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Abstract 

 
Advanced composite structures are used in aerospace, military, 

nuclear reactors, chemical plants, and modern architecture. In 

particular, sandwich panels with honeycomb cores have been 

developed for specific applications in high-temperature regions. As 

elevated temperatures affect the properties of composite structures, 

an asymmetric laminated composite plate model was developed for 

the thermo-elastic vibration, thermal buckling, post-buckling and 

limit-cycle oscillation (LCO) analyses with different core-face 

sheet thickness ratio. The First-order Shear Deformation Theory of 

Plate (FSDTP), which adopts the shear correction factor (SCF), is 

used with the consideration of heat conduction and supersonic flow. 

To derive the SCF, the shear strain energy equality of each layer and 

that of the composite plate were used in the stress equilibrium 

equation using temperature-dependent (T-D) material properties. 

A three-layer composite model with face sheets and core composed 

of a metal matrix composite (MMC) and a titanium honeycomb was 

introduced for high temperature applications. For the linear analyses, 

natural frequencies and critical temperature are derived for the 

vibration and thermal buckling analyses, respectively. Furthermore, 

non-linear analyses are held using Newton-Raphson method for 
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post-buckling analysis and Newmark time iteration method for limit-

cycle oscillation. First-order piston theory is considered for the 

aero-dynamic loads. Diverse case studies are held for the various 

core-face sheet thickness ratio, aspect ratio, and different fiber 

directions. The results are compared with those obtained using 

conventional SCF. 

 

Keyword: Thermo-elastic material properties, Heat conduction, 

Aero-dynamics, Physical neutral surface, Metal Matrix Composite, 

Titanium Honeycomb 
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1. Introduction 
 

Composite laminates have become essential structural elements as they possess 

higher strength than mono-materials despite their light weight, even at elevated 

temperatures. Especially, sandwich structures composed with titanium honeycomb 

core and Metal Matrix Composite (MMC) [1] face sheets exhibit exceptional 

stiffness and strength. In addition, the honeycomb core allows the structure to 

withstand bending deflection, and it has a relatively low thermal conductivity and 

light weight. So, the structures perform outstanding thermal barrier which in turn the 

sandwich structures are commonly used as the outer skin of space shuttle, military 

missions, and architecture. Therefore, structural analyses such as vibration, buckling, 

post-buckling and limit-cycle oscillation are inevitable for the sandwich panel to 

prevent structure deformation or failure. 

For the development of the composite structures, analytical modeling for vibration 

of the structures have been extensively investigated in past few decades. Liu [2] 

studied the vibration behavior of laminated composite plates which are subjected to 

temperature changes. Tong [3] investigated the variations in the natural frequencies 

of conical shells with the altering fiber directions. In addition, Hachemi [4] presented 

the free vibration analysis of a laminated square composite plate with complicated 

cutouts. Furthermore, Ribeiro [5] studied the vibration of laminated composite plates 

with varied stiffness. Vibration analyses are held by Khatua [6], who held the 

bending and vibration of multilayer sandwich beams and plates. Wang and Zhang [7] 

discussed for the free vibration of sandwich panel containing honeycomb core. 

Further, thermal buckling of sandwich plate analysis are held by Matsunaga [8]. Tran 
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and Thai [9], also investigated the thermal buckling analysis of functionally graded 

plates. They showed the difference of analysis method between first-order and third-

order deformation theory. Shariyat [10], researched thermal buckling and post-

buckling analyses for rectangular composite plates with the consideration of 

temperature-dependent material properties. Further non-linear analyses are held for 

Limit-cycle oscillation (LCO). With the aero-dynamic load, the structure vibrates in 

a constant amplitude in some manner. Lee and Kim [11] held the thermal post-

buckling and limit-cycle oscillation under supersonic flow. Song and Li [12] also 

developed the flutter analysis of lightweight sandwich structures. 

For the simplification of calculations and to obtain precise results, the structures 

are analyzed using the First-order Shear Deformation Theory of Plate (FSDTP), and 

the shear correction factor (SCF) is considered for the accuracy of the analysis. 

Puchegger [13] performed experiments using a simple bar, and the results showed 

the dependence of the SCF on the aspect ratio of structures. Still, the SCF tends to 

be constant for low aspect ratio structures (less than unity). Bert [14] used the 

equilibrium equation considering shear strain energy equality based on the neutral 

surface concept for the asymmetric laminated beam to derive the factor. Especially, 

the variation of SCF was shown for a bi-modular structure with properties changing 

through the innate fiber direction. 

For the thick plate model, shear has a greater effect on the structures. Lim [15] 

derived the improved correction factor by matching the deflection obtained using the 

FSDTP and the Third-order Shear Deformation Theory. The results showed that the 

aspect ratio largely affects the derivation of the factor. Vlachoutsis [16] adopted the 

neutral surface concept to reduce the calculation process remarkably, yet the Poisson 
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ratio was considered constant through the thickness direction, which is affected by 

high temperature. Further, multilayered laminates have been studied by Isaksson [17], 

who calculated the factor for the corrugated core structure. Moreover, Pan and Wu 

[18] researched the shear deformation of the honeycomb core and showed that the 

contribution of bending deformation was equivalent to the transverse shear effect for 

the decreased core thickness. Nguyen and Sab [19] obtained the factor for 

functionally graded material (FGM) plates and found that the prediction of the factor 

plays an important role in static analysis. 

Almost every materials properties are affected by temperature, which is not 

limited to only high-temperature regions. Thus, interpolation from the given values 

at several temperature points is conducted to derive material properties at intended 

temperatures. This so-called curve fitting process, which was performed by Reddy 

[20] who first introduced the thermal effect on material properties for FGM and the 

values used for the interpolation was firstly reported in the experiment held by 

Touloukian [21]. Even the analyses are containing the thermal effect such as 

temperature-dependent (T-D) material properties, heat conduction etc., the method 

that contains SCF supposed the factor as temperature-independent (TID). 

Considering the high-temperature area, Aklilu [22] considered the thermal effect 

on carbon, glass, and hybrid polymer composites. Fatemi [23] used temperature-

dependent (T-D) material properties to know the thermal effect on the honeycomb 

core structure. Demirbas [24] considered the temperature effect on the stress and 

strain of Functionally Graded (FG) rectangular plates in a high-temperature region 

using finite element method. Papakonstatinou [25] et al. analyzed the material 

properties of composites at room temperature as well as elevated temperatures and 
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estimated the less expensive polysialate composites can be a substitute of common 

materials. Yoo and Kim [26] optimized the design of a smart skin structure using 

genetic algorithm with the thermal conductivity effect. Matsunaga [27] showed the 

effect of temperature on the dynamic response of angle-ply laminates using higher-

order Shear Deformation Theory.  

Some researchers handled the thermal effect on SCF, which is only conducted for 

the FGMs. Hong [28] reported the variation in the SCF due to volume fraction and 

temperature for the vibration and deflection analysis of FG shells. Lim and Kim [29] 

researched thermo-elastic effects on the SCF for three FG beam models, and Lee and 

Kim [30] derived the T-D SCF for FGM plates using heat transfer. The results 

showed that temperature highly influences the SCF in the high-thermal region. 

However, none of these studies considered the thermal effect on SCF for discrete 

multi-layered structures. In this study, natural frequencies were derived for the 

vibration analysis of a laminated composite plate considering the Temperature 

Dependent Shear Correction Factor (T-D SCF). Specifically, an asymmetric 

sandwich plate was studied with varying temperature, aspect ratio, and fiber 

direction. The derivation process was conducted after curve fitting in every 

temperature range, and the values of the SCF were verified using the previously 

reported data. 

With the T-D SCF consideration, aero-thermo-elastic effect on sandwich panel is 

analyzed after the research. For the linear analysis, thermal vibration and buckling is 

shown by deriving natural frequency and critical temperature. Further, non-linear 

analysis is depicted with thermal post-buckling and limit cycle oscillation (LCO), 
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with the heat conduction effect. von-Karman strain-displacement relations [31] are 

considered for the non-linear analysis and First-order Piston theory [32] is used for 

the aero-dynamic conditions. Verification for the results are shown with the previous 

researches, and the case studies are held for heat conduction, fiber direction, aspect 

ratio and thickness ratio difference under T-D SCF. 
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2. Formulation 

 

The three layered sandwich panel constructed with MMC face sheet and 

titanium honeycomb core including the physical neutral surface 𝑧𝑧𝑁𝑁  is shown in 

Figure 1. The thickness of face sheet and core is ℎ𝑓𝑓 and ℎ𝑐𝑐. The total thickness is 

ℎ and the length and width of model are 𝑎𝑎, respectively. 

 

2.1. Material model 

Structures used at high-thermal area change their material properties due to the 

temperature rise. For the investigation of temperature effects, it is appropriate to use 

interpolation from material properties at several temperature points [33]. Then the 

material properties can be expressed as the function of temperature in the second-

order polynomial form as: 

𝑃𝑃(𝑇𝑇) = 𝑃𝑃0𝑇𝑇2 + 𝑃𝑃1𝑇𝑇 + 𝑃𝑃2 (1) 

where 𝑇𝑇 is the temperature, and 𝑃𝑃0, 𝑃𝑃1 and 𝑃𝑃2 are constants, which are shown in 

Table 1. Also, 𝑃𝑃(𝑇𝑇) can be represented as temperature-dependent Young’s modulus, 

Shear Modulus, Poisson’s ratio, thermal expansion coefficient density and 

coefficient of heat transfer as shown in Table 2. Using the above equation, it is 

possible to derive T-D material properties in the whole temperature range.  

Also, 𝑧𝑧𝑁𝑁 is the position neutral surface as [34], and with the consideration of 

thermal effect, the equation is expressed as: 
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𝑧𝑧𝑁𝑁(𝑇𝑇) =
∫ 𝑧𝑧𝑄𝑄�𝑥𝑥𝑥𝑥(𝑧𝑧,𝑇𝑇)𝑑𝑑𝑧𝑧ℎ/2
−ℎ/2

∫ 𝑄𝑄�𝑥𝑥𝑥𝑥(𝑧𝑧,𝑇𝑇)𝑑𝑑𝑧𝑧ℎ/2
−ℎ/2

=
1
2∑ �𝑄𝑄�𝑥𝑥𝑥𝑥(𝑇𝑇)�𝑘𝑘�𝑧𝑧𝑘𝑘

2 − 𝑧𝑧𝑘𝑘−12 �𝑛𝑛
𝑘𝑘=1

∑ �𝑄𝑄�𝑥𝑥𝑥𝑥(𝑇𝑇)�𝑘𝑘(𝑧𝑧𝑘𝑘 − 𝑧𝑧𝑘𝑘−1)𝑛𝑛
𝑘𝑘=1

 (2) 

 

2.2. Heat conduction 

With the consideration of one-dimensional steady-state heat conduction in 

thickness direction on three layered sandwich panel, the temperature on position 𝑧𝑧 

can be described as: 

𝑑𝑑
𝑑𝑑𝑧𝑧 �

𝐾𝐾(𝑧𝑧)
𝑑𝑑𝑇𝑇
𝑑𝑑𝑧𝑧�

= 0 (3) 

where 𝐾𝐾(𝑧𝑧)  is the heat conduction coefficient dependent on 𝑧𝑧 . Then, the 

temperature of each layer can be obtained by solving equation (3) with the boundary 

conditions. That is, 

𝑇𝑇1 = 𝑇𝑇𝑏𝑏 = 𝑇𝑇𝑐𝑐𝑟𝑟𝑓𝑓, 𝑇𝑇4 = 𝑇𝑇𝑢𝑢, 𝑇𝑇𝑖𝑖|𝑧𝑧=𝑧𝑧𝑖𝑖 = 𝑇𝑇𝑖𝑖+1|𝑧𝑧=𝑧𝑧𝑖𝑖, 𝐾𝐾𝑖𝑖
𝑑𝑑𝑇𝑇𝑖𝑖
𝑑𝑑𝑧𝑧

|𝑧𝑧=𝑧𝑧𝑖𝑖    (𝑖𝑖 = 2,3,4) 

where the subscript 𝑏𝑏 and 𝑢𝑢 are the bottom and upper surface, respectively. Note 

that each interface has the equal temperature value. The temperature distribution of 

sandwich panel is shown in Fig. 2. 

 

2.3. Constitutive equation  

For the analysis of current sandwich panel, First-order Shear Deformation 

Theory of Plate (FSDPT) is used. The displacement field considering temperature 

and time-difference are expressed as following: 

�
𝑢𝑢(𝑥𝑥,𝑦𝑦, 𝑧𝑧, 𝑡𝑡,𝑇𝑇)
𝑣𝑣(𝑥𝑥,𝑦𝑦, 𝑧𝑧, 𝑡𝑡,𝑇𝑇)
𝑤𝑤(𝑥𝑥,𝑦𝑦, 𝑧𝑧, 𝑡𝑡,𝑇𝑇)

� = �
𝑢𝑢0(𝑥𝑥,𝑦𝑦, 𝑡𝑡,𝑇𝑇) + �𝑧𝑧 − 𝑧𝑧𝑁𝑁(𝑇𝑇)�𝜙𝜙𝑥𝑥(𝑥𝑥,𝑦𝑦, 𝑡𝑡,𝑇𝑇)
𝑣𝑣0(𝑥𝑥,𝑦𝑦, 𝑡𝑡,𝑇𝑇) + �𝑧𝑧 − 𝑧𝑧𝑁𝑁(𝑇𝑇)�𝜙𝜙𝑦𝑦(𝑥𝑥,𝑦𝑦, 𝑡𝑡,𝑇𝑇)

𝑤𝑤0(𝑥𝑥,𝑦𝑦, 𝑡𝑡,𝑇𝑇)
� (4) 
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where 𝑢𝑢, 𝑣𝑣, and 𝑤𝑤 are the displacements in the 𝑥𝑥, 𝑦𝑦 and 𝑧𝑧 directions. Also, the 

rotation of the transverse normal in the 𝑥𝑥𝑧𝑧  and 𝑦𝑦𝑧𝑧  plates is 𝜙𝜙𝑥𝑥  and 𝜙𝜙𝑦𝑦 

respectively. The subscript 0 indicates the displacements in mid-plane. 

Using the von-Karman large deflection theory, in-plane strain vector 𝐞𝐞 

including nonlinear terms is [31]: 

          𝐞𝐞 = 𝝐𝝐𝟎𝟎 + (𝑧𝑧 − 𝑧𝑧𝑁𝑁)𝝌𝝌  

= �
𝜖𝜖𝑥𝑥𝑥𝑥
𝜖𝜖𝑦𝑦𝑦𝑦
𝛾𝛾𝑥𝑥𝑦𝑦

� =

⎩
⎪
⎨

⎪
⎧ 𝑢𝑢0,𝑥𝑥 +

1
2
𝑤𝑤0,𝑥𝑥
2 + (𝑧𝑧 − 𝑧𝑧𝑁𝑁)𝜙𝜙𝑥𝑥,𝑥𝑥

𝑢𝑢0,𝑦𝑦 +
1
2
𝑤𝑤0,𝑦𝑦
2 + (𝑧𝑧 − 𝑧𝑧𝑁𝑁)𝜙𝜙𝑦𝑦,𝑦𝑦

𝑢𝑢0,𝑦𝑦 + 𝑣𝑣0,𝑥𝑥 +𝑤𝑤0,𝑥𝑥𝑤𝑤0,𝑦𝑦 + (𝑧𝑧 − 𝑧𝑧𝑁𝑁)(𝜙𝜙𝑥𝑥,𝑦𝑦 − 𝜙𝜙𝑦𝑦,𝑥𝑥)⎭
⎪
⎬

⎪
⎫

 

(5) 

where 𝝐𝝐𝟎𝟎 and 𝝌𝝌 are the in-plane strain vector at the mid-plane and the curvature 

strain vector, respectively. 

Further, the transverse shear strain vectors 𝜸𝜸 can be derived as 

𝜸𝜸 = �
𝛾𝛾𝑦𝑦𝑧𝑧
𝛾𝛾𝑥𝑥𝑧𝑧� = �

𝑤𝑤0,𝑦𝑦 + 𝜙𝜙𝑦𝑦
𝑤𝑤0,𝑥𝑥 + 𝜙𝜙𝑥𝑥

� (6) 

Since the thermal stresses are not caused by external load but by the expansion of 

material under the restrained boundary condition, stress-strain relations are written 

as: 

𝝈𝝈 = [𝑄𝑄�](𝝐𝝐 − 𝜶𝜶𝛥𝛥𝑇𝑇) (7) 

Subsequently, the stresses in the 𝑘𝑘𝑡𝑡ℎ layer of laminate is expressed 
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�
𝜎𝜎𝑥𝑥
𝜎𝜎𝑦𝑦
𝜏𝜏𝑥𝑥𝑦𝑦

�
𝑘𝑘

= �
𝑄𝑄�11 𝑄𝑄�12 𝑄𝑄�16
𝑄𝑄�12 𝑄𝑄�22 𝑄𝑄�26
𝑄𝑄�16 𝑄𝑄�26 𝑄𝑄�66

�

𝑘𝑘

��
𝜖𝜖𝑥𝑥
𝜖𝜖𝑦𝑦
𝛾𝛾𝑥𝑥𝑦𝑦

�
𝑘𝑘

− Δ𝑇𝑇 �
𝛼𝛼𝑥𝑥
𝛼𝛼𝑦𝑦
𝛼𝛼𝑥𝑥𝑦𝑦

�
𝑘𝑘

� (8) 

Where �𝑄𝑄�𝑖𝑖𝑖𝑖� are the transformed stiffness coefficients due to fiber direction and Δ𝑇𝑇 

is the temperature rise.  

Further, 𝛼𝛼𝑥𝑥, 𝛼𝛼𝑦𝑦 and 𝛼𝛼𝑥𝑥𝑦𝑦 are defined as 

𝛼𝛼𝑥𝑥 = 𝛼𝛼1 cos2 𝜃𝜃 + 𝛼𝛼2 sin2 𝜃𝜃 

𝛼𝛼𝑦𝑦 = 𝛼𝛼1 sin2 𝜃𝜃 + 𝛼𝛼2 cos2 𝜃𝜃 

𝛼𝛼𝑥𝑥𝑦𝑦 = 2(𝛼𝛼1 − 𝛼𝛼2) sin𝜃𝜃 cos𝜃𝜃 

(9) 

where 𝛼𝛼1  and 𝛼𝛼2  are the thermal expansion coefficient in 𝑥𝑥,𝑦𝑦  direction, 

respectively, and 𝜃𝜃 is the angle ply. 

Finally, the in-plane force and moment vector considering the thermal effect can be 

expressed as following 

�𝑵𝑵𝒃𝒃(𝑇𝑇)
𝑴𝑴𝒃𝒃(𝑇𝑇)� = �𝑨𝑨(𝑇𝑇) 0

0 𝑫𝑫(𝑇𝑇)� �
𝝐𝝐
𝝌𝝌� − �𝑵𝑵𝚫𝚫𝑻𝑻

𝑴𝑴𝚫𝚫𝑻𝑻
� (10) 

𝑸𝑸𝒔𝒔 = 𝐴𝐴𝒔𝒔𝜸𝜸 (11) 

where  

(𝑨𝑨(𝑇𝑇),0,𝑫𝑫(𝑇𝑇)) = �� �𝑄𝑄�𝑖𝑖𝑖𝑖(𝑇𝑇)�
𝑘𝑘

(1, 0, (𝑧𝑧 − 𝑧𝑧𝑁𝑁)2)
𝑧𝑧𝑘𝑘

𝑧𝑧𝑘𝑘−1 
𝑑𝑑𝑧𝑧

𝑛𝑛

𝑘𝑘=1

 (𝑖𝑖, 𝑗𝑗 = 1,2,6) (12) 
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𝑨𝑨𝒔𝒔 = � 𝜅𝜅𝑝𝑝(𝑇𝑇)� �𝑄𝑄�𝑖𝑖𝑖𝑖�𝑘𝑘𝑑𝑑𝑧𝑧     (𝑖𝑖, 𝑗𝑗 = 4,5)
𝑧𝑧𝑘𝑘

𝑧𝑧𝑘𝑘−1

𝑛𝑛

𝑘𝑘=1
 (13) 

where 𝜅𝜅𝑝𝑝(𝑇𝑇)  is temperature-dependent shear correction factor (T-D SCF) which 

detailed derivation process written in Appendix A. Meanwhile, the thermal force 

𝑁𝑁Δ𝑇𝑇 and moment 𝑀𝑀Δ𝑇𝑇 vectors are 

�𝑵𝑵𝚫𝚫𝑻𝑻(𝑇𝑇),𝑴𝑴𝚫𝚫𝑻𝑻(𝑇𝑇)�  

= ∑ ∫ �𝑄𝑄�𝑖𝑖𝑖𝑖(𝑇𝑇)�
𝑘𝑘
𝜶𝜶𝑘𝑘(1, 𝑧𝑧 − 𝑧𝑧𝑁𝑁)Δ𝑇𝑇(𝑧𝑧)𝑑𝑑𝑧𝑧𝑧𝑧𝑘𝑘

𝑧𝑧𝑘𝑘−1
𝑛𝑛
𝑘𝑘=1     (𝑖𝑖, 𝑗𝑗 = 1,2,6)   

(14) 

In addition, 𝜶𝜶 are defined as 𝛼𝛼 = �𝛼𝛼𝑥𝑥(𝑧𝑧),𝛼𝛼𝑦𝑦(𝑧𝑧),0�𝑇𝑇 

 

2.4. Aerodynamic pressure by supersonic flow 

For the structures are considerably applied for the supersonic condition, 

aerodynamic external forces are also studied. Using the first-order piston theory [32], 

the range of √2 < 𝑀𝑀∞ < √5 is considered: 

𝑝𝑝𝑎𝑎(𝑥𝑥,𝑦𝑦, 𝑡𝑡) = − 𝜌𝜌𝑎𝑎𝑉𝑉∞2  

�𝑀𝑀∞
2 −1

�𝑤𝑤,𝑥𝑥 + �𝑀𝑀∞
2 −2

𝑀𝑀∞
2 −1

� 1
𝑉𝑉∞

𝑤𝑤,𝑡𝑡� = −(𝜆𝜆 𝐷𝐷𝑚𝑚
𝑎𝑎3
𝑤𝑤,𝑥𝑥 + 𝑔𝑔𝑎𝑎

𝜔𝜔0

𝐷𝐷𝑚𝑚
𝑎𝑎4
𝑤𝑤.𝑡𝑡)  (15) 

where 𝑉𝑉∞ , 𝑀𝑀∞  and 𝜌𝜌𝑎𝑎  are the air flow speed, Mach number and air density, 

respectively. Again, non-dimensional aerodynamic pressure is expressed as 

𝜆𝜆 =
𝜌𝜌𝑎𝑎𝑉𝑉∞2 𝑎𝑎3

𝛽𝛽𝐷𝐷𝑚𝑚
 (16) 

where 𝐷𝐷𝑚𝑚 is the bending rigidity directed as follows 
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𝐷𝐷𝑚𝑚 =
𝐸𝐸ℎ3

12(1 = 𝜈𝜈2)
 (17) 

Also, the non-dimensional aerodynamic damping parameter is 

𝑔𝑔𝑎𝑎 =
𝜌𝜌𝑎𝑎𝑉𝑉∞(𝑀𝑀∞

2 − 2)
𝛽𝛽3𝜌𝜌𝑚𝑚ℎ𝜔𝜔0

 (18) 

where 𝜔𝜔0 = � 𝐷𝐷𝑚𝑚
𝜌𝜌𝑚𝑚ℎ𝑎𝑎4

 is the convenient reference frequency, and 𝛽𝛽 = �𝑀𝑀∞
2 − 1 is 

the aerodynamic pressure parameter. Then, for the high enough Mach 

number(𝑀𝑀∞ ≫ 1), Eq. (18) is approximated as [35] 

𝑔𝑔𝑎𝑎 = �
𝜇𝜇
𝑀𝑀∞

𝜆𝜆 (19) 

where 𝜇𝜇 is the air-mass ratio defined as 𝜇𝜇 = 𝜌𝜌𝑎𝑎𝑎𝑎/𝜌𝜌𝑚𝑚ℎ [36]. 

 

2.5. Governing equations 

To derive the equation of motion with thermal and aerodynamic pressure, the 

principle of virtual work is applied 

𝛿𝛿𝑊𝑊 = 𝛿𝛿𝑊𝑊𝑖𝑖𝑛𝑛𝑡𝑡 − 𝛿𝛿𝑊𝑊𝑟𝑟𝑥𝑥𝑡𝑡 = 0 (20) 

where 𝛿𝛿𝑊𝑊𝑖𝑖𝑛𝑛𝑡𝑡 and 𝛿𝛿𝑊𝑊𝑟𝑟𝑥𝑥𝑡𝑡 are the internal and external virtual works, respectively. 

The internal work is given as 

𝛿𝛿𝑊𝑊𝑖𝑖𝑛𝑛𝑡𝑡 = ∫ 𝛿𝛿𝒆𝒆𝑇𝑇𝝈𝝈𝑑𝑑𝑉𝑉𝑉𝑉   

= ∫ [𝛿𝛿𝝐𝝐𝑇𝑇𝑵𝑵+ 𝛿𝛿𝝌𝝌𝑇𝑇𝑴𝑴 + 𝛿𝛿𝜸𝜸𝑇𝑇𝑸𝑸]𝑑𝑑𝐴𝐴𝐴𝐴   

(21) 
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= 𝛿𝛿𝒅𝒅𝑇𝑇 �𝑲𝑲 − 𝑲𝑲𝜟𝜟𝑻𝑻 + 1
2
𝑵𝑵𝟏𝟏 + 1

3
𝑵𝑵𝟐𝟐�𝒅𝒅 − 𝛿𝛿𝒅𝒅𝑻𝑻𝑷𝑷𝜟𝜟𝑻𝑻       

here, 𝝈𝝈 = �𝜎𝜎𝑥𝑥,𝜎𝜎𝑦𝑦, 𝜏𝜏𝑥𝑥𝑦𝑦�
𝑇𝑇 , 𝒆𝒆 = �𝜖𝜖𝑥𝑥, 𝜖𝜖𝑦𝑦,𝛾𝛾𝑥𝑥𝑦𝑦�

𝑇𝑇  and 𝒅𝒅 = {𝑢𝑢 𝑣𝑣 𝑤𝑤 𝜙𝜙𝑥𝑥  𝜙𝜙𝑦𝑦}  denotes 

the stress, strain, displacement vector, and 𝑲𝑲, 𝑲𝑲𝜟𝜟𝑻𝑻,𝑵𝑵𝟏𝟏,𝑵𝑵𝟐𝟐 and 𝑷𝑷𝚫𝚫𝚫𝚫 represent the 

linear stiffness, thermal stiffness, first-order nonlinear stiffness, the second-order 

nonlinear stiffness and the thermal load vectors, respectively. 

While, the external virtual work is given by 

𝛿𝛿𝑊𝑊𝑟𝑟𝑥𝑥𝑡𝑡 =

−∫ �
𝐼𝐼0(�̈�𝑢𝛿𝛿𝑢𝑢 + �̈�𝑣𝛿𝛿𝑣𝑣 + �̈�𝑤𝛿𝛿𝑤𝑤) + 𝐼𝐼1��̈�𝑢𝛿𝛿𝜙𝜙𝑥𝑥 + 𝜙𝜙�̈�𝑥𝛿𝛿𝑢𝑢 + �̈�𝑣𝛿𝛿𝜙𝜙𝑦𝑦 + 𝜙𝜙�̈�𝑦𝛿𝛿𝑣𝑣�

+𝐼𝐼2��̈�𝜙𝑥𝑥𝛿𝛿𝜙𝜙𝑥𝑥 + 𝜙𝜙�̈�𝑦𝛿𝛿𝜙𝜙𝑦𝑦� + 𝑝𝑝𝑎𝑎𝛿𝛿𝑤𝑤
�𝑑𝑑𝐴𝐴𝐴𝐴   

     = −𝛿𝛿𝒅𝒅𝑻𝑻𝑴𝑴�̈�𝒅 + 𝛿𝛿𝒅𝒅𝑻𝑻𝒇𝒇   

(22) 

where 𝑴𝑴  and 𝒇𝒇  are global mass matrix and external force vector. And for the 

external virtual work, moments of inertia are defined as (𝐼𝐼0, 𝐼𝐼1, 𝐼𝐼2) =

∫ 𝜌𝜌(1, 𝑧𝑧, 𝑧𝑧2)𝑑𝑑𝑧𝑧ℎ/2
−ℎ/2 . 

Now the last term of Eq. (22) can be substituted as following with the adjustment of 

aerodynamics: 

𝛿𝛿𝒅𝒅𝑻𝑻𝒇𝒇 = �𝑝𝑝𝑎𝑎𝛿𝛿𝑤𝑤𝑑𝑑𝐴𝐴
𝐴𝐴

= −� �
𝑔𝑔𝑎𝑎
𝜔𝜔0

𝐷𝐷𝑚𝑚
𝑎𝑎4

𝑤𝑤,𝑡𝑡 + 𝜆𝜆
𝐷𝐷𝑚𝑚
𝑎𝑎3

𝑤𝑤,𝑥𝑥�𝛿𝛿𝑤𝑤𝑑𝑑𝐴𝐴
𝐴𝐴

= −𝛿𝛿𝒅𝒅𝑻𝑻 �
𝑔𝑔𝑎𝑎
𝜔𝜔0

𝑨𝑨𝒅𝒅�̇�𝒅 + 𝜆𝜆𝑨𝑨𝒇𝒇𝒅𝒅� 

(23) 

where 𝑨𝑨𝒅𝒅  and 𝑨𝑨𝒇𝒇  are the aerodynamic damping matrix and aerodynamic 

influence matrix, respectively. 



 

 13 

Then the external virtual work in Eq. (22) can be represented as 

𝛿𝛿𝑊𝑊𝑟𝑟𝑥𝑥𝑡𝑡 = −𝛿𝛿𝒅𝒅𝑻𝑻 �𝑴𝑴�̈�𝒅 +
𝑔𝑔𝑎𝑎
𝜔𝜔0

𝑨𝑨𝒅𝒅�̇�𝒅+ 𝜆𝜆𝑨𝑨𝒇𝒇𝒅𝒅� (24) 

By substituting Eqs. (21) and (24) into Eq. (20), the equation of motion are obtained 

as 

𝑴𝑴�̈�𝒅 +
𝑔𝑔𝑎𝑎
𝜔𝜔0

𝑨𝑨𝒅𝒅�̇�𝒅+ �𝑲𝑲 − 𝑲𝑲𝚫𝚫𝑻𝑻 +
1
2
𝑵𝑵𝟏𝟏 +

1
3
𝑵𝑵𝟐𝟐 + 𝜆𝜆𝑨𝑨𝒇𝒇�𝒅𝒅 = 𝑷𝑷𝚫𝚫𝑻𝑻 (25) 

 

2.6. Solutions of equations 

2.6.1 Linear analysis 

To solve the linear analyses of thermal vibration and buckling from Eq. (25), 

the formulation is assumed to be 

𝑴𝑴�̈�𝒅 + (𝑲𝑲−𝑲𝑲𝚫𝚫𝑻𝑻)𝒅𝒅 = 𝑷𝑷𝚫𝚫𝑻𝑻 (26) 

In here, natural frequency is obtained by solving the Weigenvalue problem as 

𝑴𝑴�̈�𝒅 + (𝑲𝑲−𝑲𝑲𝚫𝚫𝑻𝑻)𝒅𝒅 = 0 (27) 

while the thermal buckling problem is solved by changing the Eq. (27) as 

(𝑲𝑲−𝑲𝑲𝚫𝚫𝑻𝑻)𝒅𝒅 = 𝟎𝟎 (28) 

2.6.2 Nonlinear analysis 

The first step to solve the nonlinear problem from Eq. (25) is dividing the 

displacement vector 𝒅𝒅 into static part (𝒅𝒅𝒔𝒔) and dynamic part (𝚫𝚫𝒅𝒅𝒕𝒕) as 

𝒅𝒅 = 𝒅𝒅𝒔𝒔 + 𝚫𝚫𝒅𝒅𝒕𝒕 (29) 
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where the subscript 𝒔𝒔  and 𝒕𝒕  denote the static and dynamic terms, respectively. 

Then, the static nonlinear equation is obtained as following: 

�𝑲𝑲 − 𝑲𝑲𝜟𝜟𝑻𝑻 +
1
2
𝑵𝑵𝟏𝟏 +

1
3
𝑵𝑵𝟐𝟐 + 𝜆𝜆𝑨𝑨𝒇𝒇�𝒅𝒅𝒔𝒔 = 𝑷𝑷𝜟𝜟𝑻𝑻 (30) 

Using the Newton-Raphson iterative method [37], the nonlinear post-buckling 

deflection is obtained. 

While the time dependent part 𝚫𝚫𝒅𝒅𝒕𝒕 is used to form the dynamic nonlinear equation 

as 

𝑴𝑴𝚫𝚫𝒅𝒅𝒕𝒕̈ +
𝑔𝑔𝑎𝑎
𝜔𝜔0

𝑨𝑨𝒅𝒅𝚫𝚫𝒅𝒅𝒕𝒕̇ + �
𝑲𝑲 −𝑲𝑲𝚫𝚫𝑻𝑻 + 𝑵𝑵𝟏𝟏𝒔𝒔 + 𝑵𝑵𝟐𝟐𝒔𝒔

+𝜆𝜆𝑨𝑨𝒇𝒇 + 𝑵𝑵𝟐𝟐𝒔𝒔𝒕𝒕 +
1
2
𝑵𝑵𝟏𝟏𝒕𝒕 +

1
3
𝑵𝑵𝟐𝟐𝒕𝒕

�𝚫𝚫𝒅𝒅𝒕𝒕 

= 𝑷𝑷𝚫𝚫𝑻𝑻 

(31) 

where 𝑵𝑵𝟏𝟏𝒕𝒕, 𝑵𝑵𝟐𝟐𝒕𝒕 and 𝑵𝑵𝟐𝟐𝒔𝒔𝒕𝒕 are the time dependent nonlinear stiffness matrices. Eq. 

(31) is the equation of motion for limit cycle oscillation or flutter behaviors. By 

adopting Newmark method [38],the time domain response of plate model is obtained. 
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3. Numerical Results and Discussion 

 

3.1 Code verification 

For the validation of the code used to analyze the T-D SCF for the three layered 

sandwich laminate using the neutral surface, the material properties reported by 

Whitney [39] and Vlachoutsis [16] were used, and the results are shown in Table 1. 

Before calculating the T-D SCF, code verification was performed by comparing the 

value derived using the material properties at room temperature. The model was a 

symmetric three-layered sandwich structure, and the detailed material properties of 

each layer were reported by Whitney [39]. As shown in Table 2, the TID SCF in the 

x-direction of the sandwich structure calculated by Whitney was 0.4098, which is 

almost the same as that found in this work (0.4094), and the factor for the y-direction 

was obtained as 0.6724, which is similar to that reported by Whitney (0.6915). 

After the verification of the SCF, the vibration analysis considering the T-D SCF 

is also held following the code verification of vibration. To verify the result in this 

paper, non-dimensional natural frequencies Ω = 𝜔𝜔𝑎𝑎2/(ℎ�𝐸𝐸2) for the temperature 

independent case are compared with the research reported by Matsunaga [27]. The 

results shown in Table 3 gives a great agreement with those obtained using the 

proposed method. 

 

3.2 Curve-fitting process 

In this section, the T-D SCFs integrated into actual models are investigated 
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using numerical calculations. T-D material properties are calculated from the 

previously reported data [40].  

The detailed research is conducted at three different temperatures; consequently, 

the properties in every temperature range can be calculated for up to 1100 K, which 

is the service temperature of the titanium alloy honeycomb [41]. Using equation (1), 

analysis can be conducted for the given core-face sheet thickness ratio, top bottom 

face sheet thickness ratio, and face sheet fiber direction. 

 

3.3 Temperature-dependent Shear Correction Factor 

3.3.1 T-D SCF for Symmetric Structures 

Considering the thermal effects on the material properties of the titanium 

honeycomb core and MMC face sheet shown in Table 1, we can conclude that the 

SCF is a thermo-elastic parameter. The temperature rises from room temperature 

(300 K) to the service temperature, 1100 K (Ref [41]). And the two real model types 

with different fiber angles suggested by Ko [40] with ℎ = 30.48[𝑚𝑚𝑚𝑚],ℎ𝑐𝑐 =

29.667[𝑚𝑚𝑚𝑚],ℎ𝑓𝑓1 = 04064[𝑚𝑚𝑚𝑚], and ℎ𝑓𝑓2 = 0.4064[𝑚𝑚𝑚𝑚]  (thicknesses of the 

total structure, core, top, and bottom face sheets, respectively) were studied, as 

shown in Fig. 1. The MMC face sheet itself was a composite constructed using four 

fiber-reinforced metals, and its material properties were found considering it as one 

material using the rule of mixture. In other words, four layers constructing the MMC 

had individual properties, but for the calculation, it was considered as one material, 

which had one material property. For the diversity of analysis, two other types were 
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considered, and the difference was the stacking sequence of the fiber direction in the 

MMC face sheet: Type I [90°/0°/0°/90°] and Type II [45°/-45°/-45°/45°]. The 

material properties were given by Gruttmann [42], and the values of plane stress-

reduced elastic constants 𝑄𝑄𝑓𝑓 ,𝑄𝑄𝑐𝑐  and shear modulus 𝐺𝐺𝑓𝑓 ,𝐺𝐺𝑐𝑐  are also represented, 

and the indices f and c indicate the face sheet and the core material. 

 First, for type I, the value of the T-D SCF rises proportionately with temperature, 

as shown in Fig. 3a. Both the x and y directions showed the increasing value, where 

the x value increased to 0.3323 at 930 K, which differs about 18.68% compared to 

the temperature independent value of 0.28. Also, for the y direction, the maximum 

value was 0.2881 at 987 K, which differs about 86.71%. Next, for type II shown in 

Fig. 2b, the maximum values of in the x and y directions were 0.2602 at 445 K and 

0.193 at 736 K, respectively. When the material is heated, the material becomes 

softer, and the value of the T-D SCF decreases. For both type I and II, the factor 

increases for the appointed temperature and decreases as the temperature rises. At 

the same time, based on the curve fitting process using the different values at three 

different temperatures, Fig. 3 shows that the shape is a convex function. Note that 

the SCF is bigger in the x direction than in the y direction because of the larger shear 

modulus. 

By changing the ratio of the honeycomb core thickness to the total thickness, the 

SCF values can be found, as shown in Fig. 4. The ratio of the titanium core thickness 

to the total thickness varied from 0.5 to 0.95 as the temperature increased from 300 

K to 1100 K. When the core thickness increases, the SCF increases rapidly in both 

types. Since the property of the thick layer is dominant in the whole composite, the 

titanium honeycomb affects the SCF value, although titanium itself has a TID 
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material property. Fig. 4a shows the SCF rise due to the core-face sheet thickness 

variation for type I. For the same temperature condition, 𝜅𝜅 increases slightly, and 

as the thickness increases continuously and exceeds 0.7, 𝜅𝜅  increases rapidly. 

Subsequently, the thermal effect shows that for type I, the factor increases up to 

0.3461 at 966 K for a thickness ratio of 0.95. Similar results can be seen for type II, 

Fig. 4b (the biggest factor is 0.2683 at 421 K for a thickness ratio of 0.95). 

 

3.3.2 T-D SCF for Asymmetric Structures 

The above results are given for symmetric structures, where the mid-plane and the 

neutral surface are the same. In this section, the structure is considered asymmetric 

by varying the thicknesses of the top and bottom face sheets, and the thickness ratio 

is denoted by = ℎ𝑓𝑓1
ℎ𝑓𝑓2

 . 

Now, the derivation process for the three-layered laminate is shown in this section, 

including the neutral surface which, by substituting 3 into n from equation (2). That 

is: 

𝑧𝑧𝑁𝑁1 =
1
2∑ (𝑄𝑄1)𝑘𝑘(𝑧𝑧𝑘𝑘2 − 𝑧𝑧𝑘𝑘−12 )3

𝑘𝑘=1

∑ (𝑄𝑄1)𝑘𝑘3
𝑘𝑘=1 (𝑧𝑧𝑘𝑘 − 𝑧𝑧𝑘𝑘−1)

 (32) 

where 𝑧𝑧0 is −ℎ
2
, and 𝑧𝑧3 denotes ℎ

2
. 

Fig. 5 shows the T-D SCF increases for both types due to temperature rise and top-

to-bottom face sheet ratio difference. To begin with the type I, the factor appears its 

minimum value from 0.149 at face sheet ratio 1, which is symmetric condition, at 
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room temperature (300 K). Continually, T-D SCF turns out to be 0.4764 at a top-to-

bottom ratio of 0.8273 at 1100 K. Second, Fig. 5b shows the results of type II, which 

has a minimum value of 0.05032 at face sheet ratio 1 in 300 K, whereas it is 0.3917 

at a ratio of 0.2364 in 1100 K. These results show that the SCF becomes larger with 

temperature rise along with the face sheet thickness ratio increases. 

 

3.4 Thermo-elastic linear analysis 

Linear and non-linear analyses of sandwich panel composed of titanium 

honeycomb core and MMC face sheet are performed and compared with the different 

conditions. Three layered composite which is two face sheets and one honeycomb 

core is analyzed. As described in Fig. 1, the thickness of face sheet and core are 

15mm and 30mm, respectively. The temperature-dependent material properties are 

listed up in Table 1. Also, the boundary condition are used as 

Simply supported boundary condition (SS). 

𝑣𝑣 = 𝑤𝑤 = 𝜙𝜙𝑦𝑦 = 0 when 𝑥𝑥 = 0,𝑎𝑎 

𝑢𝑢 = 𝑤𝑤 = 𝜙𝜙𝑥𝑥 = 0 when 𝑦𝑦 = 0,𝑎𝑎 

 

3.4.1 Vibration behavior 

In this part, natural frequencies are derived due to the aspect ratio change. Table 4 

shows the natural frequencies of different temperature, aspect ratio, and fiber 

directions(�90°/0°�s, �45°/−45°�s ). Minimum value of non-dimensional natural 

frequency 11603 can be found at a/h 10 in 300 K. As the aspect ratio increases with 

the constant temperature condition, the natural frequency increases to the maximum 
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value of 24561 since the structure becomes thinner. For the different fiber direction, 

Type I in Table 4a shows a slightly lower frequency compared to Type II in Table 4b, 

and the differences may occur from material stiffness variations. 

 

3.4.2 Buckling behavior 

Thermal buckling behavior is analyzed by deriving critical buckling temperature. 

That is, the temperature when natural frequency becomes zero. From Table 5, code 

verification is held by obtaining critical temperature compared to Matsunaga [8], and 

shows good agreement. Table 6 exhibits the critical temperature under different 

temperature condition and aspect ratio change. As the ratio increases, the model 

buckles in the lower temperature. Also, for the T-D SCF consideration, buckling 

occurs earlier compared to the TID condition. This means the change of shear 

correction factor effects the buckling temperature. Table 8 represents the critical 

temperature when aero-dynamic load is applied. When the load is larger, the buckling 

temperature increases, and for the high load more than 600, T-D SCF condition 

denotes the higher critical temperature than TID condition.  

 

3.5 Aero-thermo-elastic nonlinear analysis 

In the preceding step, linear studies of vibration and buckling are examined. 

Natural frequencies and critical buckling temperatures are determined under the heat 

conduction condition. Henceforth, nonlinear analyses of post-buckling and limit-

cycle oscillation are conducted from the Eqs. (30-31). 
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3.5.1 Post-buckling behavior 

After the buckling situation, when the temperature increases continuously, the 

model restrained by boundary condition deforms. This is so-called post-buckling 

which is calculated by Newton-Raphson method and the central displacement of 

model is researched. To verify the results in this study, the work held by Averill and 

Reddy [43] is compared. The value described in Fig. 6 shows the great agreement of 

current code and previous work [43]. 

Then, the central deflection difference is investigated for the sandwich composite 

and the T-D SCF consideration under the heat conduction condition. As shown in 

Fig. 7, the deflection occurs about 20% larger in T-D SCF application than the TID 

SCF. This means that for the real condition, the structure should me models more 

strictly since it bends larger than expected. 

 

3.5.2 Limit Cycle Oscillation 

The limit-cycle oscillations (LCO) with structural damping are discussed in this 

section. LCO is due to the geometrical non-linearity of structures, and is well known 

that the LCO without a catastrophic failure occurs after a critical flutter point, but 

results in a fatigue failure of the structures. The calculation is held for the same 

structure in linear analysis. With Newmark time iteration method, and the time step 

is 0.1ms is used. Additionally, the thickness ratio is 𝑎𝑎/ℎ = 100.  

In Fig. 8, flutter research under uniform temperature and heat conduction 

conditions are described. The aerodynamic pressure is loaded as 1400 in both cases. 

For the case of heat conduction, flutter motion occurs slower than the uniform 

condition. However, the limit-cycle amplitude is larger in this case. Several case 

studies for heat conduction condition are held subsequently. Fig. 9 shows the flutter 
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motion with T-D SCF and TID SCF. Dynamic pressure is still loaded as 1400, and 

other conditions are the same except the shear correction consideration. Flutter 

occurs slower in T-D SCF but the amplitude is similar for both case. The analysis for 

the temperature change can be seen in, Fig. 10. One has the temperature condition 

as 𝛥𝛥𝑇𝑇 = 𝛥𝛥𝑇𝑇𝑐𝑐𝑐𝑐 , and the other is 10 times smaller as 𝛥𝛥𝑇𝑇 = 𝛥𝛥𝑇𝑇𝑐𝑐𝑐𝑐/10 . The figure 

represents the great difference of motion and amplitude. When the temperature is 

higher, limit-cycle occurs earlier and larger. Results in the case of larger aerodynamic 

load are shown in Fig. 11. Two different types of load (𝜆𝜆) is shown as 1400 and 

1600. Flutter occurs faster and the amplitude is bigger for the larger aerodynamic 

load. This is similar with the higher temperature condition. 
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4. Conclusion 

 

Using the FSDTP, the error compensation was conducted by considering the 

transverse effect and rotary inertia, and the SCF was calculated. In this work, to 

obtain the temperature dependent shear correction factor, thermo-elastic properties 

are considered. Three other parameters, the thermal effect, core-face sheet thickness 

ratio, and top-bottom face sheet ratio, affected the T-D SCF. The top-bottom face 

sheet ratio makes the structure asymmetric, which subsequently introduces the 

neutral surface concept. When the temperature increases, the Young’s modulus 

decreases and continuously, the T-D SCF changes, as shown in Fig. 3-5. 

For the vibration analysis, thermal expansion due to temperature increase changes 

the T-D SCF, which in turn affects the non-dimensional natural frequency. 

Irrespective of the fiber direction, when the temperature increases, the SCF inclines, 

and the eigenvalue becomes smaller compared to the value derived from the TID 

SCF. Also, when the core thickness is larger compared to the face sheet, the natural 

frequency becomes smaller. For the buckling analyses, the critical temperature is 

higher under the heat conduction and T-D SCF condition. With the aerodynamic 

consideration, the temperature increases as the load rises. Non-linear analyses are 

also researched. The buckling central deflection becomes larger with the T-D SCF. 

Lastly, limit-cycle oscillation is researched with two parameters: time, limit-cycle 

amplitude. When T-D SCF is considered, it takes longer time to reach LCO. Under 

the lower temperature, LCO occurs slower and smaller. Further, with the higher 

aerodynamic loads, the same results is derived with the different heat conditions.  
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Finally, using the T-D SCF shows the considerable difference between vibration, 

buckling, post-buckling and limit-cycle oscillation. Therefore, it is clear to consider 

the aero-thermo-elastic effect to analyze models.  
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Table 1. Temperature-dependent material properties of the Sandwich Panel 

 Metal Matrix Composite [90°] Metal Matrix Composite [45°] 

𝐸𝐸1 10140𝑇𝑇2 − 8.808𝑒𝑒7𝑇𝑇 + 1.834𝑒𝑒11[Pa] 3490𝑇𝑇2 − 1.239𝑒𝑒7𝑇𝑇 + 1.82𝑒𝑒11[Pa] 

𝐸𝐸2 10140𝑇𝑇2 − 8.808𝑒𝑒7𝑇𝑇 + 1.834𝑒𝑒11[Pa] 3490𝑇𝑇2 − 1.239𝑒𝑒7𝑇𝑇 + 1.82𝑒𝑒11[Pa] 

𝜈𝜈12 −8.532e−8𝑇𝑇2 − 1.331𝑒𝑒−5𝑇𝑇 + 0.2482 2.117e−8𝑇𝑇2 + 1.106𝑒𝑒−5𝑇𝑇 + 0.2756 

𝐺𝐺12 4847𝑇𝑇2 − 5.696e7𝑇𝑇 + 7.254𝑒𝑒10[Pa] 5611𝑇𝑇2 − 3.2944e7𝑇𝑇 + 7.322𝑒𝑒10[Pa] 

𝐺𝐺13 4847𝑇𝑇2 − 5.696e7𝑇𝑇 + 7.254𝑒𝑒10[Pa] 5611𝑇𝑇2 − 3.2944e7𝑇𝑇 + 7.322𝑒𝑒10[Pa] 

𝐺𝐺23 4847𝑇𝑇2 − 5.696e7𝑇𝑇 + 7.254𝑒𝑒10[Pa] 5611𝑇𝑇2 − 3.2944e7𝑇𝑇 + 7.322𝑒𝑒10[Pa] 

𝛼𝛼 23𝑒𝑒−6/°K 23𝑒𝑒−6/°K 

𝜌𝜌 3200kg/m3 3200kg/m3 

𝑘𝑘 59W/mK 59W/mK 

 

 Titanium Honeycomb 

𝐸𝐸1 110.3161GPa 

𝐸𝐸2 110.3161GPa 

𝜈𝜈12 0.31 

𝐺𝐺12 0.6e9 

𝐺𝐺13 −988.8𝑇𝑇2 + 2.329𝑒𝑒5𝑇𝑇 + 1.454𝑒𝑒9 

𝐺𝐺23 −1695𝑇𝑇2 + 2.071𝑒𝑒6𝑇𝑇 + 1.878𝑒𝑒8 

𝛼𝛼 2.97𝑒𝑒−6/°K 

𝜌𝜌 4540kg/m3 

𝑘𝑘 21.9W/mK 
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Table 2. Verification of the TID SCF in 𝑥𝑥 and 𝑦𝑦 direction 

  

SCF Whitney [39] Present Difference [%] 

𝜿𝜿𝟏𝟏 0.4098 0.4094 0.04% 

𝜿𝜿𝟐𝟐 0.6915 0.6724 -1.91% 
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Table 3. Verification of Non-dimensional natural frequencies of the composite plate 

a/h 10 20 50 100 

Present 15.057 17.580 18.600 18.764 

Matsunaga 15.153 17.628 18.600 18.804 
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Table 4 Non-dimensional natural frequencies with different aspect ratio 

(a) with fiber direction [90/0]s 

a/h 10 20 50 100 

T = 300 K 11603 18051 23342 24561 

T = 580 K 15705 21074 23952 24470 

T = 900 K 14022 19803 23335 24013 

T = 1100 K 11636 17817 22584 23634 

 

(b) with fiber direction [45/−45]s 

a/h 10 20 50 100 

T = 300 K 11320 17870 23495 24833 

T = 580 K 15920 21483 24505 25052 

T = 900 K 14259 20342 24157 24899 

T = 1100 K 11842 18339 23527 24696 
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Table 5. Verification Critical temperature with different thickness ratio ℎ𝑐𝑐/ℎ 

Cases ℎ𝑐𝑐/ℎ 

Results 0.5 0.85 0.9 0.95 

Present 0.05549 0.08152 0.08823 0.09528 

Ref. [8] 0.05238 0.07954 0.08667 0.09498 
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Table 6. Critical temperature VS aspect ratio with different heat conditions 

Cases 𝑎𝑎/ℎ 

Results 20 50 80 100 

Uniform 9.911 9.908 7.897 5.210 

Heat conduction 15.23 15.21 8.133 5.312 
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Table 7. Critical temperature with T-D SCF and TID SCF under heat conduction 

Cases 𝑎𝑎/ℎ 

Results 20 50 80 100 

T- D SCF 9.911 9.908 7.897 5.210 

TID SCF 15.23 15.21 8.133 5.312 
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Table 8. Critical temperatures with different aerodynamic loads and SCF 

Cases 𝜆𝜆 

𝑎𝑎/ℎ = 20 0 400 600 1000 

T-D SCF 9.911 16.59 26.63 63.96 

TID SCF 15.22 19.41 24.98 46.75 
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Fig. 1 Sandwich panel with MMC face sheet and titanium honeycomb core 
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Fig. 2 Temperature difference with uniform case and heat conduction 
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(a) with fiber direction [90/0]s 

 

(b) with fiber direction [45/−45]s 

Fig. 3 Shear correction factor change due to temperature rise in 𝑥𝑥 and 𝑦𝑦 direction 
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(a) with fiber direction [90/0]s 

 

(b) with fiber direction [45/−45]s 

Fig. 4 Shear correction factor variation with the core-to-total thickness ratio 
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(a) with fiber direction [90/0]s 

 

(b) with fiber direction [45/−45]s 

Fig. 5 Shear correction factor variation with the face sheet thickness ratio 
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Fig. 6 Verification of Center deformation of the model with uniform temperature 

[43]  
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(a) with T-D SCF 

 

(b) with TID SCF 

Fig. 7 Thermal post buckling analysis 



 

 45 

 

(a) Uniform temperature 

 

(b) Heat conduction 

Fig. 8 Flutter behavior with uniform vs heat conduction  
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(a) T-D SCF 

 

(b) TID SCF 

Fig. 9 Flutter behavior with T-D vs TID SCF  
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(a) ΔT = ΔTcr 

 

(b) ΔT = 0.1 ∗ ΔTcr 

Figure. 10 Flutter behavior with T-D SCF under different temperature conditions 



 

 48 

 

(a) 𝜆𝜆 = 1400 

 

(b) 𝜆𝜆 = 1600 

Figure. 11 Flutter behavior with T-D SCF under different dynamic pressure
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Appendix A. 

Temperature-dependent Shear Correction Factor 

 

In the following, the detailed derivation process for the temperature-dependent 

shear correction factor is given. Strain energy equality is used to derive the equations, 

and the temperature-dependent material properties are considered for the SCF. 

 

1. Shear correction factor in constitutive equation 

The transverse shear stress resultant is derived by considering the constitutive 

relation for the transverse shear stress in a laminate plate: 

�
𝜏𝜏𝑦𝑦𝑧𝑧(𝑇𝑇)
𝜏𝜏𝑥𝑥𝑧𝑧(𝑇𝑇)� = �

𝑄𝑄44(𝑇𝑇) 0
0 𝑄𝑄55(𝑇𝑇)� �

𝛾𝛾𝑦𝑦𝑧𝑧(𝑇𝑇)
𝛾𝛾𝑥𝑥𝑧𝑧(𝑇𝑇)� (A-1) 

where 𝑄𝑄44 = 𝐺𝐺𝑦𝑦𝑧𝑧 and 𝑄𝑄55 = 𝐺𝐺𝑥𝑥𝑧𝑧 

The integration of Eq. (A-1) through the thickness of laminate plate yields 

�
𝑄𝑄𝑦𝑦(𝑇𝑇)
𝑄𝑄𝑥𝑥(𝑇𝑇)� = �

𝜅𝜅2(𝑇𝑇)𝐴𝐴44(𝑇𝑇) 0
0 𝜅𝜅1(𝑇𝑇)𝐴𝐴55(𝑇𝑇)� �

𝛾𝛾𝑦𝑦𝑧𝑧(𝑇𝑇)
𝛾𝛾𝑥𝑥𝑧𝑧(𝑇𝑇)� (A-2) 

where {𝐴𝐴44(𝑇𝑇),𝐴𝐴55(𝑇𝑇)} = ∫ {𝑄𝑄44(𝑇𝑇),𝑄𝑄55(𝑇𝑇)}𝑑𝑑𝑧𝑧
ℎ
2
−ℎ2

 , and 𝜅𝜅1(𝑇𝑇), 𝜅𝜅2(𝑇𝑇)  are the 

shear correction factors for x and y directions, respectively. The factor is accounted 

for the fact that 𝜏𝜏𝑥𝑥𝑧𝑧 is not constant over the height of the section. Note that the 

factors are T-D, and the detailed derivation process is shown in the following section. 
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2. Detailed process 

For the first step to derive the T-D SCF, consider the laminate composite plate 

shown in Fig. 1. From the FSDTP, the model is assumed to have a constant shear 

stress without the temperature in the thickness direction. The factor is derived from 

the strain energy equality, and since the calculating process of 𝜅𝜅1 and 𝜅𝜅2 for the 

plate are the same, the equation of 𝜅𝜅1 is shown in this section. 

For the equilibrium equation including thermal effect for laminae are: 

𝜎𝜎𝑖𝑖𝑖𝑖,𝑖𝑖(𝑇𝑇) = 0,   𝜎𝜎𝑧𝑧𝑧𝑧 = 0   (𝑖𝑖, 𝑗𝑗 = 1,2,3) (A-3) 

where 𝜎𝜎1,𝜎𝜎2, and 𝜎𝜎3 are the normal and shear stresses in the 𝑥𝑥 and 𝑦𝑦 directions 

and the 𝑥𝑥𝑦𝑦 plane, respectively. Also, 𝜎𝜎13 denotes 𝜏𝜏𝑥𝑥𝑧𝑧. Supposing the weak term 

without bending around y-axis, eq. (A-3) leads to 

𝜎𝜎𝑥𝑥𝑥𝑥,𝑥𝑥(𝑇𝑇) + 𝜏𝜏𝑥𝑥𝑧𝑧,𝑧𝑧(𝑇𝑇) = 0 (A-4) 

From the definition of the in-place moment, known as a customary way:  

�𝑀𝑀𝛼𝛼𝛼𝛼�𝑇𝑇 = � 𝜎𝜎𝛼𝛼𝛼𝛼(𝑧𝑧 − 𝑧𝑧𝑁𝑁)𝑑𝑑𝑧𝑧
ℎ/2

−ℎ/2
  (𝛼𝛼,𝛽𝛽 = 𝑥𝑥,𝑦𝑦) (A-5) 

then, 𝜎𝜎𝑥𝑥𝑥𝑥 can be expressed as 

𝜎𝜎𝑥𝑥𝑥𝑥(𝑧𝑧,𝑇𝑇) =
𝑀𝑀𝑥𝑥𝑄𝑄11(𝑧𝑧,𝑇𝑇)(𝑧𝑧 − 𝑧𝑧𝑁𝑁1)

𝐷𝐷11
 (A-6) 

Substituting equation (A-6) into equation (A-4) and integrating with respect to the 

thickness direction: 
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𝜏𝜏𝑥𝑥𝑧𝑧(𝑧𝑧,𝑇𝑇) = −�
𝜕𝜕𝜎𝜎𝑥𝑥𝑥𝑥(𝑧𝑧,𝑇𝑇)

𝜕𝜕𝑥𝑥
 

𝑧𝑧

−ℎ/2
𝑑𝑑𝑧𝑧 (A-7) 

and using the defined neutral surface condition in equation (2), equation (A-7) turns 

into the following expression in [44]: 

𝜏𝜏𝑥𝑥𝑧𝑧(𝑧𝑧,𝑇𝑇) =
𝑄𝑄𝑥𝑥𝑔𝑔(𝑧𝑧,𝑇𝑇)

𝐷𝐷11
 (A-8) 

where 𝑔𝑔(𝑧𝑧,𝑇𝑇) denotes 

𝑔𝑔(𝑧𝑧,𝑇𝑇) =−∫ 𝑄𝑄11(𝑧𝑧,𝑇𝑇)(𝑧𝑧 − 𝑧𝑧𝑁𝑁)𝑑𝑑𝑧𝑧𝑧𝑧
−ℎ2

 (A-9) 

Meanwhile, for the plate strain energy component is: 

� 𝜏𝜏𝑥𝑥𝑧𝑧𝛾𝛾𝑥𝑥𝑧𝑧𝑑𝑑𝑧𝑧
ℎ/2

−ℎ/2
=

𝑄𝑄𝑥𝑥2

𝜅𝜅1(𝑇𝑇)∫ 𝐺𝐺𝑥𝑥𝑧𝑧(𝑧𝑧,𝑇𝑇)𝑑𝑑𝑧𝑧
ℎ
2
−ℎ2

 
(A-10) 

by integrating eq. (A-8) into the left side, equation (A-10) can be also expressed as 

the following 

�
𝜏𝜏𝑥𝑥𝑧𝑧2

𝐺𝐺𝑥𝑥𝑧𝑧(𝑧𝑧,𝑇𝑇)
𝑑𝑑𝑧𝑧

ℎ/2

−ℎ/2
=
𝑄𝑄𝑥𝑥2

𝐷𝐷112
�

𝑔𝑔2(𝑧𝑧,𝑇𝑇)
𝐺𝐺𝑥𝑥𝑧𝑧(𝑧𝑧,𝑇𝑇)

𝑑𝑑𝑧𝑧
ℎ/2

−ℎ/2
 (A-11) 

Finally, the T-D SCF is obtained by equaling eq. (A-10) t0 eq. (A-11): 

𝜅𝜅1(𝑇𝑇) =
𝐷𝐷112 (𝑧𝑧,𝑇𝑇)

∫ 𝐺𝐺𝑥𝑥𝑧𝑧(𝑧𝑧,𝑇𝑇)𝑑𝑑𝑧𝑧ℎ/2
−ℎ/2 ∫ 𝑔𝑔2(𝑧𝑧,𝑇𝑇)

𝐺𝐺𝑥𝑥𝑧𝑧(𝑧𝑧,𝑇𝑇)𝑑𝑑𝑧𝑧
ℎ
2
−ℎ2

 
(A-12) 
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국 문 초 록 
 

첨단 복합 구조물은 항공우주, 군사, 원자로, 화학 공장 및 현대 건

축에 사용된다. 특히, 벌집 코어를 갖는 샌드위치 패널은 고온 지역에서

의 사용을 위해 개발되어왔다. 증가된 온도가 복합구조물의 재료 특성에 

영향을 미치면서 코어-외피 두께 비가 다른 열탄성 진동, 열 좌굴, 포스

트-버클링 및 제한주기진동(LCO) 분석을 위한 비대칭 적층 복합판 모

델이 해석되었다. 전단 보정 계수(SCF)를 채택한 판의 1차 전단 변형 

이론(FSDTP)은 열 전도와 초음속 흐름을 고려하여 사용된다. SCF를 

도출하기 위해 온도 의존적(T-D) 재료 특성을 이용하여 응력평형방정

식에서 각 층과 복합판의 전단변형에너지 동일성을 이용하였다. 고온에

서의 적용을 위해 MMC(Metal Matrix Composite)와 티타늄 벌집으로 

구성된 페이스 시트와 코어를 갖는 3층 복합 모델이 도입됐다. 선형 분

석의 경우 진동 및 열좌굴 분석을 위해 자연 주파수와 임계 온도가 각각 

도출된다. 또한, 비선형 해석은 포스트-버클링을 위한 Newton-

Raphson 반복계산법과 제한 주기 진동을 위한 Newmark 시간 반복 방

법을 사용하여 수행된다. 1차 피스톤 이론은 공기 역학 부하에 대해 고

려된다. 다양한 코어-페이스 시트 두께 비율, 종횡비 및 두가지 섬유 방

향에 대한 다양한 사례 연구가 진행되고 있다. 결과는 기존 SCF를 사용

하여 얻은 결과와 비교된다. 

 

주요어: 온도 의존 특성, 열 전도, 공기역학, 중립면, 금속-매트릭스 혼
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