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Abstract

Robust Edge-Point Visual Odometry and Monocular Scale

Observer using Vehicle Kinematics

Changhyeon Kim
Department of Aerospace Engineering
The Graduate School

Seoul National University

Navigation is an essential functionality for the autonomy of robots, such as autonomous
vehicles and drones. In particular, image-based navigation, visual odometry (VO), only uses
small cameras to perform navigation and is an attractive alternative to indoor environments
where external navigation, such as GPS, is unavailable. This dissertation proposes a robust
VO that can operate reliably in low-textured and brightness-changing conditions frequently
encountered in indoor environments. As a practical application for indoor VO, the indoor
vehicle driving condition is considered, and a scale-aware monocular VO (MVO) method
utilizing vehicle kinematics is proposed.

First, this research proposes edge and point-based VO systems robust to low-textured
and brightness-varying conditions. To characterize edges, they are classified into eight ori-
entation groups according to their image gradient directions. Using the edge groups, eight
quadtrees are constructed, and overlapping areas are set belonging to adjacent quadtrees
for robust and efficient matching. For further acceleration, previously visited tree nodes are
stored and reused at the next iteration to warm-start. An edge culling method is proposed
to extract prominent edgelets and prune redundant edges. The camera motion is estimated
by minimizing point-to-edge distances within a re-weighted iterative closest points (ICP)
framework, and simultaneously, 3-D structures are recovered by static and temporal stereo
settings. To improve the accuracy of the edge-based VO, a hybrid VO is proposed by com-

bining the conventional point features. In this extension, brightness changes between image

Vl I = -i!



frames are incorporated into the photometric error minimization problem. To analyze the
effects of the proposed modules, extensive simulations are conducted in various settings.
Quantitative results on public datasets confirm that the proposed approach has competitive
performance with state-of-the-art stereo methods. In addition, the author demonstrates
the practical values of the proposed system in author-collected modern building scenes with
curved edges only.

Next, a scale-aware MVO using vehicle kinematics is addressed. To describe the mo-
tion of the camera attached to the vehicle, the unknown camera-vehicle relative pose is
estimated by only using the monocular VO motions. An observer is designed to estimate
the absolute scale of the MVO motions on turn regions, and turn regions are detected
to stably observe scale. Using the observed scale, an absolute scale recovery is proposed
to estimate the unknown scale between turn regions. By extensive simulations for each
proposed module, appropriate conditions for stable scale estimation are investigated, and
the effectiveness of the extrinsic calibration and the absolute scale recovery is statistically
verified by Monte-Carlo simulations. To evaluate the overall performance, the proposed
method and state-of-the-art VO methods are compared in public outdoor driving datasets.
In addition, to show promising applicability, real-world driving datasets are collected in
multi-floor underground parking lots and demonstrate the accurate absolute scale recovery
performance of the proposed method in indoor driving situations.

Keywords: Robust visual odometry, monocular scale recovery, extrinsic calibration,
image edges and points, vehicle kinematics

Student Number: 2018-31816
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Introduction

Camera motion estimation from consecutive images, known as visual odometry (VO) [6],
is receiving increasing attention in areas of autonomous robots [7] and virtual and aug-
mented reality (VR/AR) applications requiring self-localization abilities [§],[9]. A main
interest of the VO research has been to improve the estimation accuracy while maintaining
real-time applicability. Consequently, several algorithms are developed with competitive
performance in real-time applications using various settings, such as mono [10], [11], stereo
[12], and RGB-D cameras[13, [14].

However, most VO algorithms still depend on two main assumptions; consistent bright-
ness and feature-abundant scenes. The first one can be easily violated in the in-and-out
movements and auto-exposure adjustments causing sudden brightness changes. Further-
more, texture-less scenes, such as monotonous walls and ceilings, make the second as-
sumption invalid. If these assumptions are violated, the VO performance is significantly
degraded, and the VO might even lose track of the motion estimation. Especially, those
conditions are often observed in indoor scenes as seen in Fig. In a modern building,

interiors and office furniture have monotonous shapes, and there are many lighting factors,



Figure 1.1: Challenging environments for the conventional visual odometry (a)
low-textured office and corridors encountered in the modern indoor environments, (b) vary-
ing brightness conditions due to fluorescent lamps and sunlight from the windows

such as fluorescent lamps and sunlight from the windows. Thus, comprehensively consider-
ing robustness to the conditions mentioned above is required to use the VO in more general
situations. The first part of this dissertation focuses on the robustness of VO against low-
textured and varying brightness conditions, which are easily encountered in modern indoor
situations.

VO using a single camera, monocular VO (MVO), is an attractive solution for automo-
bile navigation due to its minimum setting. Furthermore, because one or more cameras can
be easily found in most vehicles as forms of driving assistant systems and user-mounted
dashboard cameras as seen in Fig. the MVO implementation targeted for mobile vehi-
cles could be highly valuable. Especially in indoor driving circumstances where the external
navigation module such as GPS is not available, the MVO for vehicular settings can be a

promising application.
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Figure 1.2: Image sensors installed in the automotive vehicles.

Ambiguity on metric distance Unknown camera-vehicle pose

Figure 1.3: Monocular metric scale ambiguity problem and the unknown camera-
vehicle pose

However, due to the monocular projective nature, absolute metric information disap-
pears from an image as seen in Fig. and the MVO can only yield up-to-scale translation
motion, which makes the MVO-only setup more challenging without additional metric mea-
surements. It is called the scale ambiguity problem [15]. To solve this problem, vehicle
speed or other sensor information can be used; however, except for experimental settings,
it can be difficult to use various sensors. Another problem when utilizing the VO in the
vehicle is that the camera pose relative to the vehicle cannot be known in general. In
this case, even if the VO information is obtained, it cannot be used for vehicle reference
navigation.

In the second part of this dissertation, the aforementioned problems when realizing the

A& st



MVO for indoor driving situations are addressed, and the scale-aware MVO system for
the vehicular application is proposed. In addition, a self-contained camera-vehicle extrinsic
pose calibration method is also developed for completeness.

An overall flowchart of the proposed methods shows the relationships between the robust

edge and point-based VO and the scale-aware MVO for vehicular application as seen in

Fig.

INPUT
- -2, - -—-—-————C
Edge and Point-based : 1 Scale-aware MVO using :
| woro A;f;"gae”flll Robust VO (Chapter.ll) 1 !  Vehicle Kinematics I
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Figure 1.4: Overall flowchart of the proposed methods in the dissertation



1.1 Contributions and Qutline of the Dissertation

The outline of the dissertation is as follows. addresses edge and point-based
visual odometry systems robustly operating in illumination-changing and point features-less
indoor environments. presents a scale-aware monocular visual odometry system
using vehicle kinematics. In experimental results of the proposed modules are
presented using the various public and real-world author-collected datasets. ends
the dissertation with concluding remarks and suggestions on further works.
The main contributions of this dissertation are summarized as follows.

Chapter 2: Robust VO Systems using Edge and Point Features

In this chapter, in-depth consideration is addressed to solving two problems when realizing
an efficient edge-based stereo VO: high ambiguities on edge matching and redundancy of

edge pixels. The key contributions of this chapter can be summarized as follows:

« Efficient edge culling method: An efficient edge culling method is proposed to
suppress many cluttered edge responses; consequently, the required computational

load is reduced while maintaining VO performance.

 Robust edge labeling and matching methods: Edge pixels are labeled by the
image gradient directions, and edge matching speed and success rates are improved

by the proposed multiple quadtrees and node caching schemes.

o Edge and point-based hybrid robust VO: This research proposes an extension of
edge-based VO combining the conventional point features. In this extension, bright-
ness changes between image frames are robustly incorporated into the photometric

error minimization problem.

Chapter 3: Scale-aware MVO using Vehicle Kinematics
This chapter proposes the scale-aware MVO framework explicitly utilizing the vehicle kine-

matic constraints on the camera motions. For completeness of the formulation, a self-



contained camera-vehicle extrinsic pose calibration method is additionally designed only

using the monocular VO motions. Main contributions of this chapter are as follows;

o Self-contained camera-vehicle extrinsic calibration: A relative pose of the
arbitrarily-attached camera to the vehicle can be estimated by proposing a self-
contained camera-vehicle extrinsic pose calibration method only using monocular

camera motions constrained by vehicle kinematics.

o Absolute scale observer on turning motion: By utilizing the local geometry
of the constrained camera motions, a new scale observing method is designed for
a monocular translation motion when the vehicle turns. In addition, theoretical
analysis of the scale observer is addressed to determine stable states for observing

the scale.

o Absolute scale recovery of unobserved scales: The unobserved scale of the
straight region between turns can be estimated by an absolute scale using the metric

scale on the turning motions.



Robust Visual Odometry Systems using
Image Edge and Point Features

This chapter addresses robust visual odometry (VO) systems using image edges and point
features. At first, an efficient edge-based VO is proposed using multiple quadtrees created
according to image gradient orientations. To characterize edges, they are classified into eight
orientation groups according to their image gradient directions. Using the edge groups,
eight quadtrees are constructed with overlapping areas belonging to adjacent quadtrees for
robust and efficient matching. For further acceleration, previously visited tree nodes are
stored and reused at the next iteration to warm-start. An edge culling method is designed
to extract prominent edgelets and prune redundant edges. The camera motion is estimated
by minimizing point-to-edge distances within a re-weighted iterative closest points (ICP)
framework, and simultaneously, 3-D structures are recovered by static and temporal stereo
settings.

To leverage edge and point characteristics, a robust hybrid VO is additionally proposed
by utilizing both edge and point pixels. Among the cluttered raw edges, structural edgelets
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and corner points are efficiently classified by testing the homogeneity of image gradient ori-
entations. At the matching step, the structural edgelets are matched by multiple quadtrees
of the proposed edge-based method generated according to image gradient orientations.
Then, 6-DoF camera motion is optimized by minimizing edge and point joint re-projection
erTors.

To analyze the effects of the proposed methods, extensive simulations are conducted in
various settings. Then, the robust and accurate performance of the proposed method is
evaluated on public datasets by additionally imposing drastic brightness changes. Quan-
titative results on public datasets confirm that the proposed approach has competitive
performance with state-of-the-art stereo methods. In addition, the practical values of the
proposed system are demonstrated in author-collected modern building scenes with curved
edges only. The results show that the proposed method has promising advantages in real-

world scenarios with few features and arbitrary brightness conditions.

2.1 Introduction

Recent advances in the accuracy and real-time performance of VO have been striking thanks
to standard pipelines such as sparse point-based approaches [8, [10, [11], direct methods
which find an optimal camera motion minimizing intensity residual between two images
[9, 16, [17], and iterative closest points (ICP)-based algorithms [I8} 19, 20, 21] that align a
pair of large point sets, e.g., 3-D point clouds, to obtain relative camera motions.

Despite such maturity, robustness to featureless scenes and fluctuating illuminations
is not yet sufficient. To alleviate this problem, irregular brightness changes have been
considered as an affine model and compensated for semi-dense regions [22], and straight-
line features are invited to maintain VO to keep track of motions even in low-textured
scenes [23, 24].

As another attempt to improve robustness, edge-based VO systems have been intro-

duced recently [25], [26]. The image edges can be stably detected by a traditional method



[27] even in monotonic surfaces often encountered in the man-made world. Moreover, a con-
tinuum of edge pixels gives more 3-D structural information of surroundings than sparse
points, which fits interactive applications better.

For utilizing image edges for VO, as reported in [I], several hurdles still remain. Espe-
cially 1) there are no apparent and efficient matching criteria for edges contrary to points
and straight lines [28], [29], and 2) too many edge pixels cause a computational burden
too heavy for real-time employment. In this chapter, the main objective is to deal with
these two issues and efficiently incorporate free-formed edges into a robust stereo-visual
odometry system. This algorithm has been addressed in three conference papers [26], [30],

and [31].

2.1.1 Literature Review

Fig. shows a comparison table of the literature review for the edge and point-based
robust visual odometry systems.

Points & direct intensity: Early VO approaches have been mostly developed using
point features, and point-based methods have shown high localization accuracy and ro-
bustness to large motions between frames with real-time operations [8} [10, [11]. Recently,
VO methods utilizing intact brightness values for localization, so-called direct methods, are
actively researched [9) [16]. Compared to the former, the latter is less susceptible to motion
blurs and provides a denser representation, which is more attractive in practical aspects.
Despite the successful research history, both methods still have limitations in real-world
situations: point-based methods heavily rely on point features hardly existing in modern
man-made scenes, and direct methods can be influenced by varying illuminations.

Lines: Straight lines are intermediate features between points and free curves, observed
even in low-textured scenes. For enhancing robustness against those scenes, a stereo VO
aligning multiple lines is proposed in [19], and [23] utilizes points with lines based on a
monocular semi-direct approach [10]. In [32], a robust rgh-d direct VO combining points

and lines is suggested. In those works, lines are not used as major features, but for additional
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constraints for point-based VO, because both end points of a line are not consistently
extracted even by using state-of-the-art line descriptor [29].

Edges: Edges are generalized features, including points, lines, and arbitrary curves, and
are easily observed in most scenes. Although some attempts to adopt edges into VO began
in the early days [33], full-fledged edge-based VO systems have emerged only recently.

Edge-based VO methods can be largely divided into two types. The first one regards
edges only as assistive profiles for photometric error minimization, not as major features.
The work in [25] estimates rgh-d camera motions by minimizing both photometric and
geometric errors of distance transform maps. Similarly, [21] suggests a rapid rgb-d VO
by minimizing photometric errors around sparsely-sampled edge pixels. [34] develops a
sub-gradient image aligning method using a distance transform around edges. They can
enhance the robustness against low-textured scenes by imposing additional constraints by
using edges. Nonetheless, they are still vulnerable to lighting changes due to the dependency
on photometric properties.

The other type of edge-based VO methods utilizes intact edge pixels as the main fea-
tures. In these methods, explicitly matching edge pixels is one of the most crucial parts.
To mitigate difficulties in matching caused by the absence of proper descriptors for edges,
several approaches are proposed in [35, [36} [T}, 20, 26].

The matching methods of the latter type into two approaches can be further categorized:
1) searching from geometry and 2) searching from data structures. Geometric approaches
confine search regions by utilizing edge normal directions. In [35)], searching is conducted
along the normal direction of edge curves. [30] suggests an rgb-d VO using approximated
neighbor fields (ANNFs) for fast edge matching, and the matching completeness is further
improved via oriented edge neighbor fields (ONNFs) in [I].

The other approaches use data structures to find the most likely pair. This idea is
originally from ICP algorithm [20] using a k-d tree structure. In [26], the robustness
is improved by adopting a k-d tree considering image gradient vectors to compare edge
similarities in cluttered regions. Note that these edge VO methods still exploit photometric
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Figure 2.2: Flowchart of the proposed edge-point VO system

information, and most methods rely on rgb-d sensors to obtain the 3-D information of edge
regions.
The main goal is to further improve an edge-based VO with an explicit match process

by proposing a new dedicated data structure and efficient edge pre-processing steps.

2.1.2 Contributions of the Chapter

In this chapter, in-depth consideration is given to solving two problems when realizing an
efficient edge-based stereo VO: high ambiguities on edge matching and redundancy of edge

pixels. The key contributions can be summarized as follows:

o An ICP-based efficient visual odometry system is designed by using the dedicated

multiple quadtrees structure and the edge culling method.
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o By using the proposed edge culling method, many cluttered edge responses are sup-
pressed; consequently, the required computational load is reduced while maintaining

VO performance.

o FEdge matching speed and success rates are improved by the proposed multiple quadtrees

and node caching schemes.

o An extension of edge-based VO is proposed by combining the conventional point
features. In this extension, brightness changes between image frames are robustly

incorporated into the photometric error minimization problem.

o Experimental results demonstrate that the proposed method has robust and compet-
itive performance with state-of-the-art stereo VO on publicly available datasets and

author-collected scenes.

2.1.3 Algorithm Overview

A flowchart of the proposed system is illustrated in Fig. For every stereo stream,
all the edge pixels are classified into eight orientation bins with mutually inclusive regions
according to their image gradient directions. In Section. to reduce redundant edge
pixels, several thousands of raw edge pixels are additionally condensed into well-distributed
structural edgelets by the proposed edge culling method. This research includes proposing
an efficient multiple quadtrees structure composed of eight orientation bins, and storing
the previously matched nodes for warm-starting in the next iteration, which are detailed
in Section [2.4} Section [2.5 details the ICP-based camera motion estimation by minimizing
stereo point-to-edge normal distances between current images and keyframe images, and
the static and temporal stereo method for updating edge inverse depths. The extensive

analysis of each core part and experimental results are following in Sections [2.7] and

. SR



2.2 Preliminaries

2.2.1 Notation Rules of This Chapter

Bold letters are used for column vectors and matrices, and right superscripts ¢ and k to de-
note variables represented in the current frame and keyframe, respectively. The secondary
right superscripts [ and r express the left and right frames of stereo cameras.

For example, let me denote the i-th pixel coordinate on a left key image as pf’l c R?
with its inverse depth pf’l € RT as suggested in [37]. The perspective relationship between
p having the inverse depth p and corresponding 3D point X € R? can be represented as
p = 7 (X) : R® — R?, and its inverse mapping is X = 77! (p, p). Let me define an image
gradient vector of p on the left key image as g (p) : R? — R2. For simplicity, all image

gradient vectors are assumed to be normalized.

2.2.2 3-D Geometry of Camera Motions and Edges

The 6-DoF camera motion from a current frame to a keyframe is parametrized by Lie
algebra fék € se(3) where corresponding rotational matrix on special orthogonal group
Rlc’k € SO (3) and translation thk € R3. The 3-D warping function transferring p*! to a

corresponding pixel point p*! on the current frame is defined as,

pc,l —w (pk,l’ gé,k) e (Rlc,k: . 7771 (pk’l’ pk’l) + tlc,k) . (2.1)

A right camera motion ¢/, can be denoted with an operator @ on se(3) and a fixed
stereo pose &, € se (3),

ok = ék D le,r- (2.2)
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2.2.3 ICP-based Edge Alignment

The proposed method estimates camera motions by successively aligning matched pairs of
edges within the ICP framework. To get it working, the most probable pixel correspon-
dences among current and key edges should be established in advance. This matching
process is called the nearest neighbor searching (NNS) [20]. For a query q, the nearest pair
in a pixel set R C R? can be founded by a NNS function nnz (q),

nng (q) = argmin ||q — p||, € R, (2.3)
PER

where ||-||, is a 2-norm operator.

The well-distributed edges, however, are not always guaranteed, and many false edge
responses hinder the correct matching. To characterize and find more informative edges,
the author develops an edge culling method by making use of the fact that structural edges
along object boundaries commonly possess long series of pixels with regular and high image
gradients. A detailed explanation follows in the next section.

Using the correspondences, an ICP algorithm estimates an optimal camera motion

by minimizing the sum of squared distances of the residual vector d € R,

¢, =argmind’d, (2.4)
gese(3)

where N, is the number of matched pixel pairs. The n-th element of the residual vector,

d,, formulated between the n-th pixel p* on the key image and its matched point in the

pixel set R¢ of the current image can be noted as 2-norm distance,

dy = |[w (prys €ee) — nnge (w (P Eer)) ], - 2.5)

As the proposed system uses both stereo images to track camera motions, this research

proposes a new stereo cost function and additional methods to restrain outliers, which are

3 o i
"':I'H-_E _'H.I.- ok |

15



3 Overlapping
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Figure 2.3: Edge label bins with overlapping regions (a) the original binning method
proposed in [I] divides eight exclusive directional sets where pixels adjacent to boundaries
could be wrongly matched, (b) the proposed method with overlapping regions gives flexi-
bility to some extent for boundary pixels.

also discussed in the following sections.

2.3 Edge Extraction and Culling

This section addresses details on how edge pixels are distinguished and the salient structural

edgelets are extracted out of raw pixels.

2.3.1 Edge Labeling using Overlapping Regions

When using edges, the major difficulty originates from the absence of dedicated descrip-
tors for edges. To relieve this problem, [26] and [1] exploit image gradient directions to
distinguish edges differently.

In [26], a similarity score between two pixels is quantified by a weighted sum of a pixel
Euclidean distance and an inner product of normalized image gradients. Despite improved
matching success rates, this method relies on a heuristically-defined weighting parameter

between two terms, making it improper to be used in universal situations.
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The second work [I] divides edges into eight bins according to image gradient directions,
and absolutely labels each edge as one of eight mutually exclusive groups like Fig. [2.3(a). In
this way, the search space can be effectively reduced, and simultaneously matching success
rates be increased.

This research follows the main concept of the absolute labeling method but additionally
augments overlapping regions between every neighboring bins where pixels can belong as
duplicates. As can be seen in Fig. (a), only with small rotations on the image, the black
point labeled as group 2 easily crosses the decision boundary between groups 1 and 2, and
both black and red points become mutually exclusive. In this case, the original approach
could fail to find the correct pair.

In contrast, by setting up the proposed overlapping regions, the red one is now labeled
as a duplicate of groups 1 and 2, and can be included in searching candidates of the black
one regardless of some extent of rotations as depicted in Fig. 2.3[(b). The labeling result is

used to extract salient edgelets and make multiple quadtrees in the following sections.

2.3.2 Finding Salient Edgelets out of Labeled Edges

A high signal-to-noise ratio from a number of pixels can be helpful for more accurate motion
estimations [I]. However, many points could be redundant to get sufficient estimation
performance, and spurious edges could hinder finding correct pairs rather than improve
overall performance.

To address both problems, this research proposes an efficient edge culling method that
filters false responses on cluttered edges and only sorts out prominent structural edgelets.
As shown in Fig. [2.4(a), edges along object rims generally have regular image gradients,
and edges in cluttered regions show many unconnected pixels. Given these observations,
this research considers a long series of connected edge pixels with the same labeling group
as structural edgelets, and, if not, as cluttered edges.

The structural edgelets can be determined by recursively connecting adjacent pixels in

the same directions. A simple example is described in Fig. [2.5l The first recursion initiates
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Figure 2.4: Extracted salient edgelets and center points (a) raw edges (24,672 pixels),
(b) salient edgelets extracted by the proposed method in different colors. The yellow squares
represent center points of edgelets. Total 574 center points are well distributed across the
image.

at one of the color-coded starting query points. For the current query point, 3 x 3 adjacent
pixels are stored into a list L if the pixels have the same labels with the query point. If
there is no more pixel to be connected, the list L is regarded as a new structural edgelet.
The algorithm restarts at non-visited new query points, and ceases when all the edge points
in the image are visited.

After grouping, the length of each edgelet is checked by double threshold values, [,
and [,,q.. As the step (c) in Fig. fragmented edgelets under the minimum length 1,
are more likely to be spurious responses on cluttered regions. Thus, those edgelets are
rejected.

For more compact query sets, this module additionally computes the centers of the
edgelets and considers them as representative query points. It is found that several long
edgelets can yield very sparse center points. To prevent this, the maximum length limit
limaz 1S set to get more uniform length edgelets. Then, the prominent edgelets are finally
obtained along the object profiles, and the query points are evenly distributed over the

entire image area as small yellow squares shown in Fig. 2.4(b). In the author’s experience,
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Figure 2.5: Example of depth-first search for finding salient edgelets Each color
represents a different edgelet. Red points denote centers of respective edgelets.

it is found that the practical value for [,,,4, is about 30 in general images like Fig.
All procedures can be efficiently performed by adapting the conventional depth-first
search algorithm, and a pseudo code of the method is written in Algorithm

2.4 Robust Edge Matching via Oriented Quadtrees

For estimating the camera motion between key and current frames, one of the most im-
portant and exhaustive parts is to match point pairs repetitively. To realize faster and
more accurate ICP-based edge alignments, it is crucial to efficiently find the correct corre-
spondences among the massive number of edge pixels. To this end, this research proposes
an accelerated NNS strategy using oriented multiple quadtrees dedicated to the proposed
edge-based VO.

2.4.1 Generating Multiple Oriented Quadtrees

To begin with, let me regard extracted edgelets of a current image as reference points
for making quadtrees, and calculated center points of a key image as query points to be
matched. Based on this assumption, multiple quadtrees are built in accordance with eight
orientation labels by using a set of salient edgelets on the current image R¢ C R2. It is

denoted that each set of edge points consisting of its relevant tree as Rf C R® where an
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Algorithm 1 Find Salient Edgelets and Centers

1: F; an image of labeled edge pixels.

2: edgelets; a list of detected edgelets.

3: pts.; center pixels of selected edgelets.
4: for All pixel ¢ in £ do

5: L < an empty list for a new edgelet;

6: if E(q) is an edge then

7 Create an empty stack and push ¢ to stack;
8: while lis Empty (stack) do

9: p < frontAndPop (stack);

10: for All p, neighbor of p do

11: if size (L) < lyaa& E (pn) = E (¢) then
12: Add p, to stack and edgelet;

13: end if

14: end for

15: end while

16: if size (L) > l,;, then

17: Add L to edgelets, and mean (L) to pts,;
18: end if

19:  end if

20: end for

indicator ¢ denotes each directional bin. The difference between a normal quadtree and the
proposed trees is illustrated in Fig.

As depicted before in Fig. [2.3|(b), the pixels near boundaries among neighboring bins
are doubly inserted into two neighboring trees. Thus, both boundary query and its correct
match can remain reachable to each other regardless of a certain degree of image rotation,
which makes the matching process more robust to rotational motions.

Another advantage of multiple quadtrees is the decreased tree depth. As seen in Fig.
the normal case inevitably has a deeper depth than each of the multiple quadtrees
because all points are in only one tree, which results in the increased number of travel
nodes to reach the leaf nodes B and C. In contrast, the number of nodes in each of the

multiple trees is lesser than in the normal case, which could imply a faster-searching speed.

20 | = Y



2.4.2 Fast NNS Strategy storing Visited Nodes

At every iteration of the ICP-based motion estimation, it is necessary to warp key points
onto the current image and find their correspondences within the current quadtrees.

For a simple explanation, Let me assume a situation to find a matching pair for a single
key point p* with an orientation labeling i. Given the motion .k, let p = w (pk,fc’k)
be a warped point of p¥. Thanks to the orientation labeling, potential candidates can be
directly narrowed down within R, and the nearest pixel can be determined by the NNS
function nng: (p*').

Due to gradual motion updates of the ICP-based approach, warped points move only
a few pixels at each iteration. It implies that the previously matched node is much more
likely to be re-matched at the very next iteration.

Inspired by this observation, the matching process can be further accelerated by caching
the address of the matched nodes at the previous iteration, and warm-starting the search
from the cached nodes. If the best match does not reside in the cached node, the procedure
restarts to search from the root node, which merely occurs in practice.

When secking a true match in node C depicted in Fig. [2.6/(a), for the normal case,
exhaustive re-entry to the root is required at every iteration, and many nodes are visited
on the way from the root to the node C. In contrast, the proposed trees in Fig. (b) can
compactly tighten the search space by the orientation label, and moreover, the warm-start
from the previously cached node B reduces a large number of visited nodes to reach the

node C compared to the normal case.

2.5 Motion Tracking and 3-D Reconstruction

2.5.1 Stereo Point-to-edge Distances Minimization

The left camera motion £i7k is estimated by minimizing the stereo point-to-edge normal
distances generated by matched edge pairs of the current and keyframes. In Fig. it is
-':lx_ﬁ-l _'-'.'I ; -|-|E - 1
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Figure 2.6: Comparison between a normal single-rooted quadtree and the multi-
ple cached quadtrees (a) the original quadtree travels through all the nodes from a root
to get C. (b) the proposed quadtrees cache the previously visited nodes and warmly start
from the cached nodes, which considerably reduces nodes to be traveled.

assumed that the n-th query pixel p®! has an orientation label i, and its warped point by

kl ¢l
n o Sck

k1

" is matched

the camera motion 5@7 . is denoted by p&! = w (p ) The warped pixel p
to the current pixel coordinate p&! := Mg (pf;l’ ) by the NNS function. The flow vector

of two pixels is defined as,

F! = pFl — pkl c R2. (2.6)

A scalar value formed by Fib projected onto a unit gradient vector g (f)ffb’“ ) can be
used as a signed residual dfI e R,

d, =g (pi")" - F. 2.7)

To make use of the absolute scale of the fixed stereo position, an additional residual term
is defined induced by the current right image. Analogous to the left case, a warped point

onto the right current image of the query point p*! is denoted by p*” = w (pk’l, ék S éll’r),

n

and its matched right current pixel is represented by p&!” := nnger (pfl’l” )
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A flow vector on the right current image is also defined as,
Fr — pk,ll/ . I"jk,ll/ (2.8)
and the right residual term can be written as,
T er (=kilmT T
d, =g (p,") ' F. (2.9)

By arranging total IV, pairs of residuals into one column vector, the residual vector can
be formulated as,

T
r— [dg, iy @y | € R (2.10)

The optimal motion can be estimated by minimizing the weighted sum of squared
residuals,

., = argmin r'Wr (2.11)
T gl ese(3)

where W is a weighting matrix. The motion update 0§ € se (3) can be calculated by the

second-order Gauss-Newton method as,
56 = — (ITWI) " ITWr, (2.12)

with the Jacobian matrix J = g—g € R*M»*6 The motion update is iteratively implemented
until convergence,

g & ®EE. (2.13)

Note that, as seen in Fig. the unit vectors of the image gradient vectors on the
edge pixels can be regarded as the 2-D normal vector locally perpendicular to the direction
of the edge. Thus, the image gradient direction can be used as the unique 2-D normal
vector on the edge pixels because the image gradient direction is invariant unless the image

is not changed. Thanks to this property of the image gradient vector on the edges, the
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Figure 2.7: Illustration of the image gradient vector on the image edge pixels

signed distance in can be formulated and give constraining effects on the optimization
problem.

To suppress inevitably occurring wrong match pairs, a t-distribution weighting scheme
[36] is employed for W, and it is recalculated by the current residual distribution at every
iteration. If the matching results are correct in both stereo images, two gradient vectors on
the matched pixels should have a consistent direction. From this, additional outliers can

be detected by testing whether their inner product is under a certain margin or not,

& ()" (5 < 219

where a threshold value 7 is empirically set to 0.99 in this work, corresponding to about
ten degrees angular difference.

If the camera motion is excessively large or the number of keypoints decreases under a
certain level, the keyframe is replaced with the current frame, and all the points on the key
frame with inverse depth information are updated and propagated to the new keyframe,

which is discussed in the following.
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Figure 2.8: Illustration of the point-to-edge normal distance induced by a
matched pair of points

2.5.2 Edge Inverse Depth Reconstruction and Propagation

As reported in [17], a laterally-fixed stereo can yield reliable 3-D information only for
vertical edges because horizontal features cannot be distinguished by the static stereo. For
the sake of complete 3-D depth maps in all directions, this work follows the static and
temporal stereo inverse depth estimation scheme [17]. The depth reconstruction procedure
consists of four steps as illustrated in Fig.

For probabilistic updates, it is assumed that an inverse depth observation p follows the
normal distribution with the standard deviation ¢ around itself. The geometry error model
is used to compute o proposed in [24]. Note that the disparity is searched by evaluating
the normalized cross-correlation (NCC) with a 5 x 9 patch along an epipolar line, and the
sub-pixel disparity is refined by using parabolic interpolation.

Using the static stereo of the keyframe, the initial inverse depth p, with oy is first
calculated. In this step, only vertical edges can be reliably reconstructed (step D of Fig.
2.9).

Then, the previous observation py is warped to the left current image for the temporal

stereo update. In Fig. by the static stereo configuration between current and keyframes,
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Figure 2.9: Static and temporal stereo configurations

horizontal edges can now be recovered, and p; can be updated if a red generalized epipolar
line for each observation is almost perpendicular to the edge profile as depicted in Fig.
(steps @ and (3)).

The inverse depth value p. with o, detected by the temporal stereo is re-projected back,
and updated with p; to find an optimal estimation pj,
Oipet Oipk o OhOL

ot k% 2.15
0%+ o2 k 0%+ o2 (2.15)

Pr =

where o}, is the fused standard deviation (step @ of Fig. [2.9).
The inverse depth values are consecutively updated by this procedure for every incoming

image, and if the new keyframe is received, inverse depth values are propagated to the new

keyframe like [17].

2.6 Leveraging Feature Modalities: VO System combining

Edges and Points

Despite the robust performance of the edge-based VO, there still exists a problem when

using edge-only VO. In this section, this problem is addressed, and the solution for this is
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Figure 2.10: Ambiguous edges in the modern indoor scenes

also proposed: a hybrid visual odometry combining the edge and point features altogether.

Fig. [2.10| shows a potential limitation of the edge-based pixel matching methods.
In modern indoor scenes, neighbor edges often have the same directions with similar
monotonous color distributions. In this case, edges are difficult to be distinguished by the
proposed gradient-based edge matching scheme. Exemplary scene and brightness profiles
perpendicular to the edges are depicted in Fig. Along the green line, the same rising edges
are detected, and they can be regarded as the same edges for gradient-based edge-matching
methods. Analogously, the same problem occurs along the pink line. This problem mainly
influences the edge-based VO methods using edge distance fields like [I] because the same
type of nearby edges generates multiple ambiguous distance minima, which attracts the
algorithm to wrong estimations.

Like this, only using edge-based VO is not always superior in all cases, especially in
feature-abundant scenes as Fig. [2.11L Even in edge-dominant environments, few point
features can still be available as Fig. A comparison of characteristics of various image
features is written in Fig. [2.13] As seen in the figure, combining edges and points could
have complementary advantages.

Thus, this section presents an extended version of the edge-based visual odometry sys-

tem combined with the conventional point-based approach. Among the cluttered raw edges,
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Figure 2.11: Point abundant regions

Point
Line
Curve

Figure 2.12: Edges, points, and lines in edge-dominant scenes

the prominent structural edgelets and corner points are efficiently classified by testing the
homogeneity of image gradient orientations. At the matching step, the prominent struc-
tural edgelets are matched by multiple quadtrees generated according to image gradient
orientations. Then, 6-DoF camera motions are optimized by minimizing edge and point
joint re-projection errors. The robust and accurate performance of the proposed method
is evaluated on public datasets by additionally imposing drastic brightness changes. The
experimental results show that the proposed hybrid method has promising advantages in

real-world scenarios with few features and arbitrary brightness conditions.
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Figure 2.13: Comparison of characteristics of various image features

Figure 2.14: Salient edges and points in the image

2.6.1 Selective Point and Edge Extraction with Image Binning

The corners of the object boundary line are easy to distinguish due to the constant bright-
ness change pattern, but corners without regularity in complex patterns are difficult to
distinguish from adjacent pixels, degrading matching performance. Accordingly, only cor-
ner regions in which image slopes in the same direction continuously occur are used as
structural corners. In complex patterns, indistinguishable edges occur, but apparent point
features can be seen. The Shi-Tomasi score is calculated as a measure of the strength of
the point feature for the corresponding corner, and the image is divided into 20x20 squares
as seen in Fig. to use the highest-scoring pixels in each square as a point feature. An
example can be seen in Fig. 2.141 By doing this, the computational load can be maintained

to a moderate level thanks to the consistent number of features in an image.
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Figure 2.15: Feature bucketing strategy to maintain the number of edge and
point pixels

2.6.2 Edge and Point-based Hybrid Camera Motion Estimation

with Illumination Compensation

This subsection introduces a hybrid camera motion estimation combining edge and point
features with illumination compensation. The global brightness variation between the

reference image I and the current image /. can be modeled in the affine form as

Iy = e*I. + B, (2.16)

where «, § € R are illumination changes of contrast and brightness between frame £ and c,
respectively. Different from the edge-only formulation avoiding the brightness changes by
using edges, the brightness change model is explicitly incorporated into the camera motion
estimation problem as optimization parameters in the hybrid VO.

The hybrid motion estimation problem consists of three cost functions: a) point-to-

edge distance, b) photometric error near edges, and ¢) photometric error near points. In

30 4] ”’ﬂ = t-” "31' A

iy
—



Figure 2.16: Illustration of geometry of the consecutive cameras, pixels, and
image patches

the followings, each cost function will be detailed.

In this formulation, the edge pixel pairs previously matched in are used.

First, let p;; € R? be a corresponding edge pixel of the i-th pixel p.; € R?* warped to the
current image by &4 where {4 € se (3) is the three-dimensional camera motion between
the reference image and the current image. Additionally, let p.; € R? be the matched
pixel of the p; on the current image by multiple quadtrees. By defining the normalized
image gradient vector on the pixel p.; as g (Pe,), the point-to-edge distance r.; € R can
be derived as,

Tei =49 (f)e,i)T : (p;,i - f)e,i) . (217)

As shown in Fig. [2.16} red patches denote the neighbor pixel regions of the edge pixels.
Let pei; € R? be the j-th pixel of the patch near the i-th edge pixel p.; on the previous
image I, and p.;; € R? be the j-th pixel of the patch near the i-th matched edge pixel
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Pe,; on the current image /.. The brightness value can be obtained by defining the image
brightness function I.. [p] : R? — R™. Then, the brightness difference of the two red patches
between the current image and the reference image can be used as the additional residual
terms. It is called the photometric error near the edge, and the residual term r.;; € R of

the j-th patch pixel of the i-th edge pixel can be written as,

Teij = e [Peis) — €Ik [Pe,ij] — 5. (2.18)

In this hybrid formulation, the photometric error near the point feature is additionally
considered. The i-th point feature on the previous image is defined as p,; € R?, and the j-
th patch pixel near the p,; is written as p,;; € R? which is denoted by the blue rectangular
regions in Fig. Analogous to the edge photometric error, the residual term r,;; € R

of the j-th patch pixel of the i-th corner point pixel can be written as,

Tpij = Lo [p;),ij} — eI [Peij| — B, (2.19)

where p;,ij € R? is the warped corner point pixel of p,;; onto the current image.

By aggregating N, edge pixels, N, corner point pixels, n, patch points near the corner
points, and n. patch points near the edge pixels, the problem of estimating the camera
motion & and the image brightness parameters «, 5 can be formulated as a form of a cost

minimization as,

Ne NP P Ne ne
argmin we (Z 7“21) + wp (Z T‘;ij + Z Z 7“2,1-]) , (2.20)
Eckr0,8 i—1 i=1 j=1 i=1 j=1
where w. and w, are the weighting parameters to normalize the influence of each term
of the optimization problem. To solve this problem, the Levenberg-Marquardt nonlinear
optimization method is employed.

Note that when the VO converges, the average value of the point-to-edge distance is
under one pixel, and the average values of the photometric error terms are under ten. In

= . :
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this work, the weighting parameters are determined to make the overall cost under ten in
average after convergence. Thus, the weight values w. and w, are computed by the below
rules,

we = 10/ N,

(2.21)
wy, =1/ (Ne-ne+ N,-nyp),

where the two weight values are re-calculated whenever the new image incomes with varying
N, and N,,.

Note that, even though the residual term in is governed by all parameters,
ek, @, B, the residual term in does not rely on «, 8 because the edge matching can
be conducted regardless of the brightness changes. Thus, the author considers that
is a function of & only and is a function of «, 8 only. From this, the convergence

of the optimization problem in (2.20) can be improved, which is verified by the various

experiment results in

2.7 Performance Analysis

The author found that the overall VO performance is affected by three dominant factors:
1) usage of multiple quadtrees, 2) storing matched nodes, and 3) the edge culling method
with the minimum length [,,;, for edgelets. This section evaluates the benefits of each
factor with extensive variations of parameter settings. All computations are conducted in

C++ with -02 compiler flag on AMD Ryzen 5 3.6 GHz CPU.

2.7.1 Analysis 1: Normal Quadtree vs. Multiple Oriented Quadtrees

This analysis demonstrates the enhanced performance of the matching process by using the
proposed multiple quadtrees. Two settings are considered: a normal quadtree and multiple

quadtrees without storing the visited nodes. To separately evaluate each part, only labeled
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(a)

Figure 2.17: Example of the matching results of the normal quadtree and the
proposed multiple quadtrees (a) a polyhedron model, (b) a matching result using the
normal quadtree, (c) a matching result using the multiple oriented quadtrees. Key and
current edges are in green and red, respectively. Black lines connect matched pairs.

raw edges without the edge culling method are used in this analysis.

In the beginning, for an intuitive example, Fig. [2.17| shows matching results on the
polyhedron image with the 15 degrees of the camera roll. The result of using the pro-
posed quadtrees shows more robustness to rotations and qualitatively desirable matching
tendencies.

For quantitative evaluation, the monotonous and cluttered images are warped as seen
in Fig. 2.1§ along u, v, and camera roll axes and compare the iterations and elapsed times
required for the matching sequences of the ICP algorithm to converge. Errors are applied
with 15-pixel deviations along the u- and v- axes, and 10 degrees rotations with respect to
the roll axis.

According to the results on the monotonous image described in Figs. [2.19(a-c), the
number of iterations slightly decreases by using the multiple quadtrees. In contrast, the
improvements by the multiple quadtrees on the cluttered image are more prominent in re-
gions with large displacement as shown in Figs. [2.20[a-c). Note that the time consumption
of the multiple quadtrees decreases by about 30 % on average compared to the normal one.

The author noticed that the number of calculations for the NNS function is considerably
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Figure 2.18: Selected two images on the EuRoC V1_ 01 dataset for quantitative
evaluations (a) a simple image and (b) a cluttered image.

reduced because a query point is compared to a fraction of reference points only within its
related tree out of eight trees.

For the rolling motions larger than £5 degrees, iterations are saturated as in Fig. [2.20(c),
which means that the ICP algorithm falls into local minima. In the author’s experiences,
some very cluttered regions in Fig. [2.1§(b) yield a lot of wrong matches, and the estimation
fails in this case. It will be addressed in Section 2.7.3l

2.7.2 Analysis 2: Effect of storing the Previously Matched Nodes

This subsection demonstrates further improvements in the matching speed by storing the
previously matched nodes. In this analysis, the same simulation settings in the previous
section are used, and only node storage functionality is switched on.

As can be seen in Figs. [2.19] and [2.20, the number of iterations remains almost the

same with the pure multiple quadtrees because the result of starting from the stored nodes
is theoretically identical to starting from the root node. Thanks to the warm-start from
the stored nodes, the number of nodes traversing considerably decreases as depicted in Fig.
and consequently, the time consumption is further reduced up to 70 % compared to

the normal quadtree in most cases. When the ICP algorithm fails, large discrepancies in
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Figure 2.19: ICP iterations and time consumption to align the simple image in
Fig. [2.18|(a). (a-c) ICP iterations versus camera motions, (d-f) time consumption versus
camera motions. Overall 9,031 query points are used.

iterations occur because the wrongly matched previous nodes can lead the current ICP

iteration toward another wrong direction.

2.7.3 Analysis 3: Effect of the Edge Culling Method

This subsection evaluates the effect of the edge culling method on the efficiency and ro-
bustness of the ICP process by changing [,,,;,. In this analysis, l,,., is fixed to 30, and
lmin = {5,15,25} are considered. Compared to the previous simulation setting, the only
difference is replacing raw edges with the culled edges.

The edge culling results with the three [,,;, values are reported in Fig. [2.22l The
cluttered responses on the floor and false responses on the wall are effectively suppressed
by the increasing [,,;, while the prominent edgelets remain.

Fig. presents the comparison results. The results of [,,;, = 5 case are similar to
the result of the setting without the edge culling method because many complex responses
Rk LT
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Figure 2.20: ICP iterations and time consumption to align the cluttered image in
Fig. 2.18|(b). (a-c) ICP iterations versus camera motions, (d-f) time consumption versus
camera motions. Overall 33,602 query points are used.

still exist in the left image like Fig. For higher values of [,,,;,, the number of iterations
and the calculation time significantly decrease despite large motions thanks to the reduced
cluttered edges as depicted in the right two images of Fig. [2.22] From these results, It can
be concluded that the edge-culling method considerably enhances both the robustness and
efficiency of the proposed edge-based ICP motion estimation.

Note that, to show the overall performance of the proposed method, the author evaluates
the overall performance of the proposed method using EuRoC stereo datasets [38] and

author-collected datasets gathered in low-textured indoor office situations. Results can be

found in
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Figure 2.21: ICP iterations and time consumption by using the edge culling
method to align the cluttered image in Fig. [2.18|(b). (a-c) ICP iterations versus
camera motions, (d-f) time consumption versus camera motions.

Figure 2.22: Results of the edge culling method with [,,;, = {5,15,25}
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Scale-aware Monocular Visual Odometry

using Vehicle Kinematic Constraint

This chapter proposes a new approach to scale-aware monocular visual odometry (VO)
and extrinsic calibration using constraints on camera motion by vehicle kinematics. The
main idea is to utilize the Ackermann steering model to observe the absolute metric scale
in turning motion.

To describe the motion of the camera attached to the vehicle, the unknown camera-
vehicle relative pose is firstly estimated by the proposed extrinsic calibration method. To
stably observe scale, turn regions are detected, and an observer is designed to estimate the
absolute scale as a function of the camera rotation and direction of translational motion
during turning. Using the observed scale, an absolute scale recovery is proposed to estimate
the unknown scale between turns. Because the proposed scale observer becomes singular
near zero rotation, sensitivity analysis is conducted on the scale observer, and appropri-
ate conditions for stable scale estimation are investigated. For quantitative evaluation of

the extrinsic calibration and the absolute scale recovery, synthetic driving datasets are
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randomly generated with various noise conditions, and the performance of each module is
statistically evaluated by Monte Carlo simulations on the synthetic datasets.

To evaluate the overall performance, the author implements the proposed method and
state-of-the-art monocular and stereo VO methods in the public outdoor driving KITTI
dataset, and the proposed method shows competitive scale recovery performance with no
external sensor and no assumption on surroundings such as planar ground landmarks. To
show promising applicability, the author collects real-world driving datasets in two multi-
floor underground parking lots, and demonstrates the accurate absolute scale recovery

performance of the proposed method in indoor driving situations.

3.1 Introduction

Navigation is one of the fundamental capabilities of an autonomous mobile vehicle. For
navigation, ego-motion estimation using cameras called visual odometry (VO) has received
attention due to its compact setting and rich environment expression from an image. Thus,
the VO has been actively studied with various configurations: a single camera [11} 39],
multiple cameras [40, 41], VO with an inertial measurement unit (IMU) [42, 43], and
combining vehicle dynamics [44), 45, [46].

Especially, VO using a single camera, monocular VO (MVO), is an attractive solution
for automobile navigation due to its minimum setting. Furthermore, because one or more
cameras can be easily found in most vehicles as forms of driving assistant systems and
user-mounted dashboard cameras, the MVO implementation targeted for mobile vehicles
is highly valuable.

However, due to the monocular projective nature, absolute metric information disap-
pears from an image, and MVO can only yield up-to-scale translation motion, making the
MVO-only setup more challenging without additional metric measurements. It is called
the scale ambiguity problem [I5]. Although the scale ambiguity often means scale drifts

over time, it is specifically used only to denote absolute scale vanishing in this chapter.
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A common approach to recover the scale in the MVO is integrating additional sen-
sors providing metric information such as inertial measurements from IMU [42],[47], low-
resolution time-of-flight range sensors [48], and a single and multiple distance meters set-
tings [49]. Although the utilization of additional sensors can improve performance, the
need for the sensors and precise extrinsic calibration among them might not be affordable
for arbitrary settings.

For the ground vehicle settings, a popular approach is to utilize the consistent height
of the camera rigidly attached to the vehicle and planar ground observations with plenty
of image features [50, B, 51} (52} 53, 54}, 55} [56]. They show successful performance when
planar features are available abundantly. Although they target ground vehicle applications,
the vehicle kinematics is not fully exploited but implicitly considered as a planar and level
traverse of the camera. Furthermore, in most research, the relative pose between the camera
and the vehicle is commonly assumed to be an identity, which is not always true in vehicular
settings.

This chapter introduces a scale-aware monocular VO system utilizing a vehicle kine-
matic motion model. Different from the previous scale-aware MVO works [50, 5, 51} [52,
53, b4}, 55}, 56], the vehicle kinematics is explicitly used to model the monocular camera
motions. To exactly obtain the fixed relative pose of the camera and the vehicle, a self-
contained extrinsic calibration method is developed to estimate the relative pose between
the camera and the vehicle. Then, the author designs a scale observer that estimates
the absolute translation scale from the geometric constraint of the frame-to-frame camera
turning motion. To propagate the observed absolute scale on turning regions, a method is
proposed to recover the unobserved scale between turns.

In the following, related works are reviewed, and the main contributions of this chapter

are listed compared to the related works. The references are listed and analyzed in Fig.

B.I
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3.1.1 Literature Review

The author surveys monocular VO methods with scale awareness, and categorizes them
into three types according to methods to obtain absolute scale information: 1) additional
sensors, 2) environmental properties, and 3) a learning-based approach.

Additional sensors: Additional sensors are frequently used to observe the metric scale
of the motion estimation. For VO, multiple cameras [40], [41], [42] with known relative pose
and baselines are widely used to triangulate landmarks in 3-D space and estimate the metric
camera translation motion. For more compact settings, monocular visual-inertial odometry
(V-10) is proposed [43], [47]. By double-integrating acceleration measurements, the metric
translation change of the IMU is incorporated into the MVO motion optimization problem.

Other works utilize different sensor modalities that provide metric information to the
MVO framework. In [48], [49], multiple 1-D point laser sensors are used to obtain the
metric distance of the center pixel of the camera and to recover the trajectory scale.

As mentioned before, two hurdles exist to implement this type of method; the calibration
among various sensors with different modalities is nontrivial, and some sensor combinations
might not be readily available.

Environmental properties: Most monocular scale-aware VO methods [50} B, [51}
52, 56, 53}, 54} 55] utilize two environmental conditions: planar ground observations and
constant camera height. An early work [50] extracts point features on the road from a fixed
quadrilateral image region to estimate the planar homography transform between frames.
By decomposing the homography matrix, they compute the camera height from the plane
and adjust the scale of camera motion using consistent camera height assumption.

The strategy using the planar homography is still popular in recent studies, and several
variations are proposed to extract planar information accurately and stably; [B, 51] combine
sparse features and direct illumination on the ground plane to estimate the homography
matrix, and [52] and [56] geometrically model the plane regions by the Delaunay trian-

gulation with point feature nodes and stably prune out outliers. In [54] and [55], robust
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plane fitting is proposed. In recent work [53], road regions are segmented pixel-wise by
deep learning to robustly find planar features.

These methods show stable and accurate scale-maintaining performance in planar feature-
abundant environments; however, they may become infeasible in some regions with no tex-
ture on ground planes. Furthermore, most research assumes a known attachment pose of
a vehicle-mounted camera or assume zero-pitch camera pose.

Learning-based approaches: In recent years, deep learning has undoubtedly achieved
considerable advances in computer vision, and many deep applications are derived from sev-
eral influential works such as [57], [58]. Following the trend, a number of MVO attempts
using deep learning are also introduced [59} [60, 61}, 62, 63} [64]. In [59], an end-to-end MVO
network is proposed by directly training conventional VO results using deep recurrent con-
volutional neural network (RCNN), and other methods [60} [61} 162} 163} 165} 166, 67] utilize
deep depth prediction in training steps. By using depth, these methods can provide consis-
tently scaled translation motion over sequences; however, still yield up-to-scale estimation
only due to the monocular nature. To fill the metric gap, deep monocular V-I0 (MV-10)
methods [65} 66} 67] are emerging recently.

It is noted that most existing learning-based methods require more data than monoc-
ular images, such as stereo images [61] or 3-D LiDAR points [62], in the training step of
MVO or inference step of MV-I0. Even more, machine learning methods still suffer from a
generalization gap between training and test sets, and their performance might degrade in
unseen conditions.

According to the author’s survey, it is found that there are few approaches operating
independently of the additional sensors and assumptions on surrounding environments and
landmark distributions. Especially, the MVO methods with the scale recovery for vehicles
mainly focus on indirectly using vehicle characteristics, such as planar ground features and
consistent height of the camera. In several cases, the camera-vehicle relative pose is also
assumed to be known.

This chapter proposes the scale-aware MVO framework that explicitly utilizes the vehi-
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cle kinematic constraints on the camera motion. A self-contained camera-vehicle extrinsic

pose calibration method is also introduced for the completeness of the formulation.

3.1.2 Contributions of the Chapter
Compared to the related works, major contributions of the chapter are listed as follows;

o An arbitrarily attached camera pose to the vehicle can be estimated by proposing a
self-contained camera-vehicle extrinsic pose calibration method using camera motion

constrained by vehicle kinematics.

o By utilizing local geometry of the constrained camera motion, a new scale observa-
tion method can be formulated when the vehicle turns. The scale observer is also

theoretically analyzed to determine stable states for observing the scale.

o Unobserved scale between turning regions can be estimated by the absolute scale

using the metric scale on the turning motion.

Note that, different from the scale-aware MVO using the planar ground features [50, 5}
511, 52, 53}, 54}, 55}, 56], the proposed method has an additional advantage of no need for as-

sumption on the uncontrollable external environment such as ground feature distributions.

3.1.3 Algorithm Overview

The proposed algorithm in this chapter is illustrated in Fig. and the rest of the chapter
is structured as follows: Section describes preliminaries including notation rules used in
this chapter, vehicle motion model, visual processing and data structures required for the
proposed method. In Section a camera-vehicle extrinsic pose calibration method is pro-
posed to estimate arbitrarily installed monocular camera pose with respect to the vehicle.
In Section 3.4} an absolute scale observer is designed by using the kinematically constrained
camera motion model in turning motion, and the absolute scale recovery method between

turning regions is proposed in Section Section |4.2 presents an in-depth analysis of the
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Figure 3.2: Block diagram of the proposed scale-aware monocular visual odom-
etry and extrinsic calibration system

proposed modules and demonstrates the comparable performance of the proposed method
on publicly available datasets. The final part of Section highlights the effectiveness of
the proposed method, especially in indoor driving circumstances by experiments on author-
collected indoor driving datasets. The author-collected datasets and related parameters are

publicly shared as rosbag files at https://chkim.net/scalemvo.

3.2 Preliminaries

Before detailed description, notations and the 3-D geometry between a monocular camera
and landmarks are defined. Then, the derivation of the monocular camera motion model
constrained by vehicle kinematics is proposed. The front-end visual processing and data

structures for the proposed system will be explained at the end of this section.

3.2.1 Notation Rules of This Chapter

Throughout this chapter, the author expresses column vectors with bold lowercase letters,
and matrices are in bold capital letters. The exception is for using X to denote a 3-D point.
Let X; € R? be the ¢-th 3-D point represented in the world frame {1V}, and X;; € R? be the

expression of X; in the j-th camera frame {C;}. The 3-D rotation matrix and translation
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vector from {C,} to {C}} are described as Rg: € SO(3) and tg: € R?, respectively, and the
corresponding rigid body transform is defined as ng = [Rgg,tg:; 0], 1} € SE (3) where
05 is a 3-D zero vector. The projection relationship of X; to the corresponding 2-D pixel
pi;; € R? on the pixel plane of j-th camera frame can be computed by 7; (X;) € R? by
defining a function 7; (+) : R* — R? projecting a 3-D point expressed in {TW} onto the pixel
plane of {C;}. For simplicity, abbreviated notations c(-), s(-), t(-) are used throughout

this chapter to denote cosine, sine, and tangent functions, respectively.

3.2.2 Camera Motion constrained by Vehicle Kinematics

As depicted in Fig. the chassis part of a four-wheeled automotive vehicle is designed for
all wheels to experience concentric circular motions. This kinematics, called the Ackermann
steering geometry [68], enforces locally planar and circular motion.

As shown in Fig. it is considered that the vehicle frame {V'} is on the rear axle of
the vehicle, and the z- and x-axes of {V'} head forward and right of the vehicle, respectively.

Using this, the vehicle motion from {V;;} to {V;} can be represented as

cy; 0 sy P; Y
R =|0 1 o|.t"] 0 | (3.
—sth; 0 cih Pi

where 1;, p; € R are turning angle and distance between centers of {V,;} to {V;}, respec-
tively, and ~; = v,/2.

The motion of the camera rigidly attached to the vehicle can be modeled by vehicle
kinematics. It is considered that the original camera frame {C'} is at the distant L € R
from the origin of {V'} along the z-axis of {V'}, and the camera pose is Q € SO(3). The
author additionally defines an auxiliary camera frame {A} sharing the origin of {C'} but
having the same pose with {V'}, i.e., R, =I3 € SO(3). The translation vector between {V'}
and {A} is t%, =10,0, L] where I is a 3-D identity matrix.
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Figure 3.3: Illustration of the vehicle kinematics This figure shows the Ackermann
steering geometry of the vehicle between {V4} and {V;}. Red and blue arrows denote x-
and z-axes of each frame. By the right-hand rule, the y-axis directs to the paper. The
shaded frames are auxiliary camera frames.
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The relative motion between {A;;} and {4;} Tﬁjfl € SE(3) can be represented as

Aj Vi
T, = TyTy T}, (3.2)

. . Ay .
where rotation and translation parts of T/’ ' are written as

ij 0 Si/)j ij’}/j—i‘LSwj
Ry'=| 0 1 0| ty'= 0 . (3.3)
—sih; 0 ¢y picy;— L+ Ley;

Finally, the constrained camera motion ng’l € SE(3) can be written as

Te'=TGT, ' TE=|Q Ry 'Q,QTtY; 0] 1 (3.9
where T¢ = [Q,03;057,1] € SE(3).

The above derivation is analogous to the vehicular MVO research [44] incorporating the
vehicle kinematics to make the 1-point MVO. However, [44] used two major assumptions:
zero displacement L = 0 and ideal camera pose Q = I3, which might be invalid in general
camera settings. In fact, the author of [44] reported that the two assumptions are valid
only when the steering angle is sufficiently small. In the large steering motion, L is no
longer negligible because of increasing terms multiplied by L in tﬁj’l.

In this chapter, to deal with the general camera installation, the camera-vehicle extrinsic
pose calibration method is proposed in Section In addition, the nonzero L is considered

to realize the scale-aware MVO, which will be detailed in Section |3.4

3.2.3 Visual Processing Front-end and Data Structures

As in other feature-based VO algorithms, the proposed method in this chapter utilizes
associations between visual landmark correspondences and camera frames. Requirements

for the proposed scale awareness module are listed.
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Each visual landmark should store:
o 2-D pixel tracking history over images
e Address of frames where the landmark was seen

 3-D point of the landmark represented in {W}
Each image frame should include:

e Address of landmarks observed in the frame

e 6-DoF camera motion from {IW}

For the visual landmark, the author uses the ORB image feature [2§]. To evenly dis-
tribute landmarks throughout the image, the image is divided into n, cells, and ny features
are selected for each cell with the highest FAST scores.

Existing landmarks are tracked for every new image, and store all tracking histories.
The proposed method selects keyframes among the image frames to reduce the problem
size and to obtain a sufficiently large turning motion between frames. To obtain the camera
motion, the proposed MVO module is implemented by following the motion tracking scheme

of the successful MVO method, ORB-SLAM?2 [11].

3.3 Camera-Vehicle Extrinsic Pose Calibration

The exact extrinsic pose Q of vehicle-installed cameras, such as driving assistance cameras
and custom dashcams, are not generally available. In this section, the author introduces
the two-step calibration method to estimate the camera-vehicle extrinsic pose by only using

the motion of the camera installed in the vehicle.

3.3.1 Problem Formulation

The kinematic constraint of the vehicle is generated by a chassis part. In normal driving

conditions, it can be considered that the vehicle body part experiences the same rigid body
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motion with the chassis part. In this case, the motion of the camera attached to the body
part can also be expressed by the constrained motion model in (3.4).
Based on the above description, desired conditions of the calibration problem for the

J-th frame are written as
R,=Q'R;Q, {=Q't; (3.5)
where simplified notations are defined as
a Cia Aja
R; = ch , R = RAJ, €S0(3) (3.6)

and

b= to "t =ty € R, (3.7)

respectively. Note that unconstrained camera motion Rj and fj can be computed by the
MVO algorithm.

As and (3.4), right-hand sides of two equations in are functions of qs, p;,
and 1); where q; € R* is a unit quaternion of Q. Let me define a parameter vector with

unknowns as

T
= qSTMOl?'“ 7pN7w17"' >¢N] S R2N+4' (38)

By aggregating N poses, an optimization problem with respect to can be formulated

as

N
argmin » _ |R; — Q"R; Q|7 + [It; — Q"7 (3.9)
j=1
where ||| is the Frobenius norm.
Note that the problem in (3.9) is a large-scale nonlinear batch optimization problem.
Without proper initial parameter values, it could fall into the wrong minima, or diverge.

To prevent this, the author first calculates the initial guess of each part of separately by

T S 11 =1
= I-'l__ll (=],
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linear algebraic approaches.

3.3.2 Linear Initialization of ¢); and Q

First, it is explained how to extract initial guesses of turning angles v; from the uncon-
strained camera rotations f{j regardless of the unknown Q. Then, using the initial v;, a

linear algebraic approach is proposed to calculate the initial value of q,.

Extracting ¢; from the unconstrained rotation f{j

In the rotation part of (3.5), Rj and R; are similar matrices by Q. By the property of
similar matrices, the two matrices should have the same eigenvalues regardless of a choice
of Q € SO(3).

From the definition of R; in (3.3), three eigenvalues of R; are one and cos); % isin¢;
where 7 is the unit imaginary number. They are also eigenvalues of Rj due to the eigenvalue
invariance of similar matrices. Because the sum of eigenvalues is equal to the trace of the

matrix, an equation related to v; can be derived as
trace Rj = 2cos; + 1. (3.10)

From (3.10), only the magnitude [¢;| can be obtained. To determine its sign, t; is
employed. Due to the Ackermann geometry, fj is locally constrained to the x-z plane of
{A}.

When the steering motion is larger than the roll and pitch motion, it can be considered
that a vector rotation f;. = ijj € R3 is mainly governed by the steering motion. Then,
from the directional difference between f; and fj, the direction of rotation of the vehicle
can be computed.

In sum, the initial guess of v; can be calculated as a closed form with a 3-D cross

3 11 3
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product operator X as

Qﬂj = Sign (E] X E;) . 5

traceR; — 1
arccos (&) | ) (3.11)

Linear solution of S in a quaternion representation

Using the initial guesses v;, Q can be estimated by solving the least squares problem
in quaternion space. Let qj, q; € R* be unit quaternions of Rj and R;, respectively.
This research work follows the Hamilton quaternion convention with right-handed algebra.
the A pure quaternion of the vector v € R? is defined with zero at the first element as

.
V= [0, VT] € R%. Then, (3.5) can be rewritten as

QR, =R,Q ~ q.®q; = q; @ q,
j j q4; = Qq; (3.12)

ijztj—?qs@?fj@qzzfj,

where ® means the quaternion product operator, and q* € R* denotes conjugate of a
quaternion q. Because the MVO can only provide up-to-scale translation motion, unit
vectors u; and u; are used corresponding to fj and t;, respectively.

The quaternion equations in (3.12) can be transformed into matrix forms,

2 (4) a5 = 4 (q5) q

o <ﬁ"> qs = (W) g, (3.13)

where matrix forms of left and right quaternion products € (q), Q, (q) : R* — R** are

denoted as
T T
qo L qo —n
Q) (q) = Q2 (q)= (3.14)

n ¢ols—[n], n gols+[n],

where q := [qo,nT}T with a scalar ¢ and n € R?, and [n],, € R*? is a matrix satisfying

n] v=n x v with veR?,
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Note that, in this initialization step, L = 0 is temporally assumed to neglect unknown

values p; of t;. Then, the simplified form of u; becomes a function of only ),

) ;s +Lsi; st;
UjZWZ 0 /il = | 0] - (3.15)
2112
picy;— L+ Ley; cy;

p; values will be re-considered in a refinement step in the following subsection.
By concatenating N equations, a least squares problem to estimate q, with a matrix

M € R3V>4 can be formulated as

1) = (aq1)
Q, (u1> — (i)

o)
E
=

Mq;

qs = 08N- (316)
0 (an) — 2 (gw)
1, (1) = 9 (i)

A solution qs can be computed by the right nullspace of M. Using the singular value
decomposition to M, the solution can be obtained as the right singular vector corresponding
to the smallest singular value.

To distinguish the smallest one out of four singular values, the ratio of the two smallest
singular values is checked. If the second one is more than twice the smallest one, the
solution can be considered reliable. In Fig. (3.4} it is found that the second one becomes
sufficiently larger than the smallest one at the first turning motion. Then, the estimated

qs converges to true values with the dashed line.

3.3.3 Full Refinement of the Initial Guesses

In the previous linear step, L = 0 is assumed for simple derivations. In this step, the
nonzero L is re-considered to incorporate effects of si; and cip; — 1 terms of t;. Without
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Figure 3.4: Singular value history of the linear initialization of q, In the first graph,
turning angles are obtained by the ground truth poses to the first 500 frames of 00 dataset
[2]. o1 and o9 are the two smallest singular values of M, respectively, and their histories
are drawn according to the number of stacked poses in the middle graph. The third graph
exhibits histories of the estimated Euler angles of Q. Two vertical lines denote ends of
each turning motion, and horizontal dashed lines are true values of Euler angles of Q. The
author intentionally rotates the camera pose with Euler angles of {12,19,—1} degrees to
simulate an arbitrary pose Q.

loss of generality, L = 1 is used. Because one cannot obtain the scale of t; from the MVO,
the author uses the normalized translation vector t;/ ||t;||, in the full refinement problem.
Then, the modified problem of (3.9) is written as

al IR; — Q"R;Ql[%

argmin Wi .
=1 +[HQuy) " 5/ [1tl, — 113 (3.17)

subject to ||qs||, = 1.

As seen in (3.17), the original translation term in (3.9) is modified into the difference of
unit directions of two translation representations to delete the unknown magnitude of the
estimated monocular translation motion.

The real-world vehicle motion could slightly deviate from the planar motion model. To

suppress the bad effects of the off-planar motions on the optimization process, the Huber

¥ [, -1 =1
- I-'l__ll (=],
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norm wy (1) is invited with the threshold value ry, € R as

ren /] A | > T (3.18)

wp (r) = )
1 otherwise
where 7y, is set to 60 % value of the residuals, and recalculated for each optimization step.
The above nonlinear optimization problem can be efficiently solved by a nonlinear pro-
gramming solver, CasADi [69]. Note that the resulting scale estimations p; are proportional
to the L. If the exact metric L can be known in advance, the absolute value of p; can be es-
timated. Reversely, the metric L can be recovered using metric motion measurements from
additional sensors, such as wheel odometer and global positioning system (GPS). Anyway,

any choice of real positive L does not affect estimating Q.

3.4 Absolute Scale Recovery between Turning Regions

In this section, the author introduces a method to observe the absolute metric scale of the
MVO motion, and a strategy to detect turning frame regions that can provide absolute
scale observations stably. Then, an absolute scale recovery (ASR) method is proposed to
scale the translation motion and 3-D points between turns by using the observed absolute

scale of the turn regions.

3.4.1 Observing Absolute Scale via Kinematic Geometry

This subsection details how to observe the absolute scale s, ; of the monocular camera
translation motion t; at the vehicle turning. When the vehicle turns to an angle of v, one
can draw two triangles by joining the origins of vehicle body frames and camera frames as
depicted in Fig. (a). For the red isosceles triangle AACA’, lengths of AC and A’C' can
be calculated as

AC =AC =11 (3.19)
2 ¢4
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Figure 3.5: Two triangles formed by the turn of the vehicle and relationship
between ) and 0 (a) v; is the turn angle of the vehicle, and 6; is the subtended angle
between the z-axis of {A4;;} and the rotated unit translation vector a;. p; is the distance
between centers of {V, 1} and {V}}, and s, ; is the scale of the monocular translation motion
which is the objective to estimate. (b) The relationship between v and 6 is plotted with
respect to the value of p;/L.
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By using AC and A’C, each side of the blue triangle ABCD can be calculated with
AB=AD =1L as

BC=2"li _ cb=" 4. (3.20)
2C’Yj 2C’Yj

As seen in Fig. (a), the objective s, ; is a side of the blue triangle. If angles v,
¢;, and ~y; are known, one can calculate s, ; by utilizing the sine rule on the blue triangle.
Because the initial value of 1; can be known by and 7; = 1;/2, the unknown value
of the angle 6; can be computed, which is the subtended angle between the z-axis of {4,4}
and a unit vector u; := Qu; € R? rotated to the auxiliary frame. By defining ky € R? as

the unit vector of the z-axis of {V'}, 6, is calculated as
0; = arctan { (ky x#;)/ (kv ' ;) }. (3.21)

Applying the sine rule on the blue triangle, an equality is finally obtained as,

Pj Pj
2cy; L _ 2cy; + L _ Sa,j (322)

s(v; —0;) s0, sth;

From the first equality in (3.22), the temporal distance p; of the vehicle is expressed as a

function of ¥; and 6; up to L,

(3.23)

Then, the scale observer can be derived by substituting (3.23) to the second equality of

13.22) as
Saj 281
L s —s(y; —0;)

(3.24)

In Fig. (b), the graph of ¢; and 6; with respect to various p,/L settings is depicted.
g, can be derived from (3.23) as

f; = arctan (p] V5 by ), (3.25)
pj — 2L s7y; ty;
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where 0, is a function of ¥; and p;, which allows us to treat s, ; as a function of ¢; and ;.

As seen in the figure, 6; is approximately proportional to ¢; for all p; /L. It is found that
the ratio 6;/1; asymptotically converges to 0.5 when p; goes to infinite, which guarantees
a nonzero positive denominator of by assuming |¢;| = |27;] < 7. Because general
vehicles cannot steer over 90 degrees in a short period like the camera image acquisition
interval, the turning angle assumption is valid in most cases.

The scale observer in becomes singular when 1; goes to zero. To discuss this
problem, the section will investigate the relationship among v;, 0;, and s, j, and
analyze which condition is desirable to stably observe the scale by a sensitivity analysis on

the scale observer.

3.4.2 Detecting Turning Regions

As denoted in the previous subsection, the scale observer becomes singular for small
turning angle ;. To obtain the reliable observations, keyframes with sufficiently large
turning motions are detected.

Let F be an index set of all keyframes between turning regions. JF consists of two
subsets, F; and F,, which are index sets of keyframes on turning and non-turning regions,
respectively. The author additionally separates JF; into two index sets of previous and
current turning regions, Fy, and Fy., respectively. Each index set is depicted as a shaded
region with a dashed boundary in Fig. (3.6

Once [1);| becomes larger than a threshold angle 1y, the j-th keyframe is regarded as
a turning candidate frame, and it is counted how many candidates follow sequentially. If
the number of the candidates exceeds a threshold count value ny, a new turning region
Fi. can be found from the j-th keyframe to a keyframe whose next keyframe is no longer
the candidate frame. If not, all the candidates from the j-th keyframe are passed to the

non-turning region index set F,. This procedure is written in Algorithm
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Algorithm 2 Detecting a New Turning Region

1: i,y an operating indicator. Default is True.
2: n: a counter value. Default is zero.
3: for each incoming frames, current j -th frame do

4: Do monocular VO

5 || < a steering angle calculated by
6:  if [3j| > ¢y, then

7: if 14,5, then

8: lop < True

9: end if

10: Fie & Fie U j; ++n;

11: else

12: iop < False; n < 0;

13: if n > ny, then

14: Fip < Fics Fie — O

15: else

16: Fu = FuUFie; Fie < O
17: end if

18: end if

19: end for

3.4.3 Recovering Unknown Scale by Nonlinear Programming with

Equality Constraints

In this subsection, the author introduces the ASR module. Using the observed scale values
on the turning keyframes F;, unknown scale values of the monocular translation motion
and 3-D landmark points between the turning regions JF, are recovered.

Fig. illustrates a factor graph of the i-th landmark and its related keyframes.
The landmark is associated with the keyframes by 2-D pixel tracks p;; € R% The pixel

reprojection error r;; induced by X; and {C;} is written as
rjj i= T, (Xz) —Pij € R (3.26)

By aggregating all error vectors generated by N keyframes and M landmarks, the
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Figure 3.6: Factor graph of a landmark and related keyframes for the absolute
scale recovery An i-th landmark is connected to turning and non-turning keyframes by
2-D pixel tracks. In this illustration, 1’s index rule is used. The red arrow means a
constrained relative translation motion in the turning regions. All translation motions of
the keyframes are represented with respect to the world frame.
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residual vector r is defined as
-
r:=[onrn’, - onurna ] € RPMY (3.27)

where an indicator o;; becomes true if the i-th point is seen in the j-th keyframe, otherwise
false.

Let ¢ be the parameter vector to be scaled as

T
C:: thT?' " t]V\I[/TJ XlTv' " XMT] € RP; (3.28)

where P := 3 (N — 1)+3M and the first keyframe {C} } is fixed to avoid the gauge freedom.

Then, one can formulate a reprojection error minimization problem with respect to ¢ as

argmin r (¢) 'r (¢), (3.29)
¢

where r (¢) € R*™¥ is the residual vector as a function of (.

The optimization problem in (3.29) is a popular nonlinear programming problem in
computer vision, called bundle adjustment (BA) [15]. Unlike the original BA, the observed
scale values are additionally incorporated into the problem to recover the unobserved scale
between turns.

Conceptually, the scale of the turning keyframes can be propagated to the associated
non-turning keyframes through the 2-D pixel tracks. Like the red arrows depicted in Fig.
the observed scale on F; can be used to constrain the relative translation motion
At =t —tg € R% If the cardinality of F; is K and the k-th element of F; is F; (k),

the k-th scale constraint can be written as an equality constraint

9 (€, 8a) = Atr,g Atz — sorm =0, (3.30)

T
where s, := [Sa,]-"t(l)7 T 78067«7:15(1()] € R¥.

¥ [, -1 =1
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Defining the Lagrangian L ({,A) := r(C)Tr (¢) + A'g(¢,s4) € R with the Lagrange

multiplier vector A € R¥, a minimization problem is finally set up as

argmin L ((,A) subject to g((,s.) = O, (3.31)
CA

where an equality constraint vector g is defined as

g (C: Sa) = [gl (C: Sa)7 9K (C? Sa)]T : RP = RK' (332)

The above nonlinear programming with equality constraints can be solved by sequential
quadratic programming (SQP) [70]. Whenever a new turning region is detected, the ASR

module is operated, and this procedure is repeated for overall image sequences.
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3.5 Performance Analysis

This section analyzes the proposed three modules: the scale observer, the camera-vehicle

extrinsic calibration, and the ASR module.

3.5.1 Noise Sensitivity Analysis of the Scale Observer

First, the author performs an in-depth analysis of the scale observer. Noise in ¢; and 0;
estimation is inevitable due to imperfect camera motion estimation and off-planar vehicle
vibration. In Section is ill-defined near v; = 6; = 0, which implies high
noise-sensitivity around the zero. To address this problem, the author analyzes the noise
sensitivity of the scale observer s, ; with respect to v, and #; with various p,/L settings.
Without loss of generality, the normalized scale s, ; := s4 /L is considered during this
analysis.

s’ is differentiated to two parameters 1;, 0;, and resulting sensitivity equations are as

belows:
0sn; —sb; 0sny  2(s(1h;—0;) +s6;)

O c(v;—20;)—1" 00;  c(ih;—20;)—1
Using the above two derivatives, the author draws multiple graphs by changing p;/L in

(3.33)

Figs. (a)f(b). According to the graphs, the scale observer becomes less sensitive to noise
in the angle estimation of ¢; and 6; when the turning angle v; is large. Both sensitivities
show similar tendency because 0, is governed by 1; as Fig. (b).

When increasing the relative vehicle speed p;/L, both noise sensitivities also increase
as seen in Fig. (a). From these tendencies, one can conclude that more stable scale
observations can be obtained in apparently large turning motions at low driving speeds.
As seen in Fig. (b), the scale observer is slightly more sensitive to error in 1; than 6;.
In other words, the accuracy of the turning angle estimation is more crucial for accurate
scale observation than the translation vector estimation. Fortunately, it is found that MVO

yields sufficiently accurate turning angle 1; in average error less than 0.1 degrees in the
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Figure 3.7: Noise sensitivities of the scale observer (a) Noise sensitivity with respect
to 1, (b) noise sensitivity with respect to ¢;. The curves are color-coded according to

pi/ L.

0 10

KITTI datasets [2]. For ¢; = 5 degrees and p; = 0.4 m with L = 1 m, the 0.1 degree error
corresponds to about 0.02 m scale error which is only 1/20 of the scale observation error.

As mentioned before, both noise sensitivities are governed by p;/L. Without changing
the metric distance p; between {V;;} and {V;}, the term p;/L can be decreased by in-
creasing L. In general, the camera on the vehicle is mounted around the windshield to look
forward, and such a setup can guarantee sufficiently large L > 1 m, which implies that the
proposed method is suitable for general automobile environments.

In Fig. (a), the author plots the history of ¢; and p;/L estimated by the proposed
MVO from the author-collected parking-lot datasets which will be detailed in Section [£.2.2]
As seen in the graph, during turns, p;/L is mostly in the range [0.2,0.4], and the turning
angle is over 3 degrees in average. Note that p;/L € [0.2,0.4] corresponds to the vehicle
speed 20-30 km/h (12-19 mi/h) with L = 1 m for 10 Hz image acquisition frequency.
Based on these motion characteristics of the parking-lot datasets, the noise tolerance of
the scale observer is evaluated. two situations are considered: At; = Af; =0.05 degrees

and AY;=A0;=0.1 degrees where A;, Af; € R denote absolute values of the estimation
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Figure 3.8: Turn angle v}, relative distance p,/L, and the error over the scale on
the author-collected parking lots driving datasets (a) This graph shows the time
history of ¢; and p;/L on bldg_39 of the author-collected datasets to be detailed in Section
The red dashed line means the average value during turns. (b) The scale estimation
error ratio when the angle estimation error is Av; =A#; =0.05deg. (c) The scale estimation
error ratio when the angle estimation error is Avy; = Af; =0.1deg. The dark blue region
corresponds to 1; € [3,5] degrees and p;/L€[0.2,0.4].
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error on 1; and 6;, respectively. The error values are determined based on the average
0.1 degrees rotation error in the KITTI datasets mentioned before. The error of the scale

estimation, AS;J € R, are calculated with respect to Ay; and Af; as

, (95’w-
As,, j(AY;, Adj) ~ 0,

as’aJ
00;

A¢j+‘

AG;. (3.34)

The author computes the percentage of the error over the normalized scale, Asy, ; /s, ; X
100 [%]. In Figs. [3.8(b)~(c), the dark blue region is the region of interest of this chapter
Y, € [3,5] degrees and p;/L €[0.2,0.4]. As seen in Figs. (b)f(c), the error percentage
in the real-world situation such as parking lots can be quite small, about 2.5 % in average
and 5.5 % in the worst case.

From this, the proposed method will be effective for common indoor driving situations.
In Section the author will verify the effectiveness of the proposed method on the

author-collected driving datasets obtained in multi-floor underground parking lots.

3.5.2 Analysis via Implementations on Synthetic Data

The performance of the camera-vehicle extrinsic calibration and the ASR module are ex-
tensively evaluated through Monte-Carlo simulation on a synthetic driving dataset. The
shape of the synthetic dataset is depicted in Fig. (3.9 This dataset has a 1.2 km trajec-
tory with several 90-degree turning motions, and about 4,000 points scattered along the
trajectory.

The data association of 2-D pixel tracks and keyframes is established by projecting the
3-D points to each camera frame with a field of view limit of 100 m. For each Monte-
Carlo simulation, the author changes the distribution of the 3-D points and their 2-D pixel
projection error. For realistic simulation, several camera rotation pose error settings are

considered with different noise levels.
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Figure 3.9: Trajectory and 3-D points of the synthetic dataset, and the turning
region detection results (a) The trajectory is 1.2 km long with 3,500 data points and
nine turning spots. (b) The author simulates the noisy and drifted MVO estimation by
augmenting rotation and translation error to the true in black trajectory. The blue boxes
are the detected turning regions by the proposed method.

Camera-vehicle extrinsic calibration results

The camera intrinsic parameter is set the same as the sensor suite of the first data sequence
00 of the KITTI odometry datasets. An artificial monocular camera is considered with
L = 1.0 m displacement from the rear axle, and the camera installation pose Q is set by
{5, 15, —10} degrees z-y-x Euler angles.

The author evaluates the accuracy of the proposed camera-vehicle pose calibration
method by changing noise in the camera rotation motion estimation with 0.05, 0.2, 0.5,
and 1.0-degree random noise for each frame. For each noise level, total 100 simulations are
repeated for meaningful statistics.

The simulation results are plotted in Figs. [3.10[@)—(b). Two settings of the calibration
method are considered: (a) linear initialization only and (b) full refinement. As seen in

Fig. [3.10/(a), under linear initialization, the estimation accuracy rapidly degrades when the
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Figure 3.10: Results of the camera-vehicle extrinsic calibration on the synthetic
dataset (a) results of the linear method only, (b) results after the full refinement. The
boxplots are colored according to each noise level. The horizontal lines in each boxplot
denote mean values. The gray dashed lines denote each truth value, and each box means
1-sigma region. The black vertical lines mean ranges of the resulting values.

noise level increases. Especially, the pitch angle estimation corresponding to the rotation
around the y-axis of {A} shows large offset errors for all noise conditions. It is found that
the offset error is caused by the deviated direction vector u; in by assuming L = 0.
If one compensates the true L and p; values in the linear initialization step, no offset error
occurs on the pitch angle.

Contrary to the linear-only setting, the full refinement module yields unbiased estima-
tion regardless of the noise level because p; is explicitly optimized with the non-zero L
in the refinement step. Furthermore, thanks to the noise suppression effect of the Huber
norm, the standard deviation of the estimated Euler angles is decreased to 0.5 degrees
for the 1-degree noise condition. As mentioned in Fig. [3.4} only one turning motion is
sufficient to excite the extrinsic calibration module. Considering all of these, the proposed
calibration method can stably estimate the accurate camera-vehicle extrinsic pose with the

noisy data from a monocular camera with one turning region only.
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Absolute scale recovery results

The performance of the ASR module is evaluated in the synthetic dataset. For evaluations,
several pixel tracking error conditions are considered: zero-mean random error with a
standard deviation of {0.5,1.0,2.0} pixels. For the rotation motion error, the random error
is fixed with a standard deviation of 0.5 degrees. The turning angle threshold ), is set to
2.5 degrees.

In Fig. 3.9(b), the simulated odometry trajectory is in red. The author intentionally
augments translation drifts to the camera motion to imitate the monocular scale drift.
The scale of the simulated trajectory is successively decreased by 0.1 % per frame, which
corresponds to the total 33 % scale decreasing at the end.

The detected turning frames are marked with blue squares on the black true trajectory
in Fig. 3.91 The scale value observed by (3:24) is plotted in the second row of Fig. [3.11f(a).
In the figure, the scale of the raw MVO gradually decreases due to the motion drifts. In
contrast, for the apparent turning motion in the yellow-shaded regions, the observed scale
by the proposed method accurately follows the true value in the black dashed line. As
expected, the scale observations during the small turning motion take arbitrary values due
to the singularity at the small angle as denoted in (3.24).

By utilizing the observed scale on the turns, the ASR module is conducted to adjust
the drifted raw trajectory. The resulting scale history is depicted in the last row of Fig.
(a), and overall trajectories are shown in Fig. (b). In the figures, the words low,
mid, and high denote the track noise conditions of 0.5, 1.0, and 2.0 pixels, respectively.
For all the noise conditions, the unobserved scale values of the non-turning regions are
successfully recovered, and then, the shapes of the recovered trajectories follow the ground
truth well.

Table shows the quantitative results for each noise condition. The root-mean-square
error (RMSE) values are calculated for four variables: steering angle v}, translation direc-

tion angle 0;, absolute error of scale estimation s, ;, and scale error ratio r; calculated
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Figure 3.11: Results of the absolute scale recovery on the synthetic dataset (a)
The first graph is about frame-to-frame turning angle, and the second one shows the scale
observation history. The last graph depicts the estimated scale history after the ASR.
Yellow and gray shaded regions express the turning and non-turning regions, respectively.
(b) Trajectories of the raw monocular odometry and the ASR module with the various
camera motion noise settings.

by
Ty = |So<,j — Sa,j,true| /sa,j,true x 100 [%] R (335)

where s, jue € R is the true value for the estimated scale s, ;. To separately evaluate
the performance of turning and non-turning regions, the two metrics related to the scale

estimation are computed for the turning regions only and the entire sequences, respectively.
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Table 3.1: RMSE comparisons of angles and scale estimations on the synthetic
dataset

. Seyi r; Sy r;
Noise V; 6, J J J J

px] | [dog] | [deg) | v | (burm) | (all) | (all

[m] (%] | [m] | [%]
odom. | 0.500 1.098 | 34.79

0.5 |0.110 | 0.045 | 0.066 | 1.01 | 0.100 | 3.38
1.0 | 0.214 | 0.058 | 0.067 | 1.14 | 0.107 | 3.56
2.0 |0.238 | 0.062 | 0.067 | 1.52 | 0.145 | 4.57

The raw MVO trajectory shows severe scale drifts. But for turning regions, the absolute
scale RMSE error shows 0.067 m and the scale error ratio is under 2 % for all noise
conditions. In terms of the entire sequence, the absolute scale RMSE error is about 0.1 m,
and the scale error ratio increases to 5 %, which results from the recovered scale from the
long straight regions making the weak pixel-to-frame connectivity.

From the results, it can be concluded that the proposed method is much more effective
in driving conditions with frequent turns and short straight corridors. Those environments
can often be seen in actual driving situations such as parking lots. To demonstrate the
applicability of the proposed method to the mentioned situations, the author acquires
real-world driving image datasets in multi-floor underground parking lots and applies the

proposed method, which will be detailed by the experimental results in
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Experimental Results on Real-world Scenarios

4.1 Implementations on Indoor Office Datasets

The author evaluates the overall performance of the proposed edge-based VO using Eu-
RoC stereo datasets [38]. To verify the practical usability, additional demonstrations of
the proposed method are conducted on author-collected datasets gathered in low-textured
indoor situations. The proposed method is compared with two state-of-the-art stereo
VO algorithms: stereo ORB-SLAM2 [11], and stereo DSO [40]. To compare in terms
of pure VO, the SLAM functionality of the ORB-SLAM is switched off. For the quan-
titative comparison of VO performance, the relative pose error (RPE) is used, which is
proposed in [71]. The author publicly shares the experiment datasets used in the research

at https://chkim.net/iros2020.

4.1.1 EuRoC MAYV Datasets

To show the robustness to the illumination changing, the previously proposed illumination

changing model used in [26] is additionally applied, and the modified datasets are distin-
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Figure 4.1: Calculation times of four implementations on EuRoC datasets.

Table 4.1: Performance comparison on EuRoC datasets The bold letter denotes the
best performance for each dataset.

Relative pose errors (RPE) [m/s]

Dataset Proposed ORB-stereo stereo DSO
Vi 01 0.038 0.031 0.024
Vi 03 0.046 0.052 failed
V1_01(change) 0.031 0.055 failed
V1_03(change) 0.055 0.068 failed

guished by a suffix of change. V1_01 contains moderated motions and illuminations with
abundant textures, and V1_03 has severe blurs from aggressive motions and illumination
changes induced by the auto exposure control. The comparison results are shown in Table.
According to the results, the proposed edge VO shows comparative performance with
the others in the normal V1_01. In V1_03, due to the high illumination, DSO fails to
operate when auto exposure control excessively intervenes. ORB-VO continues to track
motions for all datasets; however, the performances on datasets with changed illumina-
tions are significantly degraded. Nevertheless, the proposed VO shows robust and accurate
performance throughout the datasets. The average calculation times per stereo frame are

about 50-60 ms for EuRoC datasets as seen in Fig.
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Figure 4.2: Representative scenes of the ICL-NUIM datasets (left figures), and
simulated brightness changes (right figures)[3].

4.1.2 ICL-NUIM Datasets

For performance evaluation of the edge and point combined hybrid method, the ICL-NUIM
dataset [3] is used. This dataset simulates the office environment with fewer dot features
as shown in Fig. and is analyzed in addition to the case of applying a rapidly changing
light of £20 % level in a one-second cycle (ilu.) to verify the robustness to brightness

changes. The mathematical model of the affine brightness change is written as

a=1+0.2sin(0.2k) m

B = 5sin (0.2k) — 5,
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Table 4.2: Performance comparison on ICL-NUIM office datasets Bold letters
denote the best performance for each dataset. The asteriod mark means jumped (diverged)
cases, and x mark means a failed case.

Absolute Traj. Error (ATE) [m] Relative Pose Error (RPE) [cm/s]

Dataset P(w/o) P(w/) E E+P | P(w/o) P(w/) E E+P
office_00 *0.127  *0.150 0.062 0.026 | *0.78 *0.79 0.73 0.67
office_0O1 *0.099 *0.116 X 0.056 | *0.52  *0.58 X 0.44

office_02 0.073 X *0.639 0.066 | 0.49 X *2.41 0.46
office_03 0.025 0.026 0.029 0.027 | 0.39 0.26 048 0.39

office_00(ilu.) X *0.150  0.056 0.028 X *0.79  0.73 0.66
office 01(ilu.) X *0.116 X 0.058 X *0.58 X 0.44
office_02(ilu.) X X *0.282 0.062 X X *1.44 0.49
office_03(ilu.) X 0.026 0.029 0.023 X 0.39 049 0.39

where k € N7 is the number of sequences of each dataset.

The algorithm performance is analyzed for the case where only point features are used
(P), only corners were used (E), and both features are used (E+P). In particular, when
only point features were used, the performance according to the presence or absence of
brightness change compensation was additionally analyzed. For quantitative performance
comparison, absolute trajectory error (ATE), the sum of squares of the difference between
the true camera posture value and the estimate for each image, was used as an indicator.
In addition, the odometry performance is compared by comparing the relative pose error
(RPE). The resulting trajectories are depicted in Figs. [4.3)4.4}4.5)4.6]

As the result of Table office_01 and office_02 data, which lack a lot of patterns
in Figs. and used only point features, a jump occurred in posture estimation, and
if the brightness changes, posture estimation failed. When only the corners were used, a
similar result could be derived even in the brightness change, but it failed in office 01
where the corners were not evenly distributed, and the average accuracy was measured to
be low. On the other hand, it was confirmed that the proposed algorithm achieves stable

and high accuracy in all cases.
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office_00 of ICL-NUIM dataset.
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4.1.3 SNU Modern Building Indoor Datasets

To verify the real-world applicability of the proposed method, the author collected challeng-
ing man-made scenes that include few free-formed edges only. Because there is no ground
truth trajectory, the camera is carefully moved to maintain the same height throughout
the loop, and starting and end positions are set identically to check whether the results are
consistent. As depicted in Fig. the rectangular skeleton of the corridor is accurately re-
covered. Moreover, the proposed method maintains the stable height estimate and exactly
returns back to the starting point blue circle without any help of re-localization ability like
SLAM. Further results can be seen in Figs. and

For the edge and point-based VO, the author additionally collects indoor datasets. As
seen in Fig. the shapes of the furniture with curve features are well reconstructed. In
Fig. the detailed inter-floor stair structures are also reconstructed well.
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Figure 4.9: VO and 3-D reconstruction results on the author-collected dataset.
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4.2 Implementations on Indoor Driving Datasets

Then, the overall MVO performance of the proposed method is evaluated on publicly avail-
able outdoor driving datasets, i.e., KITTI odometry datasets [2]. In the end, the promising
real-world applicability of the proposed method is demonstrated on author-collected indoor
driving datasets acquired in two different underground parking lots with multiple floors.
First, the overall performance of the proposed scale MVO is exhibited by using the pub-
licly available outdoor driving image datasets, KITTI odometry datasets [2]. To highlight
the practical value of the proposed MVO, the author additionally collects the real-world
indoor driving sequences, called SNU underground parking lots datasets. The proposed
method is quantitatively evaluated by comparing it with the popular visual navigation
stack, ORB-SLAM [I1], in monocular and stereo modes. For abbreviations, let them be
called ORB-mono and ORB-stereo, respectively. In this implementation, the source code
of the latest publication ORB-SLAM3 [72] is used. To compare in the manner of VO, the

loop-closure and re-localization modules of the ORB-SLAM are deactivated.

4.2.1 KITTI Odometry Datasets

Sequences of the KITTT datasets are composed of the time-synchronized 10 Hz stereo images
with the accurate ground-truth pose post-processed by the OXTS RT 3003 (GPS/IMU)
inertial navigation solution. The stereo images are stereo-rectified and have 1240 x 376
pixels resolution. The monocular images obtained by the left grayscale monocular camera
are used to operate the proposed method and the ORB-mono.

According to the sensor setup of the KITTI datasets, L = 0.93 m and Q = I3 are
considered, and 1y, = 2° is set by considering that the average frame-to-frame rotation
angle of the dataset is about 3 degrees.

The scale consistency performance of the proposed method is evaluated in 11 sequences,
00-10. The sequence 01 is not used, for which most feature-based VO methods fail [5, [54,
55]. Table shows quantitative results of the proposed method, ORB-mono, and stereo
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modes. As the performance metric, the scale error ratio RMSE is computed for each
sequence. To compensate the unknown initial scale of the monocular methods, the scale
value of the initial ten frames from the true trajectory is provided.

As seen in Table the scale error ratio RMSE of the ORB-mono increases over 50
% for several sequences. This scale drift problem has been reported in the original ORB-
SLAM paper [11]. The ORB-stereo shows stable performance thanks to the metric length
of the stereo baseline.

The proposed method shows competitive performance to the ORB-stereo in several se-
quences marked with * in Table however, in the other sequences, performance degrades
similarly to the ORB-mono. To analyze this, the author additionally calculates statistics
of each sequence in the table: the number of turns, minimum, maximum, and average dis-
tance between adjacent turning regions. Contrary to sequences with * mark, non-marked
sequences have very few distant turns, or no turn at all. Those sequences mainly have long
straight paths between adjacent turning regions, and the vehicle changes driving directions
very slowly with a huge radius of curvature, which is not the target environment of this
chapter.

In Table the author additionally computes the translation error suggested in [2] of
the proposed method, and compares the performance of the proposed method to the ORB-
mono and stereo, and the state-of-the-art plane-based scale-aware MVO works [5, 54}, [55].
Because no open-source implementation is available for these works, the reported results
in [5), 54} [55] are referred to. The method [55] shows the best and most stable performance
thanks to the robust ground point extraction and aggregation strategies proposed in [55].
Similar to the results in Table the proposed method shows comparable performance on
the sx-marked sequences with an average translation error of about 3.5 %. The method [54]
fails to track motion in several sequences because it uses a fixed image region to obtain the
ground features, and [5] reports divergence in 07 due to the occlusion of the fixed ground
region by a dynamic object.

The representative trajectories for successful sequences are depicted in Fig. In
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Table 4.3: Quantitative comparison on the KITTI odometry datasets - scale
estimation error ratio

Scale estimation g tatisti
error ratio RMSE [%] eauenee statisties
min. max. avg.
No. ORB- ORB- Proposed 7 of dist.  dist. disgt.
mono stereo turns
m]  [m] [m]
*00 45.7 1.7 8.2 | 28 17.4 447.9 125.5
02 43.0 1.2 13.7 17 27.5 648.9 230.1
03 9.9 1.8 9.9 0 - - -
04 63.4 0.9 63.4 0 - - -
*05 | 116.0 1.9 5.8 9 53.0 450.8 182.6
06 28.8 1.1 28.8 2 - 443.9 -
*07 71.8 3.0 6.9 6 67.9 146.8  98.3
*08 85.8 2.1 10.5 18 4.8 386.1 160.1
09 31.2 1.4 17.8 4 20.7 579.9 307.7
10 7.8 1.6 7.7 2 - 674.3 -

addition, the overall turning region detection results are depicted in Fig. The red
markers denote the detected turning regions by the proposed turning region detection
method. Except for several long straight regions, the proposed method yields the absolute
metric trajectory that overlaps with the ground truth line. The average of the scale error
ratio RMSE on 00, 05,07, 08 is about 8 % corresponding to 1/10 of the naive ORB-mono

case.

4.2.2 SNU Underground Parking Lots Datasets

To demonstrate the promising applicability of the proposed method for indoor driving, the
author collects his own driving datasets, called SNU underground parking lots datasets.
Different from the KITTI outdoor datasets, due to the absence of the external ground
truth measurement such as the GPS/INS solution, the author additionally records the 3-D
LiDAR pointcloud, and executes the LiDAR odometry and mapping (LOAM) algorithm

[73] on the author-collected datasets to obtain the accurate metric trajectory. For the
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Figure 4.13: Turning region detection results on KITTI odometry datasets The
red markers denote the detected turning regions by the proposed turning region detection
method.
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Table 4.4: Quantitative comparison on the KITTI odometry datasets - transla-
tion error The boldface means the best performance except for the stereo VO, ORB-stereo.
Dash means failure cases.

Translation error [%]
Song Zhou Tian

No. Sl?r]i giﬁ; et al. et al. et al. Proposed

bl 54  [55]

*00 | 20.8 0.70 2.04 217 1.41 3.29
02| 9.52  0.76 | 1.50 - 2.18 9.52
03 | 11.58 0.71 | 3.37 - 1.79 11.58
04 | 15.47 048 | 2.19 270 1.91 15.47

*05 | 18.63 0.40 | 1.43 - 1.61 3.05
06 | 18.98 0.51 | 2.09 - 2.03 18.98

*07 | 13.82  0.50 - - 1.77 3.36

*08 | 22.06 1.05 2.37 - 1.51 3.11
09 | 12.76  0.87 | 1.76 - 1.77 12.76
10| 4.86 0.60 | 2.12 2.09 1.25 4.86

Table 4.5: Hardware specifications of the author-collected dataset

Hardware Qty. Specifications
Hyundai Elantra CN7 2021
Vehicle 1 length: 4.68 m, width: 1.82 m
height: 1.41 m, wheel base: 2.72 m
Matrixvision mvBlueCOUGAR-X104iG
1032 x 772 pixels gray image at 10 Hz
Camera 3 Global shutter and hardware triggered
GiGE interface
Velodyne VLP-32C
3-D LiDAR 1 32-channel 360 deg . laser scans at 10 Hz
20 deg . vertical field of view
MU 1 Lord Microstrain 3DM-GX3-25 AHRS
3-axis acc., 3-axis gyro. at 250 Hz
Micro- 1 | Arduino MKR Zero with the Ethernet Shield
controller
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Figure 4.15: Experimental setting for the author-collected dataset - overview

LOAM trajectories, the author utilizes not the raw odometry result but the trajectory
after the mapping procedure for high accuracy.

The hardware setting of the automobile and sensor suites is shown in Fig. and
sensor specifications are written in Table Three global shutter grayscale cameras, a 32-
channel 3-D LiDAR, and a 6-axis IMU are equipped on the roof of the vehicle. All cameras
are triggered to capture time-synchronized 10 Hz images by the digital signal from the
Arduino MKR Zero microcontroller. All the sensors and the microcontroller communicate
to the Linux laptop computer by the ethernet interface.

The camera setting of the author-collected dataset has L = 1.45 m, and the height
of the cameras is H = 1.55 m from the ground. Two main cameras numbered 0 and 1
face front, and an auxiliary camera with the number 2 is rotated left by 20 degrees. The
extrinsic parameters of cameras, 3-D LiDAR, and IMU are calibrated by using the LiDAR
and camera extrinsic calibration module in [74].

The author drives the automobile in two multi-floor underground parking lots on cam-
pus: bldg_39 and bldg_220. Overviews and dimensions of both environments are illus-

trated in Figs. .18 and [£.19] bldg_39 has two floors with identical shapes; bldg_ 220

has three floors across the two different buildings.Especially in bldg 220, spiral inter-floor
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Table 4.6: Results of the camera-vehicle extrinsic calibration on the author-
collected dataset

Camera-vehicle pose in z-y-x Euler angles [deg]

Camera 0 Camera 2
Roll Pitch Yaw | Roll Pitch Yaw
Truth 0.00 0.00 0.00 | 0.00 -20.00 0.00

Linear-only | -0.15 3.97 0.18 | 0.26 -23.55 -0.15
Refinement | 0.07 0.13 0.08 | 0.10 -20.12 -0.05

transitions are concentric, which could be a reference point for qualitative evaluations.

Representative scenes for each dataset are shown in Fig. and each alphabetic label
corresponds to locations with the same label in Figs. and Different from the
KITTTI datasets, there are only a few spurious image features on the ground generated by
the specular reflection, which might not be suitable for the plane-based scale-aware MVO
methods [50} 5, 51}, 52, 56, [53} 54} 55].

First, the camera-vehicle extrinsic poses are estimated by the proposed extrinsic cali-
bration method for the author’s experimental settings. For the calibration, cameras 0 and 2
are used, which are depicted in the layout of Fig. The author uses the pose trajectory
of each camera obtained from the MVO between the first two turns of bldg_39. In Table
the linear-only method yields inaccurate results as reported in the analysis on the syn-
thetic dataset. On the contrary, the full refinement shows very accurate performance with
an average error smaller than 0.2 degrees. The resulting camera-vehicle extrinsic poses are

used during the experiments.

Implementation results are shown in Figs. [4.23] and [4.24l As there is no ground-

truth trajectory for the author-collected datasets, resulting trajectories are overlaid onto
the real-scale floorplan drawing, and compare the proposed MVO with two absolute-scale
navigation methods, i.e., the ORB-stereo and LOAM. The LOAM successfully operates on
the bldg_39 dataset; however, it fails to estimate forward motion at the spiral inter-floor
passages of bldg_ 220 because there are very few structural 3-D features along the driving

direction as seen at the label G of Fig. Nevertheless, the trajectories on each floor
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are stably estimated, and they can be used as references of comparison.

While the ORB-stereo operates accurately for all sequences, the scale of the monocular
version severely drifts. The author thinks that the severe drift of the ORB-mono is induced
by many turns in small-scale environments, which makes the connectivity of the landmark
tracks much weaker due to the frequent and large changes of the viewpoints. Contrarily,
such driving environments are suitable for the proposed MVO, and consequently, the pro-
posed method shows accurate metric-scale trajectories comparable to the ORB-stereo and
LOAM.

In addition, an state-of-the-art open source lidar-inertial odometry and mapping (LIO-
SAM) [4] is also implemented for comparisons. Different from the LOAM, the LIO-SAM
makes a lidar point-feature map and re-localizes its position and pose by the loop closure
module when a loop is detected. Furthermore, it utilizes a high-frequency IMU data to
deal with the blinded epoch between lidar pointcloud scans. The author runs the LIO-
SAM in the bldg_ 39 and bldg 220 datasets, and results are depicted in Figs. 4.20H4.21
In Fig. 4.20} resulting trajectories and maps with the loop closure functionality are highly
distorted for both datasets. Because, in the underground parking lots, the appearances and
3-D structures of each floor are almost identical, the loop closure module wrongly merges the
maps and yields wrong motion estimations. As seen in Fig. [£.20|(a), the wrongly-detected
loop connectivities are illustrated as the yellow lines, and wrongly merged trajectories after
loop closing are shown in Fig. [4.20/(b).

In Fig. without the loop closure, the LIO-SAM shows similar performance to the
original LOAM implementation because the odometry part of the LIO-SAM is based on the
LOAM. Thus, the author only uses the LOAM trajectory for the performance comparisons
instead of the LIO-SAM trajectory.

In Fig. the fixed image region is additionally illustrated by the blue quadrilateral
where the ground landmarks are likely to emerge. As seen in Fig. [£.22|(a)-(b), off-planar
features are included in the fixed region, and no planar landmark is detected in this region,

which is not a favorable circumstance to the methods depending on the ground features.
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Note that the proposed MVO method can recover the scale even in the non-flat ground of
the inter-floor passages at the labels © and G of Fig. 4.17, This is because the proposed
method does not depend on any specific feature distribution such as the flat ground features

right in front of the camera assumed in the aforementioned plane-based methods.
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Figure 4.17: Representative images of the author-collected SNU underground
parking lots datasets. Circled alphabets correspond to the locations marked the same

symbol in Figs. and
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Figure 4.22: Limitations of using the fixed image region for ground landmarks
The red quadrilateral region of interest (ROI) is commonly used as the ground plane region
[5]. (a) In the non-flat passage, points on the pillar and slide are in the ROI. (b) No point
is observed from the ground. The proposed MVO method does not require the assumption
on the feature distribution such as ground points.
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Conclusion

This dissertation presented the robust visual odometry systems using image edges and
points against low-textured and brightness changing conditions encountered in the indoor
scenes, and the scale-aware monocular visual odometry backend using the vehicle kinematic
motion model for the indoor driving applications.

In the edge and point-based VO systems were proposed. Extracted edges
were classified into eight overlapped subsets with respect to their image gradient directions.
To mitigate high ambiguity on matching edges, they were segmented into eight orientation
bins with shared regions between neighboring bins. In addition, the matching procedure
was accelerated by multiple-quadtree structures memorizing visited nodes. To effectively
reduce the large number of edge pixels observed in an image, hundreds of well-distributed
prominent edgelets are only extracted from the tens of thousands of cluttered edge pix-
els. Camera motions were estimated by minimizing the point-to-edge distances, and the
proposed method simultaneously updated edge inverse depths by the static and temporal
stereo. For the hybrid setting using both edge and point features, the modified motion

estimation problem was proposed by minimizing the point-to-edge distances, photometric
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Figure 5.1: Omnidirectional imagery in indoor environment The 360 degrees view
can be obtained by using the omnidirectional camera.

errors around the edge, and points with the affine brightness compensation. Then, the ro-
bust and accurate performance of the proposed method was demonstrated by using various
datasets, including author-collected datasets with almost no texture and severe brightness
changes.

In the scale-aware monocular visual odometry system is proposed utilizing
the vehicle kinematic constraint. The main idea of the proposed method was to utilize the
vehicle kinematic motion model to observe the absolute metric scale in turning motions.
To describe camera motions fixed to the vehicle, the camera-vehicle extrinsic pose was
first estimated by the proposed extrinsic calibration method. To stably observe scale,
the method was presented to detect turning frame regions, and the scale observer was
formulated as the function of the camera rotation and the translation direction angles. By

in-depth analysis on each proposed module and extensive experiments on driving datasets, it

108 4] *”I‘:f £ Eﬂ "-ﬂﬂ



was shown that the proposed method could recover the absolute scale of camera translation
motions with no external sensor and assumption on surrounding circumstances, such as
planar ground landmarks.

The author suggests potential extensions of the proposed method; as reported in Section
the scale could not be propagated for long straight motions between turns. In this
case, other scale-aware methods like a plane-based method [54] could be more effective.
Therefore, combining the other methods and the proposed method will be promising work.
Also, the author suggests using an omnidirectional camera as [41] because landmarks can
be tracked over 360 degrees turning motions as seen in Fig. [5.1, which gives stronger
connectivities among landmarks and keyframes. Furthermore, there might be no need to
update new keyframes frequently compared to a pinhole camera set, and a larger rotation

angle is guaranteed, enabling more stable scale observations.
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