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Abstract

Semi-supervised learning for medical image segmentation is an important area

of research for alleviating the huge cost associated with the construction of re-

liable large-scale annotations in the medical domain. Recent semi-supervised

approaches have demonstrated promising results by employing consistency reg-

ularization, pseudo-labeling techniques, and adversarial learning. These meth-

ods primarily attempt to learn the distribution of labeled and unlabeled data by

enforcing consistency in the predictions or embedding context. However, previ-

ous approaches have focused only on local discrepancy minimization or context

relations across single classes. In this paper, we introduce a novel method that

effectively embeds both local and global features from multiple hidden layers

and learns context relations between multiple classes. Our voxel-wise adversar-

ial learning method utilizes a voxel-wise feature discriminator, which considers

multilayer voxel-wise features as an input by embedding class-specific voxel-wise

feature distribution. The experimental results demonstrate that our method

outperforms current best-performing state-of-the-art semi-supervised learning

approaches by improving the network performance by 2% in Dice score coeffi-

cient for multi-organ dataset. Furthermore, visual interpretation of the feature

space demonstrates that our proposed method enables a well-distributed and

separated feature space from both labeled and unlabeled data, which improves

the overall prediction results.

Keywords: adversarial learning, feature discriminator, medical image segmen-

tation, representation learning, semi-supervised learning

Student Number: 2021-20348
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Chapter 1

Introduction

Medical image segmentation is an essential task in several clinical approaches,

such as computer-aided diagnosis, radiation therapy, and virtual surgeries [1, 2,

3]. Automated segmentation of organs (e.g., left atrium (LA), heart, or liver) is

of significant importance in optimizing clinical workflow, such as the planning

of surgeries and treatments. Convolutional neural networks (CNNs), which have

demonstrated significant abilities in learning visual features in computer vision

tasks, have been successfully adapted to medical segmentation problems by

leveraging a large amount of annotated medical data (i.e., computed tomogra-

phy (CT) scans [4]). However, the generation of reliable large-scale annotations

of three-dimensional (3D) medical images requires domain-specific expertise,

which is expensive and time-consuming.

Significant efforts, such as pretraining, self-supervised learning, and active

learning, have been dedicated towards learning from a large number of unlabeled

datasets. Semi-supervised learning is one of the approaches used to reduce the

annotation cost, where the method simultaneously utilizes a large number of un-
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Figure 1.1: Our proposed method

labeled datasets with a limited number of labeled datasets. The semi-supervised

approach assumes that labeled and unlabeled data from the same label share

the same or similar underlying distribution (i.e., manifold assumption) [5, 6].

We can infer that labeled and unlabeled data usually share similar distribu-

tions (e.g., intensities or structures) in medical imaging; consequently, rich se-

mantic information can be embedded using unlabeled data via semi-supervised

learning. In practice, several studies on semi-supervised medical image segmen-

tation has proposed effective methods for leveraging unlabeled data. Consis-

tency regularization [7], pseudo-labeling [8] and adversarial learning [9] meth-

ods are some of the most commonly used learning methods in semi-supervised

learning. The teacher-student model architecture [7] has been broadly applied,

and it was demonstrated to be effective for consistency regularization- and

pseudo-labeling-based methods. Furthermore, improved model performance can

be expected through the synergy of representation learning methods from self-

supervised and supervised learning by encoding representations from labeled

data. Training with these representation learning methods [10, 11] showed rich
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representation space especially for multi-class (i.e., multi-organ) dataset, which

has not been explored much in semi-supervised learning.

Consistency regularization-based methods [7] learn network outputs that are

invariant to perturbations or augmentations by adding noise to the unlabeled

samples. Different types of methods have been presented to enforce consistency

between outputs from different passes, such as uncertainty-aware schemes for

data-level consistency [12] or task-level consistency using a task-transform layer

[13]. Pseudo-labeling-based methods [14] generate high-confidence training tar-

gets as pseudo-labels for training unlabeled samples. Similar to consistency-

based methods, the generated pseudo-labels are used to encourage mutual con-

sistency [14] to enhance the generalized feature performance. However, these

methods learn features by minimizing the loss function in the last layer (i.e.,

decision space), which can be limited to the local region so that the model

learns only the local features of data.

On the other hand, adversarial learning-based methods [9, 15] model data

distribution of unlabeled samples in an unsupervised setting by utilizing a

discriminator. To capture the global shape constraint, a shape-aware adver-

sarial learning method [15] has been proposed for unlabeled data. Although

this method is effective for learning shape-aware global features, reproducing

features through a separate network is ineffective for learning. Furthermore,

both consistency- and adversarial learning- based methods only consider single-

class cases and can be limited when they are extended to a multiclass dataset.

Motivated by these recent studies, this work attempts to apply consistency-,

pseudo-labeling-, and adversarial-based methods for leveraging unlabeled data.

However, more effective learning methods are still significantly required for

semi-supervised medical image segmentation task.

In this work, our goal is to improve the representation power for the med-
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ical image segmentation task (similar to our previous work [11]), by leverag-

ing a large amount of unlabeled data. Specifically, we intended to present an

effective method that could successfully learn both local and global features

from labeled and unlabeled datasets. However, there were several limitations

associated with increasing representation power in previous studies. First, these

studies focused only on local discrepancy minimization. Most consistency-based

methods [12, 14, 16] calculate output discrepancy in the last layer such that

only local features are embedded throughout the training scheme. However,

both local and global features should be considered to obtain a better repre-

sentation space. Second, feature relations across different classes of organs are

ignored. Previous studies have only discussed the effectiveness of their methods

for single-class data by embedding voxel-to-voxel local relations without distin-

guishing among different classes. The feature relation between different classes

is also important for multiclass data.

This work proposes a novel adversarial learning-based method to incorpo-

rate unlabeled data to improve the network performance. We propose a context-

aware semi-supervised segmentation method for efficiently learning the distri-

butions of labeled and unlabeled datasets. To resolve the aforementioned prob-

lems of recent studies, we considered voxel-wise features from multiple hidden

layers, which include both the local and global information of the data, as an in-

put to our voxel-wise feature discriminator to embed distributions of unlabeled

datasets.

Our proposed method is illustrated in Fig. 1.1. Existing semi-supervised seg-

mentation models learn to map voxels from the data space to the feature space,

ignoring global features or class-wise voxel relations. We enforced models to

directly learn features representations of labeled and unlabeled data using our

proposed method; by defining voxel-wise feature relations of labeled data in the
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feature space as described in Fig. 1.1(a) (i.e., voxel-wise representation learning)

and by discriminating between the voxel-level features from labeled and unla-

beled data as presented in Fig. 1.1(b) (i.e., voxel-wise adversarial learning). As

illustrated in Fig. 1.1b, the job of this discriminator is to determine if a voxel-

wise feature belongs to labeled data or unlabeled data (real for labeled data and

fake for unlabeled data). This voxel-wise feature discriminator assumes the form

of a multitask discriminator that can learn distributions from different classes

simultaneously, thereby allowing us to embed class-specific context-aware fea-

tures in the embedding space.

Furthermore, we propose an improved voxel-wise representation learning

method (Fig. 1.1a) for labeled data. To effectively embed unlabeled data, we

are required to implement well-distributed features from labeled data prior

to adversarial learning. In our previous study [11], we presented an explicit

representation learning method for a supervised segmentation task by defining

voxel-level feature relations. We adjusted this previous method to embed feature

representations from labeled data without information loss using a multireso-

lution context resizing technique. Moreover, we used the Bootstrap Your Own

Latent (BYOL) approach [17], instead of SimSiam [18], for learning stability.

To summarize, our contributions are as follows:

• We propose a voxel-wise adversarial learning method that learns both

the local and global contexts of labeled and unlabeled data to avoid the

local discrepancy problem from previous studies by considering voxel-

wise features as input. Furthermore, our voxel-wise feature discriminator

embeds feature relations across different classes by learning a class-specific

voxel-wise feature distribution (instead of considering only a single class).

• We improve the previous voxel-wise representation learning method

5



by overcoming information loss and learning stability problems. This en-

ables our adversarial learning method to effectively learn well-distributed

voxel-wise feature representations.

• Our method achieves superior results on the Left Atrial Segmentation

Challenge dataset and abdominal multiorgan (MO) dataset when com-

pared with existing state-of-the-art semi-supervised segmentation meth-

ods (i.e., consistency regularization, pseudo-labeling and adversarial learn-

ing based methods).
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Chapter 2

Related Works

2.1 Semi-Supervised Medical Image Segmentation

For semi-supervised medical image segmentation, traditional methods, such as

prior- [19] and clustering-based models [20], use hand-crafted features to en-

hance model performance. With the advanced ability of CNNs, deep learning-

based approaches have been widely used for medical image segmentation. Re-

cently, semi-supervised methods based on consistency regularization [12, 13],

pseudo labeling [14], and adversarial learning-based [21, 15, 22] have proven

the effectiveness of incorporating a large amount of unlabeled data for medical

image segmentation task.

Consistency Regularization. Consistency regularization is based on the

assumption that the segmentation prediction of a network is consistent under

realistic perturbations. This motivation was first proposed in [23] and further

studied in [24, 7]. The Π-Model [24] encourages consistent training under dif-

ferent augmentation and dropout conditions. Owing to the noisy training tar-
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get problem, temporal ensembling [24] adopts the exponential moving average

(EMA) of previous evaluations to obtain an ensemble prediction. As a more

time-effective method, the teacher-student model [7] introduces a pair of net-

works (i.e., teacher and student networks) and enforces consistency in their

predictions. Time efficiency and accuracy can be achieved by averaging model

weights, instead of label predictions.

In medical research, the uncertainty-aware mean teacher (UA-MT) model,

proposed in [12], utilizes an uncertainty-aware teacher-student framework for

LA segmentation. The base model framework was extended from the teacher-

student architecture [7], and uncertainty map guidance was adopted to filter out

unreliable predictions. More recently, a dual-task consistency (DTC) model [13]

simultaneously used a pixel-wise segmentation map and level set representation

as dual tasks. By utilizing the level set representation, the network could learn

the geometric prior. However, the aforementioned methods tend to consider

only the local context from the last layer, which can limit the representation of

rich global contextual features in the embedding space.

Pseudo-labeling. The concept of pseudo-labeling was proposed in [8], and

its variants have presented significant results in semi-supervised learning. For

instance, NoisyStudent [25] employed a pair of networks, one acting as a teacher

and the other as a student. They first trained the teacher network and inferred

pseudo-labels for unlabeled images using the teacher network. A larger student

network model was then trained using a combination of labeled and pseudo-

labeled data, and this process was iterated by converting the student to the

teacher. Moreover, a mutual consistency network (MC-Net) [14] proposed a cy-

cled pseudo-label scheme that used one encoder and two marginally different

decoders to utilize unlabeled data. Our method also adopts pseudo-labeling

based on teacher-student architecture to infer voxel-wise features from unla-
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beled data in a simple yet powerful manner.

Adversarial Learning. Inspired by the concept of generative adversarial

networks (GANs) [26], several methods that use adversarial learning to ex-

ploit unlabeled data have attracted attention in semi-supervised medical image

segmentation. For instance, [27, 28] used GANs to expand the training set to

increase data diversity and avoid overfitting. Another key idea of using GANs in

semi-supervised learning is to force the statistical prior-shape distribution and

prediction distribution to be close so that they can effectively learn the distri-

bution on the entire dataset (both labeled and unlabeled). A shape-aware semi-

supervised segmentation network (SASSNET) [15] employs GANs to learn the

distribution of both labeled and unlabeled data. This method utilizes the signed

distance map (SDM) of images as an input to the discriminator, which plays

a vital role in embedding the geometric context of unlabeled data. Although

this method [15] considers global features employing SDM and a discriminator,

context relations between different classes cannot be considered.

2.2 Representation Learning

Self-supervised learning methods [29, 30, 31] based on contrastive loss have

proven to be effective in representation learning. Moreover, representation learn-

ing has also demonstrated its significance in semi-supervised medical image seg-

mentation [32, 33]. In contrastive learning, positive (similar) pairs are pulled

close together, whereas negative (dissimilar) pairs are pushed away. Because

more negative samples can prevent collapse [29], several approaches, such as

large batch sizes [31] or memory banks [30], have been proposed. Meanwhile,

non-contrastive based approaches [17, 18] have shown effective results that avoid

collapsing without using negative samples. The BYOL [17] method is based on

9



teacher-student model, and one branch of momentum encoder enables the net-

work to learn representations without negative samples. Similarly, SimSiam

[18] uses a Siamese network and stop-gradient operation, instead of momentum

encoder, to prevent collapsing.

These non-contrastive based approaches can be employed in supervised

learning to learn rich representations [11]. Inspired by SimSiam [18], our previ-

ous study [11] presented an effective representation learning method for medical

segmentation task by defining voxel-level relations in the embedding space. In

this study, we improved our previous method by solving the information loss

and learning instability problems of Siamese networks.
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Chapter 3

Proposed Method

We aim to learn feature representation (i.e., local and global features) from both

the labeled and unlabeled datasets. To achieve this, we propose a context-aware

semi-supervised segmentation method that can be incorporated into a segmen-

tation network (i.e., VNet [34]). The overall architecture of semi-supervised seg-

mentation is illustrated in Fig. 3.1. Two backbone networks (i.e., VNet [34]),

i.e., teacher and student networks, take computed tomography scans as an in-

put. The teacher network is learned passively via exponential mean average

(EMA). The features (⃝) from multiple hidden layers of the student network

pass through each section of our proposed network (i.e., voxel-wise feature layer

and voxel-wise feature discriminator) so that feature representations from la-

beled and unlabeled data can be learned. The features (△) of the teacher net-

work are used for optimizing the student and our proposed network. The student

network is trained using four loss functions (Ldice, Lc, Ladv, and Lfeature). The

gradients are not backpropagated through the dashed lines.

We assume a set of training sets containing N labeled data and M unla-

11



beled data, where N ≪M . We denote the labeled set as Dl = {(xi, yigt)}Ni=1 and

unlabeled set as Du = {(xi)}N+M
i=N+1, where xi represents the 3D volume, and yigt

denotes the ground-truth label. The proposed architecture for semi-supervised

learning consists of two parts: voxel-wise representation learning (the blue box

in Fig. 3.1) and voxel-wise adversarial learning (the red box in Fig. 3.1). Fea-

tures from the hidden layers of the backbone network pass through each part

to learn feature representations from Dl and Du. The voxel-wise adversarial

learning method takes voxel-wise features from Dl and Du, after which it learns

class-specific data distributions. The voxel-wise representation learning method

uses voxel-wise features from Dl and improves current embeddings by defining

feature relations from the same class. In Section 3.1 and 3.2, we describe the

details of these methods. In Section 3.3, we explain the overall training process

of our proposed method.

3.1 Voxel-wise Adversarial Learning

To leverage a large amount of unlabeled data, the network must be able to learn

feature representations using only CT images. Previous consistency-based meth-

ods [12, 13] have applied a consistency loss function and trained the network for

consistent prediction with perturbed or transformed outputs. The consistency

loss is computed between ypseudo and y for labeled and unlabeled data. However,

this loss is computed in the last layer (i.e., decision space), which embeds only

the local features of data. Moreover, it penalizes voxel-wise consistency ignoring

class-specific information. It is also problem in [15] that embedded shape-aware

global features are only limited to a single class.

To resolve this problem, we propose a novel voxel-wise feature discrimina-

tor for embedding class-specific features of both labeled and unlabeled data.
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Figure 3.1: Overview of the proposed architecture

As presented in Fig. 3.2a, our voxel-wise feature discriminator takes a set of

multiresolution features, {E(x1), E(x2), E(x3), E(x4)}, as an input, where E(·)

denotes an encoder of the backbone, and E(xj) ∈ RH×W×D×C denotes fea-

tures from the jth hidden layer. These features from multiple hidden layers

pass through the convolution layer to adjust the channel size, and each feature

is upsampled to the same spatial size. Such features from multiple hidden layers

are fused into one by adding an operation and a convolution layer. Thereafter,

voxel-level features (C-d vector) from this fused feature, ffused, pass through

a voxel-level feature discriminator, which consists of two multilayer percep-

tron networks (MLPs) and prediction layer (i.e., linear branch). The number

of prediction layers corresponds to the number of class (in case of LA dataset,

there exist two classes; foreground and background). The voxel-level features

from different classes pass through different prediction layers. To specify the

class of each voxel-level feature, we use ground-truth label ygt for labeled data

and pseudo-labels ypseudo for unlabeled data, which can be computed using the

13



following equation:

ypseudo = argmax {Teacher(x) > t}, (3.1)

where t represents the threshold parameter, which lies in the range of [0, 1].

This different prediction branches enable multiple simultaneous adversarial

classification tasks. We define features from labeled data as real and those from

unlabeled data as fake so that the encoder of the segmentation network (gen-

erator) can generate voxel-level features of unlabeled data with a distribution

similar to that of voxel-level features of labeled data. This forces the distri-

butions of class-specific voxel-level features from both labeled and unlabeled

features to be close. In this manner, the segmentation network can learn class-

specific context-aware features more effectively. The encoder can embed both

local and global features using a multiresolution context-fusion technique. In D

representing the voxel-wise feature discriminator, we can define our proposed

adversarial loss function as follows:

Ladv =
1

N

N∑
n=1

∑
fi∈E(xn)

log(D(fi)) +

1

M

N+M∑
m=N+1

∑
fi∈E(xm)

log(1−D(fj)).

(3.2)

3.2 Voxel-wise Representation Learning

In Section 3.1, we propose a new voxel-wise feature discriminator for learn-

ing the feature representations of unlabeled data via learning based on the

feature distribution of labeled data. In this setting, the most important task

is the modeling of the distribution of features from labeled data beforehand.

Accurate modeling of the labeled data distribution is essential for effective ad-

versarial learning. In other words, the model is unlikely to learn effectively from

14



adversarial learning if the distribution of labeled data is incorrect. In contrast,

the model is likely to learn effectively if distribution is recovered from labeled

data. Thus, our model can learn rich feature representations from both labeled

and unlabeled data.

In our previous work [11], a voxel-level Siamese representation learning

method for medical image segmentation tasks was proposed. By defining voxel-

wise feature relations in the representation space, the model learned feature

representations that were effective in the segmentation task. The stop-gradient

technique and the Siamese network from SimSiam [18] were used to learn voxel-

wise feature relations. A feature aggregation method was also proposed for em-

bedding both local and global features. However, our previous study had two

limitations: (1) learning stability and (2) information loss.

In this study, we propose an improved voxel-wise representation learning

method for embedding features from labeled data. Inspired by previous studies

[17, 35], we used the learning technique from BYOL [17], instead of SimSiam

[18], for the first problem(i.e., learning stability). Using EMA from BYOL en-

abled the model to produce a more stable prediction target [35] than the stop-

gradient technique from SimSiam [18]. As presented in Fig. 3.2b, there are

teacher and student models; however, the teacher model uses the slow moving

average of the student parameter, instead of learning for its own parameter (i.e.,

EMA). The weights of the teacher θt are updated as θt ← λθt+(1−λ)θs, where

λ represents the decay parameter, and θs indicates the weights of the student.

Furthermore, for the second problem (i.e., information loss), multiresolution

context resizing method is proposed. The information loss occurs during the

downsampling of mask data to match the class location for each voxel-wise fea-

ture. Thus, instead of downsampling the mask data, the multiresolution features

from the encoder, E(·) were upsampled. Figure 3.2b illustrates the upsampling

15



(a) Voxel-wise Feature

Discriminator

(b) Voxel-wise Feature Layer

Figure 3.2: Details of the proposed architecture.

and convolution stage that can reduce information loss.

As explained in Section 3.1, our voxel-wise feature layer (Fig. 3.1 and Fig.

3.2b) uses multiresolution features from the encoder of the backbone as an

input. These features pass through the upsampling and convolution stages, and

voxel-wise features, pci , are selected for each class; here, pci refers to the ith voxel-

wise feature from class c (class-specific feature selection). These sampled voxel-

wise features pass through the projection and prediction layers. The projection

layer from the teacher network outputs zt, and the projection and prediction

layers from the student network output p(zs), where p(·) denotes the prediction

layer. Based on a previous research [17], we used the mean square error between

normalized zt and p(zs) as the feature loss function. The feature loss function
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for updating the student network can be defined as follows:

Lfeature = ∥p̄(zs)− z̄t∥22, (3.3)

where x̄ refers to l2-normalization (i.e., x̄ x
∥x∥2

).

3.3 Training Details

Our backbone network is based on VNet [34]. We first demonstrate a basic

VNet [34] segmentation training scheme for a labeled dataset. Two VNets [34]

are displayed in Fig. 3.1: the teacher and student networks. These two networks

take the 3D volume, x ∈ RH×W×D, as an input, and they output prediction

masks, ypseudo and y respectively. Based on [12, 15], we used the dice loss [36]

to maximize the overlap between the ground truth and prediction y to train

the student network. We used the labeled dataset (i.e., Dl) to compute the dice

loss, which can be defined as

Ldice =
N∑
i=1

2yi · Student(xi)
(yi)

2 + (Student(xi))
2 . (3.4)

For updating the teacher network, we used the EMA [35] technique.

Following [7], we also added a consistency loss between the softmax pre-

dictions of the teacher and student networks for semi-supervised learning. The

consistency loss between the outputs of the teacher and student networks can

be summarized as follows:

Lc = Ex

[
∥f(x, θt)− f(x, θs)∥2

]
, (3.5)

where f(·) represents the VNet architecture [34]. We can stabilize the label

prediction by using the teacher-student framework and penalize the predictions

that are inconsistent with the target (i.e., output of the teacher network) by
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adding consistency loss. In this manner, we can learn the generalized local

features of both labeled and unlabeled datasets.

The final loss function for training the student network (i.e., VNet [34]) is

summarized as follows:

Ltotal = αLadv + βLfeature + γLc + Ldice, (3.6)

where α, β and γ represent the coefficients used to balance the different loss

terms.

3.4 Dataset Details

We evaluated our method using two datasets: the LA dataset from the Atrial

Segmentation Challenge and an MO dataset.

Left Atrial Segmentation Challenge datasetWe used 100 3D gadolinium-

enhanced magnetic resonance imaging scans and an LA segmentation mask for

training and validation. In the dataset, the scans exhibited an isotropic res-

olution of 0.6255mm3 × 0.6255mm3 × 0.625mm3. Following the settings of a

previous method [12, 15], the dataset was separated into two sets: training and

testing, with 80 images for training and 20 for testing. We applied the same

preprocessing method; we randomly cropped 112 × 112 × 80 sub-volumes and

preprocessed the scans using a windowing range of [−125, 275]. Then, we nor-

malized the input images to zero mean and unit variance (i.e., the range of the

value is [0, 1]). We used data augmentations techniques; randomly flipping and

rotating.

Abdominal multiorgan dataset To further evaluate the effectiveness of

our method in multiclass segmentation, we evaluated its performance on an

MO dataset. We used 90 abdominal CT images: 47 from the Beyond the Cra-

nial Vault dataset [37] and 43 from the Pancreas-CT dataset. The segmenta-
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tion standard consisted of the spleen, left kidney, gallbladder, esophagus, liver,

stomach, pancreas, and duodenum. The slice thickness was in the range of

0.5− 5.0mm and pixel sizes were in the range of 0.6− 1.0mm. The dataset was

separated into two sets: 70 images for training and 20 for testing. We sampled

all abdominal CT images into 128 × 128 × 64 pixels. Preprocessing was per-

formed using a soft-tissue CT windowing range of [−200, 250] Hounsfield units.

After rescaling, we normalized the input images to zero mean and unit variance

(i.e., the range of the value is [0, 1]).

3.5 Implementation Details

For training both LA and MO dataset, we used a VNet [34] architecture as the

base network. We set the batch size to 4, and each batch included two labeled

patches and two unlabeled patches.

For the LA dataset, we used the stochastic gradient descent optimizer (mo-

mentum = 0.9, weight decay of 0.0001) for 6000 iterations, with an initial

learning rate of 0.01. The learning rate was divided by 10 for every 2500 iter-

ations. To train the multitask feature discriminator, we followed the method

described in [38]; we used an Adam optimizer (β1=0.5, β2=0.999) and a learn-

ing rate of 0.0002. The weighting parameter α was 0.01 for Ladv and β was

0.1 for Lfeature. Following [15], we used Gaussian warming-up function γ(t) =

0.001 ∗ e−5(1− t
tmax

)2 for consistency loss where t indicates the number of itera-

tions. Based on our previous study[11], the dimensions of all hidden layers from

in voxel-level feature layer were set to 64. Furthermore, we used a threshold

t of 0.7. We implemented our framework in PyTorch [39], using an NVIDIA

TITAN RTX GPU and Tesla V100 GPU. At the inference time, only the VNet

framework was used for segmentation.
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For MO dataset, we used Adam optimizer (β1=0.9, β2=0.999) and an ini-

tial learning rate of 0.001 decayed by 0.1 every 2500 iterations. The weighting

parameter α was 0.01 for Ladv and β was 100 for Lfeature. The rest of the

experimental settings were the same as those employed in the LA dataset ex-

periments.

3.6 Evaluation Metrics

For our evaluation metrics, we determined the dice score coefficient (DSC) [36],

Hausdorff distance (HD95; mm) [40, 41], average symmetric surface distance

(ASSD; mm) [42], and Jaccard Index (JC). Given the binary labeled masks X

and Y, the DSC and JI are defined as follows:

DSC(X,Y ) =
2 |X ∩ Y |
|X|+ |Y |

(3.7)

J(X,Y ) =
|X ∩ Y |
|X ∪ Y |

=
|X ∩ Y |

|X|+ |Y | − |X ∩ Y |
(3.8)

As a better-generalized evaluation metric for distance, HD is defined as follows:

HD(X,Y ) = max{ max
sX∈SX

d(sX , SY ) + max
sY ∈SY

d(sY , SX)} (3.9)

where SX is a set of surface voxels of a set X, and d(p, SX) is the shortest

distance from an arbitrary voxel p to SX

d(p, SX) = min
sX∈SX

∥p− sX∥2 (3.10)

By Defining the distance function as

D(SX , SY ) =
∑

sX∈SX

d(sX , SY ) (3.11)

Therefore, the ASSD is defined as follows:

ASSD(X,Y ) =
1

|SX |+ |SY |
(D(SX , SY ) +D(SY , SX)) (3.12)
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Chapter 4

Experimental Results

4.1 Results

Left Atrial Segmentation Challenge dataset. We evaluated the perfor-

mance of our proposed network in terms of its accuracy by comparing our

results with those of the state-of-the-art models, i.e., domain-agnostic prior

[43], UA-MT [12], SASSNet [15], local and global structure-aware entropy reg-

ularized mean teacher [44], double-uncertainty weighted method [45], DTC [13],

contrastive voxel-wise representation learning [32], and MC-Net [14]. Two semi-

supervised settings widely used on the LA dataset were available from a previous

study [15] (i.e., using either 10 or 20% of the labeled data). Table 4.1 lists the

quantitative results of LA segmentation. The results indicate that our proposed

method achieves superior results in terms of the DSC, Jaccard index, and HD95

measurements and achieves competitive results on ASSD under the conditions

of both 10% and 20% labeled data. Qualitative results are illustrated in Fig.

4.2. It can be observed that our method has a higher overlap ratio with respect
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to the ground truth in both 2D and 3D visualizations, thereby producing fewer

false positives.

Abdominal multi-organ dataset. To prove the effectiveness of our method

on a multiclass dataset, we conducted an experiment on an MO dataset. For

comparison, several state-of-the-art models (i.e., UA-MT [12], SASSNet [15],

DTC [13], and MC-Net [14]) and the base network, VNet, were used for evalu-

ation. We considered 20% of training data among the 70 images as the labeled

data (14 labeled) and the others as unlabeled data (54 unlabeled). All the

models used VNet as their backbone network. Table 4.2 presents quantitative

comparisons of the segmentation results.

The results indicate that our method outperforms the other methods in

terms of all evaluation metrics (i.e., Dice (71.28%), Jaccard index (59.01%),

HD (4.32), and ASSD (1.24)). Our method achieves significant improvements

in the segmentation of spleen, liver, stomach, and pancreas and demonstrates

competitive results for other organs. A box plot for a more precise quantita-

tive comparison is presented in Fig. 4.1. The qualitative results illustrated in

Fig. 4.3 indicate that our method segments multiple organs better than other

methods. The statistical significance of all the experiments was verified through

paired sample t-tests (i.e., p-values) with the proposed method based on a 95%

confidence interval. The p-values that were less than 0.03 were considered to be

statistically significant.

4.2 Ablation Study

We performed an ablation study to investigate the effectiveness of major com-

ponents of the proposed loss function. We trained VNet under 20% labeled

data using the MO and LA datasets, and the results are listed in Table 4.3 and
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Method
# Scans used Metrics

Labeled Unlabeled Dice(%) Jaccard(%) 95HD(voxel) ASSD(voxel)

VNet 8(10%) 72 79.99 58.12 21.11 5.48

VNet 16(20%) 64 86.03 76.06 14.26 3.51

VNet 80(All) 0 91.14 83.82 5.75 1.52

DAP [43] 8(10%) 72 81.89 71.23 15.81 3.80

UA-MT [12] 8(10%) 72 84.25 73.48 13.84 3.36

SASSNet [15] 8(10%) 72 87.32 77.72 9.62 2.55

LG-ER-MT [44] 8(10%) 72 85.54 75.12 13.29 3.77

DUWM [45] 8(10%) 72 85.91 75.75 12.67 3.31

DTC [13] 8(10%) 72 86.57 76.55 14.47 3.74

CVRL [32] 8(10%) 72 87.72 78.29 9.34 2.23

MC-Net [14] 8(10%) 72 87.71 78.31 9.36 2.18

Ours 8(10%) 72 88.42 79.38 8.74 2.52

DAP [43] 16(20%) 64 87.89 78.72 9.29 2.74

UA-MT [12] 16(20%) 64 88.88 80.21 7.32 2.26

SASSNet [15] 16(20%) 64 89.54 81.24 8.24 2.20

LG-ER-MT [44] 16(20%) 64 89.62 81.31 7.16 2.06

DUWM [45] 16(20%) 64 89.65 81.35 7.04 2.03

DTC [13] 16(20%) 64 89.42 80.98 7.32 2.10

CVRL [32] 16(20%) 64 89.87 81.65 6.96 1.72

MC-Net [14] 16(20%) 64 90.34 82.48 6.00 1.77

Ours 16(20%) 64 90.56 82.84 5.95 1.79

Table 4.1: Quantitative comparisons on the left atrium dataset.
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(a) spleen

(b) left kidney

(c) gallbladder

(d) esophagus

(e) liver

(f) stomach

(g) pancreas

(h) duodenum

Figure 4.1: Box plots of the dice score coefficient of different methods for eight

different organs.
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Method
Metrics (average) DSC

DSC(%) JC(%) HD(voxel) ASSD(voxel) spleen left kidney gallbladder esophagus liver stomach pancreas duodenum

VNet [34] 66.58 54.08 5.74 1.79 87.79 81.98 64.69 44.88 91.00 66.51 53.39 42.42

UA-MT [12] 69.57 56.90 4.99 1.36 89.64 77.53 67.82 56.19 92.21 70.73 54.58 47.86

SASSNet [15] 69.09 56.42 4.85 1.48 87.42 87.26 60.19 54.16 90.41 69.41 57.30 46.59

DTC [13] 69.39 57.00 5.78 1.79 89.05 87.03 59.64 56.11 91.23 68.45 56.63 46.99

MC-Net [14] 69.76 57.34 5.61 1.90 89.15 87.82 64.66 50.50 92.28 71.22 56.97 45.49

Ours 71.28 59.01 4.32 1.24 89.75 87.07 66.64 56.01 93.03 71.58 59.08 47.03

Table 4.2: Quantitative comparisons on the multiorgan dataset

Figure 4.2: Qualitative comparison of different semi-supervised segmentation

methods using the left atrium dataset with 20% labeled data.

Figure 4.3: Qualitative comparison of different semi-supervised segmentation

methods using the multiorgan dataset with 20% labeled data.

4.4, respectively. In Table 4.3, our network and MC-Net are trained with 20%

labeled data using the MO datasets. We generated a visualization using labeled

(marked by triangles) and unlabeled (marked by circles) data, and we present

them separately below for comparison. Features are colored according to class
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Iter
VNet + Ladv VNet + Lfeature Ours ( VNet + Ltotal) MC-Net[14]

labeled unlabeled labeled unlabeled labeled unlabeled labeled unlabeled

0.1 k

0.5 k

1 k

Table 4.3: Visualization of the feature alignment progress during the training

phase.

Method
# Scans used Metrics

Labeled Unlabeled Dice(%) Jaccard(%) 95HD(voxel) ASSD(voxel)

VNet 16(20%) 64 86.03 76.06 14.26 3.51

VNet+ Ladv 16(20%) 64 88.76 80.01 10.46 2.64

VNet+Lfeature 16(20%) 64 88.67 79.85 11.52 3.31

VNet+Ladv+Lfeature 16(20%) 64 90.39 82.56 10.11 2.70

VNet+Ladv+Lfeature+Lc 16(20%) 64 90.56 82.84 5.95 1.79

Table 4.4: Ablation study of the effectiveness of our proposed method on the

left atrium dataset

labels (the labels of unlabeled data are used for only visualization).

From Table 4.3, we can observe that each major component of our proposed

method (i.e., Ladv and Lfeature) contributes to a more structured representa-

tion space in the training process. Specifically, Ladv guides unlabeled data to

follow the distribution of labeled data, and Lfeature plays a significant role

in generating separated feature representation; this implies that the unlabeled

data distribution follows the labeled data distribution as we intended, thereby

embedding rich feature representation.
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(a) VNet [34] (b) Ours

Figure 4.4: Visualization of features from the second layer.

Table 4.4 lists the comparison results of the ablations, wherein our losses

(Ladv, Lfeature, and Lc) were gradually incorporated. The results reveal a sig-

nificant performance improvement in cases wherein the two losses, Ladv and

Lfeature, were used together, rather than being used separately. This demon-

strates that these losses achieve synergy by learning the distribution of unla-

beled features from well-distributed labeled features. Furthermore, including the

loss function, Lc, achieves further improvements by stabilizing label prediction.

The comparative analysis in terms of the four categories (e.g., single-class rela-

tion, multi-class relation, adversarial learning, and representation learning) is

listed in Table 5.1. Our method can be applied to not only single-class relation,

but also multi-class relation, and two main techniques (i.e., adversarial learning

and representation learning) are successfully used for leveraging unlabeled data

for training.
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Chapter 5

Discussion

Recent semi-supervised segmentation approaches in medical imaging have demon-

strated promising results by employing various techniques, such as consistency

regularization [12, 13], pseudo-labeling [14], and adversarial learning [15]. How-

ever, previous methods train the network with the outputs obtained from the

final layer, which complicates learning of global features by the network. More-

over, relations between different classes cannot be considered.

Our proposed method is effective for learning both local and global contexts

by embedding voxel-level features with voxel-level feature layers and voxel-level

feature discriminators (Table 4.1 and Fig. 4.2). We achieved a more structured

representation space (Fig. 4.4 b) by defining voxel-level feature (including global

and local context) relations in the representation space. The features are colored

based on the class labels, and we visualize them using the test dataset (labels are

only used for visualization). On comparison with a previous method [15] which

also included global contextual information with the discriminator and SDM,

our method achieved superior results (Table 4.2), particularly for multiclass
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Categories Single-class relation Multi-class relation Adversarial Learning Representation Learning

UAMT [12] ✓ ✗ ✗ ✗

SASSNet [15] ✓ ✗ ✓ ✗

DTC [13] ✓ ✗ ✗ ✗

CVRL [32] ✓ ✗ ✗ ✓

MC-Net [14] ✓ ✗ ✗ ✗

Ours ✓ ✓ ✓ ✓

Table 5.1: Comparative analysis with the previous method in terms of four

categories in the semi-supervised learning.

datasets. By learning class-specific voxel-level features using BYOL [17] and a

multitask discriminator, we achieved separated representation space (Fig. 4.4

and Table 4.3) and precise segmentation results for the multiclass dataset (Table

4.2 and Fig. 4.3). This indicates that our method is effective for learning feature

relations across different classes.

In future studies, we can improve the results by suggesting a more efficient

method to enable unlabeled data to follow the distribution of labeled data.

Furthermore, our method can be enhanced by developing more efficient feature

sampling approaches.
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Chapter 6

Conclusion

In this work, we propose a novel semi-supervised learning method for medical

image segmentation tasks. Specifically, our voxel-wise representation learning

method embedded feature representations (i.e., local and global features) in

the representation space, and our voxel-wise feature discriminator successfully

leveraged unlabeled data using the distribution of features from the labeled

data.

Furthermore, our method could provide a more informative representation

that embedded class-specific features and achieved superior results in multi-

class segmentation. The experimental results demonstrated that our proposed

method is specialized for embedding rich information from both labeled and

unlabeled data, which brings additional improvement for medical image seg-

mentation task. We believe that our approach can provide a useful perspective

on medical imaging tasks and can be applied to various medical datasets, re-

gardless of the number of classes.
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초록

의료 영상 분할에서 신뢰성 있는 큰 규모의 정답 레이블을 생성하기 힘들다는

점에서 준지도 학습은 중요하다. 최근 준 지도 학습 연구들은 일관성 정규화(con-

sistency regularization),의사레이블링(pseudo-labeling)그리고적대적학습(ad-

versarial learning) 방법을 이용하여 좋은 결과를 보여주었다. 해당 방법들은 주로

정답이 있는 데이터(labeled data)와 정답이 없는 데이터(unlabeled data)의 분

포를 학습하여 그들 간의 예측 값이나 임베딩 값에 일관성을 부여한다. 하지만

이전 방법들은 영상의 지엽적인 특성과 하나의 클래스 간의 관계만을 고려한다

는 단점이 있다. 따라서 우리는 이 논문에서 영상의 지엽적인 특징과 전역적인

특징을 동시에 고려하며, 여러 클래스 간의 표현 관계를 학습할 수 있는 적대적

학습 기반의 준 지도 학습 의료 영상 분할 네트워크를 제안한다. 우리의 복셀 간

적대적 학습(voxel-wise adversarial learning) 메소드는 멀티레이어로부터 추출한

클래스 별 복셀 간 표현(voxel-wise feature)를 인풋으로 취급하는 복셀 간 표현

분류자(voxel-wise feature discriminator)를 활용한다. Left Atrial Segmentation

Challenge data과 Abdominal Multi-Organ dataset을이용한실험을통해우리의

메소드의효과를이진분류와다중분류각각의상황에서증명하였다.실험결과는

우리의메소드가최근준지도학습기법연구들을능가하는것을보여주며,우리가

제안한 메소드가 정답이 없는 데이터를 학습에 효과적으로 활용하는 것을 보여준

다. 더욱이, 표현 공간 상에서의 시각적 해석을 통해 우리의 메소드가 전반적으로

향상된 예측 결과와 클래스 별로 분리된 표현 공간을 구성한다는 것을 확인할 수

있었다.

주요어: 적대적 학습, 표현 분류자, 의료 영상 분할, 표현 학습, 준지도 학습

학번: 2021-20348
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