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Abstract

Fault Tolerant Control of Quadrotor based on

Barrier Lyapunov Function and Extended State Observer

Miae Kim

Department of Mechanical and Aerospace Engineering

The Graduate School

Seoul National University

A fault tolerant control scheme is proposed for a quadrotor under actuator fault

with state constraint, model uncertainty, and disturbance using barrier Lyapunov

function and nonlinear extended state observer. The proposed control system is di-

vided into two parts: outer loop controller for position tracking and inner loop con-

troller for attitude control. Using the time-varying and time-invariant barrier Lya-

punov function, both steady-state and transient performance are guaranteed. To at-

tenuate the e↵ects of uncertainties due to the model uncertainties and disturbances,

a nonlinear extended state observer is utilized, which can estimate the total distur-

bances based on the estimated states of the system. Furthermore, a practical guideline

of gain tuning for the proposed control system is proposed considering the analogy

of the PID control laws. Numerical simulation is performed to demonstrate the e↵ec-

tiveness of the proposed method.

Keywords: Actuator Fault, Barrier Lyapunov Function, Fault Tolerant Control,

Nonlinear Extended State Observer

Student Number: 2021-27861
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Nomenclature

↵i, i 2 {x, y, z} virtual control function of position tracking con-

troller

r̄1i, i 2 {�, ✓, } modified Euler angle

r̄2i, i 2 {�, ✓, } modified angular rate

r̄3i, i 2 {�, ✓, } total disturbance in angle

�i, i 2 {�, ✓, } virtual control function of attitude controller

�1i,�2i, i 2 {�, ✓, } state of auxiliary system

� design parameter of fal function

ˆ̄r1i, ˆ̄r2i, ˆ̄r3i, i 2 {�, ✓, } estimation of r̄1i, r̄2i, r̄3i

ê1i, ê2i, ê3i, i 2 {x, y, z} estimation of e1i, e2i, e3i

�i, i 2 {1, 2, 3, 4} actuator e↵ectiveness factor

r̄d = [�d, ✓d, d]| desired Euler angle

ds = [ds�, ds✓, ds ]| system nonlinear term

dp1,dp2,dr1,dr2 unknown function
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p1 = [x, y, z]| position of the quadrotor with respect to inertial

frame

p2 velocity of the quadrotor with respect to inertial

frame

pd = [xd, yd, zd]| desired position

r1 = [�, ✓, ]| Euler angle of the quadrotor with respect to in-

ertial frame

r2 angular rate of the quadrotor with respect to

inertial frame

u⌧ = [u⌧�, u⌧✓, u⌧ ]| control input of attitude controller

up = [qx, qy, qz]| control input of position tracking controller

u control input (total thrust of the rotors and the

three control torques)

wp1,wp2,wr1,wr2 disturbance

⌦i, i 2 {1, 2, 3, 4} rotor angular speed

⌦ai, i 2 {1, 2, 3, 4} actuar rotor angular speed

⇢0i, ⇢1i, ⇢ki, i 2 {x, y, z} design parameter of rhoi

⇢1i, i 2 {�, ✓, } prescribed Euler angle bound

⇢2i, i 2 {�, ✓, } prescribed angular rate bound

⇢i, i 2 {x, y, z} prescribed position error bound
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✓ design parameter of fal function

ai = [a1i, a2i, a3i] design parameter of ESO

B control e↵ectiveness matrix of quadrotor

c⌧ drag moment coe�cient

cf thrust coe�cient

d distance from the center of mass to the center of

each rotor

e1i, i 2 {x, y, z} modified position error

e2i, i 2 {x, y, z} modified velocity error

e3i, i 2 {x, y, z} total disturbance in position

I = diag(Ixx, Iyy, Izz) inertia matrix of the quadrotor

k1i, k2i, k3i, i 2 {x, y, z,�, ✓, } control gain

kPim , kDim , kIimi 2 {x, y, z,�, ✓, } approximated PID gain

kPi, kDi, i 2 {x, y, z,�, ✓, } approximated PD gain

li, i 2 {x, y, z,�, ✓, } ESO gain

m mass of the quadrotor

s1i, s2i, i 2 {�, ✓, } BLF state transformation of attitude controller

z1i, z2i, i 2 {x, y, z} BLF state transformation of position tracking

controller

3



g gravitational acceleration
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Chapter 1

Introduction

1.1 Motivation

Recently, unmanned aerial vehicle (UAV) has attracted considerable interest in

various fields from industry to military [1]. Among them, quadrotor has been ex-

tensively used because of its vertical takeo↵ and landing, hovering capability, and

simple structure [2]. However, quadrotor dynamics may be vulnerable to external

disturbances, model uncertainties, and actuator faults due to its strong nonlinearity,

and coupling e↵ects resulting from the interaction between aerodynamics, rigid body

dynamics, and rotor dynamics [3].

Especially, actuator fault may significantly a↵ect system dynamics [4]. The un-

certainties and disturbances can lead to control input saturation and consequently

make the system unstable. In this regard, studies on fault tolerant control (FTC) for

a quadrotor have been extensively studied to achieve not only high performance but

also robustness and reliability. To deal with the problem, many researchers have devel-

oped various FTC schemes for quadrotor systems, based on backstepping control [5],

sliding mode control [6, 7], feedback linearization [8], and model reference adaptive

control [9]. Note that a minor level of uncertainties can be handled by robust control

methods. However, maintaining the stability of a quadrotor in case of faults cannot

be obtained by solely relying on the robustness of the controller [3].
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On the other hand, the disturbance estimation performance of extended state

observer (ESO) is closely related to the controller, which influences the performance

of the desired controller. That is, poor estimation may yield control inputs that does

not properly compensate the disturbances and model uncertainties. If the value of the

observer gain is increased to improve the estimation performance, then the possibility

of the peaking phenomenon also increases, which leads to the peaking of control

inputs and degrading the system performance. Thus, the consideration of selecting

ESO parameters, and finding the relations between ESO parameters and control

performance are essential for the ESO-based controller.
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1.2 Literature Review

An active disturbance rejection control (ADRC) [10] was developed to cope with

various kinds of uncertainty, including internal and external disturbances, and time-

varying and nonlinear dynamics, and was utilized for FTC design [11,12]. To estimate

and compensate for uncertainties and faults, the extended state observer (ESO) can be

used as a core part of ADRC, where ESO estimates the model states in that the system

states cannot be fully obtained. High-gain linear ESO has been used for the control

of nonlinear systems. In the typical high-gain linear ESO, the high-gain parameter

is usually powered up to n, which is the dimension of the observed states. The high-

gain parameter should be chosen large enough to achieve exact and fast estimation.

However, the large value of the high-gain parameter dominates the nonlinear system

term, thus could not accurately reflect the system property [13]. Also, high-gain ESO

exhibits the peaking phenomenon, which is the phenomenon that the state of the

observer showing the peaks of a magnitude when the external environment changes.

The high-gain ESO is also known for its sensitivity to high-frequency measurement

noise, which makes practical implementation di�cult [14]. To cope with this problem,

fal-function-based nonlinear ESO was proposed [10, 15, 16]. It was indicated in [17]

that fal-function-based nonlinear ESO has a smaller peaking value, faster observation,

and better performance under measurement noise than the linear ESO.

Note that state variables are usually subject to various constraints depending

on flight conditions and environment. State constraints are usually imposed on the

system to guarantee stability [18]. A barrier Lyapunov function (BLF) is utilized

to handle the state constraint, which is a kind of control Lyapunov function whose

value approaches infinity near certain prescribed bound limits. Owing to the property,

BLF-based control guarantees prescribed transient performance, e.g., convergence
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rate, steady-state error, and maximum overshoot, by using prescribed time-varying

bounds [19]. The time-dependent bound may be set as a monotonically decreasing

function of time, and then the transient performance can be specified. A BLF-based

FTC methods were proposed for Brunovsky normal form systems using arctangent

and logarithmic BLFs [20] and for strict feedback nonlinear systems [21, 22]. In [23],

systems with time-varying constraints were considered.

The BLF-based control design is based on the backstepping method. However, the

backstepping method itself su↵ers from the control parameter tuning process due to

the repeated di↵erentiation of virtual input commands when dealing with nonlinear

systems [24, 25]. To address this issue, formulating a analogy between backstepping

control and proportional-integral-derivative (PID) control has been established. For

example, PID tuning guideline was proposed based on the backstepping analysis tool

in [26]. The backstepping with integral action was proposed in [27], which divides

the control law with feedback term and feed-forward terms. Especially, in [28], PID

controller was conjugated with BLF to consider the state constraints. However, study

on connecting the BLF-based control input to the PID control input has not been

done.
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1.3 Contributions

In this study, the FTC method based on BLF and ESO is proposed to deal with

multiple actuator faults, large disturbances, and model uncertainties. The proposed

controller exploits ESO to compensate the uncertainties and faults and utilizes BLF to

address the time-varying constraints on position tracking error and the time-invariant

constraints on Euler angles and angular rates. Also, this study presents the analogy

and relationship between the PID gain structure and the proposed controller, and

provides the analysis of ESO parameter selection. The main contributions of this

study can be summarized as follows:

1. This study considers general class of nonlinear systems with large uncertainty.

With proper state transformation, ESO used in this study can estimate and

compensate both matched/mismatched uncertainties and faults.

2. ESO and BLF-based controller are combined to achieve prescribed tracking and

transient performance under state constraints and actuator faults. The proposed

controller ensures that the position tracking errors, Euler angles, and angular

rates are within the prescribed bound.

3. A PID-like control gain is constructed using a BLF-based controller. The anal-

ogy and relationship between PID gain and the proposed controller gain are

also presented.

4. The e↵ect of ESO parameter is analyzed to the stability and convergence of the

system.
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1.4 Thesis Overview

The remainder of this thesis is organized as follows. In Chapter 2, problem state-

ment is addressed. Mathematical preliminaries related to BLF are described, and

the dynamic models of the quadrotor, the method of system transformation, and the

ESO form used in this thesis are introduced. Chapter 3 explains the design process of

the proposed FTC control scheme. The proposed FTC scheme consisting of position

tracking controller and attitude controller, guarantees the prescribed performance

bounds. In Chapter 4, the reformulation of the proposed controller is introduced,

which provides the guidelines for gain tuning using the analogy between the proposed

FTC scheme and PID control. In Chapter 5, numerical simulations are performed to

demonstrate the performance of the proposed FTC scheme. In Chapter 6, concluding

remarks and future works are described.
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Chapter 2

Problem Statement

2.1 Mathematical Preliminaries

Lemma 2.1. For any positive constant ⇢i, i = 1, 2, . . . , n, suppose Zi := {zi 2 R :

�cai < zi < cbi} ⇢ R, i = 1, 2, . . . , n, N := Rl ⇥ Z ⇢ Rl+1
is an open set. Consider

the following system.

⌘̇ = h(t, ⌘) (2.1)

where ⌘ := [!, z] 2 N , and h := R+ ⇥ N ! Rl+1
is piecewise continuous in t and

locally Lipschitz in ⌘, and uniformly continuous in t on R+ ⇥N . Suppose that there

exist positive definite functions U : Rl ⇥ R ! R+ and Vi : Zi ! R+, i = 1, 2, . . . , n,

continuously di↵erentiable in their own domain, such that

Vi(zi) ! 1 as zi ! �cai or zi ! cbi

�1(||!||)  U(!, t)  �2(||!||)
(2.2)

where �1 and �2 are class K1 functions. Let V (⌘, t) :=
Pn

i=1 Vi(zi) + U(!, t), and

zi(0) 2 Zi. If the inequality holds:

V̇ =
�V

�⌘
h+

�V

�t
 ��V + C (2.3)
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then zi(t) remains in the open set zi 2 (�cai, cbi), for 8t 2 R+.

Proof. This Lemma is the modified version of Lemma 1 in [21] and Lemma 1 in [30]

in which autonomous system is considered. Similar process in [21] and [30] is used to

prove Lemma 2.1.

The conditions on h ensure the existence and uniqueness of a maximal solution

⌘(t) on the time interval [0, ⌧max), according to [29](p.476, Theorem 54). This implies

that V (⌘(t), t) exists for all t 2 [0, ⌧max).

Since V (⌘(t), t) is positive definite and V̇  ��V+C, V (⌘(t), t) 
⇣
V (⌘(0), 0)� C

�

⌘

e��t+ C
�  V (⌘(0), 0)+ C

� for all t 2 [0, ⌧max). From V (⌘(t), t) :=
Pn

i=1 Vi(zi)+U(!, t)

and the fact that Vi(zi) and U(!, t) are positive functions, it is clear that Vi(zi) is

also bounded for all t 2 [0, ⌧max). Consequently, from (2.2), |zi| 6= �cai and |zi| 6= cbi.

Given that �cai < zi(0) < cbi, it can be inferred that zi(t) remains in the set

�cai < zi < cbi for all t 2 [0, ⌧max).

Therefore, there exists a compact subset K ✓ N such that the maximal so-

lution of (2.1) satisfies ⌘(t) 2 K for all t 2 [0, ⌧max). As a direct consequence

of [29](p.481, Proposition C.3.6), ⌘(t) is defined for all t 2 [0,1), which follows

that zi(t) 2 (�cai, cbi), 8t 2 [0,1).

Lemma 2.2. ( [30]) For any positive constant ⇢ and a scalar x, if |x| < ⇢, the

following inequality holds.

log

✓
⇢2

⇢2 � x2

◆
 x2

⇢2 � x2
(2.4)

12



2.2 Quadrotor Dynamics

The schematic description and the configuration of the frame axes are illustrated

in Fig. 2.1.

⃗b 1

⃗b 2

⃗b 3
⃗e 1

⃗e 2

⃗e 3

Figure 2.1: Quadrotor model

The translational and rotational dynamic model of the quadrotor with respect to

the inertial frame can be represented as follows [32]:

ẍ = �(c�s✓c + s�s )
u1
m

ÿ = �(c�s✓s � s�c )
u1
m

z̈ = g � c�c✓
u1
m

�̈ =
Iyy � Izz

Ixx
✓̇ ̇ +

d

Ixx
u2

✓̈ =
Izz � Ixx

Iyy
�̇ ̇ +

d

Iyy
u3

 ̈ =
Ixx � Iyy

Izz
�̇✓̇ +

1

Izz
u4

(2.5)

where c(·) and s(·) denote cos(·) and sin(·), respectively. The scalar variable m denotes

the mass of the quadrotor, g is gravitational acceleration, d is the distance from the

13



center of mass to the center of each rotor, I = diag(Ixx, Iyy, Izz) denotes the inertia

matrix of the quadrotor, p1 = [x, y, z]| and r1 = [�, ✓,  ]| represent the position

and Euler angle of the quadrotor with respect to the inertial frame, respectively, and

u = [u1, u2, u3, u4]| is the control input denoting the total thrust of the rotors and

the three control torques, respectively. The relation between the control input u and

the rotor speed can be written as follows [33]:

2

66666664

u1

u2

u3

u4

3

77777775

=

2

66666664

cf cf cf cf

0 �cf 0 cf

cf 0 �cf 0

�c⌧ c⌧ �c⌧ c⌧

3

77777775

2

66666664

⌦2
1

⌦2
2

⌦2
3

⌦2
4

3

77777775

(2.6)

where ⌦i is the rotor angular speed of the i-th actuator, cf is the thrust coe�cient,

and c⌧ is the drag moment coe�cient. Equation (2.6) can be rewritten as u = B⌦2,

where the matrix B denotes a control e↵ectiveness matrix and ⌦2 = [⌦2
1,⌦

2
2,⌦

2
3,⌦

2
4]
|.

In this study, actuator fault representing constant partial loss of e↵ectiveness (LoE)

of the rotors is considered. If structural damage in a propeller, such as partial loss

of propeller tip, occurs, then a partial loss of thrust is resulted in the correspond-

ing rotor [34]. The actual rotor speed ⌦ai can be expressed as ⌦ai =
p
�i⌦i, where

�i 2 [0, 1] represents the actuator e↵ectiveness factor: �i = 1 represents a healthy

rotor, and 0  �i < 1 represents a faulty rotor with a partial LoE.
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2.3 System Transformation

2.3.1 Transformation to Normal form SISO System

Consider a following single input single output (SISO) nonlinear system with

uncertainties [15].

ẋ1(t) = x2(t) + h1(x1(t), d1(t))

ẋ2(t) = x3(t) + h2(x1(t), x2(t), d2(t))

...

ẋn�1(t) = xn(t) + hn�1(x1(t), x2(t), . . . , xn�1(t), dn�1(t))

ẋn(t) = gu(t) + hn(x(t), dn(t))

y(t) = x1(t)

(2.7)

where x(t) = [x1(t), x2(t), . . . , xn(t)]| 2 Rn is the state vector, u(t) is the control

input, y(t) is the system output, g is constant control e↵ectiveness, di, (i = 1, 2, . . . , n),

are the external disturbances, and hi, (i = 1, 2, . . . , n) are unknown functions.

Let us define new system variables as

x̄1(t) = x1(t)

x̄2(t) = x2(t) + h1(x1(t), d1(t))

x̄3(t) = x3(t) + h2(x1(t), x2(t), d2(t)) + ḣ1(x1(t), d1(t))

...

x̄n(t) = xn(t) +
n�1X

i=1

h(n�1�i)
i (x1(t), x2(t), . . . , xi(t), di(t))

(2.8)

where h(j)i denotes the j-th time derivative of hi. Let the total disturbances of the
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system be denoted by

x̄n+1(t) =
nX

i=1

h(n�i)
i (x1(t), x2(t), . . . , xi(t), di(t)) (2.9)

and x̄(t) = [x̄1(t), x̄2(t), . . . , x̄n(t)]|. Then, Eq. (2.7) can be rewritten as the following

normal form SISO system.

˙̄x(t) = Anx̄(t) +Bn[gu(t) + x̄n+1(t)]

y(t) = x1(t)
(2.10)

where

An =

2

40 I(n�1)⇥(n�1)

0 0

3

5 , Bn =
h
0 0 . . . 0 1

i|

2.3.2 Transformation of quadrotor Dynamics

Consider the quadrotor dynamics (2.5) with wp and wr, which represent all the

disturbances e↵ecting the quadrotor, such as disturbance, model uncertainty, and

fault, and dp(p1, p2, wp) and dr(r1, r2, wr) are unknown functions, with nonlinear

term of the system ds = [ds�, ds✓, ds ]|, where p1 = [x, y , z]|, r1 = [� , ✓ , ]|. Now,

Eq. (2.5) can be represented as

ṗ1 = p2

ṗ2 = up + dp(p1, p2, wp)

ṙ1 = r2

ṙ2 = u⌧ + ds + dr(r1, r2, wr)

(2.11)
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where up = [qx, qy, qz]|, u⌧ = [u⌧�, u⌧✓, u⌧ ]|,

ds� =
Iyy � Izz

Ixx
✓̇ ̇

ds✓ =
Izz � Ixx

Iyy
�̇ ̇

ds =
Ixx � Iyy

Izz
�̇✓̇

(2.12)

and

qx = �(c�s✓c + s�s )
u1
m

qy = �(c�s✓s � s�c )
u1
m

qz = g � c�c✓
u1
m

u⌧� =
d

Ixx
u2

u⌧✓ =
d

Iyy
u3

u⌧ =
1

Izz
u4

(2.13)

Assumption 2.1. For the external disturbances and reference signal, we assume that

there exist constants M1,M2 > 0 such that

sup
t2[0,1)

||p̃d||  M1, sup
t2[0,1)

||w̃||  M2 (2.14)

where p̃d = [pd, ṗd] and w̃ = [wp,wr, ẇp, ẇr]

By means of calculation, the actual input u1 can be obtained as follows:

u1 = m
q

q2x + q2y + (q2z � g) (2.15)
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Also, the desired Euler angles �d and ✓d can be obtained as follows:

�d =arcsin

✓
�m

u1
(qzs( d)� qyc( d))

◆

✓d =arctan

✓
1

qz � g
(qxc( d) + qys( d))

◆ (2.16)

Let us define the position error as e1 = [e1x, e1y, e1z]| = p1�pd, e2 = [e2x, e2y, e2z]|

= p2� ṗd+dp1, and let the total disturbances e3 = [e3x, e3y, e3z]| = ḋp1+dp2� p̈d,

where pd = [xd , yd , zd]| is the desired position. The position error dynamics of the

quadrotor can be transformed into the following normal form subsystem.

ė1 = e2

ė2 = e3 + up

(2.17)

Similarly, let r1 = [r1�, r1✓, r1 ]| = [� , ✓ , ]|, r2 = [r2�, r2✓, r2 ]| = [p, q , r]|, and

define new state variable for total disturbances of rotational dynamics as r3 =

[r3�, r3✓, r3 ]| = ds + dr. Then, the rotational dynamics of the quadrotor can be

transformed into the following normal form subsystem.

ṙ1 = r2

ṙ2 = r3 + u⌧

(2.18)
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2.4 Extended State Observer

In order to estimate and compensate total disturbances, ESO is constructed for

each SISO subsystem of the modified position error dynamics (2.17), and rotational

dynamics (2.18). Throughout this paper, (̂·) represents the estimate of (·). The ESO

dynamics can be represented as [16].

˙̂e1i = ê2i +
a1i
li

fal(l2i (e1i � ê1i))

˙̂e2i = ê3i + upi + a2i fal(l
2
i (e1i � ê1i))

˙̂e3i = a3ili fal(l
2
i (e1i � ê1i))

, i = x, y, z (2.19)

and
˙̂r1i = r̂2i +

a1i
li

fal(l2i (r1i � r̂1i))

˙̂r2i = r̂3i + u⌧ i + a2i fal(l
2
i (r1i � r̂1i))

˙̂r3i = a3ili fal(l
2
i (r1i � r̂1i))

, i = �, ✓, (2.20)

where the design parameter, ai = [a1i, a2i, a3i], are chosen so that the following matrix

is Hurwitz [16]: 2

66664

�a1i 1 0

�a2i 0 1

�a3i 0 0

3

77775
(2.21)

Note that li is the tuning parameters according to accuracy requirement and the

variation of the total disturbances. The ‘fal’ function is defined as [10],

fal(x) =

8
><

>:

x, |x|  �

|x|✓0sign(x), |x| > �
(2.22)
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where ✓0 2 (0, 1) is constant, which a↵ects the measurement accuracy, and � > 0 is

a design parameter. By using ‘fal’ function, the designed ESO is less sensitive to the

measurement noise for large li because the noise is magnified to be (2✓0�1, 2✓0, 2✓0+1),

less than (1, 2, 3) of the Linear ESO [16].
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Chapter 3

Fault Tolerant Controller Design

The objective of the controller in this study is to design a control input, u, such

that the quadrotor, in the presence of internal and external disturbances and actuator

faults, can satisfy the following conditions.

1. Position tracking error e1 remains in the predefined performance bound.

2. Euler angle r1 and angular rates r2 remain in the predefined constraint bound.

In this section, the FTC method proposed in this study is explained. The overall

configuration of the proposed FTC method is shown in Fig. 3.1.

3RVLWLRQ�7UDFNLQJ�
&RQWUROOHU�

(62 (62

$WWLWXGH�
&RQWUROOHU

4XDGURWRU�
6\VWHP

&RQWURO�
$OORFDWLRQ

$FWXDWRU�
)DXOW

'LVWXUEDQFHV

3URSRVHG�&RQWUROOHU

Figure 3.1: Block diagram of the proposed control system
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3.1 Position Tracking Controller

The purpose of the position tracking controller is to make the position tracking

error e1 satisfy the following inequality to guarantee the prescribed performance.

�⇢i(t)  e1i(t)  ⇢i(t), i = x, y, z (3.1)

where ⇢i(t) is predefined strictly decreasing, di↵erentiable, and bounded functions,

given by ⇢i(t) = (⇢0i � ⇢1i)e
�⇢ki t + ⇢1i, limt!1 ⇢i(t) = ⇢1i. By selecting the

appropriate parameters such as ⇢0, ⇢1, and ⇢ki , the desired transient performance

can be guaranteed. Note that ⇢0 constrains the maximum overshoot, ⇢1 constrains

the steady-state error, and ⇢ki adjusts the convergence rate.

The control design proposed in this study is based on backstepping with symmetric

time-varying BLF. Let us define z1i = e1i/⇢i, z2i = e2i � ↵i, for i = x, y, z, where

↵i’s are virtual control inputs. The controller design process is given as follows [23]:

Step 1: Define the Log-BLF as follows:

V1i =
1

2
log

✓
⇢2i

⇢2i � e21i

◆
=

1

2
log

✓
1

1� z21i

◆
(3.2)

It is clear that V1i is positive definite and continuously di↵erentiable in the set |z1i| <

1. Di↵erentiating V1i and using Eq. (2.17) yields

V̇1i =
z1i

1� z21i

1

⇢i
(e2i � ⇢̇iz1i) =

z1i
1� z21i

1

⇢i
(z2i + ↵i � ⇢̇iz1i) (3.3)

Now, let us define ↵i = ⇢̇iz1i�⇢ik1iz1i, with k1i > 0. Then, we have V̇1i =
z1i

1�z21i

1
⇢i
(z2i�

⇢ik1iz1i).
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Step 2: Define the quadratic functions V2i = z22i/2. Design control input qi as:

qi = �e3i + ↵̇i � k2iz2i �
z1i

1� z21i

1

⇢i
, k2i > 0 (3.4)

Using (2.17), (3.3), (3.4), and Lemma 2.2, the time derivative of Vi = V1i+V2i becomes

V̇i =� k1i
z21i

1� z21i
� k2iz

2
2i

� �iVi

(3.5)

where �i = min{2k1i, 2k2i}.

Theorem 3.1. Consider the position error dynamics of the quadrotor (2.17) with

control input (3.4) and observer (2.19), and Assumption 2.1. If the initial condition

satisfies |e1i(0)| < ⇢i(0), the symmetric time-varying constraint is not violated, i.e.,

|e1i(t)| < ⇢i(t) for all t > 0, and the closed-loop signals z1i and z2i are uniformly

bounded.

Proof. The initial condition requirement is equivalent to |z1i(0)| < 1, 8t. Then,

Lemma 2.1 ensures that |z1i(t)| < 1, which means that |e1i(t)| < ⇢i(t).

Integrating both side of the inequality of Eq. (3.5) yields Vi(t)  V (0)e��it, 8t > 0,

which leads to
1

2
log

✓
1

1� z21i

◆
 Vi(0)e

��it (3.6)

Taking the exponent arithmetic on both sides and reformulating yield:

|z1i| 
p
1� e�2Vi(0)e��it < 1, 8t > 0 (3.7)

Furthermore, since 1
2z

2
2i  Vi(0)e��it, it can be shown that ||z2i|| 

p
2Vi(0)e��it,
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8t > 0.
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3.2 Attitude Controller

The purpose of the attitude controller is to make the Euler angles and angular

rates satisfy the following inequality to guarantee the prescribed performance.

�⇢1i  r1i  ⇢1i, �⇢2i  r2i  ⇢2i, i = �, ✓,  (3.8)

where ⇢1i and ⇢2i are predefined positive scalars.

When an actuator fault occurs in the system with disturbances, it may lead to in-

put saturation and cause unstable. Considering control e↵ectiveness matrix of quadro-

tor in Eq. (2.6), the roll and pitch moments, u2 and u3, are determined only by the

second and fourth rotors and the first and third rotors, respectively. It means that

if the fault occurs at rotor 1, the fault will a↵ect pitch moment more than others

such as thrust or yaw moment. To compensate the e↵ect of the input saturation, let

us introduce an auxiliary system, which considers the di↵erence between the actual

control input and the desired control input, i.e., 4u = sat(u)� u [31, 35, 36].

Assumption 3.1. Consider the situation that the input saturation occurs. Now, if

the di↵erence of input 4u⌧ i is infinite, the system becomes out of control. Therefore,

the di↵erence of input 4u⌧ i is assumed to be bounded.

|4u⌧ i|  ⇣i (3.9)

The following auxiliary system is constructed for each subsystem of rotational
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dynamics of the quadrotor system.

2

4�̇1j

�̇2j

3

5 =

2

4�c1j 1

0 �c2j

3

5

2

4�1j

�2j

3

5+

2

40

1

3

54u⌧j

=A��+B�4u⌧j

(3.10)

where c1i and c2i are positive constants, and �1i and �2i are the outputs of the

auxiliary system.

Remark 3.1. Note that if no input saturation exists, the auxiliary system does not

a↵ect the control input and the system stability.

Again, the control design is based on backstepping with asymmetric BLF. Let us

define the new parameters as

s1i = r1i � rdi � �1i, s2i = r2i � �i � �2i, i = �, ✓, (3.11)

where rdi are the desired Euler angles, and �i are the virtual control inputs. The

controller design process is given as follows:

Step 1:Define the Log-BLF as follows:

V1i =
p(s1i)

2
log

✓
⇢21bi

⇢21bi � s21i

◆
+

1� p(s1i)

2
log

✓
⇢21ai

⇢21ai � s21i

◆
+

1

2
�2
1i (3.12)

where

⇢1ai := rdi + �1i + ⇢1i

⇢1bi := ⇢1i � rdi � �1i

(3.13)
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p(·) =

8
><

>:

1, · > 0

0, ·  0
(3.14)

With the following error coordinate changes,

⇠1ai =
s1i
⇢1ai

, ⇠1bi =
s1i
⇢1bi

, ⇠1i = p(s1i)⇠1bi + (1� p(s1i))⇠1ai (3.15)

The BLF in Eq. (3.12) can be rewritten as a following simple form.

V1i =
1

2
log

✓
1

1� ⇠21i

◆
+

1

2
�2
1i (3.16)

Di↵erentiating V1i and using Eq. (3.10) in the resulting equation yield.

V̇1i =
p(s1i)⇠1bi

⇢1bi(1� ⇠21bi)

✓
s2i + �i � ṙdi + c1i�1i � s1i

⇢̇1bi
⇢1bi

◆

+
(1� p(s1i))⇠1ai
⇢1ai(1� ⇠21ai)

✓
s2i + �i � ṙdi + c1i�1i � s1i

⇢̇1ai
⇢1ai

◆
+ �1i�̇1i

(3.17)

Define �i as

�i = �(k1i + k̄1i(t))s1i + ṙdi � c1i�1i (3.18)

where k̄1i(t) is given by

k̄1i(t) =

s✓
⇢̇1ai
⇢1ai

◆2

+

✓
⇢̇1bi
⇢1bi

◆2

+ i (3.19)

where i > 0 ensures that the time derivative of �i is nonzero even when ⇢̇1ai and

⇢̇1bi are both zeros.
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Step 2: Define the Log-BLF as follows:

V2i = V1i +
p(s2i)

2
log

✓
⇢22bi

⇢22bi � s22i

◆
+

1� p(s2i)

2
log

✓
⇢22ai

⇢22ai � s22i

◆
+

1

2
�2
2i (3.20)

where

⇢2ai := �i + �2i + ⇢2i

⇢2bi := ⇢2i � �i � �2i

(3.21)

and

⇠2ai =
s2i
⇢2ai

, ⇠2bi =
s2i
⇢2bi

, ⇠2i = p(s2i)⇠2bi + (1� p(s2i))⇠2ai (3.22)

Design control input u⌧ i as

u⌧ i = �r3i + �̇i � (k2i + k̄2i)s2i � µis1i � c2i�2i (3.23)

where

µi =
p(s1i)

⇢21bi � s21i
+

1� p(s1i)

⇢21ai � s21i
(3.24)

and

k̄2i(t) =

s✓
⇢̇2ai
⇢2ai

◆2

+

✓
⇢̇2bi
⇢2bi

◆2

+ i (3.25)

Using (2.18), (3.17), (3.18), (3.23), and Lemma 2, the time derivative of V2i can be

represented as

V̇2i � k1i
⇠21i

1� ⇠21i
� k2i

⇠22i
1� ⇠22i

� c1i�
2
1i � c2i�

2
2i + �1i�2i + �2i4u⌧ i (3.26)
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From Eq. (3.9), the following inequalities hold.

�1i�2i  1

2
�2
1i +

1

2
�2
2i

�2i4u⌧ i  1

2
�2
2i +

1

2
4u2⌧ i  1

2
�2
2i +

1

2
⇣2i

(3.27)

Equation (3.26) satisfies the following inequality:

V̇2i � k1i
⇠21i

1� ⇠21i
� k2i

⇠22i
1� ⇠22i

�
✓
c1i �

1

2

◆
�2
1i � (c2i � 1)�2

2i +
1

2
⇣2i

� �iV2i + Ci

(3.28)

where c1i > 1/2, c2i > 1, �i = min{2k1i, 2k2i, 2(c1i � 1/2), 2(c2i � 1)}, and Ci = ⇣2i /2.

Theorem 3.2. Consider the rotational dynamics of the quadrotor (2.18) with control

input (3.23) and observer (2.20), and Assumptions 2.1 and 3.1. If the initial condition

satisfies |r1i(0)| < ⇢1i and |r2i(0)| < ⇢2i, the symmetric constant constraint is not

violated, i.e., |r1i(t)| < ⇢1i and |r2i(t)| < ⇢2i, and the closed-loop signals z1i, z2i, �1i,

and �2i will be uniformly bounded.

Proof. The initial condition requirement is equivalent to �⇢1aj(0) < s1j(0) < ⇢1bj(0)

and �⇢2aj(0) < s2j(0) < ⇢2bj(0). Then, Lemma 2.1 ensures that |⇠1j(t)| < 1 and

|⇠2j(t)| < 1, 8t > 0. At the same time, from Assumption 3.1 and Eq. (3.10), �1j , and

�2j are all bounded as A� is Hurwitz.

Taking the integral of Eq. (3.28) yields 0  V2j(t) 
⇣
V2j(0)� Cj

�j

⌘
e��jt + Cj

�j


V2j(0) +
Cj

�j
, 8t > 0, which leads to

1

2
log

 
1

1� ⇠21j

!
 V2j(0) +

Cj

�j
(3.29)
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Taking the exponent arithmetic on both sides and reformulating the resulting

equation with Eq. (3.15), we have

�⇢1aj
p

1� e�2(V2j(0)+Cj/�j)  s1j  ⇢1bj
p
1� e�2(V2j(0)+Cj/�j) (3.30)

for all t > 0. In a similar way, we have

�⇢2aj
p

1� e�2(V2j(0)+Cj/�j)  s2j  ⇢2bj
p
1� e�2(V2j(0)+Cj/�j) (3.31)

In Eqs. (3.30) and (3.31), it can be shown that �⇢1aj < s1j < ⇢1bj and �⇢2aj < s2j <

⇢2bj . With Eqs. (3.11), (3.13), and (3.21), the following inequalities can be inferred.

�⇢1j < r1j < ⇢1j , �⇢2j < r2j < ⇢2j (3.32)
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Chapter 4

Practical Guideline for Gain Tuning

4.1 Analogy of Proposed Controller to PD Controller

This section presents the analogy between the proposed controller and PD con-

troller. The proposed control input can be formulated as the PD-like form so that the

control gain parameters can be properly chosen.

4.1.1 Position Tracking Controller

Let us consider the position tracking control system. Substituting z1i = e1i/⇢i,

z2i = e2i � ↵i, and ↵i = ⇢̇iz1i � ⇢ik1iz1i into Eq. (3.4) yields:

qi = �kPie1i � kDie2i � e3i, i = x, y, z (4.1)

where

kPi = �
✓
⇢̈i
⇢i

� ⇢̇2i
⇢2i

� 1

⇢2i � e21i
+

k2i⇢̇i
⇢i

◆
+ k1ik2i (4.2a)

kDi = � ⇢̇i
⇢i

+ (k1i + k2i) (4.2b)

Now, the control law (4.1) can be seen as the combination of an error-based PD

feedback components with gains kPi and kDi, and disturbance compensation compo-

nent. The PD-like gains, kPi and kDi, should be positive. Due to the definition of ⇢i,
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�⇢̈i/⇢i + ⇢̇2i /⇢
2
i > 0, and Eq. (3.1) with ⇢̇i/⇢i < 0, k2i > 0, kPi is always positive.

Also, ⇢̇i/⇢i < 0 makes k1i, k2i > 0, kDi always positive.

In case of e1i goes to 0 and t goes to 1, i.e., steady state, the first term of kPi and

kDi goes to 1/⇢21i and 0, respectively. Then, the control gains can be approximated

as follows:

kPi ⇡ k1ik2i +
1

⇢21i

, kDi ⇡ k1i + k2i (4.3)

4.1.2 Attitude Controller

Let us consider the attitude control system. Substituting s1i and s2i in Eq. (3.11),

and �i in Eq. (3.18) into Eq. (3.23) yields

u⌧ i =� kPie1i � kDie2i � r3i + r̈di + li(�1i,�2i), i = �, ✓, (4.4)

where e1i = r1i � rdi, e2i = r2i � ṙdi,

li(�1i,�2i) =

✓
(k1i + k̄1i)(k2i + k̄2i)� (k1i + k̄1i)c1i � (k2i + k̄2i)c1i

+ µi +
˙̄k1i + c21i

◆
�1i

+

✓
� (k2i + k̄2i)� 2c1i

◆
�2i

(4.5)

and

kPi =
˙̄k1i + µi + (k1i + k̄1i)(k2i + k̄2i)

kDi = (k1i + k̄1i) + (k2i + k̄2i)
(4.6)

Similarly, the control law (4.4), can now be seen as a combination of an error-based

PD feedback component with gains kPi and kDi, disturbance compensation compo-

nent, model reference compensation component, and input saturation compensation

component. The PD-like gains, kPi and kDi, should be positive. Assume that input
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saturation does not occur, �1i = 0 and �2i = 0. Then kPi and kDi are always positive

value. Especially, in case of e1i and e2i go to 0, the control gains can be approximated

as follows:

kPi ⇡ k1ik2i + (k1i + k2i)
p
i + i, kDi ⇡ k1i + k2i + 2

p
i (4.7)
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4.2 Analogy of Modified Controller to PID Control

This section presents the analogy of the proposed controller to the PID controller.

By adding additional integral action to the proposed control input, the controller

proposed in Chapter 3 can be changed to the PID-like form, so that the control gain

parameter can be properly chosen. The tuning guideline for both position tracking

and attitude controllers are given and a mathematical analysis of control parameters

is shown below.

4.2.1 Position Tracking Controller

The position tracking virtual control input ↵i can be modified as:

↵i = ⇢̇iz1i � ⇢ik1iz1i � k3i⇢
2(1� z21i)

Z
e1idt, i = x, y, z (4.8)

Theorem 4.1. Consider the position error dynamics of the quadrotor (2.17) with

control input (3.4) with ↵ in (4.8), observer (2.19), and Assumption 2.1. If the ini-

tial condition satisfies |e1i(0)| < ⇢i(0), the symmetric time-varying constraint is not

violated, i.e., |e1i(t)| < ⇢i(t) for all t > 0, and the closed-loop signals z1i and z2i are

uniformly bounded.

Proof. From the initial condition requirement, Lemma 2.1 ensures that |z1i(t)| < 1,

which means |e1i(t)| < ⇢i(t). Consider the following barrier-Lyapunov function:

Vi =
1

2
log

✓
1

1� z21i

◆
+

1

2
z22i +

1

2
k3i

✓Z
e1idt

◆2

(4.9)

Then, the time derivative of Vi satisfies the following inequality equation:

V̇i  ��iVi + Ci (4.10)
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where �i = min{2k1i, 2k2i}, and Ci = k2ik3i
�R

e1idt
�2

/2. Integrating both side of the

inequality of Eq. (4.10) 0  Vi(t) 
⇣
Vi(0)� Ci

�i

⌘
e��it + Ci

�i
 Vi(0) +

Ci
�i
, 8t > 0,

which leads to:
1

2
log

✓
1

1� z21i

◆
 Vi(0) +

Ci

�i
(4.11)

Taking the exponent arithmetic on both sides and reformulation yield:

|z1i| 
p

1� e�2(Vi(0)+Ci/�i) < 1, 8t > 0 (4.12)

Furthermore, since 1
2z

2
2i  Vi(0) +

Ci
�i
, it can be shown that ||z2i|| 

q
2(Vi(0) +

Ci
�i
),

8t > 0.

Substituting z1i, z2i, and ↵i in Eq. (4.8) into Eq. (3.4) yields:

qi = �kPime1i � kDime2i � kIim

Z
e1idt� e3i + 2k3ie1ie2i

Z
e1idt (4.13)

where

kPim = kPi + k3i(1� z21i)⇢
2

kDim = kDi

kIim =2k3i⇢i⇢̇i + (1� z21i)k2ik3i⇢
2
i .

(4.14)

The control law (4.13) now becomes a combination of error-based PID feedback com-

ponent with gains kPim , kDim , and kIim , and disturbance compensation component.

Note that kPim and kDim are always positive. If the following inequalities hold, the

integral control gain, kIim , is guaranteed to be positive for t � 0.

(⇢2i � e21i)k2i + 2⇢i⇢̇i > 0. (4.15)
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This implies that k2i needs to be large enough to make kIim be positive.

In case of e1i and e2i go to 0, the second term of kPim goes to k3i⇢21i and the first

term of kIim goes to 0 as t ! 1. Then, the control gains can be approximated as

follows:

kPim ⇡ k1ik2i + k3i⇢
2
1i +

1

⇢21i

, kDim ⇡ k1i + k2i, kIim ⇡ k2ik3i⇢
2
1i. (4.16)

By solving the following third-order equation with respect to k2i, which is derived

from Eq. (4.16), the set of equivalent k1i, k2i, and k3i gains can be deterimined as

follows:

k32i � kDimk
2
2i +

✓
kPim � 1

⇢21i

◆
k2i � kIim = 0

k1i = kDim � k2i

k3i =
1

k2i⇢21i

kIim .

(4.17)

Equation (4.15) represents conditions that guarantee PID gains of Eq. (4.14) positive,

and Eq. (4.17) provides the analogy of the proposed controller to the PID gains.

To investigate the meaning of Eq. (4.17), the result with kPim = 60 and kIim = 1

is presented in Fig. 4.1a), and with kDim = 50 and kIim = 1 is presented in Fig. 4.1b),

where ⇢0i = 1m, ⇢1i = 0.5m, ⇢ki = 0.5, ⇢1i = 45deg, and ⇢1i = 100deg/s.
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(a) kPim = 60 and kIim = 1

(b) kDim = 50 and kIim = 1

Figure 4.1: Coupled controller gains, k1i, k2i, and k3i, for specific kPim , kDim , and
kIim . (Position tracking controller)
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Remark 4.1. Tuning Guideline for position tracking controller

1. For a given value of kPim, the k1i, k2i, and k3i values can be determined for any

desired value of kDim.

2. For a given value of kDim, the k1i, k2i, and k3i values can be determined for

any desired value of kPim .

3. Since kDim is the summation of k1i and k2i, one of their values determines the

other.

4. Selecting too small value of k2i can make kIim < 0, which makes whole system

unstable, due to Eq. (4.15).

Remark 4.2. Note that the parameters for prescribed performances, ⇢0i, ⇢1i, and

⇢ki, also a↵ect the PID gains. If these values vary, feasible solutions to Eq. (4.15)

and kPim, kDim , and kIim will also change. In Eq. (4.16), we can see that the propor-

tional and integral gains of the proposed controller are changed when ⇢1i change. The

proportional gain kPmi significantly increases when ⇢1i goes to 0, which is a tighter

performance criterion. This means that if we want less tracking error, the value of

gains k1i and k2i should be decreased to keep the value of kPmi. Similarly, the integral

gain decreases when ⇢1i decreases so that the k3i should be chosen properly to keep

the desired integral gain value.

Remark 4.3. By approximating the proposed control gain to PID-like gain consid-

ering asymptotic tracking performance, it can be expected that e1(·) and e2(·) go to

0 and t ! 1. However, at the beginning of the control, control inputs are relatively

vulnerable to the prescribed performance bound ⇢i. Note that the initial gain e↵ects

can be made small by selecting suitable performance bound. For example, consider
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an integral gain in Eq. (4.14). When t = 0, kIim(0) = �2k3i⇢0i⇢ki(⇢0i � ⇢1i). By

selecting small ⇢ki, ⇢1i, or ⇢0i�⇢1i, the e↵ect of the ignored terms can be decreased.

4.2.2 Attitude Controller

Now, let us consider an attitude controller. The attitude virtual control input �i

can be modified as:

�i = �(k1i + k̄1i(t))s1i + rdi � c1i�1i � k3i(1� ⇠21i)

Z
e1idt, i = �, ✓, (4.18)

Theorem 4.2. Consider the rotational dynamics of the quadrotor (2.18) with control

input (3.23) with �i in (4.18), observer (2.20), and Assumptions 2.1 and 3.1. If the

initial condition satisfies |r1i(0)| < ⇢1i and |r2i(0)| < ⇢2i, the symmetric constant

constraint is not violated, i.e., |r1i(t)| < ⇢1i and |r2i(t)| < ⇢2i, and the closed-loop

signals s1i, s2i, �1i, and �2i will be uniformly bounded.

Proof. From the initial condition requirement, Lemma 2.1 ensures that |⇠1i(t)| < 1

and |⇠2i(t)| < 1, 8t, and at the same time, from Assumption 3.1 and Eq. (3.10), �1j ,

and �2j are all bounded as A� is Hurwitz.

Vi = V2i +
1

2
k3i

✓Z
e1idt

◆2

(4.19)

Then, the time derivative of Vi satisfies the following inequality equation:

V̇i  ��iVi + Ci (4.20)

where �i = min{2k1i, 2k2i, 2(c1i�1/2), 2(c2i�1)}, and Ci = ⇣2i /2+k2ik3i
�R

e1idt
�2

/2.

The rest of the proof is the same as the proof of Theorem 3.2.
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Substituting s1i, s2i, and �i in Eq. (4.18) into Eq. (3.23) yields:

u⌧ i =� kPime1i � kDime2i � kIim

Z
e1idt� r3i

+ li(�1i,�2i) + (k2i + k̄2i)ṙ1i � (k1i + k̄1i)r̈1i + 2k3i⇠1i⇠2i

Z
e1idt

(4.21)

where

kPim = kPi + k3i(1� ⇠21i)

kDim = kDi

kIim = (k2i + k̄2i)k3i(1� ⇠21i).

(4.22)

Similarly, the control law (4.21), can now be understood as a combination of an

error-based PID feedback component with gains kPim , kDim , and kIim , disturbance

compensation component, and input saturation compensation component. The second

term of kPim and kIim are always positive, and therefore all PID-like gains are always

positive. Assume that input saturation does not occur, and e1i and e2i go to 0, then

the control gains can be approximated as follows:

kPim ⇡ k1ik2i + k3i + (k1i + k2i)
p
i + i

kDim ⇡ k1i + k2i + 2
p
i

kIim ⇡ (k2i +
p
i)k3i.

(4.23)

By solving the following third-order equation with respect to k2i, which is derived

from Eq. (4.23), the set of equivalent k1i, k2i, and k3i gains can be determined as
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follows:

k32j � (kDjm � 3
p
j)k

2
2j

�
kPjm � 2kDjm

p
j + 3j

�
k2j

+ (kPjm
p
j � kDjmj � kIjm + j

p
j) = 0

k1j = kDjm � k2j � 2
p
j

k3j =
1

k2j +
p
j

kIjm .

(4.24)

Equation (4.24) represents relations between PID gains and controller gains.

To investigate the meaning of Eq. (4.24), the result with kPim = 100 and kIim = 1

is presented in Fig. 4.2a), and with kDim = 45 and kIim = 1 is presented in Fig. 4.2b).
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(a) kPim = 100 and kIim = 1

(b) kDim = 45 and kIim = 1

Figure 4.2: Coupled controller gains, k1i, k2i, and k3i, for specific kPim , kDim , and
kIim . (Attitude controller)
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Remark 4.4. Contents 1-3 in Remark 4.1 can also be used for attitude controller

gain tuning.

Remark 4.5. Note that the prescribed performance bound ⇢1i influences the values

of the PID-like gain. For the gain kPi of kPim in Eq. (4.23), the term µi, which

is represented as Eq. (3.24), is inverse proportional to ⇢1i. Therefore, if the desired

bound ⇢1i is too small, the gain kPim increases significantly. To compensate this e↵ect,

k1i and k2i should be decreased.

Remark 4.6. By approximating the proposed control gain to PID-like gain, it can be

expected that e1(·) and e2(·) go to 0 and the input saturation does not occur. However,

the term k̄2i significantly changes i) at the beginning of the control, or ii) when the

actuator fault occurs, because of the e↵ect of the term k1iṡ1i in �̇i. The term ṡ1i =

ṙ1i � ṙdi inevitably has nonzero value at the transient state of the control or at the

time of the fault occurs. Therefore, with the gain k1i, absolute value of �̇i increases

and the value of kPim and kDim increases (See Eq. (4.24)). Note that, unlike the

position tracking controller, the PID-like gain of the attitude control is only applied

to the steady-state phase with exact fault information, not the transient phase.
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4.3 Guideline for ESO Parameter Tuning

This section analyzes the e↵ect of changes in ESO gain parameters on control

performance.

1. Increasing the observer gain li in Eq. (2.19) yields a faster estimation of state

parameters and disturbances. However, because the magnitude of the peak is

determined in proportion to the magnitude of the observer gain, the high ob-

server gain may degrade the control performance in the case of a fault. There

exists a trade-o↵ between the estimation response time and the magnitude of

peaking. For example, the peak of state variables may occur, which leads to

the large control input. More specifically, if the observer gain of the position

tracking controller is too large, the magnitude of the peak rapidly increases,

resulting in an abrupt change of position tracking control input qi, which yields

big changes in desired Euler angles (see Eq. (2.16)). If the desired Euler angles

increase and are close to the prescribed performance bounds ⇢1i, ⇢1bi(or ⇢1ai)

becomes smaller (see Eq. (3.13)), resulting in large attitude control input u⌧ i.

Therefore, it is recommended that the observer gain should be chosen less than

a certain value in the position tracking controller.

2. Consider ai’s in Eq. (2.19), which are chosen such that Eq. (2.21) is Hurwitz.

Increasing the absolute real value of the poles of the matrix Eq. (2.21) yields a

faster estimation of the state parameters and disturbances, but the magnitude

of the peak increases, yielding similar results as described in 1.

3. Consider � in Eq. (2.22). Decreasing � yields faster estimation, but the magni-

tude of the peak increases and the oscillation in the estimation may occur.

44



Chapter 5

Numerical Simulation

In this chapter, numerical simulation is performed to demonstrate the e↵ectiveness

of the proposed control method. The model parameters of the quadrotor used in the

simulation are summarized in Table 5.1 [37]. The initial position and Euler angle

values of the quadrotor for the simulation are set as [0, 0, 0]Tm and [0, 0, 0]Tdeg,

respectively.

Table 5.1: Quadrotor Parameters

Parameter Name Value

m Mass 0.65kg
Ixx Moment of inertial about x-axis 7.5⇥ 10

�3
kgm

2

Iyy Moment of inertial about y-axis 7.5⇥ 10
�3

kgm
2

Izz Moment of inertial about z-axis 1.3⇥ 10
�2

kgm
2

cf Thrust coe�cient 3.13⇥ 10
�5

Ns
2

c⌧ Drag moment coe�cient 7.5⇥ 10
�7

Ns
2

d Arm length 0.23m
⌦max Maximum rotor speed 1, 000rad/s
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5.1 Case 1: Multiple Faults without ESO

First, to demonstrate the performance of the proposed BLF-based controller itself,

the numerical simulation is performed without the use of ESO. The normal backstep-

ping (BS) controller with two di↵erent gain settings is selected for comparison: i) the

first one has the same control gains as the proposed controller, which is denoted as

BS, and ii) the second one has tuned control gains, which is denoted as BS (tuned).

Note that the tracking performance of BS (tuned) is better than that of BS. The

reference trajectory is constructed as pd = [1, cos(t), �t]T . The scenario of actuator

e↵ectiveness losses are: 20% e↵ectiveness in rotor 1 at 5 s and 50% e↵ectiveness in

rotor 2 at 7 s. In this simulation, ESOs are not used, and it is assumed that the fault

detection is provided by a fault detection and identification module with a time delay

of 0.2 s. The disturbance and model uncertainty are not considered.

The parameters of the proposed controller are selected as k1i = 0.1, k2i = 6, and

k3i = 0, for i = x, y, z, and k1i = 8, k2i = 18.75, and k3i = 0, for i = �, ✓, . The same

gain parameters are used in BS. The predefined bounds for the position errors are

selected as ⇢0i = 1.5, ⇢1i = 0.2, and ⇢ki = 1, for i = x, y, z, so that the position error

cannot exceed 0.2m even if actuator fault occurs. For Euler angles and angular rates,

⇢1i = 45 deg and ⇢2i = 150 deg/s, for i = �, ✓, and ⇢1i = 45 deg and ⇢2i = 180 deg/s

for i =  . The parameters of the BS (tuned) are selected as k1i = 0.5, k2i = 6, and

k3i = 0, for i = x, y, z, and k1i = 8, k2i = 18.75, and k3i = 0, for i = �, ✓, .
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The simulation results are shown in Figs. 5.1-5.5. As shown in Fig. 5.1, only the

proposed controller maintains the prescribed position tracking bounds when the fault

occurs. BS (tuned) maintains prescribed bounds before fault, but shows tracking error

fluctuations when the first actuator fault occurs and the x position gets out of the

bounds for a while. Figures 5.2-5.4 show the Euler angle, angular rate, and Euler angle

tracking error histories, respectively. When the first fault occurs at 5 s, the angular

rates of the proposed controller have been maintained within the system constraints.

Meanwhile, as shown in Fig. 5.3, the pitch rate overshoot, which is bigger than the

prescribed bounds, can be seen in both BS controllers. As shown in Fig. 5.4, the

proposed method has oscillation and slow convergence rate in angular rate after the

fault occurs, which will be treated by using the ESO. The control input signals are

displayed in Fig. 5.5, and the fluctuations are shown when the fault occurs.
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Figure 5.1: Position tracking error responses (Case 1)
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Figure 5.2: Euler angle responses (Case 1)
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Figure 5.3: Angular rate responses (Case 1)
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Figure 5.4: Euler angle tracking errors (Case 1)
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Figure 5.5: Control input responses (Case 1)
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Table 5.2: The comparison of the STD (Case 1)

Proposed BS BS (tuned)

e1x [m] 0.1675 0.2748 0.2129

e1y [m] 0.1643 0.2624 0.2014

e1z [m] 0.0182 0.0508 0.0335

e1� [deg] 3.2414 1.8608 2.2052

e1✓ [deg] 4.1954 3.7861 4.3764

e1 [deg] 0.3516 0.2190 0.2190

Table 5.3: The comparison of the largest fluctuation (Case 1)

Overshoot (fault 1)

Proposed BS BS (tuned)

e1x [m] 0.0981 - 0.2408

e1y [m] 0.0142 - -0.0326

e1z [m] 0.1005 0.1715 0.1255

e1� [deg] 2.3501 1.9420 2.1463

e1✓ [deg] -18.9789 -34.6177 -36.0392

e1 [deg] 2.0224 2.2918 2.2918

p [deg/s] -13.2171 -10.8501 -11.6662

q [deg/s] 136.9195 174.1044 183.2829

r [deg/s] 11.0615 -8.5397 -8.6573

Overshoot (fault 2)

Proposed BS BS (tuned)

e1x [m] -0.0463 0.0120 0.0783

e1y [m] 0.0622 -0.1038 0.1103

e1z [m] 0.0359 0.1525 0.0775

e1� [deg] 13.5692 14.4542 14.9398

e1✓ [deg] -7.5145 0.3210 0.7663

e1 [deg] -0.9989 -0.5990 -0.5990

p [deg/s] -80.2664 -70.7518 -74.2080

q [deg/s] 44.0333 -2.0740 -3.3816

r [deg/s] -6.7852 -3.9188 -4.0077
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The comparisons of standard deviation (STD) of the tracking error of position and

Euler angle are summarized in Table 5.2. The comparison of the largest fluctuation

after the fault in the position tracking error, Euler angle tracking error, and angular

rate are summarized in Table 5.3. As shown in Table 5.2, the proposed controller

can achieve the best robust position tracking performance among the considered

controllers, although the STD of the tracking performance of Euler angle is higher

than BS, due to the oscillation. As seen in Table 5.3, only the proposed controller

maintains all the prescribed system constraints under actuator faults. More specially,

the first fault a↵ects the pitch angle/rate of the quadrotor, and the second fault a↵ects

the roll angle/rate of the quadrotor. After the first fault (see Overshoot (fault 1)), the

fluctuation level of the pitch angle and rate has the smallest value in the proposed

controller. Also, after the second fault (see Overshoot (fault 2)), the fluctuation level

of the roll angle has the smallest value, even though the fluctuation level of the roll rate

is the highest in the proposed controller. Finally, it can be stated that the proposed

controller keeps the system states to maintain the prescribed bounds.
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5.2 Case 2: Multiple Faults

under Disturbances and Model Uncertainties.

To demonstrate the e↵ectiveness of the proposed FTC scheme, multiple faults

are considered for the system with disturbances and model uncertainties. The distur-

bances are chosen as [38, 39]:

dp =

2

66664

0.1 sin(t)� 0.2 + ẋẏ

0.2 sin(⇡t) + ẏż

0.2 sin(3t)� 0.1 sin(0.5⇡t) + e�t sin(t+ ⇡
4 )

3

77775

dr =

2

66664

�0.2 sin(0.5⇡t) + 0.1

0.1 cos(
p
2t)

0.1 cos(2t+ 1) + 0.05

3

77775

(5.1)

Suppose that the output of position tracking controller e1i for i = x, y, z and the out-

put of attitude controller r1j for j = �, ✓, are contaminated by the noise 0.001N (t),

where N (t) is the standard Gaussian noise. The reference trajectory is constructed

as:

pd =


sin(

t

2
) cos(

⇡t

5
) cos(

⇡

4
), sin(

t

2
) sin(

⇡t

5
) cos(

⇡

4
), �t

�T
(5.2)

The scenario of actuator e�ciency losses is shown in Fig. 5.6.
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Figure 5.6: Actuator fault scenario (Actuator e�ciency loss history: Case 2)
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5.2.1 Case 2A

In this scenario, model uncertainties are considered as:

4m, 4Ixx, 4Iyy, 4Izz = 0.1

4cf = 0.1, 4c⌧ = �0.1
(5.3)

The parameter of the proposed controller are selected as k1i = 2, k2i = 0.8, and

k3i = 0.5, for i = x, y, z, and k1i = 15, k2i = 50, and k3i = 0.5, for j = �, ✓, . The

predefined bounds for position errors are selected as ⇢0i = 0.5, ⇢1i = 0.25, and ⇢ki =

0.6, for i = x, y, z, so that the position error cannot exceed 0.25m even if actuator

fault occurs. For Euler angles and angular rates, ⇢1i = 45 deg and ⇢2i = 150 deg/s, for

j = �, ✓, and ⇢1i = 45 deg and ⇢2i = 180 deg/s, for j =  . For the auxiliary system

in Eq. (3.10), [c1i, c2i] = [20, 20]. The parameter of ESOs are selected as ai = [3, 3, 1],

for i = x, y, z and j = �, ✓, , ✓0 = 0.7 for all ESOs, [lx, ly, lz] = [31, 31, 46], and

[l�, l✓, l ] = [153, 194, 55].

Simulation results are shown in Figs. 5.7-5.14. Figures 5.7-5.9 show the position

tracking error, Euler angle, and angular rate, respectively. The di↵erent levels of

fluctuations are shown due to the rapid changes of actuator e↵ectiveness. Meanwhile,

it can be shown that the proposed controller can maintain the system states within

the prescribed bounds under actuator faults. Figure 5.10 shows the rotor command

and the true rotor input. The control input signals are displayed in Fig. 5.11. The

fluctuations occur at 5, 7, 10, 14, and 15 s, similar to the system states. The actual

total disturbance values and their estimated value for both no-fault and fault cases

are shown in Fig. 5.12. The estimates of total disturbances follow the time-varying

actual values well, and the disturbances due to the faults are well estimated, even

though some peaks exist when the faults occur. The change of actuator e�ciency
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a↵ects disturbance estimation, leading to the peaking phenomenon of ESO, the control

inputs, and consequently, the state variables.

The actual gain of the proposed controller and the approximated PID-like gain

of position tracking controller and attitude controller are shown in Fig. 5.13 and Fig.

5.14, respectively. In Fig. 5.13, the actual gain value approaches the PID-like gain

value as time increases, as discussed in Chapter 4.2.1 and Remark 4.3. Also, as shown

in Fig. 5.14, the actual gain value is similar to the PID-like gain value except i) at

the beginning of the control and ii) when the actuator fault occurs, as discussed in

Chapter 4.2.2 and Remark 4.6.
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Figure 5.7: Position tracking errors and estimation responses (Case 2A)
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Figure 5.8: Euler angles, desired Euler angles, and estimation responses (Case 2A)
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Figure 5.9: Angular rate responses (Case 2A)
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Figure 5.10: Rotor input responses (Case 2A)
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Figure 5.11: Control input responses (Case 2A)
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Figure 5.12: Real and estimated value of total disturbances (Case 2A)
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Figure 5.13: Real and PID-like gain of position controller (Case 2A)
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Figure 5.14: Real and PID-like gain of attitude controller (Case 2A)
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5.2.2 Case 2B

In this scenario, the model uncertainties are considered as:

4m, 4Ixx, 4Iyy, 4Izz = �0.1

4cf = 0.1, 4c⌧ = �0.1
(5.4)

The parameter of the proposed controller are selected as k1i = 2, k2i = 0.8, and

k3i = 0.5, for i = x, y, z, and k1i = 15, k2i = 50, and k3i = 0.5, for j = �, ✓, . The

predefined bounds for position errors are selected as ⇢0i = 0.5, ⇢1i = 0.25, and ⇢ki =

0.6, for i = x, y, z, so that the position error cannot exceed 0.25m even if actuator

fault occurs. For Euler angles and angular rates, ⇢1i = 45 deg and ⇢2i = 150 deg/s, for

j = �, ✓, and ⇢1i = 45 deg and ⇢2i = 180 deg/s, for j =  . For the auxiliary system

in Eq. (3.10), [c1i, c2i] = [20, 20]. The parameter of ESOs are selected as ai = [3, 3, 1],

for i = x, y, z and j = �, ✓, , ✓0 = 0.7 for all ESOs, [lx, ly, lz] = [30, 30, 40], and

[l�, l✓, l ] = [153, 194, 55].

Simulation results are shown in Figs. 5.15-5.22. The overall results are similar

as in Case 2A. Figures 5.15-5.17 show the position tracking error, Euler angle, and

angular rate, respectively. The di↵erent levels of fluctuations are shown due to the

rapid changes of actuator e↵ectiveness. Meanwhile, it can be shown that the proposed

controller can maintain the system states within the prescribed bounds under actuator

faults. Figure 5.18 shows the rotor command and the true rotor input. The control

input signals are displayed in Fig. 5.19. The fluctuations occur at 5, 7, 10, 14, and 15 s,

similar to the system states. The actual total disturbance values and their estimated

value for both no-fault and fault cases are shown in Fig. 5.20. The estimates of total

disturbances follow the time-varying actual values well, and the disturbances due to

the faults are well estimated, even though some peaks exist when the faults occur. The
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change of actuator e�ciency a↵ects disturbance estimation, leading to the peaking

phenomenon of ESO, the control inputs, and consequently, the state variables.

The actual gain of the proposed controller and the approximated PID-like gain

of position tracking controller and attitude controller are shown in Fig. 5.21 and Fig.

5.22, respectively. In Fig. 5.21, the actual gain value approaches the PID-like gain

value as time increases, as discussed in Chapter 4.2.1 and Remark 4.3. Also, as shown

in Fig. 5.22, the actual gain value is similar to the PID-like gain value except i) at

the beginning of the control and ii) when the actuator fault occurs, as discussed in

Chapter 4.2.2 and Remark 4.6.
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Figure 5.15: Position tracking errors and estimation responses (Case 2B)
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Figure 5.16: Euler angles, desired Euler angles, and estimation responses (Case 2B)
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Figure 5.17: Angular rate responses (Case 2B)
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Figure 5.18: Rotor input responses (Case 2B)
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Figure 5.19: Control input responses (Case 2B)
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Figure 5.20: Real and estimated value of total disturbances (Case 2B)
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Figure 5.21: Real and PID-like gain of position controller (Case 2B)
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Figure 5.22: Real and PID-like gain of attitude controller (Case 2B)
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Chapter 6

Conclusions

Fault tolerant control method based on barrier Lyapunov function and nonlinear

extended state observer was proposed for a system subject to state constraints, distur-

bances, and model uncertainties. The system considered in this study is the quadrotor

under actuator fault. Nonlinear extended state observer estimates the system states

and total disturbances to compensate the e↵ects of uncertainties and faults. Barrier

Lyapunov function-based controllers was designed for guaranteeing the boundness

of the position tracking errors, Euler angles, and angular rates. Furthermore, the

analogy between the proposed control law and proportional-integral-derivative (PID)

control law is analyzed. The relationship between the proposed control gains and

PID control gains were shown in the form of a third-order polynomial. The e↵ects

of nonlinear estimator gains on the system responses were also proposed. Numerical

simulations demonstrated that the proposed control method can achieve prescribed

tracking performance and transient performance under disturbances and faults.

Reducing the peaking phenomenon of the extended state observer when fault

occurs and real implementation remain as the future work.
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