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Abstract 

 

Due to an ongoing development of digital society, large-scale numerical 

array data has become an essential part of data analytics in scientific domain. 

Among various data analytics algorithms, some can produce temporary data much 

larger than the size of main memory during the computation. However, existing 

systems lack support of efficient out-of-core computation which deal with large 

temporary data. 

TilePACK is a package which enables fast out-of-core computations on 

large array files. It plans an array task as a directed acyclic graph (DAG) to 

efficiently express the computational pattern of iterative procedures of machine 

learning algorithms. To utilize a DAG task plan ideally, all temporary data should 

be kept on memory for reuse. However, this causes unnecessary disk writes and 

inefficient use of memory space because temporary data which are no longer 

needed will still be loaded on memory. To address this problem, we propose a 

method of discarding temporary data from memory as soon as they are no longer 

needed. 

Our proposed scheme has two main contributions. Discarding temporary 

data helps avoid unnecessary disk writes of temporary data. At the same time, this 

allows more space of memory to be maintained for other data leading to the 

reduction of unnecessary disk reads. Through various experiments we have 

concluded that our scheme takes effect when the size of temporary data produced is 

bigger than memory capacity. In addition, the effect of our scheme is maximized as 

the size of input data is smaller than memory space and as the size of temporary 

data is larger than input data. 

 

 

Keyword: array data, out-of-core computation, discarding temporary data, query 

plan in DAG, disk I/O 
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Chapter 1 

 

Introduction 

 
1.1. Background 
  

Due to an ongoing development of digital society, the volume of various 

data in different formats is growing rapidly. Among various data types, numerical 

array data analysis in scientific domains is becoming more and more active. For 

example, in the study of medical field, a large-scale biomedical database UK 

Biobank [1] provides diverse genetic datasets which are in more than hundreds of 

gigabytes in size. These datasets are generally expressed as arrays to be used in 

many applications such as whole genome sequencing or human joint analysis. 

Furthermore, huge number of customers and products data are produced in near-

real time in the e-commerce field. Websites like Amazon or eBay involve daily 

increase of data such as customer reviews and rating scores and many others. These 

retail datasets are important sources for building good recommendation models, 

which commonly utilize matrix factorization receiving matrices and vectors as 

inputs.  

Consequently, numerical computation of large-scale arrays has become an 

essential part of many data analytic strategies such as machine learning (ML) and 

statistics algorithms. Many of these algorithms entail iterations of same 

calculations. Therefore intermediate, or temporary results, are produced for making 

the final outcomes. In some cases, the amount of generated temporary results is 

much bigger than the amount of initial input. Moreover, large-scale arrays are now 

much larger than the size of main memory, making out-of-core computation 

inevitable. Handling large temporary data in out-of-core computation causes 

performance degradation in terms of disk I/O. Therefore, how can we efficiently 

execute on-disk numerical matrix computations which produce a relatively large 

amount of temporary data? 
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1.2. Contributions 

  
For most out-of-core computations, time consumed in disk reads and 

writes is dominant among total elapsed time. Therefore, reducing the amount of 

disk I/O as much as possible has long been, and still is, a critical homework. In this 

thesis, we suggest a method to reduce disk I/O of temporary data produced during 

numerical matrix computation. The method deletes certain temporary data as soon 

as it is confirmed to be no longer needed. 

This scheme expects two contributions. First, discarding temporary data 

avoids unnecessary disk writes when evicted from fully occupied memory space. 

At the same time, this method allows larger memory space to be maintained for 

other data, especially the input data which are repeatedly read many during 

iterative procedures of a computation, leading to the reduction of unnecessary disk 

reads. We elaborate more on problem definition and scheme explanation in the next 

chapters. 

 

1.3. Thesis Roadmap 

  
The rest of the thesis is outlined as follows. We first introduce TilePACK, a 

package for out-of-core numerical matrix computation as one of the related works 

in Chapter 2. Chapter 3 elaborates on our problem statement, describes the main 

points of our proposed new scheme with detailed implementation of how it works. 

In Chapter 4, we analyze and discuss the experimental results by providing 

comparison with the existing system. Finally, Chapter 6 concludes this thesis and 

states some future works. 
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Chapter 2 

 

Related Works 

  
2.1. Existing Systems 

 
There exist many systems which support numerical array computations. 

Several user-friendly packages including TensorFlow [2], PyTorch [3], and NumPy 

[4] support fast linear algebra (LA) operations of arrays which let users design and 

execute statistical or ML algorithms. However, such LA packages mostly do not 

support out-of-core computation. In detail, Tensorflow and PyTorch throws out-of-

memory error when attempted to compute large matrices that exceed memory 

capacity. Although NumPy provides a function which enables the mapping of large 

binary files to the virtual memory space, it purely depends on buffer-caching of the 

operating system for reading and writing files and therefore causes an enormous 

disk I/O overhead as the available memory size is low. 

Another widely used system SciDB [5] is an array-native database 

intended primarily for use in application domains that involve very large-scale 

array data. It also supports many linear algebra functions through their query 

interface. It adopts some efficient techniques for processing large arrays such as 

managing arrays in small pieces of chunks for locality and executing queries by 

pipelining the chunks. However, the system is composed of clusters of servers, 

which presents significant barriers in implementation and setup for a domain 

scientist. 

 

2.2. TilePACK 
 

As previously shown, the support for fast out-of-core computations is 

insufficient among existing systems. In this section, we introduce a numerical array 

package which efficiently performs numerical calculation of large-scale matrices. 
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Figure 2.1: Architectural Outline of TilePACK  

 

TilePACK is a package which enables out-of-core computations on large 

array files. The package has its own storage engine and a buffer manager which 

manages an array by splitting it into the same size of several data tiles. A tile is the 

logical unit of disk I/O of this system which is much smaller than the size of buffer 

pool. These tiles are loaded on the buffer pool to be used for pipelined numerical 

computation. 

The system is consisted of multiple layers as shown in Figure 2.1. There 

lies a storage engine at the very bottom which stores array data into many pieces of 

tiles. On top of the storage engine, a buffer manager is in charge of loading and 

evicting data tiles during computations. Above the buffer manager, there is the 

numerical operator module that performs mathematical operations on matrices. 

Some of the provided operations include basic element-wise arithmetic operations, 

dot product, transposition, map, etc. Map operation is very similar to the map() 

method in Python, and returns a result tile after applying a user-defined lambda 

function to each cell of an input tile. Next, the top two layers participate in 

executing numerical computation tasks queried from a client. To be specific, when  
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a client queries a task, the planner interprets it by creating a directed acyclic graph 

(DAG) as the task plan [6]. The DAG plan is then passed down to the executor 

layer to begin the actual pipelined computation. The executor determines the result 

tiles to be calculated by specifying their coordinates. That is, the tiles become the 

computational unit of the pipelined execution as well as the unit of disk reads and 

disk writes. 

Some techniques of array processing in TilePACK are referred from some 

existing array systems such as SciDB and TileDB [7]. Managing large-scale 

matrices with smaller tiles or chunks for a pipelined query execution is one of them. 

Consider a simple example of a binary arithmetic operation A+B=C, where 

matrices A, B and C are all equal in data size. Let us define the size value as 4*s 

for each array. If the operation adopts materialization model [8], or also called 

blocking model, for adding A and B as shown in Figure 2.2, total 12*s size of data 

should be loaded on buffer pool to write the added results on C. With 

materialization method applied, each operator processes and emits bulk input and 

output matrices all at once. On the other hand, since TilePACK stores matrices in 

tiles, it only calculates one result tile step by step like the way of volcano model [9]. 

For the same example task, let us say the matrices are each consisted of four tiles 

as illustrated in Figure 2.3. Once the executor layer requests the result tile C0, it is  

 

 

 

 

Figure 2.2: Example of Adding Two 

Matrices in Materialization Method 

Figure 2.3: Example of Adding Two 

Matrices in Pipelined Method 
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Figure 2.4: An Example of a DAG of Task(A+B)@(A+B)T 

 

 

generated by loading only the necessary tiles A0, B0, and C0 on memory space, 

which occupies only the size of total 3*s. Obtaining the result array C becomes 

relatively inefficient with blocking method if the main memory space is smaller 

than 12*s, whereas pipelining method makes it possible by adding two tiles which 

only occupies 3*s of memory repetitively for four times. To summarize an 

important point, pipelining execution itself can reduce considerable amount of disk 

I/O in environments with limited memory capacity. 

Lastly, TilePACK applies the buffer eviction policy similar to that of 

SciDB. It is obvious that systems having their own buffer pools should be able to 

evict data efficiently when there is no more space available. In TilePACK, the 

buffer manager first searches for a least recently used (LRU) [10] unpinned clean 

tiles through a list of tiles in buffer pool from the head and evicts them. This will 

require no disk writes. If there are no clean tiles left on memory space, the buffer 

manager loops through unpinned dirty tiles and flushes them. This action will entail 

disk I/O overhead. In many iterative algorithms of matrix computation, clean tiles 

are mostly the initial input data and dirty tiles are mostly the intermediate data. 

There exists a project named FLAME [11] which utilizes some similar 

techniques of TilePACK in implementing dense matrix computations of linear 

algebra. It designs the computation of out-of-core Cholesky factorization [12] as a 

motivating example by using a system called Supermatrix [13]. Supermatrix also 

expresses a task plan as a DAG and runs the array task with blocking matrix 
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algorithms. However, FLAME uses a multi-threaded implementation to reduce the 

cost of disk I/O. In detail, FLAME generates a future list of tasks by looking at the 

code before execution. Then a “scout” thread inspects the pending block from the 

list and fetch it into the main memory and a “worker” thread proceeds the actual 

computation of linear algebra operations by blocks. Data eviction from memory is 

done with LRU buffer policy. As the multiple threads work concurrently, they state 

that the overlapping of computation and disk I/O leads to reduction of time. 

ultimately aiming for efficient parallel execution, which TilePACK currently does 

not focuses on. That is, TilePACK uses a single thread for running an entire task. 

  

2.3. Query Representation as a Directed Acyclic Graph 
  

One noticeable technique of TilePACK is the adoption of directed acyclic 

graph structure for expressing a query plan. Each node of a DAG represents a 

temporary array object formed by a numerical operator which keeps the operator 

information with it. To help better understanding, the symbol of the operator is 

written inside each of the node as shown in Figure 2.4 above. Unlike other 

operators, scan operator is an operator implemented in TilePACK for simply 

opening an existing file, therefore does not create a separate temporary array. A 

directed edge in a DAG distinguishes the input node and output node. Figure 2.4 

illustrates a DAG of the task (A+B)@(A+B)T where A and B are two-dimensional 

arrays. The symbols + stands for element-wise addition, T for transposing a matrix, 

and @ represents dot product. The two parent nodes at the very bottom, scan(A) 

and scan(B) represent the initial input matrices to be opened and loaded on 

memory. Looking at each outgoing edge from these nodes, we can easily figure out 

that matrices A and B are the inputs of element-wise addition. In the same context, 

the child node named temporary array 0 which is the result matrix of A+B, 

becomes an input node twice for both @ and T operations.  

It is typical in many relational databases to create a query plan into a tree 

where a child node should only have a single parent. Why does TilePACK adopt a 

DAG instead of a tree? Many ML algorithms are iterative procedures, involving 

repetitive utilization of intermediate results as inputs. If we use a tree to express  
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Figure 2.5: An Example of a Tree of Task(A+B)@(A+B)T 

 

 

this access pattern, the structure will have many duplicated subtrees. Figure 2.5 is 

the same task interpreted into a tree plan having an additional subtree of adding A 

and B on the left bottom side. This causes the executor to compute temporary 

array 0 twice. It might seem trivial looking at this example task, so let us 

consider logistic regression algorithm (LR) [14] presented in Algorithm 3. LR 

calculates a result vector wi (i≥0) in ith iteration by using wi-1 as input twice 

which is produced from the previous iteration. This implies that the size of the tree 

almost doubles as the iteration increments. If the algorithm is iterated for 10 times, 

the executor must calculate w1 256 times with the initial input w0. In short, 

adopting tree structure to represent an iterative numerical matrix computation 

causes the planner to create a redundantly bigger graph with many duplicate 

subtrees. When this task plan is passed down to the executor, identical results will 

be repetitively produced. 
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Chapter 3 

 

Method 
  

We now clarify the problem in detail that this thesis is trying to solve and 

propose a method for solving the clarified problem. First, we introduce a simple 

logic named Consumer Count Algorithm for counting the number of times that 

each node in DAG is needed as inputs. Next, we elaborate on how this algorithm 

engages in improving a buffer policy. We use a constant value and a variable for 

implementing the method. Overall, the scheme enables data tiles to be discarded 

from the buffer pool as soon as they are no longer required as inputs. 

 

3.1. Problem Statement 
  

TilePACK avoids redundant calculations of temporary data by adopting 

DAG structure to express task plans. However, a node of DAG can have two or 

more children, implying that the corresponding matrix can be required for several 

different numerical operations many times. Therefore, buffer manager should hold 

the temporary results as long as possible, because the executor has no information 

of how many child nodes each node has. This causes two problems. First, it may 

incur unnecessary disk I/O if dirty tiles of temporary matrices are evicted from 

fully occupied buffer pool during the computation. Second, buffer pool will 

gradually be filled with data tiles that are no longer needed, causing unnecessary 

evictions of other data tiles. To avoid these risks, we propose a scheme that can 

discard a data tile after it is reused as many as it is needed. 

 

3.2. Consumer Count Algorithm 
  

When a client queries TilePACK a numerical computational task, the 

planner first creates an execution plan of the task as a DAG expression internally 

optimized with some simple rewriting rules to reduce computational costs. Next the 
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finalized task plan is passed down to the executor layer where the actual task 

calculation begins. It is at this point where Consumer Count Algorithm is run, 

before the executor accesses data tiles.  

The algorithm is fast and simple. Each array node of a DAG contains a 

number named consumerCnt. Starting from the final output node of a given 

task graph, we traverse through each node of the graph with depth-first search 

(DFS) approach and set consumerCnt value to the total counting of times each 

array will be consumed as inputs. Once this value is set, it is never modified. 

Referring to Algorithm 1, the counting is done as follows. Shown in lines 1 

to 2, the algorithm cleverly calculates consumerCnt of a node by ignoring the 

counting if that node has been visited before, because the result tile can be obtained 

from a temporary tile without calculating the same tile again through recursive 

computations with parent tiles. If the node is not visited yet, it is first marked as 

visited as in line 3 before the actual counting starts. The algorithm calculates 

howmany as the return value of ConsumerCntForOP function and adds it to the 

value of consumerCnt for each parent node p which is described in lines 4 to 6. 

The ConsumerCntForOP(c, p, OPtype) method calculates the number of 

times which node c requires node p as input. Therefore, the calculation depends on 

the operation type written inside the node c. Pipeline operations such as element-

wise arithmetic operations or map operation simply determine howmany as 1. This 

implies that the parent tile is used only once and is no longer needed for producing 
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the result data tile of child node. If the operation is matrix multiplication and the 

node p is the left-hand side parent node, howmany is determined as the number of 

data tiles that makes up a whole column of the right-hand side array node. After 

incrementing the consumerCnt value of p as much as the value of howmany, 

consumerCnt of p is calculated recursively. Here we assume that the 

consumerCnt value is set per array, not data tile, since the tiles belonging to the 

same array generally become the same inputs during computation.  

 

3.3. Improved Buffer Policy 
  

When the Consumer Count Algorithm is run, the calculated 

consumedCnt of each array is passed down to the buffer manager for every data 

tile. The buffer manager maintains a variable named consumedCnt for every tile, 

which expresses the actual number of how many times it has been consumed. The 

consumedCnt value of a tile is set to 0 in default when the tile is loaded from 

disk. The buffer manager increments the consumedCnt value of the tile by one 

when the tile used for numerical computation is unpinned. The information of 

consumedCnt is not stored to disk when a tile is evicted. The buffer manager 

resets the variable to zero when the tile is read again. The buffer manager employs 

an improved buffer policy by discarding a tile when the consumedCnt value 

becomes the same as the consumerCnt value of the array.  
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Chapter 4 

 

Experiments 
 

4.1. Settings 
   

We have performed various experiments to measure the impact of our 

proposed scheme on disk I/O. We executed two types of numerical matrix 

computations on three different systems. The first baseline is the system of NumPy 

run with memmap() method. This function maps large data files to the virtual 

memory space by internally using mmap() function of Linux OS [15]. The other 

systems are TilePACK implemented with two different buffer policies. We call the 

second system as TilePACK Baseline where the pure LRU buffer policy is used, 

and the third system as TilePACK Consumer Cnt where the improved buffer policy 

of discarding unnecessary data tiles is applied. As a reminder, pure buffer policy 

always evicts clean tiles first. To better observe the difference of two buffer 

policies, TilePACK systems were carried out with direct I/O [16] which bypass the 

OS buffer cache. Note that NumPy with memmap() inevitably utilizes OS caching 

effect unlike direct I/O. The first system was implemented in Python, and the 

others were implemented in C. 

The two matrix computations are common machine learning algorithms 

involving iterative procedures. The first task is non-negative matrix factorization 

(NMF) primarily used for feature extraction [17] and the other is logistic regression 

(LR) using gradient for binary classification. These algorithms well include basic 

numerical operations such as element-wise addition, matrix multiplication and 

transposition. Linear algebra scripts for the algorithms are shown in Algorithm 2 

and Algorithm 3 below. We have used the scripts provided from SLAB [18], an 

open-source array linear algebra benchmark which gives a unified comparative 

evaluation of the efficiency and effectiveness of various existing systems. 

The main goal of our experiments was to evaluate the performance of disk 
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I/O by analyzing the time difference consumed in disk reads and writes of three 

systems. Time measurement is as follows. We used Linux time command for 

NumPy with memmap() function and obtained disk I/O time by subtracting ‘user’ 

time from ‘real’ time. For TilePACK, we used gettimeofday() function for 

measuring wall clock time and disk I/O time. We summed up all measured values 

of time consumed in buffer management for disk I/O time. The obtained disk I/O 

time shall also include CPU time required for system calls, but this is ignorable 

because time consumed in disk reads and disk writes is dominant. 

All experiments were performed on a single computer with CPU (Intel 

Core i7-9700K) 3.60 GHz, 32 GB RAM and 1 TB of SSD. The machine was 

operated by Ubuntu Linux 18.04 64-bit with 5.4.0-77-generic kernel version.  

 

4.2. Datasets 
 

We used synthetic array datasets for our experiments. The SLAB 

benchmark provides an array data generator, so we partially modified this generator 

script to create raw datasets of synthetic dense matrices and vectors in csv files. 

The generated files are then converted to npy files for NumPy and to the format 

that the storage engine of TilePACK supports. Matrix shapes are tall and skinny 

with far more rows than columns. We have created dense matrices each in size of 
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N*100 (N by 100), N*10, and 10*100, and dense vectors of N*1 and 

100*1 of number of rows by columns. The value of N varies with 10M (million), 

20M, 40M and 80M. All arrays are filled with random double numbers. 

 

4.3. Results 
   

For both algorithms where input parameters are fixed, two kinds of 

experiments were performed. The first type was conducted with a fixed size of 

memory and different cases of initial data size. Four different sizes of input data are 

8 GB, 16 GB, 32 GB and 64 GB. The memory space is fixed as 32 GB for NumPy, 

and the buffer pool capacity is fixed as 28 GB for TilePACK systems. The other 

type of experiment was done on the two TilePACK systems, by varying the size of 

buffer pool with a fixed size of initial dataset. 

 

4.3.1. Non-negative Matrix Factorization (NMF) 

  
NMF needs three matrices X, W and H as the initial inputs where the 

shapes are N*100, N*10, and 10*100. We have set the number of iterations I 

to 4, and rank r to 10 as fixed parameters. There is a distinct feature of the 

intermediate data produced by the presented algorithm. For a single iteration, the 

size of temporary data exceeds that of initial input data due to matrix multiplication 

of W and H. This implies that the total amount of temporary arrays during 4 

iterations is much larger than the input data size and buffer pool capacity. As you 

can see in Table 4.1, the total size of intermediate data grows in a large extent as 

the initial input data size grows. 

We first observe the results of experiments performed on varied input 

dataset sizes. Figure 4.1 shows the total elapsed time and Figure 4.2 shows disk I/O 

time consumed in NMF computation for the three systems. Both bar charts show 

identical tendency in the difference of spent time which implies that disk I/O time 

is the dominant part of out-of-core computation. Therefore, we focus on analyzing 

disk I/O time. First of all, NumPy with memmap() function takes the longest time 

in disk I/O. Not only does this system process the calculation in a materialization 
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Figure 4.1: Total Elapsed Time of NMF for Varied Size of Inputs 

  

Figure 4.2: Disk I/O Time of NMF for Varied Size of Inputs 
 

 

method, but also using memmap() function on large files causes consistent disk 

reads and writes for data which exceed the memory capacity. On the other hand, 

the systems of TilePACK are both much faster in overall than NumPy due to its 

pipelined computation and efficient buffer management. Next, we should look at 

the red and yellow bars colored in the stated figures. From the comparison of disk 

I/O time in TilePACK Baseline and TilePACK Consumer Cnt, we can discover at 

once that the latter system which discards no more needed temporary data during  
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Table 4.1: Discarded Temporary Data in TilePACK Consumer Cnt (NMF) 
 

 

the computation is faster in all four cases. In the experiments of the first two sizes 

of varied input datasets, the improvement is remarkable. With the two result graphs, 

we can calculate the improvement rate by using a formula of (t1-t2)/t2, where 

t1 is the disk I/O time in TilePACK Baseline and t2 is the disk I/O time in 

TilePACK Consumer Cnt. The improvement rate in speed is obtained as follows: 

386 %, 303 %, 25 %, and 17 % in each 8 GB, 16 GB, 32 GB, and 32 GB input 

dataset sizes. That is, the improved buffer policy is about 5 times faster, and about 

3.6 times faster than pure LRU policy in the aspect of Disk I/O. Referring to Table 

4.1 again, as the size of initial input dataset increases, the proportion of the data 

discarded compared to temporary data gradually decreases. But still, note that the 

absolute size of discarded data increases. The higher the discarded rate, the higher 

the improvement rate. What are the reasons? In a pipelined out-of-core 

computation where temporary data is consistently produced, the buffer manager 

using pure LRU policy will start to evict data tiles from the moment the buffer pool 

  

Table 4.2: Total Amount of Disk Reads 

in TilePACK Systems (NMF) 

Table 4.3: Total Amount of Disk Writes 

in TilePACK Systems (NMF) 
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is fully occupied. Before we continue explaining why the improved buffer policy is 

faster, let us introduce two keywords. While the buffer capacity is fixed to a static 

size and the initial input size grows in each of the four cases, larger amounts of 

temporary results are be produced and this will cause more frequent evictions of 

data tiles. For clean tiles including data of initial input matrices or temporary data 

which are flushed to disk, consistent eviction and loading on the buffer pool will 

repeatedly occur throughout the iterations to reuse them when required as inputs. 

We call this phenomenon read amplification. The other keyword is simple and 

straightforward. During the computation, tens of gigabytes of temporary results are 

discarded in TilePACK Consumer Cnt system. This action likely avoids 

unnecessary disk writes of temporary data tiles that are no longer needed to stay in 

buffer space. We name this effect write avoidance. 

In Table 4.2, from the fact that the total amount of disk reads has 

decreased in all four cases by applying our scheme, we can derive a point that write 

avoidance helps to not only reduce disk writes, but also reduce repetitive disk reads 

of clean data tiles. To be specific, most of these data are the initial input data. 

Furthermore, we can observe from Table 4.3 that all temporary results are 

discarded in the first two cases, and that the proportion of the temporary data 

written on disk increases. All things considered, we can briefly state that read 

amplification is relatively not heavy and the impact of write avoidance is 

maximized in the first two cases, leading to a successful reduction of the overall 

disk I/O. For the next two cases of 32 GB and 64 GB input sizes, read 

amplification counterbalances the write avoidance effect. 

Now we look at the second experiment performed on TilePACK systems. 

For 8 GB of initial input dataset, we have varied the buffer pool size in 7 GB, 14 

GB, and 28 GB. This setting makes a scenario where the total data size is fixed 

while the buffer pool capacity increases. In line with what we have analyzed so far, 

the eviction of data tiles occurs less frequently as the size of buffer pool becomes 

bigger. In other words, read amplification decreases and at the same time, write 

avoidance increases, finally resulting in larger amount of reduction of disk I/O. The 

improvement rates obtained other than the last case (the result overlaps with the 

first experiment) are as follows: 25 % and 236 % in each 7 GB and 14 GB size of 

buffer pool. To sum up the key point from the experiments of NMF algorithm, the 
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Figure 4.3: Total Elapsed Time of NMF for Varied Size of Buffer Pool 

 

Figure 4.4: Disk I/O Time of NMF for Varied Size of Buffer Pool 

 

 

effect of the improved buffer policy is maximized under two conditions. First, the 

size of initial input data should be smaller than the buffer pool capacity. Next, the 

size of temporary result data should be much larger than the initial input data. 

 

4.3.2. Logistic Regression (LR) 

  
LR receives a matrix X and two vectors y and w as the initial inputs 

where the shapes are N*100, N*1, and 100*1. We have set the number of 
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Table 4.4: Discarded Temporary Data in TilePACK Consumer Cnt (LR) 
 

 
iterations I as 10 and step size α as 0.000001 for the parameters. The distinct 

feature of the experiment on this algorithm is as follows. For a single iteration, the 

size of temporary data produced is relatively very small compared to that of initial 

input data due to dot product. Therefore, the total size of temporary arrays during 

10 iterations is much smaller than both the input data size and the buffer pool 

capacity. In Table 4.4, the size of temporary data doubles as the initial input sizes 

doubles, and the amounts are very small in all four cases. This makes the first two 

cases in-memory computation, and the last two cases out-of-core computation. 

Let us observe the results of experiments performed on varied input 

dataset sizes. In fact, there is not much to analyze from the results obtained 

compared to the previous algorithm, but we do have some important discoveries to 

state. Figure 4.5 shows the total elapsed time and Figure 4.6 shows disk I/O time 

consumed in LR computation for the three systems. Again, both bar charts show 

identical tendency in the difference of spent time, so we focus on disk I/O time. In 

the first two in-memory computations, the three systems show relatively similar 

duration which is somewhat an obvious result. In-memory computation will only 

involve the disk reads of the initial inputs once, and disk writes for nothing but 

final results. In addition, two other systems of TilePACK are both faster than 

NumPy due to the same reason stated for the previous algorithm. Next, from the 

comparison of disk I/O time in TilePACK Consumer Cnt and TilePACK Baseline, 

we can easily notice that there exists almost no difference in both total elapsed time 

and disk I/O time. Here we have made an important discovery. In the previous 

chapters, we have explained and emphasized how the pure LRU buffer policy is 
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Figure 4.5: Total Elapsed Time of LR for Varied Size of Inputs 

 

Figure 4.6: Disk I/O Time of LR for Varied Size of Inputs 
 

 

implemented in TilePACK. The buffer manager will always evict clean tiles first. 

When total amount of temporary result data is smaller than the buffer pool, there 

always are clean data tiles of the initial input matrices or vectors loaded on the pool. 

In this scenario, due to the eviction pattern of pure buffer policy, only the clean 

tiles will be evicted from and reloaded on the memory space because the buffer 

manager will always skip the dirty tiles of temporary results as long as any clean 

tiles exist. Referring to Table 4.5 and Table 4.6, we can observe the fact that in all 

four cases the effect of write avoidance is 100%. The reason that total amount of 

disk reads grows rapidly in the last two out-of-core cases is because the algorithm 
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iterates for 10 times, requiring the input matrix X to be repeatedly read many times. 

The only difference in the two systems of TilePACK is whether the buffer pool has 

the remaining temporary results before evicting after the computation is finished. 

In other words, after the 10th iteration is over, there remains the exact size of 

temporary data on the buffer pool in TilePACK Baseline system. In TilePACK 

Consumer Cnt system, there are no remaining dirty tiles because all the temporary 

results have been discarded throughout the computation. Because the eviction of 

dirty tiles after the computation is done does not entail disk writes, there is no time 

delay as well. For example, for the case where the initial input data size is 32 GB, 

the time consumed for evicting the remaining 10 GB of temporary tiles with no 

disk writes at the end will have no impact on disk I/O time. We can also derive 

another key point in the analysis of experiment results on LR algorithm. The 

reduction of disk I/O of the improved buffer policy takes effect only when the size 

of temporary result data is bigger than the buffer pool capacity. 

Based on the analyses of the experiment results on NMF and LR 

algorithms, we can summarize the effect of our task processing scheme as follows. 

In an environment where there is a limited size of buffer pool and a buffer policy 

which always evicts clean data first, the reduction of disk I/O is maximized as the 

size of temporary data is much larger than that of the initial input data and as the 

size of initial input data is smaller than the buffer capacity, under the condition that 

the size of temporary data produced during computations is bigger than the buffer 

  

Table 4.5: Total Amount of Disk Reads 
in TilePACK Systems (LR) 

Table 4.6: Total Amount of Disk Writes 
in TilePACK Systems (LR) 
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capacity. 

We have done additional experiments by varying the environment. We 

have performed the computations also on a 4 TB of hard disk drive (5400 RPM). 

As the throughputs of the device differ from those of SSD, we were able to obtain 

better improvement rates. We have also tried increasing the parameter I (number 

of iterations), which has the effect of producing larger amount of temporary data 

with the same size of input data. As expected, we could achieve higher 

improvement on the time spent on disk I/O and therefore we were able to further 

strengthen our key points. We attached the results of these experiments in the 

Appendix section.  
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Chapter 5 

 

Conclusion 

  
In this thesis, we deal with enhancing the performance of disk I/O in out-

of-core computations of numerical array data. Since existing systems generally do 

not support efficient large-scale array computations, we first introduced an array 

package which enables fast out-of-core array computations and solved a problem 

incurred from handling array task plans as directed acyclic graphs. 

Given a DAG task plan, we proposed a scheme that calculates the 

numbers of times each array will be used as inputs before the execution of the 

actual numerical operations. The scheme therefore enables a query planner to 

represent a task plan as a simple DAG instead of a tree that has many duplicate 

subtrees. This leads to the avoidance of inefficiently calculating a same result data 

more than once. In addition, the scheme is applied to an existing buffer policy, 

which helps the reduction of unnecessary disk reads and disk writes.  

Through various experiment results, we have found an important 

discovery of the effect of our scheme. In an environment where a buffer policy 

which always evicts unpinned clean data first, the effect of reducing disk I/O 

occurs when the size of temporary data produced during computations is bigger 

than the buffer pool capacity. The system which our scheme is applied is faster in 

various test cases in the aspect of disk I/O compared to the original system. 

The significance of our proposed scheme is very clear. Optimizations for 

processing too large data on a single machine have their limitations. In addition, 

dealing with too small data can be a trivial problem. In this context, our method is 

stemmed from a simple idea and yet has explicit and considerable improvement in 

out-of-core computations of moderately large datasets. We expect that our scheme 

is generally appliable on any system which has a buffer manager and expresses a 

query or task plan as a DAG. It is because our main idea is to avoid unnecessary 

disk writes that can occur from a traditional buffer management where temporary 

data produced during a computation will be marked dirty and unconditionally be 
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written to disk when evicted later. Although the FLAME project mentioned earlier 

as one of the related works computes arrays in materialization model and therefore 

our proposed method is not likely to incur dramatic improvement, it can be a valid 

example of the appliable system. 

We can imply that our scheme can yield different patterns of result if we 

use different existing buffer policies. Therefore, we can further try using LRU-k 

[19] or MRU buffer policies to discover different results. Furthermore, the 

Consumer Count Algorithm can be improved as a future work in the part where it 

calculates consumerCnt value per array. In other words, complicated matrix 

operations may need a more sophisticated counting algorithm. For example, 

different value of consumerCnt for each data tile belonging to a single array is 

needed for planning LU decomposition [20] as a pipelined method, which is 

generally used for solving linear equations for matrices. 



  

 ２５ 

Chapter A 

 

Appendix 

  
To confirm our discoveries, we attach the results of additional 

experiments in this chapter. First, we show the experiments done with modified 

parameter of I (number of iterations). The next section briefly shows results 

performed on a 4 TB of hard disk drive (5400 RPM) instead of SSD. 

 

A.1.  Experiments with Modified Parameters 
   

The purpose of this experiment is to observe the results when a bigger size 

of temporary data is produced with a fixed size if initial input dataset. One simple 

way to achieve this is to increase the number of iterations. For our second 

algorithm, we have tried increasing the parameter I from 4 to 7. The size of 

temporary data in this experiment is shown in Table A.1, as well as total amounts 

of disk reads and writes in Tables A.2 and A.3. All the other settings are the same, 

and the difference of total elapsed time and Disk I/O time shows the equal tendency. 

We therefore attach the result of Disk I/O time difference among the three systems 

as Figure A.1.  

 

Table A.1: Discarded Temporary Data in TilePACK Consumer Cnt 

with Increased Iterations (NMF) 
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The improvement rate in speed is obtained as follows: 993 %, 302 %, 

27 %, and 18 % in each 8 GB, 16 GB, 32 GB, and 64 GB input dataset sizes. That 

is, our improved buffer policy enhances the performance by enabling the disk I/O 

time to be 10 times faster when the size of initial input data is 8 GB. Here we have  

 

 

 

Figure A.1: Disk I/O Time of NMF with 
Increased Iterations for Varied Size of Inputs 

 

  

Table A.2: Total Amount of Disk Reads 
in TilePACK Systems 
(NMF, 7 Iterations) 

Table A.3: Total Amount of Disk Writes 
in TilePACK Systems 
(NMF, 7 Iterations) 
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observed an important fact that the improvement rate generally becomes higher 

when the input dataset is relatively smaller than the buffer pool size and the 

temporary data is produced in a much larger amount. In addition, although the 

improvement rate has not increased in the experiments of 16 GB, 32 GB, and 64 

GB input data, the rate is steadily maintained. We therefore can conclude that our 

proposed method takes effect in all four cases, but the effect is significantly 

maximized in the first case. 

To even further concretize the main points that, we attach the experiment 

results of varied buffer pool sizes for the 8GB input case. The analysis is not much 

different from the results shown in Chapter 4. The improvement rates obtained 

other than the last case (the result overlaps with the first experiment) are as 

follows: 27 % and 322 % in each 7 GB and 14 GB size of the buffer pool. Note that 

the improvement rate has slightly increased in the first case where the size of input 

data (8 GB) and the buffer pool size (7 GB) has not big difference. On the other 

hand, the improvement rate has increased conspicuously in the second case where 

the buffer pool (14 GB) is bigger than the input data. 

 

 

 

Figure A.2: Disk I/O Time of NMF with 

Increased Iterations for Varied Size of Buffer Pool    
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A.2.  Experiments on Different Storage Device  
   

For sequential reads and writes, the SSD used in our experiments is 

known to have the throughput of around 550 Mbps and 520 Mbps (Samsung 860 

Pro 1TB). The HDD which we have tested is known to have read throughput of 

160Mbps and write throughput of 120 Mbps (Western Digital Blue 4TB). 

Performing the identical experiments on HDD instead of SSD was due to the 

expectation that as the speed of disk reads is much faster than the speed of disk 

writes, the improvement rate will increase [21]. Our expectations were correct, and 

therefore we attach the performance results of NMF algorithm in this section. 

Again, we have excluded the results of total elapsed time results. 

 

 

Figure A.3: Disk I/O Time of NMF for 

Varied Size of Inputs (4 Iterations, HDD Device) 

 

 

The improved rate of disk I/O time from TilePACK to TilePACK Consumer Cnt 

system shown in Figure A.3 is as follows: 526 %, 363 %, 34 %, 17 % in each 8 GB, 

16 GB, 32 GB, and 64 GB input dataset sizes. The improvement rate from the 
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Figure A.4: Disk I/O Time of NMF for 

Varied Size of Inputs (7 Iterations, HDD Device) 

 

 

experiment above is as follows: 1452 %, 367 %, 39 %, 20 % in each 8 GB, 16 GB, 

32 GB, and 64 GB input dataset sizes. Regarding all the attached results, we can 

conclude that our proposed scheme can show better results when the algorithms are 

performed on storage devices where read throughput is much faster than the write 

throughput. 
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초록 

 

정보 사회의 지속적인 발전으로 인해 점점 더 큰 규모의 수치 

데이터를 배열 형태로 활용하는 데이터 분석이 활발해 지고 있다. 일부 

반복 학습을 진행하는 머신 러닝 알고리즘은 연산 과정에서 중간 결과, 

즉 임시 데이터가 많이 생성될 수 있다. 그렇기에, 메모리 크기를 

넘어가는 매우 큰 배열 데이터의 아웃 오브 코어 (out-of-core)의 특징을 

띠는 수학적 연산이 많이 필요해 지는데, 현재 이를 지원하는 시스템은 

부족한 실정이다. 

  TilePACK은 위에서 언급한 배열 연산을 가능하게 하는 

패키지이다. 이 시스템은 여러 번 재사용이 될 같은 데이터를 여러 번 

계산하는 비효율성을 막기 위해 태스크 (task) 플랜을 트리가 아닌 유향 

비순환 그래프 (DAG) 의 구조로 표현한다. 그러나 DAG를 활용하게 

되면 한번 계산된 중간 결과를 재사용하기 위해 해당 데이터가 메모리 

상에서 유지되는데, 더 이상 필요하지 않은 경우에도 계속 남아있기 

때문에 불필요한 디스크 쓰기와 메모리 공간의 비효율적인 사용으로 

이어진다. 이 문제를 해결하기 위해 임시 데이터가 더 이상 필요하지 

않음이 확인되는 즉시 폐기하는 메소드를 제안한다. 

우리가 제안한 계획은 크게 두 가지 기여를 한다. 필요 없는 

임시 데이터를 삭제하면 해당 데이터의 불필요한 디스크 쓰기를 피할 수 

있다. 동시에, 다른 데이터를 위한 더 많은 메모리 공간을 확보할 수 

있게 한다. 이는 결과적으로 모두 연산에 소요되는 시간을 줄이는 

효과를 보인다. 다양한 실험을 통해 우리가 제안한 메소드는 임시 

데이터의 크기가 메모리 용량보다 클 때 효과가 나타나고, 입력 

데이터의 크기가 메모리 용량보다 작고 임시 데이터가 입력 데이터보다 

크기가 클수록 효과는 최대화 됨을 확인하였다. 
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