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Abstract 

A Study on Genetic Implications  

of Korean Individuals through the 

Establishment of Genome Dataset 
 

Jeongeun Lee 

Interdisciplinary Program in Bioengineering 

The Graduate School 

Seoul National University 
 

 

Understanding genetic architectures of healthy individuals is 

fundamental in the study of physiology of human development and 

disease, as well as clinical diagnosis of genetic disease. Accordingly, 

in line with substantial advances in disease genetics, the importance 

of the genome database of general population has also emerged. 

However, studies to date have largely focused on individuals of 

European descent. This limits further discoveries of novel 

functional genetic variants in other ethnic groups. As a result, 

efforts to establish independent population-specific genome 

databases for each East Asian country have gradually grown, but 

the current state of Korean genome database construction is not 

reaching the database construction speed of neighboring East Asian 

countries. 

In this study, in order to resolve the paucity of Korean 
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population genome resources and contribute to the establishment of 

an East Asian population genome database, a Korean genome 

database (KOVA2) consisting of 1,896 whole genome sequences 

and 3,409 whole exome sequences of healthy Koreans was 

established. This is the largest Korean-specific genome database 

ever, surpassing the 1,909 Korean genome data included in 

gnomAD. The constructed genome database detected mutations 

through the newly developed pipeline which takes the raw sequence 

data as an input, and only high quality variants from the healthy 

Koreans were included in the database. In total, 40,414,379 SNVs 

and 2,888,275 insertions/deletions were obtained, and 144,388 

structural variants called from whole genome data were cataloged. 

A sample from KOVA2 was sequenced with another sequencing 

platform to evaluate the integrity of the calling pipeline, and it 

showed high concordance rate between sequencing platforms. Also, 

all known genetic characteristics reported from previously 

published genome databases were identified from KOVA 2. 

The KOVA2 database was analyzed to additionally characterize 

the Korean-specific genetic features including the runs of 

homozygosity (ROH), the positively selected regions, allele age. In 

the process, we found loci that are strongly selected in Koreans 

compared to other East Asian populations, such as the ADH1A/1B 

and UHRF1BP1 loci. Analysis of allele age revealed a correlation 

between variant functionality and allele age. There was no 

significant difference in ROH regions of Koreans with other East 
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Asians. Estimation of the effective population size by time showed 

similar results that match to the population statistics record of 

Koreans. 

Called variants from KOVA2, including the estimated allele age 

and scores reflecting degree of positive selection were made 

available for search and download from public websites. The results 

of this study will serve as valuable resource that can provide a new 

insight for various genetic studies targeting East Asian populations. 

 

* This thesis is based on a published article; Lee et al., Exp. Mol. 

Med. 54:1862-1871 (2022) [1]. 

 

Keywords : genome database, whole-exome sequencing, whole-

genome sequencing, East Asian, Korean, positive selection, allele age 

Student Number : 2014-30270 
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Chapter 1. Introduction 
 

 

The reference population database composed of the genomes of 

healthy people is fundamental resource in the study of physiology 

of human development and disease, study of human evolution, and 

clinical diagnosis of genetic disease. The recommendation of The 

American College of Medical Genetics and Genomics (ACMG) for 

mutation interpretation is also highlighting the importance of its 

usage in clinical practice as a tool to separate the putative 

pathogenic variants from benign variants which are variants 

observed in many healthy patients [2-3].  

The control database has been developed in a way that covers 

more individuals and various sequencing type. As rare variants are 

found more in the larger genetic studies, the cohort size of the 

control database also has been increased to determine whether the 

rarity of the variant is not due to the lack of a sample group. Whole 

exome sequencing (WES) has been done a lot due to the ease of 

interpretation, but whole genome sequencing (WGS) is getting 

attention, as the need for study of non-coding region has become 

more prominent. 

However, the problem with the current control database is that 

diversity of the population is limited. Especially, despite making up 

about 5% of the global population, only 8.2% of participants in 

genome-wide association studies (GWAS) [4] are from East Asia. 

Comparatively few control databases are available for East Asian 
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populations. The Genome Aggregation Database (gnomAD) [5], the 

most widely used control genome database due to the largest cohort 

size, has been increased its sample size every year until 2020 since 

the Exome Aggregation Consortium (ExAC) [6], which consists of 

WES data of 60,706 people, was released in 2016. Currently, 

191,830 WES samples and 76,156 WGS samples are included. Of 

these, only 9977 WES samples from East Asia were included, and 

among them, only 1909 Korean samples were analyzed (Figure 1.1). 

Notably, small databases of genetic information from Korean 

individuals (with sizes of approximately one thousand individuals) 

have been released [7-9]. However, as the cohort sizes of human 

genetics studies increase, it becomes necessary to construct larger 

Korean control databases. 

At least 40,000 years ago, people from the Korean peninsula 

are known to have traveled there; this migration likely took place 

via two routes, from northeast and southeast Asia [10-11]. 

Throughout history, there has been extensive but constant mixing 

with the nearby populations of the Chinese and Japanese [12], but 

numerous studies have revealed that ethnic Korean people are 

genetically distinct from Chinese and Japanese people. The ethnic 

Korean population is the world's 15th largest ethnic group with a 

population of about 83 million. Modern national health care systems, 

particularly in South Korea, can offer a chance to investigate the 

genetics of numerous diseases in this population if the necessary 

genetic infrastructure is put in place. 
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The goal of this thesis is to establish a genomic database of 

healthy Koreans and to identify Korean-specific genetic and clinical 

characteristics from it (Figure 1.2). In Chapter 2, I introduced the 

Korean Variant Archive 2 (KOVA 2), the largest genome database 

from the ethnic Korean population to date. which is composed of 

1,896 whole genome sequences and 3,409 whole exome sequences 

from healthy individuals of Korean ethnicity. In Chapter 3, the 

patterns of runs of homozygosity, positive selected intervals, and 

allele age of variants were identified to investigate Korean-specific 

genetic features using the constructed KOVA2. In this process, we 

found loci, such as the loci of ADH1A/1B and UHRF1BP1, that are 

strongly selected in the Korean population relative to other East 

Asian populations. Our analysis of allele ages revealed a correlation 

between variant functionality and evolutionary age. Also, mutations 

known to be pathogenic among KOVA2 variants are listed. 

As the data is deposited and enabled to download from public 

genome browser ((https://www.kobic.re.kr/kova/), I hope that this 

study serve as a valuable resource for genetic studies of Korean 

and East Asian populations. 

https://www.kobic.re.kr/kova/
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Figure 1.1. Small proportion of East Asians in the gnomAD database. (a) East 

Asian sample size increase compared with overall sample size increase. The gray 

bar shows the total number of samples included, and the blue bar shows the 

number of East Asian individuals included. (b) population composition of gnomAD 

database. 
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Figure 1.2. schematics of the thesis 
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Chapter 2. Korean Genome Database  
 

 

 

2.1. Background 
 

 

As the size of genetic studies increases, the importance of the 

control genome database has increased. As introduced in Chapter 1 

above, the size of the gnomAD database covering the global 

population has been increasing, but recently, the genome database 

of a single ethnicity is expanding. Korea has also built WES and 

WGS databases in line with this trend, but the sample size is still 

small. (Table 2.1)  

Most of the existing genomic databases were collected through 

a consortium consisting of several researchers [5-6]. The 

consortium has the advantage of generating vast data in a 

comparatively short time. However, if the protocol to detect 

variants is not unified from the time of DNA extraction, genetic 

characteristics may be represented in an unintentional way. 

Many of the samples used in this study were previously 

sequenced by various researchers for other disease research, so 

the type of whole exome sequencing library was different or the 

sequencing coverage depth was different for each data center. Also, 

the pipeline used for variant calling was not unified. As a result, 

there was a problem that the read coverage of a specific region was 

low and under-represented, and a variant that was originally found 
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commonly was represented as a rare variant in the database, or the 

variant calling quality of a specific region could be low. Therefore, it 

was necessary to build a pipeline that can trust the quality of 

variants. 

In addition, when recruiting donors on a large scale, the off-

target sample in the study may be included in the cohort due to 

mistakes in the experimental process or administrative errors. A 

patient sample and a healthy control sample may be swapped due to 

sample labeling mistake, and one sample may be duplicated in the 

database due to a file naming mistake during the transferring data to 

other center. When family samples are registered to sample 

collection, the family samples should be removed except one sample 

[13]. Since samples with family relationships have a high genetic 

correlation with each other, genetic bias may occur. Especially, rare 

genetic mutations that are passed down from a particular family 

could be represented as common. Therefore, in order to construct a 

population database that reflects various genetic characteristics, 

efforts should be made to collect only one sample of healthy 

individuals without kinship. 

Finally, it is necessary to operate a computing resource to 

handle big data. In order to detect variants of all samples from raw 

sequence data using a unified pipeline, capability of storage, 

memory, and CPU must be considered. Even if the number of WES 

samples is only 1000, at least 5 TB of disk space for the FASTA 

file containing the sequence information is required. Also, it 
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requires at least 2.5 times of the storage space during the workflow. 

The problem is that in order to process 1000 whole genome 

sequencing data, at least 10 times of the storage space is required 

for WES data. Accordingly, the computing time for the process is 

also considerable. Therefore, it is necessary to shorten the time 

required for variant calling in one sample as much as possible. 

In this study, tools utilizing Apache spark which is a general-

purpose distributed data processing were largely included in the 

pipeline, and this pipeline was implemented using Workflow 

Description Language (WDL) [14] to handle cloud computing 

resources. To ensure that only high quality variants are included in 

the Korean genome database, stringent quality control for sample 

and called-variant were applied.  
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Table 2.1 Population-specific genome database of East Asian 

Name of 

database 

Major 

population 

Sequencing 

type 

(coverage 

depth) 

Number of 

Healthy 

donors 

Publication 

date 

HuaBiao 

[15] 

Han 

Chinese 

WES 

(>x100) 
5000 2021.11. 

Taiwan 

Biobank 

[16] 

Han 

Chinese 

WGS 

(>30x) 
1,445 2021.02. 

NyuWa 

[17] 

Han 

Chinese 

WGS 

(~26.2x) 
2,902 2021.11. 

Westlake 

BioBank 

for 

Chinese 

[18] 

Han 

Chinese 

WGS 

(~13x) 
1,151 2022.05 

1KJPN 

[19] 
Japanese 

WGS 

(30x) 
1,070 2015.08 

3.5KJPN 

[20] 
Japanese 

WGS 

(30x) 
3,552 2016.06 

8.3KJPN 

[21] 
Japanese 

WGS 

(30x) 
8,380 2021.11. 

KOVA 

[7] 
Korean 

WES 

(>50x) 
1,055 2017.06 

Korea1K 

[9] 
Korean 

WGS 

(30x) 
1,094 2020.05 
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2.2. Materials and Methods 
 

 

2.2.1. Cohorts and sample preparation 
 

 

The whole-exome sequencing (WES) and whole-genome 

sequencing (WGS) data for Korean individuals were collected from 

independent research groups in Korea (Table 2.2). All sequencing 

data were obtained from normal tissues or blood samples following 

standard protocols [7, 22]. This research was performed with the 

approval of the Institutional Review Board of each group (Seoul 

National University and others), in which all donors provided 

written informed consent if available. All experiments were 

performed on de-identified samples and in accordance with 

relevant guidelines and regulations. Sample collection was done in 

collaboration with Jean Lee. 
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Table 2.2. Sample collection. Numbers denote number of samples after sample 

filtering. Note “KOVA I” denotes the data was also used in the first version of 

KOVA (Lee et al., Sci Reports 2017).  

Group leader Center WES WGS Total Note 

Woong-Yang Park 
Samsung Genome 

Institute 
1,181 - 1,181 

KOVA 
I 

Jong Hwa Bhak 
Ulsan National 

Institute of Science 
and Technology  

- 903 903 - 

Murim Choi 
Seoul National 

University  
587 23 610 - 

Jong-Hee Chae 
Seoul National 

University Children’s 
Hospital 

545 - 545 
KOVA 

I 

National Biobank 
of Korea 

Korea Biobank 
Project 

- 347 347 - 

Young-Joon Kim Yonsei University - 324 324 - 

The National 
Center for Medical 

Information and 
Knowledge 

Clinical & Omics 
Data Archive (CODA) 

- 299 299 - 

Youngil Koh 
Seoul National 

University Hospital 
284 - 284 - 

Daehyun Baek 
Seoul National 

University  
222 - 222 

KOVA 
I 

Sanghyuk Lee 
Ewha Womans 

University 
194 - 194 

KOVA 
I 

In-Jin Jang 
Seoul National 

University  
118 - 118 

KOVA 
I 

ETC 224 - 224 - 

Heon Yung Gee Yonsei University 45 - 45 - 

Byung-Ok Choi 
Samsung Medical 

Center 
9 - 9 - 

Total 3,409 1,896 5,305 - 
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2.2.2. Variant calling 
 

 

To map raw reads to the GRCh38+decoy reference sequence BWA 

mem v0.7.17 [23] was used with default options. After marking 

duplicates and sorting by coordinate with MarkDuplicatesSpark, the 

mapping quality was recalibrated by BQSRPipelineSpark, 

implemented in GATK version 4.1.3.0 [22]. Qualimap v2.2.1 [24] 

was used to generate quality control metrics for the mapped 

sequence data. Single nucleotide variants (SNVs) and small 

insertions and deletions (indels) were then called for each sample 

using GATK HaplotypeCaller with the option ‘-ERC GVCF’. To 

jointly genotype samples, we created a genomicsDB using 

GenomicsDBImport in GATK and followed the GATK best practice 

guideline [22]. Briefly, SNVs and indels were recalibrated by 

GATK’s VQSR model to select 99.7% and 99.0% of true sites, 

respectively, from the training set. The detailed workflow is 

described in Figure 2.1. In the case of a tool that does not support 

spark, the workflow performed parallel processing by giving the 

finely divided target region interval as an input parameter. By 

creating a pipeline with WDL, merging the processes scattered over 

the divided intervals was stably performed. Furthermore, the 

pipeline was submitted to the Cromwell server which manage the 

cloud computing resource, so that computing time per sample could 

be shorten. By sharing the pipeline to Sungwon Jeon from Ulsan 
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National Institute of Science and Technology (UNIST), raw reads of 

903 WGS data from Jong Wha Bhak were processed in UNIST 

computing cluster to get GVCF files. Also, all WGS files were jointly 

genotyped on the UNIST computing cluster. Further analyses 

adopted a modified version of gnomAD QC steps [5] and were 

mostly performed with Hail [25], which is an open-source Python 

library for genome data analysis. Hail is also a spark-based library, 

so it greatly helped speed up post processing. After merging the 

WES and WGS data using Hail, we excluded multi-allelic variants or 

were in low complexity regions [26]. Genotype calls that had a 

genotype quality (GQ) < 20, read depth (DP) < 10, allelic balance 

(AB) < 0.2 were also excluded from counting of alleles (Figure 2.2). 
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Figure 2.1. Variant calling pipeline. The name of the tool or function for each 

step is described in the bracket in a gray background. If the same procedure is 

performed in a reiterative manner, the step is depicted in overlapped boxes. The 

subsequent steps after BWA mapping are all proceeded using GATK v4.1.3.0. 
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Figure 2.2. Quality control process. Input VCF is the output of the pipeline in 

Fig S1. Each block contains the Hail function in gray background. 
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2.2.3. Sex inference 
 

 

We inferred the sex of each sample by calculating sex chromosome 

ploidy, which is defined as the coverage of sex chromosomes 

divided by the coverage of chromosome 21. To assign X and Y 

ploidy cutoffs, we calculated F-stat scores based on the linkage 

disequilibrium (LD)-pruned biallelic SNVs (MAF > 0.05, call rate > 

0.99, inbreeding coefficient score ≥ -0.03 and R2 for LD pruning 

< 0.1) using the ‘annotate_sex’ function of the gnomAD Hail 

library with the parameters ‘male_threshold=0.8, 

female_threshold=0.5’. An XX karyotype was defined if X 

chromosome ploidy ranged between [1.7, 3.4] and [1.55, 2.45] for 

WES and WGS, respectively. An XY karyotype was assigned when 

Y chromosome ploidy ranged between [0.2, 2.3] and [0.45, 1.11] 

and X chromosome ploidy was below 1.65 and 1.50 for WES and 

WGS, respectively (Figure 2.3, Table 2.3). In subsequent analyses, 

only samples assigned to the XX or XY karyotype were used. In 

total, 92 samples were excluded because they were determined to 

be of ambiguous sex. 
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Figure 2.3. Sex inference. The X-axis and Y-axis represent the ploidy of 

chromosome X and Y, respectively, normalized by the coverage of chromosome 21. 
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Table 2.3. Number of samples based on inferred sex information 

Inferred sex WES WGS Total 

Female 1627 943 2570 

Male 1782 953 2735 

Total 3409 1896 5305 
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2.2.4. Relatedness inference 
 

 

To remove close relatives, we estimated kinship and the probability 

of identity-by-descent (IBD) being zero for every pair of samples 

based on the LD-pruned variants with a MAF ≥ 0.001, call-rate > 

0.99, HWE P > 1.0 x 10-8, inbreeding coefficient score > -0.025, 

and R2 for LD pruning < 0.1. After calculating kinship using the 

‘pc_relate’ feature [27] in Hail, we selected the maximal 

independent set of samples with kinship < 0.1 using the 

‘maximal_independent_set [28] from Hail. For related sample pairs, 

we chose the one with a higher coverage depth. 
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2.2.5. Population structure analysis 
 

 

All biallelic autosomal SNVs from our dataset and the 1000 

Genomes Project Phase 3 (KG) [29] were merged and filtered; 

variants were retained if they had a MAF > 0.001, call-rate > 0.99, 

HWE P > 1.0 x 10-8, and inbreeding coefficient score > -0.025. 

We then pruned the variants to those with an LD R2 < 0.1. To 

perform a principal component analysis (PCA) on the Hardy-

Weinberg-normalized variants, we used the ‘hwe_normalized_pca’ 

function of Hail with k = 30. Each sample was assigned to an 

ancestry, determined as the ancestry with maximum probability 

emitted from a random forest model trained on the KG PCA result. 

We removed non-Korean or Korean-outlier samples iteratively 

until the Chinese, Japanese, Korean, and Vietnamese populations all 

became distinguishable based on PCs 1 and 2. 
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2.2.6. Sample quality control 
 

 

The overall process is summarized in Figure 2.2. First, we excluded 

samples with ambiguous clinical status or having a mean coverage 

depth < 40X and < 10X for WES and WGS, respectively. To remove 

unintentionally enrolled cancer samples, samples with likely 

pathogenic oncogene variants were removed. Among the cosmic 

mutations [30] identified in the oncogene defined by oncoKB [31], 

the variants used for removal satisfy the following conditions: 

 

1) MUTATION_SIGNIFICANCE_TIER: 1 or 2 

2) COSMIC_SAMPLE_MUTATED >= 100 

3) KOVA_AC < 300 

 

Samples with ambiguous or abnormal sex were then excluded, 

as were duplicated samples and closely related samples. We further 

removed samples with ambiguous ethnicity, followed by samples 

with a Het/Hom ratio > 1.8 (Figure 2.4). Ti/Tv and Het/Hom scores 

were computed using the ‘compute_sample_qc_metric’ function 

implemented in Hail. Finally, after combining the WES and WGS 

data, we reperformed the relatedness inference procedure to 

remove WES samples that overlapped or were related to WGS 

samples.  
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Figure 2.4. Quality control of KOVA 2 samples. (a) A transition/transversion 

(Ti/Tv) ratio value distribution for WES (left) and WGS (right) samples. (b) A 

heterozygous/homozygous ratio value distribution on WES (left) and on WGS 

(right) samples. 
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2.2.7. Variant quality control 
 

 

The overall process is summarized in Figure 2.2. Variants were 

considered to have violated Hardy-Weinberg equilibrium (HWE) on 

allelic frequency (P < 1.0 x 10-6) when the allele frequency was > 

0.01 or the inbreeding coefficient score was < -0.03, and those 

variants were removed. This QC procedure differs slightly from the 

standard gnomAD filtering procedure [5] (Table 2.4). Functional 

annotation was performed by the Variants Effect Predictor (VEP) 

version 101 [32]. For each variant, we selected the most severe 

functional consequences using the gnomAD package of Hail.  
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Table 2.4. Comparison of variant QC steps between gnomAD and KOVA 2. 

Filtering steps gnomAD v2.1 KOVA 2 

Variant Quality Score 

Recalibration 

(VQSR) 

allele-specific 

VQSR using random 

forests classifier 

VQSR using GATK 

Low complexity 

region (LCR) 
Flagged as lcr Filtered 

Segmental duplication Flagged as segdup - 

Low quality genotype 

GQ < 20, 

DP < 10,  

AB ≤ 0.2 for 

heterozygotes 

GQ < 20, 

DP < 10,  

AB ≤ 0.2 for 

heterozygotes 

Hardy-Weinberg 

equilibrium test 
- 

HWE < 10-6 for 

variants with MAF 

≥ 0.01 

Inbreeding coefficient 

(F) 
F < -0.3 F < -0.3 
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2.2.8. Phasing 
 

 

After carrying out sample-level and variant-level quality control, 

WGS data were phased with SHAPEIT4 version 4.2.2 [33]. After 

input to SHAPEIT4, we converted the VCF file to a PLINK file 

format with the option ‘--geno 0.1 --maf 0.001’ to keep SNVs 

with a missingness < 10% and MAF > 0.001. We used the genetic 

maps for reference version hg38 that are provided by SHAPEIT4 

[34]. We also phased our data with Beagle 5.2 (beagle.21Apr 

21.304.jar) [35], for which we used the hg38 genetic map available 

at the Beagle website [36] and the reference panel created by the 

KG Project. 
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2.2.9. Imputation of array data 
 

 

Imputation of variants based on KOVA 2 was performed as 

previously described [9] and evaluation of imputation performance 

was done in collaboration with Jeongha Lee. Variants present on the 

Infinium Global Screening Array (GSA-24v3-0_A1) were 

extracted from WGS data of 197 COVID-19 patients and imputed 

using Impute2 [37]. Panel imputation accuracy was compared using 

the aggregated squared Pearson correlation coefficient (R2) 

determined between the imputed genotype dosages and the true 

genotypes from genome data. 
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2.2.10. Calling of structural variants (SVs) 
 

 

Manta v1.6 [38] was used to call structural variants for individual 

WGS samples. The convertInversion.py script provided with Manta 

was applied to represent inversion events in the manner of gnomAD 

SV v2.1 [39]. Slightly different SV representations across VCF files 

were merged using svimmer [40]. An SV was defined as known if it 

overlapped with any entry in the gnomAD SV v2.1 dataset. 
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2.3. Result 
  

 

Korean-targeted WES and WGS data collected from various 

projects were used to build a Korean control database. Raw reads 

from 4,258 WES and 2,396 WGS data produced with different 

libraries were processed and filtered using an updated version of 

the pipeline than previous one [5,7,22]. The Methods section 

describes the exclusion criteria for samples and variants. After 

filtering out 1,349 samples (20.3% of initial samples), variants from 

the remaining 5,305 samples (3,409 WES and 1,896 WGS) were 

used in subsequent analyses (Table2.5, Table2.6). The remained 

samples consist of healthy volunteers (31.4%), healthy parents of 

rare disease patients (28.1%), or cancer patients' normal tissues 

(40.2%).  

To assess the integrity of our calling pipeline, three distinct 

evaluations were performed. (1) A set of variants from a sample 

analyzed using different sequencing techniques was compared. The 

variants showed a 99.4% concordance rate between HiSeq and 

PacBio calls and a 99.8% concordance rate between HiSeq and 

NovaSeq calls (Tables 2.7 and 2.8). (2) Additionally, our pipeline 

called 97.2% of Sanger-validated variants, and the missing calls 

were entirely caused by low-coverage regions (Table 2.9). (3) 

Finally, a comparison of common variant calls across the WES and 

WGS platforms was performed. Among the 45,413 common coding 

variants (>5% frequency), 40,489 were detected by WES, and 
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45,118 were detected by WGS, showing 88.5% concordance (Table 

2.10). The missed calls were primarily from WES. This 

concordance is similar to one that was calculated from a recent 

study using 150,119 UK Biobank individuals [41]. 

Two aspects were examined to ensure that KOVA2 does not 

contain confounding factors introduced by cancer normal tissue 

samples. First, whether more GWAS [4] signals associated with 

cancer were found in cancer normal tissues was determined (Table 

2.11), and secondly, whether more cosmic [30] oncogene variants 

were found in cancer normal samples was determined (Table 2.12). 

Among 1673 GWAS cancer variants, 1108 mutations that did not 

overlap with Panel of Normal (PON) [42] publicly provided by 

GATK were first listed for analysis using GWAS. Among these 

1108 GWAS cancer variants, 18 variants from WES and 160 

variants from WGS overlapped with KOVA AF < 5% variants. Of 

these, three mutations from WGS were found more frequently in the 

cancer normal sample group (Fisher's exact test, p < 0.05). 

However, these three mutations are also commonly found in 

gnomAD (Table 2.11). In the same way, out of the 70,472 COSMIC 

oncogene variants that were obtained by choosing variants on 

oncogene defined by oncoKB from cosmic cancer mutation cencus 

v92, 70,151 mutations that did not overlap with PON were first 

listed for analysis using COSMIC. 753 WES and 613 WGS variants 

out of the 70,151 COSMIC oncogene variants overlapped with 

KOVA AF 5% variants. Of these, the cancer normal sample group 
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had higher rates of two WES mutations and seven WGS mutations 

(p < 0.05) (Table 2.12). These variants have the “Other” flag on 

the mutation significance tier which are assigned by COSMIC, 

indicating that they are likely to have a low impact. Similar results 

were obtained when comparing the number of cancer-related 

variants per sample (Figure 2.5, Figure 2.6) 
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Table 2.5. Sample quality control process of WES data. 

Step  Condition 

Samples 

before 

filtering 

Samples 

with 

condition 

1 Ambiguous clinical status 4,235 306 

2 
Low coverage depth 

(meanCoverage < 40) 
3,929 77 

3 Ambiguous sex 3,852 92 

4 Duplicated (kin > 0.35) 3,760 164 

5 Related (0.1< kin <=0.35) 3,596 22 

6 Ambiguous ethnicity 3,574 91 

7 
Het/hom ratio outlier  

(ratio > 1.8) 
3,483 22 

8 In both WES and WGS 3,461 52 

 
Total 3,409 849 
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Table 2.6. Sample quality control process of WGS data 

Step Condition 

Samples 

before 

filtering 

Samples 

with 

condition 

1 
Low coverage depth 

(meanCoverage < 10) 
2,396 165 

2 Ambiguous sex 2,231 10 

3 Duplicated (kin > 0.35) 2,221 144 

4 Related (0.1< kin <=0.35) 2,077 149 

5 Ambiguous ethnicity 1,928 32 

 
Total 1,896 500 
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Table 2.7. The number of concordant or discordant variant pairs between 

PacBio and KOVA pipeline from a single sample. 0/0, homozygous reference; 0/1, 

heterozygous variant; 1/1, homozygous variant; 

 Genotype 

KOVA2 

0/0 0/1 1/1 

PacBio 

0/0 - 3,820 610 

0/1 11,411 1,974,392 675 

1/1 742 3,613 1,548,512 
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Table 2.8. The number of concordant or discordant variant pairs between 

NovaSeq and KOVA pipeline from a single sample. 0/0, homozygous reference; 

0/1, heterozygous variant; 1/1, homozygous variant; 

 Genotype 

KOVA2 

0/0 0/1 1/1 

NovaSeq 

0/0 - - - 

0/1 5,562 2,064,129 1,215 

1/1 56 1,028 1,495,016 
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Table 2.9. Comparison of Sanger-validate calls and KOVA 2 calls. 0/0, homozygous reference; 0/1, heterozygous variant 

No. 
KOVA2  

Sample ID 
Chr:position(hg38) 

Sanger  

result 

KOVA2 call 

Concordant? 
Call 

Ref. 

coverage 

Nonref. 

coverage 

1 KVE0617 chr4:15059272 0/0 0/0 65 0 Yes 

2 KVE0632 chr8:60743012 0/0 0/0 17 0 Yes 

3 KVE0633 chr8:60743012 0/0 0/0 16 0 Yes 

4 KVE0853 chr4:15059272 0/0 0/0 84 0 Yes 

5 KVE0909 chr10:72551287 0/0 0/0 39 0 Yes 

6 KVE2741 chr6:75087652 0/0 0/0 39 0 Yes 

7 KVE2758 Chr9:137162182 0/0 0/0 28 0 Yes 

8 KVE2759 Chr9:137162182 0/0 0/0 38 0 Yes 

9 KVE2778 chr16:48361909 0/0 0/0 152 0 Yes 

10 KVE2779 chr16:48361909 0/0 0/0 225 0 Yes 

11 KVE2782 chr22:27751027 0/0 0/0 46 0 Yes 

12 KVE2783 chr22:27751027 0/0 0/0 49 0 Yes 

13 KVE2785 chr22:23787200 0/0 0/0 128 0 Yes 
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14 KVE2786 chr22:23787200 0/0 0/0 143 0 Yes 

15 KVE2787 chr6:157184324 0/0 0/0 190 0 Yes 

16 KVE2788 chr6:157184324 0/0 0/0 177 0 Yes 

17 KVE2791 chr16:56354885 0/0 0/0 236 1 Yes 

18 KVE2792 chr16:56354885 0/0 0/0 160 0 Yes 

19 KVE2797 chr17:63964667 0/0 0/0 13 0 Yes 

20 KVE2798 chr17:63964667 0/0 0/0 9 0 Yes 

21 KVE2799 chrX:53382505 0/0 0/0 128 0 Yes 

22 KVE2800 chrX:53382505 0/0 0/0 63 0 Yes 

23 KVE2807 chr12:45837577 0/0 0/0 242 0 Yes 

24 KVE2808 chr12:45837577 0/0 0/0 223 2 Yes 

25 KVE2809 chr16:67539861 0/0 0/0 37 1 Yes 

26 KVE2810 chr16:67539861 0/0 0/0 41 0 Yes 

27 KVE2811 chr12:32733792 0/0 0/0 41 0 Yes 

28 KVE2812 chr12:32733792 0/0 0/0 44 0 Yes 

29 KVE2816 chrX:71564608 0/0 0/0 40 0 Yes 

30 KVE2822 chr14:101980380 0/0 0/0 25 0 Yes 
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31 KVE2823 chr14:101980380 0/0 0/0 16 0 Yes 

32 KVE2840 chr12:49033931 0/0 0/0 43 0 Yes 

33 KVE2841 chr12:49033931 0/0 0/0 43 0 Yes 

34 KVE3585 chr2:86252036 0/0 0/0 77 0 Yes 

35 KVE3586 chr3:155084298 0/0 0/0 35 0 Yes 

36 KVE3640 chr13:110176904 0/0 0/0 86 0 Yes 

37 KVE3641 chr13:110176904 0/0 0/0 100 0 Yes 

38 KVE3645 chr9:2081979 0/0 0/0 34 0 Yes 

39 KVE3646 chr9:2081979 0/0 0/0 37 0 Yes 

40 KVE3780 chr19:50323104 0/0 0/0 18 0 Yes 

41 KVE3805 chr18:33740159 0/0 0/0 36 0 Yes 

42 KVE3812 chrX:115165459 0/0 0/0 8 0 Yes 

43 KVE3825 chr6:33451838 0/0 0/0 25 0 Yes 

44 KVE3826 chr6:33451838 0/0 0/0 16 0 Yes 

45 KVE3835 chrX:53234559 0/0 0/0 94 0 Yes 

46 KVE3836 chrX:53234559 0/0 0/0 50 1 Yes 

47 KVE3837 chr1:181651440 0/0 0/0 105 0 Yes 
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48 KVE3838 chr1:181651440 0/0 0/0 68 0 Yes 

49 KVE4140 chr22:50675152 0/0 0/0 13 0 Yes 

50 KVE4141 chr22:50675152 0/0 0/0 6 0 Yes 

51 KVE4142 chr1:27552049 0/0 0/0 11 0 Yes 

52 KVE4143 chr1:27552049 0/0 0/0 20 0 Yes 

53 KVE4144 chr11:118758879 0/0 0/0 34 0 Yes 

54 KVE4145 chr11:118758879 0/0 0/0 38 0 Yes 

55 KVE0634 chr3:33018452 0/1 0/1 31 23 Yes 

56 KVE0635 chr3:33068263 0/1 0/1 44 39 Yes 

57 KVE0749 chr3:33018452 0/1 0/1 39 29 Yes 

58 KVE0750 chr3:33018452 0/1 0/1 31 27 Yes 

59 KVE0908 chr10:72551287 0/1 0/1 84 50 Yes 

60 KVE2742 chr6:75087652 0/1 0/1 21 16 Yes 

61 KVE2789 chr1:180274413 0/1 0/1 71 61 Yes 

62 KVE2790 chr1:180274571 0/1 0/1 37 36 Yes 

63 KVE2815(F) chrX:71564608 0/1 0/1 53 50 Yes 

64 KVE2836 chr10:133364730 0/1 0/1 51 67 Yes 
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65 KVE2837 chr10:133373332 0/1 0/1 5 12 Yes 

66 KVE3587 chr3:155084298 0/1 0/1 28 27 Yes 

67 KVE3638 chr19:55137102 0/1 0/1 36 30 Yes 

68 KVE3639 chr19:55134092 0/1 0/1 29 25 Yes 

69 KVE3806 chr18:33740159 0/1 0/1 47 53 Yes 

70 KVE3779 chr19:50323104 0/1 No call 1 8 No 

71 KVE3811(F) chrX:115165459 0/1 No call 1 4 No 
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Table 2.10. The number of variants covered by WES, WGS only or by 

both methods. 

MAF 
Number of variants 

Concordance 
Both WES only WGS only 

0.05-0.1 7,041 55 911 87.9% 

0.1-0.2 8,200 60 1,090 87.7% 

0.2-0.3 5,335 34 662 88.5% 

0.3-0.4 4,147 30 557 87.6% 

0.4-0.5 3,323 29 389 88.8% 

0.5-0.6 2,949 23 329 89.3% 

0.6-0.7 2,425 20 266 89.5% 

0.7-0.8 2,063 8 233 89.5% 

0.8-0.9 2,054 12 216 90.0% 

0.9-1.0 2,657 24 271 90.0% 

Total 40,194 295 4,924 88.5% 
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Table 2.11. GWAS cancer signals enriched in samples from cancer normal tissue 

Locus 
Base 

change 

CN HP HV gnomAD CN vs HP CN vs HV HV vs HP 

AC AF AC AF AC AF AC AF p-value p-value p-value 

chr11:69513996 C>T 7 0.011  1 0.022  9 0.003  20500 0.135  0.427 0.013 0.141 

chr11:69516215 G>A 7 0.011  1 0.022  8 0.003  18094 0.119  0.432 0.007 0.125  

chr11:69516650 C>T 6 0.010  1 0.022  7 0.002  7953 0.052  0.393  0.014 0.113  
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Table 2.12. COSMIC oncogene variants enriched in samples from cancer normal tissue 

Locus 
Base 

change 
Gene 

COSMIC CN HP HV gnomAD CN vs HP CN vs HV HV vs HP 

AC AF AC AF AC AF AC AF AC AF p-value p-value p-value 

chr1:11212411* C>G MTOR 5 8E-05 146 0.039 81 0.029 7 0.030 1706 0.011 0.029 0.600 0.840 

chr1:39327259* A>G MACF1 3 8E-05 21 0.006 5 0.002 0 0.000 24 0.000 0.016 0.632 1.000 

chr7:106905140 G>A PIK3CG 3 6E-05 2 0.003 0 0.000 0 0.000 9 0.000 1.000 0.028 NaN 

chr7:116699097 G>A MET 1 2E-05 3 0.005 0 0.000 1 0.000 5 0.000 1.000 0.018 1.000 

chr9:134731639 G>A COL5A1 4 1E-04 4 0.006 0 0.000 0 0.000 3 0.000 1.000 0.001 NaN 

chr19:10500009 C>T KEAP1 1 3E-05 9 0.015 0 0.000 16 0.006 35 0.000 1.000 0.030 1.000 

chr19:18168762 G>A PIK3R2 1 3E-05 3 0.010 0 0.000 2 0.001 11 0.000 1.000 0.007 1.000 

chr19:33301725 C>A CEBPA 1 3E-05 5 0.018 1 0.250 5 0.003 23314 0.158 0.084 0.005 0.013 

chr20:18316456 C>T ZNF133 1 3E-05 2 0.003 0 0.000 0 0.000 3 0.000 1.000 0.031 NaN 

Variants with * calculated from WES, while others from WGS 
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Figure 2.5. Enrichment test of cancer-related variants with KOVA AF < 0.05 on 

cancer normal samples. (a) comparison of allele frequency for GWAS cancer 

variants. (b) comparison of allele frequency for COSMIC oncogene variants. 
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Figure 2.6. Enrichment test of cancer-related variants with KOVA AF < 0.01 on 

cancer normal samples. (a) comparison of allele frequency for GWAS cancer 

variants (b) comparison of allele frequency for COSMIC oncogene variants. 
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PCA analysis of WES and WGS data separately revealed no 

batch effect in either data, but quite a few outlier samples were 

discovered when only WGS data was examined (Figure2.7). 

However, neither batch effects nor outlier samples were discovered 

when PCA analysis was carried out once again on the data produced 

by integrating WES and WGS data (Figure 2.8). PCA found KOVA 2 

samples in a cluster distinct from samples from Japanese, northern 

Chinese, southern Chinese, and Southeast Asian individuals 

(Figure2.9, Figure2.10), reflecting different genetic characteristics 

among each race in East Asian countries. Also, this results indicate 

that the QC works were done properly. 

A total of 40,414,379 SNVs (874,026 coding and 39,540,353 

noncoding) and 2,888,275 indels (37,663 coding and 2,850,612 

noncoding) were called. From WGS data only, 144,388 CNVs 

(65,017 deletions, 10,956 duplications, and 68,415 others) were 

called (Figure2.11, Figure2.12). 
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Figure 2.7. PCA of KOVA 2 WES(top), WGS samples (bottom). Legend shows 

batch information of samples. 
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Figure 2.8. PCA of KOVA 2 WES-WGS combined data. Legend shows batch 

information of samples. 
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Figure 2.9. PCA of KOVA 2 with KG individuals. (a) PCA of KOVA 2 and all 

population included in KG project. AFR African EAS East Asian EUR European 

SAS South Asian (b) PCA of KOVA 2 and the neighboring East Asian populations. 

CHB Han Chinese individuals from Beijing, CDX Chinese individuals Dai from 

Xishuangbanna JPT Japanese individuals from Tokyo, CHS Han Chinese 

individuals from South China KHV Kinh individuals from Ho Chi Minh City. 
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Figure 2.10. UMAP of KOVA 2 with KG individuals. (a) UMAP of KOVA 2 

and all population included in KG project. (b) PCA of KOVA 2 and the neighboring 

East Asian populations. The labels are the same as those in Figure 2.7. 
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Figure 2.11. Number of SV variants by allele counts, divided by SV type, and 

known (dark-colored) and novel (gray-colored) variants according to gnomAD SV 

database. 
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Figure 2.12. Number of SV variants by the length of SV in kilobases, divided by 

SV type, and known (dark-colored) and novel (gray-colored) variants according to 

gnomAD SV database. 
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When the minor allele frequency (MAF) distribution was 

examined, it was discovered that there was a high enrichment of 

rare variants (<1%), including a greater percentage of novel 

variants that weren't present in the control gnomAD v3.11 [5] 

database (Figure 2.13, Figure 2.14, Figure 2.15, Table 2.13, Table 

2.14). In contrast to prevalent variations (>5% frequency in 

gnomAD v3.1), which were rapidly saturated at <500 samples, 

adding data from more Korean individuals was insufficient to 

saturate newly identified variants, whether in coding or noncoding 

regions (Figure 2.16). Interestingly, while KOVA 2 common 

variants (>5% frequency) were saturated before adding 100 

samples, gnomAD common non-coding variants continued to show 

a slightly increasing trend even after analyzing 1,800 WGS samples. 

This finding suggests that in order to completely cover this set of 

variants, a higher sample size is required (Figure 2.17). As 

anticipated, variant function indicators such as the nonsilent/silent 

(NS/S) ratio, CADD [40], ReMM [41], FunSeq2 [42], and 

LINSIGHT [43] all exhibited increasing functionality as MAF 

decreased (Figure 2.18, Figure 2.19). Finally, the distribution of 

variants in the proximal intron regions indicated strong selection 

against any base change as variants approach exon-intron borders 

(Figure 2.20).  

Imputing variants Based on KOVA 2 had the best coverage of 

common variants in Koreans as well as rare variants, leading to 

superior performance to other reference panels (Figure 2.21). 
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These outcomes show the high quality of the KOVA 2 variant set.  

This KOVA2 variant set was released in public website 

(https://www.kobic.re.kr/kova), so users can search the interested 

genes or loci in a table format or in a genome browser format. Also, 

individuals can download the variant set from the browser with a 

minimum registration process (Figure 2.22).       
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Figure 2.13. Variant frequency by MAF according to variant status: coding and 

noncoding, known and novel. 
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Figure 2.14. The distributions of indel sizes in (a) coding and (b) non-coding 

regions. The frequency of known variants is in dark blue. 
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Figure 2.15. The number of variants by annotated function on (a) coding and (b) 

non-coding regions. The frequency of known variants is in dark blue. 

 



 

 ５７ 

Table 2.13. Coding variant counts by functional class  

Variant function 
Number of 

Singletons 

Number of 

non-singletons 

Total  

counts 

Number of  

known variants 

Number of  

novel variants 

Transcript ablation 1 3 4 3 1 

Coding sequence variant 14 16 30 22 8 

Incomplete terminal codon 

variant 
15 19 34 13 21 

Protein altering variant 130 31 161 43 118 

Stop retained variant 237 215 452 203 249 

Stop lost 616 567 1,183 502 681 

Inframe insertion 1,421 1,073 2,494 1,206 1,288 

Start lost 1,389 1,017 2,406 1,106 1,300 

Inframe deletion 4,043 3,021 7,064 3,780 3,284 

Splice acceptor variant 4,227 3,212 7,439 3,317 4,122 

Splice donor variant 5,243 4,618 9,861 4,887 4,974 

Stop gain 9,246 5,399 14,645 6,647 7,998 

Frameshift indel 12,239 6,583 18,822 6,157 12,665 

Splice region variant 43,437 43,699 87,136 49,383 37,753 

Synonymous variant 127,844 130,603 258,447 157,345 101,102 

Nonsynonymous SNV 274,693 226,818 501,511 270,422 231,089 

Total 484,795 426,894 911,689 505,036 406,653 
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Table 2.14. Noncoding variant counts by functional class 

Variant function 
Number of 

Singletons 

Number of 

non-singletons 

Total  

counts 

Number of  

known variants 

Number of  

novel variants 

Non coding transcript 

variant 
- 1 1 1 - 

Regulatory region ablation 1 - 1 1 - 

TFBS ablation 112 121 233 143 90 

Mature miRNA variant 564 563 1,127 620 507 

TF binding site variant 41,715 48,332 90,047 58,693 31,354 

5 prime UTR variant 141,718 145,808 287,526 172,423 115,103 

3 prime UTR variant 341,553 361,410 702,963 436,082 266,881 

Regulatory region variant 529,226 619,532 1,148,758 737,657 411,101 

Non coding transcript exon 

variant 
615,209 696,435 1,311,644 826,591 485,053 

Downstream gene variant 690,767 820,003 1,510,770 993,375 517,395 

Upstream gene variant 843,801 993,065 1,836,866 1,203,204 633,662 

Intergenic variant 4,929,501 5,832,094 10,761,595 6,406,273 4,355,322 

Intron 11,580,871 13,158,563 24,739,434 15,849,148 8,890,286 

Total 19,715,038 22,675,927 42,390,965 26,684,211 15,706,754 
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Figure 2.16. The number of variants identified according to increment the 

KOVA 2 samples.  The number of variants identified is divided by the coding 

(left) and noncoding (right) status 



 

 ６０ 

 

Figure 2.17. Saturation on the proportion of common non-coding variants with 

KOVA 2 AF > 5%.  
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Figure 2.18. The patterns of variant functionality predicted by different software 

according to MAF are divided by the coding (left) and noncoding (right) status. As 

each program produces scores with different scales, and each scoring system was 

converted to percentiles. 
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Figure 2.19. The nonsilent/silent (NS/S) ratio of coding variants by MAF 
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Figure 2.20. Intron variant burden according to the relative (left) or absolute 

(right) distance from exons.  
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Figure 2.21. Imputation performance of KOVA 2 reference panel. The 

aggregated Pearson correlation coefficient (R2) between known genotypes from 

WGS data and imputed genotypes by the percentage of stratified alternative allele 

frequency. Imputation was performed in collaboration with Jeongha Lee. 
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Figure 2.22. Genome browser for KOVA 2. Screenshot of result page of 

GABBR2 gene search from https://www.kobic.re.kr/kova 
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Chapter 3. Genetic and Clinical 

Implications of Korean Genome 
 

 

 

3.1. Background 
 

 

As introduced in Chapter 1, Koreans have genetic similarities with 

the Japanese and Chinese, the neighboring races, but there are 

distinct genetic characteristics. These characteristics may also 

differ in the composition of haplotypes. Haplotype refers to a set of 

alleles that are likely to be inherited together when genetic 

information is passed on from single parent to offspring (Figure 

3.1a, b). When a specific variant has an evolutionary advantage, a 

haplotype covering that variant prevalently exists in the population 

by positive selection, leading to selective sweep [47, 48]. 

Therefore, there are differences in the composition of haplotypes 

by race (Figure 3.1c). 

Using the type and frequency of haplotypes from the population 

genome database, it is possible to infer which regions have strong 

positive selection pressure. Akbari et al. [47] devised a haplotype 

allele frequency score using the frequency information of variants 

present in the haplotype, and then tried to find evolutionary favored 

mutations based on this. 

On the other hand, recombination and mutation events 
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accumulates on a haplotype over generations. If the number of 

mutations present in a particular haplotype is large or the length of 

the haplotype is short, we could assume that the haplotype has been 

passed down over several generations. Albers et al. [49] developed 

an allele age estimation model with gamma distribution using 

mutation count and haplotype length as parameters. 

Understanding favored mutations during the selective sweep 

process is helpful in figuring out where selection came from or how 

disease develops. It can be particularly useful in identifying the 

causes of racial disparities in particular environments and 

temperaments [50]. In the Hemoglobin-B gene (HBB), for instance, 

the sickle cell mutation was the target of selection for malaria 

resistance, which explains why diseases affecting red blood cells 

are prevalent in regions with high rates of malaria [51]. Another 

compelling example is that human populations living at high altitudes 

adapted to low oxygen levels most likely through genetic adaptation 

mediated by genes in the Hypoxia Inducible Factor (HIF) pathway 

[52]. Likewise, identifying favored mutations during selective 

sweep can elucidate candidate genetic loci or regions for adaptive 

traits. Furthermore, because favored mutations tend to have 

functional impact on the phenotype, positively selected variants can 

shed light on disease physiology [53]. 
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Figure 3.1. Introduction to haplotype and positive selection. Composition of 

haplotype a) without events of recombination and mutation, b) with the events. Hx 

denotes type of haplotype. c. population increase of  positively selected haplotype .
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3.2. Materials and Methods 
 

 

3.2.1. Cohorts and sample preparation 
 

 

In Chapter 3, analysis was conducted on 1,896 WGS data that had 

been phased using SHAPEIT described in Chapter 2. KG data [29] 

was used when phased data from other races was needed to 

identify Korean-specific genetic traits. GEM-J WGA panel [19] 

was used for Japanese allele frequency, and gnomAD data [5] was 

used for allele frequency of other races. 
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3.2.2. Runs of homozygosity (ROH) 

 

PLINK v1.90b6.12 [54,55] was used to call ROH regions from 

SHAPEIT-phased data with the options ‘--maf 0.05 --hwe 

0.00005 --homozyg --homozyg-snp 50 --homozyg-kb 500 --

homozyg-density 10 --homozyg-gap 10 --homozyg-window-

snp 50 --homozyg-window-missing 5 --homozyg-window-het 

1 --homozyg-window-threshold 0.05’. To ensure the fair 

comparison of ROH intervals from KOVA 2 with other populations in 

the KG, the regions were called from randomly selected sets of 105 

samples from KOVA 2. After merging the ROH results from KOVA 

2 and KG data, we calculated FROH scores, representing inbreeding 

levels, using the ‘Froh_inbreeding’ function of detectRuns package 

version 0.9.6 [56]. 
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3.2.3. Regions of positive selection 
 

 

Selected variants in positive selection sweeps were captured from 

phased KOVA 2 and KG data using iSAFE v1.0.7 [47] software. 

iSAFE uses a statistic generated from population genetics signals to 

precisely identify the preferred variant in a large region (~5 Mbp). 

A variant is favored if its iSAFE score is larger than 0.1 (P < 1.0 x 

10-4), and a high iSAFE score signifies that the variant is strongly 

positively selected. We used iSAFE with default options (--

MaxRegionSize 6000000 --window 300 --MaxRank 15 --

MaxFreq 0.95 --IgnoreGaps) plus the performance-improving 

parameter ‘--vcf-cont’ with random outgroup (nontarget) samples 

comprising 10% of the data. This work was done in collaboration 

with Jean Lee. 
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3.2.4. Effective population size estimation 
 

 

To estimate the historical effective population size, we used IBDNe 

software [57] according to the recommended protocol. Briefly, after 

detecting IBD segments with hap-IBD.jar [58], we refined them 

through removal of any breaks and short gaps from the segments 

using merge-ibd-segments.17Jan20.102.jar [59]. Finally, we used 

ibdne.23Apr20.ae9.jar [57] with default options to estimate the 

effective population size from the refined IBD segments. 
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3.2.5. Allele ages 
 

 

Genealogical Estimation of Variant Age (GEVA) version v1beta 

[49] with default parameters ‘--Ne 10000 --mut 1e-8 --

maxConcordant 500 --maxDiscordant 500’ was used to estimate 

the ages of variants from autosomal haplotype data phased by 

SHAPEIT4. Allele ages were computed by the joint clock model, 

which combines the mutation and recombination clock models. From 

the output, AgeMode were used for further analysis. To compare 

allele ages as estimated by our data with those estimated from the 

KG data, we downloaded the Atlas of Variant Age from the 

developer’s website [60]. Chimpanzee variants called from 25 

individuals were downloaded from the Great Ape Genome Project 

[61]. 
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3.3. Result  
 

 

Homozygous pathogenic mutations in ROH are uncommon in an 

outbred community, such as the Korean population, compared to 

populations with a larger burden of consanguinity [62]. Instead, 

these regions can be used to denote a population-wide positive 

selection that was imposed through a selective sweep [63]. In 

terms of the ROH profile, the population of KOVA 2 does not 

deviate significantly from East Asian populations generally (Figure 

3.2). The iSAFE algorithm [47] was used to further characterize 

intervals that reflect positive selection in KOVA 2. It identified a 

total of 16,272 loci that were selected in at least one population 

(iSAFE > 0.2) and revealed a number of distinctive loci specific to 

each population (172 for KOVA 2, 149 for the Japanese population, 

77 for the Chinese population, and 364 for the European population) 

(Figure 3.3). A well-known locus in LCT showed a significant 

selection signal in the European population (Figure 3.4), reflecting 

reliability of the reported signals. 

On the basis of the iSAFE score, 172 Korean-specific iSAFE 

signal loci were ranked and reviewed. Signals that overlap with 

GWAS signals or are located in genes that have been extensively 

studied in the past were scrutinized more closely. In the case of an 

unknown gene, we attempted to interpret its meaning by examining 

the gene's expression level in each tissue using the Genotype-

Tissue Expression (GTEx) project. Interestingly, when compared 
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to the Japanese, Chinese, and European populations, two loci - 

ADH1A/1B and UHRF1BP1 - were among the most strongly 

selected loci in the Korean population (Figure 3.4, Figure 3.5). 

ADH1A and ADH1B encode alcohol dehydrogenases 1A and 1B, 

respectively, and are known to comprise recently selected loci in 

East Asian individuals [64,65]. Here, the Korean population in 

KOVA 2 showed the strongest signal among the East Asian 

populations examined. Among the haplotypes that encompass these 

selected loci, "haplotype #1", previously reported as the East Asian 

haplotype [64], showed the highest frequency (Figure 3.5). The 

difference in haplotype frequency between Korean and Japanese 

was not statistically significant (Fisher's exact test, p = 0.38), but 

it was statistically significant between Korean and Chinese 

(Fisher's exact test, p < 0.05). Additionally, this signal is reflected 

in the minor allele frequency of rs1229984 as well, which was the 

lowest among the populations studied, so to yield the most His48 in 

the populations (Figure 3.5, Figure 3.6). For rs1229984 and 

rs3811801, the difference in allele frequency between Korean and 

Japanese was not statistically significant, but it was statistically 

significant between Korean and Chinese for rs3811801 (Fisher's 

exact test, p < 0.05) (Figure 3.6, Figure 3.7). The prominent 

Korean-specific signal we found in UHRF1BP1 has not been 

reported elsewhere, and the function of the gene remains largely 

unknown. 
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Figure 3.2. ROH profile of KOVA 2 samples. (a) Fraction of ROH per 

individual (Froh) by population, from KG. (b) Distribution of ROH interval length 

in KOVA 2, Han Chinese in Beijing (CHB), and Japanese (JPT). 
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Figure 3.3. Signature of positive selection as indicated by the iSAFE score. Genome-wide iSAFE values were obtained using KOVA 2, 

Japanese, Chinese, and European cohorts. Gene loci indicated with triangles are separately displayed in Figure 3.3. This figure was created in 

collaboration with Jean Lee. 
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Figure 3.4. Regional plots of the iSAFE values from the same set of ethnic cohorts, as marked in Figure 3.3. This figure was created in 

collaboration with Jean Lee. 
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Figure 3.5. The KOVA iSAFE scores and haplotype frequency of ADH1A/1B locus. The KOVA iSAFE scores of selected tag SNPs in the 

ADH1A/1B locus (top) and their haplotype frequencies by population (bottom). Bar plots denote the MAF of designated SNPs in each 

population, and SNPs with asterisks denote major markers for haplotype identification used in Han et al., 2007 [56]. 
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Figure 3.6. Allele frequency map for rs1229984, the tag SNP from the haplotype covering ADH1B. Blue and orange represent the frequency 

proportions of the effect (T) and non-effect (C) alleles, respectively. Obtained from the Geography of Genetic Variants Browser Beta v0.4 
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Figure 3.7. Allele frequency map for rs3811801, the tag SNP from the haplotype covering ADH1B. Orange and blue represent the frequency 

proportions of the effect (A) and non-effect (G) alleles, respectively. 
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Following that, I sought to determine whether KOVA 2 could be 

used to estimate the dates of origin for variant, also known as allele 

ages, and to understand the implications of this information with 

regard to the frequency and function of variants. Notably, 

estimating allele ages may lead to the discovery of recently 

emerged population-specific variants. To carry out this analysis, 

WGS-originated KOVA 2 variants were phased using a previously 

reported method [9,29,66]. This enabled us to estimate the 

population size, which ranged between 10 and 20 million people. 

This is a value comparable to the current Korean population size of 

approximately 50 million, especially given the recent population 

explosion (e.g., the Korean population was approximately 20 million 

in 1950 and 13 million in 1925 [67]). (Figure 3.8). Next, allele ages 

were estimated using variants with a frequency greater than 1%. 

The obtained allele ages correlated strongly with the MAF, as 

expected. In variants with a high MAF, the allele age was greater, 

and vice versa. Interestingly, older variants exhibited higher 

overlap with variants from chimpanzees, implying that some of 

these variants may have a primate-level origin (Figure 3.9a and 

Figure 3.10a). When variants were separated by function, it was 

discovered that older allele ages and higher overlap with 

chimpanzees corresponded to less functionality, as indicated by 

annotation (Figure 3.9b, Table 3.1, Figure. 3.10b and Figure 3.11). 

Remarkably, high confidence LoF and missense variants with high 

CADD score were the youngest and showed minimal overlap with 
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chimpanzees. Furthermore, all functional classes of rare variants 

with a MAF less than 5% were young and did not overlap with 

chimpanzees (Figure 3.9c and Figure 3.10c). When variants were 

classified by pLI score, this trend was not clearly replicated (Figure 

3.12). Overall, these findings suggest that the majority of rare 

variants are of relatively recent origin and thus tend to be 

population specific. The allele age of unique variants found 

specifically in ethnic outliers which samples are inferred as not 

Korean was compared to the allele age of variants shared by ethnic 

outliers and the Korean cohort (Figure 3.13). The difference in 

allele ages between the unique and common variants was minimal, 

most likely because allele frequency and function of a variant are 

stronger predictor of allele age than ethnic distribution. 



 

 ８４ 

 
Figure 3.8. Estimated effective population size based on KOVA. (a) Effective 

Korean population size by generations before the present. (b) Estimated population 

size of Korean population calculated based on KOVA data, subset of (a). 
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Figure 3.9. Allele ages of KOVA 2 variants based on KOVA. (a) Allele ages by 

MAF, divided by whether the allele cooccurs in chimpanzees (squares) or not 

(circles). (b) Allele age by predicted function, divided by whether the allele 

cooccurs in chimpanzees (squares) or not (circles). TFBS denotes the transcription 

factor-binding site. (c) Allele age by MAF and predicted function. Three MAF 

intervals are displayed. The X-axis bins in c are the same as those in b. 
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Figure 3.10. Allele ages of KOVA 2 variants based on KG data. (a) Allele ages 

by MAF, divided by the co-occurrence from chimpanzees (squares) or not (circles). 

(b) Allele ages by predicted function, divided by the co-occurrence from 

chimpanzees (squares) or not (circles). (c) Allele ages by MAF and predicted 

function. Three MAF intervals are displayed. The X-axis bins depicted in grey 

triangles in (c) are the same as that of (b) 
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Table 3.1. Allele age by variant class 

*: Missense_OH: missense variants which have high pathogenic-scores other than CADD 
**: Missense_CH: missense variants which have high CADD score 
***: Missense_Lo: missense variants which have low pathogenic-scores including CADD 

  
All variants 

Variants co-occurred from 
chimpanzee 

Ratio (The co-occurrence 
from Chimp/All) 

Variant class 
kova 
allele 
age 

kova allele 
cnt 

kg 
allele 
age 

kg  
allele cnt 

kova 
allele 
age 

kova 
allele 
cnt 

kg 
allele 
age 

kg  
allele cnt 

kova 
allele 
age 

kova 
allele 
cnt 

kg 
allele 
age 

kg 
allele 
cnt 

LoF (HC) 7,190 431 6,343 1,123 18,075 12 20,090 25 2.51 0.03 3.17 0.02 

Missense_OH* 8,962 1,164 8,759 3,484 32,063 50 30,963 163 3.58 0.04 3.53 0.05 

Missense_CH** 7,704 12,567 6,075 36,661 27,832 945 27,227 1,815 3.61 0.08 4.48 0.05 

intergenic 13,374 1,898,606 16,082 2,608,107 29,926 391,635 35,596 505,764 2.24 0.21 2.21 0.19 

intron 13,742 4,353,161 15,409 6,593,118 30,459 915,522 35,470 1,233,526 2.22 0.21 2.30 0.19 

ncRNA 14,846 190,890 15,313 326,043 31,192 40,277 35,030 56,884 2.10 0.21 2.29 0.17 

UTRs 13,565 121,912 14,302 225,036 30,031 25,877 35,776 38,390 2.21 0.21 2.50 0.17 

nc-others 15,093 747,565 15,805 1,234,003 31,091 163,582 35,018 229,091 2.06 0.22 2.22 0.19 

coding-others 15,137 8,618 14,787 16,819 31,490 1,901 36,065 2,883 2.08 0.22 2.44 0.17 

synonymous 15,062 18,811 13,362 48,377 29,723 4,600 32,997 8,260 1.97 0.24 2.47 0.17 

LoF (LC) 14,914 400 15,325 840 29,496 114 39,728 171 1.98 0.29 2.59 0.20 

Missense_Lo*** 17,979 10,403 17,105 24,103 31,886 3,367 37,284 5,475 1.77 0.32 2.18 0.23 
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Figure 3.11. Allele ages of KOVA 2 variants by population. (a) Allele ages 

based on KG data by predicted function, divided by the co-occurrence from 

chimpanzees (filled) or not (blank). (b) Allele ages based on KOVA data by 

predicted function, divided by the co-occurrence from chimpanzees (filled) 

or not (blank).
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Figure 3.12. Allele age of KOVA 2 variants by pLI score. (a) Allele ages based 

on KOVA 2 data (left) and on KG data (right) by decile of gnomAD pLI score. NA 

represents variants without pLI scores. (b) Allele ages based on KOVA 2 data by 

pLI per predicted variant function. 
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Figure 3.13. Comparison of allele age for variants found specifically to the 

ethnic outliers and variants common between the ethnic outliers and Korean cohort. 

This figure was created in collaboration with Jean Lee.  
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To determine whether the KOVA 2 set contains variants that 

have previously been annotated as pathogenic, KOVA-specific rare 

variants (MAF < 0.001) in high pLI genes were selected and 

compared them against ClinVar. A total of 25 variants (seven loss-

of-function (LoF) and 18 missense variants) that were identified in 

the KOVA 2 participants were labeled as “likely pathogenic” or 

“pathogenic" in relation to diseases with a dominant inheritance 

pattern (Table 3.2). This finding implies that these variants may not 

be as pathogenic as previously thought. Alternatively, because 

KOVA 2 is made up of three main types of individuals, i.e., healthy 

volunteers, normal genomes of cancer patients, and healthy parents 

of rare disease patients, one could argue that the variants 

predispose carriers to develop cancer or their children to manifest 

rare diseases. 
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Table 3.2. ClinVar pathogenic variants in KOVA 2. Missense and high-confidence (HC) loss-of-function (LoF) variants identified in KOVA 2 

that are pathogenic or likely pathogenic in ClinVar but not found in gnomAD. 

Variant 

class 

Locus 

(hg38) 

Base 

change 
AC AN AF 

Carrier 

type* 

Gene 

symbol 
pLI 

Clin

Var
** 

Dominant 

or 

Recessive

*** 

ClinVar condition 

LoF 

(HC) 

chr3:128

481942 
CG>C 1 12,234 0.8 x 10-4 C GATA2 0.98 P D 

Lymphedema, primary, with 

myelodysplasia; GATA2 

deficiency with susceptibility to 

MDS/AML 

chr3:412

36467 
CAG>C 1 12,148 0.8 x 10-4 V 

CTNNB
1 

1.00 P D 

Mental retardation, autosomal 

dominant 19;  

Inborn genetic diseases 

chr6:790

26060 
A>C 1 12,150 0.8 x 10-4 P PHIP 1.00 P D 

Developmental delay, 

intellectual disability, obesity, 

and dysmorphic features 

chr7:128

846444 
C>T 1 12,136 0.8 x 10-4 C FLNC 1.00 P D 

Myofibrillar myopathy, filamin 

C-related; Myopathy, distal, 4; 

Cardiomyopathy, familial 

hypertrophic, 26;  

Dilated cardiomyopathy, 

dominant 

chr9:954

58142 
G>T 1 12,120 0.8 x 10-4 V PTCH1 1.00 P D Gorlin syndrome 

chr12:86

8379 
C>T 1 12,134 0.8 x 10-4 C WNK1 1.00 P D/R 

Hereditary sensory and 

autonomic neuropathy type IIA 

chrX:400

64351 
G>A 1 12,224 0.8 x 10-4 C BCOR 1.00 P D 

Oculofaciocardiodental 

syndrome 
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Missen

se 

chr1:429

27147 
C>T 1 12,152 0.8 x 10-4 C SLC2A1 0.99 LP D/R Not provided 

chr2:108

753474 
A>G 1 9,310 1.1 x 10-4 C RANBP2 1.00 P D 

Encephalopathy, acute, 

infection-induced, 3, 

susceptibility to 

chr3:123

296110 
G>A 1 12,122 0.8 x 10-4 P ADCY5 0.99 LP D/R Inborn genetic diseases 

chr3:128

483925 
C>T 1 12,238 0.8 x 10-4 P GATA2 0.98 P D 

Lymphedema, primary, with 

myelodysplasia; GATA2 

deficiency with susceptibility to 

MDS/AML 

chr5:128

395182 
C>T 1 12,160 0.8 x 10-4 P FBN2 1.00 C D 

Congenital contractural 

arachnodactyly 

chr5:138

570987 
T>C 3 10,530 2.8 x 10-4 P,V HSPA9 0.97 P D/R Even-plus syndrome 

chr6:157

206668 
C>T 1 12,144 0.8 x 10-4 V ARID1B 1.00 LP D Coffin-Siris syndrome 1 

chr6:315

4909 
C>T 1 12,116 0.8 x 10-4 V 

TUBB2
A 

0.94 
P/L

P 
D 

Cortical dysplasia, complex, with 

other brain malformations 5 

chr7:150

952508 
G>A 1 12,128 0.8 x 10-4 C KCNH2 0.99 LP D 

Arrhythmia; Long QT syndrome 

2;  

Congenital long QT syndrome 

cchr7:5528

486 
G>C 1 12,126 0.8 x 10-4 V ACTB 0.99 LP D Not provided 

chr9:130

872896 
C>T 1 12,244 0.8 x 10-4 C ABL1 1.00 

P/L

P 
D 

Chronic myelogenous leukemia, 

BCR-ABL1-positive; 

Lymphoblastic leukemia, acute, 

with lymphomatous features; 

Leukemia, Philadelphia 

chromosome-positive, resistant 
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to imatinib 

chr9:132

328351 
A>G 1 12,152 0.8 x 10-4 P SETX 0.96 P D/R 

Spinocerebellar ataxia, 

autosomal recessive, with 

axonal neuropathy 2 

chr11:11

908974

7 

G>A 1 12,144 0.8 x 10-4 V HMBS 0.95 P D Acute intermittent porphyria 

chr11:11

909278

5 

G>A 1 12,138 0.8 x 10-4 V HMBS 0.95 LP D Not provided 

chr12:47

978736 
G>A 8 10,014 8.0 x 10-4 C, P, V COL2A1 1.00 LP D 

Spondyloepiphyseal dysplasia, 

Namaqualand type 

chr15:48

470646 
C>T 1 12,140 0.8 x 10-4 P FBN1 1.00 LP D Not provided 

chr16:98

40706 
G>A 1 12,148 0.8 x 10-4 V GRIN2A 1.00 

P/L

P 
D 

Epilepsy, focal, with speech 

disorder and with or without 

mental retardation; 

chr18:44

951948 
G>A 1 12,250 0.8 x 10-4 C SETBP1 1.00 P D 

Chronic myelogenous leukemia, 

BCR-ABL1 positive; Schinzel-

Giedion syndrome 

* C: normal sample of a cancer patient, P: parent of a rare disease patient, V: healthy volunteer 

** P: pathogenic, LP: likely pathogenic 

*** D: dominant, R: recessive, D/R: observed in both patterns 
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Chapter 4. Discussion 
 

 

In this study, I established the largest Korean control genome 

database to date, along with information on its genetic 

characteristics and uses. KOVA 2 displayed the major features of 

population genome databases, and considerable genetic information 

was additionally analyzed from the dataset. The KOVA 2 variant set 

has been uploaded and will be shared to the community for use as a 

control set in East Asian genetic studies. 

The identified variants in the KOVA 2 dataset showed typical 

patterns of purifying selection and frequency-functionality 

relationships. The sample size was insufficient to encompass all 

rare variants in the population, as is the case with larger population 

genome database. However, it exhibited the best coverage of 

common variants in Koreans and thus performed better when 

imputing variants. Although KOVA 2 can serve as a control set to 

screen nonpathogenic variants for rare Mendelian diseases, a list of 

ClinVar pathogenic variants that are present in KOVA 2 at low 

frequency was identified. It should be further clarified whether 

these variants are nonpathogenic in the Korean population or 

whether their carriers were able to avoid developing the associated 

diseases because of their genomic background. A combined analysis 

of the positive selection signatures and allele age estimation may 

lead to the discovery of genetic loci that have recently emerged and 

been selected in a population.  
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Not surprisingly, the top signals in this Korean population 

overlapped with those in neighboring East Asian populations. This 

result implies a recent divergence, ongoing admixture, and similar 

environmental constraints that were placed on these populations 

during recent evolution. Nonetheless, our findings identified loci 

worthy of further investigation. For example, detailed dissection of 

a previously reported East Asian-selected alcohol dehydrogenase 

gene locus discovered that it was the most strongly selected locus 

among the three East Asian populations studied here. The major 

haplotype in East Asian populations ("Haplotype #1" in Figure 3.5) 

was the most abundant in the Korean population, and the ADH1B 

His48 allele indicated by low frequency of rs1229984 was the most 

common in the Korean population among East Asian populations 

(Figure 3.5). This His48 allele is known to increase aldehyde 

production when compared to the wild-type counterpart. This is 

due to increased ethanol oxidation, which causes adverse reactions 

such as flushing and nausea [68]. In the long term, this allele is also 

protective against alcohol dependency [69]. The functional 

consequence of the second locus of interest, UHRF1BP1, is 

unknown due to a lack of research. Nonetheless, it is remarkable 

that associations between this variant and systematic lupus 

erythematosus have been repeatedly reported in East Asian 

populations [70-72]. This gene is most strongly expressed in the 

testes (Figure 4.1), implying that it can confer selection by 

influencing the reproductive process in males. A new algorithm 
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based on large-scale population data may discover novel loci that 

were missed in this study, in addition to these two loci. 

Furthermore, to provide a guideline for future decision making 

on national-wide genomic studies or large-scale disease cohorts, 

the number of ClinVar pathogenic variants from WES and WGS 

were compared. Although not many pathogenic variants were 

included in KOVA 2, the result showed the complete concordance 

(100%) between these two sequencing platform.  

Currently, several biobank projects have collected demographic 

information as well as a wide range of clinical laboratory test data, 

but KOVA 2 contains only genotype information along with 

sequencing-related information. As a result, future efforts to create 

a database containing such information are required. 

Finally, the KOVA 2 data was uploaded to a genome browser 

and enabled users to download the variant set with a simple 

registration process. The creation of a Korean-specific variant set 

and comparative analysis will bolster a wide range of genetic and 

genomic studies involving East Asian populations. It will also serve 

as a precursor for much larger genome datasets that will be 

available soon, particularly if they can be combined with data from 

North Korean individuals. 



 

 ９８ 

 

Figure 4.1. Tissue expression profile of UHRF1BP1. Displaying the highest expression in testes (on the far left; 

https://gtexportal.org/home/gene/UHRF1BP1). This figure was created in collaboration with Jean Lee. 
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국문 초록 
 

 

 

건강한 개인의 유전체에 대한 이해는 인간 발생 및 질병 생리학 연구, 

유전 질환에 대한 임상적 진단의 근간이 된다. 따라서 질병유전학의 상

당한 발전에 발맞추어 일반 인구에 대한 유전체 데이터베이스의 중요성 

또한 대두되고 있다. 그러나 현재까지의 연구는 주로 유럽계 개인에 초

점을 맞추어 진행되어왔기에, 다른 인종 그룹에서 새로운 기능적 유전 

변이의 추가 발견이 제한적으로 이루어졌다. 이에 따라 동아시아 국가별

로 독자적인 유전체 데이터베이스를 구축하고자 하는 노력이 점차 커지

고 있으나, 한국인의 유전체 데이터베이스는 인접 동아시아 국가의 데이

터베이스 구축 속도에 못 미치고 있는 실정이다. 

본 연구에서는 한국인 인구 유전체 자원의 부족을 해소하고 동아시

아 인구 유전체 데이터베이스 구축에 기여하기 위해, 건강한 한국인의 

1,896개의 전장 유전체 염기서열 정보와 3,409개의 전장 엑솜 염기서

열 정보로 구성된 한국인 유전체 데이터베이스 (KOVA2)를 구축하였다. 

이는 gnomAD에 포함된 한국인 1,909명에 대한 유전체 데이터를 넘어 

역대 최대 규모의 한국인 특화 유전체 데이터베이스이다. 구축된 유전체 

데이터베이스는 초기 데이터부터 통일된 파이프라인을 통해 변이를 검출

하였으며, 건강한 한국인만의 높은 정확도의 유전 변이만이 데이터베이

스에 포함되도록 하였다. 이를 통해 40,414,379개의 단일 염기 변이와 

2,888,275 삽입/삭제 변이 정보를 얻었으며, 전장 유전체 데이터를 이

용하여 144,388개의 구조 변이에 대한 정보를 정리하였다. KOVA 2 데

이터베이스를 이용해 분석된 한명의 샘플을 다른 시퀀싱 플랫폼으로도 
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시퀀싱하여 변이 검출의 정확도를 평가한 결과 시퀀싱 플랫폼간에 높은 

일치율을 보였다. 또한 이전에 발표된 유전체 데이터베이스를 통해 알려

진 유전적 특징 모두 보임으로써 KOVA2 변이의 신뢰도를 검증하였다. 

구축된 KOVA2 데이터베이스는 동형 접합성의 연속성, 진화적으로 

양성적 선택이 이루어진 영역, 변이의 나이, 그리고 인구수의 변화를 추

정하는 데 추가적으로 활용하여 한국인 특이적 유전적 특징을 분석하였

다. 그 과정에서 ADH1A/1B 및 UHRF1BP1 유전자좌와 같이 다른 동

아시아 인구에 비해 한국인에게서 진화적으로 강하게 선택되는 유전자좌

를 발견했다. 대립형질의 나이를 분석한 결과는 유전변이의 기능과 진화

적 나이 사이에 존재하는 상관관계를 밝혔다. 동형 접합성의 연속성을 

파악한 결과는 한국인 특이적인 차이를 보이지 않았으며, 한국인의 인구

수 통계 기록과 유사한 시간별 인구수를 추정할 수 있었다.  

변이별로 추정된 변이의 나이와 양성적 선택의 크기를 포함한 한국

인의 유전 변이 정보는 공개 웹사이트에서 검색 및 다운로드할 수 있도

록 하였다. 본 연구 결과는 동아시아 인구를 대상으로 하는 유전학 연구

에 새로운 귀감을 줄 수 있는 귀중한 자료가 될 것이다. 

 

* 본 학위 논문은 출판된 논문 (Lee et al., Exp. Mol. Med. 54:1862-

1871 (2022)) 을 바탕으로 작성되었음 [1]. 

 

키워드: 유전체 데이터베이스, 엑솜 시퀀싱, 전장 유전체, 동아시아인, 한

국인, 양성적 선택, 대립형질 나이 
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