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Abstract 

Rawdha Khalaf Abdulla Rahma Alhammadi 

Aerospace Engineering Major 

Graduate School of Aerospace Engineering 

Seoul National University 

This thesis optimizes the aerodynamic shape of a guided missile using deep 

deterministic policy gradient (DDPG). The optimization goal is to maximize the 

lift-drag ratio by adjusting the missile's fin geometry. The DDPG agent interacts 

with a neural network environment to predict the aerodynamic coefficient and 

hence calculate the reward for each configuration modification. The agent learns 

from the positive and negative rewards how to optimize the shape. The 

optimization follows some geometric constraints. The research studies the effect of 

treating the geometric constraints as soft constraints by including them in the 

reward function and allowing the agent to learn to avoid them compared to the 

commonly used method of treating the geometry constraints as hard constraints and 

checking them before running the optimization at each time step. Results have 

shown that DDPG is able to optimize the aerodynamic shape to achieve more than 

three times the baseline configuration. Treating the geometric constraints as soft 

optimizes the shape faster than the hard geometry constraints. 

 

Keyword : Aerodynamic Shape Optimization, Reinforcement Learning, 

Artificial Intelligence, Deep Deterministic Policy Gradient, Objective 

Function, Hard and Soft Constraints 
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Chapter 1. Introduction 
 

 

1.1. Motivation 

 

The aerodynamic optimization process takes place during the project’s 

concept design and preliminary design stages. The aerodynamic coefficient 

of various design variables and flight conditions are calculated to determine 

the aerodynamic shape, which is considered numerically intensive. It is 

expensive and time-consuming to produce precise aerodynamic 

coefficients using computational fluid dynamics (CFD). While replacing 

CFD with a semi-empirical method such as Missile DATCOM (MD) saves 

time and money, it is constrained by the potential innovative configurations. 

Using CFD or MD with a primitive aerodynamic shape optimization 

cycle that requires human input to plug in, test, and evaluate thousands of 

potential configurations is inefficient. Figure 1 illustrates the optimization 

model block, evaluation workflow block, and optimizer that make up the 

current aerodynamic design cycle described in [1]. The aerodynamic 

optimization of multiple design variables is accelerated further by using 

neural network methods instead of numerical simulations to calculate the 

aerodynamic coefficients.  



 

 ２ 

 

Figure 1: Aerodynamic optimization cycle 

1.2. Aerodynamic Shape Optimization Cycle 

 

The optimization model block, which is composed of the objective 

functions, design variables, and design constraints, is responsible of 

defining the optimization process. Aerodynamic coefficients are generated 

in the evaluation workflow block using numerical calculation, mesh 

generation, and geometric model parameterization. The typical optimizer 

uses evolution or gradient-based optimization. The finite difference and 

adjoint methods are examples of gradient-based optimization methods that 

converge on local optimum. For large design variable sets, the evolutionary 

method suffer from slow convergence rates and high dimensionality; 

examples of such methods include the multi-objective geometric algorithm 

(MOGA) and the multi-objective particle swarm optimization (MOPSO). [1] 

Recent reinforcement learning (RL) developments provides a new 

optimizer method for aerodynamic optimization. By incorporating RL into 

the present aerodynamic design cycle, it is possible to decide which design 
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variable variations to apply to accomplish an aerodynamic improvement 

within the design space through learning from the experiences. 

This study employs deep deterministic policy gradient (DDPG) as an 

RL technique for aerodynamic shape optimization. Instead of working 

directly with CFD or MD software, a neural network environment was built 

for DDPG optimization. The variable variation was limitless as long as it 

followed certain geometry constraints. This research is not meant to 

replace the precise CFD and semi-empirical approaches; rather, it is meant 

to illustrate the possibilities of using neural networks in creating an 

environment for the aerodynamic optimization that takes place in the 

concept design and early preliminary design stages. 

1.3. Problem Statement 

 

The goal of the aerodynamic fin optimization is to satisfy the 

geometrical and aerodynamic constraints and provide a geometry with the 

highest lift-drag ratio under cruising conditions. The optimization problem's 

objective function is to maximize the lift-drag ratio ( /CL CD ), which is a 

measure of aerodynamic performance. Optimization constraint over the 

geometry, static margin and drag coefficients ( CD ) are employed. The 

variable values should be limited by the geometry constraints so that they 

don't exceed the missile's length or cross over one another. The static 

margin, which measures the space between the missile's center of gravity 

and center of pressure, is responsible of the missile's stability. The XCG 

is the center of the missile's body, does not change by the fin optimization 

because the mass of the fins is negligible in comparison to that of the main 

body. Thus, the XCP controls the static stability. To avoid a decline in flight 
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performance, the drag coefficient is also limited to be less than the baseline 

configuration. The optimization model is described as: [1] 

Flow condition: Mach number of 2.0 

Altitude of 5000 m 

Angle of attack ( ALPHA ) of 4 degrees 

Objective Functions: Maximize lift-drag ratio coefficient 

Constraints: 

 

Design parameters within geometric 

constraints 

XCP within [-0.605,-2.1] 

CDshould be less than baseline value 

Where XCP is measured from the center of gravity and divided by the 

missile’s diameter. 

The problem's design variables are presented in Table 1, and some of 

these variables visualized in Figure 2. The problem's design variables are 

presented in Table 1, and some of these variables visualized in Figure 2. 

The angles are in degrees, and the variable lengths are in centimeters. The 

variables are used to generate different configuration combinations to be 

executed in MD and produce training data for the neural network. The 

baseline model features a cone-shaped nose, a cylindrical body, trapezoid 

wings, and tails with a hexagonal airfoil. In this study, just the optimization 

of fin geometry and placement is taken into account. The parameters of the 

hexagonal airfoil and missile body are thus fixed. The fins' trailing edges 

are arranged in a "+" pattern and are perpendicular to the body axis. As a 

result, the wings and tails are right trapezoids, and each is controlled by 

four factors: the span length ( #_ 2SSPAN ), the root chord 

length ( #_1CHORD ), the tip chord length ( #_ 2CHORD ), and the location 

of the fin ( #XLE ). Therefore, during the optimization process, a total of 8 
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independent design variables are adjusted. [1] 

 

Figure 2: Missile design variables 

Table 1: Design variables details 

Design 

variable 

Definition Lower 

bound 

Upper 

bound 

Baseline 

TNOSE Nose type - - Cone 

LNOSE Nose length - - 49 

DNOSE Nose diameter - - 18 

LCENTR Missile body length - - 320 

DCENTR Missile body diameter - - =DNOSE 

XLE1 Nose tip to wing leading-edge distance 125 175 172 

SWEEP1 Wing trailing-edge sweep angle  - - 0 

CHORD1_1 Wing root chord 10 40 29 

CHORD1_2 Wing tip chord 0 9 6 

SSPAN1_1 Semi-span location of wing root chord - - =DNOSE 

SSPAN1_2 Semi-span location of wing tip chord 10 30 23 

ZUPPER Wing and tail thickness to chord ratio of upper surface - - 0.025 

ZLOWER Wing and tail thickness to chord ration of lower surface - - =ZUPPER 

LMAXU Wing and tail fraction of chord from section leading-edge to maximum thickness of 

upper surface 

- - 0.25 

LMAXL Wing and tail section of the chord from leading-edge to maximum thickness of 

lower surface 

- - =LMAXL 

LFLATU Wing and tail section of constant thickness section of upper surface - - 0.25 

LFLATL Wing and tail section of constant thickness section of lower surface - - =LFLATU 

XLE2 Nose tip to tail leading-edge distance 300 320 320 

SWEEP2 Tail trailing-edge sweep angle  - - 0 

CHORD2_1 Tail root chord 10 40 38 

CHORD2_2 Tail tip chord 0 25 19 

SSPAN1_2 Semi-span location of tail root chord - - =DNOSE 

SSPAN2_2 Semi-span location of tail tip chord 10 30 22 
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Chapter 2. Artificial Neural Network 
 

 

2.1. Introduction 

 

Machines having brain-like abilities are referred to as artificial neural 

networks (ANNs), and they are able to model and predict complex 

nonlinear mechanisms without precise background knowledge [4]. We can 

utilize ANN to approximate the nonlinear relationship between the 

geometric shape and the aerodynamic coefficients because of this benefit 

[5]. Prediction accuracy is increased by training the ANN with a large 

amount of precise wind tunnel and flight test data. 

It is crucial to use a surrogate model to approximate aerodynamic 

coefficients rather than CFD since the optimization of multiple objective 

problem is computationally expensive and slow. The surrogate model 

produces good results while reducing the optimization computation time. [5] 

In this study, the lift, drag, lift-drag, and center of pressure coefficients 

are predicted using a surrogate model based on ANN. A full model is used 

to do the prediction because it gives accurate results [6]. The surrogate 

model is incorporated into the environment during the DDPG training 

process. It provides the predicted aerodynamic coefficients and uses them 

to calculate the reward for a specific state and action. [5] 

 

 

 



 

 ７ 

2.2. Model Building 

 

Figure 5 shows the structure of the neural network. The aerodynamic 

coefficients (CL, CD, CL/CD, and XCP) are the outputs, and the 8 

independent geometrical variables are the inputs. The network consists of 7 

layers, 5 of which are hidden layers. The number of input and output layer 

nodes corresponds to the number of input and output variables. There are 

64, 32, 16, 8, and 4 nodes in each of the hidden layers, respectively. To 

minimize the possibility that large values would dominate the training, the 

generated data using MD is scaled to [0, 1] before starting the training. The 

data underwent some preprocessing in order to reduce the impact of 

outliers on the prediction [6]. After extensive studies on several activation 

functions, the sigmoid function, which has the expression:
1

( )
1 x

x
e







, 

was found to be the best accurate activation function for our model. The 

data is divided into a training set (655238), a validation set (163810), and a 

testing set (1642). Adam is the network optimizer, and equation (1) states 

that the learning rate ( lr ) exhibits exponential decay. 

exp( * )ilr lr dr epoch   (1) 

Where ilr is the initial learning rate and dr is the decay rate. 
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Figure 3: Artificial neural network structure 

2.3. Results 
 

How well ANNs predict the expected outcome could be evaluated 

using some loss metrics, such as the mean square error (MSE). During the 

training and validation phases, MSE is calculated and shown in Figure 4. 

The MSE for training and validation decreases across numerous epochs 

until it reaches a value of roughly
510
, indicating that the model is accurate 

and reliable. 

 

Figure 4: Mean square error vs. epochs 

The test data's prediction accuracy can be shown using scatter plots. 
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Although the projected CL values and the actual value often agreed, values 

over 8 indicated a slight divergence, as can be seen in Figure 5a. There is 

a minor difference at the greatest angle of attacks between CD's predicted 

values and their actual values, as seen in Figure 5b. For CL/CD and XCP, 

Figures 5c and 5d, respectively, yield precise predictions. 

 

Figure 5: Coefficient Prediction accuracy 

Figure 6 compares the ANN predictions and the MD values for the 

aerodynamic coefficient. The setup parameters for this study are as 

follows: 1 130, 1_1 12, 1_ 2 6, 1_ 2 22,XLE CHORD CHORD SSPAN   

2 300, 2_1 27, 2_ 2 19,XLE CHORD CHORD   and 2_ 2 22SSPAN  . 

Figure 6a shows that CL predicted values are accurate at alpha 

numbers less than 32. At higher alpha values, the predicted values do, 

however, marginally deviate. As can be shown in Figs. 6b and 6c, 

respectively, CD and CL/CD predictions accurately agree with MD values. 
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Although they are not an exact match, the ANN XCP predictions in Fig. 6d 

are quite close to the MD values. Since the observed deviation from MD 

values is small and appropriate for our goals, it is deemed as insignificant. 

This could be mitigated by using a different neural network model to predict 

XCP values. 

 

Figure 6: Predicted (a)CL , (b)CD , (c) /CL CD , and (d) XCP vs. alpha  
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Chapter 3. Reinforcement Learning 
 

 

3.1. Introduction 

 

A decision-maker is referred to as an agent in RL. Anything that an 

agent interacts with that is external to it is considered the environment. In 

order to learn, the agent constantly engages with the environment through 

a series of time steps. At each time step t, the agent starts out in the 

state ts S , where S is the set of potential states. It then interacts with its 

environment by taking the action
ta A , where A is the set of available 

actions at state
ts . In response, the environment gives a new 

state 1ts S  and a reward
1tr R  , where R is the set of rewards. [3] 

The agent maps the states to the probabilities of choosing each of the 

possible actions at each time step. This mapping is known as the agent's 

policy t , where ( , )t s a is a stochastic policy’s probability of 

taking ta a if
ts s . The agent's objective function [ ]tJ R   is to 

maximize expected discounted return, which is the total discounted future 

reward and is expressed in the equation (2). [7, 8] 

( ) ( , )
T i t

t i ii t
R r s a 


  (2) 

WhereT is the terminal time-step and [0,1]  is the discount rate. 
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3.2. Q-Learning 

 

Q-learning is a model-free value-based off-policy temporal difference 

algorithm, which is an example of RL algorithms. Model-free refers to the 

absence of an environment model, whereas off-policy describes the 

agent’s use of behavior policy  to choose what actions to take in a given 

state to discover policy . The Bellman equation is used to describe the Q 

values with a deterministic target policy : S A  as shown in equation (3). 

Equation (4) state that Q-learning employs greedy 

policy ( ) argmax ( , )as Q s a  . [10] 

1 1( , ) [ ( , ) ( , ( ))]t t t t t tQ s a r s a Q s s       (3) 

Q values are initially assigned to a low random value in Figure 7, and 

they are then adjusted as the episodes proceed. The agent observes its 

current state
ts at the beginning of an episode, chooses an 

action ta from and executes it, observes the new state
1ts 
, receives an 

immediate reward 1tr  , and then uses to choose the action for the new 

state to roughly approximate the Q value according to equation (4). This 

sequence is repeated until termination. As seen in Figure 7, estimates of Q 

value are arranged in a look-up table, where the agent learns both the 

value function and the policy. [7, 8] 

1 1( , ) ( , ) [ max ( , ) ( , )]t t t t t t t t
a

Q s a Q s a r Q s a Q s a       (4) 

Q-learning learning objective is to find the optimal policy that that 

maximizes the total expected discounted reward. The problem with Q-

learning is that it can only be used for discrete, low dimensional state and 
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action spaces since at each iteration, the Q value is adjusted by looking up 

the table. [9, 10] 

 

Figure 7: Q-learning algorithm 

3.3. Deep Q-Learning 

 

In order to extract features from input in a high dimensional state 

space, deep reinforcement learning (DRL) combines the capabilities of 

deep learning (DL) and the RL algorithm. In order to construct deep Q-

learning (DQN), the lookup table is replaced by a neural network that is 

used as a function approximator of the action-value function, 

*( , ; ) ( , )Q s a Q s a  with parameter
Q . Additionally, DQN combines the 

stochastic minibatch updates with a replay buffer to ensure the least 

possible correlation between samples. In order to sample certain 

experiences for learning, the replay buffer is employed. It is made up of 

experience tuples (
1 1, , , t t t ts a r s 

) that gradually grow in size as the agent 

interacts with the environment. The oldest experience is discarded once the 

buffer reaches a predetermined size to create room for the new ones. 

Moreover, DQN employs a target network that is a replica of our function 

approximator neural network and serves as a fixed target during temporal-
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difference backup. DQN seeks to minimize the loss described in equation 

(5) in order to optimize the parameter Q. DQN is currently limited to cases 

with discrete actions and low-dimensional state and action spaces since 

obtaining the action of the maximum action-value function for continuous 

domains requires an iterative optimization process. [6, 10] 

2( ) [( ( , | ) ) ]Q Q

t t tL Q s a y     (5) 

Where the target ty : 

1 1( , ) ( , ( ) | )Q

t t t t ty r s a Q s s      (6) 

3.4. Deterministic Policy Gradient 

 

Many model-free RL algorithms are based on policy iteration that 

consists of policy evaluation and policy improvement. Policy evaluation 

uses temporal-difference learning to estimates the action-value function. 

Policy improvement methods, such as greedy policy 

1( ) arg max ( , )
kk

as Q s a   , update the policy with respect to the 

estimated action-value function. Greedy policy requires global maximization 

at every step, which is problematic. Therefore, instead of using greedy 

policy, the policy is moved in the direction of the gradient of Q  and that is 

known as the deterministic policy gradient (DPG). Specifically, the policy 

parameters
1k 

are updated in the direction of the 

gradient ( , ( ))
k

Q s s

  as expressed in equation (7). And by applying the 

chain rule, the gradient in equation (7) is decomposed to gradient of the 

policy with respect to the policy parameter and gradient of action-value with 

respect to the actions as shown in equation (8). [3, 5] 
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1 [ ( , ( ))]
kk k Q s s

          (7) 

1

( )[ ( ) ( , ) | ]
kk k

a a ss Q s a




     

      (8) 

DPG is ideal for continuous action problems with high dimensions. 

DPG is policy-based, unlike Q-learning and DQN which are value-based. It 

uses gradient-based methods to optimize deterministic policies as neural 

network parameters. Combining DQN with DPG, deep deterministic policy 

gradient (DDPG) can be used for high-dimensional continuous actions 

which is suitable for our problem. [3, 7] 
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Chapter 4. Deep Deterministic Policy Gradient 
 

 

4.1. Introduction 

 

DQN and DPG theorem provide the foundation of the DDPG 

algorithm. Similarly to DQN, DDPG is an actor-critical algorithm that 

employs replay buffers and target networks. The DPG algorithm 

parameterizes the actor function ( | )s   , which defines the current policy 

that deterministically maps state to an action. The critic judges the action 

chosen by the actor, its function ( , | )QQ s a  known as the action-value 

function is learned through the Bellman equation just like in Q-learning. 

Neural networks with parameters
 and

Q , respectively, represent both 

the actor and critic functions. By reducing the loss described in equation (5), 

the parameter Q is optimized (5). The actor’s parameter
 is updated 

using the objective function gradient J
 in equation (9). [3, 5] 

, ( )[ ( , | ) | ( , ) | ]
t t t

Q

a s s a s s sJ Q s a s 



 
         (9) 

The tuples (
1 1, , , t t t ts a r s 

) are the transitions samples from the 

environment while following an exploration policy, are stored in the replay 

buffer, which is a finite sized cache. The oldest sample are removed once 

the replay buffer is full. At each time step, the actor and critic are updated 

by sampling a minibatch from the buffer. The replay buffer can be large 

because of the DDPG’s off-policy property, which permits learning across a 

set of uncorrelated transitions. [5] 

The divergence problem of Q-learning is due to 

updating ( , | )QQ s a  network that is also used in the target value equation 
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(6). By using soft target updates rather than an exact copy of the network 

weights, DDPG addresses this problem. Calculating the target values 

involves making a duplicate of the actor and critic networks. The learning is 

more stable because the weights of the neural networks are updated 

gradually toward the learned networks’ parameters: ' (1 ) '       

where 1  . [3, 5] 

When the observation value varies across the environment, the 

network is unable to learn effectively. To address this, DDPG uses batch 

normalization. Using this technique, each dimension is normalized across 

all samples in a minibatch to have a unit mean and variance. It also 

maintains a running average of the mean and variance for testing 

normalization. [10] 

In order to account for exploration in the continuous action space, an 

exploration policy is created. Equation (10) shows how this policy integrates 

noise from a noise process N into our actor policy. [10] 

'( ) ( | )t t t ts s       (10) 

Where
tN is an Ornstein-Uhlenbeck process used for effective exploration. 
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4.2. Algorithm 
Algorithm 1 DDPG algorithm 

Randomly initialize critic network ( , | )QQ s a  with weight 
Q and actor ( | )s   with weight

  

Initialize target networks 'Q and ' with weights
'Q Q  , and 

'   respectively 

Initialize replay buffer R  

for episode=1, M do 

    Initialize a random process N for exploration 

    Observe initial observation state
ts  

    for t=1, T do 

        Select action ta using equation 10 according to the current policy ( | )t ts   and exploration noise N  

        Clip the action ( , , )t Low Higha clip a a a where Lowa and
Higha are defined in the environment  

        Execute ta in the environment and observe reward tr and new state 1ts   

        Store ( 1, , ,t t t ts a r s  ) in R  

        Sample a random minibatch of N transitions ( 1, , ,t t t ts a r s  ) from R  

        Set targets as
' '

1 1'( , '( | ) | )Q

i i i iy r Q s s        

        Update the critic by gradient descent to minimize the loss:
21

( ( , | ) )Q

i i ii
L Q s a y

N
    

        Update the actor policy by gradient ascent:
, ( )

1
( , | ) | ( | ) |

i i i

Q

a s s a s si
J Q s a s

N
 



 
        

        Update the target networks:
' '(1 )Q Q Q      and

' '(1 )         

    end 

end 
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Chapter 5. Methodology 
 

 

Starting from a baseline design as shown in Table 1, the optimal 

aerodynamic configuration is learned using DDPG. In equation (11), the 

agent chooses an action at a specific state based on a deterministic policy. 

[1] 

( | )t t ta s    (11) 

Where
ts is the current configuration that is made up of the 8 independent 

design variables and ta is the value added to
ts resulting in the new 

configuration
1ts 
. The action ta has positive and negative values, and it has 

different values for each design variable represented in state
ts . 

As previously discussed, the training goal is the find the optimal 

network parameters under a specific reward function. Reward function 

design is crucial for adequate, stable learning. According to equation (12), 

the reward function rewards lift-drag ratio increases after each interaction 

with the environment while penalizing excessive XCP and CD fluctuations. 

[1] 

0

0

10.( ( ) ( )), if [ 0.605, 2.1] & baseline
( , )

( ) ( ) 10. 10. , otherwise

t

t t

t

f s f s XCP CD
r s a

f s f s XCP CD

    
 

    
 (12) 

Where f refers to the lift-drag ratio value predicted using the ANN, 0s  is the 

baseline design configuration that we aim to optimize and
ts is the current 

design configuration. The XCP and CD are the XCP and CD variation 

from the baseline. This reward is used in the sum of discounted future 

reward equation (2).  

There are different types of optimization constraints, some influence 
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the objective function known as soft constraints where they are included in 

the reward function. The other type of constraint is known as hard 

constraint, and it ensures that all optimization solutions are meeting the 

hard constraint, hence they are checked before doing the optimization. An 

example of the different constraint types are: 1) the XCP and CD  

constraints discussed earlier in the problem statement section are soft 

constraints and they are included in the reward function in Equation (12), 2) 

the geometry constraints are commonly considered hard constraints. In this 

research we observe the effect of treating the geometry constraints as soft 

constraints by including them in the reward function. 

5.1. Geometry Constraints Study 1  

 

The first study constraining method treats the geometry constraints as 

soft constraints by including them in the reward function and the DDPG 

optimization is carried on regardless if the geometry constraints are met or 

not as shown in Figure 8. The DDPG agent is expected to learn that 

defying the geometry constraints is not desirable and receives negative 

rewards for that, and therefore the agent would avoid the actions that lead 

to these constraints. This method will be referred to as “method 1” 
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Figure 8: Method 1 of applying geometry constraints (Soft) 

After understanding the method of constraining used in this study, we 

will focus now on two types of geometry constraints. The first type called 

“constraint 1” limits the 8 independent variables with upper and lower 

bounds as found in Table 1. The reward function is modified to reflect the 

variables limitations as expressed in equation (13).  

0 0

0

10.(largest negative difference from the bounds)

( , ) 10.( ( ) ( ) if [ 0.605, 2.1] and 

( ) ( ) 10. 10.  otherwise

t t t

t

r s a f s f s XCP CD CD

f s f s XCP CD

 
 

      
      

(13) 

The second constraint type called “constraint 2” is looser, therefore it 

is able to explore values beyond the defined bounds of the variables. The 

second constraint tries to maintain a sensible geometrical combinations 

conditions such as: 1) positive geometry variables, 2) 1XLE LNOSE , 

3) 1 1_1 2XLE CHORD XLE  , 4) 1_ 2 30SSPAN  , 5) 2_ 2 30SSPAN   
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and 6) 3 2_1XLE CHORD LNOSE LCENTR   . The second geometry 

constraint reward function is modified to include the geometric conditions 

as expressed in equation (14). 

Largest negative variable if cond. 1)

1 if cond. 2)

2 ( 1 1_1) if cond. 3)

( , ) 10.(30 1_ 2) if cond. 4)

10.(30 2 _ 2) if cond. 5)

10.( ( 2 2 _1)) if cond. 

t t

LCENTR XLE

XLE XLE CHORD

r s a SSPAN

SSPAN

LNOSE LCENTR XLE CHORD



 

 



  

0 0

0

6)

10( ( ) ( ))if [ 0.605, 2.1]&
other.,

( ) ( ) 10. 10.  otherwise

t

t

f s f s XCP CD CD

f s f s XCP CD














    
     

(14) 

Where 0CD is the baseline configuration drag coefficient. 

5.2. Geometry Constraints Study 2  

 

The second study’s compares two different constraining methods with 

fixed geometry constraints type. The common method shown in Figure 9 

treats the geometry constraints as hard constraints and checks them before 

running the DDPG optimization, this method is called “method 2”. This 

method is compared with the method 1 from the geometry constraints study 

1 shown in Figure 8, where the constraints are soft constraints and the 

DDPG optimization is always running. The two methods being compared in 

this study uses constraint 2, which is a looser geometry constraints 

expressed in equation (14). Method 2 reward function is given by equation 

(12). 
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Figure 9: Method 2 of applying geometry constraints (Hard) 
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Chapter 6. Numerical Setup 
 

 

The network is based on TensorFlow and the environment is custom 

built using OpenAI Gym with ANN to calculate the rewards. The learning 

rates for the actor and critic are 0.0001 and 0.001, respectively, whereas 

the reward discount rate is 0.99. The actor’s and critic’s network are 

composed of three layers with 256 nodes each. The activation function of 

the hidden layers is ( ) max(0, )i iX X  , the critic’s output layer’s activation 

function is linear, and the actor’s output layer’s activation function is 

( ) sinh( ) / cosh( )i i iX X X  . The size of the replay buffer is 50000, and the 

minibatch size is 64. The maximum number of episodes was 500, and each 

episode terminates after 20 steps. Different action value range is used for 

different studies. At each step in the episode, the action is restricted to the 

range [-0.1, 0.1].  
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Chapter 7. Results and Discussion 
 

 

7.1. Geometry Constraints Study 1 

 

In this first study, the DDPG is always running and learns to avoid the 

geometric constraints by receiving negative rewards for them. The reward 

function of constraint 1 if given by equation (13) and it limits the variables to 

upper and lower bounds. The results of this geometry constraint is shown in 

Figure 10. A good configuration was recorded in less than 100 episodes, 

and this indicates that DDPG is able to rapidly optimize the aerodynamic 

configuration. The loss described in equation (5) steeps at the same region 

the reward escalates.  

 

Figure 10: Method 1, constraint 1 average reward and loss vs. episodes 

Figure 11 displays the reward and loss curves of constraint 2 that is 

expressed in equation (14). The average reward increases and the loss 
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decreases to reach an optimal configuration in less than 100 episodes as 

well.  

 

Figure 11: Method 1, constraint 2 average reward and loss vs. episodes 

Table 2 compares the two aerodynamic configuration proposed by the 

two different geometry constraint types. Both constraint types increased the 

lift-drag ratio and decreased the drag coefficient. Constraint 2 is better than 

the limited constraint 1 because it increased the /CL CD  5% more, 

decreased the CD  16% less and found a configuration with XCP within 

the specified bound of [-0.605,-2.1]. Constraint 1 struggles to find a 

configuration that follows the XCP limitation because of its tight bounds, 

and this showcases the limitation of treating the geometry constraint as soft.  
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Table 2: Comparison table of geometry study 1 

Variables       Constraints 
Constraint 1 Constraint 2 Baseline  

1XLE  167 157 172 

1_1CHORD  26.5998 20 29 

1_ 2CHORD  5.1 3.3 6 

1_ 2SSPAN  25 29 23 

2XLE  318.4098 314 320 

2_1CHORD  35 29 38 

2_ 2CHORD  21.5 26.5 19 

2_ 2SSPAN  20.850 16 22 

/CL CD  3.794 4.003 1.051 

CD  0.339 0.284 3.132 

XCP  -3.311 -2.04 -2.422 

 

7.2 Geometry Constraints Study 2 

 

Two different constraining methods are compared here. The two 

methods use the same constraint which is constraint 2, since it gave the 

desired results. Method 1 is already observed in the geometry constraints 

study 1, and it is shown in Figure 11. Method 2 treats the geometry 

constraints as hard constraints and always checks them before DDPG 

optimization. The result of method 2 is shown in Figure 12. 
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Figure 12: Method 2, constraint 2 average reward and loss vs. epochs 

Figure 12 shows that the average reward increases until 40 episodes 

and then drops, this is due to the agent exploration because it discovered 

new states that gave negative rewards. After the agent has observed these 

negative reward states, it learns to avoid them, which is why the average 

reward increases back around 120 episodes to reach a higher value than 

the first increase.  

Method 1 and method 2 both increased the average reward and 

decreased the loss. The proposed method in this thesis, method 1, finds 

the optimized aerodynamic configuration in 100 episodes whereas the 

common constraining method, method 2, finds it in 300 episodes. The state 

space of method 1 is larger since it considers states that defy the geometric 

constraints, which is why its average reward stabilizes around -200. Method 

2’s state space is smaller because the geometric constraints must be met 

before running the optimization, and this is reflected on the average reward 

value as it stabilizes around -50. 
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The aerodynamic configuration of method 1 and method 2 look exactly 

the same as shown in Table 3, except the wing’s root chord length. Method 

1 increased the lift-drag ratio by 280% of the baseline configuration, and 

method 2 increased it by 309%.  

Table 3: Comparison table of geometry study 2 

Variables       Constraints Method 1 Method 2 Baseline  

1XLE  157 157 172 

1_1CHORD  20 38 29 

1_ 2CHORD  3.3 3.3 6 

1_ 2SSPAN  29 29 23 

2XLE  314 314 320 

2_1CHORD  29 29 38 

2_ 2CHORD  26.5 26.5 19 

2_ 2SSPAN  16 16 22 

/CL CD  4.003 4.305 1.051 

CD  0.284 0.325 3.132 

XCP  -2.04 -1.954 -2.422 
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Chapter 8. Conclusion 
 

 

In conclusion, the aerodynamic shape optimization is essential for the 

concept design stage to minimize future changes and hence reduce the 

cost. The advancement in the artificial intelligence and especially 

reinforcement learning have introduced aerodynamic shape designers to a 

new method for optimization. Using DDPG for optimization is useful in 

situations where continuous state and action are necessary. DDPG has 

optimized the aerodynamic shape for higher lift-drag ratio and increased it 

to 3 times its baseline configuration value. In this paper, method 1 proved 

its rapid optimization capability especially when the geometry constraints 

are not too limited. The common constraining method, method 2, has 

higher chance of finding the global optimal in case of a large state space. 
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초    록 

 

이 논문는 심층 결정론적 정책 그레이디언트(DDPG)를 사용하여 

유도 미사일의 공기역학적 형태를 최적화에 관한 연구입니다. 최적화 

목표는 미사일의 핀 형상을 조정하여 리프트-드래그 비율을 최대화하는 

것입니다. DDPG 에이전트는 신경망 환경과 상호 작용하여 공력 계수를 

예측하여 미사일 형상 수정에 대한 보상을 합니다. 에이전트는 긍정적인 

보상과 부정적인 보상으로부터 형상을 최적화하는 방법을 배울니다. 이 

최적화에는 몇 가지 기하학적 제약이 있고, 이 연구는 기하학적 제약 

조건을 보상 함수에 포함하여 소프트 제약 (soft constraints)으로 

처리하고, 또한 이 연구에서는 기하학 제약을 하드 제약 (hard 

constraints)으로 취급하여 각 시간 단계에서 최적화를 수행하기 전에 기하학

 제약을 점검하는 통상적으로 사용되는 방법과 비교하여 DDPG 

에이전트가 소프트 제약을 피하는 방법을 배울 수 있습니다. 이 연구 

결과는 DDPG가 공력 형상을 기본 구성의 3배 이상을 달성하기 위해 

최적화 되었음을 확인하였다. 본 논문은 기하학적 제약을 소프트 제약 

(soft constraints)으로 처리하여 하드 제약 (hard constraints)보다 빠르게 

미사일 형상을 최적화할 수 있음을 보여줍니다. 

 

주요어 : 공기역학적 형상 최적화, 강화 학습, 인공지능, 심층 결정론적 

정책 그레이디언트, 목적 함수, 하드 및 소프트 제약 

학   번 : 2021-21088 
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