

저 시-비 리- 경 지 2.0 한민

는 아래 조건 르는 경 에 한하여 게

l 저 물 복제, 포, 전송, 전시, 공연 송할 수 습니다.

다 과 같 조건 라야 합니다:

l 하는, 저 물 나 포 경 , 저 물에 적 된 허락조건
 명확하게 나타내어야 합니다.

l 저 터 허가를 면 러한 조건들 적 되지 않습니다.

저 에 른 리는 내 에 하여 향 지 않습니다.

것 허락규약(Legal Code) 해하 쉽게 약한 것 니다.

Disclaimer

저 시. 하는 원저 를 시하여야 합니다.

비 리. 하는 저 물 리 목적 할 수 없습니다.

경 지. 하는 저 물 개 , 형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

Master’s Thesis of Aerospace Engineering

Aerodynamic Shape Optimization

of a Guided Missile Using

Reinforcement Learning with a

Neural Network Environment

신경망 환경에서의 강화학습을 이용한 유도탄의

공기역학적 형상 최적화

02 2023

Graduate School of Aerospace Engineering

Seoul National University

 Aerospace Engineering Major

Rawdha Khalaf Abdulla Rahma Alhammadi

ii

Aerodynamic Shape Optimization

of a Guided Missile Using

Reinforcement Learning with a

Neural Network Environment

이복직

Submitting a master’s thesis of engineering

12 2022

Graduate School of Aerospace Engineering

Seoul National University
Aerospace Engineering Major

Rawdha Khalaf Alhammadi

Confirming the master’s thesis written by

Rawdha Khalaf Alhammadi
12 2022

Chair 이관중 (Seal)

Vice Chair 이복직 (Seal)

Examiner 김규홍 (Seal)

���� ������
{Xpwª EyUW{}�[�0qª �q| �� �
}��~�ª ��	��
� ����
��ª�����
�� ��������

ª �	5ª ��Sª 37\���r ª ���
 �
 �b�£nASª �¡ª
��5ª �� ?�ª ��5ª ��]�ªdLxª �ª ���8\ª +!jª �]��r�ª
�ªf\ª �5ª�)*�ª

�ª��5ª 9.,�Sª @
f\e^ª �Bk�rh&ª ?�ª z�Sª ���r�ª
�ª �5ª (ª�ªSª �ª2ª�rªG<sª �ª oª�ª ���ª��ª��f\ª ����5ª �ªbª
?�ª ZM7\ª�ª �8\ª �b�r��'m�ª

=ª :/ª��ª�ªFª�ª �ª��ªSª ��f\ª �]ª��ª 2ª�4ª 9_ª,�ª
c��D�`ª�>JH�ª�ª �t��r ª��� �'ªm�ª
ª �"���F�ª �ª��f]ª �¡ª�#L¢ª ��&ª ZN7\ª £1ª 8\ª �8\ª
¤$ªQªYNª��� �)*�ª

����	
 �ª
¥�K¦ª6ª§;uª����%Cuª�
�� �� ��
�� �� �
¨ª �ª ¤$ª 6ª
©ª -ª <vª 6ª ��

	

Aerodynamic Shape Optimization of a Guided Missile Using Reinforcement Learning with
a Neural Network Environment

2021-21088

+971553192121

항공우주공학과

알함마디

✓

Radha
23 01 30

 i

Abstract

Rawdha Khalaf Abdulla Rahma Alhammadi

Aerospace Engineering Major

Graduate School of Aerospace Engineering

Seoul National University

This thesis optimizes the aerodynamic shape of a guided missile using deep

deterministic policy gradient (DDPG). The optimization goal is to maximize the

lift-drag ratio by adjusting the missile's fin geometry. The DDPG agent interacts

with a neural network environment to predict the aerodynamic coefficient and

hence calculate the reward for each configuration modification. The agent learns

from the positive and negative rewards how to optimize the shape. The

optimization follows some geometric constraints. The research studies the effect of

treating the geometric constraints as soft constraints by including them in the

reward function and allowing the agent to learn to avoid them compared to the

commonly used method of treating the geometry constraints as hard constraints and

checking them before running the optimization at each time step. Results have

shown that DDPG is able to optimize the aerodynamic shape to achieve more than

three times the baseline configuration. Treating the geometric constraints as soft

optimizes the shape faster than the hard geometry constraints.

Keyword : Aerodynamic Shape Optimization, Reinforcement Learning,

Artificial Intelligence, Deep Deterministic Policy Gradient, Objective

Function, Hard and Soft Constraints

Student Number : 2021-21088

 ii

Table of Contents

Chapter 1. Introduction .. １

1.1. Motivation ... １

1.2. Aerodynamic Shape Optimization Cycle ２

1.3. Problem Statement ... ３

Chapter 2. Artificial Neural Network ... ６

2.1. Introduction ... ６

2.2. Model Building .. ７

2.3. Results ... ８

Chapter 3. Reinforcement Learning ..１１

3.1. Introduction .. １１

3.2. Q-Learning .. １２

3.3. Deep Q-Learning ... １３

3.4. Deterministic Policy Gradient .. １４

Chapter 4. Deep Deterministic Policy Gradient１６

4.1. Introduction .. １６

4.2. Algorithm ... １８

Chapter 5. Methodology ...１９

5.1. Geometry Constraints Study 1 ２０

5.2. Geometry Constraints Study 2 ２２

Chapter 6. Numerical Setup ...２４

Chapter 7. Results and Discussion ...２５

7.1. Geometry Constraints Study 1 ２５

7.2 Geometry Constraints Study 2 ２７

Chapter 8. Conclusion ..３０

Bibliography ...３１

초 록 ..３２

 iii

List of Tables

Table 1. Design variables details .. 5

Table 2. Comparison table of geometry study 1 27

Table 3. Comparison table of geometry study 2 29

 iv

List of Figures

Figure 1. Aaerodynamic optimization cycle 2

Figure 2. Missile design variables ... 5

Figure 3. Artificial neural network structure 8

Figure 4. Mean square error vs. epochs .. 8

Figure 5. Coefficient prediction accuracy 9

Figure 6. Predicted coefficients vs. alpha 10

Figure 7. Q-learning algorithm ... 13

Figure 8. Method 1 of applying geometry constraints (Soft) 21

Figure 9. Method 2 of applying geometry constraints (Hard) 23

Figure 10. Method 1, constraint 1 average reward and loss 25

Figure 11. Method 1, constraint 2 average reward and loss 26

Figure 12. Method 2, constraint 2 average reward and loss 28

 １

Chapter 1. Introduction

1.1. Motivation

The aerodynamic optimization process takes place during the project’s

concept design and preliminary design stages. The aerodynamic coefficient

of various design variables and flight conditions are calculated to determine

the aerodynamic shape, which is considered numerically intensive. It is

expensive and time-consuming to produce precise aerodynamic

coefficients using computational fluid dynamics (CFD). While replacing

CFD with a semi-empirical method such as Missile DATCOM (MD) saves

time and money, it is constrained by the potential innovative configurations.

Using CFD or MD with a primitive aerodynamic shape optimization

cycle that requires human input to plug in, test, and evaluate thousands of

potential configurations is inefficient. Figure 1 illustrates the optimization

model block, evaluation workflow block, and optimizer that make up the

current aerodynamic design cycle described in [1]. The aerodynamic

optimization of multiple design variables is accelerated further by using

neural network methods instead of numerical simulations to calculate the

aerodynamic coefficients.

 ２

Figure 1: Aerodynamic optimization cycle

1.2. Aerodynamic Shape Optimization Cycle

The optimization model block, which is composed of the objective

functions, design variables, and design constraints, is responsible of

defining the optimization process. Aerodynamic coefficients are generated

in the evaluation workflow block using numerical calculation, mesh

generation, and geometric model parameterization. The typical optimizer

uses evolution or gradient-based optimization. The finite difference and

adjoint methods are examples of gradient-based optimization methods that

converge on local optimum. For large design variable sets, the evolutionary

method suffer from slow convergence rates and high dimensionality;

examples of such methods include the multi-objective geometric algorithm

(MOGA) and the multi-objective particle swarm optimization (MOPSO). [1]

Recent reinforcement learning (RL) developments provides a new

optimizer method for aerodynamic optimization. By incorporating RL into

the present aerodynamic design cycle, it is possible to decide which design

 ３

variable variations to apply to accomplish an aerodynamic improvement

within the design space through learning from the experiences.

This study employs deep deterministic policy gradient (DDPG) as an

RL technique for aerodynamic shape optimization. Instead of working

directly with CFD or MD software, a neural network environment was built

for DDPG optimization. The variable variation was limitless as long as it

followed certain geometry constraints. This research is not meant to

replace the precise CFD and semi-empirical approaches; rather, it is meant

to illustrate the possibilities of using neural networks in creating an

environment for the aerodynamic optimization that takes place in the

concept design and early preliminary design stages.

1.3. Problem Statement

The goal of the aerodynamic fin optimization is to satisfy the

geometrical and aerodynamic constraints and provide a geometry with the

highest lift-drag ratio under cruising conditions. The optimization problem's

objective function is to maximize the lift-drag ratio (/CL CD), which is a

measure of aerodynamic performance. Optimization constraint over the

geometry, static margin and drag coefficients (CD) are employed. The

variable values should be limited by the geometry constraints so that they

don't exceed the missile's length or cross over one another. The static

margin, which measures the space between the missile's center of gravity

and center of pressure, is responsible of the missile's stability. The XCG

is the center of the missile's body, does not change by the fin optimization

because the mass of the fins is negligible in comparison to that of the main

body. Thus, the XCP controls the static stability. To avoid a decline in flight

 ４

performance, the drag coefficient is also limited to be less than the baseline

configuration. The optimization model is described as: [1]

Flow condition: Mach number of 2.0

Altitude of 5000 m

Angle of attack (ALPHA) of 4 degrees

Objective Functions: Maximize lift-drag ratio coefficient

Constraints:

Design parameters within geometric

constraints

XCP within [-0.605,-2.1]

CDshould be less than baseline value

Where XCP is measured from the center of gravity and divided by the

missile’s diameter.

The problem's design variables are presented in Table 1, and some of

these variables visualized in Figure 2. The problem's design variables are

presented in Table 1, and some of these variables visualized in Figure 2.

The angles are in degrees, and the variable lengths are in centimeters. The

variables are used to generate different configuration combinations to be

executed in MD and produce training data for the neural network. The

baseline model features a cone-shaped nose, a cylindrical body, trapezoid

wings, and tails with a hexagonal airfoil. In this study, just the optimization

of fin geometry and placement is taken into account. The parameters of the

hexagonal airfoil and missile body are thus fixed. The fins' trailing edges

are arranged in a "+" pattern and are perpendicular to the body axis. As a

result, the wings and tails are right trapezoids, and each is controlled by

four factors: the span length (#_ 2SSPAN), the root chord

length (#_1CHORD), the tip chord length (#_ 2CHORD), and the location

of the fin (#XLE). Therefore, during the optimization process, a total of 8

 ５

independent design variables are adjusted. [1]

Figure 2: Missile design variables

Table 1: Design variables details

Design

variable

Definition Lower

bound

Upper

bound

Baseline

TNOSE Nose type - - Cone

LNOSE Nose length - - 49

DNOSE Nose diameter - - 18

LCENTR Missile body length - - 320

DCENTR Missile body diameter - - =DNOSE

XLE1 Nose tip to wing leading-edge distance 125 175 172

SWEEP1 Wing trailing-edge sweep angle - - 0

CHORD1_1 Wing root chord 10 40 29

CHORD1_2 Wing tip chord 0 9 6

SSPAN1_1 Semi-span location of wing root chord - - =DNOSE

SSPAN1_2 Semi-span location of wing tip chord 10 30 23

ZUPPER Wing and tail thickness to chord ratio of upper surface - - 0.025

ZLOWER Wing and tail thickness to chord ration of lower surface - - =ZUPPER

LMAXU Wing and tail fraction of chord from section leading-edge to maximum thickness of

upper surface

- - 0.25

LMAXL Wing and tail section of the chord from leading-edge to maximum thickness of

lower surface

- - =LMAXL

LFLATU Wing and tail section of constant thickness section of upper surface - - 0.25

LFLATL Wing and tail section of constant thickness section of lower surface - - =LFLATU

XLE2 Nose tip to tail leading-edge distance 300 320 320

SWEEP2 Tail trailing-edge sweep angle - - 0

CHORD2_1 Tail root chord 10 40 38

CHORD2_2 Tail tip chord 0 25 19

SSPAN1_2 Semi-span location of tail root chord - - =DNOSE

SSPAN2_2 Semi-span location of tail tip chord 10 30 22

 ６

Chapter 2. Artificial Neural Network

2.1. Introduction

Machines having brain-like abilities are referred to as artificial neural

networks (ANNs), and they are able to model and predict complex

nonlinear mechanisms without precise background knowledge [4]. We can

utilize ANN to approximate the nonlinear relationship between the

geometric shape and the aerodynamic coefficients because of this benefit

[5]. Prediction accuracy is increased by training the ANN with a large

amount of precise wind tunnel and flight test data.

It is crucial to use a surrogate model to approximate aerodynamic

coefficients rather than CFD since the optimization of multiple objective

problem is computationally expensive and slow. The surrogate model

produces good results while reducing the optimization computation time. [5]

In this study, the lift, drag, lift-drag, and center of pressure coefficients

are predicted using a surrogate model based on ANN. A full model is used

to do the prediction because it gives accurate results [6]. The surrogate

model is incorporated into the environment during the DDPG training

process. It provides the predicted aerodynamic coefficients and uses them

to calculate the reward for a specific state and action. [5]

 ７

2.2. Model Building

Figure 5 shows the structure of the neural network. The aerodynamic

coefficients (CL, CD, CL/CD, and XCP) are the outputs, and the 8

independent geometrical variables are the inputs. The network consists of 7

layers, 5 of which are hidden layers. The number of input and output layer

nodes corresponds to the number of input and output variables. There are

64, 32, 16, 8, and 4 nodes in each of the hidden layers, respectively. To

minimize the possibility that large values would dominate the training, the

generated data using MD is scaled to [0, 1] before starting the training. The

data underwent some preprocessing in order to reduce the impact of

outliers on the prediction [6]. After extensive studies on several activation

functions, the sigmoid function, which has the expression:
1

()
1 x

x
e

,

was found to be the best accurate activation function for our model. The

data is divided into a training set (655238), a validation set (163810), and a

testing set (1642). Adam is the network optimizer, and equation (1) states

that the learning rate (lr) exhibits exponential decay.

exp(*)ilr lr dr epoch (1)

Where ilr is the initial learning rate and dr is the decay rate.

 ８

Figure 3: Artificial neural network structure

2.3. Results

How well ANNs predict the expected outcome could be evaluated

using some loss metrics, such as the mean square error (MSE). During the

training and validation phases, MSE is calculated and shown in Figure 4.

The MSE for training and validation decreases across numerous epochs

until it reaches a value of roughly
510
, indicating that the model is accurate

and reliable.

Figure 4: Mean square error vs. epochs

The test data's prediction accuracy can be shown using scatter plots.

 ９

Although the projected CL values and the actual value often agreed, values

over 8 indicated a slight divergence, as can be seen in Figure 5a. There is

a minor difference at the greatest angle of attacks between CD's predicted

values and their actual values, as seen in Figure 5b. For CL/CD and XCP,

Figures 5c and 5d, respectively, yield precise predictions.

Figure 5: Coefficient Prediction accuracy

Figure 6 compares the ANN predictions and the MD values for the

aerodynamic coefficient. The setup parameters for this study are as

follows: 1 130, 1_1 12, 1_ 2 6, 1_ 2 22,XLE CHORD CHORD SSPAN

2 300, 2_1 27, 2_ 2 19,XLE CHORD CHORD and 2_ 2 22SSPAN .

Figure 6a shows that CL predicted values are accurate at alpha

numbers less than 32. At higher alpha values, the predicted values do,

however, marginally deviate. As can be shown in Figs. 6b and 6c,

respectively, CD and CL/CD predictions accurately agree with MD values.

 １０

Although they are not an exact match, the ANN XCP predictions in Fig. 6d

are quite close to the MD values. Since the observed deviation from MD

values is small and appropriate for our goals, it is deemed as insignificant.

This could be mitigated by using a different neural network model to predict

XCP values.

Figure 6: Predicted (a)CL , (b)CD , (c) /CL CD , and (d) XCP vs. alpha

 １１

Chapter 3. Reinforcement Learning

3.1. Introduction

A decision-maker is referred to as an agent in RL. Anything that an

agent interacts with that is external to it is considered the environment. In

order to learn, the agent constantly engages with the environment through

a series of time steps. At each time step t, the agent starts out in the

state ts S , where S is the set of potential states. It then interacts with its

environment by taking the action
ta A , where A is the set of available

actions at state
ts . In response, the environment gives a new

state 1ts S and a reward
1tr R , where R is the set of rewards. [3]

The agent maps the states to the probabilities of choosing each of the

possible actions at each time step. This mapping is known as the agent's

policy t , where (,)t s a is a stochastic policy’s probability of

taking ta a if
ts s . The agent's objective function []tJ R is to

maximize expected discounted return, which is the total discounted future

reward and is expressed in the equation (2). [7, 8]

() (,)
T i t

t i ii t
R r s a

 (2)

WhereT is the terminal time-step and [0,1] is the discount rate.

 １２

3.2. Q-Learning

Q-learning is a model-free value-based off-policy temporal difference

algorithm, which is an example of RL algorithms. Model-free refers to the

absence of an environment model, whereas off-policy describes the

agent’s use of behavior policy to choose what actions to take in a given

state to discover policy . The Bellman equation is used to describe the Q

values with a deterministic target policy : S A as shown in equation (3).

Equation (4) state that Q-learning employs greedy

policy () argmax (,)as Q s a . [10]

1 1(,) [(,) (, ())]t t t t t tQ s a r s a Q s s (3)

Q values are initially assigned to a low random value in Figure 7, and

they are then adjusted as the episodes proceed. The agent observes its

current state
ts at the beginning of an episode, chooses an

action ta from and executes it, observes the new state
1ts
, receives an

immediate reward 1tr , and then uses to choose the action for the new

state to roughly approximate the Q value according to equation (4). This

sequence is repeated until termination. As seen in Figure 7, estimates of Q

value are arranged in a look-up table, where the agent learns both the

value function and the policy. [7, 8]

1 1(,) (,) [max (,) (,)]t t t t t t t t
a

Q s a Q s a r Q s a Q s a (4)

Q-learning learning objective is to find the optimal policy that that

maximizes the total expected discounted reward. The problem with Q-

learning is that it can only be used for discrete, low dimensional state and

 １３

action spaces since at each iteration, the Q value is adjusted by looking up

the table. [9, 10]

Figure 7: Q-learning algorithm

3.3. Deep Q-Learning

In order to extract features from input in a high dimensional state

space, deep reinforcement learning (DRL) combines the capabilities of

deep learning (DL) and the RL algorithm. In order to construct deep Q-

learning (DQN), the lookup table is replaced by a neural network that is

used as a function approximator of the action-value function,

*(, ;) (,)Q s a Q s a with parameter
Q . Additionally, DQN combines the

stochastic minibatch updates with a replay buffer to ensure the least

possible correlation between samples. In order to sample certain

experiences for learning, the replay buffer is employed. It is made up of

experience tuples (
1 1, , , t t t ts a r s

) that gradually grow in size as the agent

interacts with the environment. The oldest experience is discarded once the

buffer reaches a predetermined size to create room for the new ones.

Moreover, DQN employs a target network that is a replica of our function

approximator neural network and serves as a fixed target during temporal-

 １４

difference backup. DQN seeks to minimize the loss described in equation

(5) in order to optimize the parameter Q. DQN is currently limited to cases

with discrete actions and low-dimensional state and action spaces since

obtaining the action of the maximum action-value function for continuous

domains requires an iterative optimization process. [6, 10]

2() [((, |))]Q Q

t t tL Q s a y (5)

Where the target ty :

1 1(,) (, () |)Q

t t t t ty r s a Q s s (6)

3.4. Deterministic Policy Gradient

Many model-free RL algorithms are based on policy iteration that

consists of policy evaluation and policy improvement. Policy evaluation

uses temporal-difference learning to estimates the action-value function.

Policy improvement methods, such as greedy policy

1() arg max (,)
kk

as Q s a , update the policy with respect to the

estimated action-value function. Greedy policy requires global maximization

at every step, which is problematic. Therefore, instead of using greedy

policy, the policy is moved in the direction of the gradient of Q and that is

known as the deterministic policy gradient (DPG). Specifically, the policy

parameters
1k

are updated in the direction of the

gradient (, ())
k

Q s s

 as expressed in equation (7). And by applying the

chain rule, the gradient in equation (7) is decomposed to gradient of the

policy with respect to the policy parameter and gradient of action-value with

respect to the actions as shown in equation (8). [3, 5]

 １５

1 [(, ())]
kk k Q s s

 (7)

1

()[() (,) |]
kk k

a a ss Q s a

 (8)

DPG is ideal for continuous action problems with high dimensions.

DPG is policy-based, unlike Q-learning and DQN which are value-based. It

uses gradient-based methods to optimize deterministic policies as neural

network parameters. Combining DQN with DPG, deep deterministic policy

gradient (DDPG) can be used for high-dimensional continuous actions

which is suitable for our problem. [3, 7]

 １６

Chapter 4. Deep Deterministic Policy Gradient

4.1. Introduction

DQN and DPG theorem provide the foundation of the DDPG

algorithm. Similarly to DQN, DDPG is an actor-critical algorithm that

employs replay buffers and target networks. The DPG algorithm

parameterizes the actor function (|)s , which defines the current policy

that deterministically maps state to an action. The critic judges the action

chosen by the actor, its function (, |)QQ s a known as the action-value

function is learned through the Bellman equation just like in Q-learning.

Neural networks with parameters
 and

Q , respectively, represent both

the actor and critic functions. By reducing the loss described in equation (5),

the parameter Q is optimized (5). The actor’s parameter
 is updated

using the objective function gradient J
 in equation (9). [3, 5]

, ()[(, |) | (,) |]
t t t

Q

a s s a s s sJ Q s a s

 (9)

The tuples (
1 1, , , t t t ts a r s

) are the transitions samples from the

environment while following an exploration policy, are stored in the replay

buffer, which is a finite sized cache. The oldest sample are removed once

the replay buffer is full. At each time step, the actor and critic are updated

by sampling a minibatch from the buffer. The replay buffer can be large

because of the DDPG’s off-policy property, which permits learning across a

set of uncorrelated transitions. [5]

The divergence problem of Q-learning is due to

updating (, |)QQ s a network that is also used in the target value equation

 １７

(6). By using soft target updates rather than an exact copy of the network

weights, DDPG addresses this problem. Calculating the target values

involves making a duplicate of the actor and critic networks. The learning is

more stable because the weights of the neural networks are updated

gradually toward the learned networks’ parameters: ' (1) '

where 1 . [3, 5]

When the observation value varies across the environment, the

network is unable to learn effectively. To address this, DDPG uses batch

normalization. Using this technique, each dimension is normalized across

all samples in a minibatch to have a unit mean and variance. It also

maintains a running average of the mean and variance for testing

normalization. [10]

In order to account for exploration in the continuous action space, an

exploration policy is created. Equation (10) shows how this policy integrates

noise from a noise process N into our actor policy. [10]

'() (|)t t t ts s (10)

Where
tN is an Ornstein-Uhlenbeck process used for effective exploration.

 １８

4.2. Algorithm
Algorithm 1 DDPG algorithm

Randomly initialize critic network (, |)QQ s a with weight
Q and actor (|)s with weight

Initialize target networks 'Q and ' with weights
'Q Q , and

' respectively

Initialize replay buffer R

for episode=1, M do

 Initialize a random process N for exploration

 Observe initial observation state
ts

 for t=1, T do

 Select action ta using equation 10 according to the current policy (|)t ts and exploration noise N

 Clip the action (, ,)t Low Higha clip a a a where Lowa and
Higha are defined in the environment

 Execute ta in the environment and observe reward tr and new state 1ts

 Store (1, , ,t t t ts a r s) in R

 Sample a random minibatch of N transitions (1, , ,t t t ts a r s) from R

 Set targets as
' '

1 1'(, '(|) |)Q

i i i iy r Q s s

 Update the critic by gradient descent to minimize the loss:
21

((, |))Q

i i ii
L Q s a y

N

 Update the actor policy by gradient ascent:
, ()

1
(, |) | (|) |

i i i

Q

a s s a s si
J Q s a s

N

 Update the target networks:
' '(1)Q Q Q and

' '(1)

 end

end

 １９

Chapter 5. Methodology

Starting from a baseline design as shown in Table 1, the optimal

aerodynamic configuration is learned using DDPG. In equation (11), the

agent chooses an action at a specific state based on a deterministic policy.

[1]

(|)t t ta s (11)

Where
ts is the current configuration that is made up of the 8 independent

design variables and ta is the value added to
ts resulting in the new

configuration
1ts
. The action ta has positive and negative values, and it has

different values for each design variable represented in state
ts .

As previously discussed, the training goal is the find the optimal

network parameters under a specific reward function. Reward function

design is crucial for adequate, stable learning. According to equation (12),

the reward function rewards lift-drag ratio increases after each interaction

with the environment while penalizing excessive XCP and CD fluctuations.

[1]

0

0

10.(() ()), if [0.605, 2.1] & baseline
(,)

() () 10. 10. , otherwise

t

t t

t

f s f s XCP CD
r s a

f s f s XCP CD

 (12)

Where f refers to the lift-drag ratio value predicted using the ANN, 0s is the

baseline design configuration that we aim to optimize and
ts is the current

design configuration. The XCP and CD are the XCP and CD variation

from the baseline. This reward is used in the sum of discounted future

reward equation (2).

There are different types of optimization constraints, some influence

 ２０

the objective function known as soft constraints where they are included in

the reward function. The other type of constraint is known as hard

constraint, and it ensures that all optimization solutions are meeting the

hard constraint, hence they are checked before doing the optimization. An

example of the different constraint types are: 1) the XCP and CD

constraints discussed earlier in the problem statement section are soft

constraints and they are included in the reward function in Equation (12), 2)

the geometry constraints are commonly considered hard constraints. In this

research we observe the effect of treating the geometry constraints as soft

constraints by including them in the reward function.

5.1. Geometry Constraints Study 1

The first study constraining method treats the geometry constraints as

soft constraints by including them in the reward function and the DDPG

optimization is carried on regardless if the geometry constraints are met or

not as shown in Figure 8. The DDPG agent is expected to learn that

defying the geometry constraints is not desirable and receives negative

rewards for that, and therefore the agent would avoid the actions that lead

to these constraints. This method will be referred to as “method 1”

 ２１

Figure 8: Method 1 of applying geometry constraints (Soft)

After understanding the method of constraining used in this study, we

will focus now on two types of geometry constraints. The first type called

“constraint 1” limits the 8 independent variables with upper and lower

bounds as found in Table 1. The reward function is modified to reflect the

variables limitations as expressed in equation (13).

0 0

0

10.(largest negative difference from the bounds)

(,) 10.(() () if [0.605, 2.1] and

() () 10. 10. otherwise

t t t

t

r s a f s f s XCP CD CD

f s f s XCP CD

(13)

The second constraint type called “constraint 2” is looser, therefore it

is able to explore values beyond the defined bounds of the variables. The

second constraint tries to maintain a sensible geometrical combinations

conditions such as: 1) positive geometry variables, 2) 1XLE LNOSE ,

3) 1 1_1 2XLE CHORD XLE , 4) 1_ 2 30SSPAN , 5) 2_ 2 30SSPAN

 ２２

and 6) 3 2_1XLE CHORD LNOSE LCENTR . The second geometry

constraint reward function is modified to include the geometric conditions

as expressed in equation (14).

Largest negative variable if cond. 1)

1 if cond. 2)

2 (1 1_1) if cond. 3)

(,) 10.(30 1_ 2) if cond. 4)

10.(30 2 _ 2) if cond. 5)

10.((2 2 _1)) if cond.

t t

LCENTR XLE

XLE XLE CHORD

r s a SSPAN

SSPAN

LNOSE LCENTR XLE CHORD

0 0

0

6)

10(() ())if [0.605, 2.1]&
other.,

() () 10. 10. otherwise

t

t

f s f s XCP CD CD

f s f s XCP CD

(14)

Where 0CD is the baseline configuration drag coefficient.

5.2. Geometry Constraints Study 2

The second study’s compares two different constraining methods with

fixed geometry constraints type. The common method shown in Figure 9

treats the geometry constraints as hard constraints and checks them before

running the DDPG optimization, this method is called “method 2”. This

method is compared with the method 1 from the geometry constraints study

1 shown in Figure 8, where the constraints are soft constraints and the

DDPG optimization is always running. The two methods being compared in

this study uses constraint 2, which is a looser geometry constraints

expressed in equation (14). Method 2 reward function is given by equation

(12).

 ２３

Figure 9: Method 2 of applying geometry constraints (Hard)

 ２４

Chapter 6. Numerical Setup

The network is based on TensorFlow and the environment is custom

built using OpenAI Gym with ANN to calculate the rewards. The learning

rates for the actor and critic are 0.0001 and 0.001, respectively, whereas

the reward discount rate is 0.99. The actor’s and critic’s network are

composed of three layers with 256 nodes each. The activation function of

the hidden layers is () max(0,)i iX X , the critic’s output layer’s activation

function is linear, and the actor’s output layer’s activation function is

() sinh() / cosh()i i iX X X . The size of the replay buffer is 50000, and the

minibatch size is 64. The maximum number of episodes was 500, and each

episode terminates after 20 steps. Different action value range is used for

different studies. At each step in the episode, the action is restricted to the

range [-0.1, 0.1].

 ２５

Chapter 7. Results and Discussion

7.1. Geometry Constraints Study 1

In this first study, the DDPG is always running and learns to avoid the

geometric constraints by receiving negative rewards for them. The reward

function of constraint 1 if given by equation (13) and it limits the variables to

upper and lower bounds. The results of this geometry constraint is shown in

Figure 10. A good configuration was recorded in less than 100 episodes,

and this indicates that DDPG is able to rapidly optimize the aerodynamic

configuration. The loss described in equation (5) steeps at the same region

the reward escalates.

Figure 10: Method 1, constraint 1 average reward and loss vs. episodes

Figure 11 displays the reward and loss curves of constraint 2 that is

expressed in equation (14). The average reward increases and the loss

 ２６

decreases to reach an optimal configuration in less than 100 episodes as

well.

Figure 11: Method 1, constraint 2 average reward and loss vs. episodes

Table 2 compares the two aerodynamic configuration proposed by the

two different geometry constraint types. Both constraint types increased the

lift-drag ratio and decreased the drag coefficient. Constraint 2 is better than

the limited constraint 1 because it increased the /CL CD 5% more,

decreased the CD 16% less and found a configuration with XCP within

the specified bound of [-0.605,-2.1]. Constraint 1 struggles to find a

configuration that follows the XCP limitation because of its tight bounds,

and this showcases the limitation of treating the geometry constraint as soft.

 ２７

Table 2: Comparison table of geometry study 1

Variables Constraints
Constraint 1 Constraint 2 Baseline

1XLE 167 157 172

1_1CHORD 26.5998 20 29

1_ 2CHORD 5.1 3.3 6

1_ 2SSPAN 25 29 23

2XLE 318.4098 314 320

2_1CHORD 35 29 38

2_ 2CHORD 21.5 26.5 19

2_ 2SSPAN 20.850 16 22

/CL CD 3.794 4.003 1.051

CD 0.339 0.284 3.132

XCP -3.311 -2.04 -2.422

7.2 Geometry Constraints Study 2

Two different constraining methods are compared here. The two

methods use the same constraint which is constraint 2, since it gave the

desired results. Method 1 is already observed in the geometry constraints

study 1, and it is shown in Figure 11. Method 2 treats the geometry

constraints as hard constraints and always checks them before DDPG

optimization. The result of method 2 is shown in Figure 12.

 ２８

Figure 12: Method 2, constraint 2 average reward and loss vs. epochs

Figure 12 shows that the average reward increases until 40 episodes

and then drops, this is due to the agent exploration because it discovered

new states that gave negative rewards. After the agent has observed these

negative reward states, it learns to avoid them, which is why the average

reward increases back around 120 episodes to reach a higher value than

the first increase.

Method 1 and method 2 both increased the average reward and

decreased the loss. The proposed method in this thesis, method 1, finds

the optimized aerodynamic configuration in 100 episodes whereas the

common constraining method, method 2, finds it in 300 episodes. The state

space of method 1 is larger since it considers states that defy the geometric

constraints, which is why its average reward stabilizes around -200. Method

2’s state space is smaller because the geometric constraints must be met

before running the optimization, and this is reflected on the average reward

value as it stabilizes around -50.

 ２９

The aerodynamic configuration of method 1 and method 2 look exactly

the same as shown in Table 3, except the wing’s root chord length. Method

1 increased the lift-drag ratio by 280% of the baseline configuration, and

method 2 increased it by 309%.

Table 3: Comparison table of geometry study 2

Variables Constraints Method 1 Method 2 Baseline

1XLE 157 157 172

1_1CHORD 20 38 29

1_ 2CHORD 3.3 3.3 6

1_ 2SSPAN 29 29 23

2XLE 314 314 320

2_1CHORD 29 29 38

2_ 2CHORD 26.5 26.5 19

2_ 2SSPAN 16 16 22

/CL CD 4.003 4.305 1.051

CD 0.284 0.325 3.132

XCP -2.04 -1.954 -2.422

 ３０

Chapter 8. Conclusion

In conclusion, the aerodynamic shape optimization is essential for the

concept design stage to minimize future changes and hence reduce the

cost. The advancement in the artificial intelligence and especially

reinforcement learning have introduced aerodynamic shape designers to a

new method for optimization. Using DDPG for optimization is useful in

situations where continuous state and action are necessary. DDPG has

optimized the aerodynamic shape for higher lift-drag ratio and increased it

to 3 times its baseline configuration value. In this paper, method 1 proved

its rapid optimization capability especially when the geometry constraints

are not too limited. The common constraining method, method 2, has

higher chance of finding the global optimal in case of a large state space.

 ３１

Bibliography

[1] Yan X, Zhu J, Kuang M, Wang X (2019) Aerodynamic shape optimization using a novel

optimizer based on machine learning techniques. Aerospace Science and Technology: 826-

835. https://doi.org/10.1016/j.ast.2019.02.003

[2] Chang K (2015) Chaptere 4-Structural Design Sensitivity Analysis. In: Design theory and

methods using CAD/CAE. Elsevier Inc, pp 213

[3] Silver D, Lever G, Heess N, Degris T, Wierstra D, Riedmiller M (2014) Deterministic

Policy Gradient Algorithms. Proceedings of the 31st International Conference on Machine

Learning: 387-395

[4] Gurney K (1997) An Introduction to Neural Network. CRC Press

[5] Qin S, Wang S, Wang L, Wang C, Sun G, Zhong Y (2020) Multi-objective optimization of

Cascade Blade profile based on reinforcement learning. Applied Sciences: 1-27.

https://doi.org/10.3390/app11010106

[6] Ritz S, Hartfield R, Dehlen J, Burkhalter J, Woltosz W (2015) Rapid calculation of missile

aerodynamic coefficients using artificial neural networks. IEEE Aerospace Conference: 1-19.

https://doi.org/10.1109/AERO.2015.7119031

[7] Sutton S, Wang L, Sun G, Zhong Y (2018) Reinforcement learning: An introduction. MIT

Press Ltd, Massachusetts

[8] Mnih V, Kavukcuoglu K, Silver D, Graves A, Antogolou I, Wiersta D, Riedmiller M (2013)

Playing Atari with Deep Reinforcement Learning. DeepMind Technologies: 1-9.

https://doi.org/10.48550/arXiv.1312.5602

[9] Watkins J, Dayan P (1992) Q-learning. Machine Learning 8: 279-292.

https://doi.org/10.1007/BF00992698

[10] Lillicrap T, Hunt J, Pritzel A, Heess N, Erez T, Tassa Y, Silver D, Wierstra D (2016)

Continuous Control With Deep Reinforcement Learning. International Conference on

Learning Representations: 1-14. https://doi.org/10.48550/arXiv.1509.02971

https://doi.org/10.1016/j.ast.2019.02.003
https://doi.org/10.3390/app11010106
https://doi.org/10.48550/arXiv.1312.5602
https://doi.org/10.1007/BF00992698
https://doi.org/10.48550/arXiv.1509.02971

 ３２

초 록

이 논문는 심층 결정론적 정책 그레이디언트(DDPG)를 사용하여

유도 미사일의 공기역학적 형태를 최적화에 관한 연구입니다. 최적화

목표는 미사일의 핀 형상을 조정하여 리프트-드래그 비율을 최대화하는

것입니다. DDPG 에이전트는 신경망 환경과 상호 작용하여 공력 계수를

예측하여 미사일 형상 수정에 대한 보상을 합니다. 에이전트는 긍정적인

보상과 부정적인 보상으로부터 형상을 최적화하는 방법을 배울니다. 이

최적화에는 몇 가지 기하학적 제약이 있고, 이 연구는 기하학적 제약

조건을 보상 함수에 포함하여 소프트 제약 (soft constraints)으로

처리하고, 또한 이 연구에서는 기하학 제약을 하드 제약 (hard

constraints)으로 취급하여 각 시간 단계에서 최적화를 수행하기 전에 기하학

 제약을 점검하는 통상적으로 사용되는 방법과 비교하여 DDPG

에이전트가 소프트 제약을 피하는 방법을 배울 수 있습니다. 이 연구

결과는 DDPG가 공력 형상을 기본 구성의 3배 이상을 달성하기 위해

최적화 되었음을 확인하였다. 본 논문은 기하학적 제약을 소프트 제약

(soft constraints)으로 처리하여 하드 제약 (hard constraints)보다 빠르게

미사일 형상을 최적화할 수 있음을 보여줍니다.

주요어 : 공기역학적 형상 최적화, 강화 학습, 인공지능, 심층 결정론적

정책 그레이디언트, 목적 함수, 하드 및 소프트 제약

학 번 : 2021-21088

	Chapter 1. Introduction.
	1.1. Motivation.
	1.2. Aerodynamic Shape Optimization Cycle.
	1.3. Problem Statement.

	Chapter 2. Artificial Neural network
	2.1. Introduction.
	2.2. Model Building.
	2.3. Results.

	Chapter 3. Reinforcement Learning.
	3.1. Introduction.
	3.2. Q-Learning.
	3.3. Deep Q-Learning
	3.4. Deterministic Policy Graddient

	Chapter 4. Deep Deterministic Policy Gradient.
	4.1. Introduction.
	4.2. Algorithm

	Chapter 5. Methodology.
	5.1. Geometry Constraints Study 1
	5.2. Geometry Constraints Study 2

	Chapter 6. Numerical Setup
	Chapter 7. Results and Discussion.
	7.1. Geometry Constraints Study 1.
	7.2. Geometry Constraints Study 2.

	Chapter 8. Conclusion
	Bibliography.
	초록

<startpage>9
Chapter 1. Introduction. 1
 1.1. Motivation. 1
 1.2. Aerodynamic Shape Optimization Cycle. 2
 1.3. Problem Statement. 3
Chapter 2. Artificial Neural network 6
 2.1. Introduction. 6
 2.2. Model Building. 7
 2.3. Results. 8
Chapter 3. Reinforcement Learning. 11
 3.1. Introduction. 11
 3.2. Q-Learning. 12
 3.3. Deep Q-Learning 13
 3.4. Deterministic Policy Graddient 14
Chapter 4. Deep Deterministic Policy Gradient. 16
 4.1. Introduction. 16
 4.2. Algorithm 18
Chapter 5. Methodology. 19
 5.1. Geometry Constraints Study 1 20
 5.2. Geometry Constraints Study 2 22
Chapter 6. Numerical Setup 24
Chapter 7. Results and Discussion. 25
 7.1. Geometry Constraints Study 1. 25
 7.2. Geometry Constraints Study 2. 27
Chapter 8. Conclusion 30
Bibliography. 31
초록 32
</body>

