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Abstract

Practical Encodings for Range Top-2

Queries and Compressed RAM

Wooyoung Park

School of Computer Science Engineering

Collage of Engineering

The Graduate School

Seoul National University

In this thesis, we design various compressed/succinct data structures. Also,

we implemented our data structures from the practical view and conducted

experiments to evaluate data structures. Experimental results show that our

data structures are time- and space-efficient. Also, our data structures show

simpler substructures that enable software engineers to utilize and maintain

easily. In this thesis, we consider the following two problems: (1) range Top-2

encodings, and (2) dynamic compressed strings supporting access and update

operations. Given an array of elements from a total ordering, a Top-2 query

returns the first and second largest elements within a given query range. The

Top-2 encoding problem encodes a given input array to support Top-2 queries

efficiently. In the dynamic compressed string problem, we would like to maintain

a string in compressed form while supporting access and update operations

efficiently.

For the Top-2 encoding problem, we designed two approaches. The first im-

plementation is based on an alternative representation of Davoodi et al.’s [1]

data structure, which supports queries efficiently. Our data structure not only
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gives improved practical space and time efficiency, but also gives simpler sub-

structures compared to Davoodi et al.’s [1] data structure, which uses tree-

covering [2]. The other implementation is based on an RT2Q encoding on a

2 × n array [3]. Our data structure uses less construction time while being

competitive in terms of space.

For the second problem, we designed two implementations based on the

compressed RAM of Jansson et al. [4], and Grossi et al. [5], respectively. For

this problem, we designed a data structure that is simpler than the data struc-

tures [4], [5]. Also, since our substructures are simpler to implement, we have

room for further optimization. Experimental results show that our data struc-

ture supports operations efficiently while keeping the space proportional to the

entropy of the input.

Keywords: Range top-2 query, range minimum query, Cartesian tree, encod-

ing model, succinct encoding, succinct data structure, dynamic data structure,

dynamic string, access query, replace query, insert query, delete query

Student Number: 2016-21203
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Chapter 1

Introduction

Over the decades, a wide range of research has been done on compressed/succinct

data structures, where the aim is to design data structures whose space usage

is close to the space needed to store the data in compressed form while sup-

porting the operations of the data efficiently. For example, on the FM index [6],

wavelet tree [7], and Elias-Fano encoding [8], compressed/succinct data struc-

tures played a great role. The main difference between compressed/succinct

data structures and raw compressed data is that the former can support pre-

defined queries without decompressing itself, but the latter cannot support

any useful query without decompressing itself. Due to their supporting query,

compressed data structures are used in other areas of computer science, e.g.,

database [9, 10, 11, 12, 13] and bioinformatics [14, 15, 16, 17]. But from the

point of practical usage, compressed/succinct data structures have some limita-

tions even though previous works give impressive results. The following points

are limitations for practical usage of compressed/succinct data structures.

• As compressed/succinct data structures are highly optimized from the

theoretical view (RAM model [18]), compressed/succinct data structures
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have more complex substructures and query algorithms in theory. Math-

ematical optimization and complex substructure make the data structure

work poorly in practice. For example, consider space and time-efficient

data structures for answering the RMQ [19]. And those complex sub-

structures need various word sizes to satisfy given theoretical bound. But

since computers only support 8,16,32, and 64 bits primitive word size,

and 128,256, and 512 bits SSE or AVX word size, whoever wants to build

their own customized word size must sacrifice time performance, or sac-

rifice space usage from ceiling up word size.

• Another limitation from complex substructures is software aging. Soft-

ware aging is an inevitable phenomenon even though software has correct

mathematical proof [20]. Although many data structure research exist as

a library/framework, not application software, library/framework are also

not free from aging. Because hardware and operating systems evolve, and

this makes the environment of the library/framework change. However,

complex substructures make it hard for software engineers to maintain im-

plementations. And aging from lack of maintenance makes libraries from

compressed/succinct data structures less adaptive.

• Every random access memory requires two steps. One is address transla-

tion from virtual memory address to physical memory address, and the

other is accessing physical memory access. To optimize these procedures,

modern CPUs contain translation lookaside buffer (TLB) and cache mem-

ory. So, programmers strive to utilize the property of cache memory to

write performance-strong programs. However, succinct data structures

such as FM-indexes show random memory access patterns [21], which is

not a cache-friendly memory access pattern.

Due to those limitations from compressed/succinct data structures, several

researchers propose its practical implementation that overcomes some limita-
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tions. Researchers change or re-invent complex substructures to overcome lim-

itations [22, 23, 24]. This thesis also contains practical implementations that

overcome those limitations.

1.1 Contributions of the thesis

In this thesis, we propose the following practical implementations of com-

pressed/succinct data structures. Overall, our proposed data structures and

its implementation give simpler substructures and better experimental results

than previous work.

• Practical Implementation of Encoding Range Top-2 Queries:

Given an array A[1, n] of n elements from a total order, the range Top-

2 encoding problem is to construct a data structure that answers RT2Q,

which returns the positions of the first and second largest elements within

a given range of A, without accessing the array A at query time. In this

thesis, we design a practical variant of an encoding for range Top-2 query

(RT2Q), and evaluate its performance. We design the following two imple-

mentations: (i) An implementation based on an alternative representation

of Davoodi et al.’s [1] data structure, which supports queries efficiently.

Experimental results show that our implementation is efficient in practice,

and gives improved time-space tradeoffs compared to the indexing data

structures (which keep the original array A as part of the data structure)

for range maximum queries. (ii) Another implementation based on Jo et

al.’s RT2Q encoding on 2×n array [3], which can be constructed in O(n)

time. We compare our encoding with Gawrychowski and Nicholson’s opti-

mal encoding [25], and show that in most cases, our encoding shows faster

construction time while using a competitive space in practice. This work

is accepted in The Computer Journal [26].
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• Practical Implementations of Compressed RAM: Given a string

S over an alphabet of size σ, we consider practical implementations of

extended compressed RAM on S, which supports access, replace, insert,

and delete operations on S while maintaining S in compressed form. In

this thesis, we proposed two implementations where each of them is based

on the compressed RAM of Jansson et al. [4], and Grossi et al. [5], re-

spectively. Also, we proposed optimization schemes for our proposed data

structures. Experimental results show that our implementations support

the operations efficiently while keeping the space proportional to the en-

tropy of the input during the updates. This work will appear at the Data

Compression Conference (DCC) 2023 [27].

1.2 Organization of the thesis

The rest of this thesis is organized as follows. In chapter 2, we introduce some

preliminaries of our contributions. In chapter 3, we introduce our alternative

representations of data structures of Encoding Range Top-2 Queries. In chapter

4, we introduce our modified practical implementation of dynamic string. This

thesis ends at chapter 5 with a summarization of our results and some open

problems.
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Chapter 2

Preliminaries

In this chapter, we introduce preliminaries to show our contributions for two

problems.

2.1 RAM model.

In this thesis, our data structures assume standard word-RAM model [28],

which is the variant of the classic RAM model [18]. Word-RAM model has

some assumptions for realistic modeling of a computer. First, word-RAM model

assumes that the word size as w = Θ(logn) bits. Here, n denotes the number of

bits for given raw data. Second, the word-RAM model supports constant time

access, arithmetic, and bitwise operations on w-bit word. The assumption of

w = Θ(logn) bits word size is reasonable assumption, because many modern

computer systems use 64-bit words, and there is no known practical computer

system using more than 264 bits.
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2.2 Range maximum query.

Given an array A[1, n] of n elements from a total order, the range maximum

query on A[i, j] (denoted by RMQ(i, j)) returns the position of the largest ele-

ment in A[i, j]. We assume that all elements in A are distinct (if there are equal

elements, we can break the ties according to their positions, by considering the

leftmost one as the largest value among them). The problem of constructing

space and/or time-efficient data structures for answering RMQ is one of the fun-

damental problems in data structures. There were many theoretical solutions

for answering RMQ before solutions using succinct data structures were intro-

duced. The idea of those solutions is that they use problem conversion. One

can convert the RMQ problem on A into the LCA (lowest common ancestor)

problem on Cartesian tree [29] (The formal definition of Cartesian tree is ex-

plained in the next section). Those solutions [30, 31] use O(n) words (O(nlogn)

bits) space usage and constant query time. Also, based on those solutions, sim-

plified solutions [32, 33, 34, 35] were proposed. Those simplified solutions show

(O(nlogn) bits) space usage and constant query time. But O(nlogn) bits space

usage is far from the theoretical lower bound [36, 37]. RMQ solutions using suc-

cinct data structures were proposed in this background [19, 38, 39]. Recently,

variants of RMQ solutions using succinct data structures supporting such as of-

fline queries [40, 41], sublinear size data structures [42], and average cases [43]

were proposed.

2.3 Cartesian tree.

Given an array A[1, n] of size n, the Cartesian tree [29] of A, denoted by C(A),

is a binary tree where (i) the root node of C(A) corresponds to the position

i = RMQ(1, n), and (ii) the left and right subtrees of C(A) are the Cartesian

trees of A[1, i − 1] and A[i + 1, n] respectively. From the definition, the i-th

node in the inorder traversal of C(A) corresponds to the i-th position of A

6



(see Figure 3.1 (a) for an example). In the rest of this chapter, we refer to the

nodes in the Cartesian tree by their inorder numbers (i.e., their corresponding

positions in the array A). Also, one can convert the RMQ problem on A into

the LCA (lowest common ancestor) problem on C(A) [30]. More precisely, for

any i, j ∈ [1, n], RMQ(i, j) is the same as LCA(i, j), which is the LCA of the

nodes i and j in C(A). This implies that one can support RMQ on A by storing

C(A) instead of A (thus, C(A) is an encoding for answering RMQ on A).

2.4 Encoding data structures.

In general, the data structures for answering specific queries can be categorized

into two types: (i) indexing data structures, and (ii) encoding data structures.

In indexing data structures, one can access the input data at query time, while

it is not allowed in encoding data structures. Given a set of objects S and a

set of queries Q, one can partition S into a set of equivalence classes C such

that two objects belong to the same equivalence class if and only if both the

objects have the same set of answers to all the queries in Q. In this case, the

information-theoretic lower bound for encoding any arbitrary object is log|C|

bits1, which is also referred to as the effective entropy of S with respect to

Q [44].

For many problems, including RMQ problem, the effective entropy is much

less than the input size – for example, the effective entropy for answering RMQ

on A is 2n − o(n) bits [19], whereas storing A requires at least n log n bits, if

all the elements in A are distinct. Thus, encoding data structures can be highly

space-efficient in some cases compared to their indexing counterparts. Recent

results [45, 46] show that encoding data structures for RMQ perform well both

in theory and in practice.

1Throughout this chapter, we use log to denote the logarithm to the base 2.
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2.5 Dynamic data structures.

In general, the data structures can be categorized into two types: (i) static data

structures, and (ii) dynamic data structures. In static data structures, input

cannot be changed after the data structure is constructed. Due to this lim-

itation, static data structures have relatively simple substructures and query

algorithms in theory. And maintaining static data structures in compressed form

is relatively work well in practice. Thus, there are many practical implementa-

tions on static data structures [21, 47, 48]. In dynamic data structures, input

can be changed after the data structure is constructed. In general, compared

to static structures, dynamic compressed data structures have more complex

substructures and query algorithms in theory, which makes the data structure

work poorly in practice. Thus, only a few practical implementations of dy-

namic compressed data structures were proposed, mainly on the compressed

bitvector (a data structure to represent a bitstring, supporting rank and select

operations) [22, 23, 49]. Recently, dynamic succinct graph representation works

have been proposed [24, 50]. However, these are only a few compared to static

succinct data structures.
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Chapter 3

Practical Implementation of
Encoding Range Top-2 Queries

3.1 Introduction.

In this chapter, we consider the problem of answering range top-2 queries, which

is an extension of RMQ.

Encoding range top-2 queries Range top-k queries are extension of the

RMQ. The range top-k query on a given input array returns the positions

of k largest elements in a given query range [51]. Range top-k queries have

various applications in data and log mining to find the highest or lowest val-

ues in a range of a stream; in web search engines, to find the k most highly

ranked pages restricted to a range of page identifiers etc. [52]. There has been

a significant amount of research done in supporting top-k queries efficiently,

mainly by the database community. See [53] for a detailed survey of the tech-

niques and applications. In this chapter, we consider the problem of encoding

range top-2 queries, which is a special case of the range top-k queries. The

range top-2 query on A[i, j] (denoted by RT2Q) returns the positions of the
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largest and the second largest elements in A[i, j]. If p = RMQ(i, j), one can

easily observe that the position of the second largest element in A[i, j] is one

of p1 = RMQ(i, p − 1) or p2 = RMQ(p + 1, j). Thus, any indexing data struc-

ture for answering RMQ also can answer RT2Q by comparing A[p1] and A[p2].

Davoodi et al. [54] proposed the first encoding data structure for answering

RT2Q in O(1) time using 3.272n + o(n) bits, which is close to the effective

entropy of 2.755n−Θ(polylog(n)) bits [25] for RT2Q. However, their encoding

is not very practical since it represents the Cartesian tree [29] of A succinctly

using the tree-covering approach of Farzan and Munro [55], which is hard to im-

plement (compared to other succinct tree representations [56]). Gawrychowski

and Nicholson [25] proposed an optimal (2.755n + o(n))-bit encoding for an-

swering RT2Q. This encoding does not support the queries efficiently, and it

can be constructed in O(n2) time in the worst case.

Previous work In this section, We introduce the (3.272n + o(n))-bit data

structure of Davoodi et al. [54], which answers RT2Q in O(1) time on an ar-

ray A[1, n] of size n. Their data structure answers the RT2Q(i, j) query by

performing the following three steps:

1. Compute and return the position k = RMQ(i, j).

2. Compute k1 = RMQ(i, k − 1) and k2 = RMQ(k + 1, j).

3. Compare A[k1] and A[k2], and return k1 if A[k1] > A[k2], or k2 otherwise.

For answering k = RMQ(i, j), they maintain the tree-covering [55] representa-

tion of C(A) to support LCA queries in O(1) time, using 2n+ o(n) bits. Next,

to compare A[k1] and A[k2] without accessing the array A, they store the spine

sequence S of A, defined as follows. For any node i which has left child il and

right child ir, let left spine (resp., right spine) of i, denoted by lspine(i) (resp.,

10



rspine(i)), be the path from the node i to the leftmost (resp., rightmost) de-

scendant of i. Also, let left inner spine (resp., right inner spine) of i, denoted

by linspine(i) (resp., rinspine(i)), be the rspine(il) (resp., lspine(ir)). Also, let

Li, Ri, li, and ri be the number of nodes in lspine(i), rspine(i), linspine(i), and

rinspine(i) respectively. Then by the property of C(A), the nodes k1 and k2

in C(A) are always on linspine(k) and rinspine(k), respectively. Now we de-

fine an array Sk[1,mk] to be a bit array of size mk = max (lk + rk − 1, 0)

where Sk[j] = 0 if the j-th largest element of A among the positions cor-

responding to linspine(k) ∪ rinspine(k) is in linspine(k), and 1 otherwise. Let

depth(k) be the depth of node k, and for any given pattern b and sequence B,

let rankb(B, i) be the number of occurrences of b in the first i positions of B,

and selectb(B, i) be the position of i-th occurrence of b in B. Then one can

compare A[k1] and A[k2] by comparing select0(Sk, depth(k1) − depth(k)) and

select1(Sk, depth(k2)− depth(k)) (i.e., by checking which of the two bits corre-

sponding to the nodes k1 and k2 comes first in Sk). The sequence S is simply

defined by concatenating all Sk’s for all nodes k ∈ C(A) in the increasing or-

der of their inorder numbers. Finally, to locate the starting position of Sk in S

efficiently, they introduce the following lemma.

Lemma 3.1 ([54]). For any u ∈ C(A),
∑

j<umj =

2u− Lτ − lu + Ldepth(u)− Rdepth(u) + 1− (u− Lleaves(u))

In the above lemma, τ denotes the root of C(A). Also, for any node u ∈

C(A), Ldepth(u) (resp., Rdepth(u)) denotes the number of nodes which have

their left (resp., right) child, in the path from τ to u; and, Lleaves(u) denotes

the number of leaves v ∈ C(A) which satisfies v < u.

Davoodi et al. [54] showed that all the operations used in the lemma can

be computed in O(1) time using the tree covering representation of C(A) along

with some auxiliary data structures. Furthermore, they showed that the size

of S is at most 1.5n, which implies that there exists the data structure for
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answering RT2Q in O(1) time using at most 3.5n + o(n) bits. With further

optimization, they improved the space usage to 3.272n + o(n) bits while still

supporting RT2Q in O(1) time.

Example 3.1. To answer RT2Q(3, 9) on the array A[1, 12] in Figure 3.1 using

C(A) with spine sequence S of A, we first compute and return RMQ(3, 9) =

LCA(3, 9) = 5. Next, to compare A[3] and A[7] (note that RMQ(3, 4) = 3 and

RMQ(6, 9) = 7), we first locate the starting position of S5 in S by
∑

j<5mj =

2·5−3−3+0−0+1−(5−2) = 2. Since depth(5) = 0, depth(3) = depth(7) = 2 and

select0(S5, 2) > select1(S5, 2), We return 7 as the position of the second largest

element in A[3, 9].

Our contributions In this chapter, we give the first practical implementation

of an encoding for RT2Q. We propose the following two implementations1:

• We first design an implementation which supports RT2Q efficiently, based

on the data structure of Davoodi et al. [54]. However, instead of using the

tree-covering approach, we use the DFUDS representation [57] of 2d-max

heap [19] which is easier to implement, and works well in practice. Our

implementation supports RT2Q in log n · g(n) time, for any increasing

function g(n) = ω(1), using at most 3.5n + o(n) bits. The experimental

results show that our data structure gives a better space-time tradeoffs,

compared to the indexing data structures for RT2Q (that have access to

the input array A, along with an auxiliary data structures for answering

the RMQ queries).

• We also design another encoding based on Jo et al.’s encoding for an-

swering RT2Q on 2 × n array [3]. We first show that our encoding can

be constructed in O(n) time while using at most 11n/3 ∼ 3.67n bits,

1All the implementations are available at https://github.com/wyptcs/R2MQ.
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which is more than the space used by the encoding of Davoodi et al. [54]

in the worst case. However, experimental results show that our encod-

ing takes less space than the encoding of Davoodi et al. [54] for all the

test cases, and even better than Gawrychowski and Nicholson’s optimal

encoding [25] in some cases.

The rest of this chapter is organized a follows. In Section 3.2, we describe

how to implement the data structure of Davoodi et al. [54] using DFUDS [57]

representation. In Section 3.3, we introduce an encoding for answering RT2Q

on one dimensional array based on the encoding of Jo et al. [3]. We provide the

empirical evaluations of our encodings in Section 3.4.

3.2 A practical implementation of encoding RT2Q with
efficient queries

Davoodi et al.’s data structure [54], described in the previous section, uses the

tree-covering method for encoding C(A), which is not practical compared to

other succinct tree representations such as BP (balanced parenthesis) [36] and

DFUDS (depth-first unary degree sequence) [57] representations. In this section,

we describe a practical implementation of Davoodi et al.’s data structure for

answering RT2Q on A[1, n], which uses the DFUDS representation of the 2d-

max heap of A [19]. We first describe the general definition of DFUDS and

2d-max heap, and show how to convert Davoodi et al.’s data structure using

these tools.

3.2.1 DFUDS and 2d-max heap

Given an ordinal tree T with n nodes, DFUDS of T (denoted by D(T )) is a

balanced parenthesis sequence of size 2n defined as follows: (i) if n = 1, D(T )

is (). (ii) Otherwise, if T has k subtrees T1, T2, . . . , Tk, D(T ) is (k+1) followed

by d(T1), d(T2), . . . , d(Tk), where d(Ti) is D(Ti) with the first open parenthesis

removed (see Figure 3.1 for an example). Since D(T )[1, 2n] is a balanced paren-
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thesis sequence, one can define two operations findopen(i) / findclose(i) which

find the matching open / closed parenthesis of the closed / open parenthesis in

D(T )[i]. It is known that by storing a o(n)-bit auxiliary structure along with

D(T ), one can support rank, select, findopen and findclose operations in O(1)

time. This in turn enables us to represent T to support a comprehensive list of

navigation queries on T in O(1) time using 2n + o(n) bits [39] (see Table 2 in

[56] for the list of operations).

One of the main reasons for using the tree-covering based approach for rep-

resenting C(A) in Davoodi’s et al.’s structure is to support the inorder(i) oper-

ation, which returns the i-th node in the inorder traversal of C(A). To our best

knowledge, one cannot support this operation on the BP or DFUDS of C(A)

(note that LCA can be supported in O(1) time on both BP and DFUDS [56]).

Sadakane [38] showed that (i) if the difference between any two consecutive

values in A is ±1, then one can answer RMQ (also referred to as ±1RMQ in

this special case) on A in O(1) time using 2n+ o(n) bits, and (ii) for general A,

one can support both inorder and LCA operations on D(C(A)) (thus, RMQ on

A) in O(1) time using 4n + o(n) bits, by converting C(A) into a ternary tree

by adding a dummy leaf to each node in C(A).

Fischer and Heun [19] proposed the 2d-max heap to support RMQ. The

2d-max heap on A (denoted by 2dmax(A)) is an alternative representation of

C(A), defined as follows: 2dmax(A) is an ordered tree with n+1 nodes, where

for 1 ≤ i ≤ n,

1. The i-th node in the preorder traversal of 2dmax(A) corresponds to A[i−

1] (we assume that A[0] =∞). In the rest of this chapter, we refer to this

node as node (i− 1) ∈ 2dmax(A). Therefore, the root of 2dmax(A) is 0.

2. For any non-root node i ∈ 2dmax(A), the parent of i is the node j where

j is the rightmost position in A[0, i− 1] such that A[j] > A[i].

The above definition implies that for 1 ≤ i ≤ n, the node i ∈ C(A) and the node
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i ∈ 2dmax(A) both correspond to the position i in A. The example in Figure 3.1

(a) and (b) shows the C(A) and 2dmax(A) of the input array A, respectively.

Fischer and Heun also showed that RMQ(i, j) operation can be supported in

O(1) time by using D(2dmax(A)) along with o(n)-bit auxiliary structures for

supporting rank, select, findopen, and ±1RMQ queries on D(2dmax(A)) – using

2n+ o(n) bits in total.

3.2.2 Practical implementation of Davoodi et al.’s data struc-
ture

In this section, we propose an alternative implementation of the data struc-

ture of [54] on A using D(2dmax(A)). Since one can support RMQ using

D(2dmax(A)) [19], it is enough to show how to find the position of the sec-

ond largest element in A[i, j]. We first introduce the following lemma to apply

Lemma 3.1 to 2dmax(A). Note that the left/right spine of a node i ∈ 2dmax(A)

is defined as the path from node i to the leftmost/rightmost descendant of i.

Lemma 3.2. Given an array A[1, n] of size n where all elements in A are

distinct, the following properties hold for any node k in the Cartesian tree,

C(A), of A.

(a) lk (number of nodes in linspine(k) in C(A)) is equal to the number of nodes

in rspine(kl) in 2dmax(A), where kl = presibling(k) denotes the previous

sibling of k.

(b) rk (number of nodes in rinspine(k) in C(A)) is equal to the number of

children of k ∈ 2dmax(A).

(c) Ldepth(k) is equal to the number of right siblings of all the nodes on the

path from node k to the root in 2dmax(A).

(d) Rdepth(k) = dk − 1, where dk is the depth of k ∈ 2dmax(A).
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(e) Lleaves(k) is equal the number of leftmost children u < k which are also

leaves in 2dmax(A).

Proof. (a) Let i0 < k be the rightmost position ofA which satisfies RMQ(i0, k) ̸=

k. Then by the definition of C(A), linspine(k) is composed of the nodes

{i1, i2, . . . , ilk} of C(A) where ij = RMQ(ij−1 + 1, k − 1). Thus, if lk > 0,

the node k in 2dmax(A) always has the previous sibling kl (otherwise,

k has no left child in C(A), which implies lk = 0). Furthermore, since

k − 1 is the rightmost leaf of the subtree of 2dmax(A) rooted at kl, all

the nodes i1, i2, . . . , ilk are on the rspine(kl) in 2dmax(A).

(b) For any node i in C(A), i is the node in rinspine(k) if and only if for

any k < j < i, RMQ(j, i) = i and RMQ(k, i) = k, which implies k is the

rightmost position in A which satisfies A[k] > A[i]. Thus, by the definition

of 2dmax(A), the set of all nodes in rinspine(k) in C(A) is same as the set

of all children of the node k in 2dmax(A).

(c) Let Lpath(k) be the set of nodes in C(A) which have their left child in

the path from k to the root (hence, |Lpath(k)|= Ldepth(k)). Now suppose

Lpath(k) = {i1, i2, . . . , iLdepth(k)} where i1 < i2 < · · · < iLdepth(k). Then

for any j ∈ {1, 2, . . . , Ldepth(k)}, (i) ij > k, and (ii) RMQ(k, ij) = ij .

Therefore, for the node k ∈ 2dmax(A), Lpath(k) is the same as the set of

nodes in 2dmax(A) which are the right siblings of the nodes on the path

from the node k to the root.

(d) Similar to the case of Ldepth(k), let Rpath(k) be the set of nodes in

C(A) which have their right child in the path from k to the root (hence,

|Rpath(k)|= Rdepth(k)). Then Rpath(k) consists all the nodes ij in C(A)
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which satisfy: (i) ij < k, and (ii) RMQ(ij , k) = ij . Thus by the definition

of 2dmax(A), Rpath(k) is the same as the set of proper ancestors of k in

2dmax(A).

(e) Note that a node in C(A) is a leaf if and only if its corresponding node

in 2dmax(A) is a leftmost child which is also a leaf. Thus, set of all leaf

nodes in C(A) are the same as the set of all leftmost children u < k which

are also leaves in 2dmax(A).

We define the spine sequence S of A, analogous to the spine sequence in [54]

(that is, concatenating all the Sk’s for each non-root node k ∈ 2dmax(A) ac-

cording to their preorder value in 2dmax(A)). Then by Lemma 3.2 (a) and (b),

we can answer RT2Q(i, j) using the following procedure:

1. Compute and return the position k = RMQ(i, j).

2. Compute k1 = RMQ(i, k − 1) and k2 = RMQ(k + 1, j).

3. Compute the node kl = presibling(k) in 2dmax(A), and the values l =

depth(k1)−depth(kl)+1 and r = childrank(k2), where childrank(k2) denotes

the number of siblings of k2 which are to its left.

4. Locate the starting position of Sk in S, and return k1 if select0(Sk, l) <

select1(Sk, r), or k2 otherwise.

Note that the operations used in the above procedure (RMQ, presibling, childrank,

and depth) can be supported in O(1) time using D(2dmax(A)) with o(n)-bit

auxiliary structures [58]. Also, to locate the position of Sk in S, we need to

compute
∑

1≤j<k mj (recall that mj = |Sj |). Now we describe how to com-

pute each value in Lemma 3.1 (therefore,
∑

1≤j<k mj) using D(2dmax(A)) with

Lemma 3.2.
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1. Lτ : The node τ = RMQ(1, n) is the rightmost child of the node 0 (the

root of 2dmax(A)). Also all the nodes of lspine(τ) in C(A) are all the

left siblings of τ (including τ itself) in 2dmax(A). Thus this value can be

computed in O(1) time by degree(0) (note that degree can be computed

in O(1) time using D(2dmax(A)) with o(n)-bit auxiliary structures [56]).

2. lk: By Lemma 3.2, linspine(k) of C(A) is the same as the rspine(kl) of

2dmax(A). Since the rightmost leaf of kl is k − 1, this can be computed

in O(1) time by depth(k − 1)− depth(kl) + 1.

3. Ldepth(k): For k ∈ 2dmax(A), let L(k) be the number right siblings of

the nodes on the path from the node k to the root in 2dmax(A). Now we

describe how to compute L(k) using D(2dmax(A)). Let d be the depth of

2dmax(A), and suppose f(n) = log n · g(n) where g(n) is any increasing

function which satisfies g(n) = ω(1). Then we fix a value 0 ≤ ℓ < f(n),

and define the array E which stores all the values of L(k) for every node

k ∈ 2dmax(A) whose depth is ℓ+ j · f(n), for all 0 ≤ j ≤ ⌊(d− ℓ)/f(n)⌋.

By a simple counting argument, we can choose ℓ to satisfy |E|≤ n/f(n).

Thus, E can be stored using at most n/f(n) · log n = n/g(n) = o(n)

bits. The values in E are stored according to the preorder number of

corresponding nodes in 2dmax(A). In addition, we maintain the bit array

B[1, n] of size n where for 1 ≤ i ≤ n, B[i] = 1 if and only if the L(i) is

stored in E. Using the data structure of Raman et al. [59], we can store

B using log
(

n
f(n)

)
+ o(n) = o(n) bits while supporting rank queries in

O(1) time (we can also access any position of B in O(1) time by two rank

queries). To answer L(k), we initialize the counter c = 0, and start the

scanning nodes on Lpath(k) starting from the node k. During this scan,

when we are at node j, we first check B[j]. If B[j] = 0, we increase c to

be c+ r where r = degree(parent(j))− childrank(j) (note that parent can

be computed in O(1) time using D(2dmax(A)) [56]), and move to the
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parent of j. If B[j] = 1, we return L(k) = c + rank1(B, j). Thus, using

D(2dmax(A)) with o(n)-bit auxiliary structures, we can answer L(k) in

O(f(n)) time.

4. Rdepth(k): By Lemma 3.2, this is the same as the number of proper ances-

tors of k in 2dmax(A), which can be computed O(1) time by depth(k)−1.

5. Lleaves(k): By Lemma 3.2, this is the same as the number of leftmost

children u < k which are also leaves in 2dmax(A). This value can be

computed by counting the number of occurrences of the pattern ’())’ be-

fore the closing parenthesis corresponding to node k, in O(1) time, using

D(2dmax(A)) with o(n)-bit auxiliary data structures [60].

Example 3.2. We show how to locate the starting position of S5 in S using

2dmax(A) in Figure 3.1 (b). From node 5 ∈ 2dmax(A) in the figure, one can

observe that presibling(5) = 2, L(5) = 0, and select)(D(2dmax(A)), 5) + 1 =

12. Also degree(0) = 3, depth(4) − depth(2) + 1 = 3, depth(5) − 1 = 0,

and rank())(D(2dmax(A)), 12) = 2. Thus, the starting position of S5 in S is∑
j<5mj = 2 · 5− 3− 3 + 0− 0 + 1− (5− 2) = 2.

We summarize the result in the following theorem.

Theorem 3.1. Given an array A[1, n] of size n, RT2Q on A can be computed in

O(log n·g(n)) time, for any increasing function g(n) = ω(1). The data structure

uses at most 1.5n+ o(n) additional bits, along with the DFUDS sequence of the

2d-max heap of A, D(2dmax(A)).

Alternative representation of 2dmax(A). In practice, the performance of

the data structure of Theorem 3.1 highly depends on the depth of 2dmax(A). To
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Figure 3.1: Example of (a) C(A) and (b) 2dmax(A) of the array A[1, 12]. Red
and blue colored nodes are the nodes in linspine(5) and rinspine(5) of C(A)
respectively.
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Figure 3.2: r2dmax(A) of the array in Figure 3.1. Red and blue colored nodes
correspond to the nodes in C(A) in Figure 3.1 with the same colors.

reduce the depth of 2dmax(A), Ferrada and Navarro [46] considered rightmost-

path 2dmax(A) (denoted as r2dmax(A)), which can be obtained from C(A) by

applying τ1 (first-child, next-sibling) transformation [1]. Note that the original

2dmax(A) can be obtained from C(A) by applying τ4 (previous-sibling, last-

child) transformation [1]. Davoodi et al. [1] also noted that the i-th position

of A corresponds to the node in r2dmax(A) whose postorder number is i (see

Figure 3.2 for an example). For example, if A is a strictly decreasing array

from 1 to n, the depths of 2dmax(A) and r2dmax(A) are n and 1, respectively.

Ferrada and Navarro [46] showed that one can answer RMQ queries on A as

using r2dmax(A) with o(n)-bit auxiliary structures, which are different from

the structures used for answering the same query using 2dmax(A). Baumstark

et al. [45] showed that r2dmax(A) is isomorphic to 2dmax(
←−
A ), where

←−
A is

an array of size n constructed by reversing the all elements of A. Thus, one

can simulate the RMQ(i, j) on A using r2dmax(A) by answering RMQ(n+1−

j, n+ 1− i) on
←−
A using 2dmax(

←−
A ) (note that in this case, one breaks the ties

with rightmost policy when constructing 2dmax(
←−
A ), i.e., among all the equal
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elements in a range, the rightmost element is considered as the largest).

To implement the data structure of Theorem 3.1, we first check the depth

of 2dmax(A) and 2dmax(
←−
A ) at pre-processing step, and maintain the one with

smaller depth (along with the auxiliary structures).

3.3 Space-efficient encoding of RT2Q with fast con-
struction

In this section, we consider an encoding whose space usage is close to Gawrychowski

and Nicholson’s optimal encoding [25] in practice while supporting O(n) con-

struction time. Note that in this encoding, efficient query time is not of concern

(to answer RT2Q, we need to reconstruct the entire encoding in the worst case,

which takes O(n) time).

Given an array A of size n, as in Section 3.2, we first construct D(T )

(DFUDS of 2dmax(A)) using 2n bits, to support RMQ on A. Next, to an-

swer the position of the second largest element in the query range, we define a

DAG DA. A similar DAG structure is first proposed by Jo et al. [3] to support

RT2Q queries on 2 × n array, but we can easily adapt it to the 1-dimensional

array A as follows (see Figure 3.3 for an example).

• Each node p of DA is labeled with a closed interval Ip.

• The root of DA is labeled with [1, n].

• A node p ∈ DA is a leaf node if and only if the length of the interval Ip is

less than three.

• For any node p ∈ DA with Ip = [pl, pr], suppose RT2Q(pl, pr) is {a, b}

with a < b. Then p has a left child with label [pl, b− 1], and a right child

with label [a+ 1, pr].

In the rest of the chapter, for any node p ∈ DA with label Ip = [pl, pr],

we use RT2Q(Ip) (resp. RMQ(Ip)) and RT2Q(pl, pr) (resp. RMQ(pl, pr)) inter-
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Figure 3.3: Example of DA and its encoding SA of the array A[1, 8].

changeably. The following lemma shows that we can answer RT2Q queries by

storing D(T ) and DA.

Lemma 3.3 ([3]). Given an array A[1, n] of size n, the following properties

hold:

1. For any two distinct nodes p and q, RT2Q(Ip) ̸= RT2Q(Iq).

2. For any range [i, j] with 1 ≤ i ≤ j ≤ n, there exists a node p[i,j] ∈ DA

such that RT2Q(i, j) = RT2Q(Ip[i,j]). Specifically, p
[i,j] is the last node in

DA according to the level-order traversal which satisfies [i, j] ⊂ Ip.

3. The node p[i,j] can be found in O(|DA|) time by traversing the nodes in

DA according to the level order 2.

Now we describe how to encode DA. The basic idea is that for any node

p ∈ DA, if Ip and RT2Q(Ip) are given, one can decode the labels of p’s children

2For any node p ∈ DA we define a level of p as the number of edges in the longest path
from the root of DA to p.
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by the properties of DA. Also, if the answer of the RMQ(i, j) is given, then

at most one additional bit (which indicates whether the position of the second

largest element is left or right to the of RMQ(i, j)) is necessary to decode the

position of the second largest element in A[i, j]. Now for each node p ∈ DA,

we define sp ∈ {−1, 0, 1} as follows. We set sp = −1 if (i) p is a leaf node, or

(ii) RMQ(Ip) is the leftmost or the rightmost point of Ip, i.e., sp = −1 if and

only if the p is a leaf node or one can answer RT2Q(Ip) by using only RMQ.

Otherwise, we set sp = 0 (resp. 1) if the position of the second largest element

of A[i, j] is to the left (resp. right) of RMQ(Ip). Let SA be the sequence obtained

by concatenating all si with si ̸= −1 according to the level order of DA (see

Figure 3.3 for an example). One can decode all the labels of the nodes in DA

using SA and D(T ). The following lemma shows that the size of SA is at most

5n/3; and thus the encoding uses at most 2n + 5n/3 = 11n/3 ∼ 3.67n bits in

total.

Lemma 3.4. For any array A[1, n] of size n, |SA|≤ 5n/3.

Proof. To construct SA, suppose the encoder visits the node p (according to

the level-order traversal) where sp ̸= −1. Then the position i ∈ {1, 2, . . . , n}

is picked at the node p if and only if i is the position of the second largest

element in RT2Q(Ip), where Ip = [pl, pr] (thus, each node in DA picks at most

one position). Furthermore, Jo et al. [3] showed that after all nodes in DA

are traversed, any position in {1, 2, . . . , n} is picked at most twice. Now we

claim that if any two consecutive positions i and i + 1 (for some i > 1) are

picked twice, then the position i−1 is picked at most once (in other words, any

three consecutive positions are picked at most 5 times). If the claim is true, the

theorem statement holds since |SA| is the total number of times any position is

picked.

To prove the claim, without loss of generality, assume that both i and (i+1)

are picked twice, and A[i] > A[i + 1] > A[i − 1] (which means the position i
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is picked earlier than the position (i + 1)). Also, suppose i is picked at the

nodes p and q where Ip = [pl, pr] and Iq = [ql, qr]. Then Ip ̸⊂ Iq and Iq ̸⊂

Ip by Lemma 3.3 (otherwise, RT2Q(Ip) = RT2Q(Iq)). Now consider the case

pl < ql < i < pr < qr (other case can be handled similarly). Then, by the

construction of DA, both A[ql − 1] and A[pr + 1] are larger than A[i]. Thus,

RT2Q(Ip) = {(ql − 1), i} and RT2Q(Iq) = {i, (pr + 1)}. Furthermore, (i + 1)

can only be picked at (i) a descendant of the right child of p (which is same as

the left child of q) and (ii) a descendant of the right child of q. Also, any node

whose label contains both i and (i + 1) cannot pick the position (i − 1) after

picking (i+ 1) since A[i] > A[i+ 1] > A[i− 1], and any node in Case (ii) does

not contain (i− 1). Thus, the position (i− 1) can only be an answer of RT2Q

at either (a) a descendant of the left child of p, or (b) a descendant of q which

contains i but not i + 1. However, since i is always the rightmost position of

any node in Case (b) which is not covered by Case (a). Thus, (i − 1) can be

picked at most once, which proves the claim.

To construct the encoding, we first construct D(T ) and the auxiliary struc-

tures, which can be constructed in O(n) time and supports RMQ on A in O(1)

time [19]. Next, we construct SA by encoding the label of nodes of DA in the

level-order. This takes O(1) time per node (by making use of the RMQ in O(1)

time). Since DA has O(n) nodes [3], SA can be constructed in O(n) time. Note

that auxiliary structures for supporting RMQ can be deleted after constructing

DA.

Example 3.3. To answer the query RMQ(4, 7) on the array A[1, 8] in Fig-

ure 3.3, we first decode the left and right children of the root node [1, 8] in DA

by referring to the first element in SA, which is 0. This indicates RMQ(1, 4) is

the position of the second largest element in A[1, 8]. After that, decode the rest
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of the nodes according to the level-order traversal of DA. Then after decoding

the children of the node [3, 7], we can conclude p[4,7] = [3, 7] (note that [3, 7] is

the last node in DA according to the level-order traversal which contains [4, 7]).

Since s[3,7] = 1, we can answer the position of the second largest element in

A[4, 7] is RMQ(5, 7) = 7.

3.4 Experimental results

Our data structures were implemented in C++ (compiled by g++ 9.3.0 with

O3 optimization), and all the experiments were done on the Desktop PC (Intel

i7-9900KS CPU with 128GB of RAM). We use the input array A[1, n] which

stores 32-bit unsigned integers. We consider three different types of input arrays:

(a) random, (b) pseudo-increasing, and (c) pseudo-decreasing, where each A[i]

is randomly generated from the range (a) [1, n], (b) [i − δ, i + δ], and (c) [n −

i− δ, n− i+ δ], respectively for a given parameter δ > 0.

We also consider the following the real-world datasets:

• Weather: The data of temperature in Seoul for the year 2021. We col-

lected the data from Open MET Data Portal by Korea Meteorological

Administration (KMA)3 (array size n = 524, 236).

• DNA: LCP array of the text DNA from Pizza&Chilli Corpus4 – we con-

structed the LCP array for a prefix of the DNA sequence of length n

(n = 2× 106).

• Google: Degree sequence of the web graph of Google from Stanford Large

Network Dataset Collection5 (n = 875, 713).

3https://data.kma.go.kr/resources/html/en/aowdp.html
4http://pizzachili.dcc.uchile.cl/texts.html
5https://snap.stanford.edu
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• Youtube: Degree sequence of the social network graph of Google from

Stanford Large Network Dataset Collection (n = 1, 134, 890).

3.4.1 Experimental results on data structures for answering
RT2Q efficiently

In this section, we compare the space usage (bits per element) and query

time (µs) of our encoding structure of Section 3.2 (referred to as R2MQ-

ENCODING) with the following four indexing data structures for answering

RT2Q: (i) A + RMQ encoding of Fisher and Heun [19] (FH-DFUDS), (ii) A

+ RMQ encoding of Ferrada and Navarro [46] (FN-BP), (iii) A + RMQ en-

coding of Baumstark et al. [46] (BGHL-BP), and (iv) A + Fischer and Huen’s

indexing data structure for RMQ queries [19] (FH-INDEXING). Note that the

encoding of (i) uses D(2dmax(A)), whereas the encodings of (ii) and (iii) use

the BP of 2dmax(A). For (i) and (ii), we use the implementation of Ferrada

and Navarro [46]6, and for (iii), we use the implementation of Baumstark et

al. [46]7. Finally for (iv), we use our own implementation.

To support RMQ on A, and navigation queries on 2dmax(A) except depth,

we use sdsl-lite [61] to support rank, select, findopen, findclose (for presibling

operation), and ±1RMQ on D(2dmax(A)). Note that for findopen, findclose

and ±1RMQ, we use a simplified RMM-tree [39] which maintains only the min

field for these queries. For computing depth(k) queries, we use the same data

structure for computing L(k). More precisely, if L(k) is stored in E, we also store

depth(k) in a separate array E′ at the same position (thus, the same bit array

B can be used for L(k) and depth(k)). For computing depth(k), we perform the

parent query iteratively until we find the node whose depth is stored in E′. Note

that we do not keep any additional data structures for both depth and L(K)

queries if the depth of the tree is less than ⌈log n⌉.

Since the overhead for depth and L(k) is the main drawback of our imple-

6Code is available at https://github.com/hferrada/rmqFischerDFUDS and https://

github.com/hferrada/rmq.
7Code is available at https://github.com/kittobi1992/rmq-experiments.
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Figure 3.4: The distribution of the depth of nodes in 2dmax(A).

Figure 3.5: The distribution of the depth of the nodes in 2dmax(A) which
correspond to the RMQ of A.
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mentation, we do an empirical evaluation to decide the sizes of E and E′. When

A is a randomly generated array of size 108, the depth of 2dmax(A) is less than

50 in most cases (in theory, the expected depth of C(A) for a random array A is

about Θ(log n), and the depth of 2dmax(A) is at most the depth of C(A) [62]),

and the depth of nodes has close to the normal distribution (see Figure 3.4).

Next, we evaluate the distribution of the depth of the nodes 2dmax(A) which

correspond to the RMQ of A (note that we only need the value of depth(k) and

L(k) when k = RMQ(i, j) for some 1 ≤ i ≤ j ≤ n). As shown in Figure 3.5,

when the query range is 104, the depth of all the nodes corresponding to RMQ

is less than half of the depth of 2dmax(A). Furthermore, even for the small

query ranges (10), the depth of 95.5% of the nodes is less than half of the depth

of 2dmax(A). From the distribution of the nodes corresponding to RMQ of A,

we consider two greedy algorithms for selecting the nodes to be stored in E and

E′. Suppose we want to allot at most N nodes to be stored in E and E′, and

let DN be the smallest depth where the number of the nodes with depth DN

is more than N (if there is no such depth, DN is the depth of 2dmax(A)); and

let d = min (⌊D/2⌋ , DN − 1), where D is the depth of 2dmax(A). Then greedy

algorithm 1 (GA1) repeats the following procedure from i = 0 to d:

1. Choose all the nodes with depth i, if the total number of chosen nodes is

at most N .

2. Increase i by 1.

Similarly, greedy algorithm 2 (GA2) repeats the first step of the above

procedure by decreasing the value i from d to 0.

We evaluate the time for answering RT2Q with different amounts of space

allotted for E and E′. As shown in Figure 3.6, increasing the allotted space does

not significantly improve the query time when the size of the query range is 106

since most of the nodes corresponding to the answer of RMQ are close to the

root node. The same tendency is shown for other sizes of query ranges (10, 102,
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Figure 3.6: Query time based on the allotted space for E and E′.

and 104) when allotting more than 0.4n bits for E and E′, since both GA1 and

GA2 cannot significantly increase the number of nodes to be stored (note that

the number of nodes increases roughly exponentially with the depth, from 1 to

d). In our implementation, we choose GA2 which shows better query time for

small query ranges. Also, the space allotted for storing E and E′ is determined

based on the maximum values (either 8, 16 or 32-bit values) stored in those

arrays, as follows. We allot n/⌊log log n⌋ bits if the maximum values of E and

E′ are both at most 28 (in this case, we use 8-bit integer arrays for storing

these). In general, if the maximum values of E and E′ are at most 28c and 28c
′
,

respectively, for some c, c′ ∈ {1, 2, 4}, then we allot ( c+c′

2 )n bits for storing these

arrays. For example, if 32 and 8-bit integer arrays are necessary to store E and

E′ respectively for an array A of size 108, we use (4+1
2 )·n/

⌊
log log 108

⌋
= 0.625n
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bits for storing E and E′.

Next, we evaluate the space usage on randomly generated arrays of size

n = 106 to n = 109 (see Figure 3.7). Our structure uses up to 4.6 and 4.8 bpe

(bits per element) for n = 106 and n = 109 respectively. This shows that our

data structure’s average space is not much changed by increasing the array size,

like other indexing structures except FH-INDEXING. For FH-INDEXING, each

precomputed value needs 32 bits even for an array of size 106 (note that
⌈
log 106

⌉
is 19), which is wasteful in terms of space. Since the input array is necessary to

answer RT2Q using indexing data structures, our data structure takes at least

7.1 times less space than the existing indexing data structures (each input array

in Figure 3.7 takes 32n bits). Next, we fix the size of the (randomly-generated)

input array to be 109, and evaluate query time for various query ranges (see

Figure 3.8 ). Our data structure and FH-DFUDS are highly dependent on the

query range, compared to BP-based indexing structures. This is because, in the

implementation, the running time of findopen operation is an increasing function

of the range (note that findopen operation is used for computing RMQ, depth,

and L(k) when 2d-max heap is represented by DFUDS). Interestingly, when the

query range is changed from 106 to 108, the query time of FH-DFUDS increases

much more rapidly than our data structures. This shows that the overhead for

answering RMQ on FH-DFUDS is more than computing L(k) and depth(k)

for the nodes with small depths. Compared to the fastest indexing solutions

(BGHL-BP and FH-INDEXING), our data structure shows up to 10 and 4.1

times slower query times when the query range is 10 and 108 respectively. Note

that the space usage of our encoding is roughly 7 times smaller than the space

usage of the indexing structures (including the space usage of the input array).

Next, we evaluate the space and query time for pseudo-increasing and

pseudo-decreasing arrays of size n = 109 with various δ values, with the size of

the query range fixed to
√
n (see Figures 3.9, 3.10, 3.11, and 3.12.). Note that

when A is pseudo-increasing (resp. pseudo-decreasing),
←−
A is pseudo-decreasing
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(resp. pseudo-increasing). Thus, our data structure and BGHL-BP show similar

space usage and query time on both pseudo-increasing and pseudo-decreasing

arrays (note that for FH-DFUDS, the query time on pseudo-increasing arrays

is up to 3 times slower than the query time on pseudo-decreasing arrays be-

cause of the larger depth of 2dmax(A). Note that the average distance between

two matching parenthesis in DFUDS decreases proportional to the depth of

2dmax(A)). The space usage of our data structure is not much affected by δ

(up to 4.03 bpe to 4.39 bpe) since we do not maintain the arrays E and E′

for all the cases (the depth of 2dmax(A) is still less than log 109 ∼ 30 even

for large δ = 108). Also, the query time for our data structure increases with

δ because the average depth of the nodes corresponding to RMQ is increases

with δ. Overall, our data structure shows better time-space tradeoffs (takes up

to 7.5 times less space while spending up to 4.2 times slower the query time)

than all other indexing data structures in the evaluation.

Next, for δ = 103 and 106, we evaluate the query time for pseudo-increasing

and pseudo-decreasing arrays of size n = 109 for various query ranges (see Fig-

ures 3.13, 3.14, 3.15, and 3.16). Again, DFUDS-based implementations (R2MQ-

ENCODING and FH-DFUDS) highly depend on the depth of 2dmax(A) and

query ranges because of findopen operation, whereas BP-based implementa-

tions (FN-BP and BGHL-BP) have similar results compared to the random

array case. Especially compared to the random array case, our data structure

supports much (up to 2.2 times) faster queries on pseudo-increasing and de-

creasing arrays for most query ranges since there is no additional overhead for

accessing E and E′ in both cases.

Finally, we evaluate the space and query time for the inputs from the real

dataset for various query ranges (see Figures 3.17, 3.18, 3.19, 3.20, and 3.21).

For all the input datasets except for the dataset Weather with query range 103,

our data structure shows a better time-space tradeoffs than the other indexing

data structures. Since Weather has both long increasing and decreasing runs of
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elements, its 2d-max heap has a large depth (more than 1900), in both cases

when the input is stored in the forward and reversed order. In this case, the

greedy algorithm fails to support fast depth queries for some query ranges.

3.4.2 Experimental results on space-efficient encodings for RT2Q

In this section, we compare the space usage (bits per element) and construction

time (ms) of our encoding of Section 3.3 (referred to as DAG-ENCODING) with

the following two encodings for answering RT2Q: (i) Davoodi et al. [54]’s encod-

ing without auxiliary structures for efficient queries, that is, BP of 2dmax(A)

along with the spine sequence of 2dmax(A) (SPINE), and (ii) Gawrychowski

and Nicholson’s optimal encoding [25] (GN). In theory, to construct the DAG-

ENCODING in linear time, we need a data structure that answers RMQ queries

in O(1) time. However, empirical testing shows that when A is randomly gener-

ated, using a simple linear scan to answer RMQ shows faster construction time

(up to 2 times) than using the RMQ data structure for constructing DA. This

is because, most of the labels in DA are short intervals. For pseudo-increasing

and decreasing inputs, we use the implementation of Baumstark et al. [45] to

support RMQ queries. Since Baumstark et al. [45]’s implementation uses BP

of 2dmax(A) for answering RMQ queries, in the DAG-ENCODING we use BP

(instead DFUDS) of 2dmax(A).

Finally for all the encodings, we consider the space usage of the follow-

ing three quantities: (i) encoding without any compression, (ii) encoding com-

pressed using an entropy-based compression, and (iii) encoding compressed us-

ing grammar-based compression. For (ii), we first represent the encodings as

the integer sequences from 0 to 255 and compress them with Huffman encod-

ing. For (iii), we use LZW (Lempel–Ziv–Welch) compression algorithm [63] on

each encoding. Note that DAG-ENCODING and SPINE are composed of two

bit sequences. For these encodings, we compress each sequence separately and

measure the total space. Also, note that the encoding GN of Gawrychowski and
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Nicholson [25] actually takes at most 3n bits without compression, and if we

compress this bit sequence using the fact that there are exactly n ones in it, we

get the optimal space bound of 2.755n+ o(n) bits.

We now summarize our experimental results. First, we evaluate the con-

struction time of the encodings without any compression algorithms (see Fig-

ures 3.22, 3.23, and 3.24). Note that compression algorithms do not affect the

overall construction time other than the randomly generated input with size

n = 102 or 103 (in this case, SPINE is up to 5 times slower than the DAG-

ENCODING for Huffman encoding). For random inputs, the construction time

of GN increases much faster than the other two encodings by increasing the size

of inputs, since only GN is an O(n2)-time construction algorithm in the worst

case. Also, SPINE shows a faster construction time than DAG-ENCODING

since each input position is accessed at most once to construct the spine se-

quence of 2dmax(A) (in DA, the labels of two nodes can have large overlaps).

When the input is a pseudo-increasing array, GN shows the fastest con-

struction time for small δ, and faster construction time than DAG-ENCODING

for all δ. To construct GN, one needs to construct n sequences P1, P2, . . . , Pn

where Pi[j] is the smaller value between 2 and the number of elements larger

than A[j] in A[j + 1, i]. Thus, when δ is small, one can obtain Pi+1 from Pi

efficiently since most of the values in Pi are already 2. However, when the input

is pseudo-decreasing, one needs to compute almost every value in Pi+1. Thus,

the construction time of GN is much slower than the other two encodings (∼ 30

times slower than DAG-ENCODING when δ = 105) for pseudo-decreasing in-

puts. For SPINE, the construction time is only affected by the input size and not

by the types of input which only affect the shape of 2dmax(A). The construc-

tion time of DAG-ENCODING increases for pseudo-increasing and decreasing

inputs with increasing δ since the array resembles more closure to a random

array.

Next, we evaluate the encoding sizes with Huffman encoding and LZW
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compression. Without any compression (see Figures 3.25, 3.26, and 3.27), DAG-

ENCODING shows the smallest size for all types of inputs (up to 2.78 bpe),

compared to the SPINE (up to 3.33 bpe) and GN (up to 3 bpe). Surprisingly,

although Lemma 3.4 says the size of DAG-ENCODING can be up to 3.67

bpe, DAG-ENCODING takes less than 3 bpe for all cases. We believe that the

analysis of the Lemma 3.4 can be improved by counting the number of leaf

nodes in DA carefully.

When the encodings are compressed using Huffman encoding, DAG-ENCODING

still shows the smallest size for most of the inputs (see Figures 3.28, 3.29, and

3.30). Also, GN is more compressible than other encodings since the bit se-

quence GN, without compression, is represented as a unary code of integers.

For random inputs, DAG-ENCODING and SPINE show almost the same sizes

compared to their uncompressed form. This is because the BP of 2dmax(A) has

the same number of open and closed parentheses without long runs, leading to a

low compression performance with entropy-based compression algorithms. For

pseudo-increasing and decreasing inputs, BP of 2dmax(A) is more compressible

for small δ since 2dmax(A) has long left or right spines, which lead to the long

runs of open or closed parentheses, and hence, the spine sequence of 2dmax(A)

is also more compressible in these cases.

Next, we evaluate the size when the encodings are compressed by LZW com-

pression algorithm (see Figures 3.31, 3.32, and 3.33). In this case, GN achieves

the smallest space for most of the inputs. For pseudo-increasing and decreas-

ing inputs, the original sequence of GN has long runs of same integers, which

are highly compressible with grammar-based compression algorithms. SPINE

and DAG-ENCODING are also more compressible with LZW compression than

Huffman encoding for pseudo-increasing and decreasing inputs due to the long

runs of open and closed parentheses in the BP of 2dmax(A). For random in-

puts, GN is slightly better than the other two encodings, but all three encodings

show similar compression ratios (better than using Huffman encoding when the
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Figure 3.7: Space usage on random arrays of size from 106 to 109.

input size is more than 104). Also, all three encodings show better compression

with increasing input size.

Finally, we evaluate the construction time of the encodings and their sizes

for the inputs from the real datasets (see Figures 3.34, 3.35, 3.36, and 3.37).

For all the inputs, DAG-ENCODING shows the smallest size for all types of

inputs with compression algorithms, compared to SPINE and GN, while the

construction time is at least 6.8 times faster than GN.
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Figure 3.8: Query time on the random array of size 109.

Figure 3.9: Space usage on the pseudo-increasing array of size n = 109. The size
of the query range is fixed to ⌈

√
n ⌉ = 31623.
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Figure 3.10: Query time on the pseudo-increasing array of size n = 109. The
size of the query range is fixed to ⌈

√
n ⌉ = 31623.

Figure 3.11: Space usage on the pseudo-decreasing array of size n = 109. The
size of the query range is fixed to ⌈

√
n ⌉ = 31623.
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Figure 3.12: Query time on on the pseudo-decreasing array of size n = 109. The
size of the query range is fixed to ⌈

√
n ⌉ = 31623.
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Figure 3.13: Query time on the pseudo-increasing array with δ = 103.

Figure 3.14: Query time on the pseudo-increasing array with δ = 106.
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Figure 3.15: Query time on the pseudo-decreasing array with δ = 103.

Figure 3.16: Query time on the pseudo-decreasing array with δ = 106.
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Figure 3.17: Space usage on the inputs from real data sets.

Figure 3.18: Query times on the inputs from real data sets (weather).
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Figure 3.19: Query times on the inputs from real data sets (dna).

Figure 3.20: Query times on the inputs from real data sets (google).
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Figure 3.21: Query times on the inputs from real data sets (youtube).
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Figure 3.22: Construction time on random array of size from 10 to 106.
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Figure 3.23: Construction time on pseudo-increasing array of size n = 106.
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Figure 3.24: Construction time on pseudo-decreasing array of size n = 106.
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Figure 3.25: Size of the encodings (without compression) on random array of
size from 10 to 106.
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Figure 3.26: Size of the encodings (without compression) on pseudo-increasing
array of size n = 106.
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Figure 3.27: Size of the encodings (without compression) on pseudo-decreasing
array of size n = 106.
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Figure 3.28: Size of the encodings (with Huffman encoding) on random array
of size from 10 to 106.
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Figure 3.29: Size of the encodings (with Huffman encoding) on pseudo-
increasing array of size n = 106.
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Figure 3.30: Size of the encodings (with Huffman encoding) on pseudo-
decreasing array of size n = 106.
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Figure 3.31: Size of the encodings (with LZW compression) on random array
of size from 10 to 106.
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Figure 3.32: Size of the encodings (with LZW compression) on pseudo-increasing
array of size n = 106.
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Figure 3.33: Size of the encodings (with LZW compression) on pseudo-
decreasing array of size n = 106.
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Figure 3.34: Construction time of the encodings on the inputs from real data
sets.
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Figure 3.35: Space usage (original) of the encodings on the inputs from real
data sets.
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Figure 3.36: Space usage (huffman) of the encodings on the inputs from real
data sets.
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Figure 3.37: Space usage (lzw) of the encodings on the inputs from real data
sets.
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Chapter 4

Practical Implementations of
Compressed RAM

4.1 Introduction

In this chapter, we consider the problem of compressed RAM data structures.

Before we introduce our data structures, we briefly describe the two compressed

RAM data structures of Jansson et al. [4], and Grossi et al. [5]. In the rest of this

chapter, we denote these data structures as CRAM and DCRAM, respectively.

We do not discuss how to support insert and delete operations on these struc-

tures in theory, as they do not affect the main features of our implementation.

CRAM: In CRAM, one first divides S into blocks of size ℓ = 1
2 logσ n, and

considers S as a string S′ of length n′ = nϵ/ℓ over an alphabet of size 2ℓ =
√
n.

We then compress the string S′ by first assigning binary codewords of lengths

from 1 to O(lg n) such that the length of a codeword for a given character in S′ is

inversely proportional to its frequency in S′. We then concatenate the codewords

of every 1/ϵ consecutive characters in S′ (i.e., ℓ/ϵ consecutive characters in S)

into a superblock, for some constant 0 < ϵ < 1. The lengths of the encoded
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superblocks of S are managed by a darray data structure, which supports the

following two operations efficiently: (i) address(i): access the position of the

i-th superblock, and (ii) realloc(i, b): update the length of the encoded i-th

superblock to b bits.

The execution of the algorithm is decomposed into phases where j-th phrase

consists of all the operations between the ((j− 1)n′+1)-th and (jn′)-th replace

operations on S. For the 0-th phrase, one initializes the following substructures

along with the compressed S and darray: (i) a frequency table F that maintains

the frequencies of the blocks in S, (ii) two encoding tables, Cold and Cnew, (iii)

two decoding tables Dold and Dnew, corresponding to Cold and Cnew, respec-

tively. We initialize Cold = Cnew, and Dold = Dnew. Finally, CRAM maintains

a bit array R such that R[k] indicates whether the k-th superblock is encoded

using Cnew or Cold. Then during the j-th phase, one can answer the access(S, i)

by (i) finding the k-th superblock that contains S[i], and (ii) decoding S[i] using

DR[k].

Next, we describe how to perform the replace(S, i, c), which is the x-th

replace operation during the j-th phrase. We first find the k-th superblock that

contains S[i], and re-encode the superblock by referring to CR[k] and DR[k], and

update F accordingly. In addition, we re-encode the superblocks from left to

right (one at a time). If x = n′, all the superblocks are encoded with Cnew.

We then replace Cold and Dold as current Cnew and Dnew, respectively, and

reconstruct Cnew and Dnew from F . In theory, these reconstructions can be

deamortized and one can perform replace in O(1/ϵ) time in the worst case.

DCRAM: As in the description above, DCRAM also considers the input string

S of length n over an alphabet of size σ as another string S′ of length n′ = n/ℓ,

where ℓ = 1
2 logσ n is the size of a block. Then each block can be considered as

a character from the alphabet of size 2ℓ =
√
n. Initially, for each character in

S′, we assign a codeword whose length is inversely proportional to its frequency
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in S′. For this purpose, we first create a codetable containing all possible binary

codes of length j for 1 ≤ j ≤ 1
2 logσ n and assign the shortest available code

to each character in S′ by considering the characters in the decreasing order

of their frequencies. Now the initial codeword assigned to a character is sim-

ply the code assigned to that character from the codetable preceded by “000”

(i.e., each codeword is extended by prepending on three zeroes). This ensures

that plenty of codewords of each length are available in the codetable, which

would be assigned to the characters whose frequency increases ‘significantly’.

The compressed string is obtained by concatenating the codewords of each of

the n′ (meta) characters in S′. More precisely, each block b is initially encoded

as a codeword of length j + 3 if its frequency in S′ is between (n′/2j) + 1 and

n′/2j+1 (thus, 2j+3 − 2j (check 2j+2) codewords of length j + 3 are unused

initially). Note that for each j, at most one codeword of length j is used for en-

coding any block b. Also, DCRAM maintains a list of codewords corresponding

to each block of S, a list of unused codewords, and darray to support address(i)

and realloc operations on S′.

To answer access(S, i), one first finds the block that contains S[i], using the

address query, and then decodes that block to report S[i] (note that the lengths

of the compressed blocks are stored explicitly, and also that each block encodes

a fixed number of characters in S). To answer replace(S, i, c), we first find the

block bi that contains S[i], and update the frequencies of bi and c appropriately

(i.e., increase the frequency of c and decrease the frequency of bi). Let li be the

length of the current codeword of bi. If the frequency of block bi exceeds the

upper bound (2li−3) on the frequency of codewords of length li, we assign an

unused codeword of length li−1 for bi, from the free codewords of length li−1

if it exists. If all the codewords of length li are used for encoding other blocks

of S, we reconstruct all the structures of DCRAM. This reconstruction process

can be deamortized, and one can perform replace operation on DCRAM in O(1)

time.
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4.2 Practical implementation

This section describes our two practical implementations of extended com-

pressed RAM on S. The implementations are based on CRAM and DCRAM,

respectively. As in the case of CRAM, we divide S into blocks of size ℓ, and

define a superblock as 1/ϵ consecutive blocks in S (we describe how to choose ℓ

and ϵ in the next section). Note that we maintain the superblocks in both im-

plementations, although DCRAM does not maintain any superblocks. For both

implementations, we made the following modifications:

• We encode the blocks of S using Huffman codes [64]. Since Huffman code

is fixed-to-variable, we do a linear scan on the superblock to decode the

blocks contained in the superblock. Compared to using the binary code as

in [4] and [5], the time for access operation gets slower, but the size of the

compressed representation of S takes significantly less space in practice

(since we don’t need to encode the length of each codeword explicitly). Af-

ter constructing a Huffman tree from the block frequencies, we construct

a code table (and delete the Huffman tree) that is then used to convert

between the codewords and the blocks. This optimization is a variant of

previous efficient Huffman decoding works [65, 66].

• Instead of darray, we use a B+-tree of fixed-height h (h is decided depend-

ing on the size of S) to manage the superblocks of S. See [67] for a detailed

survey of the B-tree and its variants. In a fixed-height B+-tree, all the

operations are performed in the same manner as in a standard B+-tree,

except that the root node does not split regardless of the number of insert

operations on S. Compared to using the standard B+-tree, fixed-height

B+-tree could increase the time for scanning the superblocks, whereas

the number of random access operations, which takes much more time

than linear scanning in practice, is bounded by h. Using the fixed-height

B+-tree with height h, all the operations take O(h log(ℓ/ϵ)+ℓ/ϵ) for both
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implementations.

For both implementations, we applied the following optimization schemes.

• To optimize memory access pattern with spatial locality, we save ev-

ery block position in the compressed representation for recently used

superblock. This scheme does not work on a series of random position

operations, because when recently used superblocks differ every opera-

tion, previous saved block positions are invalidated and new new block

positions need to be recalculated. In the access pattern with spatial lo-

cality, for example, access pattern with sequential positions, the target

superblock is always recently used, so we know every block position. Us-

ing the saved block position, we can know the target block position. For

access operation, all we have to do is decode one block and return de-

coded characters. For modifying operations (insert, delete, replace), we

can shift codewords from the target block to the end of the superblock.

And perform modification operations. So decoding procedures that take

lots of running time can be skipped.

• For insert and delete operations on B+-tree, there are linear modifications

on B+-tree nodes, which consist of a partial sum index. When modifying

partial sum, we apply the SIMD technique for faster update of the par-

tial sum index of each node. See [68] for a detailed survey of the SIMD

technique. Applying multiple updates on a single CPU instruction en-

ables our data structures to run fast on the fixed and low height B+-tree.

Also, SIMD technique can also be applied on the sequential optimization

scheme when there is block position modification from the target block

to the end of the superblock.

Now we describe the additional modifications to the implementation of

DCRAM. In this case, we assign the new codeword to the block when its fre-

quency is increased by a factor of c = 2. In the standard Huffman code, one has
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to reconstruct the Huffman tree whenever the new codeword is assigned, which

takes significantly more time than assigning the new codeword in theory. To

resolve the issue, we use either a Type-1 and Type-2 extended Huffman tree, de-

fined as follows. In a Type-1 tree, each codeword in the standard Huffman tree

is extended by prepending on a single 0, so that we can assign the codewords

starting with 1 (codewords on the right subtree of the root) to accommodate

future insertions into the Huffman tree. Similarly, for a Type-2 tree, we first

partition the blocks of S into B1 and B2 where the total frequency of B2 is

two times the total frequency of B1 in S. After that, we build the standard

Huffman tree on the blocks of B1 and B2. Finally, 0 and 10 are prepended on

the codewords of B1 and B2, respectively. Thus, we can assign the codewords

starting with 11 for the new codewords. We reconstruct the tree and re-encode

S when there is no free code of the required length available in the tree. The

following lemma shows that the Ω(n/ℓ) replace operations are necessary before

reconstructing the tree, as in the case of binary codes used in [5].

Lemma 4.1. Given a Type-1 or 2 tree, at least Ω(n/ℓ) replace operations are

necessary before reconstructing the tree.

Proof. For simplicity, we assume that we assign new codes in the lexicograph-

ically increasing order. We only consider the case of the Type-1 tree in the

proof (the case of the Type-2 tree can be proved by a similar argument). In

the Type-1 tree, any new codeword of length l is assigned only after at least

n/(ℓ · 2l−1) replace operations are performed. Thus, if at most n/(4ℓ) replace

operations are performed on S, all the new codewords start with 10, and we

can still assign codewords starting with 11.

Finally, in the implementation of DCRAM, we do lazy update, which com-
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bines the update algorithms of CRAM and DCRAM as follows. We maintain two

Type-1 or Type-2 trees and re-encode the superblocks as in the implementation

of CRAM. We reconstruct the tree when (i) every superblock is re-encoded, and

(ii) there is no available free code in the tree. Note that without lazy updates,

CRAM (resp. DCRAM) reconstructs the codetable when only the condition (i)

(resp. (ii)) is fulfilled.

4.3 Experimental results

We implemented our CRAM and DCRAM using C++ (complied by g++ 11.1).

The experiments were done on Desktop PC (AMD Ryzen 5 1600 Six-Core Pro-

cessor 3.2 GHz with 32GB RAM). The tests are composed of (i) the tests for

access and replace operations and (ii) the tests for access and insert, and delete

operations. Note that the former tests benchmark the performance as com-

pressed RAM, whereas the later tests benchmark the performance as extended

compressed RAM. The details of the tests are as follows:

• replace-seq: This test overwrites the source file to the destination file from

left to right using replace operations.

• replace-random1: From the source file, we first choose nϵ/ℓ superblocks

uniformly at random, and replace all the characters in these superblocks

to the superblock where each of the characters in the superblock is chosen

uniformly at random.

• replace-random2: From the source file, we first choose a character α. After

that we choose nϵ/ℓ superblocks uniformly at random and replace all the

characters in these superblocks to α.

• insert-seq: We first choose a character α. Then we pick a position i from

the source file uniformly at random, and insert α n/2 times consecutively

from the position i.
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• delete-seq: We pick a position i ≤ n/2 from the source file uniformly at

random, and delete the characters at the positions from i to i+ n/2.

• indel-random: We perform n/8 insert and delete operations on the source

file, where all the arguments of the operations are chosen uniformly at

random.

Also, designed experiments that consider operation time. We tested three mod-

ification operations, replace, insert, and delete. For the replace and insert op-

eration, we choose a character from the destination file at the same position as

the source file. The details of the tests are as follows:

• seq: We pick a position i ≤ n from the source file uniformly at random,

and perform operation on the characters at the positions from i to i+n/2.

• random: We perform n/8 operations on the source file, where all the ar-

guments of the operations are chosen uniformly at random.

We use the test files from Pizza&Chilli Corpus1 with size 200MB (the detailed

statistics of the test files are in Table 4.1). In our implementations, we choose

the block size ℓ = 2 (thus, we can fit each block within a single 16-bit data

type), and ϵ = 1/512 (i.e., each superblock contains 512 blocks). Also, com-

pressed superblocks are stored using an 64-bit array (uint64 t array). For the

implementation of B+-tree of fixed-height h, we choose h = 2, so that each

entry of the root node contains the information of about 2 · 108/220 ∼ 200

consecutive superblocks. Also, we use an additional parameter u ∈ {1, 2, 4} for

the implementations of CRAM and DCRAM with the lazy update. The param-

eter u decides how many superblocks are re-encoded for each update (replace,

insert, or delete) operation. More precisely, for every update operation, we re-

encode u consecutive superblocks from ((u− 1)/u) · nϵ/ℓ)-th superblock of the

input. Thus, exactly u reconstructions occur during every nϵ/ℓ update opera-

tion (note that nϵ/ℓ is the number of superblocks in the input). We compared

1http://pizzachili.dcc.uchile.cl/texts.html
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our implementations with the compressed CRAM implementation of Klitzke

and Nicholson (KN for short) [69], and SPSI (Searchable Partial Sums with

Inserts) of Prezza [49]. Note that the latter does not compress the input.

Our tests show the results of replace-seq test (i) from ENGLISH to DNA,

and (ii) from XML to PROTEINS, respectively (see Figures 4.1 and 4.2). In

the figures, each implementation is labeled by ‘name / u / number of recon-

structions (denoted as nr) / total time’. Type-1 and Type-2 denote Type-1

and Type-2 trees, respectively. For both tests, the total space of our imple-

mentations changes depends on the H1 of the input and the time from the

last reconstruction during the replacements. The total time of our implemen-

tations mainly depends on the number of total reconstructions. (for example,

in (i), DCRAM with no lazy update do four reconstructions during the test,

whereas DCRAM with u = 1 do one reconstruction for the same test). If the

number of reconstructions is the same, DCRAM works faster than CRAM since

the DCRAM contains less codewords than in CRAM. KN is 4 to 9 times faster

than our implementations since it is highly optimized for sequential update op-

erations. However, the total space usage of KN strictly increases in both (i) and

(ii) since it uses the compressed table for the source input and does not update

(and reconstruct) during the replace operations. Thus, our implementations take

less space than KN when the entropy decreases during replace operations. Also,

since SPSI does not compress the input, it shows the fastest running time on

the replace operation, while using the most space.

Also, in DCRAM, the lazy update with u = 1 works up to 1.5 times faster

than the implementation without the lazy update while taking up to 30% more

space. If u is more than 1, the working time of DCRAM entirely depends on u,

which shows worse than CRAM with the same u in both time and space.

Our next experiments show the results of replace-random1 and replace-

random2 tests from ENGLISH, respectively (see Figures 4.3 and 4.4). In the

replace-random1 test, the number of distinct codewords increases during the
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test, which increases the time to reconstruct the Huffman tree. Thus, DCRAM

with lazy update works slower than DCRAM without lazy update. On the other

hand, in the replace-random2 test, the number of distinct codewords is strictly

decreasing (after every reconstruction) during the test. Hence, DCRAM with

lazy update works fastest among all our implementations. All the reconstruc-

tions depend on u since the probability of each character increasing its frequency

is quite small, which implies DCRAM does not assign multiple codewords for a

single block. Thus, CRAM outperforms DCRAM in both time and space. How-

ever, in replace-random2 test, DCRAM assigns multiple codewords to the same

block, which delays the reconstruction compared to the CRAM. Hence DCRAM

works up to two times faster than CRAM while keeping the same space overhead

in other replace tests. KN works faster than our implementations for replace-

random1 test since it is not highly compressible, which implies lots of sequential

operations are necessary to re-encode the superblock. However, in the replace-

random2 test, KN works worse than our implementations in both time and space

since the superblocks are highly compressible.

Our next experiments show the results of insert-seq and delete-seq tests on

ENGLISH, respectively (see Figures 4.5 and 4.6). Since SPSI currently does not

support delete operations, we only do insert-seq test on SPSI. Since insert-seq

test only inserts the same character, both the entropy and the space usage of

our implementations decrease during the test as in replace tests. KN is up to 9

times faster than ours in insert-seq test since it is highly optimized for sequential

updates. However, its space usage is more than all our implementations. Also,

the compression ratio of KN does not change during the test. This can happen

when the codeword of α compresses α with a compression ratio close to the

compression ratio of KN. SPSI shows worse than other implementations in

both time and space. For delete-seq, the entropy does not change during the

delete operations since the frequency distribution of the characters in ENGLISH

does not change significantly during the sequential deletions. Hence, the space
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usage of our implementations does not change during the test. Interestingly,

the space usage of KN increases slowly during the test. Again, KN is up to 5

times faster than ours in delete-seq test, while it uses more space.

Our next experiment shows the results of indel-random test on ENGLISH

(see Figure 4.7) Since KN does not support character-wise insert and delete

operations and SPSI does not support delete operations, we only tested with

our implementations. Overall, each operation is up to 65 times slower than in

insert-seq and delete-seq tests (per each operation). This is because the entire

superblock that contains the character can be re-encoded when we insert or

delete a single character, whereas only a single block that contains the character

is enough to be re-encoded when we perform insert and delete operations at

consecutive positions.

Our final experiment shows the results of seq and random tests on ENGLISH.

(see Tables 4.2, 4.3, and 4.4) We compared ours with KN and SPSI. Also, we

tested our CRAM and DCRAM with an additional parameter u ∈ {1, 2, 4}. As

mentioned in the previous paragraph, since SPSI does not compress the input,

it shows the fastest running time on the replace operation, while using the most

space. And, KN shows highly optimized operation results on sequential oper-

ations. But, ours gives decent operation times in both sequential and random

cases. Also, note that since SPSI currently does not support delete operations,

we only do replace and insert tests on SPSI. Lastly, the reason why CRAM takes

more time than DCRAM in the random case is the cold start, which means that

the code size of CRAM is larger than that of DCRAM at the early stage, and

this affects the mean time.
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Figure 4.1: replace-seq test (a) from ENGLISH to DNA
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Figure 4.2: replace-seq test (a) from XML to PROTEINS
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Figure 4.3: replace-random1 test on ENGLISH.
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Figure 4.4: replace-random2 test on ENGLISH.
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Figure 4.5: insert-seq test on ENGLISH.
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Figure 4.6: delete-seq test on ENGLISH.
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Figure 4.7: indel-random test on ENGLISH.
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File name Alphabet size H0 H1

DNA 16 0.247 0.245
ENGLISH 225 0.565 0.509
PROTEINS 25 0.525 0.524

XML 96 0.657 0.547

Table 4.1: File statistics of test files. Hk denotes the k-th order entropy.

Replace sequential random

KN 69.19 52970.8
SPI 66.53 318.39

CRAM (u = 1) 80 11090
CRAM (u = 2) 91 11398
CRAM (u = 4) 131 11657
DCRAM (u = 1) 78 10292
DCRAM (u = 2) 93 10391
DCRAM (u = 4) 136 10530

Table 4.2: Operation time tests on replace. Time unit is nanoseconds.

Insert sequential random

KN 264.787 52843
SPI 80000 56525

CRAM (u = 1) 659 12616
CRAM (u = 2) 665 12615
CRAM (u = 4) 722 12304
DCRAM (u = 1) 717 11239
DCRAM (u = 2) 727 11514
DCRAM (u = 4) 774 11314

Table 4.3: Operation time tests on insert. Time unit is nanoseconds.
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Delete sequential random

KN 253.22 52437
CRAM (u = 1) 663 10489
CRAM (u = 2) 662 10405
CRAM (u = 4) 698 10181
DCRAM (u = 1) 637 9063
DCRAM (u = 2) 708 9029
DCRAM (u = 4) 774 9319

Table 4.4: Operation time tests on delete. Time unit is nanoseconds.
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Chapter 5

Conclusions and Open Problems

In this thesis, we proposed space-efficient data structures from a practical view.

We proposed encoding data structures for range-top2 queries and dynamic com-

pressed strings that support modification operations. Our data structures show

better practical space/time usage compared to previous works.

In chapter 3, we first proposed a practical implementation for encoding

RT2Q . Our data structure takes much less space than the current indexing

data structures, while still giving better time-space tradeoffs for most cases in

practice. Also, when query time is not of concern, we propose an encoding that

supports fast construction time and shows comparable space usage compared

to the optimal encoding in practice. In Chapter 4, we proposed practical im-

plementations of extended compressed RAM. We proposed substructures with

B+-tree to achieve simpler substructures and practical performance. Our ex-

perimental results show our data structures give better practical performance

in most cases.

We suggest the following open problems for chapter 3 and chapter 4.

• In chapter 3, implementing the data structure based on the BP of 2dmax(A)
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is an open problem. Here, an efficient and practical implementation of

degree and childrank queries would be a challenging problem.

• In chapter 3, Another interesting open problem is improving the space

analysis of our DAG-based encoding (Lemma 3.4).

• In chapter 4, highly optimizing our data structures for sequential and

random use cases is an open problem.

• In chapter 4, making compressed RAM data structures with supporting

concurrency is an interesting open problem.
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요약

본 논문에서는 다양한 공간 효율적인 자료구조에 대해 다룬다. 또한, 본 논문에서

는이자료구조들을실용적관점에서구현하고실험을통해그성능을평가하였다.

본 논문에서 제안하는 자료구조는 우수한 공간과 시간 효율성에 더해서, 동일한

이론적 성능을 보여주며 더 간단한 보조 자료구조를 갖는다. 간단한 보조 자료구

조는 소프트웨어 엔지니어들이 지속적인 유지보수를 수행할 수 있도록 도와준다.

본 논문은 다음 두 가지 문제를 고려한다. (1) 구간 Top-2 인코딩, (2) 접근, 변경

연산을 지원하는 동적 문자열. 순서를 갖는 원소들로 이루어진 배열에서, Top-2

질의는 주어진 질의 범위 안에서 첫 번째와 두 번째 원소를 반환한다. 또한, Top-2

인코딩 문제는 Top-2 질의를 효율적으로 지원하기 위해 주어진 배열을 인코딩하

는 문제이다. 동적 압축 문자열 문제는 문자열을 압축된 상태로 유지하면서, 접근

연산과 변경 연산을 효율적으로 지원하는 문제이다.

구간 Top-2 질의 문제를 위해서, 본 논문은 두 가지 실용적 구현을 제안한다.

첫 번째 구현은 구간 Top-2 질의에 대해 효율적으로 답변하는 Davoodi. et. al. [1]

의 자료구조에 기반을 둔다. 본 논문에서는 Davoodi. et. al. [1]의 자료구조를 변

형하여 Davoodi. et. al. [1]의 자료구조와 거의 동일한 이론적 성능을 가지며 더

단순한 보조 자료구조를 가지는 구현을 제안하였다. 또한, 해당 자료구조 구현은

개선된 공간과 시간 효율성을 보여준다. 본 논문의 다른 구현은 2 x n 행렬에서의

Top-2 인코딩에 기반을 둔다. 해당 자료구조 구현은 개선된 인코딩 시간과 비슷한

공간 효율성을 보여준다.

동적 압축 문자열 문제를 위해서, 본 논문은 두 가지 실용적 구현을 제안한다.

각각의 구현은 Jansson et al. [4]의 Compressed RAM 연구와 Grossi et al. [5]

의 연구에 기반을 둔다. 이 문제에서, 본 논문은 이전 연구들 [4], [5]보다 더 간

단한 자료구조를 제안한다. 또한, 본 논문의 자료구조가 가지는 구현의 용이성은,

최적화의 여지를 더 많이 가지게 한다. 실험 결과는 본 논문의 자료구조가 입력 문

자열의 엔트로피에 비례하는 공간 사용을 유지하면서, 효율적인 연산을 지원하는
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것을 보여준다.

주요어: 구간 Top-2 질의, 구간 최대 질의, 카테시안 트리, 인코딩 모델. 공간 효

율적인 인코딩, 공간 효율적인 자료구조, 동적 자료구조, 동적 문자열, 접근 질의,

교체 질의, 삽입 질의, 삭제 질의

학번: 2016-21203
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