creative
comimons

C O M O N S
& X EAlI-HI el Xl 2.0 Gigel=
Ol OtcHe =2 E 2= FR0l 86tH AFSA
o Ol MHE=E= SN, HE, 8E, A, SH & &5 = AsLIC

XS Mok ELICH

MNETEAl Fots BHEHNE HEAIGHHOF SLICH

Higel. M5t= 0 &

o Fot=, 0l MEZ2 THOIZE0ILE B2 H, 0l HAS0 B2 0|8
£ 2ok LIEFLH O OF 8 LICEH
o HEZXNZREH EX2 oItE O 0lelet xAdE=2 HEX EsLIT

AEAH OHE oISt Aele 212 WS0ll 26t g&
71 2f(Legal Code)E OloiotI| &H

olx2 0 Ed=t

Disclaimer =1

ction

Colle


http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

B8} 9]

rif
M

Aero—thermo—elastic Effects on
Sandwich Panel
with Temperature—dependent
Shear Correction Factor
2= &3 Ad A AFE 1HS

A=A A FH-d-BARY AN

20229 12€



X & AQ BA AFE 293
=S g9
+TY-2-244 A4

Aero-thermo-elastic Effects on Sandwich Panel
with Temperature-dependent
Shear Correction Factor

AEZF 3 A &
o] =ES TIHA 9 =T A=F

2022 12 €

ALqex g3
338
7z A F

AAES THHAG FH=vs AER

20229 129

aaz TR
>) 7

raez _ =~ | 2




Abstract

Advanced composite structures are used in aerospace, military,
nuclear reactors, chemical plants, and modern architecture. In
particular, sandwich panels with honeycomb cores have been
developed for specific applications in high—temperature regions. As
elevated temperatures affect the properties of composite structures,
an asymmetric laminated composite plate model was developed for
the thermo—elastic vibration, thermal buckling, post—buckling and
limit—cycle oscillation (LCO) analyses with different core—face
sheet thickness ratio. The First—order Shear Deformation Theory of
Plate (FSDTP), which adopts the shear correction factor (SCF), is
used with the consideration of heat conduction and supersonic flow.
To derive the SCF, the shear strain energy equality of each layer and
that of the composite plate were used in the stress equilibrium
equation using temperature—dependent (T—D) material properties.
A three—layer composite model with face sheets and core composed
of a metal matrix composite (MMC) and a titanium honeycomb was
introduced for high temperature applications. For the linear analyses,
natural frequencies and critical temperature are derived for the
vibration and thermal buckling analyses, respectively. Furthermore,

non—linear analyses are held using Newton—Raphson method for
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post—buckling analysis and Newmark time iteration method for limit—
cycle oscillation. First—order piston theory is considered for the
aero—dynamic loads. Diverse case studies are held for the various
core—face sheet thickness ratio, aspect ratio, and different fiber
directions. The results are compared with those obtained using

conventional SCF.

Keyword: Thermo—elastic material properties, Heat conduction,
Aero—dynamics, Physical neutral surface, Metal Matrix Composite,
Titanium Honeycomb

Student Number: 2020—-21216
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1. Introduction

Composite laminates have become essential structural elements as they possess
higher strength than mono-materials despite their light weight, even at elevated
temperatures. Especially, sandwich structures composed with titanium honeycomb
core and Metal Matrix Composite (MMC) [1] face sheets exhibit exceptional
stiffness and strength. In addition, the honeycomb core allows the structure to
withstand bending deflection, and it has a relatively low thermal conductivity and
light weight. So, the structures perform outstanding thermal barrier which in turn the
sandwich structures are commonly used as the outer skin of space shuttle, military
missions, and architecture. Therefore, structural analyses such as vibration, buckling,
post-buckling and limit-cycle oscillation are inevitable for the sandwich panel to

prevent structure deformation or failure.

For the development of the composite structures, analytical modeling for vibration
of the structures have been extensively investigated in past few decades. Liu [2]
studied the vibration behavior of laminated composite plates which are subjected to
temperature changes. Tong [3] investigated the variations in the natural frequencies
of conical shells with the altering fiber directions. In addition, Hachemi [4] presented
the free vibration analysis of a laminated square composite plate with complicated
cutouts. Furthermore, Ribeiro [5] studied the vibration of laminated composite plates
with varied stiffness. Vibration analyses are held by Khatua [6], who held the
bending and vibration of multilayer sandwich beams and plates. Wang and Zhang [7]
discussed for the free vibration of sandwich panel containing honeycomb core.

Further, thermal buckling of sandwich plate analysis are held by Matsunaga [8]. Tran



and Thai [9], also investigated the thermal buckling analysis of functionally graded
plates. They showed the difference of analysis method between first-order and third-
order deformation theory. Shariyat [10], researched thermal buckling and post-
buckling analyses for rectangular composite plates with the consideration of
temperature-dependent material properties. Further non-linear analyses are held for
Limit-cycle oscillation (LCO). With the aero-dynamic load, the structure vibrates in
a constant amplitude in some manner. Lee and Kim [11] held the thermal post-
buckling and limit-cycle oscillation under supersonic flow. Song and Li [12] also

developed the flutter analysis of lightweight sandwich structures.

For the simplification of calculations and to obtain precise results, the structures
are analyzed using the First-order Shear Deformation Theory of Plate (FSDTP), and
the shear correction factor (SCF) is considered for the accuracy of the analysis.
Puchegger [13] performed experiments using a simple bar, and the results showed
the dependence of the SCF on the aspect ratio of structures. Still, the SCF tends to
be constant for low aspect ratio structures (less than unity). Bert [14] used the
equilibrium equation considering shear strain energy equality based on the neutral
surface concept for the asymmetric laminated beam to derive the factor. Especially,
the variation of SCF was shown for a bi-modular structure with properties changing

through the innate fiber direction.

For the thick plate model, shear has a greater effect on the structures. Lim [15]
derived the improved correction factor by matching the deflection obtained using the
FSDTP and the Third-order Shear Deformation Theory. The results showed that the
aspect ratio largely affects the derivation of the factor. Vlachoutsis [16] adopted the

neutral surface concept to reduce the calculation process remarkably, yet the Poisson
b | g i | |
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ratio was considered constant through the thickness direction, which is affected by
high temperature. Further, multilayered laminates have been studied by Isaksson [17],
who calculated the factor for the corrugated core structure. Moreover, Pan and Wu
[18] researched the shear deformation of the honeycomb core and showed that the
contribution of bending deformation was equivalent to the transverse shear effect for
the decreased core thickness. Nguyen and Sab [19] obtained the factor for
functionally graded material (FGM) plates and found that the prediction of the factor

plays an important role in static analysis.

Almost every materials properties are affected by temperature, which is not
limited to only high-temperature regions. Thus, interpolation from the given values
at several temperature points is conducted to derive material properties at intended
temperatures. This so-called curve fitting process, which was performed by Reddy
[20] who first introduced the thermal effect on material properties for FGM and the
values used for the interpolation was firstly reported in the experiment held by
Touloukian [21]. Even the analyses are containing the thermal effect such as
temperature-dependent (T-D) material properties, heat conduction etc., the method

that contains SCF supposed the factor as temperature-independent (TID).

Considering the high-temperature area, Aklilu [22] considered the thermal effect
on carbon, glass, and hybrid polymer composites. Fatemi [23] used temperature-
dependent (T-D) material properties to know the thermal effect on the honeycomb
core structure. Demirbas [24] considered the temperature effect on the stress and
strain of Functionally Graded (FG) rectangular plates in a high-temperature region
using finite element method. Papakonstatinou [25] et al. analyzed the material

properties of composites at room temperature as well as elevated temperatures and
b | ] — |
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estimated the less expensive polysialate composites can be a substitute of common
materials. Yoo and Kim [26] optimized the design of a smart skin structure using
genetic algorithm with the thermal conductivity effect. Matsunaga [27] showed the
effect of temperature on the dynamic response of angle-ply laminates using higher-

order Shear Deformation Theory.

Some researchers handled the thermal effect on SCF, which is only conducted for
the FGMs. Hong [28] reported the variation in the SCF due to volume fraction and
temperature for the vibration and deflection analysis of FG shells. Lim and Kim [29]
researched thermo-elastic effects on the SCF for three FG beam models, and Lee and
Kim [30] derived the T-D SCF for FGM plates using heat transfer. The results

showed that temperature highly influences the SCF in the high-thermal region.

However, none of these studies considered the thermal effect on SCF for discrete
multi-layered structures. In this study, natural frequencies were derived for the
vibration analysis of a laminated composite plate considering the Temperature
Dependent Shear Correction Factor (T-D SCF). Specifically, an asymmetric
sandwich plate was studied with varying temperature, aspect ratio, and fiber
direction. The derivation process was conducted after curve fitting in every
temperature range, and the values of the SCF were verified using the previously

reported data.

With the T-D SCF consideration, aero-thermo-elastic effect on sandwich panel is
analyzed after the research. For the linear analysis, thermal vibration and buckling is
shown by deriving natural frequency and critical temperature. Further, non-linear

analysis is depicted with thermal post-buckling and limit cycle oscillation (LCO),



with the heat conduction effect. von-Karman strain-displacement relations [31] are
considered for the non-linear analysis and First-order Piston theory [32] is used for
the aero-dynamic conditions. Verification for the results are shown with the previous
researches, and the case studies are held for heat conduction, fiber direction, aspect

ratio and thickness ratio difference under T-D SCF.



2. Formulation

The three layered sandwich panel constructed with MMC face sheet and
titanium honeycomb core including the physical neutral surface zy is shown in

Figure 1. The thickness of face sheet and core is hr and h.. The total thickness is

h and the length and width of model are a, respectively.

2.1. Material model

Structures used at high-thermal area change their material properties due to the
temperature rise. For the investigation of temperature effects, it is appropriate to use
interpolation from material properties at several temperature points [33]. Then the
material properties can be expressed as the function of temperature in the second-

order polynomial form as:

P(T) = PyT? + P,T + P, (1)

where T isthe temperature, and Py, P, and P, are constants, which are shown in
Table 1. Also, P(T) can be represented as temperature-dependent Young’s modulus,
Shear Modulus, Poisson’s ratio, thermal expansion coefficient density and
coefficient of heat transfer as shown in Table 2. Using the above equation, it is

possible to derive T-D material properties in the whole temperature range.

Also, z, is the position neutral surface as [34], and with the consideration of

thermal effect, the equation is expressed as:



350 (D), (2 — 2

Oz Tdz  Ziea(Qux(D), @ = 211)

h/2 —~
L 20 (2. T)dz
ZN (T) = h/2

a2

(2)

2.2. Heat conduction

With the consideration of one-dimensional steady-state heat conduction in
thickness direction on three layered sandwich panel, the temperature on position z

can be described as:

d dT

where K(z) is the heat conduction coefficient dependent on z. Then, the
temperature of each layer can be obtained by solving equation (3) with the boundary

conditions. That is,

darT;
dz |z:zi

Tl = Tb = Trefv T4- = Tua Tilz:zi = i+1|z:ziv Ki (i = 2,3,4)
where the subscript b and u are the bottom and upper surface, respectively. Note
that each interface has the equal temperature value. The temperature distribution of

sandwich panel is shown in Fig. 2.

2.3. Constitutive equation

For the analysis of current sandwich panel, First-order Shear Deformation
Theory of Plate (FSDPT) is used. The displacement field considering temperature

and time-difference are expressed as following:

u(x,v,z,t,T) uo(x,y,t,T) + (2 = zy(T)) x (x, ¥, £, T)
v(x,y,2,6T) ¢t =vo(x,y,6,T) + (z — zy(T)) p, (x, ¥, ¢, T) (4)
w(x,y,2,tT) wo(x,y,t,T)



where u, v,and w are the displacements inthe x, y and z directions. Also, the
rotation of the transverse normal in the xz and yz plates is ¢, and ¢,

respectively. The subscript 0 indicates the displacements in mid-plane.

Using the von-Karman large deflection theory, in-plane strain vector e

including nonlinear terms is [31]:

e=¢+ (z—zyx

( 1, )
Exx | Ug x + EWO,x + (Z - ZN)d)x,x |
(&) : §
{ } | Ugy + Ewgly +(z—zy)pyy |

Vxy
uO,y + Vo x + WO,xWO,y + (Z - ZN)(¢x,y - ¢y,x)

(%)

where €, and y are the in-plane strain vector at the mid-plane and the curvature

strain vector, respectively.

Further, the transverse shear strain vectors y can be derived as

r=b -l ) ®

Since the thermal stresses are not caused by external load but by the expansion of
material under the restrained boundary condition, stress-strain relations are written

as:
o = [Ql(e — adl) ()

Subsequently, the stresses in the k" layer of laminate is expressed



Ox gn @2 @6 €x Ay
{Gy } =012 Q2 02 {Ey } - AT{ @y } (8)
Kk Kk k

T A A A a
xy Q16 Q26 Qsely Vxy xy

Where [Q;;] are the transformed stiffness coefficients due to fiber directionand AT

is the temperature rise.
Further, a,, a, and Ay, are defined as
@, = @y cos? 6 + a, sin? 6
a, = a; sin® 6 + a, cos? 6 (9)
(yy = 2(ay — ay)sinf cos

where a; and a, are the thermal expansion coefficient in x,y direction,

respectively, and 8 is the angle ply.

Finally, the in-plane force and moment vector considering the thermal effect can be

expressed as following
Np(T)) _ [A(T) © N
{MI;(T)} N [o D(T)] {)E(} - {Mﬁ} (10)
Qs = Asy (11)

where

Amo,py =Y [ (@M). (L0, ¢ -20Ddz () =126) (12)
k

k=1"%k-1



Ag = zk 1Kp(T) Lk_l(éij)kdz (i,j = 4,5) (13)

where k,(T) is temperature-dependent shear correction factor (T-D SCF) which
detailed derivation process written in Appendix A. Meanwhile, the thermal force

Ny and moment M,r vectors are

(Nar(T), Mar(T))
(14)
=St [ (0(D) aLz—z)AT@dz (i) = 1.26)

In addition, a are defined as a = [a,(2), ay(z),O]T

2.4. Aerodynamic pressure by supersonic flow

For the structures are considerably applied for the supersonic condition,
aerodynamic external forces are also studied. Using the first-order piston theory [32],
the range of V2 < M,, < /5 is considered:

Par,y,) = —%{w,x ()t w) = -2+ 220 g

M2 -1

where V., M, and p, are the air flow speed, Mach number and air density,

respectively. Again, non-dimensional aerodynamic pressure is expressed as

_ panoa3

D (16)

A

where D,,, is the bending rigidity directed as follows

10 A = TH



Eh3

D, =——- 17
mo12(1 =v?) (17
Also, the non-dimensional aerodynamic damping parameter is
p Voo (Mgo - 2)
o= (18)
:8 thﬂ)o
where wg = D—m4 is the convenient reference frequency, and g = M2 — 1 is

pmha
the aerodynamic pressure parameter. Then, for the high enough Mach
number(M,, > 1), Eq. (18) is approximated as [35]
A (19)

= |
9= 3

where u is the air-mass ratio defined as u = pya/pmh [36].

2.5. Governing equations

To derive the equation of motion with thermal and aerodynamic pressure, the
principle of virtual work is applied

6W = 8Wint - 6Wext = 0 (20)

where 6W;,,; and 8W,,; are the internal and external virtual works, respectively.
The internal work is given as
Wi = [, 5eTadV
int fV (21)
= [,[6"N +6x"M + 5y" QldA

11 A 2-TH



= 6dT [K_KAT-}_%Nl +§N2:|d—6dTPAT

here, o = {ax,ay,rxy}T, e= {ex,ey,yxy}T and d={u v w ¢, ¢,} denotes
the stress, strain, displacement vector, and K, K,r,N{,N, and P,r represent the
linear stiffness, thermal stiffness, first-order nonlinear stiffness, the second-order

nonlinear stiffness and the thermal load vectors, respectively.
While, the external virtual work is given by

Wyt =

Io(iidu + $6v + Wwéw) + I, (ii8py + ¢r6u + 96¢,, + ¢, 6v) "
+12 (dix6¢x + ¢y6¢y) + pa‘SW (22)

-/,

=—8d™™Md + 5d" f

where M and f are global mass matrix and external force vector. And for the

external virtual work, moments of inertia are defined as (Iy, [, 1) =

h/2
f_}{/zp(l,z,zz)dz.

Now the last term of Eq. (22) can be substituted as following with the adjustment of

aerodynamics:

da Dm Dm
8de = Lpa6WdA = —L(M—O?W’t +AF\/V‘x) owdA
(23)
= —5dT (@Add + 24 d)
f
Wo

where Ay and Ay are the aerodynamic damping matrix and aerodynamic

influence matrix, respectively.



Then the external virtual work in Eq. (22) can be represented as

Ya

W, = —5dT (Mi'z o

Agd + AA,rd) (24)

By substituting Egs. (21) and (24) into Eq. (20), the equation of motion are obtained

as

. . 1 1
Md+%Add+(K—KAT+§N1+§N2+AAf)d=PAT (25)
0

2.6. Solutions of equations

2.6.1 Linear analysis
To solve the linear analyses of thermal vibration and buckling from Eqg. (25),

the formulation is assumed to be

In here, natural frequency is obtained by solving the Weigenvalue problem as

Md+ (K — Kap)d =0 (27)

while the thermal buckling problem is solved by changing the Eq. (27) as

(K — Kxr)d =0 (28)

2.6.2 Nonlinear analysis
The first step to solve the nonlinear problem from Eq. (25) is dividing the

displacement vector d into static part (dg) and dynamic part (Ad,) as

d = d, + Ad, (29)

13



where the subscript s and t denote the static and dynamic terms, respectively.

Then, the static nonlinear equation is obtained as following:

1 1
(K_KAT+§N1+§N2+AAf)dS:PAT (30)

Using the Newton-Raphson iterative method [37], the nonlinear post-buckling
deflection is obtained.

While the time dependent part Ad, is used to form the dynamic nonlinear equation
as

K — Kar + Nig + Ny
)aa

. Ya .
MAd, +—A4zAd, + 1 1
t wo d t <+AAf+NZSt+§N1t+§N2t (31)

= Par

where Nq;, N,; and N, are the time dependent nonlinear stiffness matrices. Eq.
(31) is the equation of motion for limit cycle oscillation or flutter behaviors. By

adopting Newmark method [38],the time domain response of plate model is obtained.

14 A0 :';.-!_':;



3. Numerical Results and Discussion

3.1 Code verification

For the validation of the code used to analyze the T-D SCF for the three layered
sandwich laminate using the neutral surface, the material properties reported by
Whitney [39] and Vlachoutsis [16] were used, and the results are shown in Table 1.
Before calculating the T-D SCF, code verification was performed by comparing the
value derived using the material properties at room temperature. The model was a
symmetric three-layered sandwich structure, and the detailed material properties of
each layer were reported by Whitney [39]. As shown in Table 2, the TID SCF in the
x-direction of the sandwich structure calculated by Whitney was 0.4098, which is
almost the same as that found in this work (0.4094), and the factor for the y-direction

was obtained as 0.6724, which is similar to that reported by Whitney (0.6915).

After the verification of the SCF, the vibration analysis considering the T-D SCF
is also held following the code verification of vibration. To verify the result in this
paper, non-dimensional natural frequencies Q = wa? /(h\/E_Z) for the temperature
independent case are compared with the research reported by Matsunaga [27]. The
results shown in Table 3 gives a great agreement with those obtained using the

proposed method.

3.2 Curve-fitting process

In this section, the T-D SCFs integrated into actual models are investigated

15



using numerical calculations. T-D material properties are calculated from the

previously reported data [40].

The detailed research is conducted at three different temperatures; consequently,
the properties in every temperature range can be calculated for up to 1100 K, which
is the service temperature of the titanium alloy honeycomb [41]. Using equation (1),
analysis can be conducted for the given core-face sheet thickness ratio, top bottom

face sheet thickness ratio, and face sheet fiber direction.

3.3 Temperature-dependent Shear Correction Factor

3.3.1 T-D SCF for Symmetric Structures

Considering the thermal effects on the material properties of the titanium
honeycomb core and MMC face sheet shown in Table 1, we can conclude that the
SCF is a thermo-elastic parameter. The temperature rises from room temperature
(300 K) to the service temperature, 1100 K (Ref [41]). And the two real model types
with different fiber angles suggested by Ko [40] with h = 30.48[mm], h, =
29.667[mm], he; = 04064[mm], and hg, = 0.4064[mm] (thicknesses of the
total structure, core, top, and bottom face sheets, respectively) were studied, as
shown in Fig. 1. The MMC face sheet itself was a composite constructed using four
fiber-reinforced metals, and its material properties were found considering it as one
material using the rule of mixture. In other words, four layers constructing the MMC
had individual properties, but for the calculation, it was considered as one material,
which had one material property. For the diversity of analysis, two other types were

7]
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considered, and the difference was the stacking sequence of the fiber direction in the
MMC face sheet: Type | [90°/0°/0°/90°] and Type Il [45°/-45°/-45°/45°]. The
material properties were given by Gruttmann [42], and the values of plane stress-

reduced elastic constants Qf, Q¢ and shear modulus Gs, G, are also represented,

and the indices f and c indicate the face sheet and the core material.

First, for type I, the value of the T-D SCF rises proportionately with temperature,
as shown in Fig. 3a. Both the x and y directions showed the increasing value, where
the x value increased to 0.3323 at 930 K, which differs about 18.68% compared to
the temperature independent value of 0.28. Also, for the y direction, the maximum
value was 0.2881 at 987 K, which differs about 86.71%. Next, for type Il shown in
Fig. 2b, the maximum values of in the x and y directions were 0.2602 at 445 K and
0.193 at 736 K, respectively. When the material is heated, the material becomes
softer, and the value of the T-D SCF decreases. For both type | and Il, the factor
increases for the appointed temperature and decreases as the temperature rises. At
the same time, based on the curve fitting process using the different values at three
different temperatures, Fig. 3 shows that the shape is a convex function. Note that
the SCF is bigger in the x direction than in the y direction because of the larger shear

modulus.

By changing the ratio of the honeycomb core thickness to the total thickness, the
SCF values can be found, as shown in Fig. 4. The ratio of the titanium core thickness
to the total thickness varied from 0.5 to 0.95 as the temperature increased from 300
K to 1100 K. When the core thickness increases, the SCF increases rapidly in both
types. Since the property of the thick layer is dominant in the whole composite, the

titanium honeycomb affects the SCF value, although titanium itself has a TID
3 | i | |
17

-
|



material property. Fig. 4a shows the SCF rise due to the core-face sheet thickness
variation for type I. For the same temperature condition, k increases slightly, and
as the thickness increases continuously and exceeds 0.7, x increases rapidly.
Subsequently, the thermal effect shows that for type I, the factor increases up to
0.3461 at 966 K for a thickness ratio of 0.95. Similar results can be seen for type I,

Fig. 4b (the biggest factor is 0.2683 at 421 K for a thickness ratio of 0.95).

3.3.2 T-D SCF for Asymmetric Structures

The above results are given for symmetric structures, where the mid-plane and the
neutral surface are the same. In this section, the structure is considered asymmetric
by varying the thicknesses of the top and bottom face sheets, and the thickness ratio

is denoted by = ? :

f2

Now, the derivation process for the three-layered laminate is shown in this section,
including the neutral surface which, by substituting 3 into n from equation (2). That

is:

350107 — 7o) -

L= 213(:1((21)1( (Zk — Zk-1)

. h h
where z, is -5 and z; denotes >

Fig. 5 shows the T-D SCF increases for both types due to temperature rise and top-
to-bottom face sheet ratio difference. To begin with the type I, the factor appears its

minimum value from 0.149 at face sheet ratio 1, which is symmetric condition, at
3 3 1

.
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room temperature (300 K). Continually, T-D SCF turns out to be 0.4764 at a top-to-
bottom ratio of 0.8273 at 1100 K. Second, Fig. 5b shows the results of type 11, which
has a minimum value of 0.05032 at face sheet ratio 1 in 300 K, whereas it is 0.3917
at a ratio of 0.2364 in 1100 K. These results show that the SCF becomes larger with

temperature rise along with the face sheet thickness ratio increases.

3.4 Thermo-elastic linear analysis

Linear and non-linear analyses of sandwich panel composed of titanium
honeycomb core and MMC face sheet are performed and compared with the different
conditions. Three layered composite which is two face sheets and one honeycomb
core is analyzed. As described in Fig. 1, the thickness of face sheet and core are
15mm and 30mm, respectively. The temperature-dependent material properties are
listed up in Table 1. Also, the boundary condition are used as

Simply supported boundary condition (SS).

v=w=¢, =0 when x=0,a

u=w=¢, =0 when y=0,a

3.4.1 Vibration behavior

In this part, natural frequencies are derived due to the aspect ratio change. Table 4
shows the natural frequencies of different temperature, aspect ratio, and fiber
directions([90°/0°] , [45°/—45"] ). Minimum value of non-dimensional natural
frequency 11603 can be found at a/h 10 in 300 K. As the aspect ratio increases with

the constant temperature condition, the natural frequency increases to the maximum
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value of 24561 since the structure becomes thinner. For the different fiber direction,
Type | in Table 4a shows a slightly lower frequency compared to Type Il in Table 4b,

and the differences may occur from material stiffness variations.

3.4.2 Buckling behavior

Thermal buckling behavior is analyzed by deriving critical buckling temperature.
That is, the temperature when natural frequency becomes zero. From Table 5, code
verification is held by obtaining critical temperature compared to Matsunaga [8], and
shows good agreement. Table 6 exhibits the critical temperature under different
temperature condition and aspect ratio change. As the ratio increases, the model
buckles in the lower temperature. Also, for the T-D SCF consideration, buckling
occurs earlier compared to the TID condition. This means the change of shear
correction factor effects the buckling temperature. Table 8 represents the critical
temperature when aero-dynamic load is applied. When the load is larger, the buckling
temperature increases, and for the high load more than 600, T-D SCF condition

denotes the higher critical temperature than TID condition.

3.5 Aero-thermo-elastic nonlinear analysis

In the preceding step, linear studies of vibration and buckling are examined.
Natural frequencies and critical buckling temperatures are determined under the heat
conduction condition. Henceforth, nonlinear analyses of post-buckling and limit-

cycle oscillation are conducted from the Egs. (30-31).
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3.5.1 Post-buckling behavior

After the buckling situation, when the temperature increases continuously, the
model restrained by boundary condition deforms. This is so-called post-buckling
which is calculated by Newton-Raphson method and the central displacement of
model is researched. To verify the results in this study, the work held by Averill and
Reddy [43] is compared. The value described in Fig. 6 shows the great agreement of
current code and previous work [43].

Then, the central deflection difference is investigated for the sandwich composite
and the T-D SCF consideration under the heat conduction condition. As shown in
Fig. 7, the deflection occurs about 20% larger in T-D SCF application than the TID
SCF. This means that for the real condition, the structure should me models more

strictly since it bends larger than expected.

3.5.2 Limit Cycle Oscillation

The limit-cycle oscillations (LCO) with structural damping are discussed in this
section. LCO is due to the geometrical non-linearity of structures, and is well known
that the LCO without a catastrophic failure occurs after a critical flutter point, but
results in a fatigue failure of the structures. The calculation is held for the same
structure in linear analysis. With Newmark time iteration method, and the time step
is 0.1ms is used. Additionally, the thickness ratio is a/h = 100.

In Fig. 8, flutter research under uniform temperature and heat conduction
conditions are described. The aerodynamic pressure is loaded as 1400 in both cases.
For the case of heat conduction, flutter motion occurs slower than the uniform
condition. However, the limit-cycle amplitude is larger in this case. Several case

studies for heat conduction condition are held subsequently. Fig. 9 shows _the flutter

I
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motion with T-D SCF and TID SCF. Dynamic pressure is still loaded as 1400, and
other conditions are the same except the shear correction consideration. Flutter
occurs slower in T-D SCF but the amplitude is similar for both case. The analysis for
the temperature change can be seen in, Fig. 10. One has the temperature condition
as AT = AT,,, and the other is 10 times smaller as AT = AT,.,./10. The figure
represents the great difference of motion and amplitude. When the temperature is
higher, limit-cycle occurs earlier and larger. Results in the case of larger aerodynamic
load are shown in Fig. 11. Two different types of load (A1) is shown as 1400 and
1600. Flutter occurs faster and the amplitude is bigger for the larger aerodynamic

load. This is similar with the higher temperature condition.



4. Conclusion

Using the FSDTP, the error compensation was conducted by considering the
transverse effect and rotary inertia, and the SCF was calculated. In this work, to
obtain the temperature dependent shear correction factor, thermo-elastic properties
are considered. Three other parameters, the thermal effect, core-face sheet thickness
ratio, and top-bottom face sheet ratio, affected the T-D SCF. The top-bottom face
sheet ratio makes the structure asymmetric, which subsequently introduces the
neutral surface concept. When the temperature increases, the Young’s modulus

decreases and continuously, the T-D SCF changes, as shown in Fig. 3-5.

For the vibration analysis, thermal expansion due to temperature increase changes
the T-D SCF, which in turn affects the non-dimensional natural frequency.
Irrespective of the fiber direction, when the temperature increases, the SCF inclines,
and the eigenvalue becomes smaller compared to the value derived from the TID
SCF. Also, when the core thickness is larger compared to the face sheet, the natural
frequency becomes smaller. For the buckling analyses, the critical temperature is
higher under the heat conduction and T-D SCF condition. With the aerodynamic
consideration, the temperature increases as the load rises. Non-linear analyses are
also researched. The buckling central deflection becomes larger with the T-D SCF.
Lastly, limit-cycle oscillation is researched with two parameters: time, limit-cycle
amplitude. When T-D SCF is considered, it takes longer time to reach LCO. Under
the lower temperature, LCO occurs slower and smaller. Further, with the higher

aerodynamic loads, the same results is derived with the different heat conditions.
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Finally, using the T-D SCF shows the considerable difference between vibration,
buckling, post-buckling and limit-cycle oscillation. Therefore, it is clear to consider

the aero-thermo-elastic effect to analyze models.

24 ri v _.:;



References

[1]

[2]

3]

[4]

[5]

[6]

[7]

(8]

[9]

Kaczmar JW, Pietrzak K, Aski. The production and application of metal matrix
composite materials

Liu CF, Huang CH. Free vibration of composite laminated plates subjected to
temperature changes. Computers and Structures 1996; 60: 95-101.

Tong L. Free vibration of composite laminated conical shells. International
Journal of Mechanical Sciences 1993; 35: 47-61.

Hachemi M, Hamza-Cherif SM. Free vibration of composite laminated plate
with complicated cutout. Mechanics Based Design of Structures and Machines
2019

Ribeiro P, Akhavan H. Non-linear vibrations of variable stiffness composite
laminated plates. Composite Structures 2012; 94: 2424-2432.

Khatua TP, Cheungt YK. Bending and vibration of multilayer sandwich beams
and plates. International Journal For Numerical Methods in Engineering 1973;
6:11-24

Wang Y jing, Zhang Z jia, Xue X min, et al. Free vibration analysis of composite
sandwich panels with hierarchical honeycomb sandwich core. Thin-Walled
Structures 2019; 145..

Matsunaga H. Thermal buckling of cross-ply laminated composite and
sandwich plates according to a global higher-order deformation theory.
Composite Structures 2005; 68: 439-454.

Tran L v, Thai CH, Nguyen-Xuan H. An isogeometric finite element
formulation for thermal buckling analysis of functionally graded plates. Finite

Elements in Analysis and Design 2013; 73: 65-76.

25



[10] Shariyat M. Thermal buckling analysis of rectangular composite plates with
temperature-dependent properties based on a layerwise theory. Thin-Walled
Structures 2007; 45: 439-452.

[11] Lee SL, Kim JH. Thermal post-buckling and limit-cycle oscillation of
functionally graded panel with structural damping in supersonic airflow.
Composite Structures 2009; 91: 205-211.

[12] Song ZG, Li FM. Flutter and buckling characteristics and active control of
sandwich panels with triangular lattice core in supersonic airflow. Composites
part B: Engineering 2017; 108: 334-344.

[13] Puchegger S, Bauer S, Loidl D, et al. Experimental validation of the shear
correction factor. Journal of Sound Vibration 2003; 261: 177-184.

[14] Bert CW, Gordaninejad F. Transverse Shear Effects in Bimodular Composite
Laminates. Journal of Composite Materials 1983; 17: 282-298.

[15] Lim TC. Improved shear correction factors for deflection of simply supported
very thick rectangular auxetic plates. Intermational Journal of Mechanical and
Materials Engineering 2016; 11:13

[16] Vlachoutsis S. Shear correction factors for plates and shells. International
Journal for Numerical Methods in Engineering 1992; 33:1537-1552

[17] Isaksson P, Krusper A, Gradin PA. Shear correction factors for corrugated core
structures. Composite Structures 2007; 1: 123-130.

[18] Pan SD, Wu LZ, Sun YG. Transverse shear modulus and strength of honeycomb
cores. Composite Structures 2008; 84: 369-374.

[19] Nguyen T-K, Sab K, Bonnet G. Shear Correction Factors for Functionally
Graded Plates. Mechanics of Advanced Materials and Structures 2007; 14: 567—

575.
26



[20] Reddy JN, Chin CD. Thermomechanical analysis of functionally graded
cylinders and plates. Journal of Thermal Stresses 2007; 21: 593-626.

[21] Touloukian. Y. S. Thermophysical Properties of High Temperature Solid
Materials. Defense Technical Information Center 1966.

[22] AKlilu G, Adali S, Bright G. Temperature effect on mechanical properties of
carbon, glass and hybrid polymer composite specimens. International Journal
of Engineering Research in Africa 2018; 39: 119-138.

[23] Fatemi J, Lemmen MHJ. Effective Thermal/Mechanical Properties of
Honeycomb Core Panels for Hot Structure Applications. J Spacecr Rockets
2009; 46: 514-525.

[24] Demirbas MD. Thermal stress analysis of functionally graded plates with
temperature-dependent material properties using theory of elasticity.
Composites part B: Engineering 2017; 131: 100-124.

[25] Papakonstantinou CG, Balaguru P, Lyon RE. Comparative study of high
temperature composites. Composites part B: Engineering 2001; 32: 637-649.

[26] Yoo K-K, Kim J-H. Optimal Design of Smart Skin Structures for Thermo-
Mechanical Buckling and Vibration using a Genetic Algorithm. Journal of
Thermal Stresses 2011; 34: 1003-1020.

[27] Matsunaga H. Free vibration and stability of angle-ply laminated composite and
sandwich plates under thermal loading. Composite Structures 2007; 77: 249—
262.

[28] Hong CC. Varied effects of shear correction on thermal vibration of functionally
graded material shells. Cogent Engineering 2014; 1: 938430.

[29] Lim TK, Kim JH. Thermo-elastic effects on shear correction factors for

functionally graded beam. Composites part B: Engineering 2017; 123: 262-270.

1]

27



[30] Lee SH, Lim TK, Kim JH, Kim JH. Temperature-dependent shear correction
factor with heat transfer based on micromechanical properties for FGM plates.
Thin-walled structures 181 2022; 110095.

[31] Reddy JN. Mechanics of laminated composite plates and shells: theory and
analysis. CRC press, 2004.

[32] Dowell EH. Nonlinear oscillations of a fluttering plate. AIAA Journal 1966; 4:
1267-1275.

[33] K. Williams, Jackson RH. Compressive and shear buckling analysis of metal
matrix composite sandwich panels under different thermal environments.
Composite Structures 1993; 25: 227-239.

[34] Vlachoutsis S. Shear correction factors for plates and shells. International
Journal of Numerical Methods in Engineering 1992; 33: 1537-1552.

[35] Liao CL, Sun YW. Flutter analysis of stiffened laminated composite plates and
shells in supersonic flow. AIAA Journal 1993; 31: 1897-1905.

[36] Prakash T, Ganapathi M. Supersonic flutter characteristics of functionally
graded flat panels including thermal effects. Composite Structures 2006; 72:
10-18.

[37] Na KS, Kim JH. Thermal postbuckling investigations of functionally graded
plates using 3-D finite element method. Finite Elements in Analysis and Design
2006; 42: 749-756.

[38] Hashamdar H, Ibrahim Z, Jameel M. Finite element analysis of nonlinear
structures with Newmark method. International Journal of the Physical
Sciences 2011; 6; 1395-1403.

[39] Whitney JM. Stress Analysis of Thick Laminated Composite and Sandwich

Plates. Journal of Composite Materials 1972; 6

28



[40] K. William L, Jackson. Raymond H. Compressive and shear buckling analysis
of metal matrix composite sandwich panels under different thermal
environments. Composite Structures 25 1993; 227-239

[41] Advanced Materials Technology. High temperature Titanium alloys. Advanced
Materials Technology, 2014

[42] Gruttmann F, Wagner - W, Wagner BW. Shear correction factors for layered
plates and shells. Computational Mechanics 2017; 59: 129-146.

[43] Averill RC, Reddy JN. Thermomechanical postbuckling analysis of laminated
composite shells. AIAA 1993; 351-360.

[44] Chow TS. On the Propagation of Flexural Waves in an Orthotropic Laminated
Plate and Its Response to an Impulsive Load. Journal of Composite Materials

1971, 5: 306-319

29 J .': . !_':;



Table 1. Temperature-dependent material properties of the Sandwich Panel

Metal Matrix Composite [90°]

Metal Matrix Composite [45°]

101407% — 8.808¢’T + 1.834e"'[Pa]
1014072 — 8.808¢’T + 1.834¢'[Pa]
—8.532e78T2? — 1.331e7°T + 0.2482
4847T? — 5.696€"T + 7.254¢'°[Pa]
4847T? — 5.696€"T + 7.254¢°[Pa]
4847T? — 5.696€"T + 7.254¢'°[Pa]

23e76 /°K

3200kg/m3

59W/mK

349072 — 1.239¢’T + 1.82¢"'[Pa]
34907 — 1.239¢7T + 1.82¢[Pa]
2.117e78T% 4+ 1.106e 5T + 0.2756
5611T% — 3.2944€’T + 7.322¢'°[Pa]
5611T% — 3.2944€’T + 7.322¢'°[Pa]
5611T% — 3.2944€’T + 7.322¢'°[Pa]
23676 /°K
3200kg/m3

59W/mK

Titanium Honeycomb

110.3161GPa

110.3161GPa

0.31

0.6¢e°

—988.8T2 + 2.329¢°T + 1.454¢°

—1695T2 + 2.071e°T + 1.878e8

2.97e7%/°K

4540kg/m3

21.9W/mK
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Table 2. Verification of the TID SCF in x and y direction

SCF Whitney [39] Present Difference [%0]
Kq 0.4098 0.4094 0.04%
Ky 0.6915 0.6724 -1.91%
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Table 3. Verification of Non-dimensional natural frequencies of the composite plate

a/h 10 20 50 100
Present 15.057 17.580 18.600 18.764
Matsunaga 15.153 17.628 18.600 18.804
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Table 4 Non-dimensional natural frequencies with different aspect ratio

(@) with fiber direction [90/0],

a/h 10 20 50 100
T =300 K 11603 18051 23342 24561
T=580K 15705 21074 23952 24470
T=900 K 14022 19803 23335 24013
T=1100 K 11636 17817 22584 23634

(b) with fiber direction [45/—45];

a/h 10 20 50 100
T =300 K 11320 17870 23495 24833
T =580 K 15920 21483 24505 25052
T =900 K 14259 20342 24157 24899
T=1100 K 11842 18339 23527 24696
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Table 5. Verification Critical temperature with different thickness ratio h./h

Cases h./h

Results 0.5 0.85 0.9 0.95
Present 0.05549 0.08152 0.08823 0.09528
Ref. [8] 0.05238 0.07954 0.08667 0.09498
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Table 6. Critical temperature VS aspect ratio with different heat conditions

Cases a/h
Results 20 50 80 100
Uniform 9.911 9.908 7.897 5.210
Heat conduction 15.23 15.21 8.133 5.312
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Table 7. Critical temperature with T-D SCF and TID SCF under heat conduction

Cases a/h

Results 20 50 80 100
T- D SCF 9.911 9.908 7.897 5.210
TID SCF 15.23 15.21 8.133 5.312
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Table 8. Critical temperatures with different aerodynamic loads and SCF

Cases A
a/h =20 0 400 600 1000
T-D SCF 9.911 16.59 26.63 63.96
TID SCF 15.22 19.41 24.98 46.75
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Fig. 1 Sandwich panel with MMC face sheet and titanium honeycomb core
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Appendix A.

Temperature-dependent Shear Correction Factor

In the following, the detailed derivation process for the temperature-dependent
shear correction factor is given. Strain energy equality is used to derive the equations,

and the temperature-dependent material properties are considered for the SCF.

1. Shear correction factor in constitutive equation

The transverse shear stress resultant is derived by considering the constitutive

relation for the transverse shear stress in a laminate plate:

Tyz(T) _ Q44(T) 0 yJ/Z(T) -
et =170 asonl b A
where Qg4 = Gy, and Qss = Gy,
The integration of Eq. (A-1) through the thickness of laminate plate yields
Qy(T _ [K2(T)Asa(T) 0] (¥yz(T) -
o) =0 edacml o) (A-2)

h

where {A44(T), Ass(T)} = [Z{Qaa(T), Qss(T)}dz , and iy (T), K (T) are the

shear correction factors for x and y directions, respectively. The factor is accounted
for the fact that 7,, is not constant over the height of the section. Note that the

factors are T-D, and the detailed derivation process is shown in the following section.
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2. Detailed process

For the first step to derive the T-D SCF, consider the laminate composite plate
shown in Fig. 1. From the FSDTP, the model is assumed to have a constant shear
stress without the temperature in the thickness direction. The factor is derived from
the strain energy equality, and since the calculating process of x; and k, for the

plate are the same, the equation of k, is shown in this section.
For the equilibrium equation including thermal effect for laminae are:
O'UJ(T) = O, O0,; = 0 (l,] = 1,2,3) (A-3)

where ¢y, 0,, and g5 are the normal and shear stresses inthe x and y directions
and the xy plane, respectively. Also, o3 denotes t,,. Supposing the weak term

without bending around y-axis, eq. (A-3) leads to
Oxx,x (T) + Txz,z (T) =0 (A'4)
From the definition of the in-place moment, known as a customary way:

h/2
(M), = f e T (@ =x,y) (A5)

then, o,, can be expressed as

0o (2,T) = MxQn(Z:D'I;)l(Z - Zn1) (A-6)

Substituting equation (A-6) into equation (A-4) and integrating with respect to the

thickness direction:
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Z  00,,(z T
T2, T) = —J M dz

—hj2 0 (AD)

and using the defined neutral surface condition in equation (2), equation (A-7) turns

into the following expression in [44]:

tea(, ) = 29D (A9)
D11
where g(z,T) denotes
9(zT) == f_zﬁ Q11(z, T)(z — zy)dz (A-9)

Meanwhile, for the plate strain energy component is:

e u
f TxzVxzdZ = n

h K1 (T) fih ze (Z, T)dZ (A-lo)
"2

by integrating eq. (A-8) into the left side, equation (A-10) can be also expressed as

the following

h/2 2 2 (h/2 g2(, T
f =g —&f g @D . (A-11)

7 = _—
—ny2 Gxz(2,T) D}, —ny2 Gxz(2,T)
Finally, the T-D SCF is obtained by equaling eq. (A-10) t0 eq. (A-11):

D121 (zT)

Kk (T) =
1(T) n2 . " % 92(z,T) p (A-12)
—h/2 x2(2,T) Zf_%m z
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