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Abstract 

 

Accurate and Efficient High-Order 

Spatial Scheme for Rotorcraft Flow 

Analysis 

 

Yoonpyo Hong 

Department of Aerospace Engineering 

The Graduate School 

Seoul National University 

 

 

As a growing number of next-generation rotorcraft are being newly developed 

for urban air mobility these days, demands for accurate aerodynamic and 

aeroacoustic performance analysis of the new configurations are increasing. Higher-

fidelity analyses require advanced numerical techniques, among which high-order 

accurate spatial discretization schemes are the most critical. Several concepts of 

spatial schemes previously presented have been applied for a relatively simple type 

of helicopter performance analysis and have produced satisfactory results when a 

large number of grids are involved. However, since the newly developed rotorcraft 

commonly adopt multiple propulsors which require a grid level several times higher 



 

II 

 

than the grid level used for single helicopter analysis, the accuracy of the spatial 

discretization method must be enhanced. In addition, it is necessary to determine 

which numerical characteristics are essential to the accurate analysis of the rotorcraft 

flowfield. The doctoral research was initiated in light of the aforementioned 

background, and the core results are as follows. 

First, an improved high-order accurate spatial discretization scheme, eMLP-VC, 

was developed based on the characteristics of the rotorcraft flow field, such as 

vortex-dominated, subsonic to supersonic flow speed, and highly unsteady. The 

accuracy, robustness, and efficiency were improved compared to the baseline scheme, 

eMLP. Through one- and two-dimensional benchmark tests, eMLP-VC was 

demonstrated to be superior, specifically in vortex-dominated and compressible flow 

fields. Moreover, eMLP-VC can maintain its robustness in the hypersonic flow 

dominated by strong shock waves. 

Second, a local-order-of-accuracy index (LAI) was suggested which allows 

quantitative comparison between the developed eMLP-VC and conventional high-

order accurate spatial discretization schemes. High-order accurate spatial 

discretization schemes used in compressible flows usually produce reduced 

accuracies locally in the continuous flow because of the shock-sensing algorithm. As 

the local reduction in accuracy in the discretized domain reduces the fidelity of the 

flow solver, it is necessary to quantify the amount of accuracy reduction and 

investigate the numerical techniques that minimize the decrease in accuracy. The 

LAI newly suggested in this thesis can show the region where the order-of-accuracy 



 

III 

 

decreases, and it can be applied to any type of spatial discretization method that uses 

explicit reconstruction. Several high-order accurate spatial discretization schemes, 

including the one presented in this thesis, were compared through the LAI analyses 

in the one- and two-dimensional benchmark tests. Two numerical characteristics 

essential for high-fidelity rotorcraft aerodynamic analysis could be identified: 

advanced shock-sensing algorithm and hybrid central-upwind characteristics. 

Third, eMLP-VC was applied to actual three-dimensional complicated flow field 

analysis of rotorcraft. Even with a coarse grid system, the unsteady vortex dynamics 

of PROWIM model and the HART-II rotor can be captured. In particular, the 

aeroacoustic noise generated by blade-vortex interaction in HART-II rotor could be 

predicted with high accuracy. Design exploration and optimization of co-rotating 

coaxial rotor, applicable to the urban air mobility aircraft, were also conducted using 

the high-fidelity solver with eMLP-VC. It has been demonstrated that eMLP-VC can 

be sufficiently useful for the development of a new type of next-generation rotorcraft.  

 

 

Keywords: High-Order Spatial Discretization Scheme, Local-order-of-accuracy 

index, Vertical Take-Off and Landing aircraft, Rotorcraft, Urban Air Mobility, 

Aerodynamic interaction, Aeroacoustics, Design Exploration, Design Optimization 

Student Number: 2019-31839 

 

  



 

IV 

 

Table of Contents 

 

Abstract .................................................................................................................... I 

Table of Contents ................................................................................................. IV 

Nomenclature ....................................................................................................... VII 

List of Figures ..................................................................................................... XIII 

List of Tables ...................................................................................................... XVI 

Chapter 1. Introduction .......................................................................................... 1 

1.1 Recent developments of newly designed UAM aircraft ............................. 1 

1.2 Numerical characteristics of rotorcraft flowfield ........................................ 5 

1.3 Overview of high-order spatial discretization schemes .............................. 6 

1.4 Research Questions ................................................................................... 10 

1.4.1 Question 1: Is it possible to accurately predict the aerodynamic and 

noise performance of UAM eVTOL aircraft with the schemes that have been 

developed so far? ............................................................................................. 10 

1.4.2 Question 2: What characteristics of the scheme will allow accurate 

prediction of the rotorcraft flow field? / Is there a standard for evaluating 

schemes that use different types of concepts? ................................................. 11 

1.5 Objective of the dissertation ..................................................................... 12 

Chapter 2.  Numerical Approach for Rotorcraft Performance Analysis ....... 14 

2.1 Brief Review of Rotorcraft Aerodynamic Solvers.................................... 14 

2.1.1 Reynolds-Averaged Navier-Stokes Equations .................................. 16 

2.1.2 Turbulent Equations .......................................................................... 18 

2.2 Spatial Discretization Methods ................................................................. 20 

2.2.1 Reconstruction Methods .................................................................... 20 



 

V 

 

2.2.2 Flux Functions for convective fluxes ................................................ 21 

2.3 Temporal Integration Methods ................................................................. 22 

Chapter 3.  Development of  Advanced Spatial Discretization Scheme for  

High-Resolution Rotorcraft Flowfield ................................................................. 24 

3.1 Review of eMLP scheme .......................................................................... 24 

3.1.1 Flow Distinguishing Step .................................................................. 25 

3.1.2 Higher-order Interpolation ................................................................. 27 

3.2 Modifications of eMLP scheme (eMLP-VC) ........................................... 30 

3.2.1 Accuracy Enhancements ................................................................... 30 

3.2.2 Robustness Enhancement .................................................................. 36 

3.3 Advanced performance of eMLP-VC ....................................................... 39 

3.3.1 Linear wave propagation problem ..................................................... 40 

3.3.2 Nonlinear wave propagation problem ............................................... 44 

3.3.3 Double Mach Reflection .................................................................... 47 

Chapter 4.  Comparative Assessment of High-Order Spatial Schemes in 

Terms of Local Accuracy ...................................................................................... 50 

4.1 Computational costs of high-order spatial schemes.................................. 53 

4.2 Analysis of Local truncation error ............................................................ 54 

4.2.1 Local truncation error analysis using taylor series expansion ........... 54 

4.2.2 Local-Order-of-Accuracy Index (LAI) .............................................. 59 

4.3 Assessment of high-order spatial schemes through benchmark tests ....... 62 

4.3.1 1D Sine Wave Advection .................................................................. 64 

4.3.2 1D Gaussian Pulse Advection ........................................................... 68 

4.3.3 2D Acoustic Pulse Propagation ......................................................... 72 

4.3.4 2D Isentropic Vortex Advection........................................................ 77 



 

VI 

 

4.4 Main characteristics essential for high-resolution rotorcraft flowfield ..... 84 

Chapter 5.  Applications: Numerical Investigation and Design Exploration of 

Rotorcraft ............................................................................................................... 86 

5.1 Propeller-Wing Interaction (PROWIM) ................................................... 87 

5.2 Numerical investigation: Descent flight (BVI, HART-II) ........................ 98 

5.2.1 CFD-CSD Loose Coupling ................................................................ 98 

5.2.2 Acoustic Analogy ............................................................................ 102 

5.2.3 Aerodynamic Results....................................................................... 102 

5.2.4 Aeroacoustic Results ....................................................................... 112 

5.3 Design exploration of co-rotating coaxial rotor ...................................... 118 

5.3.1 Design Problem ............................................................................... 119 

5.3.2 Overall Results ................................................................................ 121 

5.3.3 Underlying Physics .......................................................................... 124 

5.3.4 Detail analysis of best DOE configuration ...................................... 133 

Chapter 6.  Conclusions .................................................................................... 137 

6.1 Summary and originality of the thesis .................................................... 137 

6.2 Recommendations for the future work ................................................... 142 

Appendix .............................................................................................................. 146 

A. Concepts of WENO-type schemes ......................................................... 146 

B. Global-order-of-accuracy of spatial schemes on benchmark tests ............. 150 

References ............................................................................................................ 157 

국문 초록 ............................................................................................................. 167 

 

  



 

VII 

 

Nomenclature 

 

English Symbols 

𝑎    function of Mach number in low Mach number adjustment 

𝑎𝑆𝐶𝐿   advection velocity for scalar conservation equation 

𝑏𝑟    𝑟𝑡ℎ-order local polynomial  

in (2𝑟 − 1)𝑡ℎ-order WENO-type scheme 

𝒄   weight vector of stencil 

𝐶𝑀   pitching moment coefficient 

𝐶𝑁   normal force coefficient 

𝐶𝑃,𝑠𝑒𝑐   sectional pressure coefficient 

𝐶𝑃   power coefficient 

𝐶𝑇   thrust coefficient 

𝑑   distinguishing function 

𝑑1   distance from propeller front (PROWIM) 

𝑑2   distance from wing trailing edge (PROWIM) 

𝐷    blade diameter 

𝑒    total energy 

𝒆𝒊   𝑖𝑡ℎ-order truncation error coefficients 

�̅�, �̅�, �̅�   convective flux vectors in 𝑥, 𝑦, and 𝑧 directions 

�̅�𝑣 , �̅�𝑣 , �̅�𝑣   viscous flux vectors in 𝑥, 𝑦, and 𝑧 directions 

ℎ   grid spacing of double Mach reflection problem 

𝐻   enthalpy 

𝑘    turbulent kinetic energy 

𝑘𝑡𝑐    thermal conductivity 

𝑙𝑖    polynomial constant 

𝑀   Mach number 

�̅�𝐿,𝑅
±     split Mach number in AUSMPW+ flux scheme 



 

VIII 

 

𝑝    pressure 

�̅�𝐿,𝑅
±     split pressure in AUSMPW+ flux scheme 

𝑃𝑟    Prandtl number 

𝑞    cell quantity 

�̅�    cell-averaged quantity 

𝑞0   initial condition for benchmark tests 

𝑄   vortex identification method 

�̅�    conservative variable vector 

𝑟𝑇𝑉𝐷    local smoothness measure function in TVD 

𝑟𝑣    distance from vortex core 

𝑅   radius of propeller and rotor 

�̅�   residual term 

𝑅𝑖𝑗    Reynolds-stress 

𝑅𝑒    Reynolds number 

𝑠𝑟   coefficients in (2𝑟 − 1)𝑡ℎ-order WENO-type scheme 

𝑡   nondimensional time 

𝑇    Temperature 

𝑢, 𝑣, 𝑤   velocity components in 𝑥, 𝑦, and 𝑧 directions 

𝑢𝑖
′, 𝑢𝑗

′   fluctuating part of velocity 

𝑢�̅�, 𝑢�̅�   mean part of velocity 

𝑢𝜃,0    initial tangential velocity 

𝑢𝑟,0    initial radial velocity 

𝑤𝑟   local polynomial weight  

in (2𝑟 − 1)𝑡ℎ-order WENO-type scheme 

𝑥, 𝑦, 𝑧   Cartesian coordinates 

 

Greek Symbols 

𝛼    coefficient for multidimensional limiting process 



 

IX 

 

𝛼𝑤𝑖𝑛𝑔   wing incident angle 

𝛼𝑟   coefficients in (2𝑟 − 1)𝑡ℎ-order WENO-type scheme 

𝛼𝑒𝑓𝑓    effective angle of attack 

𝛽   parameter for higher-order interpolation 

𝛽𝑣   vortex strength 

𝛽𝑟    smoothness indicator of local polynomial  

in (2𝑟 − 1)𝑡ℎ-order WENO-type scheme 

𝛾    ratio of specific heats 

𝛾𝑣    gas constant 

𝛾𝑟   ideal weight in (2𝑟 − 1)𝑡ℎ-order WENO-type scheme 

Γ𝑖   normalizing constant for 𝑖𝑡ℎ-order error measure 

Γ∗   vorticity magnitude normalized by initial vorticity magnitude 

Γ∗∗   vorticity magnitude normalized by eMLP-VC value 

𝛿𝜃    pitch angle difference 

𝛿𝑧    vertical spacing 

𝛿𝜙    index angle 

𝛥𝜏    pseudo time step 

𝛥𝑡    physical time step 

𝛥𝑥    grid point spacing 

ϵ    small positive number 

𝜃0   collective pitch angle 

𝜃1𝑐    lateral cyclic pitch angle 

𝜃1𝑠    longitudinal cyclic pitch angle 

λ    thermal conductivity 

𝜇    dynamic viscosity 

𝜇𝑇    turbulent eddy viscosity 

𝜌    density 

𝜏    molecular stress tensor 



 

X 

 

𝜏2𝑟−1   global smoothness indicator  

in (2𝑟 − 1)𝑡ℎ-order WENO-type scheme 

𝜙    limiting function 

Φ    Primitive value 

𝜓   azimuth angle 

𝚿   conservative variable vector in AUSMPW+ scheme 

𝜔    specific dissipation rate 

𝛺𝑅   the normalized Rortex 

 

Subscripts 

LM   low-Mach-number adjustment 

approximate sensing function 

sup   total variation diminishing superbee reconstruction 

L,R   left and right state 

1

2
    cell interface 

∞    freestream quantity 

0   initial condition 

 

Superscripts 

T   transpose 

 

Abbreviations 

ADR   Approximate-Dispersion-Relation 

AIAA    American Institute of Aeronautics and Astronautics 

BDF   Backward Difference Formula 

BET     Blade Element Theory 

BVI   Blade-Vortex Interaction 

CAMRAD II  Comprehensive Analytical Model of  



 

XI 

 

Rotorcraft Aerodynamics and Dynamics II 

CFD   Computational Fluid Dynamics 

CFL   Courant-Friedrichs-Lewy 

CSD   Computational Structural Dynamics 

DADI  Diagonalized Alternating Direction Implicit 

DIRK   Diagonally Implicit Runge-Kutta 

DNS   Direct Numerical Simulation 

DOE   Design Of Experiment 

DDES  Delayed Detached Eddy Simulation 

DRP   Dispersion-Relation-Preserving 

eVTOL    electric Vertical Take-Off and Landing 

eMLP  enhanced Multi-dimensional Limiting Process 

eMLP-VC  enhanced Multi-dimensional Limiting Process  

for Vorticity Conservation 

FVM   Finite-Volume Method 

FW-H  Ffowcs Williams and Hawkings 

FoS  Function of Smoothness 

HART-II  Second higher-Harmonic control Aeroacoustic Rotor Test 

HLPW  High Lift Prediction Workshop 

IRK   Implicit Runge-Kutta 

KARI     Korea Aerospace Research Institute 

KR-Noise  Korea Aerospace Research Institute Rotor-Noise 

LAI   Local-order-of-Accuracy Index 

LES   Large-Eddy Simulation 

MLP   Multi-dimensional Limiting Process 

MUSCL  Monotone Upstream-centered Scheme for Conservation Law 

NS   Navier-Stokes 

OPPAV  Optionally Piloted Personal Air Vehicle 



 

XII 

 

PROWIM  PROpeller-Wing Interaction Model 

RANS   Reynolds-Averaged Navier-Stokes 

SA  Spalart-Allmaras 

SPL    Sound Pressure Level 

TVB   Total Variation Bounded 

TVD   Total-Variation Diminishing 

TRAM  TiltRotor Aeroacoustic Model 

UAM     Urban Air Mobility 

URANS  Unsteady Reynolds-Averaged Navier-Stokes 

WMLES  Wall-Modeled Large-Eddy Simulation 

WENO  Weighted Essentially Non-Oscillatory 

1D   One-Dimensional 

2D   Two-Dimensional 

3D   Three-Dimensional 

 

 

 



 

XIII 

 

List of Figures 

 

Fig. 1.1 Various concepts of UAM aircraft [2] (a. wingless, b. lift+cruise, c-d. vectored thrust)

 ............................................................................................................................................... 3 

Fig. 3.1 Isentropic vortex model’s profile and gradient distribution ................................... 32 

Fig. 3.2 Comparison of results of original/modified distinguishing mechanism and density 

contour ................................................................................................................................. 34 

Fig. 3.3 Pressure distribution of cell surface 𝑦 = 𝑧 = 0.725. ............................................ 38 

Fig. 3.4 Linear wave propagation problem calculation results at 𝑡 = 1. ............................ 41 

Fig. 3.5 L2 norm of error of calculation results at 𝑡 = 1. ................................................... 42 

Fig. 3.6 Comparison of density contour (Up: Coarse Grids, Down: Fine grids) ................. 45 

Fig. 3.7 Comparison of density contour and numerical schlieren for double Mach reflection 

problem ℎ = 1512,  𝑡 = 0.2. .............................................................................................. 49 

Fig. 4.1 Physical distribution and cell-centered quantities. ................................................. 56 

Fig. 4.2 Results of low amplitude sine wave advection problem. ....................................... 65 

Fig. 4.3 Results of high amplitude sine wave advection problem. ...................................... 67 

Fig. 4.4 Results of gaussian pulse advection problem (subsonic, M=0.1). .......................... 69 

Fig. 4.5 Results of gaussian pulse advection problem (supersonic, M=1.0). ....................... 71 

Fig. 4.6 Pressure contours and physical quantity distributions of the 2D acoustic pulse test 

(Grids = [161×161], eMLP-VC). ......................................................................................... 72 

Fig. 4.7 Gaussian acoustic pulse test results  {a) pressure distribution, b) u-velocity 

distribution}. ........................................................................................................................ 73 

Fig. 4.8 LAI contours of five different schemes (Non-dimensionalized time, 𝑡 = 1.0, LAI of 

pressure quantity). ............................................................................................................... 75 

Fig. 4.9 Gaussian acoustic pulse test results with different grid resolutions using WENO-Z 

scheme. ................................................................................................................................ 76 

Fig. 4.10 Results of 2D isentropic vortex advection problem at advection Mach number, 

M=0.25  (grid resolution test, global-order-of-accuracy, and density contours). .............. 79 

Fig. 4.11 Comparison of the LAI and density in three different grid systems at M∞ = 0.25.

 ............................................................................................................................................. 81 

Fig. 4.12 Local-order-of-accuracy index (LAI) of eMLP-VC  for four different Mach 

numbers. .............................................................................................................................. 83 

https://mysnu-my.sharepoint.com/personal/hyp1227_seoul_ac_kr/Documents/NM/0.Doctoral_dissertation/source/Dissertation_v1.0.docx#_Toc118703304


 

XIV 

 

Fig. 5.1 Experimental and computational configuration for PROWIM (propeller grids: 

241×165×81, background grids: 48 million). ...................................................................... 89 

Fig. 5.2 Sectional normal force and sectional pressure coefficient of PROWIM (α𝑤𝑖𝑛𝑔 =

4°,M = 0.14, Re = 0.8 × 106). .......................................................................................... 91 

Fig. 5.3 Vorticity contour of wake and wing tip vortices. ................................................... 93 

Fig. 5.4 Flowfield of PROWIM using iso-surface visualization method (rortex, ΩR = 0.75).

 ............................................................................................................................................. 95 

Fig. 5.5 Smoothness contour of front plane of the propeller classified according to the 

distinguishing criterion. ....................................................................................................... 97 

Fig. 5.6 CFD-CSD loose coupling algorithm and iteration history. .................................. 100 

Fig. 5.7 Overset grid system of HART II. ......................................................................... 101 

Fig. 5.8 Local-order-of-accuracy index and vorticity contour at 1.0c above the rotor disk 

plane  {a)WENO-JS, b)WENO-M, c)WENO-Z d) eMLP, e) eMLP-VC}. ..................... 103 

Fig. 5.9 Local-order-of-accuracy index and q-criterion contour at 𝜓 = 90° plane. ........ 105 

Fig. 5.10 Comparison of the local-order-of-accuracy indexes (HART-II). ........................ 107 

Fig. 5.11 Comparison of the HART-II flowfields using the iso-surface method (Q-criterion).

 ........................................................................................................................................... 109 

Fig. 5.12 Comparison of load predictions in the 87% radial section. ................................. 111 

Fig. 5.13 Derivative of the normal force in the 87% radial section. ...................................112 

Fig. 5.14 Comparison of the azimuthal derivatives of the normal force (counter-clockwise).

 ............................................................................................................................................113 

Fig. 5.15 Comparison of the noise maps at 2.215 m below the rotor plane (mid-frequency 

sound pressure level contours). ..........................................................................................115 

Fig. 5.16 Schematic of design variables. ........................................................................... 120 

Fig. 5.17 Flowfields of a stacked rotor configuration. ....................................................... 122 

Fig. 5.18 Non-dimensional power loading of DOE cases. ................................................ 123 

Fig. 5.19 Effective angle of attack distribution along the blade  (𝛿𝑧 = 0.1, 𝛿𝜃 = 0°, 𝛿𝜙 =

90°).................................................................................................................................... 125 

Fig. 5.20 Flowfields comparison of single-rotor and stacked-rotor. .................................. 126 

Fig. 5.21 Non-dimensional power loading along the vertical spacing (𝛿𝑧). ...................... 127 

Fig. 5.22 Non-dimensional power loading along the phase angle (𝛿𝜙). ........................... 129 

Fig. 5.23 Flowfields of BVI cases (Iso-surface using Q-criterion, colored by vorticity 

magnitude). ........................................................................................................................ 130 

https://mysnu-my.sharepoint.com/personal/hyp1227_seoul_ac_kr/Documents/NM/0.Doctoral_dissertation/source/Dissertation_v1.0.docx#_Toc118703319
https://mysnu-my.sharepoint.com/personal/hyp1227_seoul_ac_kr/Documents/NM/0.Doctoral_dissertation/source/Dissertation_v1.0.docx#_Toc118703319
https://mysnu-my.sharepoint.com/personal/hyp1227_seoul_ac_kr/Documents/NM/0.Doctoral_dissertation/source/Dissertation_v1.0.docx#_Toc118703323
https://mysnu-my.sharepoint.com/personal/hyp1227_seoul_ac_kr/Documents/NM/0.Doctoral_dissertation/source/Dissertation_v1.0.docx#_Toc118703323


 

XV 

 

Fig. 5.24 Effective angle of attack distribution of stacked rotors  ( 𝛿𝜃 = 2°, 𝛿𝑧 =

0.3𝐷, 𝛿𝜙 = −90~90°). ..................................................................................................... 132 

Fig. 5.25 Non-dimensional coefficients distribution of stacked rotors  ( δθ = 2°, δz =

0.3D, δϕ = −90~90°). ..................................................................................................... 132 

Fig. 5.26 Flowfield of best DOE configuration. ................................................................ 135 

Fig. A1 Schematic of fifth order upwind WENO-type reconstruction. ............................. 148 

 

  



 

XVI 

 

List of Tables 
 

Table 3.1 Characteristics of various limiting functions [19] ........................................................ 24 

Table 3.2 Reconstruction methods of enhanced MLP .................................................................. 29 

Table 3.3 Modified distinguishing criterion for rotorcraft flowfield ............................................ 33 

Table 3.4 Modified sensing function for robust calculation ......................................................... 37 

Table 3.5 Grid refinement test for linear wave propagation problem ........................................... 43 

Table 4.1 Relative computational cost (reference: TVD minmod limiter) ................................... 54 

Table 4.2 Summary of 1D and 2D benchmark tests ..................................................................... 63 

Table 5.1 Definitions and ranges of design variables. ................................................................ 121 

Table 5.2 Comparison of computational setting information ..................................................... 133 

Table B1 Error and global-order-of-accuracy of low amplitude sine wave advection problem 

(1D) ................................................................................................................................... 150 

Table B2 Error and global-order-of-accuracy of high amplitude sine wave advection problem 

(1D) ................................................................................................................................... 151 

Table B3 Error and global-order-of-accuracy of subsonic gaussian pulse advection problem (1D)

 ........................................................................................................................................... 153 

Table B4 Error and global-order-of-accuracy of supersonic gaussian pulse advection problem 

(1D) ................................................................................................................................... 154 

Table B5 Error and global-order-of-accuracy of isentropic vortex advection problem (2D) ..... 155 

 

 



 

1 

 

Chapter 1.  Introduction 

 

1.1  Recent developments of newly designed UAM aircraft 

Uber, one of the most popular ridesharing companies in the United States, 

released a white paper in October 2016 that caused an uproar within the aviation 

industry [1]. Along with the declaration of starting the service of the so-called ‘air 

taxi’, which mankind had only dreamed of, Uber presented various requirements that 

the ‘air taxi’ should have such as vehicle efficiency, noise, and emissions. Urban air 

mobility (UAM) aircraft, which are another expression of ‘air taxis’, have generated 

a great deal of interest in aviation-related organizations, research institutes, and 

universities around the globe. A number of configurations and concepts are being 

investigated from the conceptual design stage in order to satisfy Uber's requirements. 

Currently, there are over 700 concepts for UAM aircraft in development or in flight 

testing [2]. Given that there were only half a dozen configurations at the time the 

white paper was released, a substantial amount of research is being conducted. Also, 

in South Korea, several organizations such as Korea Aerospace Research Institute 

(KARI), Hyundai, Hanwha, and KAI are conducting research on UAM aircraft. In 

particular, the optionally piloted personal air vehicle (OPPAV), which is an electric 

vertical take-off and landing (eVTOL) aircraft under development by KARI, is 

currently in the flight test stage with the goal of completing development in 2023 [3].  

The configurations being actively developed as UAM aircraft are new concepts 

that have not been tried before. Representatively, the wingless-type aircraft generates 
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thrust and lift only with multiple rotors without an additional lifting surface. Fig. 

1.1a is representative wingless concept aircraft, VoloCity developed by Volocopter. 

Since the thrust source does not change depending on the flight mode, the wingless-

type aircraft is efficient in that all rotors can be used for the entire flight. It is easy to 

control using several propulsors, so research and development were conducted 

extensively in the initial stages. However, the wake generated by each rotor is highly 

unsteady, which reduces aerodynamic efficiency and at the same time causes blade 

wake interaction noise and blade vortex interaction noise. Also, unsteady wakes can 

cause aircraft vibration, decreasing the aircraft’s robustness. Another representative 

concept of UAM aircraft is a lift+cruise-type aircraft. Wisk Aero Cora is an 

exemplary lift+cruise-type aircraft as shown in Fig. 1.1b. This type of aircraft varies 

the lift and thrust sources according to the flight mode. It uses rotors for climbing 

flight and wings and propellers for forward flight. It has the advantage of being able 

to conduct high speed forward flight. However, due to the parts that are not used in 

each mode, there are losses in payloads, which can bring reduced range and 

endurance. Lastly, a vectored thrust-type aircraft similar to the tilt-rotor-type aircraft, 

such as Bell Boeing's V-22 Osprey, is also being actively studied. With tilting 

technology, both rotors can be used during hover and forward flight, and the rotor 

does not need to conduct the edgewise flight during forward flight. However, since 

the aircraft is very unstable during the tilting operation, it is very challenging to 

design the aircraft robustly. Bell's Nexus and KARI's OPPAV are the representative 

vectored thrust-type aircraft, which are shown in Fig. 1.1c and 1.1d.  
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a) wingless-type, VoloCity b) lift+cruise-type, Wisk Aero Cora 

  

c) vectored thrust-type, Bell’s Nexus d) vectored thrust-type, KARI’s OPPAV 

Fig. 1.1 Various concepts of UAM aircraft [2] 

(a. wingless, b. lift+cruise, c-d. vectored thrust) 
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Therefore, each type has its own advantages and disadvantages based on the 

configuration of the aircraft. To ensure successful development, it is necessary to 

analyze each configuration in depth. These UAM eVTOL aircraft use multiple 

propulsors in common regardless of their type. Whereas conventional helicopters 

use one or two large propulsors, UAM eVTOL aircraft adopt multiple and smaller 

propulsors. By sharing the total thrust required, UAM eVTOL aircraft compensate 

for the shortcomings of conventional helicopters and offers the following advantages: 

reduced aeroacoustic noise, robustness against failure, and ease of controllability.  

At the same time, however, multiple propulsors yield a much more complicated 

flow field aerodynamically. Numerous tip vortices generated from the blades are the 

main cause of its complexity. These vortices stay around the aircraft for a long time 

and interact directly with the aircraft [4]. Tip vortices interact with the surfaces of 

the aircraft including the blade and body, and strongly affect not only the 

aerodynamic performance but also the noise and vibration performance. In fact, the 

interaction between the blade and the vortex creates strong airloads fluctuations. At 

the same time, the aerodynamic noise caused by the interaction is propagated 

downward, which limits the urban operation of the aircraft. Also, the flow field of 

the UAM eVTOL aircraft has highly unsteady characteristic because of the 

instability of vortex such as pairing or breakdown. The successful development of 

UAM eVTOL aircraft will require an accurate and time-accurate prediction of a flow 

field with these characteristics, as well as a detailed analysis of the flow field. 
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1.2  Numerical characteristics of rotorcraft flowfield 

Because rotorcraft including UAM eVTOL aircraft rotate their blades to obtain 

lift and thrust, strong tip vortices generated by the blades remain around the aircraft 

for a long time, creating complicated flow characteristics. As mentioned in the 

previous section, not only do tip vortices influence aerodynamic performance, but 

they are also associated with noise and vibration. For this reason, it is most essential 

to capture the behavior of the vortex and the interaction with lifting surfaces in order 

to accurately predict the aerodynamic and noise performance of the rotorcraft. 

However, due to their numerically highly dissipative characteristics and unsteady 

behavior, such as leap-frog instability and breakdown, tip vortices can be difficult to 

predict and computationally expensive to compute. 

Primitive variables, which are density, velocity, and pressure, have local minima, 

maxima and stiff gradient around the vortex core. These properties are highly 

dissipative to deal with numerically. Because the numerical characteristics of vortex 

core, local minima and maxima, and stiff gradients, are similar to that of the 

discontinuity, the spatial discretization scheme for compressible flow field activates 

the limiting process at vortex core region. Artificial dissipation from the limiting 

process guarantees the robustness of the solver, but at the same time excessively 

degrades the accuracy of the solver. As a result, the artificial dissipation blurs the 

behavior of the vortex. 

Therefore, the rotorcraft flow field requires a fairly high level of numerical 

accuracy, and at the same time, computational efficiency is also required in 
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consideration of unsteadiness. In addition, shock discontinuity may occur in the 

advancing side of rotorcrafts with edgewise flight or rotorcraft capable of advancing 

at high speed. Although, there will not be a strong shock wave which usually occurs 

in supersonic fighters or scramjet-type aircraft, but there can be a weak discontinuity, 

which can cause the instability of the solver. An appropriate shock sensing algorithm 

is also unavoidable to flow solver. 

 

1.3  Overview of high-order spatial discretization schemes 

Due to the aforementioned characteristics in previous chapter 1.2, early rotorcraft 

aerodynamicists developed and applied various numerical techniques that were 

robust and could maintain high accuracy. Methods such as mesh adaptation 

technique, high-order spatial schemes, and additional modeling for rotating 

machines successfully suppressed the high-dissipative properties of the vortex while 

maintaining the robustness and efficiency of the solver. 

Among the advanced numerical techniques to address dissipative characteristics 

of vortex, there has been significant interest in high-order spatial schemes because 

they are cost-effective and can be easily incorporated into existing solvers. Various 

concepts of high-order spatial schemes have been developed such as compact 

scheme [5], dispersion-relation-preserving (DRP) scheme [6], weighted essentially 

non-oscillatory (WENO) scheme [7], central differencing with artificial dissipation 

scheme [8], total-variation diminishing (TVD) scheme [9], and multi-dimensional 

limiting process (MLP) scheme [10]. Since each was developed for a different flow 
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field, a spatial discretization scheme suitable for the rotorcraft flow field should be 

appropriately selected. As the spatial discretization scheme has a significant impact 

on the accuracy of the solver as well as the robustness and computational efficiency, 

all of these factors should be considered in the selection process. 

The scheme that can achieve the highest accuracy with the same number of 

stencils is the compact scheme [5,11,12]. Compact schemes, which reconstruct cell 

interface quantity implicitly, are representative of such schemes. With a relatively 

small number of stencils, compact schemes produce high order-of-accuracy and 

satisfactory results in various flowfields such as vortex-dominated [5] and turbulent 

flows [11]. Weighted compact non-linear scheme, developed for compressible flow, 

is also a representative low dissipative scheme which is a combination of WENO 

algorithm and compact scheme [12]. However, compact-type schemes require high 

computing costs to obtain the cell interface quantity because of the implicit way of 

reconstruction. In addition, the accuracy is reduced at the overset mesh or parallel 

boundaries, which are essential for solving the rotorcraft flowfield. These 

shortcomings limit to being easily used in the existing CFD solver.  

Dispersion-Relation-Preservation (DRP) scheme, which considers the dispersion 

and dissipation error in the frequency domain, also shows notable performances in 

the aeroacoustics field [6]. Schemes combined with the concepts of WENO-type [13] 

and TVD-type [14] for stability in compressible flow have also produced highly 

accurate results in compressible aeroacoustics flowfield. However, DRP-type 

schemes have a disadvantage in that the optimized stencil weight varies depending 
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on the grid distribution, which impairs the accuracy of the solver in a complex grid 

system. In addition, since the DRP scheme is designed to maintain a low level of 

error even at high wavenumbers, the robustness of the solver decreases.  

Consequently, the schemes mainly used in rotor flow fields must ensure a certain 

level of robustness and efficiency while maintaining high accuracy. Scheme mainly 

used for solvers of rotorcraft-related research institutes, such as NASA's 

OVERFLOW, DLR's TAU, and ONERA's elsA, satisfy the above requirements. 

Representative high-order accuracy scheme is the central differencing with artificial 

dissipation scheme mainly used in NASA OVERFLOW. This scheme only requires 

an additional computational cost of 10% compared to the 2nd order scheme. On the 

other hand, the accuracy has the level of 5th order accuracy WENO-JS. Oscillation 

occurring in a weak shock, not in the hypersonic region, can be sufficiently captured 

and robustness is guaranteed. However, central-type schemes cannot handle the 

strong discontinuity occur in hypersonic flow. Also, they do not have unified version 

of artificial dissipation that vary according to the flow type, so adjusting step is 

necessary to set the numerical dissipation properly[15]. 

Another representative scheme is WENO-type scheme. The WENO-type method 

is a total variation bounded (TVB)-based method. The (2r-1)-order accurate WENO 

[7], first developed by Shu in 1996, is designed to maintain r-order accuracy even 

near discontinuities. In WENO-type schemes, the cell interface quantities are 

reconstructed using the smoothness of local polynomials. The smoothness indicator 

decides the weight of a local polynomial. There are some limitations to local extrema 
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in terms of accuracy, but many researchers are developing enhanced WENO-type 

schemes to counter those limitations. Particularly, advanced WENO schemes such 

as WENO-M [16], WENO-Z [17], and ESWENO-P [18], which further improved 

the accuracy near discontinuities, were successfully applied to vortex-dominated 

rotorcraft flowfields.  

TVD-type scheme, also, is representative scheme for compressible flow. TVD-

type scheme perfectly deals shock and guarantees robustness. However, this type has 

a mathematically simple shock sensing function, so it senses not only the shock but 

also other similar flows with the shock. In particular, in the case of a vortex flow 

with local extrema, the TVD sensing function cannot unconditionally catch it, which 

results in a decrease in the accuracy of the vortex flow. In order to take advantage of 

the robustness of the TVD type scheme and to compensate for its shortcomings, the 

researchers conducted research aimed at complementing the sensing process. 

Representatively, in the case of the enhanced MLP (eMLP)-type scheme [14,19–21], 

a shock-sensing mechanism using the Gibbs phenomena was introduced. The 

continuous property of the flow field is judged by the criteria using the Gibbs 

phenomena. Different reconstruction methods are applied on flow field according to 

the continuous property. Advanced shock-sensing process has the advantage of 

maximizing accuracy by not applying limiting in continuous flow. eMLP-type 

schemes have been applied not only to flow fields such as coaxial hovering rotors 

[22], but also to much more complex flow fields such as turbulent combustion [23] 

or magnetohydrodynamic [19].  
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1.4  Research Questions 

1.4.1 Question 1: Is it possible to accurately predict the aerodynamic and noise 

performance of UAM eVTOL aircraft with the schemes that have been 

developed so far? 

The various types of high-order accurate spatial discretization schemes introduced 

in previous section produce reasonable results for predicting the aerodynamic 

performance of conventional helicopters. It was possible to accurately predict the 

blade-vortex interaction (BVI) by applying the developed schemes, and the resulting 

noise prediction was conducted precisely [24–26]. The prediction performance of 

the hovering rotor also showed accurate prediction to the extent that the Figure of 

Merit prediction error came within the experimental error [27]. However, such 

prediction performance is possible when a large number of grids are constructed. 

According to the second higher-harmonic control aeroacoustic rotor test (HART-II) 

experimental study for BVI prediction, at least 50 million grids are required [28]. 

This is the minimum number of grids generated when a grid spacing at near wake 

region is 0.1 times the length of the rotor tip chord. In a study on the tiltrotor 

aeroacoustic model (TRAM), Neal Chaderjian [27] suggests that a grid spacing of 

5% chord length is required for accurate prediction of Figure of Merit. It is suggested 

that a grid of a higher level, that is, a grid spacing of 2.5% tip chord length, is required 

to investigate vortex dynamics, which resultantly requires more than 1 billion grid 

points. As such, in order to accurately predict the rotorcraft flow field using the 

schemes presented so far, it is only possible when a very large number of grids are 
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accompanied. The problem is that the flow field of UAM eVTOL aircraft is much 

more difficult to predict than conventional helicopters. With an increase in rotors, 

there is also an increase in the number of vortices that must be preserved. The 

generated vortex of UAM eVTOL aircraft has a smaller intensity and smaller vortex 

size than that of conventional helicopter because the disk loading of each propulsor 

is low. It is necessary to use more grids in order to predict the aerodynamic 

performance at the same level as for conventional helicopters. At the same time, the 

prediction difficulty is extremely high because both the interaction between the 

vortices and the interaction between the vortex and the additional lifting surface must 

be accurately predicted. As such, an accurate and efficient spatial discretization 

scheme with much less numerical dissipation than existing schemes is required. 

 

1.4.2 Question 2: What characteristics of the scheme will allow accurate 

prediction of the rotorcraft flow field? / Is there a standard for evaluating 

schemes that use different types of concepts?  

The development of various high-order accurate schemes has taken place in 

various ways, and each scheme has its own characteristics. Before applying the 

schemes to rotorcraft flowfield, the evaluation process should be conducted. Since 

the rotorcraft flowfield is compressible flow, the nonlinear effect of the scheme must 

be considered. In addition, the scheme should be evaluated whether it is suitable for 

rotorcraft flow field with vortex-dominated characteristic rather than a simple flow 

field such as sine wave advection problem. Among the conventional evaluation 
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methods, the approximate-dispersion-relation (ADR) method can evaluate the non-

linear effects of schemes [29]. However, these methods are simplified analyzes based 

on the linear advection equation which has the exact solution. In a real flowfield 

without an exact solution, numerical errors can be calculated assuming the 

experiment value as the ground truth, but this method has a fatal limit that only can 

be applied when the experiment value exists [30]. As such, it is difficult to evaluate 

the scheme accuracy in the rotorcraft flow using the conventional method. Therefore, 

in this study, new index for quantitative assessment of numerical accuracy is 

suggested. The newly suggested index can help to understand the characteristics of 

each spatial difference scheme in the local domain. As a result, the essential 

characteristics of spatial discretization scheme can be identified for high-accuracy 

prediction of the rotor flow field. 

 

1.5  Objective of the dissertation 

Based on the research questions outlined above, this study was constructed as 

follows: 1) the development of advanced spatial discretization scheme with high 

accuracy, 2) the suggestion of new standard for evaluating the accuracy of high-order 

spatial schemes and its applications to assessment of schemes, 3) analyzing the 

complicated rotorcraft flow fields using suggested scheme.  

1) Through the analysis of characteristics of the rotorcraft flow field, a robust, 

efficient, and high-accurate spatial discretization scheme was developed. 

Based on the enhanced MLP scheme developed for high accuracy of all flows, 
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including magnetohydrodynamic flow, three modifications were conducted. 

To improve accuracy, the flow distinguishing mechanism was modified and 

a Low Mach number adjustment was adopted. To supplement the robustness, 

the sensing function is used adaptively.  

2) The developed high-order accurate scheme and the schemes widely used in 

the rotorcraft flow analysis field were compared and analyzed. For 

quantitative comparative analysis of local accuracy in the discretized domain, 

a new local-order-of-accuracy index was proposed. Using the suggested 

index, the properties of spatial discretization schemes suitable for the rotor 

flow field and the characteristics they should have for precise prediction were 

discussed. 

3) By applying the scheme developed through this study, the complicated 

rotorcraft flow field was analyzed. Detailed analyses of propeller-wing 

interaction and BVI were conducted. BVI induced noise prediction was also 

conducted. Secondly, the design of the co-rotating coaxial rotor for UAM 

eVTOL aircraft was carried out. Through a parameter study, underlying 

physics of co-rotating rotor system were identified. Detail flow analysis was 

performed for the optimal configuration.  
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Chapter 2.  Numerical Approach for  

Rotorcraft Performance Analysis 

 

2.1  Brief Review of Rotorcraft Aerodynamic Solvers 

For the analysis of the aerodynamic performance of rotorcraft, various methods 

are available: from low-fidelity solvers that are efficient enough to get the results in 

few seconds to high-fidelity solvers that are highly accurate enough to get whole 

complicated flow field. The low-fidelity solvers commonly use a simple algebraic 

expression with several assumptions. Momentum theory solver, which is the simplest 

solver for rotorcraft aerodynamics, assumes the lifting source as an infinitesimal disk 

[4]. Blade element theory (BET) solver provides slightly higher fidelity results, 

which conducts quasi three-dimensional (3D) computations by dividing the blade 

into spanwise elements [4]. The BET solver usually uses the wake or inflow 

modeling technique to consider the 3D effect. Also, it uses airfoil table to consider 

the viscous effect. Mid-fidelity solvers use panel method or the vortex lattice method 

to get the aerodynamic performance of lifting surfaces. These solvers also use wake 

or inflow modeling techniques like BET. Because the wake has dominant effect on 

rotorcraft aerodynamic performance, the vorticity transport model [31,32] that 

calculates wake effects by transforming the Navier-Stokes (NS) equations into 

velocity-vorticity form, rather than simple modeling, also widely used for rotorcraft 

flow fields. Overall, low and mid fidelity solvers are mainly used in the conceptual 

design phase because their computational costs are cheap and if properly calibrated, 
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fairly reasonable results can be produced. However, it is not universal because it 

requires new modeling whenever the configuration or airframe concept changes, and 

the finding proper correction factor requires a lot of time and costs.  

Solvers with high-fidelity are commonly based on Reynolds-averaged Navier-

Stokes (RANS) or unsteady RANS (URANS) equations. Historically, analyzing the 

entire domain including the wake region with RANS had limitations because of high 

numerical dissipation, but with the development of low dissipation numerical 

techniques, the method is becoming more popular. By using this high-fidelity method, 

it is possible to perform a physical analysis, since it provides information about the 

surrounding flow field as well as the aerodynamic performance of the rotor. Also, 

recently, as computing power has improved, attempts to calculate the rotorcraft using 

LES or DNS are increasing [33,34]. However, due to extremely heavy computational 

cost, it is unrealistic to calculate the aerodynamic performance of a UAM eVTOL 

aircraft or conventional helicopter using LES or DNS, even with increased 

computing power. Since the Reynolds number is in the order of a million, the grid 

required to produce well-resolved results is over trillions.  

Therefore, in this study, the research was conducted using the URANS solver. 

KFLOW solver previously developed at KAIST/Konkuk University was used. 

KFLOW is Cartesian grid-based, compressible, viscous, URANS solver. KFLOW 

adopts overset grid technique to handle the complicated configuration of aircraft [35]. 

A number of cases including rotorcraft with highly unsteady flow fields were 
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validated through KFLOW [20,36–41]. Governing equations and discretization 

methods used in KFLOW will be described in detail in this chapter. 

 

2.1.1 Reynolds-Averaged Navier-Stokes Equations 

As the governing equations for rotorcraft flow analysis, URANS equations are 

used in this study. URANS equations alter the NS equations to model the turbulent 

flow near walls on a small scale. To accurately predict the aerodynamic performance 

of aircraft, particularly drag, turbulent flow must be simulated. To well resolve the 

turbulence near the wall, NS equations requires extensively large number of grids. 

Therefore, Reynolds suggested a method to calculate the conservative variables by 

dividing them into mean and fluctuating parts. 

First, Navier-Stokes equations can be written as follows: 
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where �̅� represents the conservative variables as can be presented as follow: 
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where 𝜌, 𝑢, 𝑣, 𝑤, 𝑒  represents density, velocity in 𝑥, 𝑦, and 𝑧  directions, and 

total energy, respectively. Through the calorically perfect gas assumption, total 

energy, 𝑒 can be expressed as eq. (2.3). 
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where 𝑝 represents pressure. The specific heat ratio, 𝛾 is 1.4 in air. �̅�, �̅�, �̅� in 

eq. (2.1) are convective flux vectors in 𝑥, 𝑦,  and 𝑧  direction, respectively. 

𝐹�̅� , �̅�𝑣 , �̅�𝑣 in eq. (2.1) are viscous flux vectors in 𝑥, 𝑦, and 𝑧 direction, respectively.  
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 where 𝜏 can be expressed as followings with Newtonian fluid assumption:  
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𝑘𝑡𝑐 in eq. (2.5) means thermal conductivity and can be expressed as follows:  

𝑘𝑡𝑐 =
𝜇𝛾𝑅

𝑃𝑟(𝛾−1)
                        (2.8) 

where Prandtl number, 𝑃𝑟 is 0.72 in air. 

Reynolds-stress term, 𝑅𝑖𝑗 , is added to the source term by dividing the flow 

velocity vector of the governing equation into a mean part and a fluctuating part. 

This term can be expressed as eq. (2.9) with the Boussinesq assumption that the shear 

stress of turbulent flow has a linear relationship with the mean rate of strain as in 

laminar flow. 

𝑅𝑖𝑗 ≡ −𝜌𝑢𝑖′𝑢𝑗′̅̅ ̅̅ ̅̅ ̅ = 𝜇𝑇 [
𝜕𝑢𝑖̅̅ ̅

𝜕𝑥𝑗
+

𝜕𝑢𝑗̅̅ ̅

𝜕𝑥𝑖
]               (2.9) 

where 𝑢𝑖
′, 𝑢𝑗

′ means fluctuating part of velocity, and 𝑢�̅�, 𝑢�̅� means mean part of 

velocity. An additional turbulence model is needed to obtain the turbulent eddy 

viscosity, 𝜇𝑇.  

  

2.1.2 Turbulent Equations 

 Equations for simulating turbulence vary widely. There are methods ranging 

from modeling algebraically determined through simple assumptions to modeling 
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for all terms of Reynolds stress [42]. Since the turbulent flow itself is a random flow, 

it is known that simply increasing the number of modeling equations does not 

increase the accuracy of the rotor aerodynamic performance analysis. According to 

the paper published by Smith et al. [28], which summarizes the experimental and 

numerical analysis results of the BVI rotor flow, the difference in the turbulence 

model in the prediction of rotor blade aerodynamics is insignificant. According to 

their findings, simulating turbulent flow is itself important. According to the results 

of the recently conducted hovering workshop, the accuracy of the turbulence model 

varies greatly depending on whether the turbulence model can simulate the laminar-

turbulent transition flow [43]. 

However, the turbulence transition models so far are empirical and experimental-

based models. Accordingly, the accuracy of the turbulence transition model varies 

greatly depending on the model and the object to which it is applied. In addition, an 

experimental value-based model of rotor blades has not been developed so far. 

Therefore, in this study, the consideration of transition was not carried out. 

The turbulence equations mainly used in the rotor flow field are the widely used 

Spalart-Allmaras one-equation-type [44] and 𝑘 − 𝜔  two-equations-type [45,46] 

models. At least within the rotorcraft flow field, the difference in prediction accuracy 

between the two equations is insignificant.   
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2.2  Spatial Discretization Methods 

The governing equations are discretized using a cell-centered and finite-volume 

method (FVM). Determining the flux of a cell interface consists of two steps: 1) 

interpolation of primitive variables, 2) flux calculation using interpolated primitive 

variables. In order to interpolate the primitive variable on the surface, 3 cell values 

are used for each of the left and right sides based on the surface. If the explicit 

interpolation method is used, interpolation with up to 6th-order accuracy is possible. 

Then, the flux is calculated using the interpolated variables. Convective flux can be 

finally determined considering the direction of the wave. In the case of viscous flux, 

since there is no direction of viscous flux, the value is reconstructed through the 

central difference method. In this study, the viscous flux was calculated using the 

second-order central difference method. The 4th and 6th-order central difference 

method produce little different results compared to that of 2nd-order central 

difference method.  

 

2.2.1 Reconstruction Methods 

 KFLOW solver used in this study reconstructs the primitive variables for the 

determination of cell interface value. Also, to maintain the robustness in the 

compressible flow, upwind-biased interpolation is conducted. It is known that at least 

than 5th-order accuracy is required to accurately capture the vortex dynamics in 

rotorcraft flowfields [20,27,36]. Additionally, according to the previous study by 

Robert Nichols et al.[47], a 5th-order accurate scheme is able to save more than eight 
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times the grid per dimension over a conventional 2nd-order accurate upwind scheme. 

For 3D calculations, 512 times coarser grid would be required for the 5th-order 

accurate scheme. Therefore, KFLOW performs 5th-order accuracy upwind-biased 

interpolation. Meanwhile, 6 stencils are used, the maximum 6th-order accuracy can 

be achieved. Upwind reconstruction with 5th-order accuracy can be expressed as 

follows: 

𝑞1
2
,𝐿
=

1

60
(2�̅�−2 − 13�̅�−1 + 47�̅�0 + 27�̅�1 − 3�̅�2)        (2.10) 

Central reconstruction with 6th-order accuracy can be expressed as follows: 

𝑞1
2
,𝐿,𝑅

=
1

60
(�̅�−2 − 8�̅�−1 + 37�̅�0 + 37�̅�1 − 8�̅�2 + �̅�3)      (2.11) 

where 𝑞1
2

 represents cell interface value. Subscript L, R mean left and right state, 

respectively.  �̅�𝑖  represents cell averaged value of i. Various types of limiting 

techniques are made to deal with the compressibility effect. Representatively 

WENO-type, TVD-type, and eMLP-type methods can be used. More details on 

limiting techniques will be discussed in Chapters 3 and 4.  

 

2.2.2 Flux Functions for convective fluxes 

The role of the flux function is to determine the flux at cell interface for the 

reconstructed primitive variables. In this study, considering the flow environment, 

the upwind-type AUSMPW+ scheme [48] was used as the flux scheme. AUSMPW+ 

is one of the AUSM-type schemes, effectively dealing with shock overshoots or 

numerical oscillations near walls. It is possible, numerically, for the density or 
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pressure value to be negative when the wall and vortex collide as in BVI. 

AUSMPW+ scheme has positivity preservation characteristics, so that the 

calculation can be carried out robustly. The flux, 𝐹1

2

  of the cell interface is 

determined as follows. 

𝐹1

2

= �̅�𝐿
+c1

2

𝚿𝐿 + �̅�𝑅
−c1

2

𝚿𝑅 + (𝑃𝐿
+|

𝛼=
3

16

𝑷𝐿 + 𝑃𝑅
−|

𝛼=
3

16

𝑷𝑅)      (2.12) 

where 𝚿𝐿,𝑅  means (𝜌, 𝜌𝑢, 𝜌𝑣, 𝜌𝑤, 𝜌𝐻)T  in left and right state. 𝑷𝐿,𝑅 

represents (0, 𝑝𝑥 , 𝑝𝑦, 𝑝𝑍, 0)
T

 . c1
2

  is the speed of sound in cell interface. �̅�𝐿,𝑅
±  

and  �̅�𝐿,𝑅
±  represents split Mach number and pressure, respectively. Details of each 

term are presented in [48]. 

 

2.3  Temporal Integration Methods 

Implicit temporal integration method is used for rotorcraft flow field analysis. 

There is a considerable size difference between the grids within the rotorcraft flow 

field. In the grid near the wall, the grid spacing in the wall normal direction compared 

to the length of the blade tip chord is about 1.0 × 10−6, whereas the size of the 

background grid is O(1). Even though the explicit temporal integration produces 

precise results, time step available is too small due to the stiffness of the problem. In 

order to perform time integration realistically in a problem with a very large 

difference in the level of grid spacing, the implicit method must be used. 

2nd-order accurate backward difference formula (BDF) was used for implicit 

temporal integration method. 2nd-order accurate BDF is much more accurate than 1st-
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order accurate BDF and guarantees A-stable robustness. Implicit Runge-Kutta (IRK) 

method with higher accuracy can also be considered, but IRK methods have the 

disadvantage that they are not robust because they are very sensitive to nonlinear 

errors [49]. In addition to 2nd-order accurate BDF, a dual time stepping method was 

introduced to reduce nonlinear error. The overall time integration of the rotor flow 

field is conducted as follows: 

�̅�𝑚+1−�̅�𝑚

𝛥𝜏
+

3�̅�𝑚+1−4�̅�𝑛+�̅�𝑛−1

2𝛥𝑡
+ �̅�𝑚+1 = 0           (2.13) 

where 𝑚 means a pseudo time step number, and 𝑛 means a physical time step 

number. 𝛥𝜏 and 𝛥𝑡 mean pseudo and physical time steps, respectively.  �̅� means 

the residual term, which is the sum of the convective term, the viscous term, and the 

source term. To inverse the matrix, the diagonalized alternating direction implicit 

(DADI) method developed by Pulliam and Chaussee was used [50]. A DADI 

approach to approximate the inverse matrix reduces the amount of computation by 

replacing the inverse matrix computation with a scalar computation. Details are 

described in [50]. 
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Chapter 3.  Development of  

Advanced Spatial Discretization Scheme for  

High-Resolution Rotorcraft Flowfield 

 

3.1  Review of eMLP scheme 

CFD solvers for compressible flow have been developed focusing on obtaining 

high-order accurate solutions for the stable capture of discontinuous phenomena 

such as shock waves. The TVD[9], WENO[7], MLP[10], and eMLP[19] 

reconstruction methods have generated notable results in compressible flow solvers. 

However, these methods also have shortcomings, as shown in Table 3.1. 

 

Table 3.1 Characteristics of various limiting functions [19] 

 TVD WENO MLP eMLP 

Discontinuity in one dimension O O O O 

Discontinuity in multi-dimensions X X O O 

Local extrema X O X O 

  

Kang et al. proposed eMLP in 2010 [19], and it was developed to overcome the 

limitations that several existing schemes could not adequately handle, namely the 

three cases in Table 3.1. Based on MLP [10,51], which has the advantage of robustly 

capturing discontinuities in multi-dimensions without numerical oscillations, eMLP 

was developed to prevent the loss of accuracy at local extrema. The method adopted 
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to solve the shortcomings of MLP was the addition of an independent flow 

distinguishing step. The whole procedure of eMLP is divided into two steps: 1) flow 

distinguishing and 2) higher-order interpolation. The details are as follows. 

 

3.1.1 Flow Distinguishing Step 

Shock-sensing algorithms for discontinuity are included in various forms within 

each scheme because highly nonlinear phenomena such as shock waves could exist 

in compressible flows. Local smoothness measurements using slope differences are 

adopted in TVD and MLP-type methods, and the form of a smoothness indicator 

using an undivided difference is applied in ENO/WENO-type methods. These 

methods, however, are simply based on mathematical scalar analyses, making it 

difficult to distinguish between linear and nonlinear discontinuities. In addition, 

because the distinguishing mechanisms are inherent in each interpolation method, it 

is difficult to directly provide accurate information on discontinuities to the flux 

scheme.  

 The flow distinguishing step is separated from the interpolation step in eMLP to 

overcome previous shortcomings. In this step, the flow characteristics are evaluated 

using the primitive variables (density, velocity vector, and pressure). A fourth-order 

central differencing scheme is adopted as the sensing function to approximate the 

primitive variables of cell i. An approximated value can be obtained via  

𝛷𝑖,𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑒 =
−𝛷i−2+4𝛷i−1+4𝛷i+1−𝛷i+2

6
= 𝛷i + O(Δξ4)     (3-1) 
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The difference between the original value and the approximated value obtained 

through eq. (3.1) determines whether the Gibbs phenomenon has occurred or not. On 

the result of this determination, the flow is divided into three regions: a continuous 

region, a linear discontinuous region, and a nonlinear discontinuous region. The 

distinguishing criterion that accounts for the flow characteristics can be expressed as 

 

Continuous region: 

𝑑(𝜌,𝑢,𝑣,𝑤,𝑝),𝑖 =
|(𝜌,𝑢,𝑣,𝑤,𝑝)𝑖,𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑒−(𝜌,𝑢,𝑣,𝑤,𝑝)𝑖|

|(𝜌,𝑢,𝑣,𝑤,𝑝)𝑖|
< ϵ      (3.2a)  

Linear discontinuous region: 

𝑑𝜌,𝑖 =
|𝜌𝑖,𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑒−𝜌𝑖|

|𝜌𝑖|
> ϵ  

or 

𝑑(𝑢,𝑣,𝑤),𝑖 =
|(𝑢,𝑣,𝑤)𝑖,𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑒−(𝑢,𝑣,𝑤)𝑖|

|(𝑢,𝑣,𝑤)𝑖|
> ϵ         (3.2b) 

and 

𝑑𝑝,𝑖 =
|𝑝𝑖,𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑒 − 𝑝𝑖|

|𝑝𝑖|
< 𝜖 

Nonlinear discontinuous region: 

𝑑𝑝,𝑖 =
|𝑝𝑖,𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑒−𝑝𝑖|

|𝑝𝑖|
> 𝜖                 (3.2c) 

 

In case that the flow velocity is almost zero, there is a possibility that the velocity 

distinguishing function could malfunction. To handle this situation, the velocity 

distinguishing function should be turned off when the velocity magnitude is smaller 
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than an infinitesimal constant. (Through numerical tests, this constant was set as 

10−6). The generally recommended threshold value ϵ for determining the occurrence 

of the Gibbs phenomenon is 0.001-0.01, as suggested by Kang et al. [19]. In most 

aviation applications, including rotorcraft, accurate results can be produced using 

0.01. 

 

3.1.2 Higher-order Interpolation 

After the flow distinguishing step, the interpolations of the primitive variables are 

performed in accordance with the physical characteristics of the three divided 

regions. First, in the continuous region, high-order interpolation is performed 

without any limiting process. When the limiting process is applied in the local 

extrema, it is not possible to maintain the accuracy of the solution due to undesirable 

numerical dissipation. Therefore, in the continuous region, a simple high-order 

polynomial interpolation is executed. Second, in the linear discontinuous region, the 

limiting process is performed using a TVD criterion to handle numerical oscillations 

caused by contact discontinuities. Multi-dimensional contact discontinuities are 

smeared by a non-aligned grid system, which can be assumed to be a linear planar 

wave. In other words, the multi-dimensional linear convection equation can be 

expressed as a one-dimensional equation, and the oscillation can be effectively 

removed by the TVD criterion. Finally, an MLP criterion is used in the nonlinear 

discontinuous region. MLP satisfies the maximum principle in multi-dimensional 

flows and is able to achieve high accuracy for multi-dimensional shock waves 
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without numerical oscillations. Applying three different reconstruction methods, 

which are selected based on the characteristics of each area, enables the efficient and 

accurate interpolation of the primitive variables. Table 3.2 summarizes the 

interpolation methods applied to the three areas. In order to obtain a high-order 

accurate solution, the 𝛽 parameter is applied with fifth-order interpolation, and the 

MLP coefficient (𝛼) is applied in the same way suggested by Kang et al. [19]. 
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Table 3.2 Reconstruction methods of enhanced MLP 

Continuous region 

No limiting function 

𝛷L = 𝛷i + 0.5𝛽L𝛥𝛷i−
1
2
, 𝛷R = 𝛷i+1 − 0.5𝛽R𝛥𝛷i+

3
2
 

Linear 

discontinuous region 

TVD MUSCL limiter 

𝜙(𝒓𝑻𝑽𝑫, 𝛽) = 𝑚𝑎𝑥 (0,𝑚𝑖𝑛 (2,2𝒓𝑻𝑽𝑫, 𝛽) 

𝛷L = 𝛷i + 0.5𝜙(𝒓𝑻𝑽𝑫L, 𝛽𝐿)𝛥𝛷i−
1
2
, 𝛷R = 𝛷i+1 − 0.5𝜙(𝒓𝑻𝑽𝑫R, 𝛽𝑅)𝛥𝛷i+

3
2
 

Nonlinear 

discontinuous region 

Multi-dimensional Limiting Process (MLP) 

𝜙(𝒓𝑻𝑽𝑫, 𝛽) = 𝑚𝑎𝑥 (0,𝑚𝑖𝑛 (𝛼, 𝛼𝒓𝑻𝑽𝑫, 𝛽) 

𝛷L = 𝛷i + 0.5𝜙(𝒓𝑻𝑽𝑫L, 𝛽𝐿)𝛥𝛷i−
1
2
, 𝛷R = 𝛷i+1 − 0.5𝜙(𝒓𝑻𝑽𝑫R, 𝛽𝑅)𝛥𝛷i+

3
2
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3.2  Modifications of eMLP scheme (eMLP-VC) 

As eMLP has been generally developed for a wide variety of flows, including 

magnetohydrodynamic as well as supersonic and hypersonic flows, the accuracy for 

rotorcraft flowfields can be further improved. The accuracy can be enhanced by 

capitalizing on the fact that most flowfields are vortex-dominated and subsonic. 

Moreover, the robustness of eMLP can be refined by maintaining the consistency of 

the sensing function and the interpolation method. In the following section, a newly 

modified eMLP, called eMLP-VC (eMLP for vorticity conservation), which features 

greater accuracy, efficiency, and robustness, is suggested. 

 

3.2.1 Accuracy Enhancements 

◼ A New Distinguishing Criterion for Vortex-dominated Flow  

The original eMLP uses primitive variables to capture several types of 

discontinuities that may arise due to compressibility effects [52]. Pressure is used to 

identify strong nonlinear discontinuities such as a shock wave or a rarefaction wave. 

Because density and temperature jumps occur without a change in pressure in contact 

discontinuities, density is chosen for identifying contact discontinuities. A velocity 

vector is applied for slip discontinuities, which occur when a supersonic jet is present 

or the type of flow is different. With the original distinguishing mechanism, eMLP 

can be applied in various compressible flows accurately and efficiently. However, in 

vortex-dominated flows such as rotorcraft flowfields, where describing the 

interactions between vortices is important, it is not necessary to detect all the 
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aforementioned flow phenomena. Reorganizing the distinguishing criterion with 

respect to the vortex-dominated flow characteristics enables a more efficient and 

accurate analysis. 

Vortex profiles are continuous, and the vortices observed in rotorcraft flowfields 

also have continuous features. Fig. 3.1a displays the isentropic vortex model 

[51,53]with vortex strength 𝛽𝑣 = 5. The gradients in the primitive variables of the 

vortex core are visible in Fig. 3.1b. The density and pressure gradients in the vicinity 

of the core are 0.4-0.6, whereas the velocity gradient is 1.3-1.4. The velocity gradient 

is two to three times steeper than the density and pressure gradients. The area where 

the grid is not sufficient can be considered a discontinuous region due to the steep 

velocity gradient, which can reduce the accuracy of the solution. In addition, in 

rotorcraft flowfields, there is no need to use the velocity vector as a distinguishing 

criterion because there is no risk of developing a discontinuity caused by a 

supersonic jet or a mix of different types of flows. The modified distinguishing 

criterion for eMLP-VC is presented in Table 3.3.
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Fig. 3.1 Isentropic vortex model’s profile and gradient distribution 
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Table 3.3 Modified distinguishing criterion for rotorcraft flowfield 

 
Original criterion 

(eMLP) 

Modified criterion 

(eMLP-VC) 

Interpolation 

method 

Continuous region 𝑑𝜌,𝑢,𝑤,𝑣,𝑝 < 𝜖 (for all primitive variables) No limiting 

Linear 

discontinuous region 

𝑑𝜌 > 𝜖 

or 𝑑𝑢,𝑣,𝑤 > 𝜖 
𝑑𝜌 > 𝜖 TVD limiting 

Non-linear 

discontinuous region 
𝑑𝑝 > 𝜖 MLP limiting 

 

In the modified distinguishing criterion, the flow is classified using only the 

density and pressure without using the velocity vector, which was originally adopted 

in eMLP’s distinguishing criterion. By excluding the calculation of the velocity 

vector, the flow distinguishing mechanism becomes much more efficient. A 

preserving test of the isentropic vortex shown in Fig. 3.1 was performed to verify the 

performance of the modified distinguishing criterion. The results of the test are 

shown in Fig. 3.2. The background of Fig. 3.2 shows the density contour when the 

non-dimensionalized time reaches 20. Each grid point is colored based on the 

continuity of the flowfield, which is determined by the original and modified 

distinguishing criterion. When using the modified distinguishing criterion, many of 

the parts that are judged to be discontinuous regions because of the high velocity 

gradient are considered continuous regions. This allows for pure high-order 

polynomial interpolation without any limiting process in the continuous regions, 

resulting in more accurate solutions. As a result of using the modified distinguishing 
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criterion, 93% of the initial vorticity was preserved, whereas only 81% was 

preserved when the original distinguishing criterion is used. Therefore, the vortex 

preserving capability was further enhanced with the modified distinguishing 

criterion. 

 

 

Fig. 3.2 Comparison of results of original/modified distinguishing 

mechanism and density contour 

 

◼ Addition of Low Mach Number Adjustment 

Because the conventional upwind-based flow reconstruction methods determine 

the flux at the cell interface in accordance with the flow direction, the solution for 

the compressible flow can be accurately and robustly obtained even if discontinuities 

exist. In incompressible flow at low speed, however, these methods cannot properly 

predict the flow physics due to excessive numerical dissipation. In case of rotorcraft 

Continuous

Linear discontinuous

Nonlinear discontinuous

Continuous

Linear discontinuous

Nonlinear discontinuous
 ∗ =  .   

Γ∗ is normalized by initial vorticity magnitude

Original distinguishing mechanism

 ∗ =  .   
Γ∗ is normalized by initial vorticity magnitude

Modified distinguishing mechanism



 

35 

 

flowfields, most regions are subsonic except near the tip of the blade, where shock 

discontinuities can occur. The vortex-dominated area that affects the performance of 

the rotorcraft is a particularly subsonic region; hence, using upwind-based methods 

can deteriorate the accuracy of the solution. Through an analysis of TVD limiting 

interpolation methods, Kim and Kim [54] found a method to prevent the loss of 

accuracy in upwind-type reconstruction methods in subsonic regions, which they 

expressed as  

𝛷𝐿,𝐿𝑀 = 𝛷𝐿 +
𝑚𝑎𝑥[0,(𝛷𝑅−𝛷𝐿)|𝛷𝐿,𝑠𝑢𝑝−𝛷𝐿|]

(𝛷𝑅−𝛷𝐿)|𝛷𝐿,𝑠𝑢𝑝−𝛷𝐿|
𝑚𝑖𝑛 [𝑎

|𝛷𝑅−𝛷𝐿|

2
, |𝛷𝐿,𝑠𝑢𝑝 −𝛷𝐿|]  (3.3a) 

𝛷𝑅,𝐿𝑀 = 𝛷𝑅 +
𝑚𝑎𝑥[0,(𝛷𝐿−𝛷𝑅)|𝛷𝑅,𝑠𝑢𝑝−𝛷𝑅|]

(𝛷𝐿−𝛷𝑅)|𝛷𝑅,𝑠𝑢𝑝−𝛷𝑅|
𝑚𝑖𝑛 [𝑎

|𝛷𝐿−𝛷𝑅|

2
, |𝛷𝑅,𝑠𝑢𝑝 −𝛷𝑅|] (3.3b) 

where 𝛷𝐿,𝑠𝑢𝑝 and 𝛷𝑅,𝑠𝑢𝑝 are the interpolated values using the TVD superbee 

limiter, which is used to determine the steepness of the gradient of the original 

interpolated value. In a gently varying region, a reconstruction of the original 

interpolated values is performed, which results in a less intense numerical dissipation 

and a more accurate solution. It is also designed to maintain the complete upwind 

characteristics in supersonic flows through simple quadratic functions, such as 

𝑎 = 1 −min(1,𝑚𝑎𝑥(|𝑀𝐿|, |𝑀𝑅|))
2              (3.4) 

so that there is no loss of accuracy or robustness in supersonic flows. 
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3.2.2 Robustness Enhancement 

An approximated value is calculated using the sensing function in the flow 

distinguishing step. The original eMLP uses a fourth-order central differencing 

scheme as the sensing function. If a fifth- or higher-order accurate interpolation, 

which needs more stencil than the fourth-order central differencing scheme, is 

performed, a robustness problem may occur. Only the part of the stencil applied in 

the interpolation process is handled in the flow distinguishing step; if there is a 

discontinuity at the edge of the stencil, information about the discontinuity may be 

omitted, causing numerical oscillations. The solver may diverge in case of a strong 

shock. Hence, the consistency between the interpolation method and the sensing 

function must be adjusted to prevent the aforementioned problems. The original 

sensing function was modified according to the equations shown in Table 3.4. The 

sensing function is adjusted according to the stencil used in the interpolation step. If 

third-order interpolation is performed, fourth- or higher-order sensing should be 

performed to include the stencil used in the interpolation step. If interpolation is 

performed in the fifth-order, the sixth- or higher-order sensing should be 

implemented. If the order of interpolation step is increased in this way, the order of 

the sensing function should be raised accordingly.
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Table 3.4 Modified sensing function for robust calculation 

Interpolation Modified sensing function 

3rd order interpolation 

𝜷 𝒓𝒅 =
 + 𝟐𝒓𝑻𝑽𝑫𝒊

 
 

4th order central differencing scheme 

𝛷𝑖,𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑒 =
−𝛷𝑖−2 + 4𝛷𝑖−1 + 4𝛷𝑖+1 −𝛷𝑖+2

6
= 𝛷𝑖 + 𝑂(𝛥𝜉4) 

5th order interpolation 

𝜷𝟓𝒕𝒉

=
−𝟐/𝒓𝑻𝑽𝑫𝒊− +   + 𝟐𝟒𝒓𝑻𝑽𝑫𝒊 −  𝒓𝑻𝑽𝑫𝒊𝒓𝑻𝑽𝑫𝒊+ 

  
 

6th order central differencing scheme 

𝛷𝑖,𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑒 =
𝛷𝑖−3 − 6𝛷𝑖−2 + 15𝛷𝑖−1 + 15𝛷𝑖+1 − 6𝛷𝑖+2 +𝛷𝑖+3

20

= 𝛷𝑖 + 𝑂(𝛥𝜉6) 
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The stationary shock discontinuity problem was calculated to verify the 

appropriateness of the modified sensing function. The initial conditions are 

(𝜌, 𝑢, 𝑣, 𝑤, 𝑝)𝐿 = (1.0,2.887,2.887,2.887,1.0)          (3.5a) 

(𝜌, 𝑢, 𝑣, 𝑤, 𝑝)𝑅 = (5.0,0.577,0.577,0.577,29.00)         (3.5b) 

as the normal shock of Mach number 5 is raised at an angle of 45° to the grid 

line.  

 

Fig. 3.3 Pressure distribution of cell surface 𝒚 = 𝒛 =  . 𝟕𝟐𝟓. 

For the steady calculations, a backward Euler method with local time stepping 

was adopted. The calculation was carried out until the residual dropped below 10−5. 

The DADI method was used for the efficient inversion of the matrix [50]. The overall 

computational domain was set as [0,1]×[0,1]×[0,1], and grids of (20×20×20) were 
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evenly distributed. Fig. 3.3 shows the pressure distribution of the cell surface 𝑦 =

𝑧 = 0.725 . When calculating with the modified sensing function, the shock is 

captured without oscillation, just as in the MLP calculation. However, the calculation 

with eMLP resulted in a divergence. With the original distinguishing criterion, the 

information about shock discontinuities is not applied to the sensing function in the 

cell, where the shock is located at the edge of the stencil. Thus, the limiting process 

is not applied in the interpolation step, which causes the calculation to fail.  

 

3.3  Advanced performance of eMLP-VC 

Three numerical experiments (i.e., linear and nonlinear wave propagation 

problems, and a double Mach reflection problem) were conducted to assess the 

eMLP-VC. MLP, eMLP, and “no limiter” methods were compared to evaluate the 

improved accuracy of eMLP-VC. The “no limiter” method represents 5th-order 

accurate polynomial interpolation without any limiting process. MLP, eMLP, and 

eMLP-VC incorporated a 5th-order accurate polynomial as the 𝛽 function, and the 

results of fifth-order accuracy were obtained in the region where the limiting process 

was not applied. All interpolations were performed for primitive variables. The 

upwind-based flux scheme AUSMPW+ was used for all cases. Other upwind-based 

schemes such as Roe-type [55] and HLLC-type [56] produced similar results. The 

third-order TVD Runge-Kutta method was used for time integration, with 

sufficiently small timesteps in each experiment.  
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3.3.1 Linear wave propagation problem 

The initial linear wave profile is a smooth two-dimensional double sine wave: 

𝑞0 = 2 + sin(2𝜋𝑥)sin(2𝜋𝑦)                   (3.6) 

 The computational domain was [0,1]×[0,1], and each boundary had the periodic 

condition to assume a domain of infinite size. The grid system was (20×20). The 

timestep was set as 0.001 to prevent time integration errors from affecting spatial 

discretization errors. The non-dimensionalized advection velocity was set to 1 in the 

x-direction and 2 in the y-direction so that the wave returned to its original place at 

𝑡 = 1. Fig. 3.4 displays the contour maps showing the solution at 𝑡 = 1 (see Fig. 

3.4a, c, e) and the error between the solution and the initial profile (see Fig. 3.4b, d, 

f). As the results of the eMLP and the “no limiter” were the same, all regions were 

determined to be continuous through the original distinguishing criterion. The 

modified distinguishing criterion of eMLP-VC also defines all domains to be 

continuous. The solution of eMLP-VC was more accurate than that of eMLP due to 

the reduced numerical dissipation through low Mach number adjustment. When the 

limiting process is operated in all regions, as in MLP, the wave amplitude decreases 

due to undesirable numerical dissipation at local extrema, producing results with low 

accuracy. 
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Fig. 3.4 Linear wave propagation problem calculation results at 𝒕 =  . 

 

 

a) MLP, solution 

 

b) MLP, error 

 

c) eMLP and “no limiter”, solution 

 

d) eMLP and “no limiter”, error 

 

e) eMLP-VC, solution 

 

f) eMLP-VC, error 
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A grid refinement test was conducted to check the order of accuracy of the linear 

wave propagation problem and the accuracy according to the grid. Fig. 3.5 shows 

the L2 error of the four schemes as a function of the number of grids. The calculations 

were performed by varying the number of grids in one direction to 20, 40, 80, and 

160. MLP, in which the limiting process is carried out in the whole domain, has a 

much larger L2 error compared to the other three schemes. eMLP and the “no limiter” 

have the same result, which means that it was continuous in all domains as assessed 

by the distinguishing criterion. The orders of accuracy and L2 errors are shown in 

Table 3.5. Through the addition of low Mach number adjustment, eMLP-VC is more 

accurate than the eMLP and “no limiter” which adopts 5th-order polynomial 

Fig. 3.5 L2 norm of error of calculation results at 𝒕 =  . 
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reconstruction in whole domain without any limiting process. Although the order-of-

accuracy of eMLP-VC is lower than that of eMLP and “no limiter”, the accuracy is 

higher than any of the other schemes. In particular, the smaller the grid, the greater 

the difference in accuracy when compared to eMLP and “no limiter”. 

 

Table 3.5 Grid refinement test for linear wave propagation problem 

  Grid system L
2
 error Order of accuracy 

No limiter 

(5th-order 

reconstruction) 

20×20 4.71E-04   

40×40 1.49E-05 4.98 

80×80 4.69E-07 4.99 

160×160 1.64E-08 4.84 

MLP 

20×20 6.17E-02   

40×40 1.53E-02 2.01 

80×80 3.84E-03 2.00 

160×160 9.36E-04 2.03 

eMLP 

20×20 4.71E-04   

40×40 1.49E-05 4.98 

80×80 4.69E-07 4.99 

160×160 1.64E-08 4.84 

eMLP-VC 

20×20 1.71E-04   

40×40 6.64E-06 4.69 

80×80 2.57E-07 4.69 

160×160 1.21E-08 4.41 
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3.3.2 Nonlinear wave propagation problem 

In order to compare only the numerical dissipation of spatial discretization 

methods, the problem of preserving the isentropic vortex in the inviscid flow was 

selected. The governing equation for this problem is the two-dimensional inviscid 

and compressible Euler equation. The non-dimensionalized freestream values, which 

are density, velocity, and pressure, were set to (𝜌, 𝑢, 𝑣, 𝑝) = (1,0,0,1) . The 

computational domain was [-5,5]×[-5,5], and each boundary had the periodic 

condition to assume a domain of infinite size. The intensities of the perturbations in 

the freestream values due to the initial vortex were determined via 

𝛿𝑢 = −
𝛽𝑣

2𝜋
(𝑦 − 𝑦0)𝑒

1−𝑟𝑣
2

2                   (3.7a) 

𝛿𝑣 =
𝛽𝑣

2𝜋
(𝑥 − 𝑥0)𝑒

1−𝑟𝑣
2

2                    (3.7b) 

𝛿𝑇 = −
𝛽𝑣
2(𝛾−1)

8𝛾𝜋2
𝑒1−𝑟𝑣

2
                   (3.7c) 

where 𝛽𝑣, the vortex strength, was set to 5 [51,53] and (𝑥0, 𝑦0), the position of 

vortex core, was set to (0,0). The distance from the vortex core, 𝑟𝑣, is defined as 

𝑟𝑣 = √(𝑥 − 𝑥0)
2 + (𝑦 − 𝑦0)

2 . Isentropic flow and calorically perfect gas are 

assumed in this problem. There are two grid systems: a coarse grid system and a fine 

grid system. The coarse grid system has five grid points and the fine grid system has 

ten grid points in the vortex core to describe the vortex profile. The time-step was 

set to 0.01 for both grid systems. The results that occurred at the non-

dimensionalized time 𝑡 = 50 were compared. 
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Fig. 3.6 Comparison of density contour (Up: Coarse Grids, Down: Fine grids) 

No limiter
(5th order reconstruction) MLP eMLP eMLP-VC

Coarse Grids
5 grids in vortex core

Overall domain - 25 × 25

Fine Grids
10 grids in vortex core

Overall domain - 50 × 50

 ∗ =  .    

 ∗ =  .     ∗ =  . 𝟓   ∗ =  .    ∗ =  .    

 ∗ =  .  𝟕𝟓  ∗ =  .  𝟓  ∗ =  .    

Γ∗ is vorticity magnitude normalized by initial vorticity magnitude
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A comparison of the density values of the coarse and fine grid systems is shown 

in Fig. 3.6. The calculations were performed for four reconstruction methods: “no 

limiter” (fifth-order polynomial interpolation without any limiting process), MLP, 

eMLP, and eMLP-VC. Because the number of grids for describing vortex profile is 

insufficient in the coarse grid system, many parts of the vortex core are deemed 

discontinuous regions, as shown in Fig. 3.2. The limiting process is performed in 

those discontinuous areas, which causes the vortex to dissipate due to the excessive 

numerical dissipation of the limiting process. After the non-dimensionalized time 

t=50, 17.5% of vorticity is preserved with MLP, 65.3% with eMLP, 88.9% with “no 

limiter,” and 90.0% with eMLP-VC. MLP and eMLP exhibit more loss of vorticity 

than the “no limiter”, but eMLP-VC preserved the vorticity better than the “no 

limiter”. The modified distinguishing criterion of eMLP-VC assessed the majority 

of the domain to be continuous regions, which reduced the numerical dissipation and 

improved the accuracy. Furthermore, the low Mach number adjustment is performed 

in the subsonic region, resulting in highly preserved vorticity. In the fine grid system, 

the entire domain is gauged to be continuous in both the original and modified 

distinguishing criterion because the grid system is fine enough to accurately describe 

the vortex profile. Hence, eMLP assigns pure high-order polynomial interpolation in 

the entire domain, which preserves the same vorticity as the “no limiter” case. Both 

eMLP and the “no limiter” preserve 99.6% of the vorticity. When using eMLP-VC, 

the limiting process is not performed in the whole domain as in eMLP, and the vortex 
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preserving capability is increased due to the low Mach number adjustment. As a 

result, the vorticity is almost completely preserved (99.9%). 

 

3.3.3 Double Mach Reflection  

Double Mach reflection problems have been selected to determine how several 

modifications in eMLP-VC affected the robustness and accuracy in a strong 

compressible flow. In this problem, a moving shock of Mach number 10 hits a 30-

degrees inclined ramp at 𝑥 =
1

6
. As the incident shock wave moves, a reflected shock 

and a Mach stem meet to create a primary triple point, resulting in a slip line and 

curved flow. Additionally, as the reflected shock breaks up, a secondary Mach stem 

and a secondary reflected shock are created, and a secondary triple point is created. 

These phenomena are shown in Fig. 3.7a. To verify the robustness and accuracy of 

the scheme in the compressible flow, strong moving shock and surrounding physical 

phenomena must be robustly simulated in high resolution without numerical 

oscillation. In particular, the resolution of the slip line and curled flow perform as an 

indicator to judge the accuracy of the numerical scheme [57]. A computational 

domain for double Mach reflection problem is [0,4]×[0,1] with equally spaced grids. 

A uniform grid spacing, ℎ, is 1/512. The computation was carried out until the non-

dimensionalized time ( 𝑡 ) reaches 0.2, with a Courant-Friedrichs-Lewy (CFL) 

number, 0.8. For the comparison, MLP and eMLP schemes were used. The “no 

limiter” case was not used in this problem because the calculation diverges if the 
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proper limiting function is not used in the discontinuity. In addition, the modified 

sensing function was used in eMLP to ensure the robustness. 

Fig. 3.7 illustrates the flow structure of the double Mach reflection problem at 

𝑡 = 0.2  through density contour and numerical schlieren. The density contour 

consists of thirty equally spaced lines, representing from 𝜌 = 2 to 𝜌 = 22.5. Two 

triple points, the slip line, and the curled flow are shown in a close-up view using 

numerical schlieren. Fig. 3.7 shows that monotone solutions were achieved through 

the calculations using MLP, eMLP, and eMLP-VC. Especially results in eMLP and 

eMLP-VC, the curled flow generated from the slip line is clearly resolved. 

The accuracy and robustness of eMLP-VC were verified through linear wave 

propagation, nonlinear wave propagation, stationary shock discontinuity, and double 

Mach reflection problems. eMLP-VC demonstrates a higher accuracy than the 

methods without a limiting process in the continuous area, and it robustly captures 

multi-dimensional discontinuities without numerical oscillations. For rotorcraft 

flowfields where vortex-dominated regions and multi-dimensional discontinuities 

exists, eMLP-VC is a good alternative to the conventional high-order accurate 

scheme.
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Fig. 3.7 Comparison of density contour and numerical schlieren for double Mach reflection problem (𝒉 =
 

𝟓 𝟐
,  𝒕 =  . 𝟐).
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Chapter 4.  Comparative Assessment of High-Order Spatial 

Schemes in Terms of Local Accuracy 

 

Several benchmark tests have been conducted to verify the accuracy of the eMLP-

VC presented in the previous chapter. eMLP-VC showed excellent vorticity 

preservation capabilities while also showing the robustness even when strong shock 

waves exist. However, it is unknown whether it will perform well even when 

compared to the scheme that is conventionally used in rotorcraft flow fields, such as 

WENO-type schemes. In addition, if the accuracies of those schemes are different, a 

thorough investigation of the reasons for the performance difference is essential. 

Although high-order spatial schemes can give reliable predictions of the 

aerodynamic performance of rotorcraft, the actual prediction accuracy in an 

aeroacoustic problem, which demands much higher accuracy, tends to be insufficient. 

The main reason for insufficiency is the reduced order-of-accuracy in the local 

computational domain. High-order spatial schemes insist that they theoretically 

produce the same order-of-accuracy in the entire computational domain. However, 

these schemes unintentionally switch the order-of-accuracy according to the type of 

flowfield. Because high-order spatial schemes include the non-linear part for 

robustness, it is inherently difficult to maintain a constant order-of-accuracy. The 

primary role of the non-linear part, designed using a different approach for each 

scheme, is to deal with discontinuities in a robust manner. When a discontinuity is 

observed in the domain, the non-linear part plays the role of artificial dissipation to 
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prevent the oscillation of numerical results. The problem is that this part can be 

activated where a discontinuity does not exist. If an insufficient number of grids is 

given or the gradients of flow quantities are salient, the scheme can erroneously 

detect a continuous region as a discontinuous region. This brings unnecessary 

numerical dissipation and reduces the order-of-accuracy of numerical solutions.  

For a more accurate prediction of a vortex-dominated rotorcraft flowfield and 

aeroacoustic characteristics of rotorcraft, the high-order spatial scheme should 

maintain the theoretical order-of-accuracy in the entire continuous computational 

domain. To identify the actual accuracy of a scheme in the discretized domain, an 

assessment in terms of local accuracy is required. There are several assessment 

techniques to identify the local accuracy of the scheme. Modified wavenumber 

analysis can estimate the dissipation and dispersion error of each scheme [29,58]. 

The ADR method, which is improved version of modified wavenumber analysis, is 

particularly useful for evaluating the non-linear effects of spatial schemes [29]. Even 

so, the ADR method is based on the simple linear advection equations, which have 

exact solutions. Consequently, the error in rotorcraft flow fields cannot be analyzed 

using the ADR method.  

A suitable alternative may be to use the scheme’s truncation error. Since the high-

order spatial scheme yields a low-order truncation error locally while adjusting the 

stencil weight, the actual accuracy in the discretized domain can be analyzed by 

using the difference between ideal truncation error and applied truncation error.  
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In this chapter, the local-order-of-accuracy index (LAI) is newly defined for the 

quantitative assessment of local accuracy. The LAI compares the ideal accuracy of 

the high-order spatial scheme and the applied accuracy in terms of truncation error. 

The LAI represents the local accuracy of the applied scheme and can be computed 

in any problem. Five high-order spatial schemes are comparatively assessed in terms 

of local accuracy. The effect of the local accuracy of each scheme on performance 

prediction is investigated in aeroacoustic benchmark tests, including rotorcraft 

flowfield (HART-II problem [28]). LAI analyses show the change in order-of-

accuracy of the scheme according to the flow velocity, flow characteristics, and grid 

number. Based on the results of analyses, essential requirements for precise 

prediction are proposed. 

Spatial schemes in compressible flows had been developed to focus on capturing 

the shock discontinuity in a robust manner. However, such schemes have limitations 

in vortex-dominated flow, which requires relatively high accuracy. Recently, spatial 

schemes have progressed in such way that satisfies both robust shock-capturing and 

high-accuracy requirements. Several spatial schemes with high-order accuracy give 

reliable results even in rotorcraft flowfields, where tip and secondary vortices prevail.  

Five high-order spatial schemes are compared to establish the essential 

requirements for precise rotorcraft performance prediction. Two schemes (eMLP 

[19], eMLP-VC [20]) were selected as improved versions of the TVD scheme. For 

the WENO-type scheme, the original WENO scheme and two advanced schemes 

were selected: WENO-JS [7], WENO-M [16], and WENO-Z [17]. A brief review of 
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WENO-type schemes are presented in Appendix A. A local truncation error analysis 

is performed to compare the accuracies of the advanced schemes. Different types of 

𝑛𝑡ℎ-order accurate spatial discretization schemes are quantitively assessed using the 

LAI. 

 

4.1  Computational costs of high-order spatial schemes 

Even for a scheme with high order-of-accuracy and robust shock-capturing 

performance, if the computational cost of the scheme is unreasonable, its value 

decreases. Therefore, before evaluating the numerical performance of the previously 

introduced schemes, the computational cost for a simple problem was assessed first. 

WENO-JS, WENO-M, and WENO-Z were chosen as WENO-type schemes, and 

eMLP and eMLP-VC were selected as eMLP-type schemes. All settings except for 

the reconstruction scheme were the same. The Governing equation for the test case 

was set as the Euler equation. The upwind function was used as the flux function. 

The reconstruction was performed for primitive variables. The result of the TVD 

minmod limiter was used as the reference value. 1000 steps were advanced using 

161×161×161 grids. The first-order backward difference formula with the DADI 

method [50] was used as the temporal integration method. After performing the same 

test 10 times for each scheme, the calculation time of 8 cases, excluding the cases 

that took the most and the least time was averaged. Intel Xeon Gold-6254 processor 

was used for the calculation. The results are shown in Table 4.1. 
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Table 4.1 Relative computational cost (reference: TVD minmod limiter) 

Spatial discretization schemes Computational cost (%) 

WENO-JS 27.0 

WENO-M 50.4 

WENO-Z 29.1 

eMLP 30.8 

eMLP-VC 30.3 

 

All schemes have a cost of about 25% more than that of the second-order accurate 

TVD minmod limiter. The costs of the schemes are similar except for WENO-M, 

which is about twice as expensive as WENO-JS. Although WENO-Z is an improved 

version of WENO-JS, WENO-Z has not much increased cost. eMLP-VC is also an 

advanced version of eMLP; the cost of eMLP-VC is rather reduced.  

 

4.2  Analysis of Local truncation error 

4.2.1 Local truncation error analysis using taylor series expansion  

Explicit 𝑛𝑡ℎ -order accurate schemes such as the WENO- and eMLP-type 

schemes use polynomials with 𝑛𝑡ℎ-order accuracy to reconstruct the cell interface 

quantity. Assuming equally spaced grid points, the approximated quantity can be 

expressed as follows: 

𝑞(𝑥) = 𝑙𝑛𝑥
𝑛 + 𝑙𝑛−1𝑥

𝑛−1 +⋯+ 𝑙1𝑥 + 𝑙0           (4.1) 

where 𝑙𝑖(𝑖 = 0,1,⋯ , 𝑛) is the polynomial constant. The cell averaged quantity 

with conservative properties can be expressed as follows: 
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�̅�𝑚 =
1

Δ𝑥
∫ 𝑞(𝑥)𝑑𝑥
(𝑚+

1

2
)Δ𝑥

(𝑚−
1

2
)Δ𝑥

                    (4.2) 

As shown in Fig. 4.1, �̅�𝑚 is the averaged quantity of cell 𝑚. 𝛥𝑥 indicates the 

grid point spacing. The cell interface quantity, 𝑞1
2

, can be reconstructed, as shown 

in Eq. (11), using 𝑟 stencils to the left and (𝑛 − 𝑟) stencils to the right based on 

the 1/2 side. 

𝑞1
2

= ∑ 𝑐𝑚�̅�𝑚
(𝑛−𝑟)
𝑚=−(𝑟−1) = 𝑞1

2
,𝑒𝑥𝑎𝑐𝑡

+ 𝑂(Δ𝑥𝑛)            (4.3) 

In eq. (4.3), 𝑐𝑚 is the stencil weight, and 𝑞1
2
,𝑒𝑥𝑎𝑐𝑡

 is an exact physical quantity 

at the cell interface. The fifth-order accurate upwind-type polynomial scheme can 

be expressed as eq. (4.4a). The sixth-order accurate central-type polynomial scheme 

can be expressed as eq. (4.4b). 

𝑞1
2

=
1

60
(2�̅�−2 − 13�̅�−1 + 47�̅�0 + 27�̅�1 − 3�̅�2)  

= 𝑞1
2
,𝑒𝑥𝑎𝑐𝑡

−
1

60

𝑑5�̅�

𝑑𝑥5
|
𝑥=𝑥0

+𝑂(𝛥𝑥6)                            (4.4a) 

𝑞1
2

=
1

60
(�̅�−2 − 8�̅�−1 + 37�̅�0 + 37�̅�1 − 8�̅�2 + �̅�3)  

= 𝑞1
2
,𝑒𝑥𝑎𝑐𝑡

+
31

4320

𝑑6�̅�

𝑑𝑥6
|
𝑥=𝑥0

+ 𝑂(𝛥𝑥7)                           (4.4b) 

Equation (4.4a) shows the left state of the cell interface quantity of the upwind 

scheme. The right state of the cell interface can be obtained by applying the weight 

symmetrically, moving the stencil by one grid to the right. In the case of the central 

scheme, both left and right states can be obtained, as shown in eq. (4.4b). The 

weights applied in eq. (4.4) are the optimal weights corresponding to fifth- and 
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sixth-order accuracy, that is, 𝒄𝟓𝒕𝒉,𝒐𝒑𝒕𝒊𝒎𝒂𝒍 =
1

60
[2, −13, 47, 27,−3]𝑇  and 

𝒄 𝒕𝒉,𝒐𝒑𝒕𝒊𝒎𝒂𝒍 =
1

60
[1, −8, 37, 37,−8, 1]𝑇, respectively. The truncation errors in Eq. 

(12) are −
1

60

𝑑5�̅�

𝑑𝑥5
|
𝑥=𝑥0

+  𝑂(𝛥𝑥6)  and +
31

4320

𝑑6�̅�

𝑑𝑥6
|
𝑥=𝑥0

+ 𝑂(𝛥𝑥7) , respectively, 

which can be obtained by Taylor series expansion.  

 

Fig. 4.1 Physical distribution and cell-centered quantities. 

 

The 𝑛𝑡ℎ-order accurate spatial discretization schemes used for compressible flow, 

including the WENO- and eMLP-type schemes, have optimal accuracies in the grid 

system, which is sufficient to represent the change in flow in the incompressible 

region with low velocity and in the smooth region without flow discontinuity. 

However, in the region where compressibility and discontinuity occur, the stencil 

weight is adjusted using the schemes in a specific manner to address them robustly. 

�̅�−2

�̅�−1

�̅�0

�̅�1

�̅�2

�̅�3

𝑞1
2,𝑒𝑥𝑎𝑐𝑡

⋯

⋯
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In other words, the stencil weight changes locally, depending on various factors, such 

as the nature of the flowfield and the quality of the grid system. Thus, the schemes 

do not have an ideal accuracy in all the domains. For example, in the case of a simple 

flow in which a smooth sine wave advects, high-order accuracy will be applied in all 

areas if an appropriate grid system is ensured and the wave propagation velocity is 

low. However, if an insufficient grid system is used to express this sine wave or if 

the propagation velocity is high, the applied spatial scheme adjusts the stencil weight 

accordingly. Consequently, artificial dissipation is applied by adjusting the weight 

from the optimal weight, and local accuracy decreases. In predicting the 

aerodynamic performance of a simple flow, local accuracy degradation may not 

meaningfully affect the performance prediction. However, in aeroacoustic problems 

where small pressure perturbations can affect the final noise performance, local 

accuracy degradation can have a significant impact. Therefore, even with the high-

order accurate schemes which have theoretically the same order-of-accuracy, a 

scheme that does not easily decrease local accuracy should be used. 

It seems difficult to directly compare the local errors of different types of 

discretization schemes because they reconstruct cell interface quantities through 

completely different approaches. However, direct comparisons are possible in terms 

of truncation error because schemes change the stencil weight in their respective 

manners, and the ideal weight is fixed. Using Taylor series expansion, exact cell 

interface quantity, 𝑞1
2
,𝑒𝑥𝑎𝑐𝑡

 , based on cell averaged quantity, �̅�𝑖 , at 𝑖 = 0  can be 

expressed as follows: 
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𝑞1
2
,𝑒𝑥𝑎𝑐𝑡

= �̅�0 +
1

2
�̅�0

(1)(Δ𝑥)1 +
1

12
�̅�0

(2)(Δ𝑥)2 −
1

720
�̅�0

(4)(Δ𝑥)4 + 𝑂(Δ𝑥)6  (4.5) 

Using eq. (4.5) and Taylor series expansion, the difference between each cell 

averaged quantity and exact cell interface quantity can be expressed as follows: 

�̅�−2 = 𝑞1
2
,𝑒𝑥𝑎𝑐𝑡

−
5

2
�̅�0

(1)(Δ𝑥)1 +
23

12
�̅�0

(2)(Δ𝑥)2 −
4

3
�̅�0

(3)(Δ𝑥)3 +  

481

720
�̅�0

(4)(Δ𝑥)4 −
4

15
�̅�0

(5)(Δ𝑥)5 + 𝑂(Δ𝑥)6                         (4.6a) 

�̅�−1 = 𝑞1
2
,𝑒𝑥𝑎𝑐𝑡

−
3

2
�̅�0

(1)(Δ𝑥)1 +
5

12
�̅�0

(2)(Δ𝑥)2 −
1

6
�̅�0

(3)(Δ𝑥)3 +  

31

720
�̅�0

(4)(Δ𝑥)4 −
1

120
�̅�0

(5)(Δ𝑥)5 + 𝑂(Δ𝑥)6                        (4.6b) 

�̅�0 = 𝑞1
2
,𝑒𝑥𝑎𝑐𝑡

−
1

2
�̅�0

(1)(Δ𝑥)1 −
1

12
�̅�0

(2)(Δ𝑥)2 −   

1

720
�̅�0

(4)(Δ𝑥)4 + 𝑂(Δ𝑥)6                                      (4.6c) 

�̅�1 = 𝑞1
2
,𝑒𝑥𝑎𝑐𝑡

+
1

2
�̅�0

(1)(Δ𝑥)1 +
5

12
�̅�0

(2)(Δ𝑥)2 +
1

6
�̅�0

(3)(Δ𝑥)3 +  

31

720
�̅�0

(4)(Δ𝑥)4 +
1

120
�̅�0

(5)(Δ𝑥)5 + 𝑂(Δ𝑥)6                        (4.6d) 

�̅�2 = 𝑞1
2
,𝑒𝑥𝑎𝑐𝑡

+
3

2
�̅�0

(1)(Δ𝑥)1 +
23

12
�̅�0

(2)(Δ𝑥)2 +
4

3
�̅�0

(3)(Δ𝑥)3 +  

481

720
�̅�0

(4)(Δ𝑥)4 +
4

15
�̅�0

(5)(Δ𝑥)5 + 𝑂(Δ𝑥)6                         (4.6e) 

�̅�3 = 𝑞1
2
,𝑒𝑥𝑎𝑐𝑡

+
5

2
�̅�0

(1)(Δ𝑥)1 +
53

12
�̅�0

(2)(Δ𝑥)2 +
2

9
�̅�0

(3)(Δ𝑥)3 +  

2431

720
�̅�0

(4)(Δ𝑥)4 +
81

40
�̅�0

(5)(Δ𝑥)5 + 𝑂(Δ𝑥)6                        (4.6f) 

where �̅�0
(𝑖) =

𝑑𝑖�̅�

𝑑𝑥𝑖
|
𝑥=𝑥0

. The 𝑖𝑡ℎ-order truncation error coefficients are defined as 

𝒆𝒊(𝑖 = 1,2,⋯ ) . For example, first-order truncation error coefficients, 𝒆  , are 
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defined as [−
5

2
, −

3

2
, −

1

2
,
1

2
,
3

2
,
5

2
]
𝑇

  and second-order truncation error 

coefficients, 𝒆𝟐, are defined as [
23

12
,
5

12
, −

1

12
,
5

12
,
23

12
,
53

12
]
𝑇
. By combining the stencil 

weights ( 𝒄 ) calculated for each scheme and the 𝑖𝑡ℎ -order truncation error 

coefficients (𝒆𝒊), the truncation error of each cell interface quantity can be calculated. 

In other words, 𝒄𝑻 ∙ 𝒆𝒊 implies the 𝑖𝑡ℎ order truncation error of the scheme. If 𝒄𝑻 ∙

𝒆  (first-order truncation error) is zero, and 𝒄𝑻 ∙ 𝒆𝟐 (second-order truncation error) 

has a non-zero value in a specific cell interface, then this scheme is locally second-

order accurate. 

 

4.2.2 Local-Order-of-Accuracy Index (LAI) 

In this section, to generalize the discussion of the above section and to compare 

the local truncation errors generated by each spatial discretization scheme, an index 

that satisfies the following requirements is proposed. 

 R1. For the 𝑛𝑡ℎ -order accurate spatial discretization schemes using an 𝑛-point 

stencils, the index should be consistently applicable in the same manner. 

 R2. The index should also be applicable for the comparison of schemes using 

different orders or numbers of stencils.  

The index that satisfies the above conditions is called the LAI and can be 

expressed as follows: 
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LAI = 1 + ∑ ∏ max {0, (1 −
|𝒄𝑻∙𝒆𝒊|

|𝛤𝑖|
)} 𝑘

𝑖=1
n
𝑘=1                            (4.7) 

= 1 +max {0, (1 −
|𝒄𝑻∙𝒆 |

|𝛤1|
)} + max {(1 −

|𝒄𝑻∙𝒆 |

|Γ1|
)}max {0, (1 −

|𝒄𝑻∙𝒆𝟐|

|Γ2|
)} +  

  ⋯+max {0, (1 −
|𝒄𝑻∙𝒆 |

|Γ1|
)}max {0, (1 −

|𝒄𝑻∙𝒆𝟐|

|Γ2|
)}⋯max {0, (1 −

|𝒄𝑻∙𝒆𝒏|

|Γ𝑛|
)}  

 

The LAI consists of the sum and product of max {0, (1 −
|𝒄𝑻∙𝒆𝒊|

|Γ𝑖|
)} that represents 

a function of the 𝑖𝑡ℎ-order error measure. Γ𝑖 is a constant for normalizing 𝒄𝑻 ∙ 𝒆𝒊 

and is defined as the 𝑖𝑡ℎ-order truncation error coefficient generated during the 𝑖𝑡ℎ-

order accurate polynomial reconstruction. Γ1 =
1

2
, Γ2 = −

1

6
, Γ3 =

1

12
, Γ4 =

−
1

30
, Γ5 = −

1

60
.  

Important properties for the LAI for the 𝑛𝑡ℎ-order accurate scheme comparison 

are as follows: 

1. An explicit spatial discretization scheme using 𝑛 stencils can yield the LAI 

value up to 𝑛. For example, the LAI of the fifth-order polynomial is 5. The 

LAI of the WENO-type scheme can have a value of 3–5 because the five-

point stencil fifth-order accurate WENO-type scheme has at least a third-

order accuracy in the flowfield. The LAI of the fifth-order eMLP can have 

a value of 1–5 because the eMLP reconstructs the flowfield using different 

approaches in each distinguished region. In the case of eMLP-VC, with a 

low Mach number adjustment, the LAI can have a value of 1-6. 
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2. 
|𝒄𝑻∙𝒆𝒊|

|Γ𝑖|
 stands for the 𝑖𝑡ℎ-order error measure. If the 𝑖𝑡ℎ-order error measure 

(𝑖 ≤ 𝑛 − 1) is zero and the 𝑛𝑡ℎ-order truncation error is smaller than that of 

the 𝑛𝑡ℎ-order polynomial, the LAI value is (𝑛 +  𝛼). (0 < 𝛼 < 1). It can 

be considered that the scheme has (𝑛 + 𝛼)𝑡ℎ-order accuracy. If the  𝑖𝑡ℎ-

order error measure (𝑖 ≤ 𝑛 − 1) is zero and the 𝑛𝑡ℎ-order truncation error 

is larger than or equal to that of the 𝑛𝑡ℎ order polynomial, the LAI value is 

𝑛. It’s because the 𝑖𝑡ℎ-order error measure (𝑖 ≤ 𝑛 − 1) is still zero. 

3. The low-order error measure limits the influence of the high-order error 

measures on the LAI. If the low-order error measure goes large, a reduced 

LAI index will be yielded even if the high-order error measure is small. 

In the case of different types of schemes (such as, eMLP- and WENO-type), local 

truncation errors can be compared using the LAI. Even when the number of stencils 

varies or the ideal accuracy varies, the LAI can be extended and used in the same 

manner. However, accuracy comparison using the truncation error is physically 

meaningful only in the subsonic region where the physical quantity is distributed 

smoothly. The comparison is difficult to be applied in the region where a jump in a 

physical quantity occurs. Since the LAI was developed under the assumption of 

equally spaced grids, it can be only used on equally spaced grids. In addition, 

although the LAI value itself does not have any physical meaning, it can be used for 

quantitative comparison and analysis of the numerical errors of each scheme. 
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4.3  Assessment of high-order spatial schemes through benchmark tests  

To compare the local truncation error distribution and acoustic predictability of 

high-order spatial numerical schemes in rotorcraft flowfield, four different 

representative benchmark problems were solved. For one-dimensional (1D) 

simulations, sine wave and gaussian pulse advection problem were selected. The sine 

wave and Gaussian pulse represent low and high frequency waves, respectively. The 

global-order-of-accuracy of each scheme was confirmed through the grid 

convergence test. Five schemes all have fifth-order accuracy in theoretically. Only 

eMLP-VC can yield up to sixth-order accuracy when the flow Mach number is zero. 

The accuracy of each scheme was compared through the LAI distribution in variable 

grid levels. For two-dimensional (2D) simulation, non-isothermal acoustic pulse 

propagation problem and isentropic vortex advection problem were selected. These 

two flows, which exist dominantly in the actual rotorcraft flowfield, are suitable for 

assessing aeroacoustics predictability of high-order accurate schemes. In particular, 

the performances of high-order accuracy schemes were assessed at relatively coarse 

grids considering the grid system of the actual engineering field. Table 4.2 contains 

a summary of benchmark tests. 
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Table 4.2 Summary of 1D and 2D benchmark tests 

 1D 2D 

 
Sine wave 

advection 

Gaussian 

pulse 

advection 

Acoustic pulse 

propagation 

Isentropic 

vortex 

advection 

Governing 

Equation 

Scalar conservation law 

∂𝑞

𝜕𝑡
+ 𝑎𝑆𝐶𝐿

𝜕𝑞

𝜕𝑥
= 0 

(𝑎𝑆𝐶𝐿 = advection speed) 

Non-dimensional, compressible 

Euler equation 

𝜕�̅�

𝜕𝑡
+
𝜕�̅�

𝜕𝑥
+
𝜕�̅�

𝜕𝑦
= 0 

(�̅� = conservative variables, 

�̅�, �̅� = convective fluxes) 

Flux 

function 
Upwind Local Lax Friedrich 

Temporal 

Integration 
Explicit 3rd order TVD Runge-Kutta scheme 

Test 

objectives 

Low 

frequency 

waves 

(low / high 

amplitude) 

High 

frequency 

waves 

Acoustic waves 

due to pressure 

perturbation in 

lifting surface 

Vortex 

dynamics near 

lifting 

surfaces 
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4.3.1 1D Sine Wave Advection  

Sine waves with two different amplitudes were advected to the right direction in 

this problem. The advection speed, 𝑎𝑆𝐶𝐿, was set to 0.1. The initial conditions of two 

different amplitudes were as follows: 

𝑞𝑙𝑜𝑤−𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 = 6 + 0.1 sin (
𝑥

2.5
𝜋) , 𝑞ℎ𝑖𝑔ℎ−𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 = 6 + 5 sin (

𝑥

2.5
𝜋)   (4.8) 

The computational domain was set as [-5, 5] with uniform spacing. Using the 

periodic boundary, the waves return to the original place at the non-dimensionalized 

time, t=100. The upwind function was used as a flux function. The five schemes, 

which are WENO-JS, WENO-M, WENO-Z, eMLP, and eMLP-VC, introduced 

above were used for reconstruction methods. Temporal integration was performed 

using the 3rd-order accurate TVD Runge-Kutta method. A sufficiently small time-

step was set, which is 0.001, so the temporal error does not affect the spatial error 

comparison. The maximum CFL number was 0.06. All results were compared at the 

non-dimensionalized time, 𝑡 = 100. 
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Fig. 4.2 Results of low amplitude sine wave advection problem. 
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Figure 4.2 shows the results of the advection problem of a low amplitude sine wave. 

Fig. 4.2a is the result of the grid convergence test, and global-order-of-accuracy of 

the schemes can be confirmed. More information on the grid convergence test is 

given in the table in the Appendix B. Fig. 4.2b and 4.2c are graphs showing the 

conserved scalar quantity and LAI distribution in coarse and dense grid systems. 

Even for sinewaves with very small amplitude and small frequency, if the coarse 

grids are given, the spatial scheme can yield reduced order-of-accuracy. In Fig. 4.2b, 

WENO-M and WENO-JS produced the reduced order-of-accuracy in all domains. 

Accordingly, the amounts of sine wave preserved were diminished. On the other 

hand, in the case of a dense grid system, all schemes have ideal accuracy in all 

domains. eMLP-VC showed increased order-of-accuracy in all domains thanks to 

the low Mach number adjustment.  

The results of a high amplitude sine wave advection problem are shown in Fig. 4.3 

Fig. 4.3a shows the result of the grid convergence test. Fig. 4.3b-f are graphs showing 

the conserved sine wave and LAI distribution in different grid systems. Since the 

amplitude of the sine wave is large, most schemes apply numerical dissipation to the 

sine wave in a relatively coarse grid system. Only WENO-Z on the coarsest grid 

yields 5𝑡ℎ-order accuracy in all domains. Consequently, WENO-Z preserved the 

scalar quantity the most. Except for WENO-JS, the WENO-type schemes produced 

ideal results as the grid became denser. On the other hand, WENO-JS did not reach 

the ideal order-of-accuracy even on the finest grid.
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Fig. 4.3 Results of high amplitude sine wave advection problem. 
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The eMLP-type schemes show non-linear results in the grid convergence test. 

Above a certain grid level, the accuracy increases dramatically, which also can be 

confirmed through the LAI distribution. When the domain is assessed as a 

continuous region, the limiting process is not performed, and the accuracy increases 

sharply. But, when the domain is assessed as a discontinuous region, the limiting 

process is performed. Then the local-order-of-accuracy is reduced to the first- or 

second-order locally. 

 

4.3.2 1D Gaussian Pulse Advection  

Gaussian acoustic pulse advects in the right direction in this problem. The 

computational domain is [-5,5] × [-5,5] with equally spaced grids. The initial 

condition was set as suggested in CAA 1st workshop [59], and can be expressed as 

follows: 

𝑞 = 0.05 exp (−(𝑙𝑛2) (
𝑥

30
)
2
)                (4.9) 

Considering the domain size, the width and amplitude of the pulse were scaled by 

1/10. The performances of the schemes were compared in subsonic (M=0.1) and 

supersonic (M=1.0) advection speed. The flux function and temporal integration 

methods were applied in the same way as the 1D sine wave advection problem. A 

periodic boundary condition was applied so that the pulse can be returned to the 

original position after a certain period. 
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Fig. 4.4 Results of gaussian pulse advection problem (subsonic, M=0.1). 
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In the subsonic case, the solution and initial condition at the non-dimensionalized 

time, t=100, were compared. Figure 4.4a shows the results of grid convergence test. 

More information about the grid convergence test is given in Appendix B. Figures 

4.4b and 4.4c show the pulse and LAI distribution in each grid system. When the 

grid is very coarse (see Fig. 4.4b), the low LAI value is widely distributed around 

the pulse in all five schemes. Numerical dissipation is applied across almost all 

domains, which leads to very inaccurate results - the denser the grid, the less 

degradation of local-order-of-accuracy. In the densest grid, all schemes except 

WENO-JS have ideal accuracy. In the case of WENO-JS, slight degradation of local-

order-of-accuracy around the pulse peak remains.  

In the case of the supersonic pulse advection problem, the solution and initial 

condition at the non-dimensionalized time, 𝑡 = 10, were compared. Fig. 4.5 shows 

the grid convergence test results. The notable difference from the subsonic case is 

represented in the result of eMLP-VC. eMLP-VC has 5th-order accuracy in all 

domains as the low Mach number adjustment that was activated during subsonic is 

deactivated. On the other hand, the WENO-type schemes reconstruct the cell 

interface quantity independently of advection speed. In other words, the cell interface 

quantity is reconstructed using only the distribution of the interpolation quantity 

regardless of flow characteristics. Therefore, the LAI distribution in the supersonic 

problem is the same in the subsonic.  



 

71 

 

 

 

 

Fig. 4.5 Results of gaussian pulse advection problem (supersonic, M=1.0). 
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4.3.3 2D Acoustic Pulse Propagation  

The 2D non-isothermal acoustic pulse problem is a benchmark test commonly 

used in the aeroacoustic field, with the following initial condition: 

(𝜌0, 𝑢0, 𝑣0, 𝑝0) = [1, 0, 0, 1 + exp{−40(𝑥2 + 𝑦2)}]        (4.10) 

 

 

Fig. 4.6 Pressure contours and physical quantity distributions of the 2D 

acoustic pulse test (Grids = [161×161], eMLP-VC). 

Non-dimensionalized time, t = 0.4Non-dimensionalized time, t = 0.0

Non-dimensionalized time, t = 1.0

a) Pressure contour, t=0.0 b) Pressure contour, t=0.4

c) Pressure contour, t=1.0 d) Pressure and u-velocity distribution 

along the y=0 line
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The 2D non-isothermal acoustic pulse pressure fields at non-dimensional time t 

= 0.0, 0.4, and 1.0 are shown in Fig. 4.6. The pressure perturbation causes an acoustic 

wave. As shown in Fig. 4.6d, changes in physical quantities such as pressure, 

velocity, and density appear over time. For computation, the inviscid and 

compressible Euler equation was set as the governing equation. The computational 

domain was composed of [-2,2] × [-2,2] with equally spaced grids; three grid systems 

were tested, each of which was 41, 81, and 161 grid points in one direction. 

Calculations were conducted by placing periodic boundaries on all the surfaces. For 

the convective flux function, local Lax-Friedrich, an upwind-base flux scheme, was 

used. Characteristic variables are reconstructed using high-order spatial schemes. 

For temporal integration, the third-order accurate explicit TVD Runge-Kutta method 

was used. The time-steps of all cases are set to 0.002, where the maximum CFL 

number is 0.81. It is confirmed that the temporal error does not affect the spatial 

discretization error. 

 

Fig. 4.7 Gaussian acoustic pulse test results  

{a) pressure distribution, b) u-velocity distribution}. 
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The pressure and u-velocity distributions along the y = 0 line of Fig. 4.6c are 

plotted in Figs. 4.7a and 4.7b, respectively. The numerical dissipation of each 

scheme can be analyzed by comparing the result of the reference solution [60,61]. 

The reference solution was obtained through computation with highly dense 

computation grids consisting of 104 points in 1D. Comparing the pressure amplitudes 

with one another at the non-dimensionalized time, 𝑡 = 1.0, each scheme has 86%, 

90%, 89%, 85%, 96% (WENO-JS, WENO-M, WENO-Z, eMLP, eMLP-VC, 

respectively) relative to the reference value. As an acoustic wave propagates, its 

intensity decreases while its dissipation increases.  

The LAI contours of five schemes are shown in Fig. 4.8. The LAI was calculated 

using the pressure quantity. Schemes show degradation of local accuracy in the wave 

front where acoustic pulses propagate. The LAI of WENO-JS drops to 3.43, and that 

of eMLP drops to 1.50. WENO-M and WENO-Z show higher LAI values, but they 

still show the degradation of LAI. In other words, the truncation error increases in 

the wavefront line where the physical quantity changes markedly, thereby lowering 

the overall accuracy. However, in the case of eMLP-VC (LAIaverage = 6.00), high-

order accuracy is maintained in all domains because all domains are considered to 

be continuous regions in the flow distinguishing step of eMLP-VC. eMLP-VC 

performs additional correction in the incompressible region considering the flow 

characteristics. Because the advection velocity of the Gaussian acoustic pulse 

flowfield is almost zero in all regions, the accuracy of eMLP-VC can be increased 

by one order of magnitude in most regions (LAImaximum=6.00). 
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Fig. 4.8 LAI contours of five different schemes (Non-dimensionalized time, 𝒕 =  .  , LAI of pressure quantity).
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Fig. 4.9 Gaussian acoustic pulse test results with different grid resolutions using WENO-Z scheme.

t = 0.2 t = 0.4 t = 0.6 t = 0.8 t = 1.0

LAI contour (pressure)

[41 × 41]

[81 × 81]

[161 × 161]

[41 × 41]

[81 × 81]

[161 × 161]

Reference

LAI (pressure)

Pressure

Distribution of pressure and LAI (t=1.0)



 

77 

 

Figure 4.9 shows the results of the acoustic pulse propagation problem in three 

grid systems. The pressure and LAI distribution along the 𝑦 = 0 line at 𝑡 = 1.0 are 

shown in Fig. 4.9a. The LAI contours over time using WENO-Z are represented in 

Fig. 4.9b. Though not shown in this paper, and the rest of the schemes show similar 

results. The degradation of local-order-of-accuracy decreases as the grid becomes 

denser, and the amount of preserved acoustic pulse increases accordingly. The 

gradients are steep in the wavefront so that local degradation occurs even when the 

fine grids are applied. 

 

4.3.4 2D Isentropic Vortex Advection 

Because the representative source of rotorcraft aeroacoustic noise is one of vortex 

interaction, vortex preservation and capturing the interaction with slight numerical 

dissipation are essential elements for accurate noise prediction. The isentropic vortex 

advection problem was selected as the 2D benchmark test, with the following initial 

condition: 

(𝜌0, 𝑢𝜃,0, 𝑢𝑟,0, 𝑝0) = [{1 −
γ𝑣−1

2
𝑀𝑣
2𝑒[1−𝑟𝑣

2]}

1

𝛾𝑣−1 , 𝑀𝑣𝑟𝑣 exp [
1−𝑟𝑣

2

2
] , 0,

𝜌0
𝛾𝑣

𝛾𝑣
]  (4.11) 

where 𝑢𝜃,0  and 𝑢𝑟,0  represent the initial tangential and radial velocities, 

respectively. The vortex Mach number, 𝑀𝑣  is 0.39. 𝑟𝑣  is the distance from the 

vortex core (𝑥, 𝑦) = (0,0). The gas constant, γ𝑣, is 1.4. Flowfields dominated by 

aeroacoustic noise consist of the interaction of numerous large and small vortices. 

To preserve them all, an effective grid system must be constructed. In addition, to 

observe the characteristics of the scheme in terms of the advection speed of the 
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vortex, four different speeds were compared, from subsonic to supersonic. The 

computational domain is [-5,5] × [-5,5] with equally spaced grids. A grid 

convergence test was conducted. The coarsest grid system had 11 grids in one 

direction, and the finest grid system had 161 grids in one direction. Calculations were 

conducted by placing periodic boundaries on all the surfaces. 

The 2D inviscid Euler equation was set as the governing equation to compare 

only the dissipation of the numerical scheme. The convective flux function was local 

Lax-Friedrich, upwind function. Characteristic variables are reconstructed using 

high-order spatial schemes. For temporal integration, the third-order accurate 

explicit TVD Runge-Kutta method was used. The time step of all cases was set to 

0.001, and the maximum CFL number was 0.425. A total of four tests were 

conducted with an advection Mach number M∞  = 0.1, 0.25, 0.5, and 1.25. The 

vortex moves in +y direction. All computational results were compared with the 

initial value at the time at which the vortex first returned to the domain.
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Fig. 4.10 Results of 2D isentropic vortex advection problem at advection Mach number, M=0.25  

(grid resolution test, global-order-of-accuracy, and density contours). 
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The global-order-of-accuracy obtained through the grid convergence test is 

shown in Fig. 4.10. More information on the grid convergence test is given in the 

table in the Appendix. Density contours in the coarsest and finest grids are also 

presented. When there are more than 121 grids in one direction, WENO-M, WENO-

Z, and eMLP all have the same error level. In other words, all three schemes have 

exactly 5th-order accuracy in the entire domain. In the case of WENO-type schemes, 

the WENO-M and WENO-Z schemes with weights adjusted to reduce the decrease 

in accuracy at critical points demonstrate higher accuracy than the WENO-JS. On 

the other hand, in WENO-JS, global-order-of-accuracy converges to 5. Still, the error 

of WENO-JS is larger than that of other high-order accurate schemes because of the 

degradation of local accuracy. In the case of eMLP-VC, the vorticity preserving 

capability is the highest in all grid systems. The low Mach number adjustment effect 

activated in the subsonic region minimizes degradation of local accuracy. Also, the 

flow distinguishing step of eMLP-VC is set appropriately for the vortex flow, so it 

shows good performance than eMLP.  

The density distributions of the isentropic vortex advection problems are shown 

in Fig. 4.11. The test results for three grid systems are shown, and the LAI contours 

for each grid system are also presented. The coarse grid system has 11 grids in one 

direction, equivalent to having two grids inside the vortex core. The medium grid 

system has 21 grids in one direction, equivalent to four grids inside the vortex core. 

The fine grid system has 161 grids in one direction, equivalent to 32 grids inside the 

vortex core.
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Fig. 4.11 Comparison of the LAI and density in three different grid systems at 𝐌∞ =  . 𝟐𝟓. 
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Ideal order-of-accuracy is expected for all domains because the isentropic vortex 

is a physically continuous flow. However, in the discretized domain, ideal order-of-

accuracy is not applied, as shown in Fig. 4.11. The LAI of eMLP-VC is larger than 

those of other schemes. This is because eMLP-VC assesses the whole computational 

domain as continuous, and consequently, local accuracy is maximized through low 

Mach number adjustment. In the case of eMLP, the limiting function was applied 

locally as the vortex core region was assessed to be discontinuous. WENO-type 

schemes have different error distributions from eMLP-type schemes. While eMLP 

has a reduced accuracy in the vortex core region, WENO-type schemes show lower 

accuracy in the area surrounding the vortex core. This is because WENO-type 

schemes partially adjust the polynomial weights in a place where the slope changes 

significantly. Nevertheless, because WENO-M and WENO-Z use the mapping and 

global smoothness indicator methods, respectively, the LAI of both schemes is 

higher than that of WENO-JS. Consequently, local accuracy degradation is lowered 

in WENO-M and WENO-Z. 
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Fig. 4.12 Local-order-of-accuracy index (LAI) of eMLP-VC  

for four different Mach numbers. 
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eMLP-type schemes use physical quantities such as pressure and density to 

distinguish the flowfields and apply different reconstruction methods. Furthermore, 

in the case of eMLP-VC, additional reconstruction is performed for low Mach 

numbers. Hence, local accuracy varies according to the advection Mach number. 

Figure 4.12 shows the LAI of eMLP-VC for four different speeds. The LAI of 

eMLP-VC decreases as the speed increases. At 𝑀∞ = 0.1, to increase the accuracy, 

eMLP-VC reconstructs the cell interface quantity in a form similar to that of the 

central difference. At 𝑀∞ = 1.25, eMLP-VC uses an upwind form to maintain the 

robustness in compressible flow. Using low Mach number adjustment, eMLP-VC 

compensates for the decrease in accuracy in the incompressible flow, which is a 

drawback of the upwind-type flux function. Since the vortex rotates counter-

clockwise, eMLP-VC yields a lower LAI on the right side of the vortex core. 

Conversely, on the left side of the vortex core, the rotation and the advection are in 

opposite directions, resulting in a higher LAI. 

 

4.4  Main characteristics essential for high-resolution rotorcraft flowfield  

Using one- and two-dimensional benchmark tests, the variation in the 

conservation of physical quantities from scheme-to-scheme was confirmed. This 

variation in conservation is mainly due to two scheme characteristics. 

First, different types of function of smoothness (FoS) inherent in each scheme 

have a significant influence on the local accuracy. FoS plays a role in changing the 

stencil weights (𝑐) locally. In WENO-type schemes, FoS is applied as a smoothness 
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indicator and a weighting algorithm. In eMLP-type schemes, FoS is applied as an 

independent flow-distinguishing step and a limiting function. FoS is necessary to 

address discontinuities caused by compressible flow, but it must be activated 

elaborately because it can cause a decrease in local accuracy in a region where there 

is no discontinuity. In particular, FoS should carefully distinguish numerical 

discontinuities owing to the coarse grid in the continuous region and real physical 

discontinuities such as shocks. The FoS performances of WENO-M and WENO-Z 

are better than that of WENO-JS. Moreover, the FoS performance of eMLP-VC is 

better than that of eMLP, as observed in the results of the 2D benchmark tests. 

Second, hybrid central-upwind type characteristics are required. Among the five 

schemes, the scheme that exhibits hybrid central-upwind characteristics is eMLP-

VC, which has high LAIs in the benchmark problems. The physical quantities are 

preserved the most in eMLP-VC case. In the incompressible area, the upwind 

characteristics of the flux function are trivial because discontinuities such as shocks 

do not occur. Because the dissipation and dispersion errors of the numerical scheme 

are less in the central-type scheme than in the upwind-type scheme, it is preferable 

to preserve a physical quantity by applying the central type-based scheme in the 

incompressible area. The low Mach number adjustment applied to eMLP-VC is 

designed to exhibit hybrid central-upwind characteristics. This adjustment can be 

applied to any upwind-type scheme that requires the left and right states of the cell 

interface quantity. Therefore, it has a desirable effect when applied to any upwind-

type scheme.  
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Chapter 5.  Applications: Numerical Investigation and 

Design Exploration of Rotorcraft 

 

The developed eMLP-VC was applied to actual rotorcraft flowfield analysis. 

Three cases related to UAM eVTOL aircraft flow fields were selected. The main 

objective of this chapter is to determine whether the eMLP-VC is robust and efficient 

for achieving high accuracy in real-world flow fields. Also, it will be important to 

determine whether the aerodynamic performance can be accurately predicted even 

without a sufficient number of grids in the case of complicated flow conditions. The 

details of three cases are as follows:  

1. First, the propeller-wing interaction model (PROWIM), in which the propeller 

and wing interaction effect is dominant, was analyzed. The wake generated by the 

propeller interacts with the wing, which results in the fluctuation of the airloads. It 

is important to accurately capture the amount of pressure fluctuation in the wing 

generated by the interaction, as it also affects the vibration and noise performance of 

the entire aircraft. 

2. As the second test, the Second Higher-Harmonic Control Aeroacoustic Rotor 

Test (HART-II) was selected. Though HART-II rotor is not an example of UAM 

eVTOL aircraft, HART-II rotor is appropriate to test the performance of the 

numerical scheme due to two facts: 1) the BVI interaction commonly seen in UAM 

eVTOL aircraft is dominant in HART-II flow field, 2) Many researchers have been 

studied the HART-II rotor and resulted that the spatial discretization scheme is 
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important for BVI to be captured accurately. The strength of the vortex generated at 

the tip must be accurately maintained, and the interaction between the vortex and the 

blade must be captured robustly. In particular, the strength of the vortex that collides 

with the wing becomes weaker towards the inboard, and it is important to preserve 

these vortexes well for interaction.  

3. Finally, co-rotating coaxial rotor for UAM eVTOL aircraft was designed. By 

using multiple propulsors in UAM eVTOL aircraft, it is possible to use coaxial rotors 

rotating in the same direction in one rotor system. By optimizing the rotor using 

several design variables such as vertical spacing, index angle, and pitch angle, 

aerodynamic performance can be maximized. The design exploration was conducted 

using high fidelity RANS solver with high-order spatial discretization scheme, 

eMLP-VC. In addition, detail analysis was performed on the optimal configuration. 

It was possible to capture complex vortex dynamics including vortex breakdown and 

vortex pairing, which could only be seen by using denser grids. 

 

5.1  Propeller-Wing Interaction (PROWIM) 

PROWIM configurations of wing-nacelle-propeller shown in Fig. 5.1a were 

tested at Delft University of Technology [62] for analysis of the propeller-wing 

interaction. The wing has a rectangular shape with aspect ratio=5.33, which is 

untwisted, untapered, and uses the NACA 64-2-015A airfoil. The NACA 5868-9 

propeller, which has four blades with Clark-Y airfoil, was used. The pitch angle of 

the propeller at 0.75R was fixed at 25 degrees, and NACA report 640 (1938) was 
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referenced [63]. The wing incident angle was 4°, and the propeller rotated counter-

clockwise. Two cases of prop-on and prop-off conditions were analyzed. The 

freestream Mach number was M=0.14, and the Reynolds number was 𝑅𝑒 =

0.8 × 106. 

In case of the prop-off condition, a steady analysis was carried out, and the 

convergence speed was accelerated by using the local time stepping method. In 

contrast, the prop-on condition was solved using an unsteady solver. The time 

integration was conducted using a second-order backward difference formula and a 

dual time stepping method. The timestep of the entire domain was an azimuth angle 

interval of 1º per step. The time accuracy was improved by performing 10 dual time-

stepping analyses at each physical timestep. The grid system is shown in Fig. 5.1b. 

The wing and propeller (without a nacelle) were simulated using the overset grid 

system [35]. The propeller blade had 241×165×81 (chordwise×spanwise×normal) 

O-type grids. The background grids including the wing configuration had 48 million 

grids. The background grids extended approximately 100 wing chord length in all 

directions. The grids were clustered near wing and wake region with spacing of 0.1 

blade chord length. The first grid spacing in the normal direction was set to 𝑦+= 1 

based on the blade tip for being able to accurately predict the velocity distribution 

inside the boundary layer. 
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Wing surface grids

Propeller grids

(Overset / O-type)

Total computational domain

a) Dimensions of PROWIM configuration b) Grid system for PROWIM

Fig. 5.1 Experimental and computational configuration for PROWIM (propeller grids: 241×165×81, background grids: 48 million). 
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Fig. 5.2 shows the normal force distribution of the wing, comparing CFD and 

experimental values for the prop-on and prop-off cases. The results of the CFD solver 

reflect the experimental data accurately. In the prop-off case, the CFD result in the 

nacelle region overpredicts the experimental value, but in other areas the CFD makes 

accurate predictions. The normal force difference between the prop-off and prop-on 

cases occurs due to the influence of the wake. While the second-order accurate TVD 

monotone upstream-centered scheme for conservation law (MUSCL) limiter 

eliminates most effects of the wake due to the excessive numerical dissipation, the 

high-order accurate eMLP-VC and WENO, which have relatively low numerical 

dissipation, can capture the fluctuations in the aerodynamic loads. Tip vortices and 

secondary vortices generated by the propeller blades interact as they pass through 

the wing. The pressure fluctuation caused by the wake-propeller interaction is 

dominant at 28% and 64% wing span, as shown in Fig. 5.2. The results using TVD 

MUSCL limiter show no vortex effect, while the results using eMLP-VC and WENO 

show that a vortex interacts with the wing surface. Changes in the normal force due 

to the wingtip vortex can also be seen only in the high-order accurate eMLP-VC and 

WENO results. 
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Fig. 5.2 Sectional normal force and sectional pressure coefficient of PROWIM (𝛂𝒘𝒊𝒏𝒈 = 𝟒°,𝐌 =  .  𝟒, 𝐑𝐞 =  .  ×    ).
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 Figure 5.3 shows the schematic of the PROWIM flowfield and the vorticity 

magnitudes of the propeller wake and wing tip vortex. The vorticity strength of the 

propeller wake was evaluated in the section located at 0.42R (R is the propeller 

radius), as indicated by the AA’ plane in Fig. 5.3b. In case of the wing tip vortex, the 

evaluation was made in the BB’ plane located at 1.35R in the wake direction from 

the trailing edge of the wing as shown in Fig. 5.3c. The TVD MUSCL limiter and 

WENO preserved the tip vortices but could not describe the behavior of the 

secondary vortices and vortex sheets, which have relatively small vorticities. In the 

case of eMLP-VC with high vortex preserving capability, the vortex sheets and 

secondary vortices were preserved along with the tip vortices and their interactions. 

In particular, it preserved the effect of the secondary vortices on the tip vortex and 

the subsequent dynamical changes. This preservation of the wing tip vortex confirms 

that eMLP-VC has more advanced vortex preserving capability than the TVD 

MUSCL limiter and WENO. When normalized by the vorticity magnitude of eMLP-

VC, WENO preserves only 55% and the TVD MUSCL limiter preserves only 24%.
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Fig. 5.3 Vorticity contour of wake and wing tip vortices.
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 Figure 5.4 shows the propeller-wing interaction through the iso-surface 

visualization method based on the rortex. The upper and side views of PROWIM 

flowfields analyzed by five different schemes (TVD MUSCL limiter, WENO, MLP, 

eMLP, eMLP-VC) are described. The amount of numerical dissipation of five 

schemes can be indirectly assumed. Rortex is a parameter used for visualizing 

vortices, and it can effectively distinguish rotational vortices from non-rotational 

sources, such as shear layers, discontinuity structures, and non-physical structures 

[64,65]. The rortex used in Fig. 5.4 is defined in the same as it is in Xiangrui Dong 

et al. [64]. The non-dimensionalized rortex (𝛺𝑅) is 0.75.  

 All high-order accurate WENO, MLP, eMLP, and eMLP-VC methods describe 

the interaction between the strongest tip vortices and the wing. The tip vortices are 

preserved up to the trailing edge of the wing, and they simultaneously affect the 

pressure distribution of the wing. Secondary vortices with relatively weak vorticities 

are modeled only by eMLP-VC. These secondary vortices change the behavior of 

the tip vortices and convect and interact with the wing. The TVD MUSCL limiter, 

on the other hand, has difficulty in preserving the tip vortices due to excessive 

numerical dissipation. The vortices dissipate the moment they first interact with the 

wing. 

 The flowfield can be classified by using the distinguished criterion embedded 

into eMLP and eMLP-VC, as shown in Fig. 5.4. The flowfield is divided into 

continuous, linear discontinuous, and nonlinear discontinuous regions (colored in 

white, gray, and black, respectively).
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Fig. 5.4 Flowfield of PROWIM using iso-surface visualization method (rortex, 𝛀𝐑 =  . 𝟕𝟓). 

(a) TVD MUSCL limiter (b) WENO (e) eMLP-VC(d) eMLP(c) MLP

Side view

Upper view
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The planes for comparison are 0.08R and 0.42R away from the front of the 

propeller. The wake area of the propeller is a region where only vortex-vortex 

interaction exists, and because there is no discontinuous phenomenon such as shock 

or rarefaction wave, it should be considered a continuous region. However, as shown 

in Fig. 3.2, the original distinguishing criterion can consider the vortex flow as 

discontinuous when there are insufficient grid points to describe the vortex profile 

properly. In a discretized domain, abrupt variation in the velocity vector can be seen 

as discontinuous, though the vortex flow is not a discontinuous flow. Likewise, in 

PROWIM calculation, most of the vortex-dominated wake regions are considered as 

discontinuous regions when using the original distinguishing criterion in eMLP as 

shown in Fig. 5.5. The limiting process is applied in these areas, resulting in 

unwanted numerical dissipation and low-resolution results. In contrast, when using 

the modified distinguishing criterion in eMLP-VC, most of the wake regions are 

considered as continuous regions due to the exclusion of the velocity vector in the 

distinguishing mechanism. Especially in the plane 0.42R away from the front of the 

propeller, all regions are considered as continuous regions. No undesirable limiting 

process is employed in most of the wake regions, which prevents numerical 

dissipation and enhances the accuracy of the simulated flowfields. As can be seen 

from the vorticity contours in Fig. 5.3, the behavior of the secondary vortices and 

their interaction with the tip vortices can be explained as a consequence of the 

increased vortex preserving capability. 
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Fig. 5.5 Smoothness contour of front plane of the propeller classified according to the distinguishing criterion. 
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5.2  Numerical investigation: Descent flight (BVI, HART-II) 

The HART-II blade was tested under several descending flight conditions, in 

which the BVI was significant. Because aerodynamic load fluctuation and noise 

generation through vortex interaction mainly occur, the HART-II problem is suitable 

for observing the effect of the local error of spatial discretization schemes on 

aeroacoustic predictability. For simulation, aerodynamic and structural analyses 

were performed using the CFD-computational structural dynamics (CSD) loose 

coupling method. Loading and thickness noise were calculated through acoustic 

analogy using the Ffowcs Williams and Hawkings (FW-H) equation. The 

experimental condition used in this study was a baseline case with an advance ratio 

of 0.15, a hover tip Mach number of 0.639, and a precone angle of 2.5°. In the HART-

II experiment, the shaft tilt angle was 5.3°, but 4.5° was used to account for wind 

tunnel effects. For details on the HART-II experiment, please refer to Smith et al. 

[28]. A HART-II fuselage facilitates the prediction of the intensity and phase of BVI 

on the advancing side but not on the retreating side. Therefore, in this study, the 

aerodynamic and noise prediction ability of the spatial discretization scheme was 

efficiently compared using an isolated rotor without a fuselage. 

 

5.2.1 CFD-CSD Loose Coupling 

 The Comprehensive Analytical Model of Rotorcraft Aerodynamics and 

Dynamics II (CAMRAD II) [66] was used for CFD-CSD loose-coupling analysis to 

model the flexibility of the blades. CAMRAD II models the elastic blade using 
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nonlinear finite elements, the control system in multibody dynamics with finite 

elements, and the rotor aerodynamic environment based on second-order lifting line 

theory, including various physical models of inflow, wake, and unsteadiness. These 

interdisciplinary techniques are coupled and provide complete trim and transient 

solutions. Loosely coupled with the CFD solver, CAMRAD II provides a trimmed 

state of the blade that combines the control angle, dynamic motion, and elastic 

deformation. The CFD solver receives this information, performs a new analysis, 

and sends the updated aerodynamic loads back to CAMRAD II. In this way, several 

iterations of analysis are conducted until the aerodynamic loads from the CFD and 

CSD solver are the same. The overall CFD-CSD loose coupling algorithm and 

convergence history are shown in Fig. 5.6. After seven iterations, the converged 

solution that accounts for the aerodynamic forces and moments was acquired in this 

study.  

 The details of the CFD solver are as follows. For the time integration method, a 

second-order backward difference formula with dual time stepping was used. The 

matrix inversion was efficiently performed through the DADI method. The size of 

the physical timestep was an azimuth angle of 0.2°  with 20 dual time step sub-

iterations. The local time stepping method was conducted during the process of dual 

time stepping to accelerate the convergence. The initial CFD solution was obtained 

from the calculation result of three rotor revolutions; 1.25 rotor revolutions were 

calculated by restarting from the previous data for every CFD-CSD coupling 

iteration.
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Fig. 5.6 CFD-CSD loose coupling algorithm and iteration history. 
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 The grid system used for the analysis is shown in Fig. 5.7. The rotational motion 

of the rotor was simulated through the overset grid system. The size of the grid of 

one blade was 346×115×35 (chordwise×spanwise×normal) in C-H type. The first 

grid spacing in the normal direction was 1 × 10−5  times the chord length; this 

allowed the velocity distribution inside the boundary layer to be accurately modeled. 

The background grids were 21.4 million, with 15% chord spacing in the near-body 

grid.  

 

 

Fig. 5.7 Overset grid system of HART II. 
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5.2.2 Acoustic Analogy 

The KR-Noise (Korea Aerospace Research Institute Rotor-Noise) solver [67] was 

used to predict the noise generated by the rotor blades. It is a tonal noise prediction 

solver that uses the Farassat Formulation 1A equation based on the FW-H equation 

[68]. Loading and thickness noise are considered. A source-time-dominant algorithm 

was used to consider sound wave propagation speed and the arrival distance. The 

noise is calculated using the unsteady aerodynamic loads of the trimmed solution. 

 

5.2.3 Aerodynamic Results 

Figure 5.8 shows the LAI and the vorticity contours in a plane 1.0 chord up from 

the rotor disk plane. The LAI was calculated using the density quantity. Similar 

patterns were found in LAIs calculated using pressure and velocity fields (not shown 

in this paper). The vortices generated by the rotor blades interact with each other, as 

observed in the vorticity contours. Tip vortices with a relatively strong vorticity are 

well-simulated in all five schemes. However, vortices generated from the root 

dissipate rapidly in WENO-JS due to their relatively weak vorticities.
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Fig. 5.8 Local-order-of-accuracy index and vorticity contour at 1.0c above the rotor disk plane  

{a)WENO-JS, b)WENO-M, c)WENO-Z d) eMLP, e) eMLP-VC}. 
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In the plane shown in Fig. 5.8, all areas are physically continuous because only 

the interactions of vortices without any discontinuities exist. Therefore, if the grids 

are sufficient for the accurate description of the vortex profile distribution, ideal 

accuracy should be applied in all areas. However, the grids used in this study are 

relatively coarse. Considering the realistic core size of the tip vortex [27,69], the near 

body grids give one grid point in the vortex core. As shown in the 2D Isentropic 

vortex advection problem, it is not easy to preserve the vortex in such a coarse grid 

system. The poor grid quality leads to the artificial dissipation inherent to numerical 

schemes. Consequently, the local truncation error increases, and the local accuracy 

and LAI decrease. All schemes have a low LAI at the region where the tip vortex is 

formed. WENO-JS has a low level of LAI even in the trajectory of the tip vortex. 

The LAI of eMLP degrades more severely. This degradation of LAI implies that 

excessive numerical dissipation is continuously applied while the vortex advects. 

Consequently, a relatively weak vortex faces the following blade. 
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Fig. 5.9 Local-order-of-accuracy index and q-criterion contour at 𝝍 =   ° plane. 
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The tip vortex generated by the leading blade is advected, and degradation of LAI 

appears even before the vortex hits the next blade. Figure 5.9 shows the Ψ=90° plane 

when blade 1 is positioned at Ψ=70°. The vortices generated from the leading blade 

are shown in the Q-criterion contour. The degradation of local-order-of-accuracy is 

represented through the LAI contour. WENO-Z yielded the reduced LAI near the 

vortices. In particular, more degradation occurs near the tip vortex of blade 2, which 

has strong strength due to the short vortex age. Since the vortex flow change is large 

in the insufficient grid system, WENO-Z adjusts the stencil weight and applies 

excessive numerical dissipation. As can be seen in Fig. 5.8, numerical dissipation is 

continuously applied to the vortex trajectory, and as a result, the strength of the 

vortex is weakened, and the actual physical phenomenon cannot be properly 

simulated.  

The LAIs of the five schemes can be quantitatively compared. In Fig. 5.10, the 

mean, minimum, and maximum LAI values are compared. The average value in the 

1.0 chord above rotor plane is smaller than the maximum value that each scheme can 

produce. The local truncation error increases in the wake region, which lowers the 

overall accuracy. The minimum LAIs of the eMLP-type schemes are 1.00 and 1.22. 

In eMLP-type schemes, the tip vortex region of strong vorticity is considered as the 

discontinuous region, such that TVD and MLP limiting are applied. Consequently, 

first-order accurate reconstruction is performed, resulting in low local accuracy. The 

minimum LAIs of WENO-type schemes are 3.15, 3.26, and 3.16. The WENO-type 

schemes have higher LAIs than the eMLP-type scheme in the discontinuous region 
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because WENO-type schemes use at least third-order accurate reconstruction 

method. The eMLP-type schemes that use the limiting method only where the change 

in flow is relatively large exhibit local accuracy degradation solely in the tip vortex 

trajectory and can maintain ideal high-order accuracy in the remaining area. In 

eMLP-VC, the fifth-order truncation error is eliminated in most areas through low 

Mach number adjustment; thus, the average LAI value of the entire domain is 6.00. 

 Through LAI analysis, we were able to specify the region where numerical 

dissipation is applied. In the tip vortex generation region, all three schemes strongly 

add numerical dissipation. In the case of eMLP and WENO-type schemes, numerical 

dissipation is continuously added during the vortex advection process. The applied 

numerical dissipation continuously weakens the strength of the vortex and the 

strength of interaction with the following blade. Consequently, numerical dissipation 

limits the prediction of load fluctuation and aeroacoustic noise. 

 

 

Fig. 5.10 Comparison of the local-order-of-accuracy indexes (HART-II). 
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The overall HART-II rotor flowfield is shown in Fig. 5.11. Figure 5.11 shows the 

vortices of HART-II based on the iso-surface method according to the Q-criterion. 

Several physical phenomena during the forward flight are revealed, such as blade–

vortex interaction, vortex–vortex interaction, and vortex merging. Differences in 

interaction depend on the scheme. The differences are clearly revealed in the 

enlargements shown in Fig. 5.11. The calculation results clearly show that the blade 

and vortices interact at 𝜓 = 70° and 𝜓 = 340°. The vortex colliding with the inner 

section of the blade at 𝜓 = 70°  is a vortex generated by the blade before one 

revolution. The vortex strength is weak because the age is old, and the vortex is 

generated at a small angle of attack. Nevertheless, WENO-M, WENO-Z, and eMLP-

type schemes adequately capture the weak BVI, while WENO-JS cannot. 

The reason why eMLP-VC adequately simulates the interaction of vortices is that 

high-order accuracy is maintained in the entire domain, except for some regions 

where tip vortices are generated. Not only the tip vortex but also the secondary vortex 

of weak vorticity is evident in the eMLP-VC results. However, WENO-JS has a 

relatively low LAI in most of the tip vortex trajectories. Because numerical 

dissipation is continuously added, WENO-JS cannot simulate the interaction with 

the blade by dissipating the vortices with weak vorticity. Therefore, it can be inferred 

that load fluctuation and aeroacoustic noise will be predicted less accurately due to 

the dissipated vortex.
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Fig. 5.11 Comparison of the HART-II flowfields using the iso-surface method (Q-criterion).  
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Figure 5.12 shows the aerodynamic load prediction in the 87% radial section 

according to the blade azimuth angle. Figure 5.12a shows the normal force 

distribution, CNM
2 , and Fig. 5.12b shows the mean removed normal force 

distribution. The experimental values and CFD results were compared across the 

three schemes. The load fluctuations in the first (0° ≤ 𝜓 ≤ 90°) and fourth (270° ≤

𝜓 ≤ 360°) quadrants of the experimental values show that the blade and vortex 

interact. The tip vortices of the preceding blade and the following blade interact to 

generate fluctuations in the airload. Comparing the enlarged parts of the first and 

fourth quadrants of Fig. 5.12, it can be observed that the BVI in the first quadrant is 

relatively weaker than the BVI in the fourth quadrant. This is because the vortex of 

the first quadrant is relatively old and is generated at a small angle of attack [70]. All 

three schemes capture BVI in the fourth-quadrant but demonstrate limitations in 

first-quadrant BVI capture. In WENO-JS, most first-quadrant BVI cannot be 

simulated, and fourth-quadrant BVI is captured with weak intensity. Improved 

versions of WENO-JS, which are WENO-M and WENO-Z, show much enhanced 

predictability of BVI. Also, eMLP and eMLP-VC capture most of the BVI.  

 



 

111 

 

  

a) Normal force distribution (𝐂𝐍𝐌
𝟐) b) Mean removed normal force distribution 

Fig. 5.12 Comparison of load predictions in the 87% radial section. 
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5.2.4 Aeroacoustic Results 

 

Fig. 5.13 Derivative of the normal force in the 87% radial section. 

The azimuthal derivative of the normal force coefficient (
d(CNM

2)

dΨ
) in the 87% 

blade radial section is shown in Fig. 5.13. Experimental values vary significantly in 

the first and fourth quadrants where BVI occurs. The fluctuation value in the 

derivative of all schemes is smaller than the experimental value, implying that all 

schemes simulate first-quadrant BVI with a small amplitude. Phase lag is also shown 

in all schemes. On the other hand, in the case of the fourth-quadrant, although there 

is a difference in intensity, most schemes capture load fluctuations properly. WENO-

M and WENO-Z capture the strength better than WENO-JS, and eMLP-VC also 

shows better predictability than eMLP. These results are consistent with the LAI 

analysis of the flowfield performed the previous section.
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Fig. 5.14 Comparison of the azimuthal derivatives of the normal force (counter-clockwise). 
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The azimuthal derivative of the normal force for the entire rotor surface is 

represented in Fig. 5.14. In addition to the 87% radial section shown above, the 

vortex wake and four blades interact, and the normal force fluctuates throughout the 

rotor surface. Furthermore, Figs. 5.12 and 5.13 show that BVI mainly occurs on the 

advancing and retreating sides. The high BVI intensity on the retreating side is 

clearly visible. Differences in each numerical scheme can be clearly identified. 

Except for WENO-JS, all four schemes show similar fluctuations. Not only 

interactions with strong vortices but also interactions with relatively weak vortices. 

The noise of the HART-II blade was measured 2.215 m below the rotor with a 

total of 17×13 microphones. The mid-frequency, the band where the aerodynamic 

noise caused by BVI is dominant, is in the range of 6 to 40 blade passing frequency. 

Figure 5.15 shows the mid-frequency sound pressure level (SPL) contours. The 

experimental values and noise results based on the five spatial discretization schemes 

were compared. 

According to the experiments, the SPL on the advancing and retreating sides is 

20 dB or higher than that of the surrounding regions due to BVI. All five schemes 

capture the directionality of noise well. Both the retreating side and the advancing 

side, where BVI noise is intense, have high predicted noise values. As indicated by 

LAI analysis and aerodynamic load prediction, improved versions of each type of 

scheme show much enhanced predictability of noise. Among the five schemes, 

eMLP-VC produced results most similar to the experimental results. 
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Fig. 5.15 Comparison of the noise maps at 2.215 m below the rotor plane 

(mid-frequency sound pressure level contours). 
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On the retreating side, the eMLP-VC results were very similar to the experimental 

results regarding aeroacoustic directivity and SPL. However, a difference in the 

advancing side exists. The strength of the vortex interacting with the blade is 

relatively weak; thus, the load fluctuation caused by BVI is described inadequately. 

Consequently, the calculated noise is different from the experimental noise. WENO-

M and WENO-Z showed a difference of about 2-3dB from the experimental value 

on the retreating side. In eMLP and WENO-JS, which do not predict airloads 

relatively satisfactorily, the differences in SPL are more significant. eMLP and 

WENO-JS demonstrate a difference of approximately 5-7 dB. The limitations shown 

in the 1D and 2D benchmark tests are clearly shown in the noise prediction of the 

3D application.  

To get an accurate solution in aeroacoustic prediction using eMLP and WENO-

JS, a denser grid system that can preserve the vortex by supplementing the numerical 

dissipation of the scheme is required. Also, in order to capture the BVI noise on the 

advancing side accurately where the weak vortex is dominant, all schemes need fine 

grids enough to preserve the vortex well. In the grid system, where previous 

researchers have successfully conducted noise analysis, the spacing between the fine 

background grids is 0.1chord or less. Considering that the current grid system has a 

spacing of 0.15chord, the computational cost will increase by approximately 1.53 

times. 

As predicted in the LAI analysis, the schemes which continuously add the 

numerical dissipation during vortex advection have limitations in predicting load 
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fluctuations and noise with a coarse grid system. eMLP-VC can adequately preserve 

a vortex by minimizing numerical dissipation, except in the blade tip region, 

delivering excellent performance in predicting aerodynamic noise. According to the 

assessment based on the flow distinguishing step in eMLP-VC, most parts of the 

vortex trajectory are smooth; thus, numerical dissipation can be minimized. In 

addition, because of low Mach number adjustment, eMLP-VC can conduct a central-

type reconstruction in most subsonic regions, which reduces the dissipation error.  
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5.3  Design exploration of co-rotating coaxial rotor 

Newly proposed UAM eVTOL aircraft of various configurations use multiple 

propulsors in common. Due to the requirement for compactness and high thrust at 

the same time, research on coaxial rotor systems has been actively conducted 

recently. Unlike conventional helicopters, interests in co-rotating coaxial rotors (also 

called as stacked rotors), which are coaxial rotors rotating in the same direction, has 

also been increased because torque balance does not have to be considered within 

one rotor system. Stacked rotors have two potential advantages over counter-rotating 

coaxial rotors; First, the pitch angles of the upper and lower rotors can be optimized 

only for aerodynamic efficiency without considering torque balance. Second, the 

BVI condition can be avoided by adjusting the angular spacing of the upper and 

lower rotors. 

According to previous studies [71–76], the index angle, which is the angle 

between the upper and lower rotors, can have a substantial impact on aerodynamic 

efficiency. Especially when the index angle is small (about -10 °  to 10 ° ), the 

aerodynamic efficiency is optimized. The exact cause of index angle effect has not 

been clearly identified so far. Also, previous researches had been conducted on a 

small design space, such as a small spacing between rotors or no consideration of 

pitch angle. Therefore, in this part, a high-accuracy numerical experiment was 

carried out using the spatial discretization scheme developed earlier in order to 

discover the applicability of the stacked rotor and the underlying physics. 
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T-motor CFprop 20inch was used as the baseline propeller. With three design 

variables, a total of 450 cases were calculated. In addition, the underlying physics, 

which can only be achieved by using a higher-order accuracy scheme, was identified, 

and a more detailed analysis was performed on the optimal case. Details will be 

discussed in the following sections.  

 

5.3.1 Design Problem 

Three design parameters are considered as stacked rotor designs. The first 

parameter is the difference in pitch angle between upper and lower rotors, 𝛿𝜃. If 𝛿𝜃 

is 𝑥°, it means that the pitch angle of an upper rotor decreases by (𝑥/2)° and the 

pitch angle of a lower rotor increases by (𝑥/2)°. The range of pitch angle difference 

is set to 0° to 4° The second parameter is a vertical spacing between upper and 

lower rotors, 𝛿𝑧 . 𝛿𝑧  is normalized by the blade diameter, 𝐷 . The range of the 

vertical spacing is set as 0.1D to 0.5D. The last parameter is an index angle, 𝛿𝜙. The 

positive index angle means that the lower rotor leads. The range of index angles is 

set as -90° to 90°. To observe the abrupt fluctuation in aerodynamic performance 

near 𝛿𝜙 = 0° shown in previous studies [71,72], the interval of 5° was set near 

0°. The schematic of each variable is shown in Fig. 5.16. The range of each variable 

is shown in Table 5.1. 
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a) Top view 

 

b) Side view 

 

Fig. 5.16 Schematic of design variables. 
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Table 5.1 Definitions and ranges of design variables. 

Variables Definition Range 

𝜹𝜽 (°) Pitch angle difference 0, 1, 2, 3, 4 

𝜹𝒛 (𝑫) 
Vertical spacing  

(𝐷 = blade diameter) 
0.1, 0.15, 0.2, 0.3, 0.4, 0.5 

𝜹𝝓 (°) 

Index angle 

((+) means lower rotor leading, 

and (-) means upper rotor leading) 

-90, -60, -45, -30, -20, -

10, -5, 0, 5, 10, 20, 30, 45, 

60, 90 

 

Aerodynamic analyses were performed for 450 design of experiment (DOE) 

cases. The full-factorial method is used as DOE. The rotation speed is 3000 rpm for 

both the upper and lower rotors. The Mach number of the blade's tip is 0.45, and the 

corresponding Reynolds number is 988,000. The objective function of the stacked 

rotor design problem is the non-dimensional power loading (𝐶𝑇/𝐶𝑃 ), a hovering 

performance index. The non-dimensional power loading can be defined as follows:  

𝐶𝑇
𝐶𝑃

=
(𝐶𝑇,𝑢𝑝𝑝𝑒𝑟 + 𝐶𝑇,𝑙𝑜𝑤𝑒𝑟)

(𝐶𝑃,𝑢𝑝𝑝𝑒𝑟 + 𝐶𝑃,𝑙𝑜𝑤𝑒𝑟)
 

where 𝐶𝑇 and 𝐶𝑃 represent thrust and power coefficient, respectively. 

 

5.3.2 Overall Results 

All cases were calculated assuming steady-state, and converged through 14,000 

iterations. The converged flowfields are the same as shown in Fig. 5.17. The vortices 

are visualized through the iso-surface method based on the Q-criterion. The tip 

vortices and vortex sheets of each rotor are well-resolved. Fig. 5.17d shows the 

vortex contour in the plane sliced with respect to the upper rotor. The strength and 

trajectory of each vortex can be figured out.  
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Fig. 5.17 Flowfields of a stacked rotor configuration. 
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Fig. 5.18 Non-dimensional power loading of DOE cases. 

 

The results of numerical calculations are shown in Fig. 5.18. The non-dimensional 

power loadings for a total of 450 cases are represented. Maximum and minimum 

non-dimensional power loadings are 9.31 and 8.68, respectively. The non-

dimensional power loading of the four-blade single-rotor with the same solidity is 

8.57, which confirms that the performance of the four-blade single-rotor is lower 

than that of the stacked rotor with the lowest performance. Figure 5.18 also shows 

the performances of the isolated upper and lower blade. The isolated two-blade 

single-rotor has a non-dimensional power loading of 10.4. All lower rotors have 

lower performance than an isolated two-blade, which is mainly due to the wake 

effect of the upper rotor. 



 

124 

 

5.3.3 Underlying Physics 

Flowfield and performance analysis according to design variables were 

conducted for 450 cases. For detailed analysis, the effective angle of attack (𝛼𝑒𝑓𝑓) 

for each section of the blade was calculated. It was calculated in the same way as 

Jung et al. [77]. 2D CFD simulation was also performed to get the zero-lift angle. 

Sectional thrust and power distributions and vortex dynamics were analysed. As a 

result, two dominant underlying physics in the stacked rotor system were discovered: 

1) inflow effect and 2) wake interference effect. 

 

◼ Inflow effect 

The inflow effect refers to the effect of the upper rotor on the inflow of the lower 

rotor and the effect of the lower rotor on the inflow of the upper rotor. In the case of 

the lower rotor, the upper rotor’s wake induces the downward flow to the lower rotor 

directly. The inflow of the lower rotor greatly increases due to the downwash of the 

upper rotor. As a result, the effective angle of attack of the lower blade is reduced, 

which can be found in Fig. 5.19. The effect of downwash is very strong at r/R ≤ 

0.9. On the other way, the lower rotor affects the inflow of the upper rotor. The lower 

rotor accelerates the wake of the upper rotor, making the wake downward speed 

faster. Consequently, the lower rotor makes the upper rotor inflow faster. This effect 

lowers the effective angle of attack of the upper rotor. Compared with the isolated 

single blade, the effective angle of attack distributions for both the upper and lower 

rotors are low in all sections. 
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Fig. 5.19 Effective angle of attack distribution along the blade  

(𝜹𝒛 =  .  , 𝜹𝜽 =  °, 𝜹𝝓 =   °). 

 

 Figure 5.20 compares the flowfields of an isolated single rotor with two blades 

and a stacked rotor. The design variables of the stacked rotor in Fig. 5.20 are as 

follows: 𝛿𝑧 = 0.1, 𝛿𝜃 = 0°, 𝛿𝜙 = 90° . Vortex dynamics show the inflow effect 

directly. In the case of the stacked rotor, the miss distance is about twice that of the 

single rotor. The miss distances of other stacked rotor cases are also larger than that 

of the single rotor.  
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a) Isolated, two-blade, single rotor  b) stacked rotor  

(𝜹𝒛 =  .  𝑫, 𝜹𝜽 =  °, 𝜹𝝓 =   °) 

 

c) Comparison of the miss distance 

Fig. 5.20 Flowfields comparison of single-rotor and stacked-rotor. 
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 The non-dimensional power loading according to vertical spacing is shown in Fig. 

5.21. The best performance is obtained when the vertical spacing is 0.3D. 

 

 

Fig. 5.21 Non-dimensional power loading along the vertical spacing (𝜹𝒛). 
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◼ Wake interference effect 

The wake interference effect stands for the effect on the aerodynamic 

performance change of the lower rotor due to the wake of the upper rotor. In Fig. 

5.22, the peak of non-dimensional power loading appears differently depending on 

the phase angle. This difference is mainly due to the change in the performance of 

the lower rotor. When 𝛿𝑧 is 0.1𝐷, the peak appears when the upper rotor is leading. 

When δ𝑧 is 0.3𝐷, the peak appears when the lower rotor is leading.  

Figure 5.23 visualizes the flowfields of the best performance cases shown in Fig. 

5.22. BVI occur in the flowfields. The tip vortex of the upper rotor interacts with the 

lower rotor blade. This interaction makes a huge change in aerodynamic 

performances, especially the power loading. The change in aerodynamic 

performance according to the phase angle shown in Fig. 5.22 is highly related to the 

BVI. At the phase angle where BVI occurs, the aerodynamic performance increases. 

At the phase angle avoiding the BVI, the aerodynamic performance decreases. The 

position of the peak is changed according to 𝛿𝑧 and 𝛿𝜃, which affect the tip vortex 

dynamics.
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Fig. 5.22 Non-dimensional power loading along the phase angle (𝜹𝝓). 
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Fig. 5.23 Flowfields of BVI cases (Iso-surface using Q-criterion, colored by vorticity magnitude). 
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Figure 5.24 shows the effective angle of attack distributions of stacked rotors. 

The cases of (𝛿𝜃 = 2°, 𝛿𝑧 = 0.3𝐷, 𝛿𝜙 = −90~90° ) are shown. The case in red 

stands for the upper rotor leading cases. The blue lines stand for the cases of the 

lower rotor leading. The effective angle of attacks of upper rotors have little 

fluctuation according to 𝛿𝜙. However, in the cases when the lower blade is leading, 

the effective angle of attack of the lower rotor changes significantly at r/R=0.7. This 

is the fluctuation caused by blade-vortex interaction, as seen in Fig. 5.23. The vortex 

of the upper rotor interacts with the lower rotor blade, which increases the effective 

angle of attack of the outboard and reduces the effective angle of attack of the inboard. 

Increased effective angle of attack produces high aerodynamic performance.  Since 

the angle of attack with the highest lift-to-drag ratio in 2D airfoil is 4 to 5°, increasing 

the effective angle of attack induces high aerodynamic performance. Also, an 

increase in the effective angle of attack on the outboard side, which has faster 

freestream velocity, has a noticeable effect on overall aerodynamic efficiency.  

Figure 5.25 shows the non-dimensional coefficients for the same case as in Fig. 

5.24. When the lower blade is leading, the sectional 𝐶𝑇/𝐶𝑃 changes significantly. 

The overall aerodynamic efficiency is maximized as the 𝐶𝑇/𝐶𝑃 increases on the 

outboard side.  
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Fig. 5.24 Effective angle of attack distribution of stacked rotors  

(𝜹𝜽 = 𝟐°, 𝜹𝒛 =  .  𝑫, 𝜹𝝓 = −  ~  °). 

 

 

Fig. 5.25 Non-dimensional coefficients distribution of stacked rotors  

(𝛅𝛉 = 𝟐°, 𝛅𝐳 =  .  𝐃, 𝛅𝛟 = −  ~  °).  
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5.3.4 Detail analysis of best DOE configuration 

The configuration with the best aerodynamic efficiency has a variable 

combination of (𝛿𝜃, 𝛿𝑍, 𝛿𝜙) = (0°, 0.3𝐷, 20°). Detail analysis was conducted for 

best DOE configuration. In the parameter study, a steady assumption and the 

relatively coarse grids were constructed for computational efficiency. There may be 

physical phenomena that did not appear in the parameter study results. To investigate 

detail physics, extremely high-fidelity computations were performed using a dense 

grids and advanced turbulence models. Computational settings are as presented in 

Table 5.2.  

 

Table 5.2 Comparison of computational setting information 

 Parameter study Detail analysis 

Grids Information (Overset grid) 

Background (near body) 24 million (Δ𝑥 = 10%𝑐) 160 million (Δ𝑥 = 5%𝑐) 

Rotor blade 2.4 million / 1 blade, y+ = 1 

Solver Information (KFLOW) 

Spatial discretization Reconstruction: eMLP-VC 

Flux function: AUSMPW+ 

Temporal integration Steady calculation Unsteady calculation 

(2nd order accurate BDF) 

Turbulence model 𝑘 − 𝜔 SST SA-DDES 
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 Through the unsteady analysis, it is possible to analyze the instability caused by 

the vortex dynamics. For the fast elimination of the non-physical starting vortex that 

occurs at the beginning of the calculation, a large time step (2.5°) was applied for 10 

revolutions from the start. Then additional 10 revolutions of calculations were 

performed by applying a sufficiently small time-step of 0.25°. It was confirmed that 

the deviation of the aerodynamic coefficient was less than 1%, and it was concluded 

that the flow converges. 

 For the turbulence model, delayed detached eddy simulation model was added to 

the SA equation. The delayed detached eddy simulation (DDES) model [78] is one 

of the hybrid RANS/LES models. It is a method of calculating RANS near a wall 

where very small eddies exist, and calculating with LES in outer regions. It is known 

that using the SA-DDES model suppresses the non-physical increase of turbulent 

eddy viscosity, enabling more detailed turbulent wake simulation. In addition to 

primary tip vortices, secondary vortices generated during wake development and 

vortex breakdown are easily captured. In addition, a more realistic distribution of 

turbulent eddy viscosity helps in fast convergence of the rotorcraft flow field.
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Fig. 5.26 Flowfield of best DOE configuration. 
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 Figure 5.26 is a flow field that visualizes the calculation results. The iso-surface 

method was used with Q-criterion. As a result, a much higher resolution result was 

obtained than that shown in the parameter study presented earlier. The underlying 

physics revealed in previous section appear the same in detailed analysis. The large 

miss distance of the upper rotor proves that there is a suction effect from the lower 

blade. Also, the tip vortex generated by the upper rotor interacts on the suction side 

of the lower rotor. This results in an increase in aerodynamic performance.  

There are also physics that can only be seen in high resolution detail analysis. The 

tip vortex, vortex sheets, and shed vortices generated by the upper and lower rotors 

were all well resolved. Secondary vortices survive and form a vortex warm, which 

interacts with the tip vortex, resulting in vortex breakdown. The weakened tip vortex 

interacts with the lower rotor. Also, the tip vortex generated from the lower rotor 

descends and causes vortex pairing.  
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Chapter 6.  Conclusions 

 

6.1  Summary and originality of the thesis 

 For the successful developments of the upcoming next-generation rotorcraft, the 

fidelity of the numerical solver for analyzing the rotorcraft performance was 

enhanced while retaining its robustness and efficiency. Several issues about high-

order spatial discretization schemes for the numerical solver were addressed with 

deep consideration of the numerical characteristics of the rotorcraft flowfield and 

local degradation of order-of-accuracy. In this study, a new high-order accurate 

spatial discretization scheme, eMLP-VC, was proposed. eMLP-VC was compared 

and analyzed with conventional high-order accurate schemes mainly used for 

rotorcraft flow fields. The accuracy and efficiency of eMLP-VC were compared and 

verified with conventional high-order accurate schemes mainly used in rotorcraft 

flow fields. Also, this study newly proposes the index called LAI that allows 

comparison of different types of schemes quantitatively. Since the limiting function 

or shock sensing mechanism used to maintain robustness in the compressible flow 

field reduces local accuracy, the LAI can quantitatively compare the reduced local 

accuracy. As a result of the analysis through LAI, the characteristics that a numerical 

scheme should have for precise prediction of aerodynamic performance were 

identified. Finally, by adopting eMLP-VC to the complex and highly unsteady flow 

field, the superiority of the scheme was demonstrated. The conclusions of the thesis 

are as follows. 
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1) An improved high-order accurate spatial discretization scheme, targeting the 

vortex-dominated and compressible flowfields such as rotorcraft flowfield, 

was developed in this study. Through the analysis of vortex characteristics, 

shock sensing algorithm was modified to achieve enhanced vortex 

preservability. The illness in zero velocity field that conventional eMLP 

scheme had was also cured through the modification of sensing function. 

Considering that the rotorcraft flow field is mostly subsonic, a low Mach 

number adjustment step was added to compensate for the loss of accuracy. A 

one-order-of-magnitude increase in order-of-accuracy could be achieved by 

only using the computational cost of TVD limiting. As a result, the accuracy 

of the suggested spatial scheme, eMLP-VC, was highly advanced with 

maintaining the robustness and efficiency of original base scheme, eMLP. 

eMLP-VC showed the robustness not only in the rotorcraft flow field but also 

in the problem of hypersonic shock discontinuity. 

2) Local-order-of-accuracy index (LAI) indicating the local order-of-accuracy 

of the scheme in the local discretized domain was newly developed to 

quantitatively analyze the spatial scheme characteristics at the rotorcraft flow 

field. The LAI quantifies the difference between the truncation error that each 

scheme should ideally have and the truncation error in the local discretized 

domain. The LAI can clearly show why even high-order accurate spatial 

discretization schemes with same theoretical accuracy show different 

performance in actual engineering problems. The results of the analysis using 
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the LAI indicates that an advanced shock-sensing mechanism and hybrid 

central-upwind characteristics are key factors for spatial schemes to achieve 

high resolution of rotorcraft flow field.  

3) Suggested high-order accurate scheme, eMLP-VC, was applied to 3D actual 

rotorcraft flow field, showing the superiority of the scheme. Precise analysis 

was performed on PROWIM and HART-II models, which have propeller-

wing interaction and blade-vortex interaction respectively. eMLP-VC 

predicted detailed aerodynamic interference even with a relatively small 

number of grids, and also showed efficiency than conventional schemes. 

Phenomena that can only be seen in a precise grid system, such as secondary 

vortices or vortex breakdown, were also shown in the results. The design 

exploration was conducted for optimizing the aerodynamic efficiency of co-

rotating coaxial rotor, which is considered for high thrust of the UAM 

eVTOL aircraft. Steady simulations of DOE points with eMLP-VC scheme, 

two underlying physics, inflow and wake interference effects, were identified. 

Also, detailed analysis the configuration of best performance was performed 

using 170 million grid points. The vortex warm and its interactions, which 

were previously observable only by using billions of grids, could be captured. 

 

The originality and contributions of this study are as follows. 

Originality 1. The proposed scheme, eMLP-VC, provides the maximum 

accuracy that can be achieved using the same number of stencils explicitly in a 
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vortex-dominated and compressible flow field such as a rotorcraft flow field. Two 

main algorithms make eMLP-VC provide the maximum accuracy: low Mach 

number adjustment and flow distinguishing mechanism. The degradation of 

accuracy in subsonic flow, which is a disadvantage of upwind biased interpolation, 

can be easily solved using the low Mach number adjustment without compromising 

the robustness. Also, the main algorithms of eMLP-VC are relatively easy to 

implement numerically and available to be applied easily other-type of upwind 

schemes. These algorithms can be adopted any other FVM solvers such as NASA's 

OVERFLOW and ONERA's elsA, which are mainly used for rotorcraft flow field 

analysis. eMLP-VC is verified its accuracy, robustness, and efficiency not only in 

relatively simple 1D or 2D numerical benchmark tests but also in 3D engineering 

problems using complex grid systems.  

Originality 2. An index that can quantitatively compare the performance of 

schemes developed with different concepts is proposed. The LAI presented in Part 4 

indicates the difference between the truncation error that each scheme should ideally 

have and the truncation error in the local discretized domain. Since the discontinuity 

in compressible flow often makes the solver unstable, a spatial discretization scheme 

with limiting algorithms is usually used for compressible flow. However, the limiting 

algorithms usually result in the degradation of local accuracy for incompressible and 

continuous flows. The LAI can quantify the local order-of-accuracy and clearly show 

the degradation of local order-of-accuracy. Any explicit spatial discretization scheme 

can be analyzed. In addition, it is possible to apply the LAI analysis in any flow field 
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that needs high accuracy, not just in the rotorcraft flow field. Especially in vortex-

dominated flowfield such as near wall region or stall region, several vortex 

interactions occur, and engineers are unable to determine whether the vortex 

interactions are caused by physical phenomena or merely numerical errors. LAI 

analysis can help to identify the numerical error distributions in local discretized 

domain. Also, LAI can be easily used as the indicator for grid evaluation or 

refinement. The implementation of LAI is simple and generic to any explicit spatial 

scheme.  

Originality 3. Detailed analysis of the rotorcraft flow field can be efficiently 

performed through the developed scheme. Furthermore, even the design 

optimization can be sufficiently conducted. The PROWIM or HART-II flow applied 

in this study showed more accurate results than the scheme used in the existing rotor 

flow field. In the case of design optimization, a low or mid-fidelity solver that can 

produce calculation results more quickly was used in the past. However, if we use 

well developed high-order accurate spatial scheme, we can use the high-fidelity 

solver to conduct the design optimization. This study proved that the design 

exploration can be conducted efficiently and more deeply when using eMLP-VC 

scheme. The underlying physics of the co-rotating rotor could be identified. Detail 

vortex dynamics can be simulated. These findings allow the advanced design of co-

rotating coaxial rotor and even in UAM eVTOL aircraft.   
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6.2  Recommendations for the future work 

A major objective of this study is to enhance the fidelity of the numerical solver, 

particularly through the development of high-order spatial discretization schemes 

that will improve the accuracy of rotorcraft aerodynamic performance prediction. 

The newly proposed spatial discretization scheme, eMLP-VC, produces the 

maximum accuracy that can be achieved with the same number of stencils, and 

produces much more efficient and accurate results than conventional high-order 

methods. There are, however, some limitations of eMLP-VC, and further research 

should be conducted to supplement these findings. 

 

◼ Limitations of eMLP-VC and future research works 

First, expanding eMLP-VC to unstructured-grid based solver is needed in 

consideration of application in engineering fields. A research aiming to extend MLP 

to unstructured grid-based solvers is currently being conducted[53,79], eMLP-VC 

can be expanded in similar manner. To successfully expand eMLP-VC to 

unstructured grid solver, sensing algorithm should be efficiently modified for 

unstructured grid version.  

The second issue is to minimize the influence of the user-defined factor of the 

eMLP-VC. eMLP-VC has a user-defined factor like the existing scheme eMLP and 

other high-order accurate schemes used for compressible flow. Within eMLP-VC, 

epsilon(ϵ) in flow distinguishing step plays its role. In the rotor flow field, ϵ = 0.01 

is suggested empirically. But when it is used in other flow fields, it is necessary to 



 

143 

 

modify this factor. Since this user-defined factor reduces the expandability of the 

scheme, the influence of the user-defined factor should be minimized. 

Thirdly, the stability of the part where r becomes negative in the TVD limiter 

needs to be examined. There is a possibility that the error in the negative r region 

could be amplified when the CFL number increases, so it is necessary to conduct a 

study that takes this into account.  

Lastly, there are still opportunities for minimizing the numerical dissipation error. 

The simplest way is to use more stencils. Although the fundamental structure of the 

solver, such as the amount of information exchanged in parallelization, needs to be 

modified, nevertheless increasing the stencil is the most accurate and fastest way to 

increase spatial accuracy. Also, it is possible to use the spatial discretization scheme 

with an implicit method, even though it requires a heavy computational cost. The 

compact scheme in continuous flow will produce a much higher spatial accuracy.  

As well as considering the spatial discretization method, to get higher fidelity of 

the aerodynamic solver for rotorcraft, several numerical techniques should be 

advanced. Next-generation rotorcraft will operate under certain operating conditions 

such as relatively low Reynolds number, which require the advancement of two 

essential numerical techniques: turbulence modeling technique and temporal 

integration method. 
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◼ Turbulence modeling technique 

The turbulence models used in this study assume a fully turbulent flow. However, 

the flow conditions of actual UAM eVTOL aircraft or conventional helicopters are 

not fully turbulent. Laminar flow enters to the lifting surface and transitions to 

turbulent flow occur. These transition process makes considerable change in 

aerodynamic performance. To deal with these phenomena properly, it is necessary to 

develop enhanced turbulence modeling methods such as turbulence transition 

models, detached eddy simulation models, and a wall modeled LES (WMLES) 

model. Recently, American institute of aeronautics and astronautics (AIAA) is 

conducting a high lift prediction workshop (HLPW) that predicts the transition point, 

separation point, and stall angle against a fixed wing model [80]. The results indicate 

that accurate prediction of the separation point and stall angle was made only through 

WMLES. RANS and URANS have limitations in predicting the separation point. 

Also, hover prediction workshop held at AIAA recently emphasized the importance 

of the transition model by predicting the transition point [43]. In the case of a UAM 

eVTOL aircraft, since it has a relatively low Reynolds number and Mach number 

range, it is necessary to further upgrade the turbulence model.  

 

◼ Temporal integration method  

 Due to the increasing spatial accuracy of numerical solvers, as well as the 

increasing sophistication of turbulence models and flow unsteadiness, the accuracy 

of the temporal integration method becomes increasingly important. The currently 

used BDF2 is robust but lacks the accuracy. The results of the HART-II prediction 
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workshop demonstrate that the temporal error becomes increasingly dominant as the 

time step increases [28]. As a result of a large CFL number near the wall where the 

grid spacing is extremely small, the time step currently applied produces 

considerable temporal error. There are some efforts to substitute BDF2 to other high 

accurate methods such as DIRKs or Rosenbrock-type [49,81]. However, those 

candidates have robustness and efficiency issues. The development of efficient and 

robust high-order accurate temporal integration methods should therefore be actively 

pursued.  
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Appendix 

 

A. Concepts of WENO-type schemes 

Since the WENO-type scheme was first developed by Jiang and Shu [7] in 1996, 

it has been widely used in compressible flowfield analysis that requires high 

accuracy and robustness, such as in shock-capturing. The WENO-type scheme 

reconstructs a cell interface quantity using the smoothness of local polynomials. 

High-order accuracy can be maintained in discontinuous flow because the flowfield 

is reconstructed using multiple stencils, avoiding the discontinuous region. 

Representative compressible CFD solvers such as the NASA OVERFLOW [82] and 

DLR FLOWer [83] also adopt WENO-type schemes and produce valuable results 

for various flows. However, if the shock wave occurs across several cells, WENO-

type schemes tend to cause oscillations and diminish the robustness of the solver. 

Furthermore, in local extrema, the WENO-type scheme has relatively poor accuracy 

owing to the incompleteness of local smoothness indicators. Accordingly, there have 

been many follow-up studies to overcome these shortcomings [13,16,17,84–86]. 

(2𝑟 − 1)𝑡ℎ order accuracy WENO-type reconstruction is performed as follows: 

𝑞1
2

= ∑ 𝑤𝑖
𝑟𝑎𝑖

𝑟(�̅�𝑖−𝑟+1,⋯ , �̅�𝑖)
𝑟−1
𝑖=0                  (A-1) 

The cell quantity at 1/2 interface, 𝑞1
2

, can be reconstructed using the sum and 

product of the 𝑟 local polynomial, 𝑏𝑖
𝑟(�̅�𝑖−𝑟+1,⋯ , �̅�𝑖) and the polynomial weight, 

𝑤𝑖
𝑟. Equation (A-1) shows the left state of the cell interface quantity. The right state 
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of the cell interface can be obtained by moving the stencil by one grid to the right 

and applying the polynomial weight symmetrically. For conciseness, the cell 

interface quantity in this paper is defined as the left state of the cell interface, unless 

otherwise specified. A local polynomial, 𝑏𝑖
𝑟(�̅�𝑖−𝑟+1,⋯ , �̅�𝑖), can be expressed as 

follows: 

𝑎𝑖
𝑟(�̅�𝑖−𝑟+1,⋯ , �̅�𝑖) = ∑ 𝛼𝑖𝑗

𝑟 �̅�−𝑟+𝑖+𝑗+1
𝑟−1
𝑖=0               (A-2) 

where 𝛼𝑖𝑗
𝑟   stands for the coefficient of the local polynomial. The polynomial 

weight, 𝑤𝑖
𝑟, of eq. (A-1) can be obtained using eq. (A-3). 

𝑤𝑖
𝑟 =

�̅�𝑖
𝑟

∑ �̅�𝑖
𝑟𝑟−1

𝑖=0

, �̅�𝑖
𝑟 =

γ𝑖
𝑟

(𝜖+𝛽𝑖
𝑟)
2                  (A-3) 

where 𝛾𝑖
𝑟 is an ideal weight for each local polynomial. 𝜖 is a small positive 

number that prevents the occurrence of a singularity and weight biasing on one side 

when the flow is extremely smooth. In this study, 𝜖 = 10−6. 𝛽𝑖
𝑟 is a smoothness 

indicator of each local polynomial and can be expressed as follows:  

𝛽𝑖
𝑟 = ∑ (∑ 𝑑𝑖𝑚𝑗

𝑟𝑟−1
𝑗=0 �̅�−𝑟+𝑖+𝑗+1)

2𝑟−1
𝑚=0                (A-4) 

where 𝑠𝑖𝑚𝑗
𝑟 , α𝑖𝑗

𝑟 , and 𝛾𝑖
𝑟 can be obtained using the work of Jiang and Shu [7] and 

Martin et al. [13]. The original WENO scheme (WENO-JS) can be implemented in 

the same manner using eqs. (A-1-4). Figure A1 shows a schematic diagram of the 

fifth-order (𝑟 = 3) accurate upwind WENO-type scheme. The process of obtaining 

polynomial weights in Eqs. (A-3) and (A-4) constitutes the shock-sensing 

mechanism of WENO-JS. This shock-sensing mechanism can also be called a 

function of smoothness (FoS) whose role is to assess the smoothness of the flow, 
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adjust the weight, and deal with discontinuities. A well-defined FoS can distinguish 

smooth regions from discontinuous regions properly so that local accuracy does not 

decrease. Simultaneously, it can deal with discontinuities in a robust manner. 

 

 

Fig. A1 Schematic of fifth order upwind WENO-type reconstruction. 

 

The method of obtaining polynomial weights in WENO-JS is a favorable 

approach in addressing discontinuities but has the disadvantage of lowering the local 

accuracy in local extrema. Because the polynomial weight, 𝑤𝑖
𝑟 , depends on the 

smoothness of the local polynomial, even if all polynomials are smooth, the weight 

can be biased according to the degree of smoothness. WENO-M and WENO-Z 

modify the weights of eq. (A-3) differently to solve this problem.  

First, WENO-M uses a new mapping method to increase the equivalence of the 

weight to the ideal weight, 𝛾𝑗
𝑟. The mapped weights can be expressed as eq. (A-5). 

Ideal weights are applied in more areas when weights are mapped. Mapped weights 

�̅�−2 �̅�−1 �̅�0 �̅�1 �̅�2
𝑞1
2

𝑎0 = 𝛼00�̅�−2 + 𝛼01�̅�−1 + 𝛼02�̅�0

𝑎1 = 𝛼10�̅�−1 + 𝛼11�̅�0 + 𝛼12�̅�1

𝑎2 = 𝛼20�̅�0 + 𝛼21�̅�1 + 𝛼22�̅�2

⋯ ⋯
* 𝑎𝑖 = local polynomial

**   𝛼𝑖𝑗 = coefficient of local polynomial

*** �̅�𝑗 = cell averaged quantity cell interface quantity
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reduce the variation in the calculated weight in the smooth local maxima, and 

consequently, reduce local accuracy degradation. 

𝑤𝑖,𝑊𝐸𝑁𝑂−𝑀
𝑟 =

𝑤𝑖
𝑟{𝛾𝑖

𝑟+(𝛾𝑖
𝑟)
2
−3𝛾𝑖

𝑟𝑤𝑖
𝑟+(𝑤𝑖

𝑟)
2
}

(𝛾𝑖
𝑟)
2
+𝑤𝑖

𝑟(1−2𝛾𝑖
𝑟)

               (A-5) 

Second, WENO-Z uses a global smoothness indicator to adjust the weight of eq. 

(A-3). The global smoothness indicator, 𝜏2𝑟−1 , uses a (2𝑟 − 1) -point stencil, 

expressed as eq. (A-6a). A new weight is expressed as eq. (A-6b). The global 

smoothness indicator of WENO-Z reduces the influence of the local smoothness 

indicator. The optimal weight is enforced when the domain is globally smooth. This 

modification effectively reduces local accuracy degradation in the local extrema. 

𝜏2𝑟−1 = {
|𝛽0

𝑟 − 𝛽𝑟−1
𝑟 |, 𝑚𝑜𝑑(𝑟, 2) = 1

|𝛽0
𝑟 − 𝛽1

𝑟 − 𝛽𝑟−2
𝑟 + 𝛽𝑟−1

𝑟 |, 𝑚𝑜𝑑(𝑟, 2) = 0
         (A-6a) 

𝑤𝑖,𝑊𝐸𝑁𝑂−𝑍
𝑟 =

�̅�𝑖,𝑊𝐸𝑁𝑂−𝑍
𝑟

∑ �̅�𝑖,𝑊𝐸𝑁𝑂−𝑍
𝑟𝑟−1

𝑖=0

,   �̅�𝑖,𝑊𝐸𝑁𝑂−𝑍
𝑟 = 𝛾𝑖

𝑟 (1 +
𝜏2𝑟−1

𝛽𝑖
𝑟+𝜀

)      (A-6b) 

According to the developers of WENO-M [16] and WENO-Z [17], the advanced 

algorithms in eqs. (A-5) and (A-6) ensure optimal order convergence near critical 

points. Modified weights can supplement the loss of order convergence of the 

original WENO, and performs as an improved FoS for WENO-M and WENO-Z. 
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B. Global-order-of-accuracy of spatial schemes on benchmark tests 

In this Appendix B, global-order-of-accuracy of benchmark tests are presented. For 1D benchmark tests, details of the sine wave and gaussian 

pulse advection problem are represented in Table B1~2 and Table B3~4, respectively. For the 2D benchmark test, the results of the isentropic 

vortex advection problem are shown in Table B5. 

Table B1 Error and global-order-of-accuracy of low amplitude sine wave advection problem (1D) 

Low amplitude sine wave advection problem [𝑞 = 6 + 0.1 sin (
𝑥

2.5
𝜋)] 

Grids 
WENO-JS WENO-M WENO-Z eMLP eMLP-VC 

L
2
 error order L

2
 error order L

2
 error order L

2
 error order L

2
 error order 

11 × 1 3.93.E-02  3.76.E-02  2.05.E-02  2.03.E-02  1.09.E-02  

13 × 1 2.22.E-02 3.412 1.86.E-02 4.206 1.12.E-02 3.604 1.01.E-02 4.200 4.34.E-03 5.517 

15 × 1 1.22.E-02 4.214 9.06.E-03 5.036 6.03.E-03 4.336 5.27.E-03 4.511 1.93.E-03 5.644 

17 × 1 6.70.E-03 4.758 4.60.E-03 5.416 3.29.E-03 4.828 2.94.E-03 4.676 9.45.E-04 5.719 

19 × 1 3.80.E-03 5.104 2.48.E-03 5.556 1.89.E-03 4.981 1.73.E-03 4.771 4.98.E-04 5.766 

21 × 1 2.23.E-03 5.308 1.42.E-03 5.577 1.15.E-03 5.016 1.07.E-03 4.829 2.79.E-04 5.796 

25 × 1 8.68.E-04 5.422 5.44.E-04 5.502 4.77.E-04 5.027 4.55.E-04 4.880 1.01.E-04 5.819 
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29 × 1 3.86.E-04 5.451 2.45.E-04 5.369 2.26.E-04 5.029 2.19.E-04 4.920 4.25.E-05 5.831 

33 × 1 1.90.E-04 5.500 1.24.E-04 5.255 1.18.E-04 5.023 1.16.E-04 4.942 2.00.E-05 5.829 

37 × 1 1.01.E-04 5.544 6.88.E-05 5.169 6.65.E-05 5.014 6.57.E-05 4.956 1.03.E-05 5.817 

41 × 1 5.70.E-05 5.550 4.07.E-05 5.111 3.98.E-05 5.007 3.95.E-05 4.965 5.67.E-06 5.800 

51 × 1 1.72.E-05 5.494 1.35.E-05 5.057 1.34.E-05 4.999 1.33.E-05 4.975 1.61.E-06 5.763 

61 × 1 6.55.E-06 5.382 5.49.E-06 5.022 5.47.E-06 4.995 5.46.E-06 4.984 5.81.E-07 5.700 

71 × 1 2.93.E-06 5.291 2.57.E-06 5.008 2.56.E-06 4.993 2.56.E-06 4.988 2.47.E-07 5.635 

81 × 1 1.47.E-06 5.225 1.33.E-06 5.002 1.33.E-06 4.994 1.33.E-06 4.991 1.19.E-07 5.570 

121 × 1 1.87.E-07 5.139 1.79.E-07 4.999 1.79.E-07 4.996 1.79.E-07 4.995 1.33.E-08 5.444 

161 × 1 4.41.E-08 5.070 4.29.E-08 4.998 4.29.E-08 4.997 4.29.E-08 4.997 2.95.E-09 5.282 

241 × 1 5.79.E-09 5.033 5.72.E-09 4.996 5.71.E-09 4.995 5.71.E-09 4.995 3.77.E-10 5.098 

 

Table B2 Error and global-order-of-accuracy of high amplitude sine wave advection problem (1D) 

High amplitude sine wave advection problem [𝑞 = 6 + 5 sin (
𝑥

2.5
𝜋)] 

Grids 
WENO-JS WENO-M WENO-Z eMLP eMLP-VC 

L
2
 error order L

2
 error order L

2
 error order L

2
 error order L

2
 error order 
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11 × 1 2.42.E+00  1.88.E+00  1.02.E+00  3.02.E+00  2.54.E+00  

13 × 1 1.49.E+00 2.903 9.31.E-01 4.206 5.60.E-01 3.604 2.23.E+00 1.799 2.02.E+00 1.360 

15 × 1 9.13.E-01 3.411 4.53.E-01 5.036 3.01.E-01 4.336 1.63.E+00 2.219 1.40.E+00 2.542 

17 × 1 5.72.E-01 3.735 2.30.E-01 5.416 1.65.E-01 4.828 1.10.E+00 3.110 1.25.E+00 0.960 

19 × 1 3.69.E-01 3.945 1.24.E-01 5.556 9.46.E-02 4.981 7.50.E-01 3.460 2.52.E-02 35.072 

21 × 1 2.45.E-01 4.077 7.10.E-02 5.576 5.73.E-02 5.016 6.31.E-01 1.722 1.41.E-02 5.762 

25 × 1 1.19.E-01 4.134 2.72.E-02 5.502 2.38.E-02 5.027 4.36.E-01 2.122 5.17.E-03 5.779 

29 × 1 6.49.E-02 4.105 1.23.E-02 5.369 1.13.E-02 5.029 3.12.E-01 2.259 2.19.E-03 5.780 

33 × 1 3.77.E-02 4.213 6.22.E-03 5.255 5.91.E-03 5.023 5.79.E-03 30.848 1.04.E-03 5.766 

37 × 1 2.26.E-02 4.450 3.44.E-03 5.169 3.33.E-03 5.014 3.28.E-03 4.956 5.39.E-04 5.743 

41 × 1 1.40.E-02 4.678 2.04.E-03 5.111 1.99.E-03 5.007 1.97.E-03 4.965 3.00.E-04 5.716 

51 × 1 4.82.E-03 4.888 6.75.E-04 5.057 6.68.E-04 4.999 6.66.E-04 4.975 8.71.E-05 5.663 

61 × 1 1.97.E-03 4.982 2.75.E-04 5.022 2.73.E-04 4.995 2.73.E-04 4.984 3.21.E-05 5.583 

71 × 1 9.22.E-04 5.019 1.28.E-04 5.008 1.28.E-04 4.993 1.28.E-04 4.988 1.39.E-05 5.507 

81 × 1 4.74.E-04 5.041 6.64.E-05 5.002 6.63.E-05 4.994 6.63.E-05 4.991 6.79.E-06 5.439 

121 × 1 6.22.E-05 5.062 8.93.E-06 4.999 8.93.E-06 4.996 8.93.E-06 4.995 8.02.E-07 5.322 

161 × 1 1.45.E-05 5.093 2.14.E-06 4.998 2.14.E-06 4.997 2.14.E-06 4.997 1.82.E-07 5.193 

241 × 1 1.80.E-06 5.170 2.85.E-07 4.999 2.85.E-07 4.999 2.85.E-07 4.999 2.32.E-08 5.107 
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Table B3 Error and global-order-of-accuracy of subsonic gaussian pulse advection problem (1D) 

Subsonic gaussian pulse advection problem [𝑞 = 0.05 exp (−( n 2) (
𝑥

30
)
2
)] ,   𝑎𝑆𝐶𝐿 = 0.1 

Grids 
WENO-JS WENO-M WENO-Z eMLP eMLP-VC 

L
2
 error order L

2
 error order L

2
 error order L

2
 error order L

2
 error order 

11 × 1 1.29.E-02  1.24.E-02  1.24.E-02  1.20.E-02  1.21.E-02  

13 × 1 1.19.E-02 0.496 1.14.E-02 0.490 1.14.E-02 0.493 1.10.E-02 0.520 1.08.E-02 0.702 

15 × 1 1.09.E-02 0.580 1.05.E-02 0.607 1.04.E-02 0.611 1.00.E-02 0.607 1.01.E-02 0.462 

17 × 1 1.01.E-02 0.658 9.59.E-03 0.696 9.56.E-03 0.702 9.17.E-03 0.736 8.96.E-03 0.948 

19 × 1 9.28.E-03 0.727 8.77.E-03 0.803 8.74.E-03 0.810 8.33.E-03 0.854 8.30.E-03 0.688 

21 × 1 8.60.E-03 0.760 8.04.E-03 0.860 8.01.E-03 0.869 7.59.E-03 0.936 7.48.E-03 1.044 

25 × 1 7.56.E-03 0.741 6.90.E-03 0.883 6.85.E-03 0.893 6.42.E-03 0.963 6.33.E-03 0.954 

29 × 1 6.83.E-03 0.683 6.06.E-03 0.868 6.02.E-03 0.880 5.55.E-03 0.978 5.45.E-03 1.008 

33 × 1 6.25.E-03 0.681 5.39.E-03 0.910 5.34.E-03 0.920 4.90.E-03 0.961 4.90.E-03 0.824 

37 × 1 5.74.E-03 0.753 4.79.E-03 1.038 4.74.E-03 1.047 4.31.E-03 1.115 4.37.E-03 0.990 

41 × 1 5.24.E-03 0.876 4.22.E-03 1.222 4.18.E-03 1.229 3.79.E-03 1.264 3.89.E-03 1.137 

51 × 1 4.08.E-03 1.147 2.96.E-03 1.629 2.92.E-03 1.633 2.66.E-03 1.623 2.83.E-03 1.463 

61 × 1 3.08.E-03 1.581 1.95.E-03 2.323 1.89.E-03 2.436 1.81.E-03 2.158 1.83.E-03 2.435 
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71 × 1 2.25.E-03 2.059 1.25.E-03 2.940 1.15.E-03 3.250 1.27.E-03 2.300 1.13.E-03 3.177 

81 × 1 1.61.E-03 2.531 8.20.E-04 3.198 7.14.E-04 3.652 8.95.E-04 2.684 6.83.E-04 3.817 

121 × 1 4.50.E-04 3.179 2.32.E-04 3.144 2.21.E-04 2.917 2.25.E-04 3.442 9.48.E-05 4.920 

161 × 1 1.68.E-04 3.456 6.78.E-05 4.310 6.69.E-05 4.189 6.61.E-05 4.287 1.86.E-05 5.700 

241 × 1 3.15.E-05 4.146 9.80.E-06 4.793 9.77.E-06 4.770 9.74.E-06 4.746 1.74.E-06 5.875 

 

Table B4 Error and global-order-of-accuracy of supersonic gaussian pulse advection problem (1D) 

Supersonic gaussian pulse advection problem [𝑞 = 0.05 exp (−( n 2) (
𝑥

30
)
2
)] ,   𝑎𝑆𝐶𝐿 = 1.0 

Grids 
WENO-JS WENO-M WENO-Z eMLP eMLP-VC 

L
2
 error order L

2
 error order L

2
 error order L

2
 error order L

2
 error order 

11 × 1 1.35.E-02  1.24.E-02  1.24.E-02  1.20.E-02  1.18.E-02  

13 × 1 1.25.E-02 0.459 1.14.E-02 0.490 1.14.E-02 0.493 1.10.E-02 0.520 1.08.E-02 0.523 

15 × 1 1.15.E-02 0.541 1.05.E-02 0.607 1.04.E-02 0.611 1.01.E-02 0.607 9.95.E-03 0.606 

17 × 1 1.07.E-02 0.613 9.59.E-03 0.696 9.56.E-03 0.702 9.17.E-03 0.736 9.06.E-03 0.745 

19 × 1 9.98.E-03 0.621 8.77.E-03 0.803 8.74.E-03 0.810 8.34.E-03 0.853 8.23.E-03 0.869 

21 × 1 9.42.E-03 0.582 8.04.E-03 0.860 8.01.E-03 0.869 7.59.E-03 0.937 7.47.E-03 0.958 
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25 × 1 8.60.E-03 0.518 6.90.E-03 0.883 6.85.E-03 0.893 6.42.E-03 0.962 6.31.E-03 0.969 

29 × 1 8.09.E-03 0.413 6.06.E-03 0.868 6.02.E-03 0.880 5.55.E-03 0.976 5.42.E-03 1.020 

33 × 1 7.71.E-03 0.375 5.39.E-03 0.910 5.34.E-03 0.920 4.90.E-03 0.963 4.74.E-03 1.044 

37 × 1 7.37.E-03 0.393 4.79.E-03 1.038 4.74.E-03 1.047 4.32.E-03 1.111 4.18.E-03 1.108 

41 × 1 7.04.E-03 0.444 4.22.E-03 1.222 4.18.E-03 1.229 3.79.E-03 1.262 3.62.E-03 1.381 

51 × 1 6.24.E-03 0.556 2.96.E-03 1.628 2.93.E-03 1.633 2.66.E-03 1.622 2.54.E-03 1.631 

61 × 1 5.47.E-03 0.736 1.95.E-03 2.322 1.89.E-03 2.435 1.81.E-03 2.163 1.81.E-03 1.897 

71 × 1 4.74.E-03 0.941 1.25.E-03 2.937 1.16.E-03 3.247 1.27.E-03 2.297 1.27.E-03 2.298 

81 × 1 4.06.E-03 1.174 8.21.E-04 3.192 7.15.E-04 3.645 8.96.E-04 2.680 8.96.E-04 2.680 

121 × 1 1.97.E-03 1.802 2.34.E-04 3.129 2.23.E-04 2.901 2.27.E-04 3.425 2.27.E-04 3.425 

161 × 1 8.75.E-04 2.840 6.99.E-05 4.227 6.91.E-05 4.106 6.82.E-05 4.202 6.82.E-05 4.202 

241 × 1 2.34.E-04 3.266 9.81.E-06 4.870 9.77.E-06 4.847 9.74.E-06 4.825 9.74.E-06 4.825 

 

Table B5 Error and global-order-of-accuracy of isentropic vortex advection problem (2D) 

Isentropic vortex advection problem (M∞ = 0.25) 

Grids 
WENO-JS WENO-M WENO-Z eMLP eMLP-VC 

L
2
 error order L

2
 error order L

2
 error order L

2
 error order L

2
 error order 
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11 × 1 1.98.E-02  1.87.E-02  1.90.E-02  1.98.E-02  1.66.E-02  

13 × 1 1.80.E-02 0.567 1.60.E-02 0.935 1.68.E-02 0.754 1.83.E-02 0.464 1.29.E-02 1.497 

15 × 1 1.63.E-02 0.704 1.37.E-02 1.072 1.44.E-02 1.063 1.65.E-02 0.739 1.12.E-02 1.000 

17 × 1 1.45.E-02 0.933 1.14.E-02 1.479 1.22.E-02 1.346 1.45.E-02 1.013 7.64.E-03 3.069 

19 × 1 1.30.E-02 1.003 9.23.E-03 1.910 1.00.E-02 1.718 1.27.E-02 1.186 6.37.E-03 1.637 

21 × 1 1.12.E-02 1.449 7.20.E-03 2.479 8.04.E-03 2.219 1.07.E-02 1.727 2.27.E-03 10.292 

25 × 1 7.75.E-03 2.122 4.18.E-03 3.119 4.53.E-03 3.295 7.39.E-03 2.118 6.25.E-04 7.406 

29 × 1 4.97.E-03 2.993 1.99.E-03 5.001 2.17.E-03 4.964 3.72.E-03 4.628 2.38.E-04 6.511 

33 × 1 3.30.E-03 3.178 1.29.E-03 3.334 1.31.E-03 3.889 2.37.E-03 3.497 1.08.E-04 6.126 

37 × 1 2.12.E-03 3.848 8.00.E-04 4.193 8.09.E-04 4.224 1.36.E-03 4.830 5.80.E-05 5.418 

41 × 1 1.37.E-03 4.256 4.47.E-04 5.681 4.58.E-04 5.541 7.19.E-04 6.219 3.40.E-05 5.206 

51 × 1 5.30.E-04 4.362 1.31.E-04 5.616 1.46.E-04 5.252 3.23.E-04 3.671 1.08.E-05 5.270 

61 × 1 2.18.E-04 4.950 4.84.E-05 5.563 5.01.E-05 5.953 4.70.E-05 10.760 4.12.E-06 5.362 

71 × 1 9.97.E-05 5.161 2.26.E-05 5.006 2.14.E-05 5.601 2.28.E-05 4.761 1.84.E-06 5.300 

81 × 1 5.03.E-05 5.188 1.22.E-05 4.697 1.13.E-05 4.855 1.21.E-05 4.814 9.21.E-07 5.261 

121 × 1 6.51.E-06 5.097 1.67.E-06 4.951 1.66.E-06 4.775 1.66.E-06 4.948 1.16.E-07 5.157 

161 × 1 1.52.E-06 5.085 3.98.E-07 5.024 3.98.E-07 5.006 3.98.E-07 5.007 2.97.E-08 4.772 
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국문 초록 

 

도심항공교통을 위한 새로운 컨셉의 수직 이착륙기에 대한 연구가 

증가하며, 새로운 형상에 대한 정확한 공력 및 공력 소음 성능 해석에 

대한 수요가 증가하고 있다. 기존에 제시되었던 여러 컨셉의 고차 

정확도 공간 차분법은 비교적 간단한 형태의 헬리콥터 성능 해석에 

활용된 바 있으며, 많은 수의 격자가 동반될 때 만족할 만한 수준의 

결과를 낸 바 있다. 그러나 다중 로터를 공통적으로 사용하는 새로운 

컨셉의 수직 이착륙기는 기존에 헬리콥터 해석에 사용되던 격자 수준의 

몇 배를 필요로 하기 때문에, 공간 차분법의 해석 정확도를 더욱 높게 

개발할 필요가 있다. 

본 연구에서는 기존의 고차 정확도 스킴인 eMLP 를 수직 이착륙기 

유동장 특징에 맞춰 개선하였다. 비정상적인 와류가 지배적이며, 

아음속부터 초음속까지 전 마하수를 아우르는 유속의 존재 등을 

고려하여 정확도와 강건성, 그리고 효율성을 개선한 eMLP-VC 를 

제시하였다. 일, 이차원의 벤치마크 테스트를 통해 새롭게 제시된 

eMLP-VC 의 우수성을 보였으며, 특히 로터 유동장 뿐만 아니라 

극초음속의 충각파가 지배적인 유동에서도 강건함을 유지하는 것을 

보였다.  

개발된 eMLP-VC 와 타 고차 정확도 스킴의 정량적인 비교를 위해 

새로운 국부 공간 정확도 지수인 local-order-of-accuracy index 

(LAI)를 제시하였다. 압축성 유동에서 사용되는 고차 정확도 스킴들이 

아음속의 연속성을 갖는 유동에서 정확도가 감소되기 때문에, 스킴의 
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정확도 차이가 생긴다. 차분된 공간에서 국부적으로 감소되는 정확도가 

결과적으로 유동 해석 충실도를 감소시키기 때문에, 이를 분석하여 

정확도 감소를 최소화할 필요가 있다. 본 연구에서 새롭게 제시된 

LAI 은 외재적으로 보간하는 모든 공간 차분 방법에 대해 적용할 수 

있으며, 이를 통해 유동장의 어떤 부분에서 정확도 감소가 일어나는 지 

확인할 수 있다. 일, 이차원 벤치마크 테스트를 통해, 본 연구에서 

제시한 스킴을 포함한 여러 고차 정확도 스킴들을 비교하였고, 

결과적으로 수직 이착륙기 고정확도 해석에 있어 반드시 필요한 수치적 

특성을 밝혀낼 수 있었다. 우선, 적은 격자 수준에서 와류가 충격파와 

비슷한 수치적 특성을 보이기 때문에, 이를 충격파로 잘못 인지하여 

수치 소산을 가하지 않아야 한다. 즉, 이를 위해 충격파 센싱 기법이 

고도화되어야 할 필요가 있다. 두번째로, 아음속 영역에서 중앙 차분을 

이용함으로써 풍상 차분법의 낮은 정확도를 보완할 필요가 있다. 초음속 

영역에서는 강건한 풍상 차분법을 유지하고, 아음속 영역에서는 

정확도가 높은 중앙 차분을 혼합하여 이용함으로써, 해석자의 정확도와 

강건성을 모두 보장할 수 있다. 

마지막으로 세 가지 수직 이착륙기 유동장에 eMLP-VC 를 이용하여 

해석을 진행하고, 최적 설계를 고정밀도 해석자를 이용하여 

진행함으로써, 새로운 형상의 수직 이착륙기 개발에 본 연구에서 제시된 

스킴이 충분히 활용될 수 있음을 보였다. PROWIM 모델과 HART-II 

로터에서 적은 격자를 가지고도 충분히 와류를 보존하고 와류의 

비정상적인 거동을 포착할 수 있음을 보였다. 특히, HART-II 

로터에서 발생하는 공력 소음까지도 정확한 수준으로 예측할 수 있음을 

보였다. 실제 도심항공교통 수직 이착륙기에 적용 가능한 적층 로터 
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형상 최적 설계에도 활용하였다. 최적 설계된 형상에 대해 초정밀 

해석을 진행하고, 이를 통해 최적 설계가 제대로 이루어졌음을 

확인하였다. 결과적으로 개발된 스킴, eMLP-VC 가 성공적으로 수직 

이착륙기 개발에 사용될 수 있음을 확인하였다.  

 

주요어: 고차 정확도 공간 차분법, 국부 공간 정확도 지수, 수직 

이착륙기, 공력 간섭 현상, 공력 소음, 최적 설계, 도심항공교통 

학번: 2019-31839 

성명: 홍윤표 
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