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Abstract

Sparse matrices only store nonzero entries with their positional information.

Thus, while dense matrices typically store all of their entries in a one-dimensional

array, sparse matrices have various choices of internal data structures to use.

So there can be many different in-memory formats where sparse matrices are

managed.

Various sparse matrix formats have been proposed, and they have advan-

tages in different ways. Formats that support fast linear algebra operations

cannot handle matrix updates quickly and vice versa. However, several use cases

of sparse matrices are highly dynamic. So the sparse matrices are expected to

periodically process analytic queries, including linear algebra operations, while

quickly handling a stream of matrix updates.

Thus, one of the mainstream strategies is to manage a sparse matrix in

an update-friendly format during matrix updates and convert it to a format

for fast linear algebra operations when we need to process analytic queries. To

make the best use of this strategy, this paper proposes a new sparse matrix

format called RBForest. The RBForest manages one red-black tree per row

to reduce the tree re-balancing cost after the insertion or deletion of nonzero

entries. It also manages a hash table to enable immediate access to its nonzero

elements, reducing the initial search cost for all types of matrix updates. Our

evaluations show that the RBForest performs more efficiently on real dynamic

workloads than previously proposed formats that adhere to the same strategy.

Keywords: Sparse Matrix, Matrix Update, CSR Format

Student ID: 2021-20552
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Chapter 1

Introduction

Sparse matrices are widely used in many real-world applications, including

social networks, financial analysis, and more [1, 2, 3, 4, 5]. Unlike their dense

counterparts, sparse matrices only store nonzero entries with their positional

information. Thus, while dense matrices typically store all of their entries in

a one-dimensional array, sparse matrices have various choices of internal data

structures to use. As a result, various in-memory sparse matrix formats exist

where the nonzero entries of the matrix are stored in different data structures

in different ways.

Entries of matrices can change over time, and we call this Matrix Update.

Since a sparse matrix stores only nonzero values, changing its entry may cause

an update on its internal data structures. For example, if a zero-valued entry

changes its value to nonzero, it must be newly inserted into the matrix’s data

structure since it was not previously there. Similarly, an existing nonzero entry

must be deleted if its value changes to zero because we don’t need it anymore.

Thus, matrix updates of a sparse matrix can be highly complex depending on

its internal data structures.

1



However, many use cases of sparse matrices are highly dynamic. For exam-

ple, when a sparse matrix is storing social graph data, the matrix can be used to

mine periodic cliques [6] or answer temporal reachability and time-based path

queries [7] while continuously accepting changes in relationships between the

vertices. In these workloads, sparse matrices are expected to handle a stream of

matrix updates while periodically answering analytic queries, including linear

algebra (LA) operations. Thus, a sparse matrix should quickly process both LA

operations and matrix updates to perform efficiently on dynamic workloads.

Many sparse matrix formats have been proposed, and depending on the

characteristics of the internal data structures, formats for sparse matrices can

be categorized into two big categories [8]. The first category includes the

formats with strengths in fast LA operations. These formats typically store

their nonzero entries in a continuous memory area, thus maximizing their

spatial locality [9]. However, these formats suffer from high inefficiency in

matrix updates because existing entries must be shifted along the continuous

memory area, which takes, for a sparse matrix of N nonzero entries, O(N)

time in the worst case. One of the most popular formats in this category is

the Compressed Sparse Row (CSR) [10, 11]. For the rest of this paper, we

will use the CSR format as a representative of the other formats in the same

category without loss of generality. It is legitimate because all the features and

advantages of the CSR format covered by this paper can be similarly applied

to other formats in the same category.

The second category includes the formats for fast matrix updates. These

formats use update-friendly data structures such as a red-black tree, hash

table, or linked list. However, these formats are not good at fast LA operations

because nonzero entries are stored in a possibly non-continuous memory area,
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increasing the possibility of cache miss during LA operations. Popular examples

of this category are SciPy’s [12] Dictionary of Keys (DOK), List of Lists (LIL),

and Armadillo’s [13] Red-Black Tree (RBT).

Thus, a fast performance on both LA operations and matrix updates is not

achievable in a single format. Therefore, to efficiently manage sparse matrices

in dynamic workloads, we can manage them in an update-friendly format while

accepting changes to their entries. Then we can periodically convert them to

CSR format when analytic queries, including LA operations, are requested.

By doing this, we can exploit the advantages of both categories of sparse

matrix formats, and this is one of the mainstream strategies for managing

sparse matrices in dynamic workloads. Popular scientific libraries like SciPy

and Armadillo adhere to this strategy.

To make good use of this strategy, we need an update-friendly format that

can be converted to the CSR format quickly. If conversion to CSR format is

not efficiently performed, latency can be introduced in periodic matrix analysis,

including LA operations, no matter how fast the matrix updates are. Thus,

matrix updates and CSR conversion should be processed quickly to analyze

sparse matrices in dynamic use cases efficiently.

In this paper, we propose RBForest (RBF), which is the format for sparse

matrices, performs better on dynamic workloads than the proposed formats.

Instead of storing all nonzero entries of the matrix in one red-black tree, as

in Armadillo’s RBT, it manages one red-black tree for each row containing

nonzero entries for the row. By doing that, we can reduce the average height

of red-black trees, which noticeably reduces the tree re-balancing cost after

the insertion or deletion of nonzero entries. And it also manages a hash table
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whose key is the (row, col)-coordinate, and the value is the pointer to the red-

black tree node that corresponds to it. It reduces the cost of searching nonzero

entries to be inserted, modified, or deleted. Conversion to CSR format can be

done by doing in-order traversal on each red-black trees. It takes O(N) time

which is the minimum time complexity required to perform CSR conversion.

We showed that our proposed format performs better on dynamic workloads

with real datasets than DOK, LIL, and RBT formats.

The rest of this paper is organized as follows. In Chapter 2, we illustrate the

backgrounds of our work in detail. Chapter 3 introduces previously proposed

formats (DOK, LIL, RBT) and their drawbacks. Chapter 4 presents our RBF

format and analyzes its strength over proposed formats. Chapter 5 presents

the experimental results on both synthetic and real datasets, and Chapter 6

concludes this paper and suggests future works.
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Chapter 2

Backgrounds

In this chapter, we describe the matrix update of sparse matrices in detail and

introduce two categories of sparse matrix formats based on the characteristics

of their internal data structures.

2.1 Matrix Update

Figure 2.1 Matrix Update Procedures
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Figure 2.1 shows how matrix update occurs in sparse matrices. Matrix

receives an update request as (coordinate, value)-pair, on which the matrix set

the value of its entry corresponds to the given coordinate with the given value.

When an update request on a specific coordinate arrives, a sparse matrix figures

out whether the corresponding nonzero entry exists in its data structures. If

the entry does not exist, it is newly inserted into the matrix’s data structures

with the requested value. If the entry exists, the matrix determines whether to

modify or delete it depending on the requested value. If the requested value

is nonzero, modify the entry with the requested value, and if the requested

value is zero, delete the entry from the matrix’s data structures. Therefore, to

support fast matrix updates, a sparse matrix should be able to search for the

target entry quickly and handle the updates on its data structures quickly.

2.2 Categories of Sparse Matrix Formats

Depending on the characteristics of the internal data structures, sparse matrix

formats can be categorized into two big categories: a format for fast LA

operations and a format for fast updates [8].

2.2.1 Formats for Fast LA Operations

For a sparse matrix to show optimal performance in LA operations, it must

provide spatial locality between its nonzero elements by storing them in a

continuous memory area [9]. By doing this, the matrix can reduce cache miss

on repeated sequential access through its nonzero elements. Examples in this

category include the Compressed Sparse Row/Column format (CSR/CSC),

Compressed Diagonal Storage (CDS), Jagged Diagonal Storage (JDS), Blocked

Compressed Row format (BCSR), and much more [10, 11, 14, 15, 16, 17].
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Among these examples, the CSR format is widely used due to its simplicity

and efficiency [11], which consists of the following three arrays:

• Data for nonzero data values,

• Indices for corresponding column indices,

• Row Offset for starting index where the corresponing row starts.

Figure 2.2 A sparse matrix in CSR format

Figure 2.2 shows an example of a sparse matrix in CSR format and its

update scenario. In order to insert a new nonzero entry into the red circle, we

need to place it at the red arrow-ed position of the Indices and Data array. It

causes all the elements on the right to be shifted, which takes O(N) time in

the worst case. Like this example, formats for fast LA operations suffer from

high inefficiency on the insertion or deletion of nonzero entries because existing

nonzero entries must be shifted along a continuous memory area.

2.2.2 Formats for Fast Updates

Several formats have been proposed to avoid the expensive shifts of nonzero

entries on matrix updates. These formats manage update-friendly data struc-

tures where each entry is stored in a possibly non-continuous memory area,
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thus giving up spatial locality between them. By doing this, matrix updates can

be done by just (de)allocating space for the nonzero entries and re-organizing

the internal data structures when necessary. Popular examples include Scipy’s

Dictionary of Keys (DOK), which is a hash table consisting of nonzero entries;

List of Lists (LIL), just like the Adjacency Lists for graph representation; and

Armadillo’s Red-Black Tree (RBT), which is a red-black tree storing nonzero

entries.

Although these formats perform better on matrix updates than the CSR

format, they cannot process LA operations quickly. Since these formats store

nonzero entries in a possibly non-continuous memory area, pointer tracing

becomes necessary to access adjacent nonzero data. Thus, we can’t expect

good cache behavior when we traverse through the nonzero entries of sparse

matrices in this category. Since adjacent data are more likely to be referenced

together during most of the LA operations, this lack of locality is a severe

drawback.

So when we need to perform LA operations on this type of matrices, it is

highly inefficient to do it on these formats directly. Instead, we need to convert

them into CSR format and apply the operations on these CSR matrices. Though

a certain amount of conversion overhead exists, it is generally negligible consid-

ering the high inefficiency of update-friendly formats on LA operations. Several

open-source array processing libraries, such as Scipy and Armadillo, adopt this

strategy. In Scipy [12], matrix updates can be done efficiently using DOK

or LIL formats. However, when LA operations are required, Scipy internally

converts them into CSR format and performs the operations. Armadillo [13]

provides a sparse matrix in a hybrid format. Depending on workload, it can
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automatically switch between CSC and RBT formats, where CSC specializes

in fast LA operations, and RBT is good at matrix updates.
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Chapter 3

Proposed Sparse Matrix Formats

This paper aims to suggest a new update-friendly sparse matrix format (Chap-

ter 2.2.2) that can efficiently handle matrix updates and CSR conversion. In

this chapter, we introduce some previously proposed formats of this category

and analyze their pros and cons in detail. Table 3.1 below summarizes symbols

frequently used for the rest of this paper. And Table 3.2 on the next page

summarizes the performance comparison between the update-friendly sparse

matrix formats addressed in this paper.

Table 3.1 Notation

Symbol Description

m Number of rows of the matrix

n Number of columns of the matrix

N Number of nonzero entries of the matrix

R
Number of nonzero entries in the row

where the target entry exists

U Number of all matrix updates

C Number of CSR conversions

T Period for CSR conversions
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Table 3.2 Performance comparison between update-friendly formats

Format Search Insertion Modification Deletion CSR Conversion Space

DOK O(1) O(1) O(1) O(1) O(NlogN) O(N)
LIL O(R) O(R) O(R) O(R) O(N) O(m+N)
RBT O(logN) O(logN) O(logN) O(logN) O(N) O(N)
RBF O(1) O(logR) O(1) O(logR) O(N) O(m+N)
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3.1 Dictionary of Keys (DOK)

Scipy’s Dictionary of Keys format (DOK), as its name suggests, manages a hash

table whose key is a (row, col)-coordinate of the nonzero element and value

is its nonzero value. It takes O(N) space consisting of N hash table entries

along with some extra unfilled buckets. Since the search for an element in a

hash table takes O(1) time on average, insertion, modification, and deletion

of a nonzero entry in the DOK sparse matrix also take O(1) time on average.

Thus, DOK is one of the fastest formats for matrix update.

However, elements in a hash table are generally not ordered. So DOK ill-

performs when we need to do ordered iteration on its elements, as in CSR

conversion. CSR manages nonzero data ordered by its column indices. Thus,

in order to convert DOK into CSR, we need to sort its elements by their keys

which takes O(NlogN) time on average. As Table 3.2 shows, this is the worst

CSR conversion performance among the update-friendly formats. Chapter 5

shows that this sorting overhead can become a massive bottleneck in dynamic

workloads, making it quite inefficient compared to other formats despite its

optimal performance on matrix updates.

3.2 List of Lists (LIL)

Scipy’s List of Lists format (LIL) resembles Adjacency List (AL) for graph

representation. It manages an array whose index represents a row of the matrix,

and its element is a linked list of column indices and a data value of the nonzero

entry in the corresponding row. For m-by-n sparse matrix of N number of

nonzero elements, LIL takes O(m+N) space where m is generally negligible

compared to N .
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Let R denote the number of nonzero elements of the row where the target

entry exists. Then, searching for the entry takes O(R) time in the worst case

because we need to do a linear search on the corresponding linked list. Thus,

insertion, modification, and deletion of a nonzero entry in the LIL sparse matrix

also take O(R) time in the worst case. Though elements in each linked list

are ordered by its column indices, it does not help to reduce the time because

we cannot perform binary searches on a linked list. Chapter 5 shows that LIL

seriously ill-performs on matrix update compared to other formats because of

this linear time complexity.

CSR conversion can be done by just iterating over each linked list which

takes O(N) time. Since elements in each linked list are ordered already, we do

not need to sort them during the conversion. However, in spite of this optimal

performance on CSR conversion, LIL was found to be the most inefficient

format among those introduced in this chapter because of its outstanding

effect of linear time complexity on matrix update.

3.3 Red-Black Tree (RBT)

Armadillo’s Red-Black Tree format (RBT) manages a red-black tree whose key

is a (row, col) coordinate of the nonzero element, and the value is its nonzero

value. Just like DOK, it also takes O(N) space consisting of N red-black tree

nodes. Since it is height-balanced, searching for the entry takes O(logN) time

in the worst case. Moreover, tree re-balancing cost after the insertion or deletion

of its node also takes O(logN) time in the worst case. Thus, all kinds of matrix

update in RBT sparse matrix take O(logN) time in the worst case. As Table 3.2

shows, this is slower than DOK but generally faster than LIL.
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RBT compares its keys in lexicographical order. Thus, CSR conversion can

be done by performing in-order traversal on the red-black tree, which takes

O(N) time. Due to its optimal CSR conversion performance and its moderate

speed on matrix updates, RBT was found to be more efficient for dynamic

workloads than the others introduced in this chapter.
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Chapter 4

RBForest

In this chapter, we propose the RBForest format (RBF), which performs

efficiently on dynamic workloads better than the previously proposed formats

in Chapter 3. We introduce our core design choices that make the RBF a better

choice on dynamic workloads than the others. After that, detailed explanations

of the RBF’s matrix update and CSR conversion procedures will follow. From

these, we emphasize the RBF’s advantages over the other formats in Chapter 3.

Figure 4.1 A sparse matrix in RBF format
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4.1 Design Choices

RBF consists of the following data structures:

• Array of pointers to each red-black tree.

• Red-Black Tree of nonzero entries for the corresponding row.

• Hash Table whose key is the (row, col)-coordinate, and value is the pointer

to the red-black tree node that corresponds.

Figure 4.1 shows the architecture of the RBF format in detail. It has an

array whose index represents a row of the matrix, and its element is a pointer to

the root node of the red-black tree where nonzero entries of the corresponding

row are stored. It is a variation of the LIL format, where linked lists are replaced

with red-black trees. It also has a hash table storing nonzero entries of the

matrix. Its key is a coordinate of each nonzero entry, and the value points to

the corresponding red-black tree node. It enables a faster search for the sparse

matrix’s nonzero entries.

So it is a combination of three primitive data structures used for the other

formats in Chapter 3. It takes O(m+N) space in total, where m is generally

negligible compared to N . The main design choices of the RBF are as follows.

4.1.1 Individual Red-Black Trees for each row

In RBF, each row has its own red-black tree containing nonzero entries that

correspond. The name RBForest stems from this idea. We chose this design to

reduce the height of each red-black tree lower than that of Armadillo’s RBT

format, where all nonzero entries are stored in a single red-black tree. The

height of a red-black tree is logarithmically proportional to the number of

nodes it contains. So storing each row’s nonzero entries in separate red-black
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trees helps to reduce each tree’s height from O(logN) to O(logR). Reduced

tree height then reduces the time to re-balance each red-black tree after its

insertion or deletion. Thus, by adopting this design choice, we were able to

improve the matrix update performances while maintaining space occupied by

red-black trees same as that of Armadillo’s RBT.

4.1.2 Hash Table Connected to Red-Black Trees

RBF manages a hash table to enable fast search on its nonzero entries. Each

hash table entry itself is a pointer to the red-black tree node corresponding to

its (row, col)-coordinate. So retrieving a nonzero value on a specific position

of the sparse matrix can be done by just a single lookup on the hash table,

which takes O(1) time. Since any matrix update must be done after the initial

search for the target nonzero entry (Figure 2.1), our design choice of using a

hash table significantly improves their performances compared to the other

formats in Chapter 3. Furthermore, though hash table entries are generally

unordered, CSR conversion in RBF can be done by in-order traversing through

each red-black tree which takes O(N) time in total. So RBF can exploit the

advantages of the hash table while still maintaining its ordered iteration cost

as O(N).

4.2 Operations

Here, we illustrate RBF’s matrix update and CSR conversion procedures in

detail. We also analyze their time complexities and compare them with the

others in Table 3.2, thus emphasizing the strength of RBF over the others.
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4.2.1 Search

As we mentioned in Figure 2.1, all types of matrix updates are done after the

search for the target entry, and in RBF sparse matrix, this is done by its hash

table (Chapter 4.1.2). If a nonzero entry exists at the target coordinate, the

hash table entry is returned, which is a pointer to the corresponding red-black

tree node. If it does not exist, NULL is returned. Thus, for all types of matrix

updates in RBF, the initial search for the entry takes O(1) time on average.

4.2.2 Insertion

If there was previously no nonzero entry on the target coordinate, it must be

newly inserted. For the RBF sparse matrix, insertions are done in the following

steps.

Step 1 (Insertion at the Red-Black Tree) First, we allocate a new

red-black tree node and insert it at the corresponding row’s red-black tree.

Since the height of the target red-black tree is O(logR), the insertion and

re-balancing all take O(logR) time in the worst case.

Step 2 (Insertion at the Hash Table) Then, we insert the (row, col)-

coordinate as a key into the hash table and set its value to the pointer to the

red-black tree node just inserted. Obviously, this takes O(1) time on average.

Thus, the overall performance of the RBF insertion is O(logR), which is

faster than that of LIL and RBT formats. And it is obviously slower than the

DOK format, which takes O(1) time on the same operation. However, DOK

takes O(NlogN) time in CSR conversion, which is significantly worse than the

RBF. And, since R is generally much smaller than N , the performance loss the

RBF suffers on the insertion and deletion (O(1) → O(logR)) is negligible when
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the performance gain it achieves on the CSR conversion (O(NlogN) → O(N))

is considered.

4.2.3 Modification

If a nonzero entry already exists at the target coordinate and the requested

value is nonzero, we modify the old value to the new one. So the modification

can be done by modifying the value of the entry we found at the Search stage.

Thus, its time complexity is equal to that of the Search operation. Since RBF

search takes O(1) time, RBF modification also takes O(1) time on average,

which is faster than LIL and RBT and equal to that of DOK.

4.2.4 Deletion

If a nonzero entry exists at the target coordinate but the requested value is

zero, it must be deleted from the matrix. For the RBF sparse matrix, deletions

are done in the following steps.

Step 1 (Deletion from the Red-Black Tree) First, we need to delete

the red-black tree node that corresponds to the target entry and re-balance

the tree if required. However, unlike the Insertion, we do not need to move

downward through the tree to reach the target node because we can immedi-

ately access to it at the Search stage using its hash table. So we can simply

deallocate the target node and re-balance the tree, which takes O(logR) time

in the worst case.

Step 2 (Deletion from the Hash Table) Then, we delete the hash table

entry we found at the Search stage. It takes O(1) time on average

Thus, the overall performance of the RBF deletion is O(logR), which is

faster than that of LIL and RBT formats. Again, it is slower than the DOK,
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but it is trivial considering the RBF’s CSR conversion performance, which is

much faster than the DOK.

4.2.5 CSR Conversion

Conversion to the CSR format can be done in the following steps:

Step 1 (Allocating Memory for the CSR Matrix) First, we need to

allocate memory where the converted CSR matrix will be written. Since we

know the number of nonzero entries of the matrix a priori, we can immediately

allocate enough memory for the CSR matrix. Thus, this step takes O(1) time.

Step 2 (Ordered Iteration over each of the Red-Black Trees)

Nonzero data in the CSR sparse matrix is sorted by its column indices. So

we need to follow this ordering when we write nonzero entries of the matrix

into the pre-allocated memory for the CSR. Thus, the ordered iteration is the

main operation we need to perform to do the CSR conversion. In RBF, there

is an array containing pointers to red-black trees ordered by their row indices,

and each red-black tree compares its keys by column indices. So the ordered

iteration can be done by in-order traversing each red-black tree which takes

O(N) time in total.

If we convert the RBF matrix in Figure 4.1 into the CSR, for example, we

first need to allocate enough memory for the CSR representation of it. Then

we write nonzero entries in the yellow-colored red-black tree, representing the

first row, into this pre-allocated memory while in-order traversing over it. Do

the same for the blue-colored red-black tree also, which represents the fourth

row. Since we iterate each node only once for all red-black trees, the CSR

conversion can be done in O(N) time.
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So the overall performance of the CSR conversion is O(N), which is the

same as the LIL and RBT. And it is much faster than the DOK, which takes

O(NlogN) time because of the sorting cost. Chapter 5 shows that this sorting

overhead is so significant that it over-compensates the performance loss the

RBF suffers at the Insertion and Deletion operations.
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Chapter 5

Evaluation

In this chapter, we analyze the performance of the RBF format by comparing

it with the other update-friendly formats introduced in Chapter 3. All the

experiments were conducted on a single machine with a Ryzen 7 1700 8-

Core Processor, 64 GB RAM, and a 256 GB SSD, running Ubuntu 18.04 LTS.

We implemented all formats for comparison in C++17 with g++ 7.5.0. All

experimental results except for Chapter 5.3 are the average of 5 intermediate

values of 7 executions.

5.1 Performance on Individual Operations

Here, we used synthetically generated 100K ∗ 100K sparse matrices, varying

the number of nonzero entries from 10M to 100M . All nonzero entries were

generated at a random position in the matrix. Using these synthetic sparse

matrices, we conducted the experiments as follows:

• Insert all the nonzero entries into the target format.

• Modify the value of all nonzero entries just inserted.

• Convert the target format into the CSR.

• Delete all the nonzero entries from the target format.
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(a) Insertion
(b) Pre-Insertion

Search

(c) Modification (d) Pre-Modification Search

(e) CSR Conversion

(f) Deletion (g) Pre-Deletion Search

Figure 5.1 Performance comparisons on individual operations
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Then, we plot the performances for each matrix update operation and the

CSR conversion individually. For the matrix updates, we also plot the initial

search performance separately to visualize the impact of search cost on them.

Based on these plots, we analytically compare the performances of the sparse

matrix formats for individual operations.

5.1.1 Insertion

For the insertion performance, DOK is the fastest, followed by the RBF, RBT,

and LIL in this order (Figure 5.1a). This is consistent with the theoretical

analysis in Table 3.2. However, despite the significant gap in time complexity

between the RBT and RBF, their actual performance does not vary much.

This is because the RBF inserts a nonzero entry into the two data structures,

the hash table, and the red-black tree, whereas the RBT inserts it only at the

red-black tree. Thus the RBF has to do much more work after the initial search

for the entry than the RBT.

Deletion also suffers from this issue, but as shown in Figure 5.1f, RBF

performs better on deletion than insertion. This is because, for the insertion,

RBF must reach the leaf node of the corresponding red-black tree starting

from its root to insert the entry. On the other hand, this does not happen at

deletion because RBF can access the target red-black tree node immediately

using the hash table. Thus, the RBF’s insertion involves more pointer-tracing

than deletion, which leads to its worse performance.

However, the RBF still performs better than the RBT because of the

reduced tree height we introduced in Chapter 4.1.1. Thus, the overheads we

mentioned are tolerable considering the overall performance on insertion and
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the potential benefit it can bring on the other operations, such as modification

and deletion.

5.1.2 Modification

The modification performance shows the same trend as in the insertion. Since

the modification procedure is not that complicated, its performance (Fig-

ure 5.1c) is similar to the performance of the initial search conducted right

before it (Figure 5.1d). Since RBF’s search operation is done using its hash

table, its update performance is similar to that of the DOK andmuch faster than

the others. The effect of our design choice of using the hash table (Chapter 4.1.2)

becomes maximized in the modification operation.

5.1.3 CSR Conversion

For the CSR conversion, DOK is the worst, while the others show little differ-

ence (Figure 5.1e). This is because the DOK must sort its unordered entries for

the conversion while the others do not have to. The O(NlogN) time complexity

for sorting makes the DOK the least suitable format for the fast CSR conversion.

Though the DOK is the winner on all matrix update operations, it is not the

best for the dynamic workload (Chapter 5.2) because of this huge drawback

on CSR conversion. All other formats do CSR conversion in O(N) time, so

there is no significant performance gap between them.

5.1.4 Deletion

The deletion performance also shows the same trend as in the insertion and

modification. As mentioned earlier, the performance gap between the RBT

and RBF becomes larger than for the insertion. Thus the RBF’s deletion also
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benefits from our design choice of using the hash table (Chapter 4.1.2). The

RBF’s performance gap between the deletion (Figure 5.1f) and the initial

search right before it (Figure 5.1g) is still large because, just like the insertion,

it must delete the entry from the two data structures. Despite this overhead of

managing multiple data structures, RBF performs better than RBT because

of its reduced tree height (Chapter 4.1.1).

5.2 Performance on Dynamic Workload

In this chapter, we conducted experiments on the dynamic workload, which

is the main concern of our research. While the sparse matrix in an update-

friendly format accepts any updates at random, CSR conversion is conducted

periodically. We conducted these experiments using both synthetic and real-

world sparse matrices.

Again, we use a 100K ∗ 100K sparse matrix, fixing the total number of

matrix updates with 100M at random positions. Among these updates, the

number of insertions, modifications, and deletions is 50M , 25M , and 25M ,

respectively. Then, we vary the number of periodic CSR conversions from 10

to 100 and plot the performance. The CSR conversion was conducted after the

fixed amount of matrix updates. For example, if the number of conversions is

10, then the conversion happens at every 10M update.

5.2.1 Test with Synthetic Matrix

Figure 5.2 shows the result of this experiment. The RBF beats the LIL and

RBT regardless of the number of conversions. It is because the RBF’s matrix

update is more efficient than the LIL and RBT. Thus, the RBF is more suitable

for the dynamic workload than the LIL and RBT. Especially, the LIL is found
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Figure 5.2 Performance comparison on dynamic workload with a synthetic

matrix

to be very inefficient for the dynamic workload due to its extremely poor matrix

update performance compared to the others.

Compared with the DOK, however, the RBF is slower than the DOK, where

the number of conversions is smaller than 30. It is because the DOK’s matrix

update is faster than the RBF. The RBF’s faster CSR conversion performance

does not stand out when the number of conversions is insufficient. If the number

of conversions becomes larger than 30, the RBF starts to beat the DOK, and the

performance gap between them becomes larger as the number of conversions

increases. It shows that the DOK’s CSR conversion is quite inefficient, which

further shows that the DOK is not the best choice for dynamic workloads.

Though there exists a point where the performances of the DOK and RBF

are reversed, Chapter 5.2.2 shows that, in reality, the CSR conversion is more

likely to happen frequently, making the RBF the best choice for the dynamic

workloads.
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5.2.2 Test with Real-World Matrices

We also conducted experiments using real-world sparse matrices. They were

selected from various contexts where sparse matrices are widely used. Each

matrix contains a certain amount of matrix updates with a timestamp in-

dicating the time when the update happened. For each of the matrices, we

performed matrix updates in increasing order of timestamps. And based on

the timestamps, we selected the appropriate period in which CSR conversions

are conducted. The periods were selected considering the time span of the

given matrix. For example, if the matrix spans more than a year, we set the

period to a month. And if the matrix spans within a week, we set the period to

an hour. So we reproduced the real-time analysis scenario on sparse matrices

with legitimate CSR conversion frequencies considering the time spans of each

matrix

We used 7 real-world sparse matrices for the experiment. Following is a

brief description of the matrices that we used for the experiment.

• StackOverflow [18, 19] is an interaction network from the online site

”Stack Overflow”. It spans from August 2008 to March 2016.

• ESWIKI [18, 20] is a bipartite edit network from the Spanish Wikipedia.

It spans from May 2001 to July 2017.

• HS [21] is a contact and friendship network between students in a high

school in Marseilles, France in December 2013.

• PS [22, 23] is a contact network between the children and teachers in a

primary school in January 2014.

• LastFm [18, 24] is a bipartite network that represents the user-song

listening relationship of the online music service site ”Last.fm”. It spans

from February 2005 to September 2013.
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• LKML [18, 25] is a communication network of the Linux kernel mailing

list. It spans from January 2006 to January 2014.

• Delicious [18, 26] is a network that represents the user-tag relationship of

the social bookmarking web service ”Delicious”. It spans from September

2003 to December 2007.

Table 5.1 Statistics of the real-world sparse matrices

Matrix m n N U C T

Stack
Overflow

2.6M 2.6M 36.2M 63.5M 92 month

ESWIKI 935.5K 5.9M 30.6M 67.4M 194 month

HS 1.9K 1.9K 5.8K 188.5K 41 hour

PS 0.5K 0.5K 8.3K 125.8K 20 hour

LastFm 0.9K 1.1M 4.4M 19.2M 55 month

LKML 63.4K 63.4K 243.0K 1.1M 97 month

Delicious 833.1K 4.5M 82.0M 301.2M 52 month

Figure 5.3 Performance comparison on dynamic workload with real-world

matrices
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Figure 5.3 shows the normalized running time of each format with respect

to the actual running time of the RBF on each sparse matrix. The RBF shows

the best performance for all real-world sparse matrices compared to the other

formats. The RBF’s superiority over the LIL and RBT is obvious because the

RBF performs matrix updates much more efficiently than the LIL and RBT.

The RBF also performs better than the DOK for all matrices, although the

RBF’s matrix update performance is poor compared to the DOK. It is because

the RBF’s efficiency on the CSR conversion over-compensates its drawbacks

on matrix updates over the DOK. Thus the RBF is proven to be the best

choice for real-world dynamic workloads.

5.3 Memory Consumption

We also measured the memory consumption of each sparse matrix format. We

used synthetically generated 100K ∗100K sparse matrices, varying the number

of nonzero entries from 10M to 100M . Then, we measured the amount of

memory occupied by each format.

Figure 5.4 Memory Consumption of each sparse matrix format
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Figure 5.4 shows the results. The LIL was found to be the most memory-

efficient format. It is because the LIL consists of singly-linked lists which do not

need much memory per element. The RBT and DOK occupy similar amounts

of memory. The RBT and DOK consume more memory than the LIL because

they need more memory per element.

The RBF was found to be the least memory-efficient format. It is because

the RBF manages both the red-black tree and hash table, resulting in its total

memory occupation becoming approximately the sum of the RBT and DOK.

Thus, a tradeoff exists between dynamic workload performance and memory

consumption.

5.4 Additional Remarks on Experimental Results

Except for the memory test, the performance of LIL was found to be extremely

poor compared to the others. It is because the LIL’s matrix update is more

inefficient than the others. As described in Figure 2.1, all types of matrix

updates are preceded by an initial search for the target nonzero entry. Thus, if

the initial search itself is slow, the whole matrix update procedure also becomes

slow. And Figure 5.1 shows that the LIL performs poorly on this initial search

for the target entry. Therefore, the LIL’s poor performance on matrix updates

is due to its poor performance on the search operation.

LIL’s search operation is slow because we have to perform a linear search

on the list corresponding to the row where the target entry exists. It takes

O(R) time in the worst case, and as Table 3.2 shows, this is the worst search

performance among the four formats. Performing linear search on every matrix

update is a serious bottleneck, making the LIL the least desirable format for

dynamic workloads.
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However, LIL is still popular and widely used to represent graphs which can

also be represented as sparse matrices. It is because the LIL format is good at

retrieving all neighbors of a certain vertex. Since the LIL associates each vertex

in the graph with the collection of its neighboring vertices [27], retrieving all

neighbors of the certain vertex can be efficiently done by just iterating over

the single list that corresponds. Neighbor retrieval is widely used in several

graph operations such as PageRank [28], Single-Source Shortest Path [29], and

many others.

So, if neighbor retrievals are the major workload, LIL’s performance can be

much better than that of the DOK and RBT and similar to that of the RBF.

In LIL and RBF, the elements are aggregated in terms of their first coordinate,

making neighbor retrieval much easier and more efficient. However, in DOK

and RBT, neighbor retrieval may require the search on entire data structures,

which is much more inefficient compared to the LIL and RBF.

Thus, it may seem that the LIL’s advantages are underrated in this paper.

However, this paper supposes that all analytic operations are done in a format

for fast LA operations such as CSR. The update-friendly formats are supposed

to handle only matrix updates. Thus, LIL’s efficiency on some operations

other than the matrix updates is out of the interest of this paper. If neighbor

retrievals are requested, the matrix is first converted to the CSR and then the

retrievals are conducted on the CSR matrix.

Furthermore, this paper proposes a new format for general sparse matrices,

not for particular types of matrices such as graphs. Thus, we must consider more

general workloads, including LA operations on matrices, and cannot focus on

specific types of operations, such as neighbor retrievals. Considering its usage

as a general-purpose sparse matrix, LIL is the worst-performing format for
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sparse matrices, and there was no underestimation regarding the advantages

of the LIL format in this paper. However, since the LIL was found to be much

worse than the others in our experimental results, we leave the LIL’s possible

advantages and example workloads where it can show optimal performances

as an additional remark here.
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Chapter 6

Conclusion and Future Works

This paper proposes a new sparse matrix format called RBForest (RBF), that

efficiently performs on the dynamic workload than the previously proposed

formats. RBF manages one red-black tree per row to reduce the average height

of the trees. It reduces the tree re-balancing cost after inserting or deleting the

nonzero entries. Also, the RBF uses a hash table to enable immediate access

to the target nonzero entry. It reduces the cost of searching for the target

nonzero entry to be inserted, modified, or deleted. Though the RBF is not the

first-prize winner for all individual operations, it was proven to be the best

choice for practical dynamic workloads where the matrix updates and the CSR

conversions occur altogether.

One of the possible areas of future work can be trying to reduce the memory

consumption of the RBF format. Since the RBF consists of many primitive

data structures, inefficient memory usage is inevitable. Therefore, one can try

to reduce this high memory overhead while maintaining or even improving its

performance on dynamic workloads.
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국문초록

Sparse matrix는 0이 아닌 원소만을 그 좌표 정보와 함께 저장한다. 따라

서 모든 원소를 1차원 배열의 연속적인 메모리 공간상에 저장하는 dense matrix

와는 달리, sparse matrix는 그 내부의 자료구조를 다양하게 선택할 수 있다. 따

라서 sparse matrix의 관리를 위한 서로 다른 다양한 종류의 인-메모리 포맷이

존재할 수 있다.

현재까지 여러 종류의 sparse matrix 포맷이 제안되었고, 이들은 서로 다른

장단점을 가지고 있다. 선형대수 연산을 빠르게 지원할 수 있는 포맷은 행렬 갱

신이 느리다는 단점이 있고, 그 반대로도 마찬가지이다. 그러나 sparse matrix

의 많은 용례는 매우 동적이다. 다시 말해, sparse matrix의 행렬 갱신이 매우

빈번하게 발생한다. 따라서 sparse matrix는 선형대수 연산을 포함한 분석 질의

를 주기적으로 처리하는 와중에 계속되는 행렬 갱신도 빠르게 처리할 수 있어야

한다.

그러므로 sparse matrix를 관리하는 주요 전략 중 하나는, 행렬 갱신이 계속

되는 동안에는 이를 갱신이 빠른 포맷으로 관리하다가, 분석질의가 요청되었을

때 선형대수 연산처리가 빠른 포맷으로 변환하는 방식이다. 이 전략을 최대로

활용하기 위해, 본 논문은 RBForest라는 새로운 sparse matrix 포맷을 제안한다.

RBForest는 각 행마다 하나의 레드-블랙 트리를 관리하여 0이 아닌 원소의 삽입,

삭제 이후 발생하는 자료구조 재조정 비용을 줄인다. 또한 해시 테이블을 관리

하여 행렬이 관리하는 0이 아닌 원소에 즉시 접근할 수 있도록 하고, 이는 행렬

갱신에서의 초기 조회의 비용을 줄인다. 본 논문에서의 실험에 따르면 RBForest

는 비슷한 전략으로 관리되는 sparse matrix 포맷과 비교했을 때, 현실의 동적

워크로드에서 더 효율적으로 동작한다는 것이 증명되었다.

주요어: 희소 행렬, 행렬 갱신, CSR 포맷

학 번: 2021-20552
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