts with the ground. The solid

line is taken from the simulation, while the dotted line is taken from the actual

trot data.

70



Figure 4.10: Visualization of phase alignments. Periodic trajectories are visual-

ized as closed curves. The fixed-point algorithm failed to learn Humanoid-run.

Our algorithm closely reproduced the initial animation at low speed (the target

velocity 1m/s). As the target speed increases, stance phases become shorter.

The trotting gait is discovered when the target speed is 2.4m/s. Table 4.3 shows

that the trot is more energy-efficient than the walk at high speed. Increasing

the target speed further did not result in a transition to galloping. The trot-to-

gallop transition is detrimental in terms of energy efficiency but beneficial in

terms of musculoskeletal forces [106]. Realistic musculoskeletal modeling would

be needed to reproduce this transition.

It is well-known that insects perform a tripod gait when running. Insects

move three legs simultaneously while having the other three legs in contact with

the ground. Our six-legged T-rex learned a similar tripod gait. The chimera has

the body of the T-rex and six humanoid legs. In the initial animation, all legs

on one side swing forwards simultaneously while the legs on the other side move

in the opposite direction. Multi-dimensional timewarp functions discovered the

natural insect gait without any prior knowledge of how insects move because

the tripod gait is energy-efficient and advantageous for balancing.
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4.5.4 Comparison of State Initialization Methods

We compared our visit-based state initialization method with three baseline

methods. The first baseline algorithm always begins at a fixed point, Φ = 0.

The second algorithm randomly chooses initial states in the fixed range set up

by initial conditions [1]. The third algorithm chooses initial states adaptively

based on marginal values and MCMC sampling [68]. The states with higher

marginal values are sampled more frequently.

We conducted experiments with three examples in section 4.5.3: Humanoid-

walk, Humanoid-run and Six-legged-walk. The initial phase alignments of these

examples were far from the optimal found in section 4.5.3. Figure 4.10 shows

the learned phases. In all three examples, fixed-point or fixed-range algorithms

fell into local minima close to the initial alignments. The value-based algorithm

successfully finds the optimal phase alignments for Humanoid-walk, but it fell

into local optima for the other two examples. The CoT of Humanoid-run learned

by the value-based algorithm is 26.0 and the average torque is 283.0Nm. For

Six-legged-walk, The CoT is 14.80 and the average torque is 370.0Nm, which

is even higher than those learned with the fixed initial time alignment (see

Table 4.3). Compared to the baseline algorithms, our algorithm is better in

terms of finding the globally optimal solution.

4.5.5 Exploration vs Computation Cost

In this section, we evaluate the effect of threshold α in DRL. Low threshold

values are supposed to encourage more aggressive exploration in phase space.

To do so, we generated three centaurs (denoted by M1, M5, and M10) with

different mass distributions. M1, M5, and M10 have upper-to-lower body weight

ratios of 1/19, 5/19, and 10/19, respectively. Since the lower body of a horse is
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Figure 4.11: Arm swing phase visualization for centaurs of various mass distri-

butions. Threshold=0 means no threshold, and threshold=0.95 means accepting

only the top 5 percent.
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heavier than the upper body of a man, arm swing phases tend to synchronize

with front leg swing phases. This trend is more pronounced in M10 because the

upper-body dynamics have a greater effect on whole-body coordination. The

DRL algorithms fail to synchronize arm swing and leg swing when it converges

to a local minimum. Figure 4.11 shows how threshold α affects the arm swing

phase of centaurs. All three models fell into local minima near the initial phase

alignment when α = 0.95. Smaller threshold values allow the algorithm to

explore the phase space more aggressively and thus provide better chances to

escape from local minima. There exists a trade-off between better exploration

and computational cost. We need to make a reasonable choice between two

extremes.

4.6 Discussion

We propose an algorithm that generates animations of various chimeras from

source motions and characters. The kinematic optimization plays an important

role in maintaining style/semantics of the motions, and the physics simulation

adds dynamic effects such as weight shift and balancing that do not exist in the

existing source motion. Conversely, given a task, it would be possible to find a

suitable chimera skeleton. The work of Zhao et al. [107] finds the structure of a

robot that can best traverse a given terrain. In a similar sense, as our algorithm

can synthesize various actions, it can be optimized for various tasks, such as

finding the structure of a chimera that can fight best.

We confirmed through experiments that our algorithm can create highly

variable combinations from very limited source motions and characters. If the

increased number of source motions and characters is given, it will be possible

to create infinitely many combinations of chimera motions. In order to generate
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a massive amount of chimera animations, the need for an automatic system in-

creases. Currently, there are many parts that the user has to manually decide,

such as chimera designs, the parameter for global constraints in part assem-

bly, and PD gains for the physics simulation. If these parts are automated,

the system can be conveniently applied to actual products such as games or

animation. Additionally, learning a universal control policy for multiple body

structure would increase the time and memory efficiency of the system.

Learning time largely depends on part assembly. This is especially costly if

the character has high degrees of freedom or if the motion needs to deviate a lot

from the initial position to satisfy the constraints. We dramatically reduce the

total learning time by learning a network with the optimization results. Still,

the increased number of part animations enlarges the number of optimizations

exponentially and increases the training time of the regression network. We

have learned up to 4 part animations (treant) using part assembly. In the case

of the centipede with 9 part animations, we used the initial position as the

reference motion without optimization. The types of chimera animation that can

be created without the part assembly process are extremely limited. Additional

methods to reduce the computation of part assembly process will be helpful for

the scalability of the system.

Editing the timing of the motion by several phase variables greatly increases

the range of resulting motions. The main mechanism controlling the phase in

our algorithm is energy efficiency at the joint torque level, but it does not always

work. We could not reproduce the trot-to-gallop transition, which requires task

design at the musculoskeletal level. A variety of meaningful time alignments can

be discovered through realistic modeling and reward designs such as metabolic

energy, ground reaction force, or symmetry. Though our algorithm mainly deals

with chimera animation, multiple phase variables can be applied to various mo-
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tion synthesizing problems, such as style transfer or synchronizing with audio.

We believe our work shows the potential of editing motion in a time domain,

and we expect many interesting variations.
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Chapter 5

Learning Style Transfer from
Minimal Motion Data

5.1 Overview

The meaning of human motion is basically determined by what kind of actions

and what tasks are being performed. However, different people produce different

movements even if they do the same actions with the same task. This difference

is called style of the motion. There are a variety of factors that affect style. For

example, it could be a personality/mood, such as proud, sad and happy, or it

could be physical characteristics/conditions, such as heavy, old and fatigued.

Style is an important factor that generates reality and add meaning to the

motion. In order to effectively express the personality and state of the virtual

characters, there have been many efforts to build a database for stylized motion

in industries such as games and movies.

In the field of character animation, various studies have been conducted

to generate stylized motion. The most well-known technique is motion style
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transfer, which extracts the style of an existing motion and applies it to other

motions. The way how style affects motion is different for each motion and

each style, so it is difficult to formulate an appropriate expression that extracts

only the style from the motion while preserving its content. Researchers have

successfully conducted style transfer of diverse motion and styles by learning

networks or LTI models from large amounts of data [52, 51, 108]. In this method,

the learned model immediately outputs the stylized result for the input instead

of explicitly extracting and applying the style to the input motion. Since this

method depends on the distribution of training data, it limits the skeleton

structure and the range of styles that can be generated. It cannot generate

stylized motion of a character different from the human form, and it is difficult

to create a natural motion when the style is deeply related to the physical

characteristics of the character.

We propose an algorithm for style transfer from a small number of motion

data. Motion data may be a single motion pair consisting of one base motion

and a stylized motion, or it may be multiple motion pairs. Our system consists

of two sequential processes (See Figure 5.1). Our algorithm first searches the

style feature to be applied to the each frame of the input motion from the source

motion pair. Then it corrects the stylized motion to obey the laws of physics

through physics simulation. As our algorithm does not depend heavily on the

amount of source data, it can be applied to various characters and styles with

minimum amount of motion data.

The contribution of our work is as follows. First, we design a style repre-

sentation suitable for small motion data. In learning-based style transfer, the

result is extrapolated and generate excessively distorted motion when training

data is insufficient. Instead, we directly extract style feature through interpo-

lated displacement mapping of nearest source motion data. Second, we propose
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Figure 5.1: System overview.

adaptive methods to utilize source data more efficiently. According to the sim-

ilarity of the source motion and the input motion, our system determines how

many poses are required to calculate a displacement and which body parts will

apply the displacement. Finally, the synthesized motion can be deformed in

space and time to add proper physical effects and corrects errors like timing

and penetration. We adopt the tracking controller of Section 3 to simulate a

character in a physical environment and compensate for the lack of information

about movement. We demonstrate the effectiveness of our system by generate

diverse stylized motions like locomotion for various directions, jump, and attack

motion from walk and run motion pair of 3 seconds each.

5.2 Style Representation

The purpose of our system is apply style to the input motion MI given a base

motion MB and a stylized motion MS . Here, the base motion and stylized mo-

tion have the same content, and the input motion have the different content.

M can be expressed as a sequential set of information about root transforma-

tion and joint rotations. Instead of inferring the style from a large amount of

unlabeled data, we propose a way to extract styles from the differences between
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the pair of motions with the same content.

To compare the difference between the stylized motion and base motion, we

temporally align the two motions through dynamic time warping. The objective

of dynamic time warping is to find the best alignment between different curves

by minimizing the hand-crafted loss function. We designed the difference in

joint position as a loss function. As a result of time warping, each frame of MB

and MS can be expressed as follows.

({MB(φ0),MS(φ0)}, {MB(φ1),MS(φ1)}, · · · , {MB(φT ),MS(φT )}) (5.1)

where φ is the phase variable on the normalized timeline.

In section 3.2, we define the difference between two motion as the spatio-

temporal displacement formulation. Inspired by that, we define style as the

displacement in three elements between two temporally paired frames: joint

position, root movement, and speed. The displacement djoint of the joint posi-

tion is the difference between the joint angles of the two frames. djoint of frame

pB and frame pS can be defined as follows.

djoint = ((qB0 )−1qS0 , · · · , (qBL )−1qSL) (5.2)

where d0 is the angular displacement of root joint, di for i > 1 is the angular

displacement of a joint, and L is the number of joints. Note that root translation

is not included in this displacement because it is processed separately.

Unlike the displacement formulation of section 3.2, we handle the translation

of the root relative to previous frame. This formulation allows the style to be

applied to input motions where the distance and direction of the route are differ-

ent from the source motion. The displacement in root movement (dlength,dangle)

is defined as the difference in the moved distance and the moved direction of
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the root movement.

dlength =
‖ ∆pS0 ‖
‖ ∆pB0 ‖

,

dangle = (cosθ, sinθ)

θ = sign · cos−1(
∆pS0 ·∆pB0

‖ ∆pS0 ‖‖ ∆pB0 ‖
) (5.3)

where ∆p0 is the distance of the root from the previous frame to the root

in the current frame, and θ is the signed angle between the two vectors. The

angle between the two vectors is expressed as a continuous value through the

sinusoidal function for later calculation.

The displacement in speed dspeed is defined as the difference in the time

interval between the current phase φt and the previous phase φt − 1 in the

normalized timeline.

dspeed =
(φS)−1(t)− (φS)−1(t− 1)

(φB)−1(t)− (φB)−1(t− 1)
(5.4)

where (φS)−1, (φB)−1 are functions that return the original frame index in styl-

ized motion and base motion given a phase in the normalized timeline.

Given the frame in an input motion pI and displacement (djoint,dlength,

dangle,dspeed), a new output frame pO can be obtained by inversely calculating

the process above. The following section introduces the process of searching for

appropriate displacement for each frame of the input motion.

5.2.1 Adaptive Nearest Search

Through the process above, the stylized displacement corresponding to each

frame of the base motion can be calculated. Our system finds the frames in the

base motion database most similar to each frame of the input motion and applies

the corresponding displacement to the input frame. The searching algorithm to
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find a similar frame in the base motion is based on the nearest neighbor search

algorithm of of Xia et al. [108].

We find the K closest frames in the base motion. Given a frame in the input

motion pIψ and a frame in the base motion pBφ , distance is defined as follows.

distance(pIψ,p
B
φ ) =

1

2s+ 1

∑
−s≤o≤s

‖ (pIo+ψ)−1pBo+φ ‖ (5.5)

where s is the size of the window. We use s=1.5 for all examples. The dis-

placement for each frame of the input motion is defined as the average value

of displacement for the K poses with the smallest distance. Interpolation of K

displacements can produce smooth motions compared to the method of apply-

ing displacement from motion with the highest similarity. In the previous work,

K was set to a fixed value. In our case, K is adjusted adaptively by the term

uncertainty.

The uncertainty u was defined as the distance between the frame pI of

the input motion and the most similar frame pB in the base motion. As the

uncertainty increases, the style in the closest frame cannot be reproduced by

applying the displacement of that frame. In this case, reflecting the average

displacement of the a large number of postures rather than reflecting the style

from a small number of postures is the better choice to reduce distortion and

increase the quality of the stylization. We set K as follows.

K = ceil(u ∗ 10 + 3) (5.6)

where ceil is a function that rounds down a value. Uncertainty is a variable

that determines the number of K of the nearest search and also determines

how accurately the reference postures should be tracked during the physics

simulation process.
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5.2.2 Part-wise Style Transplantation

The movement of human body parts is closely related each other. The displace-

ment between the two motions includes information on correlation, and this

correlation is preserved in the output motion by applying the style displacement

of the base frame similar to the current input frame. However, when uncertainty

is high, it is highly likely that displacement may not provide adequate infor-

mation about spatial relationship. In addition, previous works demonstrated

that various styles can be successfully transferred to new motions by processing

each joint separately [108, 51]. Motivated by these ideas, we propose adaptive

part-wise style transplantation.

In part-wise style transplantation, the body parts are divided into 4 body

parts {LeftArm, RightArm, LeftLeg, RightLeg}. We search for similar frames

from the input motion for each body parts and calculate the displacement dpart.

The process of finding the new displacement for the body part is the same as

finding the full body displacement in section 5.2.1. We modify the displacement

calculated for full body dfull according to the following equation.

djfull =


wpartd

j
part + (1− wpart)d

j
full if j in body part

djfull otherwise

wpart = clip(5 ∗ (ūfull − (ūpart + 0.2)), 0.0, 1.0)

(5.7)

where ūfull and ūpart are uncertainties calculated for the body part only. The

reason for adding 0.2 to ūpart is to preserve the spatial relationship as much

as possible without transplanting when the two values are not significantly

different. In this equation, only the displacement of the motion is updated and

the uncertainty is not updated. This is because the displacement with respect

to the root or time may no longer be correct because the motion of the body

part has changed.
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5.3 Learning in Physical Environment

In Section 5.2, we synthesized a stylized motion by searching the best displace-

ment based on the similarity with the base motion data. Since physics properties

are not taken into account directly in the synthesis process, the generated mo-

tion often do not obey the laws of physics. This problem arises more frequently,

especially when the amount of source motion is smaller. To correct such errors

and boost the quality of the final motion, we simulate the synthesized motion

in the physical environment.

5.3.1 Reinforcement learning formulation

The movement of the character is controlled by the tracking controller. Track-

ing controller is a control policy learned by deep reinforcement learning that

makes a character track the synthesized motion in a physical environment. Our

controller design is based on the tracking controller in Section 3. The state

includes the rotation and velocity of the joints, the position of the end effec-

tors, the next reference pose and current phase. The action is defined by the

spatio-temporal displacement (dt, τt). The temporal displacement τt advances

the phase φ′ = φ + exp(τt). The spatial displacement dt is added to current

reference pose and serves as a PD target to generate joint torques. Advancing

the dynamics simulation by constant time updates the state at the next time

step.

The reward design modified for our system is as follows.

r = wtrackingrtracking + wrootrroot + wregulrregul (5.8)

The tracking reward is for imitating a sequence of optimized poses and speed

of the synthesized motion. The tracking reward includes three sub-terms,

rtracking = wqrq ∗ weeree + wtimertime, (5.9)
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which respectively penalize the discrepancies in joint angles, end-effector posi-

tions, and time between the reference motion and simulation.

rq = exp
(
− 1

σ2
q

∑
i∈joints

‖ log(q−1
i q̂i) ‖2

)
ree = exp

(
− 1

σ2
ee

∑
j∈ee

‖ x̂j − xj ‖2
)

rtime = exp
(
− 1

σ2
time

‖ exp(τ̂t)− exp(τt) ‖2
)
,

(5.10)

where qi is the joint rotation, xj is the end effector 3d position and τt is the

phase increment of the motion in current time t.

The root reward is for controlling the movement of character’s root. The

root reward includes two sub-terms,

rroot = wlengthrlength + wanglerangle, (5.11)

which respectively penalize the discrepancies in scale and direction the character

moved between the reference motion and simulation.

rlength = exp
(
− ‖v̂‖ − ‖v‖

2

σ2
length

)
rangle = exp

(
− θ2

σ2
angle

)
,

(5.12)

where v is the root translation difference between the reference pose at current

timestep and the reference pose at previous timestep. θ is the angle between

the two vectors v̂, v, which can be calculated according to Equation 5.3.

The regularization reward is for regularizing excessive torque.

rregul = −
∑
j∈dof

|q̈j |2, (5.13)

where q̈j is the acceleration of each joint.

85



5.3.2 Uncertainty-based reward adjustment

How tightly the character should track the reference motion is determined by

the σ value of each term of the reward. The larger the σ, the higher the reward

even if you do not exactly follow the reference motion. We previously defined

the term uncertainty as to how similar each frame of the input motion is to the

base motion data. It is highly likely that the style is not applied correctly to

the synthesized motion which has high uncertainty. If the tracking controller

tries to follow this motion as reference motion, the controller has possibility of

generating motion with low quality.

We propose an uncertainty-based reward adjustment that differentiates the

degree of tracking the reference motion according to uncertainty. We adjusted

σ of each term of reward to be proportional to the uncertainty u value of the

current reference frame.

σ = wuσmin + (1− wu)σmax

wu = min(0.5u, 1),
(5.14)

where σmin and σmax are boundary values of σ experimentally set for each term.

When u is high, the agent can receive high rewards even if the character do not

follow the reference well.

5.4 Experiments

Our simulation system and network setting is the same as the system in Section

3.6. We got bear character motion from NCsoft and other stylized locomotion

data from Lafan dataset [109]. The computation time for learning varies de-

pending on the length and type of the input motion. It takes 30 minutes to 4

hours on a single PC with AMD Ryzen 9 5950x. Most of the computation is

done in the CPU.
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Figure 5.2: Long locomotion sequence with diverse styles. From top left: base,

proud, brisk, and limping. Depending on the style, not only the movement of

the joint but also the movement of the root and timing are different.

5.4.1 Stylized Motor Skills

Locomotion with diverse styles We transferred three different styles to

a long locomotion sequence. The source motion pairs is walk-forward motion,

each of which is 3 seconds long. Three styles are proud, brisk, and limping. The

input motion is a long locomotion sequence that contains actions not exist in

the source motion, such as 90 degree rotation, 180 degree rotation, and pause.

Figure 5.2 shows the stylized result. The generated motion preserve the content

of the long motion sequence, and the characteristics of each style such as the

timing and movement of the root and joint are well transferred.

Dynamic bear motion We transferred the bear style to dynamic motion

data. The source motion pairs are run-forward and walk-forward motions of

humanoid and bear, each of which is 3 seconds long. The stylized motions are

a motion that turns 90 degrees while walking, a motion that turns 180 degrees
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Figure 5.3: Input motions and bear-stylized motions. From top left: turn 90

degrees, turn 180 degrees, jump and attack.

while walking, a motion that turns 180 degrees while running, a jump motion,

and an attack motion (See Figure 5.3). Compared to the input motion, the

stylized motion is more logged and staggered, which makes the heavy bodies

of the bear stand out. Our system shows that styles can be well applied to the

motions even with contents not included in source motion database.

5.4.2 Comparison of Style Representation Methods

In this section, we compared our style representation method with two baseline

methods. The first baseline algorithm is local LTI model used in the work of

Xia et al. [108]. This method trains the parameters of the model which infers

the displacement of the posture. The second algorithm is using displacement
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formulation of Section 3.2. Unlike our algorithm, this formulation handles root

displacement in the same way as joint displacement.

We conducted experiments with three walking motions: a motion that turns

45 degrees, a motion that turns 90 degrees, and a motion that turns 180 degrees.

As in the previous section, only walk straight motion was used as the source

motion. Adaptive knn and part-wise transplantation were applied identically

for all three algorithms. All algorithms generate natural stylized motion for

the motion that turns 45 degrees. For the motion that turns 90 degrees, the

first algorithm shows the movement of the legs trembling at the moment of

rotation. The second algorithm results in the root motion vibrating in the wrong

direction after rotating. For the motion that turns 180 degrees, the trembling

of the leg in the first algorithm is even worse, and make it difficult to recognize

the movement of the leg. In the second algorithm, the root, which should be

stationary, shakes back and forth at the moment of rotation. On the other

hand, our style representation method shows little deterioration in quality as

the similarity of motion is lowered, and aligns the style of the root motion

properly according to the input motion.

5.4.3 Effectiveness of Learning in Physical Environment

In this section, we validate the effectiveness of physics simulation. We used

three examples: a motion that turns 180 degrees while running, a jump motion,

and an attack motion. We compared the motion generated by section 5.2 with

the motion learned in the physics environment based on it. Without learning in

physical environment, various physical violations makes the motions unnatural

(See Figure 5.4. In a motion that turns 180 degrees while running, the foot

penetrates the ground when making a turn. In the jump motion, penetration

occurs too, and the bear jumps with a light follow-through despite its heavy
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Figure 5.4: The first row is the motion generated by section 5.2, and the second

row is the motion learned in the physics environment based on the first row.

Each action is turning 180 degrees, attacking and landing after jump from the

left.
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body. In the attack motion, it seems unnatural that the bear maintains balance

easily while swinging its heavy arm quickly. Our algorithm including physical

simulation adds a variety of physical effects and thus makes the motion look

more realistic.

5.5 Discussion

We propose an algorithm that extracts and applies styles directly to new motion

from source motions. Because our algorithm formulates style as displacement of

temporally aligned motion, it can extract style with minimal amount of source

motion data compared to the existing learning-based model. The use of an

adaptive number of neighbors for style interpolation and part-wise translation

compensates for the lack of source motion volume. Additionally, as it is physi-

cally simulated, it can reflect the physical properties of characters and motions

that are difficult to obtain from source motion data.

The quality of the motion is degraded when a motion similar to the input

motion cannot be found in the source database. To prevent this, our track-

ing controller loosely tracks the motion when the uncertainty of the reference

motion is high. It generates better results than tight tracking of an incorrect

reference motion, but at the same time the generated motion may look unnatu-

ral as it entirely relies on the result of physics simulation. Adopting the results

of the pretrained network for the open-source motion database when similar

motion does not exist in the source database can be a good alternative.

Our displacement design and metric for similarity are mainly focused on

joint rotations. It is true that joint rotation has a big influence on style, but

there are many other factors that can be seen from motion, such as global

orientation of joints, end effector positions and relationship with other joints. If
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these elements are also considered in style formulation, the types of styles that

can be reproduced will be more diverse.

Another limitation of our work is that the source motion must exist in pairs.

Since it is difficult to collect paired data, many researches on style transfer from

unpaired data have been introduced recently. In the case of our work, it is not

realistically impossible to prepare paired data because it does not require a large

amount of data unlike other works. Nevertheless, it would be more convenient

if the system can do style transfer from a small amount of unpaired data.

Despite these limitations, our work shows the potential for style transfer

from small amounts of motion. It goes without saying that the quality of style

transfer is proportional to the amount of motion data in our work, too. However,

some actions and styles can be created with high quality with a small amount

of data, while others will require a larger amount of data. Flexibly use the

amount of source data greatly increases the practicality of the system. For

example, designers can estimate the amount of data needed to generate stylize

motion from our work and draw only as much source data as they need.
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Chapter 6

Conclusion

6.1 Contribution

Physics-based motion editing has merit in that it can edit motions for tasks

that are deeply affected by dynamic factors. Because of the high dimensional

control space of physics simulation, physics-based motion editing has been less

studied than data-driven motion editing. Recent advances in deep reinforcement

learning have made it possible to reproduce dynamic motions in a physical

environment. In this thesis, we explored various methods that discover novel

motions by simulating motions in the physical environment.

The key to motion editing is to increase diversity while maintaining the qual-

ity of the motion. We solved the problem by combining motion optimization

with the physics simulation. First, we introduce a method of editing a single

motion clip for parameterized task spaces. Our algorithm learns to modify the

joint positions of the character and the spacing between each frame, so it can

edit the motion not only spatially but also temporally. The system boosts both
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the learning efficiency and the quality of edited motions by reusing high-quality

motions generated during learning process. Second, we propose a method to

create a new combination of motion and character by reassembling multiple

motions and characters. In the first work, the time interval between frames is

expressed as a one-dimensional function, but in this work, the temporal align-

ments between multiple motions are designed as a multi-dimensional function.

This design allows exploring infinite combinations of motions to be generated

by varying temporal alignments. At the same time, the motion is optimized so

that the semantics of motions such as contact and shape are always preserved.

Finally, we efficiently extracted and applied style to diverse motions with small

motion dataset by adaptive nearest search and physics based simulation.

The purpose of using motion optimization and physics simulation in our

systems is to find a space of human-like movement in the entire area that

can be created by combinations of movements of all joints. This can also be

inferred from large amounts of motion data. This method has the advantage

of reducing the effort of designing objective terms to maintain the quality of

synthesized motion. Evaluating human-likeness from data is greatly influenced

by the distribution of data. Although there exist a large amount of data online,

the distribution of data is uneven, and the proportion of daily movements is

overwhelmingly large. In order to create various motions deviating from existing

motion data, it is necessary to consider the nature of human-like movement like

our methods do.

Our motion editing algorithms can contribute to creating a massive amount

of physically simulated motion database. This motion database includes a rich

repertoire of motions that require a lot of effort to capture or key-frame. For

example, highly dynamic motion, motion that interacts with complex environ-

ments, motion in imaginary environment or motion of imaginary body structure

94



can be included. The controller equipped with this database enables the char-

acter to reproduce much more diverse and lifelike movements. In a digital twin

or mixed reality environment that has recently received a lot of attention, this

diversity of motion will make the virtual characters more realistic.

6.2 Future Work

We showed novel motion editing algorithms for various conditions such as body

configuration, environmental condition, spacetime constraints, and style. We

are also interested in editing motions for complex conditions not covered in our

work. Motion editing for multi-person scene where interaction of multiple char-

acters occurs is one of them. How interactions with other characters affects the

motion of each characters should be considered in the editing process. Moving

environment, abstract conditions that are difficult to formulate as mathematical

expressions and conditions with complex rules like sports are other examples of

conditions that can be explored as a future work.

We optimized the motion for several terms designed to keep the semantics

of the original motion. Nonetheless, they often result in unnatural motion. Nat-

uralness is determined by complex elements of motion, and sometimes different

criteria are required for each type of motion. Therefore, the terms we defined

cannot exactly match the area that looks natural for human perception, and

in some cases, it will be narrower or wider than the area. Evaluating natural-

ness from real human motion data would work similarly to human perception.

However, as mentioned above, the range of motion that can be evaluated by

this way is limited to the range of existing data. If the above two methods can

be combined properly, it will be possible to further boost the quality of the

generated motion. Similarly, our system is evaluated qualitatively rather than
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quantitatively in our experiments because it is difficult to define a measure of

naturalness for unseen motion. Designing an appropriate metric for naturalness

will be also be meaningful for quantitative evaluation of the algorithm.

Our system must learn anew whenever a new task or motion is given. If edit-

ing different types of motions in a single network or editing for unseen motions

or conditions is possible, a large amount of motion data can be generated in a

minimum amount of time. Recently, in the field of character control, methods

that quickly adapts to a new task by finetuning a pretrained network equipped

with a large number of motor skills have been proposed [110, 111]. An reusable

network that can be fine-tuned at a low cost even with many variations would

be helpful.

To use this system in industry, it should be possible to generate motions

automatically in large quantities or be easy for artists to use. For a massive pro-

duction, it is necessary to automate processes that are currently performed man-

ually. Designing task space and setting appropriate parameters for the physics

simulation process every time a new character and motion is laborious even for

experts who are familiar with physics simulation and the mechanism of each

motion. It takes a lot of efforts as the amount of source motion increases. If

there is an algorithm that automates the above factors, the practicality of our

physics-based motion editing system will be increased. Developing an algorithm

that serves as a medium to convert editing conditions written in numbers into

a user-friendly interface will also be helpful.
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uous character control with low-dimensional embeddings,” ACM Trans-

actions on Graphics, vol. 31, no. 4, 2012.

[24] D. Holden, J. Saito, and T. Komura, “A deep learning framework for

character motion synthesis and editing,” ACM Transactions on Graphics,

vol. 35, no. 4, 2016.

[25] K. Lee, S. Lee, and J. Lee, “Interactive character animation by learning

multi-objective control,” ACM Transactions on Graphics, vol. 37, no. 6,

2018.

[26] S. Starke, Y. Zhao, T. Komura, and K. Zaman, “Local motion phases

for learning multi-contact character movements,” ACM Transactions on

Graphics, vol. 39, no. 4, 2020.

[27] A. Witkin and M. Kass, “Spacetime constraints,” ACM Transactions on

Graphics, vol. 22, no. 4, 1988.

[28] M. Gleicher, “Motion editing with spacetime constraints,” in Proceedings

of the 1997 symposium on Interactive 3D graphics, pp. 139–ff, 1997.

100



[29] M. Kim, K. Hyun, J. Kim, and J. Lee, “Synchronized multi-character

motion editing,” ACM Transactions on Graphics, vol. 28, no. 3, 2009.

[30] K. W. Sok, K. Yamane, J. Lee, and J. Hodgins, “Editing dynamic human

motions via momentum and force,” in Proceedings of the 2010 ACM SIG-

GRAPH/Eurographics Symposium on Computer animation, pp. 11–20,

2010.

[31] J. Lee and S. Y. Shin, “A hierarchical approach to interactive motion edit-

ing for human-like figures,” in Proceedings of the 26th annual conference

on Computer graphics and interactive techniques, pp. 39–48, 1999.

[32] L. Ikemoto and D. A. Forsyth, “Enriching a motion collection

by transplanting limbs,” in Proceedings of the 2004 ACM SIG-

GRAPH/Eurographics symposium on Computer animation, pp. 99–108,

2004.

[33] R. Heck, L. Kovar, and M. Gleicher, “Splicing upper-body actions with

locomotion,” vol. 25, no. 3, pp. 459–466, 2006.

[34] W.-S. Jang, W.-K. Lee, I.-K. Lee, and J. Lee, “Enriching a motion

database by analogous combination of partial human motions,” The Vi-

sual Computer, vol. 24, no. 4, pp. 271–280, 2008.

[35] S. Starke, Y. Zhao, F. Zinno, and T. Komura, “Neural animation lay-

ering for synthesizing martial arts movements,” ACM Transactions on

Graphics, vol. 40, no. 4, 2021.

[36] D.-K. Jang, S. Park, and S.-H. Lee, “Motion puzzle: Arbitrary motion

style transfer by body part,” ACM Transactions on Graphics, 2022.

101



[37] J. McCann, N. S. Pollard, and S. S. Srinavisa, “Physics-based motion

retiming,” in Proceedings of the 2006 ACM SIGGRAPH/Eurographics

Symposium on Computer Animation, p. 205–214, 2006.

[38] N. S. Pollard and F. Behmaram-Mosavat, “Force-based motion editing for

locomotion tasks,” in 2000 IEEE International Conference on Robotics

and Automation, pp. 663–669, 2000.

[39] Y. Abe, C. K. Liu, and Z. Popović, “Momentum-based parameterization
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to new animals with inverse optimal regression,” ACM Transactions on

Graphics, vol. 33, no. 4, 2014.

[49] K. Aberman, R. Wu, D. Lischinski, B. Chen, and D. Cohen-Or, “Learning

character-agnostic motion for motion retargeting in 2d,” ACM Transac-

tions on Graphics, vol. 38, no. 4, 2019.

[50] M. E. Yumer and N. J. Mitra, “Spectral style transfer for human motion

between independent actions,” ACM Transactions on Graphics, vol. 35,

no. 4, 2016.
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요약

가상의 캐릭터가 실제 사람처럼 움직이게 하려면 풍부한 모션 데이터 레퍼토리가

필요하다. 모션 데이터를 효율적으로 획득하기 위해 새로운 조건을 만족시키도록

소스 모션을 수정하는 모션 편집 알고리즘에 대한 연구가 많이 진행되어 왔다. 본

연구의 목적은 물리 기반의 모션 편집을 통해 다양한 모션을 생성하는 것이다. 물

리 기반의 캐릭터 애니메이션은 물리 환경에서 캐릭터를 움직여 동작을 생성하는

방식이다. 모션 편집과 물리 기반 애니메이션을 결합하면 물리적으로 시뮬레이션

된 캐릭터가 원본 모션에서 벗어나는 새로운 조건의 움직임을 만들어낼 수 있다는

장점이 있다. 물리 기반 모션 편집의 핵심 과제는 불필요한 방향으로의 변형을

억제하면서 바람직한 방향으로의 변형을 장려하는 알고리즘을 설계하는 것이다.

우리는 모션 최적화와 물리 시뮬레이션을 결합하여 생성된 모션의 품질과 다양성

을 크게 향상시켰다.

이 논문은 다양한 조건에 대한 동작을 편집하는 세 가지 물리 기반 접근 방식

을 제안한다. 첫 번째로 하나의 모션 클립에서 넓은 조건 공간을 만족하는 모션

집합을 생성하는 알고리즘을 소개한다. 동작 매개변수화와 동작 추적을 동시에

학습해서 생성되는 동작의 성능과 시각적 품질을 크게 향상했다. 두 번째로 여러

캐릭터와모션클립을결합하여새로운캐릭터의애니메이션을만드는알고리즘을

제안한다. 우리의 알고리즘은 캐릭터와 동작의 물리적 특성을 고려하여 각 부분

동작들의 적절한 공간적 및 시간적 정렬을 찾는다. 마지막으로, 암시적 조건인 스

타일을 위한 모션 합성에 대해 논의한다. 우리의 알고리즘은 소스 동작으로부터

스타일 특징을 직접적으로 추출하고 물리 환경에서 스타일 특징을 교정하여 적은

수의 동작 데이터에서의 스타일 전송을 가능하게 한다. 우리의 연구는 새로운 조

건,신체구조및스타일에대한매우역동적인동작의생성을통해물리기반모션

편집 알고리즘의 다양성을 보여주었다.
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