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Abstract

In order to improve the prognosis of community—acquired
pneumonia and reduce the burden of costs due to pneumonia,
accurate risk prediction to take appropriate action according to the
severity of each patient is important. Although indicators have been
developed to predict the prognosis of related disease groups (e.g.
CURB-65), there are limitations in that there is difficulty in actual
use due to unsatisfactory performance or many factors included in
the indicators. In this retrospective study, a DL model was
developed to predict the risk of death within 30 days of the
diagnosis of CAP from the initial CR, using data from patients
diagnosed with CAP in a single institution between 2013 and 2019.
The DL model was evaluated in consecutive patients who visited
the emergency department of the same institution due to CAP
between January and December 2020 (test cohort A), and two
different institutions (test cohorts B and C). The discrimination of
the DL model was evaluated using area under receiver operating
characteristic curves (AUCs). The added value of DL model
prediction to the CURB—65 score, an established risk prediction
tool, was evaluated using continuous net reclassification
improvement (NRI) and integrated discrimination improvement
(IDD). In test cohorts A (947 patients; mean age, 71 years + 14;
597 men), B (467 patients; mean age, 73 years = 15; 296 men),
and C (381 patients; mean age, 71 years £+ 14; 243 men), the 30—
day mortality rates were 18%, 8%, and 11%, respectively. The DL
model exhibited AUCs of 0.77, 0.80, and 0.80 in test cohorts A, B,
and C, respectively. Adding DL model prediction to the CURB—65

score improved discrimination in all external test _cohorts _
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(continuous NRI, 0.30-0.74; IDI, 0.08-0.12). In conclusion, a deep
learning—based model could predict 30—day mortality in patients
with community —acquired pneumonia from chest radiographs.
Adding deep learning model prediction to the CURB—65 score led to
improved discrimination. Evaluation of CXRs of patients with CAP
using the DL model for mortality prediction may help improve risk
stratification and clinical decision—making for hospitalization or
intensive care.

Keyword : Deep learning, Convolutional neural network,
Community —acquired pneumonia, Chest X—ray, Survival prediction
Student Number : 2021—-21892
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Chapter 1. Introduction

1.1. Background

Pneumonia 1s a potentially fatal infectious disease and a major
cause of death. In 2020, 47,601 people died of pneumonia (14.4 per
100,000 population) in the United States [1]. Among infectious
diseases, it was the second most common cause of death after
coronavirus disease in 2020 and was the number one cause of death
in 2019 [1]. In addition, it is a major burden on health resource
utilization. In 2019, approximately 1.8 million people visited the
emergency department due to pneumonia in the United States [2].
Community —acquired pneumonia (CAP), caused by infection outside
the healthcare system, is the most common type of pneumonia [3].

Prediction of adverse outcomes in patients with CAP is
essential for appropriate treatment[4—8]. Identification of high—
risk patients for hospitalization and intensive treatment, including
intravenous administration of antibiotics or respiratory support, may
help improve patient prognosis. Furthermore, early discharge to
home and conservative treatment for low—risk patients may help
reduce unnecessary utilization of medical resources. In this regard,
there are available tools for predicting adverse outcomes in patients
with CAP based on clinical risk factors (e.g., CURB—65 score
[confusion, blood urea nitrogen level, respiratory rate, blood
pressure, age 65 years or older] [7] and pneumonia severity index
[4]).

Chest radiography (CR) is an essential tool for the diagnosis of
CAP[5,8,9]. Since most patients with CAP undergo CR at the time
of diagnosis, it can be used for risk stratification. However, it has
been difficult to incorporate the findings of CR in a risk prediction
tool because the interpretation of CR i1s prone to inter—reader
variability [10, 11], and it is difficult to obtain objective and
guantitative biomarkers from CR for risk prediction [12, 13].
Recently, deep learning (DL) technology has been widely applied to
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the evaluation of medical images, including CRs. In addition to the
detection of abnormal findings or diagnosis of specific diseases, a
DL algorithm can also be applied to the prediction of future events,
such as adverse patient outcomes [14—16].

Therefore, this study aimed to develop a DL model to predict
the 30—day mortality of patients with CAP using their initial CRs,
validate the performance of the DL model in patients from different
institutions, compare the performance of the model with that of an
established prediction tool (CURB—65), and investigate the added

value of the model to the existing prediction tool.

1.2. Purpose of Research

Therefore, the objectives of the present study were a) to
develop a deep learning model to predict the 30—day mortality of
patients with community—acquired pneumonia using their initial
chest radiographs, b) to validate the performance of the deep
learning model in patients from different institutions, ¢) to compare
the performance of the deep learning model with that of an
established prediction tool (CURB—65), and d) to investigate the

added value of deep learning model to the existing prediction tool.



Chapter 2. Materials and Methods

2.1. Patient Selection

This retrospective study was approved by the institutional
review boards of all participating institutions (Seoul National
University Hospital [2101—-175—-1192], Boramae Medical Center
[30—2021—-127], Chung—Ang University Hospital [2203-021-
19412]). The requirement for informed consent from patients was
wailved by the institutional review boards.

For development of a deep learning—based prediction model
(DL—model), we retrospectively included patients with following
inclusion criteria: a) patients diagnosed with CAP in a single
tertiary—referral institution (Seoul National University Hospital;
SNUH) between March 2013 and December 2019; and b) patients
who underwent CR for the diagnosis of CAP (Development cohort,
hereafter). For validation of the DL—model, we separately included
patients with following inclusion criteria: a) patients diagnosed with
CAP after vising emergency department of one tertiary—referral
institution (SNUH) and two secondary-—referral institutions
(Boramae Medical Center and Chung—Ang University Hospital; BMC
and CAUH) between January and March 2020; and b) patients who
underwent CR for the diagnosis of CAP (external test cohorts A, B,
and C for patients from SNUH, BMC, and CAUH, respectively).
Patients without available information regarding 30—day mortality
since the diagnosis of CAP were excluded from the study. Patients
with multiple episodes of CAP, data for the first episode were
included in the study (Figure 1).

Patients in the development cohort were randomly assigned
to training, validation, and internal test datasets at a ratio of 3:1:1,
for the training of the DL—model, the optimization of
hyperparameters of the model, and the in—house testing of
performance of the model (Figure 1).

CRs of included patients obtained at the timing of the diagnosis
of CAP were retrospectively collected. CRs were obtained using
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various scanners, including both fixed and portable scanners. CRs
from fixed scanners were obtained in a erect position with
posteroanterior projections, while CRs from portable scanners were
obtained in a supine position with anteroposterior projections.

Regarding the outcome of patients, we investigated all—
cause mortality within 30 days from the diagnosis of CAP. Mortality
information were confirmed by electronic medical records or death
registry data from the Ministry of the Interior and Safety, Republic
of Korea.

As a benchmark in the evaluation of the performance of DL—
model for the prediction of 30—day mortality, we used the CURB—
[7]. The CURB-65 scores were calculated for the

patients in the internal test dataset of the development cohort and

65 score

external test cohorts. Each variable of CURB—65 score (presence
of new onset confusion, blood urea nitrogen level, respiratory rate,
blood pressure, and age of patient) at the timing of diagnosis were

retrospectively obtained from the electronic medical records.

7,145 patients included

a) Diagnosis of CAP in institution A between
March 2013 and December 2019
b) Chest radiograph at the time of diagnosis

40 patients excluded

Unavailable mortality information

Developmental cohort
7,105 patients

3:1:1 random allocation

v
Training dataset
4,260 patients

Internal test dataset

1,421 patients

Validation dataset
1,424 patients

955 patients included

a) Diagnosis of CAP after visiting emergency a)
department of institution A between January
and December 2020

469 patients included

Diagnosis of CAP after visiting emergency a)
department of institution B between January
and December 2020

423 patients included

Diagnosis of CAP after visiting emergency
department of institution B between March
2019 and October 2021

Unavailable mortality information

Unavailable mortality information

External test cohort A
947 patients

b) Chest radiograph at the time of diagnosis b) Chest radiograph at the time of di: sis b) Chest radiograph at the time of di
8 patients excluded 2 patients excluded 42 patients excluded
> — |

Unavailable mortality information

External test cohort B
467 patients

External test cohort C
381 patients

Figure 1. Overall data description



2.2. Design of Survival Prediction Model

A convolutional neural network (CNN) for the 30—day mortality
prediction since CAP diagnosis from CR images was developed
using CRs from patients in the developmental cohort. Before input
into the CNN, the images were resized to 256x256, while
maintaining the ratio of the original image with zero padding.
Random brightness, random contrast, random gamma, motion blur,
median blur, Gaussian noise, image flipping, and image rotation were
used for data augmentation. All preprocessing algorithms were
conducted in Python (version 3.6; Python Software Foundation, Del)
by using the Albumentations (https://albumentations.ai/)

We adopted a previously reported CNN architecture for the
survival prediction (Nnet—survival) [17]. The model adopts a
negative log—likelihood loss function and incorporates non—
proportional hazards. Pre—trained weights for the CNN were
adopted from the CNN that can classify CRs with five different
classes (normal, lung cancer, pneumonia, tuberculosis, and
pneumothorax) [18]. This model was designed using DenseNet—
121 backbone [19, 20]. The outputs of the CNN included
conditional probabilities of survival in different time intervals.
However, since the primary aim of our study was to predict 30—day
mortality, the final output of the interest was the probability for the

30—day mortality (Figure 2).

Global average
pooling

16 x 16 x 256 16 % 16 x 1024 8x8x512 8x8x1024
32x32x128  32x32x512
64x64x64 64 x64 x 256

256 x 266 x 1

C ] Convolution Layer
D Dense Block

T ] Transition Layer

Figure 2. Architecture of the convolutional neural network for the 30-day
mortality prediction since CAP diagnosis from CR images



To improve the calibration (agreement between the
predicted probability and observed probability) of the DL—model,
we conducted logistic recalibration of the model output in the
internal test dataset [21]. Therefore, the final output from the
model for the validation was recalibrated predicted probability for
the 30—day mortality.

To be utilized in the clinical decision making, pre—defined
cut—off value might be required. Considering that CURB—65 score
of 2 or greater are considered for the criteria of hospitalization, we
defined the binary cut—off value of the DL—model score to classify
the same number of patients positively with the CURB—65 score of
2 or greater, in the internal test dataset.

For visualization of DL—model output, we used gradient—

weighted class activation mapping (Figures 3 and 4) [22]. All codes

used for the development of DL—model are available in the GitHub
(github.com/Fr2zyRoom/CAP_DeepSP).

- A\

Figure 3. Gradient-weighted class activation map of DL-model output. Chest
radiograph of a 78-year-old woman with CAP shows diffuse
consolidation involving the right lung (A). The risk of 30-day

mortality predicted by the DL model was 42%, and the gradient—
weighted class activation map (B) shows that the prediction of the
model was influenced by the area of pneumonia in the chest
radiograph. The CURB-65 score of the patient was 2. The patient
died 11 days after the diagnosis of pneumonia.
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Figure 4. Gradient—-weighted class activation map of DL-model output. Chest
radiograph of a 69-year—old man with CAP shows an area of
consolidation involving the right lower lung field with right pleural
effusion (A). The risk of 30-day mortality predicted by the DL model
was 9%, and the gradient-weighted class activation map (B) shows
that the prediction of the model was not influenced by the area of
pneumonia in the chest radiograph. The CURB-65 score of the
patient was 4. The patient survived 30 days after the diagnosis of
pneumonia.

2.3. Combination of CURB—65 Score and DL Model

To investigate the added value of DL—model result to the
CURB—65 score, we built a logistic regression model to predict 30—
day mortality using CURB-65 score and DL-—model output
(Combined model, hereafter), in the internal test dataset. The cut—
off value for binary classification of the output of combined model
was defined to classify the same number of patients positively with
the CURB—65 score of 2 or greater, in the internal test dataset.



2.4. Training Environment

Hardware specification

CPU: Intel Xeon Gold 5220 2.20GHz
GPU: Tesla V100-SXM2 32GB
RAM: 16GB x 16

Software specification

Deep learning libraries:

Pytorch — 1.8.0 with cuda 10.1 and cudnn 7.6
Python libraries (version — 3.6)

Numpy - 1.19.5 for

Pandas — 1.1.5 for

OpenCV - 4.1.2

Albumentations — 1.0.3

Pycox -0.2.3

Torchtuples — 0.2.2

2.5. Validation of Prediction Models and Statistical
Analysis

To validate the DL and combined models, we applied the DL and
combined models developed in the developmental cohort to the CRs
from the patients in three external test cohorts, as well as the
internal test dataset. To evaluate discriminative performances of
prediction models to predict 30—day mortality, area under the
receiver operating characteristic curves (AUCs) were used. To
evaluate discriminative performance for the binary classifications,
specificity, positive predictive value (PPV), and negative predictive
value (NPV) were evaluated at the same sensitivity with a CURB—

65 score of =2 (criterion for hospitalization of patients with

b o i 5
8 H =2TH @

|
1r



pneumonia) [5]. The improvement in the discriminative
performance of the combined model compared to the CURB—65
score was evaluated wusing continuous net reclassification
improvement (NRI) [23] and integrated discrimination improvement
(IDI) [24]. The method suggested by Delong et al. was used to
compare the AUCs between the prediction models [25].
Sensitivities and specificities were compared using the McNemar
test, while PPVs and NPVs were compared using the method
suggested by Leisenring et al. [26].

To evaluate the calibration of the prediction models, we
used calibration plots and Spiegelhalter’s Z—test [27]. Finally, we
conducted decision curve analyses to evaluate the benefit of using
prediction models with different weightings between the benefit of
hospitalization of high—risk patients and the cost of hospitalization
of low—risk patients [28].

All statistical analyses were conducted using R (version 4.2.0,
R Project for Statistical Computing, Vienna, Austria). Statistical

significance was set at p<0.05.



Chapter 3. Results

3.1. Development Prediction Model and In—house
Performance

A total of 7,105 patients (mean age, 73 years = 15 [standard
deviation]; 4417 men) who were diagnosed with CAP were included
in the developmental cohort. The 30—day mortality rate in the
developmental cohort was 11% (807/7105). Among the patients in
the developmental cohort, 1,421 (mean age, 68 years + 15; 882
men; 30—day mortality rate, 11% [162/1421]) were randomly
assigned to the internal test dataset (Figure 1, Table 1).

Before logistic recalibration, the DL model result exhibited an
AUC of 0.83 (95% confidence interval [CI], 0.80-0.87), showing a
significant underestimation of mortality risk (P<.001,
Spiegelhalter’s Z—test) in the internal test dataset (Figure 5).
Logistic recalibration of the DL model in the internal test dataset led
to improved calibration (calibration slope, 1.46; calibration intercept,
1.80; P=.822, Spiegelhalter’s Z—test) (Figure 5).

10 .__:Ix_c _'\.;:_'I' |



Internal Test External Test External Test External Test
Dataset Cohort A Cohort B Cohort C
(n=1,421)" (n=947) (n=467) (n=381)
Age (years) 68*15 7114 73*15 7114
Male patients 882 (62%) 597 (63%) 296 (63%) 243 (64%)
Chest 973 (69%) 259 (27%) 144 (31%) 129 (34%)
radiographs from
fixed scanner
30—day 162 (11%) 167 (18%) 39 (8%) 41 (11%)
mortality
CURB—65 scores
Score 0 291 (21%) 110 (12%) 70 (15%) 71 (19%)
Score 1 507 (36%) 271 (29%) 186 (40%) 99 (26%)
Score 2 412 (29%) 280 (30%) 145 (31%) 128 (34%)
Score 3 150 (11%) 209 (22%) 48 (10%) 61 (16%)
Score 4 42 (3%) 63 (7%) 17 (4%) 20 (5%)
Score 5 15 (1%) 14 (2%) 1 (%) 2 (1%)

Table 1. Demographic and clinical characteristics of patients

11
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Figure 5. Receiver operating characteristic curves of DL-model, CURB-65,
and combined model. Receiver operating characteristic curves obtained in
the internal test dataset (A) show the DL model exhibited better
discrimination (AUC, 0.83) for the prediction of 30-day mortality compared
to the CURB-65 score (AUC, 0.65). The discrimination of combined model
of DL-model prediction and CURB-65 score (AUC, 0.84) was better than
that of the CURB-65 score and similar with that of the DL-model.
Calibration plots obtained in the internal validation dataset (B) show the
initial prediction of the DL-model tended to underestimate the risk of 30—
day mortality, while the calibration was improved after the logistic
recalibration. The combined model of DL-model prediction and CURB-65
score exhibited acceptable calibration.

After excluding four patients without CURB—65 score
information, the CURB—65 score exhibited an AUC of 0.679 (95%
CI, 0.64-0.72), which was significantly lower than that of the DL
model (0.83, P<.001) (Table 2, Figure 5). At the same sensitivity
level with a CURB—65 score =2 (sensitivity, 68%), the DL model
exhibited higher specificity (84% vs. 59%; P<.001), PPV (35% vs.
18%; P<.001), and NPV (95% vs. 94%; P=.033) than the CURB—65
score (Table 2).
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3.2. Performance of Prediction Models in Rxternal
Test Cohorts

A total of 947 (male—to—female ratio, 597:350; mean age +
standard deviation, 71 £ 14 years; 30—day mortality rate, 17.6%
[167/947]), 467 (male—to—female ratio, 296:171; mean age +
standard deviation, 73 + 15 years; 30—day mortality rate, 8.4%
[39/467]), and 381 (male—to—female ratio, 243:138; mean age +
standard deviation, 71 £ 14 years; 30—day mortality rate, 10.8%
[41/381]) patients were included in external test cohorts A, B, and
C, respectively. Table 1 show demographic and clinical

characteristics of patients in external test cohorts.

A B c

Sensitiity

— DL model (AUC=0.767) — DL model (AUC=0.800) — DL model (AUC=0.800)
— CURB.65 score (AUC=0.667) — CURB.65 score (AUC=0.734) — CURB.65 score (AUC=0.722)
S 4 —— Combined model (AUC=0.772) S 4 — Combined model (AUC=0.799) S 4 — Combined model (AUC=0.803)
T T

T T 1 T T T T T T T T
00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10
1 - Specificity 1 - Specificity 1 - Specificity

0 100
60 80 100
100

40
Observed probability (%)

Observed probability (%)
Observed probability (%)

— DL-model — DL-model — DL-model
o4 ~— Combined-mode! o+ — Combined-model © 4 — Combined-model
T T T T T T T T T T T T T T

T T T T
0 20 40 60 80 100 0 20 40 60 80 100 4 20 4 60 80 100
Predicted probabilty (%) Predicted probabilty (%) Predicted probabilty (%)

Figure 6. Receiver operating characteristic curves and calibration plots of
DL-model, CURB-65, and combined model. Receiver operating characteristic
curves obtained in the external test cohorts A (A), B (B), and C (C) show
the DL model exhibited consistent discrimination for the prediction of 30—
day mortality (AUC, 0.77-0.80). The discriminations of the DL model were
better than those of CURB-65 score (AUC, 0.67-0.73). The combined model
(AUC, 0.77-0.80) exhibited better discrimination compared to the CURB-65
score and similar discrimination compared to the DL-model. Calibration
plots obtained in the external test cohort A (D) show acceptable calibration
of the DL-model and combined model. Meanwhile in the external test
cohorts B (E) and C (F), both the DL-model and the combined model
overestimated the risk.
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The DL model exhibited AUCs of 0.77 (95% CI: 0.73-0.81),
0.80 (95% CI: 0.74-0.86), and 0.80 (95% CI: 0.74-0.86) in external
test cohorts A, B, and C, respectively (Table 2, Figure 6). In terms
of calibration, the DL model exhibited fair calibration in external
test cohort A (P=.159, Spiegelhalter’s Z-—test), while it
significantly overestimated the risk of 30—day mortality in external
test cohorts B and C (P<.001, Spiegelhalter’s Z—test) (Figure 6).

The CURB—65 score exhibited AUCs of 0.67 (95% CI: 0.62—
0.71), 0.734 (95% CI: 0.65-0.81), and 0.72 (95% CI: 0.65-0.79) in
external test cohorts A, B, and C, respectively (Figure 6). The DL
model exhibited higher AUCs than the CURB—65 score in the
external test cohorts, while evidence of difference was found only
in external test cohort A (P<.001). At the same sensitivity levels
with a CURB—-65 score =2, the DL model exhibited higher
specificity and PPV than the CURB—65 score in all external test
cohorts (Table 2).
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Internal Test

External

External

External

Dataset Test Cohort  Test Cohort  Test Cohort
A B C

DL model

AUC 0.83 (0.80- 0.77 (0.73- 0.80 (0.74- 0.80 (0.74-
0.87) 0.81) 0.86) 0.86)

P—value from .822 .159 <.001 <.001

Spiegelhalter’s

Z—test

Sensitivity 68% 79% 77% (30/39) 83% (34/41)
(110/161) (132/167) (64%, 90%) (71%, 94%)
(61%, 76%) (73%, 85%)

Specificity 84% 61% 69% 66%
(1049/1256) (476/780) (295/428) (225/340)
(81%, 86%) (58%, 64%) (65%, 73%) (61%, 71%)

PPV 35% 30% 18% 23%
(110/317) (132/436) (30/163) (34/149)
(29%, 40%) (26%, 35%) (12%, 24%) (16%, 30%)

NPV 95% 93% 97 % 97%
(1049/1100) (476/511) (295/304) (225/232)

CURB—65 score

(94%, 97%)

(91%, 95%)

(95%, 99%)

(95%, 99%)

AUC 0.68 (0.64- 0.67 (0.62- 0.73 (0.65- 0.72 (0.65-
0.72) 0.71) 0.81) 0.79)
P—value <.001 <.001 .194 .081
Sensitivity 68% 79% 77% (30/39) 83% (34/41)
15
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P—value

Specificity

P—value

PPV

P—value

NPV

P—value

(110/161)
(61%, 76%)
>.999

59%
(747/1256)
(57%, 62%)
<.001

18%
(110/619)
(15%, 21%)
<.001

94%
(747/798)
(92%, 95%)

.033

(132/167)
(73%, 85%)
>.999

44%
(346/780)
(41%, 48%)
<.001

23%
(132/566)
(20%, 27%)
<.001

91%
(346/381)
(88%, 94%)

118

(64%, 90%)

>.999

58%
(247/428)
(53%, 62%)
<.001

14%
(30/211)
(10%, 19%)
.035

96%
(247/256)
(94%, 99%)

.650

(71%, 94%)

>.999

48%
(163/340)
(43%, 53%)
<.001

16%
(34/211)
(11%, 21%)
.002

96%
(163/170)
(93%, 99%)

527
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Table 2. Performance of DL model and CURB-65 score
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Coefficient Odds Ratio P—Value
DL model 0.08 (0.01) 1.08 (1.07-1.10)  <.001
prediction
CURB=65 score (reference: score 0)
Score 1 0.56 (0.39) 1.76 (0.81-3.80)  .151
Score 2 0.82 (0.39) 2.27 (1.06-4.86) .035
Score 3 0.44 (0.44) 1.55 (0.66-3.65)  .319
Score 4 1.10 (0.51) 3.00 (1.09-8.21) .033
Score 5 2.07 (0.68) 1.08 (1.07-1.10)  .002
Intercept -4.07 (0.36) 0.02 <.001

Table 3. Multivariate logistic regression for 30—day mortality with CURB-65

score and DL-model result
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Internal Test

External

External

External

Dataset Test Cohort  Test Cohort  Test Cohort
A B C
AUC 0.84 (0.81- 0.77 (0.73- 0.80 (0.74- 0.80 (0.75-
0.87) 0.81) 0.86) 0.86)
P-value (vs. <.001 <.001 .164 .081
CURB-65 score)
P-value (vs. 484 462 .9569 .702
DL —model)
P—value from .642 .003 <.001 <.001
Spiegelhalter’s
Z—test
Sensitivity 68% (110/161) 79% 77% (30/39) 83% (34/41)
(61%, 76%) (132/167) (64%, 90%) (71%, 94%)

P—value (vs.

CURB—65 score)

P—value (vs.
DL model)

Specificity

>.999

>.999

84 %

(1058/1256)

(82%, 86%)

(73%, 85%)

>.999

>.999

64 %

(500/780)

(61%, 67%)

>.999

>.999

73%

(312/428)

(69%, 77%)

>.999

>.999

65%

(222/340)

(60%, 70%)

P—value (vs. <.001 <.001 <.001 <.001
CURB-65 score)
P—value (vs. .095 <.001 <.001 317
DL model)
18



PPV

P—value (vs.
CURB-65 score)

P—value (vs.

DL model)

NPV

36% (110/308)

(30%, 41%)

<.001

.230

95%

(1058/1109)

(94%, 97%)

32%
(132/412)
(28%, 37%)

<.001

.013

93%

(500/535)

(91%, 96%)

21%
(30/146)
(14%, 27%)

.004

.079

97 %

(312/321)

(95%, 99%)

22%
(34/152)
(16%, 29%)

.003

.689

97 %

(222/229)

(95%, 99%)

P-value (vs. .027 .068 .553 544
CURB-65 score)

P-value (vs. .878 591 .802 963
DL model)
Continuous NRI 0.93 (0.78, 0.74 (0.58, 0.30 (0.10, 0.35 (0.10,
(to CURB—-65 1.09) 0.90) 0.51) 0.60)
score)
IDI (to CURB-65 0.13 (0.11, 0.08 (0.06, 0.11 (0.04, 0.12 (0.07,
score) 0.16) 0.11) 0.18) 0.17)

Table 4. Performance of combined model

3.3. Added Value to the CURB—65 Score

The coefficients and odds ratios for the combined model built in
the internal test dataset are listed in Table 3. Prediction by the DL
model was a significant predictor of 30—day mortality (odds ratio,
1.08 for 1% increase in predicted risk [95% CI, 1.07 to 1.10];
P<.001) after adjustment for the CURB—65 score. In the internal
test dataset, the combined model exhibited an AUC of 0.84 (95% CI,
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0.81-0.87), which was significantly higher than that of the CURB—
65 score (0.68; P<.001) and similar to that of the DL model (0.83;
P=.484) (Table 4, Figure 5). At the same sensitivity level with a
CURB—65 score =2 (sensitivity, 68%), the combined model
exhibited higher specificity (84% vs. 59%; P<.001), PPV (36% vs.
18%; P<.001), and NPV (95% vs. 94%; P=.033) than the CURB—65
score (Table 4). The continuous NRI and IDI for the combined
model compared with the CURB—65 score were 0.93 (95% CI,
0.78-1.09) and 0.13 (95% CI, 0.11-0.16), respectively. The
combined model exhibited acceptable calibration (P=.642,
Spiegelhalter’s Z—test) (Table 3, Figure 5).

The combined model exhibited AUCs of 0.77 (95% CI: 0.73-
0.81), 0.80 (95% CI: 0.74-0.86), and 0.80 (95% CI: 0.75-0.86) in
external test cohorts A, B, and C, respectively (Figure 6). In
comparison to the CURB—65 score, the combined model exhibited
higher AUCs, while evidence of difference was found only in
external test cohort A (P<.001). Meanwhile, DL—model and
combined models exhibited similar AUCs in all external test cohorts.
At the same sensitivity levels with a CURB—65 score =2, the
combined model exhibited higher specificity and PPV than the
CURB-65 score in all external test cohorts (Table 4). The
combined model exhibited a significant improvement in
discrimination compared to the CURB—-65 score in terms of
continuous NRI and IDI (Table 4).

In terms of calibration, the combined model exhibited fair
calibration in external cohort A (P=.003, Spiegelhalter’s Z—test)
and overestimated the risk of 30—day mortality in external cohorts
B and C (P<.001, Spiegelhalter’s Z—test) (Figure 6).

3.4. Decision Curve Analyses

Figure 7 shows decision curves of CURB—65 score, DL—model,

and combined model in internal test dataset and exter_rllalltest_ -
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cohorts. The DL—model and combined model exhibited higher net
benefit than the CURB—-65 score in internal test dataset and
external test cohort A when the benefit of hospitalization of high—
risk patients is greater than the cost of hospitalization of low—risk
patients. In external test cohorts B and C, similar patterns of
decision curves were observed, while the magnitude of improved

net benefit for DL—model and combined model was only modest.
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Figure 7. Decision curves of DL-model, CURB-65, and combined model.
Decision curves obtained in the internal test dataset (A) and external test
cohort A (B) show higher net benefit of the DL model and the combined
model compared to the CURB-65 score, when the benefit of hospitalization
of high-risk patient is greater than the cost of hospitalization of low risk
patients. In external test cohorts B (C) and C (D), similar pattern of decision
curves were observed, while the magnitude of improved net benefit for DL
model and combined model was only modest.
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Chapter 4. Discussion

4.1. Research Significance

Although chest radiography is crucial in the diagnosis of
community —acquired pneumonia, its role in predicting the prognosis
of these patients is limited. We developed a deep learning—based
model for predicting 30—day mortality in patients with community —
acquired pneumonia using their initial chest radiography. The
prediction model exhibited robust discrimination performance in
three external test cohorts (AUC, 0.77-0.80) and higher specificity
(44-58% vs. 61-69%; all Ps<.001) at the same sensitivity as the
CURB—-65 score, an established risk prediction tool used in the
daily practice. Finally, the combination of deep learning—based risk
and the CURB—65 score led to improved discrimination compared to
the CURB—65 score (continuous net reclassification improvement,
0.30-0.74; integrated discrimination improvement, 0.08-0.12).

Radiographic findings of CAP may provide prognostic
information. For example, the presence of pleural effusion indicates
worse prognosis [4, 29, 30]. However, the prognostic value of CR
in CAP has rarely been investigated because it is difficult to obtain
objective and quantitative prognostic biomarkers from CR. Recently,
DL models exhibited the potential for predicting future outcomes. A
study reported a DL—based prediction of mortality in patients with
CAP using CRs [31]. Similar to our study, Quah et al. reported that
the discriminative performance of the DL model, CURB—65 score,
and the DL model combined with CURB—65 score for the prediction
of 30—day mortality were AUCs of 0.79, 0.76, and 0.83,
respectively [31]. Comparable discrimination of the DL model with
the CURB—65 score and improved discrimination by combination
with the CURB—65 score suggests the potential of the DL model as
a decision support tool in CAP management. The high specificities
at the same sensitivities compared to the CURB—65 score observed

in our study suggest that the DL model may help reduce
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unnecessary hospitalization or invasive treatment for low-—risk
patients.

Contrary to Quah et al.’s study, which developed and
validated a DL model using single—institution data [31], we
validated the DL model in three external test cohorts (one
temporally separated cohort and two cohorts from other
institutions) to evaluate the model’s generalizability. Regarding
discrimination, the model exhibited consistent performance in
external test cohorts. The model exhibited higher AUCs (0.80) in
the test cohorts from different institutions than in the temporally
separated cohort (0.77). This difference in discrimination may be
due to differences in the baseline characteristics of patients (e.g.,
tertiary referral institution vs. secondary referral institution) since
the performance of the CURB—65 score exhibited a similar
tendency. Regarding calibration, both the DL model and combined
model overestimated the risk in external test cohorts B and C. This
miscalibration might also be due to differences in patient
characteristics between the developmental and external test
cohorts. Recalibration of the risk predicted by the DL model before
application to patients with different characteristics may improve
model calibration [21, 32].

Studies have reported the feasibility of the DL model for
predicting mortality in patients with coronavirus disease pneumonia
using their CRs [33, 34]. Compared to models specifically targeting
coronavirus disease, the strength of our model is that it can be
applied to patients with CAP regardless of the causative pathogen,
making it more valuable than models for coronavirus disease in the
post—pandemic era.

The advantage of a DL model using CR as an input compared
to models using clinical variables is that automated processing
might be feasible and is not influenced by subjective evaluation by
physicians [31]. However, an important shortcoming of the DL
model is the difficulty in explaining the logical background of
prediction. In our study, class activation maps suggested that

predictions of the DL model tended to be influenced by the area of
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pneumonia in cases of high predicted risk, whereas the model
tended not to focus on the area of pneumonia in cases of low

predicted risk (Figures 3 and 4).

4.2. Limitations

This study has several limitations. First, since our study was
retrospective, we could not evaluate whether the prediction of the
DL model can influence the management of patients with CAP.
Second, since clinical variables and risk factors were collected
retrospectively, we could not evaluate clinical risk factors other
than the CURB—65 score. The pneumonia severity index, another
established risk—scoring system for CAP, could not be obtained.
The pneumonia severity index was not practically used in the
management of patients in our study because more variables are
included in the pneumonia severity index and the application is
relatively complex. Finally, we evaluated only 30—day all—cause
mortality (including death due to both CAP and other causes) as an
outcome of this study, and other clinical outcomes such as the

length of hospitalization were not evaluated.
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Chapter 5. Conclusion

5.1. Conclusion

In conclusion, a deep learning—based model could predict the
30—day mortality in patients with community —acquired pneumonia
from their initial chest radiographs with higher specificity at the
same sensitivity compared to the CURB—65 score. Adding the deep
learning model prediction to the CURB—65 score led to improved
discrimination in predicting 30—day mortality. A prospective study
i1s required to evaluate whether the deep learning model can

contribute to the management of these patients.
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