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Abstract 

Analyzing the Patterns of Technology 

Diffusion, Convergence, and Strategies in 

the Artificial Intelligence Sector 

 

Soyea Lee 

Technology Management, Economics, and Policy Program 

College of Engineering 

Seoul National University 

 

This dissertation empirically explores the potential of AI as a general-purpose technology 

(GPT) from a multi-dimensional perspective. In particular, considering that AI is in its 

early stages in the economy as an emerging technology, this dissertation analyzes the 

impact of this technology based on technological pervasiveness, rather than its impact on 

the economic factors. This dissertation analyzes technological pervasiveness in terms of 

three dimensions of analysis level: the knowledge flow, industrial sector, and technology 

portfolio. Additionally, for each analysis level, this dissertation focuses on three different 

conceptual backgrounds of technology diffusion, convergence, and strategies in relation 

to innovation sides of GPTs.  

The first study examines how the patterns of GPT-related features of AI appear 
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depending on AI technology progress and diffusion. The GPT-related features here are 

focused on the process of the recombination and diffusion of technological knowledge via 

the concepts of generality, originality, and complementarity. For this analysis, the 

diffusion process of each technology is constructed as time series data, after which 

dynamic time warping and time series clustering are used for a pattern analysis of the 

time series data. Also, the differences are identified in clusters classified according to 

time and diffusion patterns through an analysis of variance. As a result, it is found that the 

GPT-related features of AI show a further increase according to the progress of 

technologies, with the features found to be higher in technologies with high diffusion 

levels. In particular, among AI technologies, GPT-related features exist at high levels in 

AI-application types. This study identifies the development patterns of AI as a GPT from 

the perspectives of the knowledge flows and diffusion. 

The second study proposes a new framework to investigate the horizontal and vertical 

applicability of industrial sectors to AI technology. The framework is a two-way approach 

which integrates an analytic method on technological classification-based structure data 

and text-based unstructured data to understand technology convergence into the three 

aspects: the industrial sector, the technology category, and technology utilization. 

Network analysis and clustering analysis methodologies are used. As a result, based on 

the framework, various industrial sectors and common technologies to which AI can be 

applied are identified, with the results showing that AI technology has horizontal 

applicability. Also, various technology categories and patterns of utilization in each 
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industry are derived; these results show that AI technology has vertical applicability. 

Through the proposed framework, this study confirms the applicability of AI as a GPT in 

the industrial sector.  

The third study focuses on the technology portfolio strategies considering the 

technology supply side of a GPT. In particular, startups can drive the disruptive 

innovation of a GPT, and technology diversity can contribute to the development of a 

GPT through innovation on the supply side based on a combination of various types of 

knowledge. Thus, this study investigates the technology diversity of AI startups in 

relation to startup investment. Technology diversity is measured by dividing it into two 

levels, related diversity and unrelated diversity, and firm types are divided into industry-

specific and cross-industry AI startups. For the empirical analysis, panel data are 

constructed based on firm investment and patent information and are analyzed with a 

fixed effect model. The result shows that technology diversity has a positive relationship 

with investments in AI startups. Also, the relationship is more positive in the unrelated 

diversity case and with cross-industry AI firms. This finding suggests that the technology 

diversity of AI startups can act as a driving force for innovation during the development 

of AI technology as a GPT with respect to the growth mechanism in the AI sector.  

The three studies covered in this dissertation provide useful theoretical and empirical 

contributions to AI and GPT research given their consideration of different conceptual 

backgrounds and the different characteristics of GPTs. In addition, the studies make 

methodological contributions to technological innovation research given its dynamic 
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pattern analysis method and via the new framework proposed in it. Comprehensively, this 

dissertation presents policies and strategic implications for the AI technology, AI 

companies, and AI industry overall. 

 

Keywords: Artificial Intelligence, General-purpose technology, Technology diffusion, 

Technology convergence, Technology strategy, Patent analysis 

Student Number: 2016-30267 
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Chapter 1. Introduction 

1.1 Research backgrounds 

A general-purpose technology (GPT) is described as “a single generic technology, 

recognizable as such over its whole lifetime, that initially has much scope for 

improvement and eventually comes to be widely used, to have many uses, and to have 

many spillover effects” (Lipsey et al., 2005). A GPT refers to a new technology which it 

complementary to previous knowledge, applicable to a wide range of existing industries, 

and that creates totally new industries (Feldman & Yoon, 2012). Likewise, a GPT has the 

potential and dynamism to be used in a wide range of industrial sectors, pervading the 

economy and resulting in increased productivity gains (Bresnahan & Trajtenberg, 1995). 

Historically, the printing, steam engine, electricity, motor vehicle, computer and internet 

are considered as GPTs that provided the basis for long-term economic growth (Feldman 

& Yoon, 2012; Helpman, 1998; Crafts, 2004; Rosenberg & Trajtenberg, 2004; Lipsey et 

al., 2005). 

Recently, scholars have considered that artificial intelligence (AI) technology has the 

potential to grow as a GPT. AI is considered as a primary disruptive innovation, and is to 

be expected to complement existing products and processes in broad range of industrial 

sectors (Girasa, 2020; Omoge et al., 2022; Spanaki et al., 2022; Cockburn et al., 2018; 

Hötte et al., 2022). AI can drive technological innovations in various industries by 

improving knowledge creation, spillover, learning and absorption capabilities (Liu et al., 
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2020). Also, AI has been predicted to increase productivity and complementary 

innovations, and the results of new technological innovations will create new jobs and 

encourage more hiring in the long run (Brynjolfsson et al., 2017; Gries & Naudé, 2020; 

Acemoglu et al., 2022; Hötte et al., 2022).  

Several studies have used the patent-based analysis method to measure and evaluate 

GPTs (Goldfarb et al., 2023; Moser & Nicholas, 2004; Feldman & Yoon, 2012; Petralia, 

2020). Patents include information about technological innovations, the properties of the 

innovations, and the relationships among the innovations (Goldfarb et al., 2023). Thus, 

patents can be used to measure the quantitative and qualitative aspects regarding the 

impact of technological developments and the scope of technological fields (Hötte et al., 

2022; Daim et al., 2006; Jaffe & de Rassenfosse, 2017).  

With regard to AI, prior empirical research has investigated the potential of AI as a 

GPT using patent data. Hötte et al. (2022) explored the trend of AI technology in terms of 

GPT characteristics, defined as intrinsic growth, generality, and innovation 

complementarity. Nardin (2021) examined technological dynamism, pervasiveness, and 

complementarity to confirm the potential of AI technology as a GPT. Klinger et al. (2018) 

found that deep learning technology has the features of GPTs, specifically rapid growth, 

generality, impacts in other fields, and geographical evolution.  

From the perspective of the industrial applicability of AI, previous studies have 

targeted specific industrial areas in relation to AI but have not investigated the impact of 

AI across various industries. Applied AI research has commonly investigated a specific 
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industrial sector to examine positive effects or applied areas of AI in a target industry, 

such as healthcare, vehicles, finance, manufacturing, agriculture, and energy, among 

others (Yu  et al., 2018; Houlton, 2018; McKinsey, 2018a; Deloitte, 2016; Liu et al., 2020; 

Zeba et al., 2021; Issa et al., 2022; Li et al., 2023; Yang et al., 2020). Liu et al. (2020) and 

Yang et al. (2020) found that AI in the manufacturing sector has had a positive influence 

on technological innovations and performance. Li et al. (2023) examined how AI 

effectively utilizes energy resources by forecasting energy usage levels and scheduling 

resources. Zeba et al. (2021) examined the application of AI in the manufacturing sector, 

investigating several recent important topics. However, while some reports and studies 

have run comparisons across industries (Klinger et al., 2018; PWC, 2018; Deloitte, 2018; 

McKinsey, 2018b), they mainly identified quantitative measures of total amounts. Those 

studies did not conduct an in-depth analysis of technological applications across various 

industries. 

In terms of firms regarding AI, the literature has focused on how AI can affect and 

increase firm performance. Wamba-Taguimdje et al. (2020) investigated the effects of AI 

on the firm performance, focusing on the aspects of organizational performance and 

process innovations. Chatterjee et al. (2021) proposed a model of how implementing AI 

can impact firm performance and provide a competitive advantage. Mishra et al. (2022) 

examined the influence of AI in relation to the profitability and operating efficiency of 

firms. However, research that seeks to understand GPTs in corporate context is limited to 

a narrow range of studies (Qiu & Cantwell, 2015). In particular, the empirical literature 
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commonly takes a usage side approach with regard to GPTs, whereas there has been little 

discussion of firms from the perspective of the supply side, especially inventors and 

creators of GPTs (Petralia, 2021; Qiu & Cantwell, 2015). However, GPT theory has 

significantly emphasized the importance of who can create, improve, and complement 

GPTs (Petralia, 2021; Bresnahan & Trajtenberg, 1995). For the corporate context, 

combinations and recombinations of variety technologies increase technological 

opportunities in a fundamental manner and consequently lead to firm growth (Qiu & 

Cantwell, 2015; Kim & Kogut, 1996; Kogut & Zander, 1992).  

Despite the fact that the literature has attempted to investigate the impact of AI on 

firms or industries while focusing on improved productivity rates, measuring these effects 

and potential as they relate to GPTs has been difficult given the lack of data related to the 

results of AI innovations (Alderucci et al., 2019; Webb, 2019). The AI adoption cycle and 

diffusion stage remain in their early stages, making estimations of the diverse economic 

impacts of AI challenging (Brynjolfsson et al., 2021; Hötte et al., 2022). Research has 

suggested that the impact of AI investments is minimal on account of time lags related to 

implementations and restructuring (Chatterjee et al., 2021; Mikalef & Gupta, 2021).  

AI is a promising emerging technology (Goldfarb et al., 2023). The characteristics of 

emerging technologies are rapid recent growth, a transition process, economic and market 

potential, and a science-based background (Cozzens et al., 2010). Emerging technologies 

are described as not only consisting of radical novelty with a prominent impact but also 

as containing ambiguity and uncertainty (Rotolo et al., 2015). Thus, for emerging 
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technology, it is difficult to assess what the technology brings given its high uncertainty 

and unpredictability (van Merkerk & van Lente, 2005). 

Considering that AI technology is in the early stage in the economy, it is difficult 

sufficiently to examine the spillover effects on the economy caused by AI (Brynjolfsson 

et al., 2021; Hötte et al., 2022). Estimating the impact of the productivity of AI takes time 

Crafts, 2021; Brynjolfsson et al., 2021). In line with this, to investigate the GPT potential 

of an emerging technology empirically can only be done in a limited manner. Also, while 

the theoretical literature and the development of models related to GPTs are active areas, 

relatively few empirical studies and methods have been introduced (Feldman & Yoon, 

2012; Thoma, 2009; Goldfarb et al., 2023). Therefore, this dissertation focuses on the 

pervasiveness of technological aspects in an effort to understand empirically the potential 

of AI as a GPT, rather than the spillover effects of AI on the economy. Technological 

pervasiveness is described as the “pervasiveness of innovative activity across 

technological classes as well as of a variety of knowledge sources” (Cecere et al., 2014). 

This dissertation investigates technological pervasiveness by analyzing three different 

dimensions from the perspectives of knowledge flow diffusion, convergence in the 

industrial sector, and technology portfolio diversity strategies.  

The novelty of this dissertation is that it presents empirical evidence of the 

technological pervasiveness of the AI sector from a multi-dimensional perspective. First, 

empirical studies related to AI as a GPT have focused on technological features related to 

GPTs, such as generality and complementarity. There has been scant attention paid to 
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exploring these technological features while expanding into the industrial or firm level 

regarding AI technology. Thus, this dissertation empirically investigates these 

technological features from three different angles: the knowledge flow, industrial sectors, 

and from a technology portfolio perspective. Second, given that empirical studies related 

to GPTs have been mainly based on a theoretical concept of the GPTs, few empirical 

studies that take a wider view have been conducted. Thus, for each analysis level, this 

dissertation considers three innovation sides on which innovations occur in relation to 

technological pervasiveness. In this regard, each study constructs a conceptual 

background: first technology diffusion, second convergence, and third strategy. 

Consequently, this dissertation empirically examines the technological pervasiveness of 

AI from a multi-dimensional perspective with different analysis levels and innovation 

aspects to understand GPTs from a new point of view. 

  

1.2 Research purposes and questions  

The purpose of this dissertation is to explore the AI sector by analyzing multi-

dimensional perspectives while focusing on technological pervasiveness. This dissertation 

involves three studies, each empirically investigating the technological pervasiveness of 

AI by analyzing first knowledge flows, second the industrial sector, and finally 

technology portfolios. 

The first study, which is chapter two of this dissertation, aims to explore the patterns 

of the GPT-related features of AI depending on technological progress and diffusion. The 
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GPT-related features here are focused on the process of the recombination and diffusion 

of technological knowledge, which encompass generality, originality, and 

complementarity, in order to investigate technological pervasiveness in the diffusion 

trajectory of the knowledge structure. Specifically, to understand technology diffusion 

from a new perspective, this study explores the diffusion patterns of individual patents 

depending on technology progress using a novel methodological approach. Previous 

studies of technology diffusion have mainly focused on comparing technological features 

according to differences among technology life cycle stages from a macro point of view. 

Extending earlier works, this study focuses on a comparison of technological features 

according to differences among the diffusion levels of patents from a micro point of view. 

This study allows us to understand technological pervasiveness in terms of knowledge 

flows while analyzing the dynamics of GPT-related features depending on technological 

progress and diffusion. The research question for the first study is as follows. What 

differences exists in the GPT-related features according to the technological progress and 

diffusion of AI?  

The second study, which is chapter three of this dissertation, aims to investigate the 

horizontal and vertical applicability of AI in the industrial sector. This study proposes a 

new framework by which to understand the patterns of the applicability of AI in the 

industrial sector. Technological growth of a GPT can be extended beyond technology 

itself to the scale of all related industries and must be considered in the industrial sector. 

Previous research suggests a convergence assumption with a sequential and time-series 
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process of convergence events via scientific convergence, technology convergence, 

market convergence, and industry convergence in that order (Curran et al., 2010; Sick et 

al., 2019). The framework of this study examines technology convergence with various 

industrial sectors regarding technology categories and utilization. Particularly, this study 

allows us to understand technological pervasiveness by providing empirical evidence 

with various levels of industries and applications. The research question for the second 

study is as follows. How can we understand the horizontal and vertical applicability of AI 

in the industrial sector? 

The third study, which is chapter four of this dissertation, considers technological 

pervasiveness from the perspective of the supply side of technology. For an AI 

technology to become a GPT, a disruptive innovation should appear in various sectors 

through a radical change of the existing system. Thus, this study focuses on AI startups, 

as small firms are more adequate when attempting to understand new disruptive 

innovations (Hacklin et al., 2005; Kassicieh et al., 2002). Additionally, this study focuses 

on technology diversity strategies. The diversity of invented technologies can lead to 

innovations on the supply side through various combinations of technological knowledge. 

Additionally, technology diversity can implement technological pervasiveness through an 

expansion of AI technology to a diverse range of other technologies. Consequently, the 

technology diversity strategy of a startup can contribute to the development of a GPT by 

causing a disruptive innovation on the supply side of the technology. Meanwhile, 

investment funding for AI startups is essential for their growth. Therefore, this study aims 
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to examine the relationship between technology diversity and AI startup investments. 

Through this, the finding suggests that technology diversity in relation to the growth of 

AI startups can act as a driving force, leading to the disruptive innovation of a GPT in 

various areas. The research question of the third study is as follows: What are the 

relationships between technology diversity and investment in AI startups? 

 

1.3 Research outline 

As shown in Figure 1-1, this dissertation consists of a total of five chapters. Chapter one 

presents the research background, purpose, and an overall outline of this dissertation. 

Chapters two, three, and four present the three aforementioned studies of this dissertation. 

The three studies here investigate empirical evidence of technological pervasiveness in 

the AI sector considering different analysis levels and conceptual backgrounds. Chapter 

five presents the overall conclusion and the implications of this dissertation.  

Table 1-1 shows an overview of the three studies in chapters two, three, and four. The 

analysis levels are the knowledge flow, industrial sector, and technology portfolio in each 

study. For each analysis level, this dissertation focuses on the diffusion, application, and 

supply side of AI technology based on each different conceptual background, i.e., 

technology diffusion, convergence, and strategy. Specifically, for chapter two, this study 

identifies technological pervasiveness through the knowledge diffusion flow with a patent 

index, specifically focusing on generality, originality, and complementarity. For chapter 

three, horizontal and vertical applicability in various industrial sectors are investigated to 
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understand technological pervasiveness. For chapter four, the technology diversity 

strategies of startups are examined considering the technological pervasiveness of the 

supply side of technology.  

This dissertation uses patent data to investigate AI technology. In particular, this 

dissertation constructs and analyzes various types of datasets of patents, in particular time 

series data, network data, text data, and panel data, to investigate the purpose of each 

study while analyzing the information of patent citations, classification codes, abstracts, 

patent assignees, and other sources. Because the US is one of the leading countries and 

given that it has the largest number of patent filings in AI techniques, functional 

applications, and application fields and is also regarded as an essential market in other 

jurisdictions (WIPO, 2019a), this dissertation targeted US patents of AI technology.  
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Figure 1-1. Research outline 
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Table 1-1. Research overview 

 Chapter 2 Chapter 3 Chapter 4 

Subject 

Dynamic patterns of AI 

technology diffusion: 

focusing on the patent 

index 

Technology convergence 

of AI in the industrial 

sector: insights into a 

two-way approach 

Technology strategies 

of AI startups: 

focusing on patent 

activity and diversity 

Research 

purpose 

To explore the patterns of 

the GPT-related features 

of AI depending on 

technological progress 

and diffusion 

To investigate the 

horizontal and vertical 

applicability of AI in the 

industrial sector 

To examine the 

relationship between 

technology diversity 

and AI startup 

investments 

Analysis 

level 

Knowledge flow 

(Diffusion side) 

Industrial sector 

(Application side) 

Technology portfolio 

(Supply side)  

Conceptual 

background 
Technology diffusion Technology convergence Technology strategy  

Technological 

pervasiveness 

Generality, Originality, 

Complementarity   

Applicability 

(Horizontal, Vertical) 

Diversity 

(Unrelated, Related) 

Methodology 

- Dynamic time warping  

- Time series clustering 

- Analysis of variance 

- Network analysis  

- Clustering analysis  

- Multivariate 

regression analysis  

- Fixed effect analysis 

Data type - Time series data 
- Network data 

- Text data 
- Panel data  
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Chapter 2. Dynamic patterns of AI technology 

diffusion: focusing on the patent index 

2.1 Introduction  

The technology life cycle (TLC) theory broadly explains technological performance 

according to time or cumulative R&D investment with an S-curve (Gao et al., 2013; 

Merino, 1990). The two dimensions of the curve are used in relation to various terms and 

purposes from different perspectives (Taylor & Taylor, 2012). The x-axis of the S-curve, 

which indicates time or R&D investment, is commonly divided into four stages, as 

explained below. Ernst (1997) suggested four stages of technological progress, which 

consist of emergence, growth, maturity, and saturation. Meanwhile, the y-axis of the S-

curve, typically indicating performance, was utilized in various approaches in previous 

studies, which investigated cumulative adoption and technology diffusion, technology 

improvement performance outcomes, the evolution of patents, and cumulative sales 

(Taylor & Taylor, 2012; Nieto et al., 1998; Dosi, 1982; Sahal, 1985; Andersen, 1999; 

Debackere et al., 2002). Generally, performance, which is represented on the y-axis, 

shows heterogeneous growth depending on time or effort, which appears on the x-axis. 

Performance shows relatively different outcomes in each stage, slowly increasing in the 

emerging stage, showing positive marginal progress in the growth stage, negative 

marginal progress in the maturity stage, and slight progress in the saturation stage (Ernst, 

1997). The transition from the emerging to the growth stage requires a large increase in 
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performance, and disruptive innovations occur during this phase, whereas incremental 

innovation generally occurs from the growth stage to the maturity stage (Hacklin et al., 

2005).  

To investigate the S-curve, patent data is commonly tracked as an indicator (Gao et al., 

2013; Ernst, 1997). Patent data show the evolutionary trends and dynamics of 

technological growth (Taylor & Taylor, 2012; Haupt et al., 2007). Patent data predict 

technological success based on the TLC, the diffusion and expansion potential (Altuntas 

et al., 2015). Extant literature has examined curve-fitting techniques in a relation to patent 

data to investigate technological progress and performance in terms of the TLC (Lee et al., 

2016a).  

With regards technology diffusion, patent citations are widely used (Lee et al., 2018; 

Cheng, 2012). The number of forward citations is used as a measure of technology 

diffusion, and to trace the spread of technology (Lee et al., 2018; Chang et al., 2007). 

Numerous studies of patent citations and technology diffusion consider citation networks 

in their analysis of diffusion trajectories and knowledge transfer process (Chang et al., 

2007; You et al., 2017; Huang et al., 2022). The Bass diffusion model has been widely 

adopted to explain technology diffusion using patent citations (Lee et al., 2018; Cheng, 

2012).  

In TLC research, patent data are widely used to observe the different characteristics of 

the TLC stage (Haupt et al., 2007; Gao et al., 2013; Su, 2018). Gao et al. (2013) 

investigated development trends of thirteen patent indicators to understand different 
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patterns of indicators according to the emerging, growth, maturity, and declining stages. 

Haupt et al. (2007) divided the life cycle stage into the subcategories of introduction, 

growth, and maturity to investigate the characteristics of transitions among each stage 

with patent indicators, discussing backward citations, forward citations, dependent claims, 

and priorities, among other factors. These findings suggested the significant patent 

indicators during the transitions among each life cycle stage (Haupt et al., 2007). Su 

(2018) analyzed the dynamics of patent characteristics to investigate increasing and 

decreasing trends depending on the TLC. 

However, previous studies of the TLC have focused on patent indicators to examine 

differences among the stages of the TLC while downplaying differences among the 

patents. In addition, from diffusion studies, patents have been widely used to investigate 

cumulative diffusion curves or trends in an effort to make technology development 

forecasts but not to identify differences in the diffusion levels of patents. Thus, there has 

been scant attention paid to the growth trajectories and trends of different patents and to 

their diffusion trends according to each patent's characteristics. 

To fill this research gap, this study proposes a different angle by which to understand 

technology growth and the diffusion of recent AI technology. First, this study examines 

the life cycle and diffusion trajectory of each patent from a micro perspective, not 

focusing on the TLC stage of the entire technology field. The S-curve commonly targets 

the accumulated data in a specific technology field, but this curve can be used to consider 

each single patent trajectory as well. To investigate each single patent trajectory, an 
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exploratory analysis is conducted to find the dynamic diffusion pattern of each patent 

considering the diffusion level. Second, this study identifies significant patent indices 

according to both the diffusion level and time. Specifically, this study considers patent 

indices focusing on the properties of technological pervasiveness to understand the 

potential of AI to be a general-purpose technology (GPT). 

The purpose of this study is to investigate the patterns of the GPT-related features of 

AI depending on technology progress and diffusion using a patent index of technological 

pervasiveness. This study proposes following specific research questions. First, what 

differences exists in the patent indices of technological pervasiveness according to the 

technological progress phase of AI? Second, what differences exists in the patent indices 

of technological pervasiveness according to the diffusion level of AI? To this end, this 

study investigates the diffusion trajectories of each patent while also considering the 

development trend of technology over time.  

Meanwhile, this study utilizes the dynamic time warping (DTW) algorithm and time 

series clustering to measure pattern similarity levels. DTW, which can clarify similarities 

among sequential and dynamic time series data, is widely used in the areas of voice 

recognition (Rabiner & Juang, 1993), motion recognition (Switonski et al., 2019), 

anomaly detection (Jun, 2011), biological pattern recognition (Cavill et al., 2013), stock 

market predictions (Zhao et al., 2021; Kim et al., 2018), and computational economics 

(Franses & Wiemann, 2020). The DTW algorithm has received little attention in the TLC 

research area and its use to investigate technology growth patterns has rarely been 
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attempted. This approach is a novel way to understand technology diffusion, and the 

outcomes here present implications from the perspective of an empirical analysis of the 

research on the TLC and diffusion. 

The remainder of this paper is structured as follows. Section 2.2 presents the literature 

review. Section 2.3 describes the proposed method and research framework. Section 2.4 

shows the analysis and results of the study. Section 2.5 presents the discussion and 

conclusion and suggests future research.  

 

2.2 Literature review  

2.2.1 Patent index of technological pervasiveness 

The patent index is used to measure technological or economic quality and value 

(Squicciarini et al., 2013). This study focuses on the properties of technological 

pervasiveness among various patent indices. To understand the knowledge flow of patents, 

the information in the patent citation is useful (Lee et al., 2016b). Therefore, the patent 

index in this study is based on patent citations for consideration of the diffusion process 

of knowledge in a wide technological scope. Specifically, this study investigates the 

technology scopes of forward, backward citations, and an originating patent as well.  

Generality refers to the extent of how forward citations technology categories spread 

across various technology areas (Trajtenberg et al., 1997). Generality is what degree 

forward citations technology categories are spread various technological fields. The 

generality index has been used to examine GPTs (Hall & Trajtenberg, 2004). GPTs enable 
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the development of subsequent technologies, having a great impact and causing changes 

in a variety of other technologies and industries (Graf & Menter, 2022).  

Originality is defined as the range of the technology area on which a patent depends 

(Squicciarini et al., 2013). Greater originality means broader technological sources and 

roots and the integration of diverse knowledge (Trajtenberg et al., 1997). Various studies 

have used the originality index to measure patent quality and value (Valentini, 2012; 

Raiteri, 2018; Falk & Train, 2017; Graf & Menter, 2022), and Moser and Nicholas (2004) 

investigated originality as a characteristic of GPTs. When a patent is built on a diversity 

of technological bases, the possibility to recombine new knowledge increases (Martinelli 

et al. 2021). Originality drives generality (Trajtenberg et al., 1992), and originality has a 

positive correlation with technological dynamism, which refers to the potential to 

increase efficiency, another GPT characteristic (Martinelli et al., 2021). 

Complementarity in this study is measured according to the patent scope. The patent 

scope as proposed by Lerner (1994) has been developed to measure the technological 

breadth of a patent based on the patent classification code. A GPT requires a range of 

different technologies to co-occur, and this co-occurrence is used to measure the 

innovation complementarity aspects of a technology, as variety of different technologies 

allows recombinations and improves and helps develop existing technologies and 

products (Petralia, 2020). When a patent is classified into various categories of 

technology, the patent requires a variety of inventions from different technological areas 

in relation to its process or product aspects (Petralia, 2020). This study defines 
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complementarity by assessing the scope of technology of the originating patent. 

Meanwhile, to understand the pace of technological progress, this study examines the 

technology cycle time (TCT). The notion of pace in relation to technological progress 

was suggested by Ayres (1994), and an indicator of TCT was developed to understand 

technological progress based on a distance measure. The TCT is defined as the median 

age of backward citations with respect to the prior of the invention (Kayal, 1999). In line 

with this, shorter TCTs are considered to indicate fast technological progress, whereas 

longer TCTs indicate a slow pace of technology progress (Kayal, 1999; Ayres, 1994). 

 

2.2.2 Dynamic time warping  

Dynamic time warping (DTW) seeks to find an optimal distance between given 

sequential time series data (Müller, 2007). The Euclidian distance is simple method to 

measure the complexity of linear time, whereas it is not adequate when the lengths of the 

time series are not equal (Li, 2015; Petitjean et al., 2011). Thus, DTW is proposed to 

measure the similarities between unequal lengths of sequential data. 

If there are two sequential time series data regarding the diffusion trajectory of patents 

A = (a1, a2, …, am) and B = (b1, b2, …, bn), an m by n matrix is devised to compare the 

time series of lengths m and n. Figure 2-1 shows dynamic time warping in relation to 

patent data. The distance between two points ai and bj is calculated as Equation (1) 

(Müller, 2007; Li, 2015).  
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Then, the cumulative distance is calculated while minimizing the distance between the 

two time series. The equation of DTW can be defined as Equation (2) (Müller, 2007; Li, 

2015). 

  

 

Figure 2-1. Dynamic time warping and patent data 

 

After the similarity is measured based on the DTW, clustering analysis can be 

conducted. In particular, K-means time series clustering has been widely used to analyze 

time series data (Liao et al., 2006; Hautamaki et al., 2008; Warren Liao, 2005).  

Regarding the patent data in this study, there are different lengths of the diffusion 

trajectory in each patent. In addition, there are different patterns by year despite the same 

total diffusion level in each patent. If a patent has innovative value, it would undergo 

explosive diffusion in a short time. Therefore, to resolve the differences in the lengths and 

patterns among the diffusion of patents, the DTW algorithm is used. 
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2.3 Proposed method 

2.3.1 Research framework  

Figure 2-2 shows the research procedure of this study, and following sub sections provide 

a detailed explanation. Section 2.3.2 describes data collection and preprocessing. Section 

2.3.3 shows the analysis of the time series data including the methods of DTW and time 

series clustering. Section 2.3.4 describes the calculation of patent indices. Section 2.3.5 

briefly describes the method of analysis of variance. Finally, Section 2.4 presents the 

analysis and results of this study to identify patterns of technology diffusion.  
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Figure 2-2. Research procedure 
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2.3.2 Data collection  

According to World Intellectual Property Organization (WIPO) (2019a), AI has been 

categorized into three broad areas: AI techniques, AI functional applications, and AI 

application fields. Specifically, the AI techniques have been categorized into five sub-

areas: fuzzy logic, logic programming, machine learning, ontology engineering, and 

probabilistic reasoning (WIPO, 2019a). Also, the AI functional applications have been 

categorized into nine sub-areas: computer vision, control methods, distributed artificial 

intelligence, knowledge representation/reasoning, natural language processing, 

planning/scheduling, predictive analytics, robotics, and speech processing (WIPO, 2019a). 

Furthermore, in this AI categorization, WIPO (2022) presents Cooperative Patent 

Classification (CPC) and International Patent Classification (IPC) codes which can be 

matched to the AI category.   

The AI patents in this study were based on CPC codes presented by WIPO (2022), as 

indicated in Appendix A1-1. This study used AI patent as a result of combining the CPC 

codes and the terms ‘artificial intelligence’. This study does not focus on investigating the 

entire TLC of the AI technology sector but rather examines the diffusion paths of 

individual patents from a microscope point of view. Therefore, this study analyzed the 

diffusion trends of technology of the recent decade from US patents.  

The patent data in this study were collected through the United States Patent and 

Trademark Office (USPTO) Bulk Data and Google Patent Search. As a result of the data 

collection efforts here, 520,613 patents in total were collected in September of 2022, 
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consisting of 6,852 originating patents, 343,975 backward citation patents, and 169,786 

forward citation patents. The originating patents targeted granted patents during the 

period of 2011 to 2020 for the grant dates. To understand AI technology progress over 

time, the collected originating patents were divided into phase 1 for the first five years 

and phase 2 for the five subsequent years. In particular, in 2016, the AlphaGo event 

occurred, and the division of phases is adequate to understand the changes between the 

two phases. Finally, a total of 152,603 patents including 1,228 originating patents were 

the subject of phase 1, and a total of 368,010 patents including 5,624 originating patents 

were collected in phase 2. Table 2-1 shows a summary of the datasets of each phase in 

this study.  

 

Table 2-1. Datasets 

 All patents Phase 1 Phase 2 

Grant year (originating patents) From 2011 to 2020 From 2011 to 2015 From 2016 to 2020 

Number of originating patents 6,852 1,228 5,624 

Number of backward citations  343,975 77,460 266,515 

Number of forward citations  169,786 73,915 95,871 

Total patents 520,613 152,603 368,010 
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2.3.3 Analysis of time series data 

The first step was the formation of a patent citation matrix. In order to measure the 

diffusion of individual patents by year as a time series dataset, a matrix was created by 

aggregating forward citation patents by year for each originating patent. The value of the 

matrix was determined only by the corresponding year as opposed to a cumulative value, 

as all of the cumulative values showed an upward pattern and it was difficult to find a 

trend among the patents. The formation of patent citation matrix was referred to in prior 

research (Lee et al., 2017), and to extend this line of research, the matrix in this study 

additionally considered family to family citations of US patents as well, which can reflect 

the value and influence of a patent better. The matrix generated in this study is shown in 

Table 2-2, and patents with the same grant year can have different lengths of the diffusion 

year. 

 

Table 2-2. Patent citation matrix 

Patent no Grant year Year 1 Year 2 .... … … … 

P1 GY1 C (P1, Y1)   C (P1, Y2)   … … … C (P2, Yt)  

P2 GY2 C (P2, Y1)   C (P2, Y2)   … … C (P2, Yt)   

P3 GY3 C (P3, Y1)   C (P3, Y2)   … C (P3, Yt)    

… … … … …    
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Table 2-3 shows descriptive statistics of the forward citations and the lengths of 

phases 1 and 2.  

Table 2-3. Descriptive statistics of forward citations and lengths  

  Phase 1 Phase 2 

Forward citations Mean 56.984528 14.480085 

 SD 111.469377 45.528164 

 Min 0 0 

 Max 1414 1429 

lengths Mean 11.186482 4.104018 

 SD 3.791241 2.769019 

 Min 7 2 

 Max 28 25 

 

 

The second step was the analysis of DTW. The DTW was applied to measure the 

similarity between patents with different lengths for each phase, and as a result, a 

pairwise distance matrix was generated. 

The third step was a time series clustering analysis. Based on the pairwise distance 

matrix, K-means time series clustering was conducted to derive the number of clusters 

considering the silhouette score. Table 2-4 shows the results of the clustering analysis and 

the silhouette score. As shown in Table 2-4, this study sets the number of clusters to four 

because there were outliers in the dataset used. The silhouette score is an index for 

evaluating the number of clusters comparing the similarity within the cluster and with 

adjacent clusters for each data. The silhouette score has a value of -1 to 1, and for this 
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score, the higher the value, the better the result of clustering. In this study, the silhouette 

score of each phase showed a high value between 0.6 and 0.8, indicating that clustering 

was performed well.  

 

Table 2-4. Results of clustering analysis and silhouette score 

 
Total 

Patents 

Number of  

cluster 

Silhouette  

score 
Cluster 1 Cluster 2 Cluster 3  Cluster 4 

Phase1 1228 4 0.6793 985 44 2 197 

    80.21% 3.58% 0.16% 16.04% 

Phase2  5624 4 0.7398 4988 88 2 546 

    88.69% 1.56% 0.04% 9.71% 
 

 

 

2.3.4 Calculation of the patent index  

The patent index used here was based on backward and forward citations of an 

originating patent to consider the diffusion process of knowledge from a wide 

technological scope.  

As shown in Figure 2-3, originality was based on the scope of backward citations 

compared to the originating patent, and generality was based on the scope of forward 

citations compared to the originating patent. Complementarity was based on the scope of 

the originating technology itself. Additionally, to understand the pace of technological 

progress, TCT was based on the time lags between the backward citations and the 

originating patent. The technology scope was based on the IPC codes of each patent.  
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Figure 2-3. Patent index of technological pervasiveness 

 

The generality index in this study referred to earlier work by Trajtenberg (1997). This 

index is based on the Hirsman-Herfindahl index (HHI) and considers the number and 

distribution of technology classes of forward citations belongs (Squicciarini et al., 2013). 

The technology class in this study was based on the 4-digit IPC. The values used in the 

generality index are between 0 and 1, and a higher value represents more generality. The 

calculation of the generality index is expressed as follows using Equation (3), referring to 

the work of Trajtenberg (1997). 

=  

Where k is the index of the technology class of the citing patents and n is the number of 

different technology classes of the citing patents. 
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The originality index in this study was defined similarly to the calculation of the 

generality index, but the difference was that the technology class of backward citations 

cited by the originating patent was targeted, as opposed to forward citations citing the 

originating patent. The calculation of the originality index is determined using Equation 

(4) (Trajtenberg, 1997). 

=    

Complementarity in this study followed the measurement of the patent scope 

proposed by the work of Lerner (1994) and Squicciarini et al. (2013), based on the 

number of 4-digit IPC classes of the patent. A larger value of the patent scope denotes a 

broader scope and a higher value of the technological and market potential (Squicciarini 

et al., 2013). Complementarity is defined as follows using Equation (5), referring to the 

patent scope proposed by Squicciarini et al. (2013). 

  

Where ni is the number of 4-digit distinct IPC codes of the patent i.  

The technology cycle time (TCT) here followed Kayal (1999) and was based on the 

median age of the cited patents. A smaller value of TCT reflects faster progress of the 

technology. In this study, TCT is determined using Equation (6). 

   

Where  represents the number of years between the grant date of the originating patent 

i and the backward citations, and  is the median value of .  
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2.3.5 Analysis of variance and post hoc analysis 

A one-way ANOVA is based on the assumptions of normality, homogeneity of variance, 

and independence. In this study, the requirement of independence of the clusters was 

basically satisfied among the clusters, and tests of normality and homogeneity of variance 

of the patent indices of the clusters were conducted. The Kolmogorov-Smirnov test and 

the Shapiro-Wilk test were used to test the degree of normality. The homogeneity of 

variance was tested with the Levene and Bartlett tests. The one-way ANOVA was used 

when the homogeneity of variance requirement was met, whereas Welch’s ANOVA was 

applied when heterogeneity of the variance was found (Liu, 2015). In a post-hoc analysis, 

a Bonferroni analysis was conducted in cases showing homogeneity of the variance, 

whereas the Games-Howell post-hoc test was performed in cases showing heterogeneity 

of the variance (Shingala & Rajyaguru, 2015).   
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2.4 Analysis and results  

2.4.1 Growth trends between phases 

Descriptive statistics pertaining to the patent index for phases 1 and 2 are shown in Table 

2-5. 

Table 2-5. Descriptive statistics of phases 1 and 2 

Phase 1 

 Obs Mean SD Min Max 

Generality 1228 0.6293 0.23066 0 0.948136 

Originality 1228 0.590398 0.249249 0 0.941473 

Complementarity 1228 1.832248 1.341897 1 16 

TCT 1228 7.681189 3.820273 0 46 

Phase 2 

 Obs Mean SD Min Max 

Generality 5624 0.453367 0.31194 0 0.949869 

Originality 5624 0.607071 0.227077 0 0.949861 

Complementarity 5624 2.837304 1.485368 1 17 

TCT 5624 6.095484 3.599164 0 24.5 

 

For the normality test of each index for each phase, the Kolmogorov-Smirnov test and 

the Shapiro-Wilk test were conducted, as noted above, and all four indices of phases 1 

and 2 satisfied the normality requirement. In addition, for the homogeneity of variance 

test, the Levene and Bartlett tests were performed, and it was confirmed that all four 

indices of phases 1 and 2 showed heteroscedasticity (see Appendix A1-3, #1). Therefore, 

Welch’s T-test was used to investigate the differences in the indices between the two 

phases. The results of Welch’s T-test are shown in Table 2-6.  
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Table 2-6. Analysis between phases 

  t-statistic P-value 

Generality 22.59501 2.41E-102  

Originality 2.156779 0.03116271 

Complementarity 23.31259 3.47E-106 

TCT 13.31252 1.43E-38 

 

The result showed that the differences in the generality, originality, complementarity, 

and TCT were statistically significant between the two phases. Originality and 

complementarity were higher in phase 2, whereas TCT is shorter in phase 2. Meanwhile, 

generality was lower in phase 2. Because generality is affected by the number of forward 

citations, previously developed technologies in phase 1 showed higher generality than 

those in phase 2.  
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2.4.2 Diffusion levels among technologies  

 

Figure 2-4. Time series clustering in phase 1 

 

The first part of this section described the analysis of the diffusion levels among 

technologies in phase 1. The results of the time series clustering for patents in phase 1 are 

divided into four clusters, as shown in Table 2-4. Also, Figure 2-4 shows each cluster, 

indicating that clusters 1, 2, and 4 are defined as low, high, and mid-level diffusion 

clusters, respectively. This study analyzed three clusters, except for cluster #3, which was 

an outlier of the patent dataset. 

As a result of the normality test and the homogeneity of variance test of four indices 

in each cluster, the requirement of normality was met in all cases. Meanwhile, 
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heteroscedasticity was found in the generality, originality, and complementarity 

assessments (see Appendix A1-3, #2). Thus, Welch’s ANOVA analysis and the Games-

Howell post-hoc analysis were conducted for these three indices, whereas a one-way 

ANOVA and a Bonferroni post-hoc analysis were conducted for TCT.  

Table 2-7 shows the results of the ANOVA for phase 1, and the Table 2-8 shows the 

results of the post-hoc analysis for phase 1. Generality was statistically significant, 

showing a higher value in the high and mid-diffusion-level clusters compared to the low-

level cluster. Originality showed statistically significantly higher values in the order of 

high, mid, and low levels. On the other hand, there were no statistically significant 

differences among the clusters for the complementarity and TCT. Consequently, 

technologies with high level of diffusion showed high generality and originality in phase 

1.  

 

Table 2-7. Analysis of variance in phase 1 

 F-value P-value 

Generality 60.17918 1.020421E-18  

Originality 35.6587 7.250329E-13  

Complementarity 1.087902 0.340838  

TCT 2.049213 0.129278 
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Table 2-8. Post-hoc analysis in phase 1 

Games Howell 

 A B Mean(A) Mean(B) Diff SE t-statistic P-value 

Generality 

1 

(L) 

2 

(H) 
0.6026755 0.759209 -0.15653 0.024159 -6.47938 9.22E-08 

1 

(L) 

4 

(M) 
0.6026755 0.731235 -0.12856 0.012928 -9.94437 0 

2 

(H) 

4 

(M) 
0.7592087 0.731235 0.027973 0.025184 1.110778 0.511109 

Originality 

1 

(L) 

2 

(H) 
0.5688679 0.739103 -0.17024 0.023708 -7.18038 5.55E-09 

1 

(L) 

4 

(M) 
0.5688679 0.662626 -0.09376 0.016624 -5.63996 1.09E-07 

2 

(H) 

4 

(M) 
0.7391029 0.662626 0.076477 0.026553 2.880131 0.013837 

Complementarity 

1 

(L) 

2 

(H) 
1.7959391 2.363636 -0.5677 0.393571 -1.44243 0.328419 

1 

(L) 

4 

(M) 
1.7959391 1.832487 -0.03655 0.09361 -0.39043 0.91944 

2 

(H) 

4 

(M) 
2.3636364 1.832487 0.531149 0.400763 1.325344 0.388415 

Bonferroni 

TCT 

A B Mean(A) Mean(B) Diff SE t-statistic P-value 

1 

(L) 

2 

(H) 
7.5807107 8.272727 -0.69202 0.573969 -1.1661 0.2438 

1 

(L) 

4 

(M) 
7.5807107 8.098985 -0.51827 0.285713 -1.739 0.0823 

2 

(H) 

4 

(M) 
8.2727273 8.098985 0.173743 0.617144 0.2864 0.7748 
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In the second part of this section, this study analyzed the diffusion levels among the 

technologies in phase 2. The results of the time series clustering of phase 2 are described 

below. Figure 2-5 presents the diffusion patterns for each cluster, where clusters 1, 2, and 

4 are defined as the low, high, and mid-level diffusion clusters, respectively, omitting the 

outlier cluster #3.  

 

Figure 2-5. Time series clustering in phase 2 

 

Table 2-9. Analysis of variance in phase 2 

 F-value P-value 

Generality 774.60045 3.181060E-105  

Originality 56.550777 1.579680E-20  

Complementarity 21.4362 3.546997E-09  

TCT 17.43857 1.01E-07 
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Table 2-10. Post-hoc analysis in phase 2 

Games Howell 

 A B Mean(A) Mean(B) Diff SE t-statistic P-value 

Generality 

1 

(L) 

2 

(H) 
0.419335 0.752299 -0.33296 0.01525 -21.8331 9.99E-15 

1 

(L) 

4 

(M) 
0.419335 0.714661 -0.29533 0.008256 -35.7723 1.91E-13 

2 

(H) 

4 

(M) 
0.752299 0.714661 0.037637 0.016191 2.32453 0.055937 

Originality 

1 

(L) 

2 

(H) 
0.597968 0.729582 -0.13161 0.016536 -7.95911 1.16E-11 

1 

(L) 

4 

(M) 
0.597968 0.669715 -0.07175 0.009446 -7.59577 7.83E-13 

2 

(H) 

4 

(M) 
0.729582 0.669715 0.059867 0.018486 3.238549 0.004229 

Complementarity 

1 

(L) 

2 

(H) 
2.773657 3.965909 -1.19225 0.306615 -3.88843 0.000569 

1 

(L) 

4 

(M) 
2.773657 3.239927 -0.46627 0.087397 -5.33511 4.05E-07 

2 

(H) 

4 

(M) 
3.965909 3.239927 0.725982 0.317652 2.285465 0.062444 

Bonferroni 

TCT 

A B Mean(A) Mean(B) Diff SE t-statistic P-value 

1 

(L) 

2 

(H) 
5.99579 7.704545 -1.70876 0.401854 -4.4516 0 

1 

(L) 

4 

(M) 
5.99579 6.745421 -0.74963 0.168433 -4.6382 0 

2 

(H) 

4 

(M) 
7.704545 6.745421 0.959124 0.429833 2.225 0.0264 
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The normality test and the homogeneity of variance test of four indices in each cluster 

were conducted (see Appendix A1-3, #3). As a result, Welch’s ANOVA analysis and the 

Games-Howell post-hoc analysis were used to assess generality, originality, and 

complementarity, while a one-way ANOVA and the Bonferroni post-hoc analysis were 

used for TCT. 

Table 2-9 shows the results of the ANOVA analysis of phase 2, and the Table 2-10 

shows the results of the post-hoc analysis of phase 2. As a result of these analyses, 

differences in the diffusion levels showed statistically significant higher values in the 

order of the high, mid, and low levels in all four indices, i.e., generality, originality, 

complementarity, and TCT.  

For the third part of this section, an additional analysis was conducted considering the 

technological properties constituting each cluster. Considering the properties of AI 

technology, AI patents can be divided into two types: patents of only AI technology and 

patents that encompass AI application fields. This study divided the patents in each 

cluster into the AI-only and AI-application types. Among all AI patents, patents 

containing CPC and IPC codes of AI application fields were classified as AI-application 

types (see Appendix A1-2), and patents that do not contain these codes were classified as 

AI-only types.  

The results of the analysis are given below. Table 2-11 shows the mean of the patent 

index according to the AI-only and AI-application types. The normality test and 

homogeneity of variance test were conducted for each cluster (see Appendix A1-3, from 



39 

#4 to #9). Table 2-12 shows the results of ANOVA on all clusters between AI-only and 

AI-application by phase 1 and 2. Table 2-12 shows the results of the ANOVA between the 

AI-only and AI-application types for phases 1 and 2 on all clusters. As shown in Table 2-

11, the results for each cluster indicated that the patent indices of generality, originality, 

and complementarity were relatively high in the AI-application types compared to the AI-

only types. From the results of the ANOVA shown in Table 2-12, only the high cluster in 

phase 1 was statistically significant for generality and originality, while for the remaining 

five clusters, generality, originality, and complementarity are statistically significant. In 

contrast, for TCT, the ANOVA results showed statistical significance only for the mid-

level cluster in phase 1. 

Table 2-11. Descriptive statistics of AI-only and AI-application types   

Cluster Type Obs Mean(G) Mean(O) Mean(C) Mean(T) 

Phase 1 H AI-only 11 0.654 0.644 2.091 8.000 

AI-application 33 0.794 0.771 2.455 8.364 

M AI-only 80 0.681 0.589 1.525 7.244 

AI-application 117 0.766 0.713 2.043 8.684 

L AI-only 492 0.568 0.529 1.573 7.392 

AI-application 493 0.638 0.609 2.018 7.769 

Phase 2 H AI-only 23 0.663 0.621 2.522 7.543 

AI-application 65 0.784 0.768 4.477 7.762 

M AI-only 182 0.631 0.566 2.220 6.863 

AI-application 364 0.757 0.722 3.750 6.687 

L AI-only 2039 0.371 0.542 2.206 6.049 

AI-application 2949 0.453 0.637 3.166 5.959 

Note. G: Generality, O: Originality, C: Complementarity, T: TCT  
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Table 2-12. Analysis of variance between AI-only and AI-application types 

 t-statistic P-value 

Phase 1 

H 

Generality 2.857613991 0.006613563 

Originality 2.628947643 0.011914537 

Complementarity 0.398108736 0.692566551 

TCT 0.277816911 0.782515954 

M 

Generality 4.173300292 4.52E-05 

Originality 4.130725482 6.30E-05 

Complementarity 3.327114859 0.001050825 

TCT 2.788774071 0.005815156 

L 

Generality 4.630651811 4.13411E-06 

Originality 4.956046823 8.48843E-07 

Complementarity 5.795392825 9.86627E-09 

TCT 1.532803026 0.125646151 

Phase 2 

H 

Generality 3.947221236 0.000161122 

Originality 4.374952381 3.39E-05 

Complementarity 2.926897137 0.004379267 

TCT 0.239021108 0.811657902 

M 

Generality 8.133910588 1.48696E-14 

Originality 7.845718251 1.01945E-13 

Complementarity 10.7647193 1.36075E-24 

TCT 0.515472518 0.606432279 

L 

Generality 9.257043576 3.05034E-20 

Originality 14.41995364 5.23851E-46 

Complementarity 27.89277938 3.2747E-159 

TCT 0.876883915 0.38059194 
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2.5 Discussion and conclusion  

The study investigates how patent indices regarding technological pervasiveness differ 

depending on technology progress and diffusion in the AI sector. It is found that the GPT-

related features show a further increase according to the progress of AI technologies, with 

GPT-related features find to be higher in AI technologies with high diffusion levels. 

Consequently, this study presents empirical evidence that the GPT-related features of AI 

are related to the growth of technology in terms of both the growth trend and diffusion 

level. Table 2-13 shows a summary of the results of this study. 

The results for generality, originality, and complementarity, which are related to a 

wide range of technological pervasiveness as a GPT, are as follows. First, depending on 

the progress of AI technologies, the GPT-related features among the AI technologies 

overall show increased statistical significance. When comparing the technology progress 

between phase 1 and phase 2, originality and complementarity increase in phase 2, which 

means that the GPT-related features increase more significantly depending on the 

technological progress. From these results, this study finds that the direction of AI 

development is improving the potential to increase knowledge recombination, efficiency, 

and variety. Second, this study provides evidence that AI technologies with a wide range 

of technological pervasiveness in the AI technology field show higher diffusion levels. 

Generality, indicating a wide scope of follow-on inventions, and originality, indicating a 

diverse technology base for recombinations, are higher for technologies with high 

diffusion levels in both phase 1 and phase 2. Also, complementarity is higher for 
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technologies with high diffusion levels in phase 2. The diffusion level of patents is related 

to indirect aspects regarding the scope of forward and backward citations in phase 1; 

complementarity, which is a direct aspect pertaining to the scope of the originating 

patents, additionally appears in phase 2.  

The results for TCT, related to technological pace, show that it is becoming faster. For 

technologies overall, TCT is decreasing in phase 2 compared to phase 1. The average 

value of TCT was 7.68 in phase 1, while it was 6.09 in phase 2. This shows that the 

technology distance is shortened and that the technology development pace is faster. 

Additionally, the total amount of technology amounted to 1,228 in phase 1, while this 

score was 5,624 in phase 2, confirming that the growth of the technology is high.  

Meanwhile, TCT can be interpreted from the perspective of the longevity of GPTs. In the 

context of GPTs, high longevity is one of the defining properties. Commonly, the citation 

lag measured by forward citations of GPT technologies is longer than those of average 

technologies (Hall & Trajtenberg, 2004; Moser & Nicholas 2004; Feldman & Yoon, 

2012). However, this study investigates emerging technologies, for which not enough 

time has passed to observe forward citations. Thus, this study considers longevity of 

technology based on backward citations, and the speed of technological development, as 

defined above. Hence, the results for TCT, related to the time lag of technology as GPTs, 

are as follows. GPT technologies commonly have a long time lag, and the results of this 

study show that technologies with a long time lag are advantageous for diffusion. In other 

words, it is found that technologies citing relatively older previous technology appear to 
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have a high level of diffusion, indicating that high technology longevity is maintained. 

According to the analysis of phase 2, a longer time lag shows more forward citations and 

higher diffusion of AI technologies.  

In line with this, considering the length of the longevity of GPTs and generality as an 

index affected by the number of forward citations, relatively older technology 

corresponding to phase 1 shows higher generality compared to that in phase 2.  

 

Table 2-13. Summary of the results  

Cluster Comparison results 

Phase 2  

(Compared to Phase 1) 

 

Generality - 

Originality + 

Complementarity + 

TCT - 

 

 Phase 1 Phase 2 

High  

(Compared to Mid) 
Originality +  

Generality + 

Originality +  

Complementarity +  

TCT +  

High  

(Compared to Low) 

Generality + 

Originality + 

Generality + 

Originality +   

Complementarity + 

TCT + 

Mid  

(Compared to Low) 

Generality + 

Originality + 

Generality + 

Originality + 

Complementarity +  

TCT +  
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Additionally, the results of analyzing AI patents after dividing them into AI-only and 

AI-application types are shown in Table 2-14. Table 2-14 shows a summary of the results 

between the AI-only and AI-application types. First, in each cluster for phases 1 and 2, 

AI-application types show higher generality, originality, and complementarity than AI-

only types. In other words, it is found that AI-application types utilized a wider range of 

knowledge, included a greater variety of knowledge, and spread to a wider range 

compared to AI-only types. This result suggests that AI-application types show a higher 

value of GPT-related features than AI-only types, regardless of the diffusion level. Second, 

TCT shows an insignificant statistical difference between AI-only and AI-application 

types. That is, a difference in the speed of technology development between the two 

categories is not found. Also, it is found that rapid development is progressing for both 

AI-only and AI-application types in phase 2 compared to that in phase 1.  

Table 2-14. Summary of the results between AI-only and AI-application types 

Cluster          Comparison results  

AI-application 

(Compared to AI-only) 

 Phase 1 Phase 2 

High 
Generality + 

Originality +   

Generality + 

Originality + 

Complementarity + 

Mid 

Generality + 

Originality +   

Complementarity +  

TCT + 

Generality + 

Originality + 

Complementarity + 

Low 

Generality + 

Originality + 

Complementarity + 

Generality + 

Originality + 

Complementarity + 
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The theoretical implication of this study is that dynamic patterns of the patent index to 

explain the features of GPT technology are identified in terms of the technology diffusion 

level and progress. Through these results, empirical evidence of the technological 

pervasiveness of AI technology is presented. Additionally, the methodological implication 

of this study is the importance of the adoption of the dynamic time wrapping analysis for 

technology diffusion and innovation research. Specifically, the analysis of the growth 

patterns of individual units of technology here provides new insight into understanding 

patent citation and diffusion trends.  

The results of this study show that AI technologies co-evolve with various industries 

along with technological development and suggest that AI has potential for growth as a 

GPT. However, legal and institutional policies to prepare for the development of AI as a 

GPT are insufficient, especially specific policies for coordinating issues among AI and 

related industries. Oxford Insight (2020; 2021; 2022) has measured AI government 

readiness indexes around the world, and in the Republic of Korea, the value of the 

government pillar was found to be lower than those of the United States, Singapore, and 

Finland. Thus, it is recommended to supplement and reestablish these policies in the 

Republic of Korea by referring to the law and systems in other relevant countries. 

Meanwhile, Nieto Council for Economics, Humanities and Social Sciences (2021) has 

suggested AI and AI legal systems roadmaps for the Republic of Korea. In this regard, 

this study proposes that issues related to legal liability, profit distribution, negligence, and 

copyrights among AI and related industries are necessary to consider as more important 
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and urgent short-term tasks in order to promote development in the application of AI in 

related industries.  

The limitations of this study and future research suggestions are as follows. First, AI 

technology is still progressing and has not completely observed its whole life cycle. In 

particular, the diffusion trajectory in phase 2 is not sufficiently traced, and the most recent 

technology is included, meaning that it is necessary to understand the different changes in 

diffusion and patent indices in phase 2, especially for information related to forward 

citations. Nevertheless, the results of this study contribute to our understanding of the 

patterns of diffusion and progress regarding AI technology and recent related trends. In 

future studies, it will be necessary to trace the next phase, i.e., phase 3, in the future and 

to investigate the changing patterns of the previous phases as well. Second, according to 

the clustering results in this study, many patents are concentrated in the low cluster group. 

This phenomenon stems from the characteristics of the clustering methods, based on the 

adjacent distance, and also on the characteristics of the patents per se, in which a large 

number of citations are concentrated in a small group of patents. In addition, in the low-

level cluster, there exists not only patents with a low level of diffusion but also very 

recent patent for which the diffusion pattern is not yet observed. This study does not 

investigate differences between these two types in low-level clusters. Thus, for low-level 

clusters, dividing the actual low levels of diffusion of patents and recent patents for which 

diffusion are not observed is recommended in further research.  
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Chapter 3. Technology convergence of AI in 

the industrial sector: Insights into a two-way 

approach 1 

3.1 Introduction 

AI has attracted enormous attention not only in the information and communications 

technology (ICT) industry but also in a variety of other industries. In the healthcare 

industry, AI has already begun to transform a variety of aspects, such as offering 

monitoring, advice to patients and interpretation of scans (Yu et al., 2018; Houlton, 2018). 

In addition, AI is a key technology for autonomous, connectivity, and the shared mobility 

trend in the automobile industry (McKinsey, 2018a). Moreover, the expansion of robo-

advisors using AI in the finance industry has been utilized (Deloitte, 2016). Likewise, AI 

is changing the landscape of various industries and applied area has increased gradually. 

AI has led to not only technological progress and new innovations but also has the 

potential to be a general-purpose technology (GPT) (Liu et al., 2021a). Research has 

confirmed how AI can affect technological innovation by improving knowledge creation, 

knowledge spillover, absorption capabilities, and by increasing investments in R&D, thus 

explaining the significant relationship between AI and technological innovation and also 

the positive impact of AI with regard to industry heterogeneity among high- and low- tech 

 
1 The original article of this chapter was published in Scientometrics.  

Lee, S., Hwang, J., & Cho, E. (2022). Comparing technology convergence of artificial intelligence on the 

industrial sectors: two-way approaches on network analysis and clustering analysis. Scientometrics, 127:407-

452. 
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sectors (Liu et al., 2020). In addition, relevant study empirically has examined AI, 

showing that it plays a crucial role in increasing innovation performance at manufacturing 

enterprises (Yang et al., 2020). Moreover, AI has potential to become a GPT increasing 

direct productivity and spurring complementary innovations (Brynjolfsson et al., 2017). 

Because AI can drive innovations and lead to a new paradigm shift by combining various 

industries, there is a societal need to develop AI while considering its impact on various 

industries. 

Technology convergence has been considered as a tool to drive technological 

innovation, and interdisciplinary research and the merging of different knowledge have 

therefore increased (Kose & Sakata, 2019). Technology convergence refers to “the 

process by which two hitherto different industrial sectors come to share a common 

knowledge and technological base” (Athreye & Keeble, 2000; Rosenberg, 1976). By 

sharing technological characteristics, the erosion of distinct barriers has been accelerated 

among various industries (Wang et al., 2019b). Convergence of technologies lead to 

industrial convergence, and industry convergence could only occur with the convergence 

of technologies (Nystrom, 2008; Choi et al., 2015). Therefore, this study attempts to 

examine the technology convergence of AI considering both technological and industrial 

perspectives.  

Previous studies on the AI have insufficiently investigated the integrated approach 

considering both the overall industry and individual technology. Applied AI research has 

generally investigated a specific industrial sector, such as healthcare, vehicle, finance, etc 
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(Yu  et al., 2018; Houlton, 2018; McKinsey, 2018a; Deloitte, 2016). In addition, research 

on AI patent analysis has analyzed AI technology itself by technological type, firm, and 

country level (WIPO, 2019a; Fujii & Managi, 2018; Tseng & Ting, 2013). Likewise, 

those studies generally have not focused on insights across various industries. Meanwhile, 

some reports on the industrial impact of AI have usually focused on comparing economic 

impact among industries (PWC, 2018; Deloitte, 2018; McKinsey, 2018b). However, those 

have not investigated comparing technological aspects according to industries from the 

perspectives of technology convergence. Therefore, this study attempts to investigate 

technology convergence of AI considering a set of industries and individual technology.  

Research on technology convergence in relation to patent documents has been 

commonly divided into three perspectives, which are purpose, methodology, and object of 

the analysis according to the work of Kim and Lee (2017). In particular, the purposes are 

two fold, identifying evolutionary trajectory and convergence pattern (Kim & Lee, 2017). 

The methodologies are divided into two parts, patent co-citation to examine knowledge 

flow and patent co-classification to examine convergence phenomenon (Kim & Lee, 

2017). Relevant studies of the object of the analysis can be divided according to whether 

the analysis targets one main technology category or more than two technology categories 

belongs to heterogeneous industry sectors. In most technology convergence research, 

these three perspectives have been combined depending on the research questions. The 

research related to one targeted main technology and the corresponding sub-technologies 

are as follows. Kim et al. (2014) analyzed the convergence of printed electronics 
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technology based on its element technologies (i.e., device, ink, substrate, circuit, and 

control) to identify key technologies and their trajectories using co-citation. Han and 

Sohn (2016) analyzed technological convergence in ICT using co-citation to identify 

crucial roles depending on the period. Wang et al. (2019b) identified emerging topics 

associated with 3D printing technology depending on time, comparing technology 

convergence with non-technology convergence environments based on co-classification. 

Meanwhile, the studies about targeted two or more technologies belonging to 

heterogeneous industry sectors are as follows. Kim and Lee (2017) examine technology 

convergence in the IT and BT industries to identify key convergence technologies based 

on co-citation and to forecast future technology convergence. Curran and Leker (2011) 

analyzed convergence in the areas of NFF and ICT based on co-classification. Kose and 

Sakata (2019) identified technology convergence in robotics research considering related 

various sectors extracted from cluster categories such as robot control systems, surgical 

and medical systems, and automaton in biological and chemistry, among others, based on 

co-citation.  

However, despite their invaluable and meaningful insights, the previous studies have 

several limitations. First, many of them identify convergence phenomena and trajectories, 

but there have been insufficient attempts to understand the characteristics of the 

technology from a multi-dimensional perspective. In other words, few studies have 

investigated how the technology is actually applied in a relation to the defined 

convergence phenomenon and/or trajectory. Second, attempts to examine technology 
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convergence from a holistic industrial perspective have been insufficient. That is, many 

studies have explored convergence while focusing on technology itself and on sub-

technologies (e.g., IT and corresponding sub-technologies such as devices and networks) 

or on combinations of technologies between heterogeneous industries (e.g., IT and BT). 

However, it is difficult to provide insight from a whole-industry perspective regarding 

technology.  

To overcome these limitations, the paper proposes a two-way approach regarding 

technology convergence involving top-down and bottom-up approaches. The top-down 

approach here attempts to investigate technology convergence from a macro-perspective 

and to investigate notable industrial sectors and corresponding technology categories. 

This allows for a comparison of industrial sector-specific technology categories from an 

all-encompassing perspective of industry. The bottom-up approach here attempts to 

investigate practical usage on a microscope, focusing on technology categories by 

industry. The integration of these two approaches provides an integrated and 

multidimensional understanding of technology convergence in terms of industry sectors, 

technology categories, and technology utilization levels.  

We suggest this two-way approach based on patent documents. In this study, 

technology convergence is defined as when more than two technologies belonging to 

different sectors appear in one patent at the same time. If heterogeneous IPCs appear in 

one patent, the technology corresponding to each IPC is considered to be converged. In 

terms of technology convergence, the top-down approach serves to identify the patterns 
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by which two IPCs converge, deriving significant IPCs in technology convergence. On 

the other hand, the bottom-up approach derives significant keywords regarding the 

convergence pattern though patent textual data, not covered from an IPC. Specifically, 

detailed procedures and explanations of the two-way approach are as follows. Using the 

top-down approach, this study conducts a network analysis in order to identify the central 

position in the convergence network using IPC codes that describe the technology 

category as a generally accepted classification scheme. Meanwhile, the bottom-up 

approach utilizes a clustering analysis, which is commonly used to derive characteristics 

from numerous of textual data. This approach groups patent documents based on 

similarities among the patent documents within industrial sectors. Overall, the 

contributions of the two-way approach are to identify notable industrial sectors and 

influential technology categories based on the central position in the AI convergence 

network from the top-down approach and to identify significant keywords of utilization 

of the technology within the industrial sectors via the bottom-up approach.  

The methodological complementary aspects of the two-way approach are as follows. 

First, the top-down approach targets structured data, i.e., IPC data, which restricts the 

discovery of insights other than information in the technology category. In contrast, the 

bottom-up approach targets unstructured data, i.e., text data, including detailed 

explanations and information from the patent documents. Second, for unsupervised 

learning, in which the results of the clustering analysis are not strictly defined, the 

interpretation of the results is very important. To understand the results of the clustering 
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analysis, the top-down approach, i.e., the network analysis, provides directions pertinent 

to the technology category.   

The novelty of this paper is as follows. First, this study presents a new research 

framework by which to understand the technology convergence by discovering the 

structure of technology convergence patterns and additionally by investigating practical 

utilization aspects in the convergence patterns. In order to identify the characteristics of 

technology convergence, this study attempts to compare the results of the technology 

categories from the network analyses and the results of the keywords from the cluster 

analysis. Second, the study attempts to analyze AI technology convergence throughout 

various industries with a holistic and integrated approach that considers significant 

industries, technology categories, and related utilizations. In particular, research on 

general-purpose technology such as AI is crucial from an industry perspective, and the 

industrial sector-specific AI convergence characteristics identified in this study can have 

significant implications for all AI-related industries. Third, the two-way approach 

proposed in this study is considered as a framework for exploring the potential of AI as a 

GPT, providing deep insight into horizontal applicability and vertical applicability aspects.  

The specific research questions of this study are as follows. First, how does the 

technology convergence of AI appear regarding the industrial sector, the technology 

category, and utilization in the two-way approach? Second, how can we understand the 

horizontal and applicability of AI with the two-way approach? The remainder of this 

paper is structured as follows. Section 3.2 describes the proposed method and research 



54 

framework of this study. Sections 3.3 briefly shows the dataset in this study. Section 3.4 

shows the results of network centrality analysis, ego-network analysis, clustering analysis. 

Additionally, Section 3.4 provides insights into the two-way approach in terms of 

technological applicability. Section 3.5 presents discussions and conclusions, and also 

proposes future research directions. 
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3.2 Proposed method 

3.2.1 Research framework 

 

Figure 3-1. Research framework 
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Figure 3-1 shows the research framework for this study. A top-down approach focuses on 

hub nodes and their tie nodes in an IPC-based convergence network. A network centrality 

analysis is applied to determine the hub nodes (hubs, in short) which identify notable 

industrial sectors and influential technologies. In addition, an ego-network analysis is 

done to understand the tie nodes (ties, in short) which are strongly related technologies on 

hubs. The top-down approach, which means IPC-based network analyses, shows the 

results on the major technology convergence category with hubs and ties in each 

industrial sectors. Meanwhile, a bottom-up approach constructs clusters through the 

process of grouping the whole patents with similar topics. A text-based clustering analysis 

is performed, and the results show additional information not found in IPC-based network 

analyses. Generally, a patent is document that explains a new invention which are related 

to technology category, the problems to solve and how to solve them as well. Thus, text 

data in a patent document can be understand as information related to the application or 

method for implementing the technology, in addition to the structured technology 

categories identified from the IPC codes. Thus, keywords can be extracted from each 

cluster, and the aspects of technology utilization can be examined by linking these aspects 

with the technology category derived from the network analysis. In this study, a 

technology utilization is defined as an actual way in which the technology used in the 

industry and technology categories.  

Figure 3-2 shows the research procedure of this study, and Sections 3.2.3 describes the 

background and provide a detailed explanation of each step. Because the purpose of the 
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top-down and bottom-up approach differ, the range of the analysis dataset in each case is 

set differently. The top-down approach aims to extract significant industry and industrial 

sector-specific technology categories using AI patents; thus, this step targets the entire AI 

patent. On the other hand, the bottom-up approach aims to identify specific and detailed 

features of technology utilizations in relation to the technology category regarding 

notable industrial sectors derived from the top-down approach. Accordingly, it targets AI 

patents classified by industrial sector. Meanwhile, the study uses abstract data from each 

patent document for the analysis of the text data. 
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Figure 3-2. Research procedure 
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3.2.2 Data collection 

There have been many trials to establish a new patent category in the area of AI. 

According to previous research, AI has been categorized into three broad areas: big data 

analytics, vision, and language (Tractica, 2016). In the same vein, to define the scope of 

our research, we categorized AI software technology into three groups: 1) learning and 

reasoning, 2) natural language processing, and 3) computer vision. In the previous 

research, IPC codes were used in selecting and classifying AI technology (Fujii & Managi, 

2018; Tseng & Ting, 2013). Comprehensively, we collected the three groups of patents 

with related IPC codes. The IPC codes for each AI patent group were according to the 

work of the Korean Intellectual Property Office (KIPO) in 2018 (KIPO, 2018). Table 3-1 

shows the category of the AI technology and IPC codes used in this study. The 

descriptions of each IPC in this study are referred to the WIPO (WIPO, 2018; 2019b).  

Table 3-1. Category of AI technology  

AI patent group IPC code Description 

Learning and  

Reasoning 

G06N-003/08 Computer systems based on biological models; Learning methods 

G06N-005/04 
Computer systems utilizing knowledge based models; Inference 

methods or devices 

G06F-019/24 
Digital computing or data processing equipment or methods, 

specially adapted for specific applications  

G06K-009/62 

Methods or arrangements for reading or recognising printed or 

written characters or for recognising patterns; Methods or 

arrangements for recognition using electronic means 

G06N-003/02 Using neural network models 
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Natural Language  

Processing 
G06F-017/20 Handling natural language data (speech analysis or synthesis) 

 

G06F-017/21 Text processing 

 

G06F-017/27 Automatic analysis, e.g. parsing, orthography correction 

 

G06F-017/28 Processing or translating of natural language 

 

G10L-015/ Speech recognition 

 

G10L-017/ Speaker identification or verification 

 

G10L-013/ Speech synthesis; Text to speech systems 

Computer Vision 
G06F-021/32 

User authentication; using biometric data, e.g. fingerprints, iris 

scans or voiceprints 

G06K-009/00 
Methods or arrangements for reading or recognising printed or 

written characters or for recognising patterns, e.g. fingerprints  

G06T-007/50 Image analysis; Depth or shape recovery  

Note. Descriptions of each IPC are referred to the WIPO (2018, 2019b) 

 

This study collected AI-related patents which were registered at the United States 

Patent and Trademark Office (USPTO) from Google Patent Datasets. We constructed a 

set of standard SQL statements using the Google BigQuery platform for collecting AI-

related patents with IPC codes during the period from 2000 to 2019 for the publication 

dates. In addition, from the Google Patents Search, we collected the forward citations of 

each patent. The total number of patents collected was 209,212, and one patent was 

incomplete; thus, 209,211 patents were selected for this study. Also, we extracted 2,517 

IPC codes at the group level from the patents.  
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3.2.3 Methodology 

Formation of IPC Co-classification Network  

To measure technological convergence, previous research commonly used a co-

classification and co-citation analysis (Curran & Leker, 2011; Kwon et al., 2020). This 

study constructs a convergence network using co-classification for the following reasons. 

First, a co-citation is based on the relationships among the patent documents themselves, 

while co-classification is based on the relationships among the technology classification 

codes. Although a co-citation analysis is useful to understand knowledge flows (Lee et al., 

2016b), an IPC co-classification analysis can be a more direct indicator that explains 

specific technology areas (Choi et al., 2015). Therefore, co-classification is more 

adequate for the research purpose here, which is to identify technology categories in a 

convergence network. Second, co-classification is more consistent with the definition of 

technology convergence in this study. This study defined technology convergence as 

occurring when more than two technologies belonging to different sectors appear on one 

patent at the same time, and this definition corresponds to the co-classification concept.  

Therefore, in this study, an IPC co-classification network was formed to analyze the 

convergence using patents. In the patent analysis, each IPC is considered as a node and 

the relationship between the IPCs as a link, and the weights mean the number of common 

patents for a pair of IPCs. We formed an undirected and weighted graph to analyze the 

network. The IPC co-classification network was created at the group-level (e.g., 

A01B/22) of each patent, a total of 2,517 IPCs. 
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Extracting the Hubs through Network Centrality Analysis 

Among the various network centrality indicators, degree centrality shows how connected 

the node is (Jackson, 2008). Degree centrality is an efficient indicator of measuring the 

power of each node (Borgatti et al., 2013) because a node with many links between other 

nodes has more advantages and influences on the network. Betweenness centrality shows 

the mediating role of the network among the nodes. If a node is located on the shortest 

path between a pair of nodes in the network, the node is considered to be on an 

advantageous position. Meanwhile, based on those two centralities, the network positions 

are categorized into four positions: the hub, bridge, core, and periphery (Baek et al., 

2014). The hub position means highly connected with others and is important in 

connecting others, which has both a high degree and betweenness centrality. Therefore, in 

this study, the degree centrality and betweenness centrality were analyzed to investigate 

the hub nodes with advantages and influences on the network. From those hub nodes, this 

study identifies the notable industrial sectors and influential technologies.  

In terms of technology convergence, degree centrality can measure the direct 

influence in the technology convergence (Kim et al., 2014), and betweenness centrality is 

an indicator of the extent of a node as a brokerage, and related to arbitration capabilities 

in technology convergence (Lee et al., 2012). Therefore, from the IPC co-classification 

network constructed in this study, the degree centrality finds IPCs which play a central 

role in terms of direct connectivity, whereas the betweenness centrality finds IPCs which 

play a central role in terms of intermediary connectivity.  
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In this study, the equation of node degree centrality can be defined as follows 

(Freeman, 1979; Borgatti et al., 2002).  

, j  

where  is the number of IPCs in the network,  is the degree of strength of the 

relationship between IPC i and IPC j ( )  

In this study, the equation of node betweenness centrality can be defined as below 

(Freeman, 1979; Borgatti et al., 2002).  

  

where  is the number of shortest paths between IPC  and IPC , and  

is the number of paths including IPC  in the shortest paths between IPC  and IPC    

The method for extracting the hubs through network centrality analysis is described as 

follows. In order to extract influential technology (i.e. hub) in the convergence network, 

the top 10 percent of the IPCs were considered. The distribution shows the form of 

positive skewness with a long tail on the right. The top 10 percent was within rank 250 

and explains 96.3% in the degree centrality (Sum of the top 10 percent centrality measure 

= 9,528,040 /Sum of the total centrality measure = 9,893,234), and describes 96.7% in the 

betweenness centrality of the total value (3,413,198 / 3,528,905). Thus, the top 10 percent 

of technology can represent the influential technology in this study.  
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Extracting Ties on the Hubs through Ego-network Analysis  

For the selected hubs, this section investigated the linked technology. An ego-network 

consists of a connection between one central node called an ego and other nodes called 

alters connected to that node. The ego-network was analyzed for each hub, and the 

strength of the connection with the alter was measured by the tie value which was 

measured by the total number of ties in the ego-network. The nodes with the top 10 tie 

values were selected to derive the strong-tie in this study. The strong-ties were analyzed 

to identify the characteristics of the linked technologies among sectors. The linked 

technologies of the hub in each sector, which are ties, were investigated in terms of 

common or different technology within the sector compared to other sectors. Meanwhile, 

technology included in its own sector was not considered. For example, when analyzing 

the hubs in the medical sector, ties in the medical sector were excluded from the analysis.  

 

Classification of Dataset by Industrial Sector 

To classify the patents by industrial sector, we referred to the “WIPO IPC-Technology 

Concordance Table” (Schmoch, 2008) which was classified technology into thirty-five 

fields according to IPC codes (see Appendix A2-1). In this study, a term ‘sector’ was 

commonly used to indicate each ‘field’ in the IPC-concordance matrix. Among thirty-five 

sectors, to determine the industrial convergence sector in AI, we excluded sectors that are 

directly related with ICT and AI technology. Additionally, we excluded sectors that are 

specialized for a process or a machine itself and are difficult to identify in a specific 
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industry. Also, in the furniture/game sector, only the game sector was examined in this 

study because those two are not considered as a same category in common, and a great 

amount of technology was included in game technology. Thus, the final sixteen sectors to 

be analyzed in this study were selected and the sectors were as follows: IT methods for 

management (referred to here as the finance/management sector representing included 

technology), semiconductors, analysis of biological materials, medical technology, 

biotechnology, transport, games, environmental technology, organic fine chemistry, 

pharmaceuticals, civil engineering, food chemistry, nano-technology, basic materials 

chemistry, metallurgy, and polymers. 

 

Keywords Extraction through Clustering Analysis  

For each industrial sector, there are number of patents and they are expected to have more 

than a single topic within a sector. To unveil topics consisting of a sector, clustering 

analysis using a Document-Term Matrix (DTM) could be applicable. From each cluster, 

keywords representing the core topics could be extracted. 

Considering the characteristics of the dataset in this study, each cluster would be very 

close in an industrial sector. The patents within a sector do share similar topics. It is 

expected that there can be a degree of overlap among clusters. Also, a DTM of a sector 

could be a sparse matrix if there are number of clusters which share similar topics. 

Similar documents (i.e., patents) share a set of terms, and it is differentiated with others. 

One of the widely used clustering methods is K-means clustering, which is quite fast 

and simple, but it has difficulty in handling inherent heterogeneity such that a certain data 
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set is close to more than one cluster (Patel & Kushwaha 2020). The resultant clusters of 

K-means clustering are disjoint because a data point is uniquely assigned to the cluster 

with the closest distance from the centroid which is the cluster center. Due to the disjoint 

nature, K-means clustering is not fit for clustering patents with similar topics. 

Spectral clustering is one of the candidate solutions for patent clustering. It does not 

rely on distribution of the data. However, the DTM would be sparse and the affinity 

matrix for the spectral clustering also would be sparse. Thus, the spectral clustering is not 

suitable with our dataset because the spectral clustering requires a fully connected affinity 

network. 

On the other hand, the Gaussian Mixture Models (GMM) cluster assigns a certain data 

set to the multivariate normal components maximizing the component posterior 

probability (Wang et al., 2019a). GMM finds complex patterns to make a group of 

cohesive and homogeneous components which are closely representative of the patterns 

of the dataset (Patel & Kushwaha, 2020). GMM is a density-based clustering algorithm 

which means that a resultant cluster has a high-density region surrounded by low-density 

regions. Patents with similar topics sometimes cannot be clustered with distinct 

boundaries, which can be clustered with a density-based model. Also, in GMM a data 

point can be expressed as a set of probabilities of cluster membership, which means the 

mixed membership. 

GMM is an unsupervised clustering which finds out  Gaussian distributions from 



67 

the given data, where  is the number of clusters. Thus, a probability density function of 

GMM  for a -dimensional vector  is expressed as a superposition of  

Gaussian probability densities (Bishop, 2006.) 

 

where  is called the mixing coefficient, which indicates a selection probability of kth 

Gaussian distribution, is kth Gaussian density,  is a -dimensional 

mean vector of kth Gaussian distribution, and  is a  covariance matrix of kth 

Gaussian distribution. The parameters of the distributions are iteratively updated and 

converged using the Expectation-Maximization (EM) algorithm. These process means 

that the iterative estimation of parameters , , and  for given data .   

The method for the patent clustering is described as follows. First, the abstracts of the 

patents were tokenized and lemmatized using the Python spaCy library to count terms in 

different forms in sum. Then a bigram DTM was constructed from the lemmatized text of 

the patent abstracts after removing stop words including patent-specific common terms 

such as ‘method' and ‘apparatus’. To weight the relatively important terms, a bigram 

Term Frequency-Inverse Document Frequency (TF-IDF) DTM was calculated from the 

DTM. Based on the TF-IDF DTM, the dimensionality of terms was reduced while 

preserving the hidden meaning of terms and reducing sparsity of the input DTM by 

applying Latent Semantic Analysis (LSA) with the target explained variance of 90% (see 
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Appendix A2-2). The patents were then clustered using GMM with the Python scikit-

learn library by increasing the number of clusters from 1 to 10. In addition, to prevent EM 

from converging local maxima, each setting was executed 5 times with different initial 

random seeds. 

The best-fitting models were chosen based on the Akaike Information Criterion (AIC) 

and Bayesian Information Criterion (BIC) values. For a GMM clustering, AIC and BIC 

were measured to determine the appropriate number of clusters (Burnham & Anderson, 

2002). Usually, the lower information criterion indicates the better clustering. Thus, the 

best-fitting model among different number of clusters could be chosen with the lowest 

AIC or BIC value. If the lowest AIC model and lowest BIC model were not the same, the 

resultant clusters of both models needed to be reviewed. In our dataset, however, the 

lowest AIC model was chosen because the lowest BIC was always the single cluster case.  

Then, each resultant cluster had distinct top keywords according to the TF-IDF values. 

By taking the mean TF-IDF value of each bigram term in a cluster, the top keywords were 

populated from bigram terms of top mean TF-IDF values. 
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3.3 Dataset  

To understand the dataset in this study thoroughly, we analyzed the patent data with the 

innovation performance indicators, which can compare the level of convergence by 

industrial sectors classified in the Section 3.2.3. For measuring innovation performance, 

the number of patents or citations were widely used as indicators (Hagedoorn & Cloodt, 

2003; von Wartburg et al., 2005; Trajtenberg, 1990; Harhoff et al., 1999). The number of 

patents means a quantitative aspect in terms of the technological invention of new 

technology, process, and product.  

All collected datasets were shown in Figure 3-3. The datasets classified into the 

industrial sectors were analyzed using the patent count and CAGR of patent count shown 

in Table 3-2. In addition, Figure 3-4 shows the trend analysis according to the industrial 

sector based on the new patent count by the year. In terms of patent counts, the 

finance/management, medical, and transport sectors had a large number of patents, over 

6,000, and the semiconductor, games, and biological materials had a patent count of 1,000 

to 2,000. The environmental technology, organic chemistry, pharmaceuticals, civil 

engineering, food chemistry, nano-technology, metallurgy, and polymers had a patent 

count below 1,000. From a view of growth rate, the transport sector showed a noticeably 

high rate as 41% of CAGR. In addition, the game, finance/management, and civil 

engineering sector showed the high growth rates.  
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Table 3-2. Datasets by the industrial sector in AI patents 

 Sector Number of Patents 
CAGR (Compound Annual  

Growth Rate)  

Finance/Management 12603 23% 

Medical technology 10218 17% 

Transport  6426 41% 

Semiconductors 1896 9% 

Biological materials 1768 13% 

Games 1576 27% 

Biotechnology 1188 12% 

Civil engineering 621 23% 

Environmental technology  332 9% 

Organic fine chemistry  331 8% 

Basic materials chemistry 185 4% 

Pharmaceuticals  185 16% 

Food chemistry  74 20% 

Micro-structure and nano-technology 49 15% 

Materials, metallurgy  42 16% 

Macromolecular chemistry, polymers  35 16% 
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Figure 3-3. Number of AI patents 

 

 

Figure 3-4. Datasets by the industrial sector in AI patents 
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3.4 Analysis and results 

3.4.1 Results of network centrality analysis 

This study defined hub nodes as the degree and betweenness centralities within the top 10 

percent. Obviously, a majority of hubs corresponded to AI-related or computer technology, 

such as pattern recognition, image analysis, and data processing. The IPC, G06K-009, 

which is related to pattern recognition, ranked first both degree and betweenness 

centralities (see Table 3-3) and positioned in the most central in the whole AI 

convergence network.  
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Table 3-3. Top 10 rank of the AI technology in AI convergence network  

 Rank IPC Code Centrality Description 

Degree 

Centrality 

1 G06K-009 614610 Methods or arrangements for reading or 

recognising printed or written characters or for 

recognising patterns 

2 H04N-005 481160 Details of television systems 

3 G06F-003 391088 Input or output arrangements for transferring data  

4 G06F-017 278642 Digital computing or data processing equipment or 

methods 

5 H04N-007 255293 Television systems  

6 H04L-012 247720 Data switching networks 

7 H04N-001 209014 Scanning, transmission or reproduction of 

documents 

8 G06T-007 186469 Image analysis  

9 H04L-009 178216 Arrangements for secret or secure communication 

10 H04N-021 173159 Selective content distribution, e.g. interactive 

television or video on demand 

Betweenness 

Centrality 

1 G06K-009 1560454 Same as above 

2 G06T-007 183382.2 Same as above 

3 G06F-017 143697.6 Same as above 

4 G06F-003 103567.5 Same as above 

5 G10L-015 97529.1 Speech recognition 

6 G06N-003 84961.23 Computer systems based on biological models 

7 H04N-005 82497.74 Details of television systems 

8 H04N-007 79561.6 Same as above  

9 G06F-019 62109.79 Digital computing or data processing equipment or 

methods for bioinformatics 

10 G06N-005 56337.88 Computer systems using knowledge-based models  

Note. Descriptions of each IPC are referred to the WIPO (2018, 2019b) 

 

https://www.wipo.int/classifications/ipc/ipcpub/?notion=scheme&version=20190101&symbol=G06K0009000000&menulang=en&lang=en&viewmode=f&fipcpc=no&showdeleted=yes&indexes=no&headings=yes&notes=yes&direction=o2n&initial=A&cwid=none&tree=no&searchmode=smart#11597
https://www.wipo.int/classifications/ipc/ipcpub/?notion=scheme&version=20190101&symbol=G06K0009000000&menulang=en&lang=en&viewmode=f&fipcpc=no&showdeleted=yes&indexes=no&headings=yes&notes=yes&direction=o2n&initial=A&cwid=none&tree=no&searchmode=smart#3297
https://www.wipo.int/classifications/ipc/ipcpub/?notion=scheme&version=20190101&symbol=G06K0009000000&menulang=en&lang=en&viewmode=f&fipcpc=no&showdeleted=yes&indexes=no&headings=yes&notes=yes&direction=o2n&initial=A&cwid=none&tree=no&searchmode=smart#3297
https://www.wipo.int/classifications/ipc/ipcpub/?notion=scheme&version=20190101&symbol=G06K0009000000&menulang=en&lang=en&viewmode=f&fipcpc=no&showdeleted=yes&indexes=no&headings=yes&notes=yes&direction=o2n&initial=A&cwid=none&tree=no&searchmode=smart#3300
https://www.wipo.int/classifications/ipc/ipcpub/?notion=scheme&version=20190101&symbol=G06F0003000000&menulang=en&lang=en&viewmode=f&fipcpc=no&showdeleted=yes&indexes=no&headings=yes&notes=yes&direction=o2n&initial=A&cwid=none&tree=no&searchmode=smart#11597
https://www.wipo.int/classifications/ipc/ipcpub/?notion=scheme&version=20190101&symbol=G06F0017000000&menulang=en&lang=en&viewmode=f&fipcpc=no&showdeleted=yes&indexes=no&headings=yes&notes=yes&direction=o2n&initial=A&cwid=none&tree=no&searchmode=smart#11588
https://www.wipo.int/classifications/ipc/ipcpub/?notion=scheme&version=20190101&symbol=H04L0009000000&menulang=en&lang=en&viewmode=f&fipcpc=no&showdeleted=yes&indexes=no&headings=yes&notes=yes&direction=o2n&initial=A&cwid=none&tree=no&searchmode=smart#11597
https://www.wipo.int/classifications/ipc/ipcpub/?notion=scheme&version=20190101&symbol=G10L0015000000&menulang=en&lang=en&viewmode=f&fipcpc=no&showdeleted=yes&indexes=no&headings=yes&notes=yes&direction=o2n&initial=A&cwid=none&tree=no&searchmode=smart#3393
https://www.wipo.int/classifications/ipc/ipcpub/?notion=scheme&version=20190101&symbol=G06F0017000000&menulang=en&lang=en&viewmode=f&fipcpc=no&showdeleted=yes&indexes=no&headings=yes&notes=yes&direction=o2n&initial=A&cwid=none&tree=no&searchmode=smart#11588
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Meanwhile, among the sixteen sectors in our dataset in the Section 3.3, the 

technologies in finance/management, medical, transport, semiconductor, game, 

biotechnology, and analysis of biological materials were included in the hub nodes in the 

AI convergence network. Table 3-4 shows the results of the hubs in each sector.  

 

Table 3-4. Network centrality analysis on hubs by the industrial sector in AI convergence 

network 

Sector Hub 

Degree Centrality Betweenness Centrality 

Rank Value Rank Value 

Finance/ 

Mgmt. 

G06Q-030 40 73798 22 17119.15 

G06Q-020 41 73044 48 6751.979 

G06Q-010 53 49148 21 18096.42 

G06Q-050 74 28710 30 12771.32 

G06Q-040 163 8673 163 1143.456 

Medical A61B-005 33 81404 11 39581.35 

A61B-006 84 23489 67 4394.374 

A61B-008 142 13333 202 841.873 

A61B-003 161 9160 153 1251.287 

A61B-017 236 2868 194 886.636 

Transport B60R-021 98 21874 182 981.005 

B60R-001 131 14891 61 4837.574 

B60N-002 153 11183 227 714.849 

B60W-030 157 10228 123 1637.687 
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B60Q-001 159 9605 82 2977.064 

B60W-050 165 8641 115 1878.852 

B60W-040 166 8428 145 1334.781 

B60R-016 168 8126 184 971.496 

B60R-025 172 7670 133 1466.471 

B60R-011 177 6805 76 3538.538 

B60W-010 213 3678 244 654.781 

B64C-039 216 3638 84 2926.836 

B64D-047 227 3032 121 1642.973 

Semiconductor H01L-027 72 30864 80 3097.656 

H01L-021 178 6770 60 4914.426 

H01L-023 226 3077 141 1361.027 

Game A63F-013 119 18299 101 2209.875 

A63B-071 215 3646 171 1081.647 

A63B-069 225 3114 186 948.48 

A63B-024 249 2389 116 1858.182 

Biotechnology G01N-033 95 22263 16 23755.15 

C12Q-001 186 5899 54 5604.225 

In the finance/management sectors, the AI was used for commerce (G06Q-030), 

payment architectures (G06Q-020), business management systems (G06Q-010, 050), 

insurance and tax (G06Q-040). In the medical sector, the technologies, involved in 

diagnosis (A61B-005, 006, 008), examination or testing instruments (A63B-003), and 

surgical instruments (A06B-017), ranked high. For the transport sector, technologies 
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related to protecting against accidents (B60R-021), optical devices (B60R-001, B60Q-

001), vehicle control (B60W-030, 050, 040, 010), monitoring (B60R-011), seat 

management (B06N-002) and preventing theft (B60R-025) ranked high. In the 

semiconductor sector, technologies involved in semiconductor devices (H01L-027), 

manufacturing process (H01L-021), and details of semiconductor device (H01L-023) 

ranked high. In the game sector, the technologies involved in video games (A63F-013), 

sports appliances (A63B-071, 069), and controls for exercising (A63B-024) ranked high. 

For the analysis result of the biological materials sector, investigating and analyzing 

materials (G01N-033) ranked high, especially in the betweenness centrality, which means 

this technology has a tendency to mediate other technologies. In addition, measuring or 

testing processes (C12Q-001) ranked high in biotechnology sector. The biotechnology 

(C12Q-001) and biological materials (G01N-033), which were divided in the Section 3.3, 

were considered as one sector in this study since biological materials can be included in 

biotechnology sector.  

Consequently, the six sectors were defined as notable industrial sectors in this study. 

In addition, hub nodes in each sector were determined as influential technology. Figure 3-

5 shows the visualization of the six notable industrial sectors and influential technologies 

according to Table 3. Especially, for the finance/management sectors, most of the hubs 

(G06Q-010, 020, 030, 050) were positioned relatively high in both centralities. The 

medical sector has the highest technology (A61B-005) in both centralities among the 

hubs.  
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Figure 3-5. Hubs according to the industrial sector in the AI convergence network 
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3.4.2 Results of ego-network analysis  

This section analyzed the ego-network formed for the hubs to identify the linked 

technologies. From the ego-network analysis, the technology classification of strong-ties 

which were ranked in the top 10 were analyzed in this study. The strong-ties are shown in 

Table 3-5 according to each hub. (see Appendix A2-3 for each tie values). Obviously, a 

majority of strong-ties corresponded to common AI technology, such as pattern 

recognition, image analysis, data processing, and natural language processing. Thus, to 

determine differential strong-ties within the industrial sectors compared to other industrial 

sectors, we investigated strong-ties in terms of common or sector-specific technology. 

The footnotes in Table 5 shows a category of IPCs considering common sector-specific 

technology among industrial sectors. Consequently, Table 3-6 presents a summary of the 

common ties among the industrial sectors and sector-specific ties by industrial sector.  
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Table 3-5. Ties according to each hub in AI convergence network 

Sector  Hubs Strong Ties 

Finance/ 

Mgmt. 

G06Q-030 G06F-017 c), G06F-021 e), G06K-009 a), G10L-015 d), G06F-003, H04N-001, H04N-021 f) 

G06Q-020 G06F-017 c), G06F-021 e), G06K-009 a), G06F-003, G06K-019, H04N-001, H04N-021 f), B41J-024, B41J-002 

G06Q-010 G06F-017 c), G06K-009 a), G10L-015 d), G06F-003, G06K-007, H04L-029, H04N-021 f), H04W-004 

G06Q-050 G06F-017 c), G06F-019 g), G06F-021 e), G06K-009 a), A61B-005 m), G06F-003, H04L-029, G06F-003, H04L-029,  

H04N-021 f) 

G06Q-040 G06F-017 c), G06F-021 e), G06K-009 a), G06F-003, H04N-005, H04N-021 f) 

Medical A61B-005 G06F-017 c), G06F-019 g), G06K-009 a), G06F-003, G01J-005, G01R-033, H04N-005, G06T-007 b) 

A61B-006 G06F-019 g), G06K-009 a), G06T-007 b), G01R-033, G06T-001, G06T-005 h), G06T-011 h), G06T-017 h) 

A61B-008 G06F-017 c), G06F-019 g), G06K-009 a), G06T-007 b), G01R-033, G06T-011 h), G06T-017 h) 

A61B-003 G06K-009 a), G06T-007 b), G02B-027, G06F-003, G06T-005 h), H04N-005 

A61B-017 G06K-009 a), G06T-007 b) 

Transport B60R-021 G06K-009 a), G01F-023, G01S-007 j), G01S-013 j), G01S-015 j), G01S-017 j) 

B60R-001 G06K-009 a), G06T-007 b), G01S-015 j), G08G-001 i), H04N-005, H04N-007 

B60N-002 G06K-009 a), G01F-023, G01S-007 j), G01S-013 j), G01S-015 j), G01S-017 j) 

B60W-030 G06K-009 a), G06T-007 b), G01C-021 j), G05D-001 i), G08G-001 i) 
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B60Q-001 G06K-009 a), F21S-041, G01C-021 j), G06F-003, G08G-001 i), H04N-007, H04N-021 f), H04W-004 

B60W-050 G06K-009 a), G01C-021 j), G05D-001 i), G08G-001 i), G06F-003, H04N-021 f), H04W-004 

B60W-040 G06F-021 e), G06K-009 a), G01C-021 j), G05D-001 i), G06F-003, G08G-001 i),H04N-021 f), H04W-004 

B60R-016 G06K-009 a), G10L-015 d), G01C-021 j), G01S-007 j), G01S-015 j), G06F-003, H04N-021 f) 

B60R-025 G06F-021 e), G06K-009 a), G01C-021 j), G06Q-030, G05D-001 i), G06F-003, G07C-005, G08G-001 i), H04N-021 f), 

H04W-004 

B60R-011 G06K-009 a), G06T-007 b), G01C-021 j), G08G-001 i), H04N-005, H04N-007 

B60W-010 G06K-009 a), G06T-007 b), G05D-001 i), G08G-001 i) 

B64C-039 G06F-017 c), G06K-009 a), G06T-007 b), A01M-001, G05D-001 i), G06Q-010, G08G-005 i),  

H04N-005, H04N-007 

B64D-047 G06F-017 c), G06K-009 a), G06T-007 b), G05D-001 i), G06Q-010, G06Q-050, G08G-005 i),  

H04N-005, H04N-007    

Semiconductor H01L-027 G06K-009 a), H03M-013, H04L-009 l), H04L-012 l), H04M-001,  

H04N-005, H04N-007, H04W-008 l), H04W-028 l), H04W-088 l) 

H01L-021 G06K-009 a), G06T-007 b), G01B-011, G01N-021 k), G01R-031, G03F-001, G03F-007, G06T-001 

H01L-023 G06K-009 a), A61B-005 m), G06T-001, G07F-007, G11B-020, H04N-001, H05K-001 

Game A63F-013 G06F-017 c), G06K-009 a), G06T-007 b), G10L-015 d), G06F-003, G06Q-020, G06Q-030, H04N-005, H04N-007, 

H04N-021 f) 
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A63B-071 G06K-009 a), A61B-005 m), A63B-021, G06F-003, G09B-019 n), H04B-001, G06F-019 g) 

A63B-069 G06K-009 a), A61B-005 m), B33Y-010, G06F-001, G06F-003, G09B-019 n), H04W-084 

A63B-024 G06K-009 a), G06T-007 b), A61B-005 m), G06F-003, G09B-019 n), H04B-001, H04N-005 

Biotechnology G01N-033 G06F-017 c), G06F-019 g), G06K-009 a), G06T-007 b), G01N-015 k), G01N-021 k), G06F-007, G06K-007, G06Q-030 

C12Q-001 G06F-017 c), G06F-019 g), G06K-009 a), G06T-007 b), G01J-003, G01N-015 k), G01N-021 k) 

a) Pattern recognition (G06K-009) 

b) Image analysis (G06T-007) 

c) Data processing methods (G06F-017) 

d) Speech recognition (G10L-015) 

e) Against unauthorized activity (G06F-021) 

f) Selective content distribution (H04N-021) 

g) Data processing methods for bioinformatics (G06F-019) 

h) Image generation; enhancement (G06T-005, 011, 017) 

i) Control (G08G-001, G05D-001, G08G-005) 

j) Navigation; direction finding (G01C-021, G01S) 

k) Material analysis (G01N-021, 015) 

l) Electric communication (H04L-009, H04W-008, 028, 088) 

m) Diagnostic; identification (A61B-005) 

n) Demonstration appliances (G09B-019) 
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Table 3-6. Hub and ties by the industrial sector in AI convergence network 

Sector  Hubs Strong Ties  

Sector-specific  Common  

Finance/ 

Mgmt. 

Commerce (G06Q-030) 

Payment architectures (G06Q-020) 

Business management systems (G06Q-010, 050) 

Insurance and tax (G06Q-040) 

Against unauthorized activity (G06F-021) 

Selective content distribution 

(H04N-021) 

Pattern recognition (G06K-009) 

Image analysis (G06T-007) 

Data processing methods (G06F-017) 

Speech recognition (G10L-015) 

Medical Diagnosis (A61B-005, 006, 008),  

Examination or testing instruments (A63B-003),  

Surgical instruments (A06B-017) 

Data processing methods for 

bioinformatics (G06F-019) 

Image generation; enhancement  

(G06T-005, 011, 017) 

Transport Protecting against accidents (B60R-021),  

Optical devices (B60R-001, B60Q-001) 

Vehicle control (B60W-030, 050, 040, 010) 

Monitoring (B60R-011) 

Seat management (B06N-002)  

Preventing theft (B60R-025) 

Control 

(G08G-001, G05D-001, G08G-005) 

Navigation; direction finding  

(G01C-021, G01S) 
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Semiconductor Semiconductor devices (H01L-027) 

Manufacturing process (H01L-021)  

Details of semiconductor device (H01L-023) 

Material analysis ⅰ.) (G01N-021)  

Electric communication ⅱ.)  

(H04L-009, H04W-008, 028, 088) 

Game Video games (A63F-013) 

Sports appliances (A63B-071, 069) 

Controls for exercising (A63B-024) 

Measuring diagnostic purpose; 

identification of person (A61B-005) 

Demonstration appliances (G09B-019) 

Biotechnology Analyzing materials (G01N-033) 

Measuring or testing process (C12Q-001) 

Data processing methods for 

bioinformatics (G06F-019) 

Material analysis (G01N-021, 015) 

Note. Descriptions of each IPC are referred to the WIPO (2018, 2019b) 

i.) Especially Highly Ranked in Manufacturing process (H01L-021)  

ii.) Especially Highly Ranked in Semiconductor devices (H01L-027)  
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The result showed that pattern recognition (G06K-009), image analysis (G06T-007), 

data processing (G06F-017), and speech recognition (G01L-015) were commonly used to 

almost all industrial sectors, and these technologies correspond to common AI-related 

technology. Especially, image analysis (G06T-007) was highly ranked in medical, 

transport, semiconductor, game, and biotechnology sectors. Also, processing (G06F-017) 

was highly ranked in finance, medical, game, and biotechnology sectors. The speech 

recognition (G01L-015) was highly ranked in finance, transport, and game sectors.  

On the other hand, in addition to these common AI-related technologies, different ties 

can be identified for each sector to understand the unique characteristics among the 

industrial sectors. Table 6 shows the summary of ties in each sector. For the 

finance/management sector, programs, or data against unauthorized activity (G06F-021) 

was widely used in payment architecture, commerce, business management systems and 

insurance (G06Q-020, 030, 040, 050). Moreover, selective content distribution (H04N-

021) was highly connected with all. Additionally, speech recognition (G10L-015) 

technology was appeared in commerce (G06Q-030) and administrative area (G06Q-010). 

For the medical sector, image analysis (G06T-007) appeared to be commonly used in the 

sector. Additionally, a variety of image-related technologies such as image generation and 

processing (G06T-005, 001, 017) and optical technologies (H04N-005) emerged in the 

others. In addition, diagnosis-related technology (A61B-005, 006, 007) showed high 

connectivity with the data processing methods for bioinformatics (G06F-019), which 

includes machine learning, data mining, and biostatistics. For the transport sector, image 
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analysis (G06T-007) was shown to be mainly linked to various technologies. Especially, 

the first representative finding was control technology. The technology seen in transport-

related nodes was identified as a traffic control system (G08G-001), which also included 

general control (G05D-001) and aircraft control (G08G-005). The second finding was 

technology related to directional guidance and detection. Navigation (G01C-021) and 

radio direction-finding (G01S) showed important connections. For the semiconductors 

sector, manufacturing processes (H01L-021) showed many connections with image 

analysis (G06T-007). Especially, semiconductor devices (H01L-027) had many 

connections with the sub-technology of the electric communication technique (H04). In 

addition, image-related technology, which are optical (G10B-011) or photomechanical 

(G03F-001, 007), and also material analysis (G01N-021, G01R-031) were appeared in 

manufacturing processes. The game sector was divided into two categories: video games 

(A63F-013) and sports/ exercises (A63B-071, 069, 024). In video games, not only image 

analysis (G06T-007) and but also speech registration (G10L-015) showed high 

connections at the same time. On the other hand, sports/exercise had a high connection 

with medical technology (A61B-005). In addition, education, or demonstration appliances 

(G09B-019) were appeared in the sports/exercise area. For the biotechnology sector, data 

processing methods for bioinformatics (G06F-019) was also highly linked, and 

technology related to the analysis of materials (G01N-021, 015) appeared.  
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3.4.3 Results of clustering analysis  

The top 30 keyword were extracted for each cluster, and these results of keywords and 

TF-IDF values are shown in Appendix A2-4 to A2-9. The application of a technology is 

described by a verb, and a product or process is expressed using a noun. (Taylor & Taylor, 

2012). This study selected representative keywords among the top 30, considering the 

discriminative meaning of each cluster, excluding redundant or common keywords 

among clusters. Table 3-7 shows the results of clustering analysis.  

 

Table 3-7. Results of clustering analysis by industrial sectors in AI patents  

Sector  Cluster Number of  

Patents  

Representative Keywords  

Finance 

/Mgmt.  

0 767 content, user, multimedia, advertisement  

1 6583 use, message, text, language 

2 1053 electronic document  

3 2493 user, biometric, transaction, authentication, payment  

4 1707 image, capture, processing 

Medical 0 564 medical image processing 

1 2681 user, signal, eye, sensor, control, determine 

2 1418 image, object, capture, acquire, processing 

3 753 fingerprint, sensor, identification 

4 414 projection, ray, image, ct, tomography 

5 4388 image, tissue, feature 

Transport 0 206 unmanned aerial vehicle 

1 2094 vehicle, image, sensor, signal, detect, camera, video, control 

2 1331 vehicle, user, control, parking, voice, autonomous vehicle 
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3 476 drive, assistance, behavior, gaze, eye 

4 840 object detection 

5 1174 image capture processing 

6 301 detect, lane, road, boundary, change 

Semiconductor 0 553 circuit, element, layer, substrate, signal, control, detection  

1 484 pattern, image, wafer, mask, inspection 

2 270 light, emit, fingerprint, optical, substrate 

3 184 defect, inspection, classification  

4 405 fingerprint sensor  

Game 0 301 voice, audio, speech, control, command, message, 

communication 

1 587 motion, exercise, activity, movement, athletic, body, sports 

2 56 augment/virtual reality 

3 53 user identification access 

4 228 image, card, face, detect, object, capture 

5 351 video game, image, gesture, golf, ball, control 

Biotechnology  0 854 determine, measure, detect, feature, genetic 

1 468 image analysis, tissue, cell, specimen 

2 116 data identification, real time, pcr 

3 146 sequence, nucleotide, oligonucleotide, cluster 

4 428 biological sample, image analyze 

5 657 gene expression, biomarker, cancer, disease, treatment, 

diagnosis 

6 287 cell, blood, image analysis, determine 
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3.4.4 Insights into the two-way approach 

This study proposes a new framework in the form of a two-way approach to understand 

technology convergence of AI in the industrial sector overall. As a result, this study 

investigates technology convergence of AI in different industrial sectors and investigates 

the technology category and the utilization of the technology. Furthermore, the 

framework of the two-way approach provides an in-depth understanding of technological 

applicability from the perspectives of the horizontal and vertical applicability of various 

industrial sectors.  

The two-way approach in this study provides insight by which to understand the 

technological applicability of AI as a GPT. Figure 3-6 depicts the concept of 

technological applicability based on the research framework introduced in Section 3.2.1. 

The main characteristic of a GPT is that it has the potential to expand into a wide range of 

heterogeneous industrial applications (Feldman & Yoon, 2012). Specifically, Lipsey et al. 

(2005) suggest two types in relation to this: horizontal applicability and vertical 

applicability. The horizontal applicability of a GPT refers to whether the technology is 

applicable and utilized across various industrial sectors, whereas the vertical applicability 

of a GPT is whether the technology is widely utilized in the subsectors within an 

industrial area (Feldman & Yoon, 2012; Lipsey et al., 2005). The insight into the two-way 

approach regarding the horizontal and vertical applicability of AI is explained below. 

From the results of this study, AI technology is applied to various industrial sectors 

and has horizontal applicability. First, according to the hubs and from the top-down 
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approach, the technologies in a range of other industrial sectors were included in the 

central position in the AI convergence network. In other words, this suggests that 

applications of AI in various industries occur actively. Finance/management, medical, 

transport, gaming, semiconductors, and biotechnology were identified as notable 

industrial sectors of AI in this study. Second, Second, according to the ties from the top-

down approach, several common strong ties were identified, in this case pattern 

recognition (G06K-009), image analysis (G06T-007), data processing methods (G06F-

017), and speech recognition (G10L-015). Common strong-tie technologies are variously 

applied with connections among various industries, as shown in Table 3-6. Third, 

according to the keywords from the bottom-up approach, the results show horizontal 

applicability in terms of technology utilization in connection with the results of the top-

down approach. The results here show that the same horizontal technology was variously 

utilized depending on the industrial sectors, as confirmed in Table 3-8. For instance, hub 

technology pertaining to ‘image analysis’ (G06T-007) is identical among the industrial 

sectors in the top-down, whereas the bottom-up allows us to identify differences in target 

for each sector used for the image analysis. The image analysis is mainly utilized for the 

identification of electronic documents in the finance sector (cluster #2), analysis of 

projection images (i.e. CT, tomography, X-ray) in the medical sector (cluster #4), 

inspection on patterns of wafers in the semiconductor sector (cluster #1), for object 

detection in the transport sector (cluster #4), and analysis of biological images (i.e. tissues, 

cells, specimen) in the biotechnology sector (cluster #1). 
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Also, the results showed that AI technology has vertical applicability as it is applied in 

a wide range of technology categories with various uses within a specific industrial sector. 

First, according to the hub and tie nodes in each industrial sector from the top-down 

approach, it was found that AI technology complements various sector-specific 

technologies within the industrial sector. As shown in Table 3-6, various sector-specific 

technologies were identified in each industrial sector in relation to AI. For instance, in the 

finance/management sector, AI technology is applied to various areas, such as commerce 

(G06Q-030), payment architectures (G06Q-020), insurance and taxes (G06Q-040). 

Second, according to keywords from the bottom-up approach, the results show the 

patterns of technology utilization in connection with the results of the top-down approach 

within the industrial sector. For instance, the finance/management sector shown in Table 

3-6 shows the payment architecture (G06Q-020), and against unauthorized activity 

(G06F-021) from the results of the top-down approach. In line with this, the keywords of 

clusters show the various patterns of utilization related to those technologies, such as 

‘user’, ‘biometric’, and ‘authentication’ (cluster #3) as shown in Table 3-7. 

In conclusion, this study investigated various industrial sectors to which AI 

technology is applied as well as various technologies to which AI is applied within each 

industrial sector. Through this, the study presented the results of an empirical analysis 

showing that AI technology has horizontal and vertical applicability. In particular, the 

results of the top-down approach based on IPC data and the bottom-up approach based on 

text data were combined, complementing the interpretation of the results of each analysis 
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in order to understand the applicability of AI in greater detail.  

 

 

Figure 3-6. Horizontal and vertical applicability of AI 
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Table 3-8. Summary of horizontal and vertical applicability 

Horizontal 

applicability 

Industrial Sector Finance/Mgmt. Medical Transport Semiconductor Game Biotechnology 

Technology Category 

(Common Ties)  
G06K-009, G06T-007, G06F-017, G10L-015 

Vertical  

applicability 

Technology Category 

(Hubs)  

G06Q-030 

G06Q-020 

G06Q-010, 050 

G06Q-040 

A61B-005,  

006, 008 

A63B-003 

A06B-017 

B60R-021,001, 

B60Q-001 

B60W-030,  

050, 040, 010 

B60R-011,  

B06N-002 

B60R-025 

H01L-027 

H01L-021 

H01L-023 

A63F-013 

A63B-071, 069 

A63B-024 

G01N-033 

C12Q-001 

 

Technology Category 

(Sector-specific Ties)  

G06F-021 

H04N-021 

G06F-019 

G06T-005, 011, 

017  

H04N-005 

G08G-001  

G05D-001  

G08G-005 

G01C-021 

G01S 

G01N-021 

H04L-009 

H04W-008,  

028, 088 

A61B-005 

G09B-019 

G06F-019 

G01N-021, 015 
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Technology Utilization  

(Keywords)  

Image,  

identify,  

electric 

document  

Image, 

tomography, 

CT 

Image, 

object detection 

Image, 

wafer, 

mask,  

inspection 

Image,  

face, 

object capture 

Image,  

biological sample 

Authentication,  

payment  

Sensor, 

control 

determine 

Unmanned aerial 

vehicle 

Signal, 

detection 

Augment/Virtual 

Reality 

Detect, feature, 

generic 

… … … … … … 
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3.5 Discussion and conclusion 

This is an empirical study to understand technology convergence focusing on the case of 

AI. This study attempts to various analytical methods including network centrality 

analysis, ego-network analysis, and clustering analysis. In the results, this study identifies 

the industrial sector, technology category, and utilization with respect to the technology 

convergence of AI in order to answer the first research question. Additionally, this study 

confirms the horizontal and applicability of AI to answer the second question.  

The theoretical contributions of this study on technology convergence research are as 

follows. This study suggests a new two-way approach, consist of the top-down and 

bottom-up approaches, to understand the characteristics of technology convergence. The 

framework of this study suggests integrated perspective on technology convergence based 

on industry, technology category, and related to utilizations. Consequently, it is possible 

not only to compare the characteristics of technology convergence by industrial sector, 

but also to define patterns that can be revealed by each of the two-way approaches. 

The methodological contributions in this study are as follows. The first is the 

combination of the network analysis using structured data in patent documents and the 

cluster analysis using unstructured data in patents. The network analysis provides a direct 

indicator by which to understand the patterns of technology convergence, while the 

clustering analysis provides implications related to practical utilization considering each 

defined convergence pattern. The network analysis complements the results of the 

clustering analysis when defining the cluster structures and meanings. The clustering 
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analysis is the result of the unsupervised learning with unlabeled data, and meanings 

should be found by means of interpretations of randomly derived results. The results 

derived from the network analysis can then serve as common criteria and important 

indicators for interpreting the outcomes from the clustering analysis. Second, this study 

gives contribution to technology convergence research by applying the GMM clustering 

algorithm. As the technology convergence dataset is a mixture of different categories of 

technologies, GMM explains well to classify clusters with various means and variances. 

This is meaningful study since there have been few previous studies related to the GMM 

clustering regarding technology convergence research. 

From a strategic business perspective, the results of this study can contribute to 

establishing technological strategic directions for a company. For industrial AI companies, 

the results of this study identified the influential technologies of each industrial sector. 

Because the technologies derived from this study exist in an area of high 

complementarity with AI technology for each industrial sector, it is recommended to 

review existing business models from various angles within the scope of technology. On 

the other hand, also from the results of this study, it was found that there was relatively 

less applied natural language processing in biotechnology and in the medical and 

semiconductor sectors compared to image analyses. Through the results of this study, it is 

possible to identify technologies that have been relatively less developed in each 

industrial sector and to discover new business creation opportunities in new areas in these 

sectors. For cross-industry AI companies, the results of this study contribute to 
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explorations of scalability opportunities based on the core capabilities of companies. 

According to the results here, the image analysis based on a material analysis has 

scalability to wafer pattern analysis during a semiconductor analysis and biological 

sample pattern analysis in the biotechnology and medical sectors as well. Thus, it is 

necessary to develop extensible technologies that can be applied across industries.  

From a policy perspective, this study suggests balanced AI development for the 

growth of AI technologies into a GPT. First, it is necessary to establish R&D policies 

pertaining to AI by industry with respect to sustainable social development beyond 

pursing short-term technological innovations and growth. The results of this study 

revealed the status of each sector regarding AI convergence. While the technological 

trajectory of the cumulative AI patents has followed the S-curve over the past two 

decades and is in the growth stage of the technology life cycle (TLC), it appears that there 

is a difference in the level of growth stage in terms of the industrial sector. In particular, it 

was confirmed in the results of this study that industries or technologies directly related to 

the sustainable development do not stand out significantly in AI convergence. For 

instance, despite the fact that environment-related technology is essential for sustainable 

growth, the results of this study show that the degree of convergence of AI and 

environmental technology is still very low. In addition, previous study found that AI has 

had a significant impact on reducing energy consumption and energy intensity (Liu et al., 

2021a). However, it appears that the convergence of these sustainable technologies and 

AI has yet to make notable progress given the current status from the perspective of 



97 

industry overall. Therefore, government R&D policies should be supported to promote 

the development of sustainable technologies on AI. Previous research has found that 

environmental policies and subsidies by governments to promote inventions of green 

technologies significantly increased green patent publication counts in China (Fujii & 

Managi, 2019). Comprehensively, governments in each country should understand the 

different development statuses with regard to the convergence of AI and various 

industries and should review R&D strategies considering policies or subsidies to 

encourage specific sectors in order to realize sustainable growth. Second, it is 

recommended to establish policies to encourage technology development for privacy and 

data protection. In the results of this study, technologies related to the protection of 

privacy or data were rare. Technologies related to authorization were found in the finance 

sector, whereas this type was not found in the medical and biotechnology sectors, which 

deal with sensitive personal information. In relation to this, it is necessary to prepare for 

negative effects that may arise due to the development of AI technology in each industry 

sector.   

The limitations of this study and future research suggestions are as follows. First, this 

study considered the category of AI as three broad groups of technology based on the IPC 

codes of patents; learning and reasoning, natural language processing, and computer 

vision. However, the categories in this study cannot fully explain the overall AI 

technology scheme. According to previous work, WIPO (2019a) proposes an AI 

technology category for AI techniques and functional applications, and WIPO (2022) also 
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suggests IPC and CPC codes corresponding to AI techniques and functional applications. 

However, the present IPC and CPC codes themselves do not completely represent all AI 

techniques and functional applications, such as machine learning, probabilistic reasoning, 

predictive analytics, robotics, and others. Thus, future studies should collect and analyze 

additional data based on a systematic classification of AI technology by utilizing both 

IPC and CPC codes and key phrases which thus far are not explained by IPC or CPC 

codes. Second, the results of the text analysis here are simply fragmentary keywords 

based on TF-IDF. Therefore, there is a limitation in that it is difficult systematically to 

classify the meanings of corresponding words in the context of patent text, such as words 

related to technology, processes, products and data. In future studies, understanding text 

data in patents considering the context and meaning will be needed in research related to 

natural language processing, such as named entity recognition. Third, with respect to the 

additional methodological approaches, it is recommended to compare the result of 

analyzing text data using GMM with other soft clustering algorithm, such as topic 

modeling and fuzzy modeling. Fourth, since this study focuses on the technology and 

industrial sector with high centrality measure and strong-tie value, the research on the 

technology and industrial sector which have low centrality and tie values, but are still 

considered importance is necessary. Future studies investigate each industrial sector 

respectively with in-depth understanding, or consider other industries not covered in this 

study. Also, it is meaningful to examine the background and characteristics on the area 

where AI convergence occurred low. 
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Chapter 4. Technology strategies of AI 

startups: focusing on patent activity and 

diversity 

4.1 Introduction  

Previous research suggests that young and small innovative companies are regarded as 

main drivers of innovative activities and economic growth (Caviggioli et al., 2020; 

Schneider & Veugelers, 2010). In addition, disruptive innovations are more adequate for 

small firms considering that seeking market success by bringing new disruptive 

technologies to the market (Hacklin et al., 2005; Kassicieh et al., 2002). Therefore, 

investigating the innovative activities and strategies of companies, especially startup 

firms, is necessary to understand the growth and development of emerging technologies. 

The stage of the growth and life cycle of a startup is defined by the J-curve, which 

refers to the startup financing cycle (Love, 2016). Startups generally confront what can be 

considered the valley of death in the initial seed stage, go through early- and late-stage 

funding rounds, and finally enter the public market. The valley of death refers to the 

unfavorable circumstances any startups encounter early in the life cycle (Gbadegeshin et 

al., 2022). The survival rate of startups is very low, with only about 20% surviving for 

five years (Liu et al., 2021b; Song & di Benedetto, 2008). In order to establish the 

continuous survival and operation of startups, funding by investors is essential for each 

growth stage and period. Thus, this study considers investment funding as a means of the 
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growth of startups.  

Among the many factors influencing startup investments, patents should be 

considered important to understand a firm’s technology strategy. The mainstream of 

research on startup patents is related to the effects of patent signals on investors and 

funding. From the perspective of signaling theory (Spence, 1973; Spence, 2002), patents, 

which are indicative of protected technological and product innovations according to 

patent rights, act as signal of reducing information asymmetry for investors (Caviggioli et 

al., 2020; Hsu & Ziedonis, 2013; Mann & Sager, 2007; Nadeau, 2010). Zhang et al. 

(2019) analyzed three main types of patent signals, technological signals, commercial 

signals, and legal signals, and examined the effects of these signals on venture capital 

(VC) amounts. Hoenen et al. (2014) found that the patent signaling value is significant in 

the early stages of venture capital financing. 

Another research stream is related to startup patents along survival or exit routes. The 

main exit routes are considered to be the initial public offering (IPO) and the merger and 

acquisition (M&A) route. According to research on the relationship between patents and 

IPOs, patents positively affect the amount of money gathered during the IPO, the survival 

rate after the IPO, and the stock returns performance in the long-run (Useche, 2014; 

Wagner & Cockburn, 2010; Zhang & Zhang, 2020). Exit routes can be divided into 

bankruptcy, M&A, and voluntary liquidation (Kato et al., 2022). M&A exits are 

considered to be the typical form with regard to a sale of a firm, representing a desirable 

outcome for new and young firms (Cotei & Farhat, 2018). From the literature, patents 
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have a positive effect on M&A (Kato et al., 2022; Cotei & Farhat, 2018; Wagner & 

Cockburn, 2010).  

The literature has mainly focused on the number of patents but has neglected various 

characteristics of patents in a patent portfolio (Caviggioli et al., 2020). Specifically, due to 

the constraint of a startup itself with a small number of patents, scant attention has been 

directed toward the issue of patent portfolio diversity. Although research on technology 

diversity has generally analyzed large firms and has rarely examined small businesses, 

recent studies suggest diversification strategies for startups in a relation to the RBV 

(resource-based view) of small firms (Khurana & Farhat, 2021; Coleman et al., 2013; 

Esteve-Pérez & Mañez-Castillejo, 2008). Although numerous studies of strategic 

management have examined diversification from a product or market perspective and not 

from the perspective of technological competence, the diversity of a technology portfolio 

can account for the capability of a firm to realize technological innovations in terms of 

the RBV (Lin et al., 2006). Therefore, to fill the research gap, this study considers and 

examines the diversity of patent portfolios of startups. 

In particular, previous research has paid little attention to AI startups despite the fact 

that investors keenly follow AI startups. According to Tricot (2021), VC investments in 

AI startups are increasing every year, reaching 21% of all VC investment in 2020, from 

only 3% in 2012, showing a 28-fold increase in the total amount. Because VC 

investments provide some understanding of promising industries (Tricot, 2021), this study 

provides insights into the growth of AI startups and the AI sector as well. 
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The purpose of this study is to investigate the relationship between patent strategies 

and investments in AI startups. The first research question is as follows: what are the 

relationships between patent activity and investments in AI startups? Patent activity in 

this question considers whether the firms have patents or not and how many they have, if 

any. Given that a relationship between patent counts and funding amounts was found in 

other sectors in earlier work, we empirically test this relationship in the AI sector. The 

second research question asks about the relationships between patent diversity and 

investments in AI startups. This study attempts to examine the relationship between 

patent diversity and funding amounts, an area that did not receive attention in previous 

studies. Patent diversity in this study is divided into two levels, unrelated diversity and 

related diversity. Additionally, to answer the two research questions, this study examines 

the moderating effects of the investment funding stage and the type of AI startup firm on 

the relationships.  

The remainder of this paper is structured as follows. Section 4.2 presents the literature 

review. Section 4.3 shows the methodology. Section 4.4 describes the analysis and results 

of the study. Section 4.5 presents the discussion and conclusion and suggests future 

research.  
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4.2 Literature review  

4.2.1 Patent activity and startup investment  

Patents of startups are considered to be an intangible asset that can be utilized to measure 

the valuation of the firm (Lynch, 2021). Through patents, investors can clearly estimate 

the potential value and growth of the firm. Startups normally depend on external 

investment capital in order to overcome their financial constraints and to sustain the 

business and engage in innovative activities (Caviggioli et al., 2020; Atherton, 2012; 

Macht & Robinson, 2009). Likewise, the funding amounts of investors are recognized as 

a proxy by which to measure the growth of a startup. 

Extant literature shows a positive relationship between patent and VC funding 

(Caviggioli et al., 2020; Mann & Sager, 2007; Audretsch et al., 2012). VC amounts are 

positively linked to the number of patents, the patent family, the patentee, and patents 

cited, whereas no relationship between the scope of the patent, the scope of the firm and 

the depth of firm can be found (Zhang et al., 2019). According to research on the effects 

of patent characteristics on VC amounts, public patents are most significant compared to 

granted, utility, and design patents (Zhang et al., 2019). Meanwhile, from research on 

patent activity and pre-money valuation, patent applications show a positive relationship 

with firm value, whereas grant patents show a positive relationship only in the early, pre-

revenue stages and the early financing rounds (Greenberg, 2013).  

Depending on the financing stage of the life cycle, startups have different 

requirements in each stage, and the effects of VC investments are different (Flynn & 
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Forman, 2001). Seed capital is the first financing type used for product research and 

development, with startup investments then used to produce and sell the product; these 

two stages are regarded as early stages of investment (Jeng & Wells, 2000). The next 

stage is considered as the expansion capital stage, which is used to expand manufacturing 

or the distribution capability of the firm (Jeng & Wells, 2000). Likewise, early stage 

startups focus on the idea and proof of their concept, while startups in later stages should 

attempt to expand the market with their already proven concept (Bianco et al., 2022; 

Davila et al., 2003) 

There has been little attention paid to investigating the relationship between patents 

and financing rounds, and there is no consistent consensus in the research (Caviggioli et 

al., 2020). Hoenen et al. (2014) found a positive relationship between patents and early 

stage financing in the high-technology industry, especially comparing the first round of 

financing and the second round of financing. Hsu and Ziedonis (2013) suggested that 

patents increase startup valuation more steeply in the early financing rounds among 

semiconductor startups, whereas Mann and Sager (2007) suggested a greater value of 

patents in the later stages of financing for software startups. Caviggioli et al. (2020) found 

positive significant effects between patents and later stages of financing considering low 

and high patent intensity levels in the industrial sector. 

In line with this, the literature also finds that the effects of patents on firms show 

heterogeneous results depending on the industrial sectors (Caviggioli et al., 2020; Hall et 

al., 2014; Nadeau, 2010). One reason is the different level of appropriability in each 
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industry, particularly in relation to whether the patent offers strong protection from 

imitations (Caviggioli et al., 2020; Hall et al., 2014). In addition, the relationship between 

patent activity and investments of VC or corporate venture capital (CVC) differs 

according to the industry. (Dushnitsky & Lenox, 2005; Nadeau, 2010).  

Thus, this study investigates the relationship between patent activity levels and 

funding amounts in AI startups. In particular, the proportion of startups without patents is 

very large even when the value of such firms is high (Lynch, 2021). Hence, this study 

examines whether these firms have patents and if so how many patents they have as a 

measure of patent activity. In addition, this study examines the moderating effects of 

funding stage and industrial range (referred to here as the firm type) of AI startups on the 

relationship between patent activity levels and funding amounts.  

 

4.2.2 Patent portfolio diversity  

The research on patent portfolios considers perspectives of risk reduction and synergy 

creation (Appio et al., 2019; Lin et al., 2006). In term of risk reduction, the primary 

concept is based on the financial portfolio theory, which holds that aggregate portfolio 

risk can be pooled and total risk reduced compared to the simple sum of the risk of 

individual investments (Jacobs & Swink, 2011).  

The portfolio theory can be conceptualized to the portfolio of product as well, 

aggregating the uncertainty from the various product pools and reducing the risk (Jacobs 

& Swink, 2011; Baker et al., 1986). Meanwhile, various strategic management studies 
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suggest the importance of synergy creation aspects, indicating that the integrated patent 

portfolio overall is more valuable than the sum of each single patent (Appio et al., 2019; 

Lin et al., 2006).   

The research stream on the patent portfolio strategy focuses on the two aspects of 

patent portfolio specialization and patent portfolio diversity (Appio et al., 2019; Lin et al., 

2006). Regarding patent portfolio specialization, this concept is based on the capability-

based view and suggests that the core competences of firms can create synergy when the 

firm focuses on their technological knowledge in relatively few fields (Lin et al., 2006; 

Barney, 1991). Focusing on a small breadth of technology field has an advantage in that it 

can offer a dominant position in core technology fields (Lin et al., 2006). In contrast, the 

patent portfolio diversity strategy seeks to extend the technological scope of the existing 

knowledge of firm so that it gains various types of heterogeneous knowledge and 

capabilities (Appio et al., 2019). Studies have shown that a new knowledgebase can 

emerge from technology diversity, which can help a firm explore new business 

opportunities, finding that high-tech firms increase their levels of technology diversity 

over time (Lin et al., 2006; Granstrand et al., 1997). In addition, technology diversity can 

allow the firm to undergo sustainable business evolution, preventing the negative effects 

from the lock-in of one specific technology area (Garcia-Vega, 2006).  

Extant literature examines various types of relationships between technology portfolio 

diversity and performance, and the results differ depending on the proxy used to measure 

diversity and firm performance (Lloyd & Jahera, Jr., 1994). The research broadly uses 
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patent classification codes to measure patent portfolio diversity in an entropy-based 

manner (Appio et al., 2019; Zabala-Iturriagagoitia et al., 2020; Chen et al., 2010; Chen et 

al., 2012; Lin et al., 2006). Appio et al. (2019) measured patent portfolio diversity at the 

three different levels of section, class and the sub-class level of IPCs, showing that only 

the section level has a significant inverted-U shape for firm profitability. Chen et al. 

(2012) unrelated diversity and related diversity using UPC, finding that related diversity 

has a positive effect on innovation performance, while unrelated diversity has an inverse 

U-shape relationship. Zabala-Iturriagagoitia et al. (2020) measured the concepts of 

unrelated variety and related variety using IPC codes, suggesting that unrelated variety is 

a relative effective during the stages of economic expansion, whereas related variety is 

more effective during stages of economic crisis.  

Meanwhile, there has been little attention paid to technology diversity and 

performance in startups, and no evidence exists, especially for AI startups. Hence, this 

study investigates the relationship between patent portfolio diversity levels and funding 

amounts in the AI sector. This study divides patent portfolio diversity into two types: 

unrelated technology diversity and related technology diversity. Also, this study examines 

the moderating effects of the funding stage and the firm type of AI startups on the 

relationship between patent portfolio diversity and the funding amounts.  
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4.3 Methodology 

4.3.1 Data   

Crunchbase data is widely used in the research on startups (Żbikowski & Antosiuk, 2021; 

Bock & Hackober, 2020; Malyy et al., 2021). This study collected a list of AI startups and 

basic information about the startups from Crunchbase. The list of AI startups in this study 

consisted of those in the artificial intelligence industry group, particularly in subordinate 

industries of artificial intelligence, intelligent systems, machine learning, natural language 

processing, and predictive analytics as existed in Crunchbase. The AI startups here were 

US-based startups and were founded from 2000 to 2022. Also, in order to ensure 

representativeness of the sample, this study considered various firm statuses, including 

unicorn, IPO, M&A, and general startups. A unicorn describes a company on the private 

market valued at over $1 billion (Brown & Wiles, 2015; Lynch, 2021). While there has 

been scant research on unicorns in academia, unicorn companies have captured investors' 

funds, the public’s attention, and have brought significant innovations to the public, 

despite being few in number and despite their uniqueness (Lee & Lin, 2020; Bock & 

Hackober, 2020; Lynch, 2021). Thus, this study distinguished unicorns from other general 

startups. All US-based AI unicorn firms and IPO firms were collected given that the total 

number of AI unicorn and IPO startups was too small. Then, we constructed top listings 

of AI startups from Crunchbase and collected M&A firms, which have a history of being 

acquired by other organizations. General firms which were not included as unicorn, IPO, 

and M&A types were also collected. Next, this study collected basic information about 
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the selected AI startups. Additionally, this study targeted AI startups which had funding 

from at least once venture capital investment firm. Finally, a total of 505 startups were 

collected, including 82 unicorns, 39 IPO firms, 178 M&A firms, and 206 other general 

firms. The classification criteria for the unicorn, M&A, and IPO types depended on the 

final events of the companies. 

In addition, this study collected application patents regarding the 505 firms from a 

Google Patent Search. The assignee of the patents was matched with legal name from 

Crunchbase. In addition, in case of the assignee of a patent was re-assigned, the date was 

reflected as the designated date of the target company’s patent. According to the literature, 

application patents were more positively related to funding amounts and firm value 

compared to grant patents (Zhang et al., 2019; Greenberg, 2013), and thus this study 

targeted application patents. 

Table 4-1 shows a summary of the datasets used in this study, and Table 4-2 presents 

the descriptive statistics of the firms. There were 271 firms with application patents and 

234 firms without application patents. 
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Table 4-1. Datasets 

 Firm status Firm type 

 All General M&A Unicorn IPO 
Industry-

specific 

Cross- 

industry 

Early Stage (Seed, Series A, B)  292 141 132 7 12 192 100 

Later Stage (Series C and over) 213 65 46 75 27 133 80 

Total 505 206 178 82 39 325 180 

Firms with patents        

 Early Stage (Seed, Series A, B) 127 52 62 4 9 89 38 

 Later Stage (Series C and over) 144 37 35 53 19 86 58 

Total 271 89 97 57 28 175 96 

Firms without patents        

 Early Stage (Seed, Series A, B)  165 89 70 3 3 103 62 

 Later Stage (Series C and over) 69 28 11 22 8 47 22 

Total 234 117 81 25 11 150 84 
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Table 4-2. Descriptive statistics  

All firms Mean SD Min Max 

    total investment $149M $286M $50K $3,520M 

    number of investors 11.76832 8.5226 1 51 

    number of patents 8.140594 32.0004 0 471 

    age (year) 8.752475 3.766514 2 23 

    employees 260.6931 622.9084 5 7500 

Firms with patents     

    total investment $200M $359M $2M $3,520M 

    number of investors 13.01107 9.112256 1 51 

    number of patents 15.16974 42.47928 1 471 

    age (year) 9.804428 3.769583 2 23 

    employees 354.3542 787.0115 5 7500 

Firms without patents     

    total investment $88.8M $141M $50K $791M 

    number of investors 10.32906 7.55116 1 48 

    number of patents 0 0 0 0 

    age (year) 7.534188 3.382755 2 22 

    employees 152.2222 315.5107 5 3000 
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This study divided AI startups into two broad types of firms using the industry group 

information from Crunchbase. All of the firms collected for the purpose of this study 

were assigned to the ‘artificial intelligence’ industry group, though they could also be 

assigned to multiple other industry groups. Thus, a total of forty-three industry groups 

were found from the collected AI firms in this study. This study used the information of 

assigned industry groups of the AI firms to divide them into the two categories of 

industry-specific AI firms and cross-industry AI firms. The industry-specific AI firms 

here are describes as firms which focus on applying AI on specific industries, such as 

manufacturing, biotechnology, transportation, etc. The cross-industry AI firms in this 

study refer to firms which focus on developing AI solutions or products across various 

industries based on ICT technology. In this study, AI firms which were additionally 

assigned to at least one of the industry groups of the industry-specific list were initially 

classified as industry-specific AI firms, with the remaining firms classified as cross-

industry AI firms (see Appendix A3-1). The industry-specific list was based the case 

where specific industries other than AI and ICT-related industries were specified as the 

industry groups. Whereas the ICT-related industries were classified as the cross-industry 

list considering the characteristics of their development of AI solutions and products, 

which could not be separated from ICT-related technologies and industries.  

 

 

 



113 

4.3.2 Empirical methods 

This study constructed two parts of empirical analyses. First, this study explored the 

relationship between the patent activity levels and funding amounts of AI startups. 

Second, this study investigated the relationship between patent diversity levels and 

funding amounts of AI startups. For the first parts, in this study, a multivariate regression 

analysis was conducted on the variable during the final year of the collected data. The 

multivariate regression analysis indicated the presence of a relationship between a patent-

holding firm (or not) and the funding amount. Also, a fixed-effect analysis was conducted 

using the variables by year. The fixed-effect analysis illustrated the relationship between 

patent counts and funding amounts. For the second part, this study conducted a fixed-

effect analysis on the variables by year to examine the relationship between funding 

rounds of startups and patent diversity levels. Additionally, this study tested the 

moderating effects of the funding stage and the firm type on the relationships considering 

in both the first and second parts of the model. To consider the minimum number of years 

for patent publications, a time lag of two years was utilized. 
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4.3.3 Variables 

Table 4-3 shows the definition of each variable. The funding amount (FundAmt), the 

dependent variable in this study, was calculated as the total amount including, all seed, 

venture capital, private equity, and other types of funding procured for each funding 

round. The source of the funds was not classified in this study given that the sources of 

funds varied depending on the funding round. For research question 1, the independent 

variables were whether the firm held a patent or not (PatentYN) and the patent count 

(Patent count), referring to the patent activity in this study. For research question 2, the 

independent variables were patent diversity, consisting of technology diversity (TD), 

unrelated technology diversity (UD), and related diversity (RD). The calculation of 

technology diversity was based on the entropy measure. From previous research, IPC 

codes were utilized to measure technology diversity, using the widely used 4-digit IPC 

codes (Appio et al., 2019; Zabala-Iturriagagoitia et al., 2020; Chen et al., 2010). The 3-

digit IPC code referred to a wider range of technology diversity (Appio et al., 2019), and 

this was defined as the unrelated variety of technology (Zabala-Iturriagagoitia et al., 

2020). Thus, this study analyzed TD based on 4-digit IPC codes and analyzed UD based 

on 3-digit IPC codes. Also, the related RD in this study was measured according to the 

difference between TD and UD (Chen et al., 2012). The equations for TD, UD, and RD 

are shown in Table 4-3, based on the previous works (Chen et al., 2012; Zabala-

Iturriagagoitia et al., 2020, Appio et al., 2019; Chen et al., 2010). Pit in the Equation (1) 

denotes the patent proportion of the 4-digit IPC technology class i within n different 4-
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digit IPC technology classes until the given year of t. Pjt in the Equation (2) represents the 

patent proportion of the 3-digit IPC technology class j within m different 4-digit IPC 

technology classes until the given year of t. The moderating variables were the funding 

stage and the firm type. A dummy variable for the funding stage (FundStg) was 

considered in two stages: the early stage and the later stage. In this study, the early stage 

refers to the seed and series A and B stages, whereas the later stage is the series C stage 

and over. A dummy variable for firm type (FirmType) was considered in two groups: 

industry-specific and cross-industry AI firms. Also, the patent count was considered as a 

moderating variable for research question 2. 
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Table 4-3. Definition of variables   

Type Variable Description 
Research 

question 

Dependent  

Variable 
FundAmtt Logarithm of the cumulative funding amounts (USD) in year t 

RQ1, RQ2 

Independent 

Variable 

Patent activity  

PatentYN Dummy = 1 if a firm without patents RQ1 

PatentCntt Logarithm of the cumulative number of patent applications in year t RQ1 

Patent diversity 

TDt 

Logarithm of the technology diversity of a firm in year t 

=    

RQ2 

UDt 

Logarithm of the unrelated technology diversity of a firm in year t     

=    

RQ2 

RDt 
Logarithm of the related technology diversity of a firm in year t     

=  -    

RQ2 

Moderating  

Variable 

FundStgt 
Dummy = 1 if funding rounds are in the early stages (i.e., Seed, 

Series A, B) in year t  

RQ1, RQ2 

FirmType Dummy = 1 if an industry-specific AI firm  RQ1, RQ2 

PatentCntt Logarithm of cumulative number of patent application in year t RQ2 

Control 

Variable 

Aget Logarithm of the age of a firm in year t RQ1, RQ2 

Size Logarithm of the total number of employees RQ1 

Investor Logarithm of the total number of investors  RQ1 
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4.4 Analysis and results 

4.4.1 Patent activity and investment funding  

This section presents the results of the relationship between patent activity and funding 

amounts to answer the first question of this study.  

First, this study presented the results of the multivariate regression analysis of the 

relationship between the total funding amounts of firms with patents compared to those 

without patents. Firms without patents were the baseline in the variable of PatentYN, and 

the result showed that firms with patents had relatively high total funding amounts 

compared to firms without patents, as shown in Table 4-4. A firm in the early stages of 

funding was the baseline for the variable of FundStg, and this result showed a relatively 

high funding amount in the later stages of financing compared to the early stages. The 

variable FirmType indicated that cross-industry AI startups had relatively high funding 

amounts compared to industry-specific AI startups. The interaction term between 

PatentYN and FundStg showed a negative sign. This result indicated that patent holding 

had relatively less of an effect on the funding amount in the later stage compared to the 

early stage. Meanwhile, the interaction term between PatentYN and FirmType was not 

statistically significant, whereas the results showed a negative sign. These results 

indicated that holding a patent had relatively less of an effect on funding amounts in 

cross-industry firms compared to industry-specific AI firms. Because interaction effects 

are known to have low statistical power (Aguinis & Gottfredson, 2010), this study added 

an interpretation of the meaning of the interaction terms, even if not statistically 
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significant. 

 

Table 4-4. Relationship between funding amounts and firms with/without patents 

 Dependent Variable: FundAmt 

VARIABLES Model 1 Model 2 Model 3 

PatentYN 0.363*** 0.523*** 0.438*** 

 (0.0852) (0.107) (0.102) 

FundStg 0.828*** 1.065*** 0.826*** 

 (0.110) (0.146) (0.110) 

FirmType 0.0820 0.0980 0.205* 

 (0.0833) (0.0831) (0.123) 

PatentYN × FundStg  -0.407**  

  (0.167)  

PatentYN × FirmType   -0.227 

   (0.167) 

Age -0.382*** -0.380*** -0.371*** 

 (0.103) (0.103) (0.103) 

Size 0.632*** 0.632*** 0.635*** 

 (0.0393) (0.0391) (0.0394) 

Investors 0.325*** 0.323*** 0.330*** 

 (0.0576) (0.0574) (0.0577) 

Constant 14.44*** 14.36*** 14.35*** 

 (0.259) (0.259) (0.266) 

Observations 505 505 505 

R-squared 0.671 0.675 0.672 

Note. Standard errors in parentheses, *** p<0.01, ** p<0.05, * p<0.1 
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A second analysis was additionally conducted to reveal more specifically the 

relationship between the number of patents and funding amounts, targeting the firms with 

patents in the first analysis. The panel regression analysis utilized using variables by year 

to understand the relationship between the number of patents and the funding amounts. In 

the result of all model verifications, the VIF scores were all less than 10 (see Appendix 

A3-2, #2), meaning that multicollinearity was not confirmed. For the panel regression 

suitability test, the Hausman test was utilized to compare the fixed-effect model and the 

random-effect model. In the results, the fixed-effect analyses were adequate and thus the 

fixed-effect analysis was conducted on each of the models. 

Table 4-5 shows the results of the second analysis. The relationship between 

PatentCount and FundAmt was positive. However, from the results of the interaction term 

between PatentCnt and FundStg showed a negative sign, indicating that PatentCount had 

relatively less of an effect on FundAmt in the later stages. Consequently, in AI startups 

with patents, it was found that an increase in the patent count was positively linked to an 

increase in the funding amount; interestingly, the effect of the patent count decreased in 

the later stages. The interaction term between PatentCount and FirmType was not 

significant statistically, but this result showed a negative sign, which indicated that the 

patent count had relatively less of an effect on the funding amount for cross-industry AI 

firms.  
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Table 4-5. Relationship between funding amounts and patent counts  

 Dependent Variable: FundAmt t 

VARIABLES Model 1 Model 2 Model 3 

PatentCount t+2 0.109*** 0.151*** 0.126*** 

 (0.0346) (0.0402) (0.0409) 

FundStg t 0.625*** 0.788*** 0.630*** 

 (0.0702) (0.105) (0.0705) 

FirmType - - - 

PatentCount t+2 × FundStg t  -0.0947**  

  (0.0457)  

PatentCount t+2 × FirmType   -0.0414 

   (0.0526) 

Age t 1.483*** 1.471*** 1.481*** 

 (0.0608) (0.0610) (0.0608) 

Constant 14.09*** 14.06*** 14.09*** 

 (0.0816) (0.0832) (0.0816) 

Observations 1,260 1,260 1,260 

R-squared 0.646 0.648 0.647 

Number of firms 265 265 265 

Note. Standard errors in parentheses, *** p<0.01, ** p<0.05, * p<0.1 
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4.4.2 Patent diversity and investment funding 

This section examines the relationship between patent diversity levels and funding 

amounts, referring to the second question of this study.  

The first analysis examined the relationship between technology diversity and the 

funding amount with a panel regression analysis. All models were assessed in terms of 

the VIF score, and all such scores were under 10 without multicollinearity (see Appendix 

A3-2, #3). A fixed-effect analysis was conducted according to the results of the Hausman 

test. 

Table 4-6 shows the result of the first analysis of this section. The result showed that 

TD was positively related to FundAmt. All interaction terms for TD were not statistically 

significant. However, for the interaction term between TD and PatentCount, the result 

showed a negative direction, indicating that greater technology diversity could have a 

negative effect on the funding amount for cases with identical patent counts. Additionally, 

for the interaction term between TD and FirmType, the result showed a positive direction, 

indicating that the diversity of cross-industry startups had more of an effect on the 

funding amount compared to this effect for industry-specific AI startups.  
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Table 4-6. Relationship between funding amounts and technology diversity  

 Dependent Variable: FundAmt t 

VARIABLES Model 1 Model 2 Model 3 Model 4 

TD t+2 0.133 0.249** 0.138 0.103 

 (0.0935) (0.119) (0.0978) (0.112) 

PatentCount t+2 0.161*** 0.212*** 0.161*** 0.158*** 

 (0.0608) (0.0687) (0.0608) (0.0610) 

FundStg t 0.527*** 0.526*** 0.530*** 0.527*** 

 (0.0840) (0.0839) (0.0857) (0.0840) 

FirmType - - - - 

TD t+2 × PatentCount t+2  -0.0848   

  (0.0533)   

TD t+2 × FundStg t   -0.0164  

   (0.0874)  

TD t+2 × FirmType    0.0641 

    (0.134) 

Age t 1.430*** 1.418*** 1.429*** 1.432*** 

 (0.0886) (0.0888) (0.0887) (0.0888) 

Constant 14.21*** 14.16*** 14.21*** 14.21*** 

 (0.135) (0.138) (0.136) (0.136) 

Observations 825 825 825 825 

R-squared 0.636 0.638 0.636 0.637 

Number of firms 196 196 196 196 

Note. Standard errors in parentheses, *** p<0.01, ** p<0.05, * p<0.1 
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To understand technology diversity specifically, technology diversity was divided into 

unrelated diversity (UD) and related diversity (RD), as noted above. The second analysis 

examined the relationship between technology diversity (i.e., UD and RD) and the 

funding amount via a panel regression analysis. 

Table 4-7 shows the result of this analysis. From model 1, which was baseline, UD 

was positively related to FundAmt at a statistically significant level, whereas RD had a 

positive relationship, but this was not statistically significant. Models 2 to 4 showed the 

results of the moderating effect of PatentCount, FundStg, and FirmType, respectively. 

From model 2, the result showed that RD was positively related to FundAmt. Meanwhile, 

PatentCount negatively moderated the relationship between RD and FundAmt. However, 

PatentCount positively moderated this with regard to the relationship between UD and 

FundAmt. From model 3, though the interaction terms of this model were not statistically 

significant, FundStg positively moderated the relationship between RD and FundAmt, 

whereas it negatively moderated this relationship in the case of UD. From model 4, 

FirmType positively moderated the relationship between RD and FundAmt, showing the 

same direction for UD and FundAmt.  
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Table 4-7. Relationship between funding amount and unrelated/related diversity 

 Dependent Variable: FundAmt t 

VARIABLES Model 1 Model 2 Model 3 Model 4 

UD t+2 0.494*** 0.131 0.567*** 0.246 

 (0.138) (0.248) (0.151) (0.160) 

RD t+2 0.119 0.583*** 0.0280 0.00520 

 (0.113) (0.198) (0.136) (0.122) 

PatentCount t+2 0.0887 0.129* 0.0742 0.0814 

 (0.0736) (0.0754) (0.0742) (0.0724) 

FundStg t 0.582*** 0.575*** 0.598*** 0.574*** 

 (0.108) (0.109) (0.109) (0.107) 

FirmType - - - - 

UD t+2 × PatentCount t+2  0.202**   

  (0.0974)   

RD t+2 × PatentCount t+2  -0.260***   

  (0.0887)   

UD t+2 × FundStg t   -0.153  

   (0.131)  

RD t+2 × FundStg t   0.185  

   (0.135)  

UD t+2 × FirmType    0.651** 

    (0.268) 

RD t+2 × FirmType    0.345* 

    (0.196) 

Age t 1.279*** 1.262*** 1.300*** 1.288*** 

 (0.112) (0.111) (0.114) (0.111) 

Constant 14.93*** 14.88*** 14.91*** 14.98*** 

 (0.236) (0.243) (0.239) (0.233) 

Observations 516 516 516 516 

R-squared 0.623 0.632 0.626 0.638 

Number of firms 140 140 140 140 
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Note. Standard errors in parentheses, *** p<0.01, ** p<0.05, * p<0.1 

 

4.5 Discussion and conclusion 

This study investigates AI firms to understand technological pervasiveness on the supply 

side. Previous empirical studies of GPT from a corporate aspect mainly presented 

discussions of productivity and efficiency improvements with regard to the user side for 

technologies. However, for emerging technologies, it is difficult to measure the results of 

effect on these technologies, and the results have not been sufficiently observed thus far. 

Therefore, in order to understand the technological pervasiveness of emerging 

technologies from a new vantage point, this study explores the technology portfolio 

strategies of AI firms considering the supply side of the technologies.  

Specifically, this study investigates the relationship between the patent strategies and 

investments of AI startups, as shown in Table 4-8. First, the results show a positive 

relationship between the patent count and the funding amount. However, in the later 

stages of AI startups, the results show that the effect of the patent count on the funding 

amount decreased, with other business performance metric possibly being more important 

to investors. Extending earlier works about the relationship between patent counts and 

financing rounds in the literature (Hoenen et al., 2014; Caviggioli et al., 2020; Mann & 

Sager, 2007), this study finds empirical evidence of less of an effect during later stage in 

the case of AI startups. Additionally, it is found that cross-industry AI firms with patents 

negatively moderates the relationship between the patent count and funding amount. In 

other words, for investors, the visible output of technology capabilities plays a more 
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important role for investments in the case of industry-specific AI firms compared to 

cross-industry AI startups. Second, technology diversity has a positive relationship with 

funding amounts. When patent counts are identical, related diversity negatively 

moderates the effect on the funding amount. From the literature, the number of IPC codes 

of patents showed a negative effect on VC amounts, and these results proposed a stronger 

preference by investors for more focused innovations (Caviggioli et al., 2020). However, 

the results of this study show that unrelated diversity has a stronger positive effect on 

funding amounts, meaning that the value as a platform role with wide scope of 

technological capabilities acts as an attractive factor to those investing in AI startups. 

Furthermore, regarding the firm type, the results show that cross-industry AI firms have a 

positively effect on the relationship between related diversity and funding amounts 

compared to industry-specific AI startups, with the same results found for unrelated 

diversity. A wide range of technology diversity for cross-industry AI firms are found to be 

more attractive to investors compared to that in industry-specific AI firms. 
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Table 4-8. Summary of the results  

Independent  

Variable 

Dependent Variable Moderating Variable 

Funding Amount Patent Count Funding Stage Firm Type 

Patent YN (+)  later stage (-) cross-industry AI (-) 

Patent Count (+)  later stage (-) cross-industry AI (-) 

Technology Diversity (+)    

Unrelated Diversity (+) (+) later stage (-) cross-industry AI (+) 

Related Diversity (+) (-) later stage (+) cross-industry AI (+) 

 

In particular, the results showing a positive relationship between technology diversity 

(i.e., unrelated diversity and related diversity) and startup investment as confirmed in this 

study suggest that the technology diversity of AI startups acts as a driving force for an 

innovation to become a GPT from the perspective of the overall growth of the 

mechanisms acting in the AI sector. An increase in technology diversity causes 

innovations on the technology supply side through the combination of different types of 

knowledge. This appears because disruptions can occur from the supply side, changing 

the architecture that determines how technologies are linked rather than the technologies 

themselves, with innovations occurring as a result of new combinations among existing 

ideas and technologies (Gans, 2016; Kurz, 2012). Thus, technology diversity in AI 

startups, which is serves as disruptive innovations, can accelerate disruptive innovations, 

facilitating to AI to become a GPT. Also, technology diversity provides various 
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opportunities to generate disruptive innovations in a wider range through technological 

pervasiveness. Meanwhile, previous studies found that venture capital investments have a 

positive impact on spurring innovations and on macro and micro levels of economic 

growth (Cheng et al., 2019; Pradhan et al., 2018; Khan et al., 2021). This study confirms 

that there is a positive relationship between technology diversity and investment funding, 

which represents the financial resources needed for innovations. Consequently, the results 

of this study imply that the technology diversity of AI startups can act as the driving force 

for disruptive innovations in various areas during the growth of AI as a GPT. 

This study makes a theoretical contribution to the technology diversity of startups in 

the field of AI. Considering the properties of GPTs inherent in AI technology, there is a 

need to realize a greater scope of technology to extend advantageous positions even in the 

case of small firms. Generally, the importance of technology diversity has been 

investigated from the perspective of the distributed competences of large firms, and 

previous research suggests that a firm without a high level of technology concentrates on 

a small number of innovations and on a specific field of core technology (Granstrand et 

al., 1997; Lin et al., 2006). However, another study suggests that a broader scope of 

patents can positively influence the growth, survival, and innovation of a startup (Hegde 

et al., 2022). Regarding AI, considering the nature of technological pervasiveness, AI 

should be extended to various areas, and this study provides empirical evidence of the 

importance of technology diversity at AI startups over both the short and long term. 

Additionally, from a risk pooling point of view, patent portfolio diversity can be effective 
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for AI startups considering the innovative nature of startups and the disruptive properties 

of AI technology.  

From a business perspective, startups must use different technology strategies 

depending on their firm type. For cross-industry AI firms, the technology diversity 

strategy should be based on the competitive core competencies of the company, and they 

should expand the scope of application of their technologies. The results here show that 

both related and unrelated technology types of diversity are positively related to 

investment funding in cross-industry AI firms. Thus, it is necessary to strengthen core 

technological capabilities based on related diversity while also bolstering the expansion 

of the firm into various industries based on unrelated diversity. For industry-specific AI 

firms, priority should be assigned to providing the core AI technology capabilities of the 

firm rather than focusing on expansion or across-industry diversity. According to the 

results of the study, the effect of the number of patents on investments is higher than that 

of cross-industry AI firms, but the total amount of investment is lower than that of cross-

industry AI firms. Thus, if industry-specific AI firms sufficiently demonstrate their AI 

technology capabilities, they can find a comparative advantage with regard to funding 

investment.  

For AI firms, in the short term, cross-industry AI firms need technology diversity 

across industries, and industry-specific AI firms need technology diversity within an 

industry. In a long term, AI firms should pursue growth as platform-based companies. 

The literature shows the technology diversity has a positive relationship with generality, 
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and higher generality enables more diversified technological trajectories of firms to act as 

a platform (Corradini et al., 2016; Kim & Kogut, 1996). Hence, AI startups should 

increase the generality of their own technologies by increasing technology diversity and 

find new business opportunities to establish a platform ecosystem based on their core 

competences. 

From a policy perspective, there is a need the funding for startups that is not for 

profit-seeking purposes. This study finds with regard to the patterns of startup investment 

shows that investors prefer to minimize the risk of their investments. It is also found that 

investments in related diversity are more positive in terms of the funding amount in the 

later stages compared to the early stages. This indicates that investors prefer the startups 

that seek stability in the later stages. Also, investment funding in industry-specific AI 

firms is relatively low compared to that in cross-industry AI firms. This shows that 

investors are more interested in the development of AI technology rather than the 

expansion of AI to other industries. However, depending on the growth stage of the 

startup, the firm should expand their capabilities to various industries and business 

models in the later stages, and financial support for these adventurous attempts is needed. 

Also, in order for a certain AI technology to grow as a GPT, startups in various industries 

related to AI must grow. Governments should not only support the revitalization of 

investments by private investors of VCs and CVCs but also need to establish policies to 

ensure a sustainable ecosystem of startups with complementing the tendency toward 

private benefit-oriented investments by venture capital industries.  
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The limitations of this study and directions of future research are as follows. First, this 

study lacks an investigation of differences depending on exit routes and various statuses 

of startups. Among startups, there are companies with various statuses, such as companies 

that have achieved successful exit routes (i.e., M&A and IPO) and startups with high 

corporate value (i.e., unicorns). This study attempted to identify a differentiated pattern 

according to these statuses, but companies with the IPO or unicorn status were not 

numerous enough to find statistical meaning in this study, as the total sample size was too 

small. Thus, for future research targeting AI IPOs or unicorns, it is recommended to 

discover new insights through simulations or case studies that are not limited by the 

number of samples. Second, the main limitation of this study is there is a lack of AI 

startups overall with patents, and many AI startups with few patent counts as well. 

Among all firms used in this study, there were difficulties in securing a certain level of 

data, as the total sample size was greatly reduced during the process of verifying the 

detailed conditions and when refining each research question of the study. At the current 

stage, the numbers of patents or the growth periods of firms are insufficient for strategic 

discussions of AI startups. Thus, in future research, it is recommended to expand the 

research scope by comparing AI startups among different industries or by comparing 

them among different countries. 
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Chapter 5. Conclusion 

This dissertation investigates the various aspects of the AI sector from the perspective of 

technological pervasiveness. Empirical evidence of the technological pervasiveness of AI 

is examined through the theoretical perspectives of technology diffusion, convergence, 

and strategies considering different levels of analysis of knowledge flows, industrial 

sectors, and technology portfolios.   

Chapter two examines the patterns of AI technology diffusion and development, 

focusing on a patent index. The patent index as used here is interpreted from the context 

of the process of knowledge recombinations and the development of GPTs. The 

theoretical contribution here is that the present study identifies the dynamics of GPT-

related features from the perspective of technology diffusion theory. From a 

methodological point of view, the DTW applied in this study is a new methodological 

approach to understand the patterns of technology diffusion, making a very useful 

contribution to technology diffusion research overall. This study suggests implications on 

policy perspectives regarding AI as a GPT.  

Chapter three investigates the technology convergence of AI in terms of industrial 

sectors, technology categories, and the utilization of the technology. The theoretical 

contribution of this study is that it presents a new framework by which to understand the 

evidence pertaining to the industrial applicability of GPTs considering horizontal and 

vertical applicability perspectives. Additionally, the important methodological 
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contribution is in the combination analysis of supervised learning and unsupervised 

learning in relation to patents, which is meaningful as it presents methodological results 

complementary to the empirical analysis. This study proposes implications for businesses 

that are AI companies and policy perspectives for AI development.  

Chapter four analyzes the technology portfolios of AI startups, focusing on the 

diversity of their technologies. This study considers the technology diversity of startups 

as the source of disruptive innovations on the supply side and technological pervasiveness 

in various areas. From the empirical analysis, this study finds a positive relationship 

between the technology diversity and startup investments, which represent the driving 

force behind the growth of startups. This makes a theoretical contribution to the research 

on technology diversity strategies of startups in relation to GPTs. This study provides 

implications regarding technology portfolio strategies for AI startups and policies 

pertaining to AI startup investments.  

This dissertation contains several limitations and suggests directions for future studies. 

First, this study considers the impact of AI in terms of technological pervasiveness, 

though it does not identify the impact of AI adoption or the market and economic sides as 

well. To understand the potential of a GPT thoroughly, this dissertation suggests future 

studies related to the spillover effects of user adoption, the market side, and economic 

value beyond patent data. Also, future studies can analyze business impacts regarding 

productivity across various sectors. Second, the patent data in this study are only from the 

US. Despite the fact that US is the representative and leading country of AI technologies, 
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there is a limitation to understanding the worldwide technological progress or 

development trends of AI here. Therefore, data from other countries should be considered 

in future studies. Third, despite the great impact of large global IT companies in the AI 

sector, there is no consideration of such companies in this study. Identifying the strategic 

directions of AI technologies in large global companies should be considered as an 

additional future study.  
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Appendix 1: Appendix for Chapter 2 

Table A1-1. CPC symbols related to AI (Source: WIPO, 2022) 

CPC symbols  

A61B5/7264, A61B5/7267, A63F13/67, B23K31/006, B25J9/161, B29C2945/76979, B29C66/965, 

B60G2600/1876, B60G2600/1878, B60G2600/1879, B60W30/06, B60W30/10, B60W30/14, 

B62D15/0285, B64G2001/247, E21B2041/0028, F02D41/1405, F03D7/046, F05B2270/707, 

F05B2270/709, F05D2270/709, F16H2061/0081, F16H2061/0084, G01N2201/1296, G01N29/4481, 

G01N33/0034, G01R31/2846, G01R31/3651, G01S7/417, G05B13/027, G05B13/0275, G05B13/028, 

G05B13/0285, G05B13/029, G05B13/0295, G05B2219/33002, G05D1/00, G05D1/0088, G06F11/1476, 

G06F11/2257, G06F11/2263, G06F15/18, G06F17/16, G06F17/2282, G06F17/27, G06F17/28, 

G06F17/30029, G06F17/30247, G06F17/30401, G06F17/3043, G06F17/30522, G06F17/30654, 

G06F17/30663, G06F17/30666, G06F17/30669, G06F17/30672, G06F17/30684, G06F17/30687, 

G06F17/3069, G06F17/30702, G06F17/30705, G06F17/30731, G06F17/30743, G06F17/30784, 

G06F19/24, G06F19/707, G06F2207/4824, G06K7/1482, G06K9/00, G06N3/00, G06N3/004, G06N5/003, 

G06N7/005, G06N7/046, G06N99/005, G06T2207/20081, G06T2207/20084, G06T2207/20084, 

G06T2207/30236, G06T2207/30248, G06T3/4046, G06T9/002, G08B29/186, G10H2250/151, 

G10H2250/311, G10K2210/3024, G10K2210/3038, G10L15/00, G10L17/00, G10L25/30, G11B20/10518, 

H01J2237/30427, H01M8/04992, H02H1/0092, H02P21/0014, H02P23/0018, H03H2017/0208, 

H03H2222/04, H04L2012/5686, H04L2025/03464, H04L2025/03554, H04L25/0254, H04L25/03165, 

H04L41/16, H04L45/08, H04N21/4662, H04N21/4666, H04Q2213/054, H04Q2213/13343, 

H04Q2213/343, H04R25/507, Y10S128/924, Y10S128/925, Y10S706/00 
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Table A1-2. AI application fields (Source: WIPO, 2022)   

AI application fields CPC codes IPC codes 

Agriculture  A01 

Arts and humanities   

Banking and finance  G06Q40/00 

Business   

Cartography   

Computing in government  G06Q50/26 

Document management and text processing  G06F17/21 

Education  G09B, G06Q50/20 

Energy management 

H01J2237/30427, 

H01M8/04992, 

H02H1/0092, 

H02P21/0014, 

H02P23/0018, 

H03H2017/0208, 

H03H2222/04 

G21, H02, H01M8/04992, 

H03H17/02 

Entertainment 
A63F13/67, 

A63F2300/00 
A63 

Industry and manufacturing  
G06Q10/06, G06Q10/08, 

G06Q50/04, G06Q50/28 

Law, social and behavioral sciences   

Life and medical sciences 
G06F19/24, A61B5/7264, 

G16H50/20 

A61, G06F19/24, 

G06F19/00, G16H50/20 

Military  
B63G, G01S19/18, 

B64D7/00, F41, F42 

Networks   

Personal devices, computing and HCI   

Physical sciences and engineering G06F19/707 

C, D, E, F01, F03, F05, 

F07, F09, F11, F13, F15, 

F17 
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Publishing   

Security  
G06F21/00, A61B5/117, 

H04W12/00 

Telecommunications 

H04L2012/5686, 

H04L2025/03464, 

H04L25/0254, 

H04L25/03165, 

H04L41/16, H04L45/08, 

H04N21/4662, 

H04Q2213/054, 

H04Q2213/13343, 

H04Q2213/343, 

H04R25/507 

H04L12/70, H04L25/03, 

H04L25/02, H04L25/03, 

H04L12/24, H04L12/751, 

H04N21/466, H04R25/00 

Transportation 

B60W30/06, B60W30/10, 

B60W30/12, B60W30/14, 

B60G2600/1876, 

B60G2600/1878, 

B60G2600/1879, 

B62D15/0285, 

B64G2001/247, 

G06T2207/30248, 

G06T2207/30236, 

G06K9/00791, 

G05D1/00, B64C2201 

B60W30/06, B60W30/10, 

B60W30/12, B60W30/14, 

B62D15/02, B64G1/24, 

G06K9/00, G05D1/00 
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Table A1-3. Results of normality test & homogeneity of variance test 

[1] Phase 1 & 2 
 

Kolmogorov-Smirnov test (P-value) Shapiro-Wilk test (P-value) 

Generality  Phase 1 1.95E-264 8.12E-31 
 

Phase 2 0.00E+00 0.00E+00 

Originality  Phase 1 2.03E-287 8.80E-30 
 

Phase 2 0.00E+00 0.00E+00 

Complementarity Phase 1 5.21E-135 0.00E+00 
 

Phase 2 4.61E-314 0.00E+00 

TCT Phase 1 2.86E-42 1.12E-25 
 

Phase 2 1.26E-227 0.00E+00 
 

Levene test (P-value) Bartlett test (P-value) 

Generality  9.37E-61 7.79E-37 

Originality  2.42E-04 2.01E-05 

Complementarity 7.78E-12 8.22E-06 

TCT 0.42779  0.00674  
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[2] Phase 1 
 

Kolmogorov-Smirnov test (P-value) Shapiro-Wilk test (P-value) 

Generality  H 1.07E-10 6.39E-05 
 

M 5.98E-50 8.83E-08 
 

L 7.80E-217 9.38E-28 

Originality  H 1.16E-12 0.00136  
 

M 1.12E-39 1.21E-10 
 

L 2.40E-218 7.09E-27 

Complementarity H 3.97E-05 4.31E-10 
 

M 1.76E-31 5.66E-18 
 

L 5.81E-130 5.32E-42 

TCT H 0.09469  0.30373  
 

M 3.11E-05 0.16007  
 

L 1.61E-37 8.66E-26 
 

Levene test (P-value) Bartlett test (P-value) 

Generality  2.54E-06 1.11E-16 

Originality  1.63E-05 9.87E-08 

Complementarity 1.75E-02 1.15E-17 

TCT 0.60593  0.51537  
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[3] Phase 2 
 

Kolmogorov-Smirnov test (P-value) Shapiro-Wilk test (P-value) 

Generality  H 7.18E-20 1.09E-04 
 

M 8.61E-130 8.74E-18 
 

L 0.00E+00 0.00E+00 

Originality  H 1.64E-22 6.29E-05 
 

M 1.52E-124 8.47E-19 
 

L 0.00E+00 0.00E+00 

Complementarity H 8.68E-05 1.34E-09 
 

M 2.93E-18 5.13E-26 
 

L 0.00E+00 0.00E+00 

TCT H 1.70E-04 7.71E-04 
 

M 6.25E-26 1.17E-15 
 

L 8.99E-197 2.10E-44 
 

Levene test (P-value) Bartlett test (P-value) 

Generality  1.37E-74 4.62E-78 

Originality  4.93E-03 2.90E-07 

Complementarity 1.02E-19 1.51E-66 

TCT 0.14634  0.22552  
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[4] Phase 1 (High) 
 

Kolmogorov-Smirnov test (P-value)  Shapiro-Wilk test (P-value) 

Generality  AI-only 0.001217129 0.50448072 
 

AI-application 2.35E-13 1.94E-06 

Originality  AI-only 0.009421852 0.451570749 
 

AI-application 1.23E-09 0.00846728 

Complementarity AI-only 0.027069435 1.61E-06 
 

AI-application 5.06E-04 1.90E-08 

TCT AI-only 0.428870319 7.23E-02 
 

AI-application 1.35E-01 3.33E-01 
 

Levene test (P-value) Bartlett test (P-value) 

Generality  7.33E-01 0.278928099 

Originality  1.91E-01 0.07771763 

Complementarity 6.93E-01 0.591397687 

TCT 3.52E-01 0.636465226 

 

[5] Phase 1 (Mid) 
 

 

 

Kolmogorov-Smirnov test (P-value) Shapiro-Wilk test (P-value) 

Generality  AI-only 5.56E-19 0.000437377 
 

AI-application 5.09E-28 3.16E-06 

Originality  AI-only 1.19E-20 0.000282798 
 

AI-application 1.20E-25 1.74E-08 

Complementarity AI-only 1.93E-24 3.37E-12 
 

AI-application 2.22E-13 2.29E-12 

TCT AI-only 1.60E-02 1.15E-01 
 

AI-application 5.98E-04 2.10E-01 
 

Levene test (P-value) Bartlett test (P-value) 

Generality  1.82E-01 1.97E-01 

Originality  5.14E-03 2.44E-03 

Complementarity 2.48E-04 5.30E-06 

TCT 1.95E-01 3.91E-01 



167 

[6] Phase 1 (Low) 
 

Kolmogorov-Smirnov test (P-value) Shapiro-Wilk test (P-value) 

Generality  AI-only 2.77E-106 5.32E-19 
 

AI-application 5.28E-117 3.23E-21 

Originality  AI-only 9.44E-106 1.90E-18 
 

AI-application 1.08E-122 9.18E-20 

Complementarity AI-only 2.52E-142 0.00000  
 

AI-application 6.70E-32 1.71E-31 

TCT AI-only 4.93E-16 9.08E-13 
 

AI-application 2.77E-23 0.00000  
 

Levene test (P-value) Bartlett test (P-value) 

Generality  0.1659792222387221) 0.382712662 

Originality  2.84E-03 8.07E-03 

Complementarity 3.53E-07 4.79E-33 

TCT 0.462317294 0.395302744 

 

[7] Phase 2 (High) 
 

Kolmogorov-Smirnov test (P-value) Shapiro-Wilk test (P-value) 

Generality  AI-only 4.34E-06 0.167338282 
 

AI-application 5.46E-20 4.87E-06 

Originality  AI-only 2.33E-05 0.277399093 
 

AI-application 1.52E-18 7.68E-05 

Complementarity AI-only 4.20E-03 1.04E-06 
 

AI-application 1.81E-03 2.62E-07 

TCT AI-only 1.96E-01 8.39E-02 
 

AI-application 1.47E-03 4.07E-03 
 

Levene test (P-value) Bartlett test (P-value) 

Generality  3.92E-01 0.225138413 

Originality  1.13E-01 0.223159457 

Complementarity 2.41E-02 0.015039941 

TCT 4.49E-01 0.480242127 
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[8] Phase 2 (Mid) 
 

Kolmogorov-Smirnov test (P-value) Shapiro-Wilk test (P-value) 

Generality  AI-only 2.66E-32 4.61E-06 
 

AI-application 2.65E-103 1.31E-14 

Originality  AI-only 2.62E-37 1.67E-06 
 

AI-application 2.13E-86 2.40E-15 

Complementarity AI-only 4.94E-15 1.79E-13 
 

AI-application 8.11E-18 4.28E-22 

TCT AI-only 1.36E-06 1.08E-05 
 

AI-application 7.23E-20 4.50E-14 
 

Levene test (P-value) Bartlett test (P-value) 

Generality  1.12E-06 9.87E-09 

Originality  4.04E-09 1.75E-09 

Complementarity 2.52E-04 1.08E-15 

TCT 6.65E-01 1.67E-01 

 

[9] Phase 2 (Low) 
 

Kolmogorov-Smirnov test (P-value) Shapiro-Wilk test (P-value) 

Generality  AI-only 0.00E+00 4.25E-40 
 

AI-application 0.00E+00 0.00E+00 

Originality  AI-only 0.00E+00 4.49E-32 
 

AI-application 0.00E+00 4.76E-44 

Complementarity AI-only 3.31E-224 0.00000  
 

AI-application 5.04E-137 2.15E-42 

TCT AI-only 6.97E-82 2.65E-31 
 

AI-application 4.18E-114 0.00000  
 

Levene test (P-value) Bartlett test (P-value) 

Generality  0.8584886129266383 0.014804795 

Originality  3.92E-11 2.37E-08 

Complementarity 5.04E-39 6.32E-84 

TCT 0.052250236 0.000528827 
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Appendix 2: Appendix for Chapter 3  

Table A2-1. WIPO IPC Technology-Concordance Table (Source: Schmock, 2008) 

Area  Field   IPC Code  

Electrical 

Engineering 1 

Electrical 

Machinery, 

apparatus, energy  

F21#, H01B, H01C, H01F, H01G, H01H, H01J, H01K, 

H01M, H01R, H01T, H02#, H05B, H05C, H05F, H99Z  

2 
Audio-visual 

technology  

G09F, G09G, G11B, H04N-003, H04N-005, H04N-009, 

H04N-013, H04N-015, H04N-017, H04R, H04S, H05K  

3 Telecommunication  
G08C, H01P, H01Q, H04B, H04H, H04J, H04K, H04M, 

H04N-001, H04N-007, H04N-011, H04Q  

4 
Digital 

Communication  
H04L  

5 

Basic 

communication 

processes 

H03# 

6 
Computer 

technology  
(G06# not G06Q), G11C, G10L  

7 
IT methods for 

management 
G06Q 

8 Semiconductors  H01L  

Measurement 9 Optics  G02#, G03B, G03C, G03D, G03F, G03G, G03H, H01S  

10 Measurement 

G01B, G01C, G01D, G01F, G01G, G01H, G01J, G01K, 

G01L, G01M, (G01N not G01N-033), G01P, G01R, G01S, 

G01V, G01W, G04#, G12B, G99Z  

11 
Analysis of 

biological materials 
G01N-033 

12 Control  
G05B, G05D, G05F, G07#, G08B, G08G, G09B, G09C, 

G09D  

13 Medical technology  
A61B, A61C, A61D, A61F, A61G, A61H, A61J, A61L, 

A61M, A61N, H05G 
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Chemistry  
14 

Organic fine 

chemistry  

(C07B, C07C, C07D, C07F, C07H, C07J, C40B) not A61K, 

A61K-008, A61Q  

15 Biotechnology  
(C07G, C07K, C12M, C12N, C12P, C12Q, C12R, C12S) 

not A61K 

16 Pharmaceuticals  A61K not A61K-008 

17 

Macromolecular 

chemistry, 

polymers  

C08B, C08C, C08F, C08G, C08H, C08K, C08L 

18 Food chemistry  

A01H, A21D, A23B, A23C, A23D, A23F, A23G, A23J, 

A23K, A23L, C12C, C12F, C12G, C12H, C12J, C13D, 

C13F, C13J, C13K  

19 
Basic materials 

chemistry  

A01N, A01P, C05#, C06#, C09B, C09C, C09F, C09G, 

C09H, C09K, C09D, C09J, C10B, C10C, C10F, C10G, 

C10H, C10J, C10K, C10L, C10M, C10N, C11B, C11C, 

C11D, C99Z  

20 
Materials, 

metallurgy  
C01#, C03C, C04#, C21#, C22#, B22# 

21 
Surface technology, 

coating  
B05C, B05D, B32#, C23#, C25#, C30#  

22 
Micro-structure and 

nano-technolgy  
B81#, B82#  

23 
Chemical 

engineering  

B01B, B01D-000#, B01D-01##, B01D-02##, B01D-03##, 

B01D-041, B01D-043, B01D-057, B01D-059, B01D-06##, 

B01D-07##, B01F, B01J, B01L, B02C, B03#, B04#, B05B, 

B06B, B07#, B08#, D06B, D06C, D06L, F25J, F26#, C14C, 

H05H  

24 
Environmental 

technology  

A62D, B01D-045, B01D-046, B01D-047, B01D-049, 

B01D-050, B01D051, B01D-052, B01D-053, B09#, B65F, 

C02#, F01N, F23G, F23J, G01T, E01F-008, A62C  

Mechanical 

Engineering  

25 Handling  B25J, B65B, B65C, B65D, B65G, B65H, B66#, B67#  

26 Machine tools B21#, B23#, B24#, B26D, B26F, B27#, B30#, B25B, B25C, 
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B25D, B25F, B25G, B25H, B26B  

27 
Engines, pumps, 

turbines  

F01B, F01C, F01D, F01K, F01L, F01M, F01P, F02#, F03#, 

F04#, F23R, G21#, F99Z  

28 
Textile and paper 

machines  

A41H, A43D, A46D, C14B, D01#, D02#, D03#, D04B, 

D04C, D04G, D04H, D05#, D06G, D06H, D06J, D06M, 

D06P, D06Q, D99Z, B31#, D21#, B41#  

29 
Other special 

machines  

A01B, A01C, A01D, A01F, A01G, A01J, A01K, A01L, 

A01M, A21B, A21C, A22#, A23N, A23P, B02B, C12L, 

C13C, C13G, C13H, B28#, B29#, C03B, C08J, B99Z, 

F41#, F42#  

30 
Thermal processes 

and apparatus  

F22#, F23B, F23C, F23D, F23H, F23K, F23L, F23M, 

F23N, F23Q, F24#, F25B, F25C, F27#, F28#  

31 
Mechanical 

elements  
F15#, F16#, F17#, G05G  

32 Transport  B60#, B61#, B62#, B63B, B63C, B63G, B63H, B63J, B64 

Other Fields  33 Furniture, games  A47#, A63#  

34 
Other consumer 

goods  

A24#, A41B, A41C, A41D, A41F, A41G, A42#, A43B, 

A43C, A44#, A45#, A46B, A62B, B42#, B43#, D04D, 

D07#, G10B, G10C, G10D, G10F, G10G, G10H, G10K, 

B44#, B68#, D06F, D06N, F25D, A99Z  

35 Civil engineering  

E02#, E01B, E01C, E01D, E01F-001, E01F-003, E01F-005, 

E01F-007, E01F-009, E01F-01#, E01H, E03#, E04#, E05#, 

E06#, E21#, E99Z  
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Table A2-2. Results of DTM (Document-Term Matrix) and LSA (Latent Semantic Analysis)  

Sector # of Patents # of Bigram Terms 
# of LSA-reduced 

Features 

Finance 12,603 30,862 3,759 

Medical  10.218 24,062 3,404 

Transport 6,426 14,524 2,177 

Semiconductor 1,896 5,301 647 

Game 1,576 4,495 522 

Biotechnology 2,956 8,640 837 
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Table A2-3. Top 10 tie value in ego-network 

Hub Tie Value Hub Tie Value Hub Tie Value Hub Tie Value 

G06Q-010 G06F-017 5294 G06Q-020 G06K-009 8061 G06Q-030 G06K-009 7737 G06Q-040 G06K-009 1273 

 G06K-009 5100  G06F-003 7208  G06F-017 6550  G06Q-020 922 

 G06F-003 2404  G06F-017 3223  G06F-003 5832  G06F-017 723 

 G06Q-030 2305  G06Q-030 2965  G06Q-020 2965  G06F-003 440 

 G06Q-050 1777  G06F-021 2861  H04N-021 2687  G06Q-030 384 

 H04W-004 1112  B41J-029 2765  G06Q-010 2305  H04N-021 359 

 H04N-021 1074  H04N-001 2761  H04N-001 1805  G06F-021 313 

 G10L-015 1041  H04N-021 2284  G06Q-050 1592  G06Q-010 289 

 G06K-007 1023  B41J-002 1901  G10L-015 1492  H04N-005 197 

 H04L-029 1017  G06K-019 1803  G06F-021 1385  G06Q-050 183 

G06Q-050 G06F-017 2759 A61B-005 G06K-009 13634 A61B-006 G06K-009 5704 A61B-008 A61B-005 2554 

 G06K-009 2417  G06T-007 8952  G06T-007 3817  G06K-009 2272 

 G06Q-010 1777  A61B-006 3389  A61B-005 3389  G06T-007 2166 

 G06Q-030 1592  G06F-019 3092  G06T-011 1138  A61B-006 1099 

 G06F-021 1437  A61B-008 2554  A61B-008 1099  G06T-011 449 

 G06F-003 1128  G06F-003 2059  G06T-005 889  G06F-019 447 

 A61B-005 665  G06F-017 1739  G06F-019 588  G01R-033 305 
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 G06F-019 649  G01J-005 1631  G01R-033 434  G06F-017 294 

 H04L-029 645  G01R-033 1547  G06T-001 422  G06T-017 273 

 H04N-021 607  H04N-005 1401  G06T-017 342  A61B-034 270 

A61B-003 G06K-009 2091 A61B-017 G06T-007 315 B60R-021 B60N-002 3157 B60R-001 G06K-009 2666 

 A61B-005 1344  A61B-005 308  G01S-015 2275  B60R-021 1122 

 G06T-007 928  G06K-009 306  G01S-007 1705  H04N-005 925 

 G06F-003 475  A61B-018 238  B60R-022 1698  G06T-007 764 

 G02B-027 386  A61B-006 187  G06K-009 1650  H04N-007 756 

 H04N-005 266  A61B-034 153  G01F-023 1368  G08G-001 588 

 A61F-009 260  A61B-008 140  G01S-017 1169  B60R-011 492 

 A61B-008 167  A61F-002 115  B60R-001 1122  B60N-002 483 

 A61M-021 143  A61B-090 88  B60R-016 1055  B60Q-001 420 

 G06T-005 140  A61B-010 82  G01S-013 703  G01S-015 346 

B60N-002 B60R-021 3157 B60W-030 G06K-009 1723 B60Q-001 G06K-009 1296 B60W-050 G06K-009 818 

 G01S-015 1043  G08G-001 967  G08G-001 560  G08G-001 584 

 B60R-022 844  G05D-001 770  B60R-001 420  B60W-030 518 

 G01S-007 760  B60W-010 731  H04N-021 353  H04N-021 367 

 G01F-023 621  G06T-007 618  F21S-041 314  B60W-040 362 

 G01S-017 526  B60W-050 518  B60R-021 311  G06F-003 361 
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 G06K-009 507  B60W-040 440  H04N-007 272  G05D-001 334 

 B60R-001 483  G01C-021 394  G01C-021 270  G01C-021 315 

 B60R-016 479  B60T-007 237  G06F-003 243  H04W-004 250 

 G01S-013 309  B60R-001 234  H04W-004 217  B60W-010 222 

B60W-040 G06K-009 832 B60R-016 B60R-021 1055 B60R-025 H04N-021 557 B60R-011 G06K-009 1055 

 G08G-001 646  B60N-002 479  G06K-009 490  B60R-001 492 

 B60W-030 440  G10L-015 409  G08G-001 381  H04N-005 373 

 B60W-050 362  G01S-015 379  G06F-003 368  G06T-007 350 

 H04N-021 358  G06K-009 302  H04W-004 356  B60R-021 308 

 G01C-021 354  G01S-007 299  G01C-021 317  H04N-007 268 

 G06F-003 331  G06F-003 297  G06F-021 282  G08G-001 243 

 G05D-001 284  B60R-022 272  G06Q-030 238  B60Q-001 170 

 H04W-004 253  H04N-021 240  G07C-005 207  B60W-030 146 

 G06F-021 212  G01C-021 231  G05D-001 190  G01C-021 119 

B60W-010 B60W-030 731 B64C-039 G06K-009 734 B64D-047 G06K-009 544 H01L-027 H04N-005 2883 

 G06K-009 510  G05D-001 438  B64C-039 295  H04L-012 1342 

 B60W-050 222  B64D-047 295  G05D-001 289  H04N-007 1065 

 G05D-001 203  G06T-007 261  G06T-007 214  G06K-009 1045 

 G08G-001 200  H04N-005 202  H04N-005 199  H04W-008 854 
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 G06T-007 178  G08G-005 166  H04N-007 136  H04M-001 738 

 B60W-040 143  H04N-007 156  G08G-005 125  H04L-009 734 

 B60R-001 116  A01M-001 85  G06Q-010 102  H04W-028 706 

 B60T-007 87  G06Q-010 74  G06F-017 64  H04W-088 676 

 B62D-015 87  G06F-017 54  G06Q-050 63  H03M-013 628 

H01L-021 G06K-009 1387 H01L-023 H01L-021 749 G01N-033 G06K-009 3042 C12Q-001 G06F-019 1679 

 H01L-023 749  G06K-009 689  G06F-019 2984  G01N-033 963 

 G01N-021 548  H01L-025 176  C12Q-001 963  G06K-009 510 

 G03F-001 501  H01L-027 135  G06F-017 934  G01N-021 232 

 G06T-007 359  H05K-001 81  G01N-021 869  G06T-007 190 

 G01B-011 280  G07F-007 72  G06F-007 824  C12M-001 187 

 G06T-001 223  G11B-020 63  G06K-007 761  C12N-015 171 

 G03F-007 159  G06T-001 56  G06T-007 715  G06F-017 164 

 H01L-027 159  A61B-005 50  G01N-015 557  G01N-015 110 

 G01R-031 136  H04N-001 50  G06Q-030 510  G01J-003 90 

A63F-013 G06K-009 3258 A63B-071 A63B-069 444 A63B-069 A63B-071 444 A63B-024 G06K-009 320 

 G06F-003 2155  G06K-009 316  A61B-005 329  A61B-005 254 

 H04N-021 1734  A61B-005 302  G06K-009 282  A63B-071 163 

 G06T-007 1136  A63B-024 163  G09B-019 144  A63B-069 114 
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 G06Q-020 865  G06F-003 154  G06F-003 131  G06T-007 94 

 H04N-005 861  G09B-019 127  A63B-024 114  G09B-019 71 

 G06F-017 739  A63B-021 126  A63B-021 93  G06F-003 66 

 G06Q-030 555  A63F-013 87  G06F-001 80  A63F-013 64 

 G10L-015 477  G06F-019 85  H04W-084 80  H04B-001 62 

 H04N-007 366  H04B-001 83  B33Y-010 79  H04N-005 61 
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Table A2-4. Results of keywords and TF-IDF values (Finance and AI) 

  Cluster 0 (767) Cluster 1 (6583) Cluster 2 (1053) Cluster 3 (2493) Cluster 4 (1707) 

Rank Keyword Mean  

TF-IDF 

Keyword Mean  

TF-IDF 

Keyword Mean  

TF-IDF 

Keyword Mean  

TF-IDF 

Keyword Mean  

TF-IDF 

1 content 0.1984 datum 0.0292 document 0.1786 user 0.0872 image 0.1771 

2 user 0.0403 base 0.0175 code 0.0618 information 0.0590 object 0.0480 

3 content item 0.0352 information 0.0164 datum 0.0597 biometric 0.0336 capture 0.0415 

4 display 0.0325 use 0.0156 sensing 0.0533 transaction 0.0316 information 0.0314 

5 item 0.0312 customer 0.0147 code datum 0.0510 authentication 0.0283 image datum 0.0244 

6 page 0.0272 provide 0.0143 computer 0.0351 datum 0.0223 product 0.0243 

7 medium 0.0264 product 0.0143 indicate datum 0.0345 voice 0.0210 datum 0.0241 

8 information 0.0258 model 0.0140 surface 0.0337 provide 0.0195 image capture 0.0225 

9 digital 0.0222 message 0.0130 print 0.0328 service 0.0189 capture image 0.0217 

10 web 0.0222 determine 0.0129 identity 0.0314 base 0.0172 display 0.0205 

11 datum 0.0206 user 0.0128 indicate 0.0313 use 0.0172 unit 0.0204 

12 base 0.0193 item 0.0125 indicative 0.0298 communication 0.0172 item 0.0192 

13 provide 0.0185 computer 0.0123 interface surface 0.0287 server 0.0170 processing 0.0189 

14 medium content 0.0173 generate 0.0123 electronic document 0.0285 card 0.0166 user 0.0177 

15 identify 0.0160 plurality 0.0123 interface 0.0270 receive 0.0161 base 0.0172 

16 digital content 0.0151 vehicle 0.0119 electronic 0.0259 electronic 0.0155 determine 0.0166 
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17 generate 0.0142 set 0.0117 use 0.0237 request 0.0154 plurality 0.0157 

18 request 0.0139 identify 0.0115 form 0.0235 identification 0.0152 digital 0.0156 

19 web page 0.0139 receive 0.0115 sense 0.0234 mobile 0.0150 identify 0.0156 

20 multimedia 0.0134 associate 0.0115 datum indicative 0.0227 second 0.0145 use 0.0154 

21 server 0.0128 text 0.0114 information 0.0227 input 0.0138 digital image 0.0148 

22 receive 0.0127 time 0.0114 element 0.0217 application 0.0138 store 0.0144 

23 audio 0.0127 data 0.0110 product item 0.0216 associate 0.0124 recognition 0.0139 

24 unit 0.0127 object 0.0109 user 0.0199 payment 0.0123 camera 0.0138 

25 network 0.0124 second 0.0105 interactive element 0.0198 interface 0.0123 medical 0.0132 

26 determine 0.0122 display 0.0105 image 0.0197 access 0.0122 second 0.0132 

27 advertisement 0.0122 service 0.0102 transport 0.0188 terminal 0.0122 process 0.0131 

28 use 0.0120 event 0.0100 interactive 0.0186 network 0.0122 feature 0.0127 

29 client 0.0120 language 0.0097 interaction 0.0176 computer 0.0117 region 0.0127 

30 signal 0.0118 process 0.0095 product 0.0175 determine 0.0116 vehicle 0.0126 
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Table A2-5. Results of keywords and TF-IDF values (Medical and AI)   

  Cluster 0 (564) Cluster 1 (2681) Cluster 2 (1418)  

Rank Keyword Mean TF-IDF Keyword (TF-IDF) Mean TF-IDF Keyword (TF-IDF) Mean TF-IDF 

1 image 0.1283 user 0.0446 image 0.1497 

2 unit 0.1067 signal 0.0445 image datum 0.0274 

3 processing 0.0802 datum 0.0245 datum 0.0263 

4 medical 0.0685 eye 0.0215 pixel 0.0245 

5 medical image 0.0675 sensor 0.0211 object 0.0238 

6 image processing 0.0675 information 0.0202 second 0.0234 

7 information 0.0516 patient 0.0193 capture 0.0215 

8 display 0.0475 base 0.0183 display 0.0202 

9 unit configure 0.0390 control 0.0178 processing 0.0191 

10 region 0.0336 use 0.0175 value 0.0183 

11 configure 0.0329 determine 0.0171 information 0.0164 

12 datum 0.0296 configure 0.0155 acquire 0.0163 

13 plurality 0.0257 biometric 0.0153 set 0.0159 

14 image datum 0.0247 receive 0.0152 iris 0.0158 

15 processing image 0.0236 provide 0.0150 plurality 0.0154 

16 acquire 0.0212 state 0.0149 region 0.0150 

17 obtain 0.0201 display 0.0140 frame 0.0150 
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18 generate 0.0192 subject 0.0140 base 0.0146 

19 second 0.0182 detect 0.0136 image processing 0.0142 

20 storage 0.0177 individual 0.0134 imaging 0.0142 

21 position 0.0170 person 0.0133 obtain 0.0142 

22 circuitry 0.0167 speech 0.0131 generate 0.0139 

23 area 0.0161 camera 0.0130 use 0.0137 

24 diagnosis 0.0161 input 0.0128 subject 0.0135 

25 extract 0.0159 time 0.0128 second image 0.0134 

26 base 0.0154 processor 0.0122 process 0.0134 

27 section 0.0152 voice 0.0121 section 0.0131 

28 processing circuitry 0.0149 physiological 0.0112 radiation 0.0125 

29 imaging 0.0148 unit 0.0112 determine 0.0118 

30 tomographic image 0.0145 response 0.0110 image frame 0.0116 
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Table A2-5. (continued) 

 Cluster 3 (753) Cluster 4 (414) Cluster 5 (4388) 

Rank Keyword Mean TF-IDF Keyword  Mean TF-IDF Keyword  Mean TF-IDF 

1 light 0.1016 projection 0.1193 image 0.0522 

2 fingerprint 0.0904 ray 0.1073 datum 0.0278 

3 sensor 0.0544 image 0.0918 region 0.0227 

4 finger 0.0541 datum 0.0499 use 0.0207 

5 surface 0.0379 projection image 0.0495 imaging 0.0196 

6 object 0.0353 projection datum 0.0491 patient 0.0193 

7 image 0.0351 ray image 0.0456 object 0.0180 

8 light source 0.0324 reconstruct 0.0415 model 0.0171 

9 electrode 0.0314 ct 0.0408 medical 0.0170 

10 source 0.0306 reconstruction 0.0391 tissue 0.0161 

11 layer 0.0303 object 0.0307 dimensional 0.0158 

12 unit 0.0291 source 0.0248 base 0.0156 

13 identification 0.0247 detector 0.0242 determine 0.0149 

14 capture 0.0226 generate 0.0225 feature 0.0146 

15 fingerprint sensor 0.0208 reconstruct image 0.0218 set 0.0141 

16 element 0.0205 imaging 0.0210 point 0.0130 

17 information 0.0203 temperature 0.0207 volume 0.0130 
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18 contact 0.0201 tomography 0.0197 provide 0.0129 

19 pattern 0.0195 tomosynthesis 0.0196 generate 0.0129 

20 array 0.0195 use 0.0193 second 0.0124 

21 sensing 0.0189 compute 0.0193 value 0.0124 

22 capacitance 0.0185 core temperature 0.0188 position 0.0120 

23 emit 0.0176 body core 0.0188 identify 0.0117 

24 eye 0.0175 image datum 0.0185 structure 0.0115 

25 second 0.0173 artifact 0.0183 image datum 0.0114 

26 substrate 0.0171 measurement 0.0183 subject 0.0114 

27 form 0.0165 compute tomography 0.0182 information 0.0113 

28 portion 0.0164 source point 0.0182 display 0.0112 

29 circuit 0.0160 measurement external 0.0182 scan 0.0109 

30 position 0.0153 external source 0.0180 plurality 0.0109 
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Table A2-6. Results of keywords and TF-IDF values (Transport and AI)   

  Cluster 0 (206) Cluster 1 (2094) Cluster 2 (1335) Cluster 3 (476) 

Rank Keyword Mean TF-IDF Keyword Mean TF-IDF Keyword Mean TF-IDF Keyword Mean TF-IDF 

1 aerial 0.1594 vehicle 0.0311 vehicle 0.0962 driver 0.1604 

2 uav 0.1457 image 0.0303 control 0.0480 vehicle 0.0586 

3 aerial vehicle 0.1425 sensor 0.0289 user 0.0362 information 0.0393 

4 unmanned 0.1346 occupant 0.0251 parking 0.0348 drive 0.0377 

5 unmanned aerial 0.1166 datum 0.0232 information 0.0339 state 0.0310 

6 flight 0.0544 signal 0.0190 voice 0.0273 assistance 0.0290 

7 vehicle 0.0490 position 0.0184 autonomous 0.0246 gaze 0.0257 

8 datum 0.0351 determine 0.0180 unit 0.0244 driver assistance 0.0243 

9 vehicle uav 0.0336 use 0.0180 speech 0.0230 unit 0.0241 

10 image 0.0334 base 0.0177 command 0.0221 image 0.0240 

11 landing 0.0331 information 0.0171 base 0.0210 fingerprint 0.0237 

12 structure 0.0313 camera 0.0168 recognition 0.0194 determine 0.0229 

13 location 0.0274 detect 0.0149 input 0.0180 vehicle driver 0.0227 

14 camera 0.0241 video 0.0148 display 0.0179 driver vehicle 0.0219 

15 flight path 0.0235 unit 0.0145 determine 0.0175 driving 0.0213 

16 target 0.0234 area 0.0141 datum 0.0173 base 0.0203 

17 use 0.0232 second 0.0140 drive 0.0172 detect 0.0203 
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18 inspection 0.0232 control 0.0140 configure 0.0166 behavior 0.0200 

19 object 0.0225 provide 0.0134 vehicle control 0.0164 configure 0.0196 

20 unmanned aircraft 0.0217 point 0.0134 signal 0.0164 datum 0.0184 

21 sensor 0.0205 aircraft 0.0133 autonomous vehicle 0.0162 provide 0.0172 

22 control 0.0199 detection 0.0131 controller 0.0160 fact check 0.0172 

23 information 0.0194 configure 0.0131 provide 0.0154 fact 0.0170 

24 fly 0.0192 seat 0.0131 sensor 0.0154 face 0.0170 

25 path 0.0190 value 0.0127 operation 0.0150 driver state 0.0168 

26 capture 0.0183 feature 0.0126 receive 0.0149 eye 0.0167 

27 receive 0.0180 receive 0.0126 motor 0.0148 monitor 0.0167 

28 rooftop 0.0176 plurality 0.0126 detect 0.0144 direction 0.0167 

29 aircraft 0.0176 road 0.0125 motor vehicle 0.0141 duration 0.0164 

30 configure 0.0175 surface 0.0118 communication 0.0140 alert 0.0162 
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Table A2-6. (continued) 

 Cluster 4 (840) Cluster 5 (1174) Cluster 6 (301) 

Rank Keyword Mean TF-IDF Keyword Mean TF-IDF Keyword Mean TF-IDF 

1 object 0.1561 image 0.1341 lane 0.2799 

2 light 0.0650 display 0.0771 vehicle 0.0730 

3 image 0.0588 vehicle 0.0700 line 0.0538 

4 vehicle 0.0429 camera 0.0612 travel 0.0462 

5 detection 0.0401 capture 0.0492 lane change 0.0453 

6 unit 0.0386 view 0.0421 change 0.0415 

7 detect 0.0336 image datum 0.0409 image 0.0360 

8 object detection 0.0272 datum 0.0385 road 0.0335 

9 region 0.0263 unit 0.0336 boundary 0.0302 

10 source 0.0230 capture image 0.0293 travel lane 0.0294 

11 information 0.0224 control 0.0272 lane mark 0.0292 

12 light source 0.0222 processing 0.0243 unit 0.0292 

13 area 0.0210 second 0.0236 detect 0.0291 

14 second 0.0209 area 0.0199 mark 0.0290 

15 camera 0.0202 processor 0.0197 control 0.0273 

16 determine 0.0200 image capture 0.0197 lane boundary 0.0265 

17 configure 0.0187 configure 0.0190 lane line 0.0264 
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18 detect object 0.0179 image processing 0.0184 marking 0.0261 

19 position 0.0175 field 0.0178 vehicle lane 0.0236 

20 base 0.0170 field view 0.0174 recognize 0.0234 

21 target 0.0157 video 0.0172 information 0.0230 

22 capture 0.0157 imaging 0.0169 determine 0.0228 

23 dimensional 0.0149 region 0.0162 lane marking 0.0221 

24 object detect 0.0147 object 0.0161 point 0.0217 

25 control 0.0146 vision 0.0159 position 0.0210 

26 use 0.0143 detect 0.0157 detect lane 0.0203 

27 traffic light 0.0143 rear 0.0157 base 0.0200 

28 traffic 0.0141 driver 0.0155 departure 0.0197 

29 datum 0.0138 process 0.0152 vehicle travel 0.0191 

30 distance 0.0137 road 0.0152 datum 0.0187 
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Table A2-7. Results of keywords and TF-IDF values (Semiconductor and AI)  

  Cluster 0 ( 553 )  Cluster 1 (484) Cluster 2 (270) Cluster 3 (184) Cluster 4 (405) 

Rank Keyword Mean TF-IDF Keyword Mean TF-IDF Keyword Mean TF-IDF Keyword Mean TF-IDF Keyword Mean TF-IDF 

1 signal 0.0447 pattern 0.1081 light 0.1472 defect 0.2505 sensor 0.0969 

2 pixel 0.0352 image 0.0833 display 0.1221 inspection 0.1201 layer 0.0917 

3 circuit 0.0304 wafer 0.0481 emit 0.0694 image 0.1135 fingerprint 0.0786 

4 image 0.0302 datum 0.0478 fingerprint 0.0689 pattern 0.0812 surface 0.0669 

5 sensor 0.0295 mask 0.0414 light emit 0.0637 inspect 0.0528 chip 0.0660 

6 array 0.0287 inspection 0.0369 layer 0.0600 detect 0.0477 

fingerprint  

sensor 0.0591 

7 element 0.0261 position 0.0304 panel 0.0538 candidate 0.0402 sensing 0.0554 

8 second 0.0245 second 0.0263 substrate 0.0459 pattern inspection 0.0390 electrode 0.0543 

9 datum 0.0239 reference 0.0261 display panel 0.0453 defect candidate 0.0385 package 0.0528 

10 substrate 0.0210 edge 0.0254 sensor 0.0448 defect inspection 0.0367 substrate 0.0502 

11 light 0.0208 semiconductor 0.0252 optical 0.0427 wafer 0.0344 structure 0.0401 

12 semiconductor 0.0193 object 0.0243 pixel 0.0398 reference 0.0332 form 0.0378 

13 line 0.0193 use 0.0242 electrode 0.0368 classification 0.0327 conductive 0.0360 

14 unit 0.0190 inspect 0.0242 sensing 0.0343 value 0.0310 second 0.0357 

15 information 0.0182 region 0.0240 unit 0.0335 unit 0.0308 circuit 0.0343 

16 output 0.0180 value 0.0237 recognition 0.0331 reference image 0.0293 die 0.0342 
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17 layer 0.0178 exposure 0.0237 dispose 0.0318 detection 0.0289 pad 0.0267 

18 object 0.0177 measure 0.0234 

fingerprint  

recognition 0.0300 detect defect 0.0278 connection 0.0264 

19 use 0.0172 obtain 0.0228 organic 0.0299 sample 0.0269 connect 0.0245 

20 control 0.0171 process 0.0223 plurality 0.0286 defect image 0.0268 dielectric 0.0243 

21 channel 0.0163 optical 0.0218 identification 0.0284 datum 0.0265 portion 0.0233 

22 detection 0.0158 unit 0.0203 organic light 0.0277 

inspection  

condition 0.0263 electrically 0.0230 

23 processing 0.0155 design 0.0199 array 0.0271 image defect 0.0243 cover 0.0227 

24 process 0.0150 processing 0.0193 element 0.0268 condition 0.0233 contact 0.0218 

25 sensing 0.0147 correction 0.0193 

Fingerprint 

 identification 0.0266 

inspection  

image 0.0230 dispose 0.0218 

26 configure 0.0145 plurality 0.0191 region 0.0266 information 0.0229 finger 0.0217 

27 provide 0.0143 measurement 0.0185 photosensitive 0.0254 obtain 0.0224 material 0.0215 

28 Image sensor 0.0139 detect 0.0184 oled 0.0254 compare 0.0223 

Dielectric 

layer 0.0213 

29 form 0.0138 determine 0.0183 source 0.0252 use 0.0217 plate 0.0212 

30 cell 0.0138 calculate 0.0178 light source 0.0252 

pattern  

defect 0.0217 semiconductor 0.0207 
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Table A2-8. Results of keywords and TF-IDF values (Game and AI)  

  Cluster 0 (301) Cluster 1 (587) Cluster 2 (56) Cluster 3 (53) 

Rank Keyword Mean TF-IDF Keyword Mean TF-IDF Keyword Mean TF-IDF Keyword Mean TF-IDF 

1 voice 0.0806 user 0.0569 reality 0.2325 object 0.4387 

2 signal 0.0502 datum 0.0559 augment reality 0.2254 capture 0.1776 

3 audio 0.0464 motion 0.0483 augment 0.2132 information 0.1521 

4 sound 0.0437 sensor 0.0450 reality display 0.1219 address correspond 0.1516 

5 speech 0.0428 exercise 0.0367 world 0.1135 information address 0.1516 

6 robot 0.0410 event 0.0338 passable world 0.0918 capture identification 0.1510 

7 control 0.0406 activity 0.0263 passable 0.0918 image 0.1508 

8 input 0.0395 information 0.0256 world model 0.0918 identification process 0.1497 

9 command 0.0357 movement 0.0231 display 0.0915 use access 0.1491 

10 character 0.0356 use 0.0221 individual augment 0.0880 process digital 0.1485 

11 information 0.0356 unit 0.0207 model datum 0.0860 object database 0.1479 

12 game 0.0334 provide 0.0199 waveguide 0.0752 communication pertinent 0.1472 

13 unit 0.0292 base 0.0196 model 0.0634 pertinent object 0.1472 

14 output 0.0291 athletic 0.0193 individual 0.0626 initiate communication 0.1472 

15 datum 0.0244 toy 0.0187 pass 0.0611 information initiate 0.1472 

16 message 0.0228 analysis 0.0186 comprise 0.0502 object recognize 0.1467 

17 communication 0.0221 tag 0.0180 datum 0.0448 address 0.1463 
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18 generate 0.0216 body 0.0172 planar waveguide 0.0444 capture object 0.1460 

19 processing 0.0208 performance 0.0170 planar 0.0430 pertinent 0.1459 

20 text 0.0198 signal 0.0168 virtual 0.0427 digital image 0.1458 

21 display 0.0194 receive 0.0168 doe 0.0411 access information 0.1453 

22 data 0.0193 processor 0.0165 object 0.0410 recognize plurality 0.1449 

23 user 0.0191 time 0.0163 set 0.0407 object capture 0.1448 

24 receive 0.0190 analyze 0.0162 augmented 0.0403 object use 0.1426 

25 recognition 0.0182 configure 0.0161 map point 0.0402 plurality object 0.1416 

26 conversation 0.0180 generate 0.0156 real world 0.0391 database information 0.1410 

27 mean 0.0177 sport 0.0155 set map 0.0389 initiate 0.1408 

28 operation 0.0172 determine 0.0154 point 0.0379 image object 0.1391 

29 microphone 0.0170 example 0.0151 reality augment 0.0377 correspond object 0.1384 

30 provide 0.0164 application 0.0150 image 0.0375 digital 0.1345 
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Table A2-8. (continued) 

 Cluster 4 (228) Cluster 5 (351) 

Rank Keyword Mean TF-IDF Keyword Mean TF-IDF 

1 image 0.1720 game 0.0678 

2 card 0.1196 video 0.0593 

3 face 0.0502 object 0.0562 

4 processing 0.0403 image 0.0403 

5 information 0.0389 user 0.0397 

6 object 0.0352 gesture 0.0384 

7 capture 0.0350 player 0.0380 

8 display 0.0327 golf 0.0348 

9 section 0.0291 camera 0.0316 

10 unit 0.0286 depth 0.0284 

11 capture image 0.0284 ball 0.0266 

12 detect 0.0278 virtual 0.0265 

13 information processing 0.0268 use 0.0263 

14 area 0.0260 determine 0.0259 

15 image processing 0.0248 position 0.0236 

16 user 0.0234 base 0.0233 

17 datum 0.0233 information 0.0232 
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18 region 0.0227 capture 0.0226 

19 position 0.0224 provide 0.0212 

20 extract 0.0223 video game 0.0206 

21 image datum 0.0220 control 0.0204 

22 camera 0.0213 location 0.0198 

23 set 0.0198 club 0.0195 

24 base 0.0192 second 0.0192 

25 second 0.0183 display 0.0190 

26 acquire 0.0183 datum 0.0186 

27 generate 0.0182 track 0.0184 

28 hmd 0.0181 play 0.0180 

29 point 0.0175 computer 0.0177 

30 register 0.0167 plurality 0.0172 
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Table A2-9. Results of keywords and TF-IDF values (Biotechnology and AI) 

  Cluster 0 (854) Cluster 1 (468) Cluster 2 (116) Cluster 3 (146) 

Rank Keyword Mean TF-IDF Keyword Mean TF-IDF Keyword Mean TF-IDF Keyword Mean TF-IDF 

1 datum 0.0365 image 0.1567 code 0.1734 sequence 0.1681 

2 use 0.0245 object 0.0387 product item 0.1660 chip 0.0737 

3 determine 0.0189 light 0.0349 item 0.1546 database 0.0691 

4 value 0.0184 pixel 0.0311 product 0.1471 oligonucleotide 0.0633 

5 base 0.0179 tissue 0.0304 datum 0.1231 model 0.0446 

6 set 0.0174 cell 0.0268 code datum 0.1084 information 0.0440 

7 measure 0.0166 color 0.0268 interface surface 0.1060 probe 0.0430 

8 signal 0.0165 capture 0.0266 identity 0.1004 nucleotide 0.0396 

9 array 0.0158 specimen 0.0221 interface 0.0980 acid 0.0384 

10 sensor 0.0155 processing 0.0212 code data 0.0906 fiber 0.0383 

11 provide 0.0149 imaging 0.0212 surface 0.0877 nucleotide sequence 0.0382 

12 detect 0.0147 sample 0.0209 data 0.0817 peptide 0.0379 

13 test 0.0146 area 0.0198 data portion 0.0808 cluster 0.0357 

14 information 0.0146 analysis 0.0196 indicate datum 0.0795 array chip 0.0356 

15 feature 0.0146 obtain 0.0195 portion 0.0794 nucleic 0.0332 

16 plurality 0.0145 value 0.0189 sensing 0.0792 nucleic acid 0.0332 

17 analysis 0.0139 use 0.0184 indicative 0.0730 protein 0.0317 
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18 plant 0.0136 process 0.0173 sense 0.0725 array 0.0309 

19 time 0.0133 plurality 0.0172 indicate 0.0654 database model 0.0298 

20 genetic 0.0132 biological 0.0162 sense code 0.0577 probe array 0.0284 

21 model 0.0129 identify 0.0162 datum indicative 0.0576 sample 0.0280 

22 computer 0.0119 digital 0.0161 indicative identity 0.0550 organize information 0.0263 

23 product 0.0118 image analysis 0.0161 identity product 0.0527 provide 0.0253 

24 unit 0.0118 colony 0.0159 scanning 0.0470 identify 0.0247 

25 comprise 0.0118 information 0.0159 threshold 0.0444 use 0.0245 

26 process 0.0117 feature 0.0158 time pcr 0.0403 information relate 0.0235 

27 second 0.0116 second 0.0156 baseline 0.0391 organize 0.0231 

28 result 0.0115 determine 0.0156 user 0.0344 acid sequence 0.0226 

29 protein 0.0113 analyze 0.0155 adapt 0.0338 target 0.0222 

30 select 0.0111 optical 0.0154 real time 0.0320 code 0.0188 
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Table A2-9. (continued) 

 Cluster 4 (428) Cluster 5 (657) Cluster 6 (287) 

Rank Keyword Mean TF-IDF Keyword Mean TF-IDF Keyword Mean TF-IDF 

1 sample 0.1038 gene 0.0750 cell 0.2499 

2 biological 0.0509 expression 0.0549 image 0.0579 

3 biological sample 0.0327 cancer 0.0525 unit 0.0342 

4 analysis 0.0279 disease 0.0462 culture 0.0275 

5 signal 0.0250 invention 0.0434 blood cell 0.0271 

6 nucleic acid 0.0246 treatment 0.0321 blood 0.0264 

7 nucleic 0.0246 patient 0.0317 analysis 0.0248 

8 acid 0.0242 gene expression 0.0309 cell cell 0.0240 

9 microbiome 0.0240 use 0.0294 sample 0.0238 

10 cell 0.0233 present invention 0.0294 provide 0.0206 

11 provide 0.0224 subject 0.0289 identify 0.0199 

12 composition 0.0222 present 0.0281 determine 0.0195 

13 image 0.0219 provide 0.0280 colony 0.0192 

14 analyze 0.0212 biomarker 0.0270 target 0.0188 

15 use 0.0207 relate 0.0268 detect 0.0183 

16 condition 0.0199 identify 0.0245 feature 0.0181 
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17 generate 0.0198 drug 0.0238 cell image 0.0179 

18 base 0.0193 marker 0.0234 state 0.0176 

19 determine 0.0192 invention relate 0.0229 cell population 0.0175 

20 comprise 0.0190 risk 0.0212 use 0.0173 

21 dna 0.0184 predict 0.0206 target cell 0.0162 

22 blood 0.0182 diagnosis 0.0195 plurality 0.0160 

23 subject 0.0180 response 0.0193 imaging 0.0160 

24 detect 0.0173 tumor 0.0191 information 0.0158 

25 particle 0.0164 sample 0.0183 analysis cell 0.0155 

26 second 0.0164 level 0.0178 population 0.0155 

27 specimen 0.0161 determine 0.0173 optical 0.0150 

28 measurement 0.0161 invention provide 0.0173 cell culture 0.0149 

29 dataset 0.0160 genetic 0.0171 step 0.0149 

30 analyte 0.0159 base 0.0170 tissue 0.0139 
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Appendix 3: Appendix for Chapter 4  

Table A3-1. Category of the firm type  

Firm type Industry group from Crunchbase   

Industry-specific  Administrative, Advertising, Agriculture and Farming, Biotechnology, Commerce 

and Shopping, Community and Lifestyle, Consumer Goods, Design, Education, 

Energy, Financial Services, Food and Beverage, Gaming, Government and Military, 

Health Care, Lending and Investments, Manufacturing, Media and Entertainment, 

Music and Audio, Natural Resources, Payments, Professional Services, Real Estate, 

Sales and Marketing, Sports, Sustainability, Transportation, Travel and Tourism, 

Video, Science and Engineering (Biotechnology, Biometric, Semiconductor, 

Neuroscience) 

Cross-industry Apps, Artificial Intelligence, Consumer Electronics, Data and Analytics, Hardware, 

Information Technology, Internet Services, Messaging and Telecommunication, 

Mobile, Navigation and Mapping, Platforms, Privacy and Security, Science and 

Engineering, Software  
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Table A3-2. Results of VIF (Variance Inflation Factor) score  

[1] Patent and funding amount 
 

Model 1 Model 2 Model 3 

Variable VIF 1/VIF VIF 1/VIF VIF 1/VIF 

PatentYN 1.15 0.867279 1.85 0.541222 1.64 0.608911 

Age 1.34 0.747547 1.34 0.747507 1.35 0.743188 

Size 1.73 0.57881 1.73 0.578807 1.73 0.576959 

Investors 1.26 0.792083 1.26 0.791912 1.27 0.789084 

FundStg 1.88 0.532747 3.36 0.297252 1.88 0.532662 

FirmType 1.02 0.982925 1.02 0.976776 2.22 0.451241 

PatentYN × FundStg 

  

3.67 0.272826 

  

PatentYN × FirmType 

    

2.76 0.362833 

Mean VIF 1.4 

 

2.03 

 

1.83 

 

 

[2] Patent counts and funding amount 
 

Model 1 Model 2 Model 3 

Variable VIF 1/VIF VIF 1/VIF VIF 1/VIF 

PatentCount 1.09 0.913988 2.11 0.474642 1.62 0.616916 

FundStg 1.36 0.733453 3.09 0.323543 1.37 0.730843 

FirmType 1.03 0.971835 1.04 0.964473 2.46 0.406266 

Age 1.36 0.736847 1.38 0.726047 1.37 0.727751 

PatentCount × FundStg  

 

4.23 0.236591 

  

PatentCount × FirmType  

   

3.1 0.322485 

Mean VIF 1.21 

 

2.37 

 

1.99 
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[3] Technology diversity and funding amount 
 

Model 1 Model 2 Model 3 Model 4 

Variable VIF 1/VIF VIF 1/VIF VIF 1/VIF VIF 1/VIF 

TD  1.3 0.769237 4.84 0.206517 1.87 0.535093 1.79 0.558835 

PatentCount 1.41 0.708197 1.79 0.557735 1.41 0.70721 1.42 0.706104 

FundStg 1.31 0.762297 1.31 0.761506 1.32 0.758146 1.34 0.748846 

FirmType 1.05 0.949509 1.07 0.933279 1.07 0.938844 1.05 0.949 

Age 1.26 0.792385 1.28 0.780496 1.26 0.79063 1.29 0.77269 

TD × PatentCount  

 

6 0.166576 

    

TD × FundStg 

    

1.65 0.604774 

  

TD × FirmType 

      

1.47 0.681805 

Mean VIF 1.27 

 

2.72 

 

1.43 

 

1.39 

 

 

[4] Unrelated/related diversity and funding amount 
 

Model 1 Model 2 Model 3 Model 4 

Variable VIF 1/VIF VIF 1/VIF VIF 1/VIF VIF 1/VIF 

UD  1.37 0.729988 8.45 0.118411 2.39 0.418419 1.84 0.542917 

RD 1.26 0.792471 7.68 0.130241 2.19 0.455881 1.85 0.539274 

PatentCount 1.45 0.687925 1.57 0.636868 1.47 0.680149 1.47 0.679733 

FundStg 1.45 0.689339 1.45 0.687931 1.82 0.54966 1.47 0.679365 

FirmType 1.08 0.92241 1.11 0.900765 1.1 0.911836 1.77 0.564821 

Age 1.41 0.710459 1.43 0.698396 1.42 0.705677 1.41 0.709331 

UD × PatentCount  

 

9 0.111081 

    

RD × PatentCount  

 

7.83 0.127786 

    

UD × FundStg 

    

2.85 0.350601 

  

RD × FundStg 

    

2.68 0.373715 

  

UD × FirmType 

      

2.56 0.390598 

RD × FirmType 

      

2.35 0.42636 

Mean VIF 1.34 

 

4.81 

 

1.99 

 

1.84 
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Abstract (Korean) 

본 학위 논문은 인공지능(Artificial Intelligence, AI) 기술의 범용기술로서 발

전 가능성에 대하여 다각도적 관점에서 실증 분석한 연구이다. 특히, 기술 발

전 초기 단계에 있는 신흥기술의 특성을 고려하여 해당 기술로 인한 경제적 

파급 효과보다는 기술적침투성(Technological Pervasiveness)을 기반으로 이해하

고자 한다. 본 학위 논문에서는 기술적침투성을 지식 흐름, 산업 섹터, 기술 

포트폴리오의 세 가지 차원의 분석 레벨로 확장하여 다각도로 분석한다. 또한, 

각 분석 레벨별로는 범용기술로 인한 혁신 발생 측면에 주목하여, 기술 확산, 

융합, 전략의 개념적 배경을 중심으로 새로운 관점에서 범용기술을 해석한다. 

본 학위 논문은 다음의 세 가지 연구로 구성된다. 

첫번째 연구에서는 인공지능 기술 발전 및 확산에 있어, 범용기술적 특성

의 변화와 차이에 대한 패턴을 살펴본다. 여기서 범용기술적 특성으로는 기술 

지식의 조합과 확산 과정에 주목하여, 일반성, 독창성, 상보성을 고려한다. 분

석 방법으로는 개별기술의 확산 과정을 시계열데이터로 구축하고, 시계열데이

터의 패턴 분석을 위해 동적시간왜곡 및 시계열 클러스터링 방법론을 사용한

다. 또한, 시간 및 확산 패턴에 따라 구분된 클러스터는 분산 분석을 통해 유

의미한 차이를 검증한다. 연구 결과, 기술 발전에 따라 인공지능 기술의 범용

기술적 특성이 증가하는 것으로 나타났고, 확산 수준이 높은 인공지능 기술에

서 해당 특성이 더욱 높은 것으로 나타났다. 특히, 인공지능 기술 중에서는 적

용기술에서 범용기술적 특성이 높게 나타났다. 본 연구를 통하여, 인공지능 기
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술의 범용기술로서 발전 패턴을 기술의 지식 흐름 및 확산 차원에서 이해할 

수 있다.  

두번째 연구에서는 인공지능 기술의 다양한 산업으로의 적용가능성을 구체

적으로 분석할 수 있는 새로운 프레임워크를 제안한다. 본 연구에서 제안하는 

프레임워크는 기술 융합을 개념적 배경으로 하여, 산업 섹터, 기술 범주, 기술 

활용의 세가지 측면에 주목한다. 해당 프레임워크는 특허 데이터의 기술 분류 

기반 정형데이터 및 텍스트 기반 비정형데이터 분석을 통합한 양방향적 접근 

방법론으로, 네트워크 분석 및 클러스터링 분석 방법론을 활용한다. 연구 결과, 

인공지능 기술이 적용된 다양한 산업 섹터 및 공통 기술 범주를 확인하였고, 

수평적 적용가능성이 있음을 확인하였다. 또한, 각 산업 내에서 도출된 산업별 

인공지능 적용 기술 범주와 기술 활용에 대한 다양한 적용 패턴을 도출하고, 

수직적 적용가능성이 있음을 확인하였다. 본 연구에서 제시하는 프레임워크를 

통하여, 인공지능 기술의 범용기술로서 적용가능성을 산업 섹터 차원에서 이

해할 수 있다.  

세번째 연구에서는 기술 공급자 측면에서의 기술 포트폴리오에 주목한다. 

특히, 스타트업은 파괴적 혁신을 이끄는 주체가 될 수 있으며, 기술 다각화는 

다양한 지식의 조합을 기반으로 한 공급 측면의 혁신을 통해 범용기술로의 발

전에 기여할 수 있다. 본 연구에서는 인공지능 스타트업의 기술다각화 전략을 

탐구하고, 스타트업 성장을 가능하게 하는 스타트업 투자와의 관계를 분석한

다. 본 연구에서 기술다각화는 관련기술다각화와 비관련기술다각화로 구분하

여 측정하고, 기업유형은 산업특정기업 및 산업공통기업으로 구분한다. 분석 
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방법으로는 스타트업의 특허 및 투자 정보 기반의 패널 데이터를 고정 효과 

모형을 중심으로 분석한다. 연구 결과, 인공지능 스타트업의 기술다각화가 스

타트업 투자와 긍정적인 관계가 있음을 확인하였다. 또한, 해당 관계는 비관련

기술다각화일수록, 산업공통기업일수록 더욱 크게 영향을 미치는 것으로 나타

났다. 본 연구를 통하여, 인공지능 섹터의 거시적인 성장 매커니즘 관점에서 

인공지능 스타트업 기술다각화가 범용기술로서 발전에 혁신 동력으로 작용할 

수 있음을 시사한다. 

본 학위 논문에서 다루는 세 가지의 연구는 서로 다른 개념적 배경과 범용

기술적 특성과의 연계를 통하여 범용기술 및 인공지능 섹터 연구에 이론적, 

실증적 기여를 갖는다. 또한, 연구에서 제안하는 신흥기술의 성장을 이해하는 

동적 패턴 분석 방법 및 프레임워크는 기술 혁신 연구에 방법론적으로 기여한

다. 본 연구 결과는 인공지능 섹터의 기술, 산업 및 기업에 대한 이해와 발전

에 기여할 수 있는 정책적, 전략적 시사점을 제시한다.   

 

주요어 : 인공지능, 범용기술, 기술확산, 기술융합, 기술전략, 특허분석 
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