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Abstract 

 

Identification of Novel Biomarkers and Drug Candidates 

via Web-based Bioinformatic Analysis in Fusion-Positive 

Cancer 

 

Jae Heon Jeong 

Department of Engineering 

The Graduate School 

Seoul National University 

 

At present, cancer continues to be a major health problem around the world. The 

breakthroughs in cancer biology via development of high-throughput sequencing 

technologies have enabled the development of novel diagnostic and therapeutic 

approaches. Recently, due to the specificity of fusion genes in cancer, a large number of 

them have been identified as cancer biomarkers. Since, about 10,000 fusion genes have 

been discovered via development of sequencing technologies, over 90% of them lack 

functional mechanisms and therapeutic agents. 

Insight into the molecular mechanisms and the identification of potential 

therapeutic and diagnostic biomarkers in cancer are both greatly aided by the molecular 

profiling data organized by The Cancer Genome Atlas (TCGA) database. It is significant 

to offer online platform that make it easy for cancer researchers and clinicians 

(regardless of their level of computational expertise) to access, analyze, visualize, and 



 

interpret cancer transcriptomic data. cBioPortal, miRGator v 3.0, TANRIC, and 

ISOexpresso are well known public resources that aid researchers to analyze TCGA data. 

Here, we report DRPORTAL, an easy to use, interactive web-portal to investigate 

potential therapies targeting 9,950 fusion genes based on new bioinformatical strategy. 

DRPORTAL uses TCGA level 3 RNA-seq and clinical data from 33 cancer types. 

DRPORTAL systematically infer potential drug candidates in fusion positive cancer in 

four steps: 1) we first extract fusion expression correlated genes as well as age, sex, 

alive status, TNM cancer stages or other clinical features across fusion positive and 

negative tumor samples, and 2) select oncogenic signaling pathways containing those 

genes; and 3) construct a drug-target network using the CIViC and OncoKB database, 

and 4) finally, prioritize suitable cancer drugs. 

I have exploited two different fusion positive cancer (ESR1-CCDC170 fusion 

positive breast cancer, PTRPRK-RSPO3 fusion positive colorectal cancer) to validate the 

reliability of novel therapeutic strategy. 

In ESR1-CCDC170 fusion positive breast cancer, six major cancer-related 

signaling pathways (p53, ATR/ATM, FOXM1, hedgehog, cell cycle, and Aurora B) were 

significantly altered. Further investigation revealed that nine genes 

(AURKB, HDAC2, PLK1, CENPA, CHEK1, CHEK2, RB1, CCNA2, and MDM2) in 

coordination with E:C fusion were found to be common denominators in three or more of 

these pathways, thereby making them promising gene biomarkers for target therapy. 

Among the 21 putative actionable drugs inferred by drug-target network analysis, 

palbociclib, alpelisib, ribociclib, dexamethasone, checkpoint kinase inhibitor AXD 7762, 

irinotecan, milademetan tosylate, R05045337, cisplatin, prexasertib, and olaparib were 

considered promising drug candidates targeting genes involved in at least two E:C 

fusion-related pathways. 

In PTRPRK-RSPO3 fusion positive colorectal cancer, 2505 genes were altered in 

RNA expression specific. By pathway analysis based on the altered genes, ten major 

cancer-related signaling pathways (Apoptosis, Direct p53, EGFR, ErbB, JAK-STAT, 

tyrosine kinases, Pathways in Cancer, SCF-KIT, VEGFR, and WNT-related Pathway) 



 

were significantly altered in P:R fusion-positive CRC. Among these pathways, the most 

altered cancer genes (ALK, ACSL3, AXIN, MYC, TP53, GNAQ, ACVR2A, and FAS) 

specific for P:R fusion and involved in multiple cancer pathways were considered to have 

a key role in P:R fusion-positive CRC. Based on the drug-target network analysis, 

crizotinib, alectinib, lorlatinib, brigatinib, ceritinib, erdafitinib, infigratinib and pemigatinib 

were selected as putative therapeutic candidates. 

Based on the two experiments, we confirmed that DRPORTAL can greatly help 

cancer biologists and clinicians to identify trustable therapeutic targets and applicable 

drug candidates for fusion positive cancer. 

keywords: Bioinformatics, Drug repurposing, TCGA, Gene fusion, Cancer, Web Resource, 

Bio Platform, Computational Genomics, Transcriptomics, Differentially Expressed Genes 

Analysis 

Student Number: 2019-20994 
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Chapter 1 Introduction 

 

1.1 Research background 

Currently, cancer continues to be a major health problem around the 

world. According to worldwide cancer statistics for 2022, there will be an 

expected 25 million new cases of cancer and 13.3 million deaths from cancer 

until 2030. Finding a way to reduce the mortality caused by cancer is the 

fundamental goal of society, governments, the medical, and the scientific 

community. The breakthroughs in cancer biology via development of high-

throughput sequencing technologies have enabled the identification of novel 

diagnostic and therapeutic approaches. 

Cancer is caused by a variety of abnormalities to the genome, 

involving single nucleotide polymorphisms (SNPs), copy number variations, 

and chromosomal rearrangement. Researchers and clinicians can get a 

comprehensive understanding of cancer by having access to genomic 

complexity in tumorigenesis.  

However, fusion genes are a form of fusion product with two originally 

separated genes resulting from the DNA structural rearrangement. A 

proportion of fusion genes are transcribed into fusion transcripts. These 

fusion transcripts could synthesize fusion proteins by maintaining the reading 

frame of their parental genes, by regulating parental expression, or by 

functioning as long non-coding fusion RNAs. Many fusion genes have been 

explored and utilized as cancer biomarkers due to their specificity in cancer. 



 

Furthermore, many of these fusion genes have been identified as oncogenes 

with the ability to induce tumorigenesis and have been utilized as therapeutic 

targets. These fusion transcripts have also been reported as promising 

biomarkers since their detection could be used to discern the presence of 

certain types of cancer cells.  

Imatinib, a tyrosine kinase inhibitor, was approved in 2001 for the 

treatment of Philadelphia chromosome (BCR-ABL)-positive CML as the first 

fusion-targeted drug. Crizotinib is a renowned tyrosine kinase inhibitor that 

targets the ALK kinase domain of the EML4-ALK fusion gene in non-small 

cell lung cancer (NSCLC). In non-small cell lung cancer, the EML4-ALK 

fusion gene was found to be an oncogenic driver. Patients with NSCLC with 

EML4-ALK fusion gene were given approval to treat with crizotinib in 2011. 

Despite the fact that around 10,000 fusion genes have been discovered 

in last five years, more than 90% of them lack functional mechanisms and 

applicable therapeutic agents. 

  



 

1.2 Research aims 

 

Recent advancements in high throughput technologies, such as next-

generation sequencing (NGS) and microarrays, have allowed clinical cancer 

researchers to examine molecular alterations in DNA, RNA, and proteins on a 

large scale. Using various data platforms, the Cancer Genome Atlas (TCGA) 

consortium has generated molecular profiles of over ten thousand samples 

associated with 33 cancer types, leading to numerous studies involving the 

genomic and molecular characterization of specific cancer types. 

Computational methods for predictive repurposing provide a relatively rapid 

and mechanistically agnostic strategy for identifying therapeutic targets that 

can be utilized into clinic fields; this may also be the only option for drug 

development in some fusion-positive cancers for which pathophysiological 

mechanisms are lacking. 

Prior to the first, in Chapter 2, I will introduce the concept of 

molecular-targeted therapy, drug repurposing and computational approaches 

which successfully identified therapeutic targets using gene expression 

profiles. Many of the recently discerned targets and repurposed drug 

candidates are a consequence of the extensive usage of computational 

techniques. For this reason, I will first discuss how these techniques have 

been successfully developed from molecular-targeted therapy to 

computational methods and introduce good examples of these approaches in 

previous studies. 

In Chapter 3, DRPORTAL, interactive web-portal, based on novel 

bioinformatic techniques to unearth potential drug candidates of fusion 

positive cancer will be introduced. Through massive development of 



 

sequencing technology, about 10,000 fusion genes have been identified within 

five years. While a large number of fusion genes have specificity in cancer 

and have been identified as oncogenic makers, only limited number of them 

have applicable drugs. Herein, I will introduce DRPORTAL’s main functions 

and discuss the reason why this could be extremely helpful in accelerating 

fusion-positive cancer research. 

In Chapter 4, I will discuss about the molecular-pathological profiles of 

ESR1-CCDC170 fusion positive cancer using aforementioned novel 

computational techniques. The result of this study are divided in to 

clinicopathological characteristics, differentially expressed genes, target 

pathways and therapeutic agents, and based on this, predictive ability of 

DRPORTAL’s therapeutic mechanism has been successfully validated. 

Finally, in Chapter 5, I would also like to discuss another application 

example of former therapeutic strategy which elucidated cell signaling and 

therapeutic targets in PTPRK-RSPO3 fusion-positive colorectal cancer. As in 

Chapter 4, following in silico studies were performed and confirmed. 

  



 

Chapter 2 Computational approaches in cancer 

therapy 

2.1 Molecular targeted therapy 

 

Molecular targeted therapy is the application of chemical compounds 

or other substances that target specific molecules to inhibit the tumorigenesis 

and proliferation of cancer. In the late 1800s, Paul Rich originally outlined the 

concept of the "magic bullet," from which targeted therapy was formed. It was 

first used to describe the capacity of a drug to target microorganisms 

selectively, but the approach has now been broadened to cancer therapies 

[1].  

Since the Federal Drug Administration (FDA) approved rituximab in 

1997, there have been 71 molecular-targeted drugs approved, and 18 of them 

could be used for multiple indication. While the number of these drugs 

increased, the number of “non-molecular-targeted” drugs such as cytotoxic 

pharmaceuticals and antihormonal agents reduced, even when pegylated and 

novel formulations of existing cytotoxic drugs are taken into consideration. 

No more than 28 drugs of these “non-molecular-targeted” drugs have been 

approved or reapproved for new indications since 1997- 2017 [2, 3]. 

Selecting the appropriate targets is crucial for an effective application 

of molecular targeted therapies in cancer. Differentiation of the genetic 

profiles which leads to mutations or variations in proteins and receptors is 

one of the primary drivers of tumorigenesis by regulating cell survival and 

proliferation. This specific genetic differentiation, which is appeared to be 



 

differed from cancer and normal cells, can be utilized as molecular targets in 

the development of molecular targeted therapies [4]. Researchers have been 

able to interrogate molecular therapies to suppress tumor proliferation and 

progression by investigating physiology and features of certain molecular 

targets in cancer. 

Interestingly, cancer biomarkers can be identified using genome 

sequencing, which allows researcher to distinguish genes expression profiles 

between normal and malignant cells and identify alterations in those 

expressions [5]. Various cancer genomes have been analyzed using 

sequencing technology to disclose the genetic heterogeneity between 

malignant and normal cells within an individual. Among the various targets 

selected for molecular targeted therapy are growth factors, signaling 

molecules, cell-cycle proteins, apoptosis modulators, and molecules that 

promote angiogenesis [6]. Understanding and discerning a specific target 

enables the development of successful and effective drugs. 

 

2.2 Drugs used in molecular targeted therapy 

 

The activities and properties of molecular targeted drugs exploited in 

cancer therapy may differ. Depending on the targets, they function on cell 

surface antigens, growth factors, receptors, or signal transduction pathways 

which are known to regulate cell cycle progression, cell death, metastasis, 

and angiogenesis [7]. Small molecules, monoclonal anti-bodies, 

immunotherapeutic cancer vaccines, and gene therapy are the four major 

types of molecular-targeted therapeutic methods [1].  



 

To eliminate cancer cells, drugs applied as molecular targeted therapy 

inhibit signaling that promote cancer cell growth, disrupt with cell cycle 

regulation, or induce cell death. These drugs may activate the immune system 

to attack not just cancer cells, but also components of tumor 

microenvironment [8]. When combined with chemotherapy, these drugs can 

also prevent the growth and spread of tumors and make resistant tumor more 

sensitive to other therapies [9].  

 

2.3 Necessity of drug repurposing 

 

Conventional drug development process encompass target finding and 

validation, lead identification via high-throughput screening, and lead 

optimization through medicinal chemistry. In pre-clinical stage, substance 

efficacy and pharmacology (Administration, Metabolism, Distribution, 

Elimination “ADME”) are assessed in animal models, along with toxicity, 

specificity, and drug interaction investigations.  

Despite technological advancements and increased understanding of 

molecular biology, translation of these insights into therapeutic improvements 

has been much slower than anticipated [10, 11]. High attrition rates, longer 

times to provide new pharmaceuticals to market, and fluctuating regulatory 

standards are compelling the global pharmaceuticals to raise costs of new 

drugs [12, 13]. It has been calculated that for every dollar spent on research 

and development (R&D), less than a dollar is returned on average, which may 

make the pharmaceutical industry a less attractive investment option [14].  

 



 

Therefore, a large number of cancer drugs on the market are too 

expensive in present for the vast majority of patients around the world, and 

there are some studies that new drugs may not have meaningful therapeutic 

benefits. In addition, no correlation has been identified between drug costs 

and the advantages to patients [15, 16]. Because of this severe issue, 

researchers at universities and other non-profit organizations have been 

coming up a with new idea, drug repurposing [17, 18].  

 

2.3 Drug repurposing 

Drug repurposing (also known as drug repositioning) is a method for 

mapping new indications for approved or experimental drugs that have initial 

medical indication [10]. Compared to developing a new drug for a given 

indication, this approach has numerous benefits. First, the risk of failure is 

much lower; It is because repurposed drug has proven to be adequately safe 

in preclinical models and humans from previous trials, it is less likely to fail in 

new indications from a safety standpoint. Second, the drug development 

timeline may be shortened since much of the preclinical trials, safety 

evaluation, and, in some cases, formulation development will have been 

finished already. Third, less money is required, although this may differ 

considerably depending on the stage and process of candidate’s development 

[19]. Although repurposed drug may have similar regulatory and phase III 

costs, significant amount of costs may be saved in preclinical and phase I and 

II costs. 

When taken together, these benefits suggest that developing 

repurposed drugs could yield a faster and safer return on investment, as well 



 

as lower expense once failures have been considering (In fact, bringing a 

repurposed drug to market is calculated to cost approximately $300 million, 

whereas bringing a new drug to market is calculated to cost $2–3 billion [20]).  

Conclusively, repurposed drugs can elucidate novel targets and 

pathways that could be used in further studies. Drug repurposing has 

conventionally been a result of chance and serendipity; once a drug was 

discovered to have an off-target effect or a newly identified on-target effect, 

it was applied for commercial use. The effective repurposing of sildenafil 

citrate for erectile dysfunction depended on retrospective clinical experience, 

while the successful repurposing of thalidomide for erythema nodosum 

leprosum (ENL) and multiple myeloma was based on serendipity, rather than 

a systematic method [10]. As of 2012, global sales of Viagra made from the 

sildenafil, which had been created as an antihypertensive but repurposed by 

Pfizer for the treatment of erectile dysfunction reached $2.05 billion, giving 

Viagra a 47% share of the erectile dysfunction market. Thalidomide, when it 

was discovered that pregnant women who took the sedative thalidomide 

during the first trimester of their pregnancies were at risk for having babies 

with severe skeletal birth abnormalities, the drug was pulled off the market 

worldwide within 4 years [10].  

As a consequence, more systematic and computational approaches to 

the identification of repurposable drugs have been encouraged. PubMed data 

reveal that a large number of studies about drug repurposing has increased 

massively since 2004 [21]. These methods have led to the discovery of many 

potential drugs candidate, some of which are now undergoing advanced-stage 

clinical trials in multiple cancer types [14].  



 

 

2.4 Repurposed drugs in cancer 

 

 In cancer, thalidomide, repurposed drug, is now considered as 

standard therapy. The FDA authorized this drug in 1998 as combination with 

dexamethasone for the treatment of newly diagnosed multiple myeloma. 

Nonetheless, the National Comprehensive Cancer Network (NCCN) guidelines 

now recommend this drug as a main therapeutic option in combination with 

bortezomib and dexamethasone. It is interesting to note that thalidomide is 

not often utilized in the United States but is more accessible and economical 

in other regions of the countries with less resources [22].  

 Treatment for acute promyelocytic leukemia now includes arsenic 

trioxide, which was previously used in traditional Chinese medicine, and all-

trans retinoic acid (ATRA), which had been used since 1962 for skin 

disorders but was licensed by the FDA in 2000. Only these three drugs have 

been successfully repurposed for use in cancer treatment [23, 24].  

 Additionally, repurposing drug candidates have been unearthed novel 

mechanisms into molecular pathophysiology of cancer. The finding in 2001 

that AMP-activated protein kinase (AMPK), was the target of metformin, 

followed by the evidence that AMPK is also a cancer target, is an example 

that exemplifies this case [25]. Investigating the anticancer effects of 

previously approved drug is another method of off-target toxicity. For 

example, hydralazine and procainamide, originally used to treat autoimmune 

disorders, have been repurposed to DNA methyltransferase inhibitors for 

cancer drugs [26].  



 

 

2.5 Computational approaches using gene expression profile in cancer 

 

 Identification of target candidates for a given indication (hypothesis 

generation); systematic assessment of the pharmacological effects in animal 

models; and evaluation of efficacy in phase II clinical trials (assuming there is 

adequate safety data from phase I, which have already evaluated for original 

indication) are the three big phases of a drug repurposing. Among these three 

phases, step 1 — Identifying the appropriate drug candidates for new 

indication with a high level of confidence is the most important, and there are 

many new tools for hypothesis generation. These systematic processes may 

be classified into computational and experimental approaches, both of which 

can synergistically exploited. These two main categories include clinical data. 

 Researchers are able to obtain vast amounts of experimental data as a 

result of development in technologies such as next-generation sequencing 

and rapidly decreasing sequencing costs. These data include high-throughput 

DNA and RNA sequencing, mass spectrometry, metabolomics and 

transcriptomic data, phenotyping data, and many more. In addition, large 

amounts of clinical data are increasingly viable through electronic health 

records (EHRs), clinical trials, and biobanks. Big data refers to data 

collections that are so big and complicated that conventional data processing 

techniques are inadequate [27]. 

 Consequently, computational approaches, often referred to as 

bioinformatic analysis, have emerged. Bioinformatics employs various 

computational techniques, including sequence and structural alignment, 

designing databases, data mining, macromolecular geometry, building 



 

phylogenetic trees, predicting protein structure and function, identifying new 

genes, and clustering expression data. Bioinformatics is becoming more 

commonly used and many of the candidates for repurposing that have been 

recently discovered come from this computational approach. 

 Computational analysis can be conducted using a various type of data, 

including transcriptomics, genomes, proteomics, epigenomics, and 

metabolomic profiles, adverse effects, phenotypes, or a combination of these. 

Since the publicly accessible databases for transcriptomic data are well-

known and contain normalized data, they are also used in other well-

established resources such as cBioPortal, miRGator v3.0, TANRIC, and 

ISOexpresso. This is reason why transcriptomic profile from TCGA database 

was interrogated into DRPORTAL, also. As so, I will introduce good example 

of computational approaches based on transcriptomics, genomics, and 

pathway analysis that are applicated in DRPORTAL’s bioinformatical analyses. 

 Transcriptomic profiles can offer a list of under- and over- expressed 

genes in an experimental environment, such as disease versus normal or 

drug-treatment group versus control. These gene lists may then be exploited 

to identify dysregulated pathways or networks. The Connectivity Map (CMap) 

is a good example of this concept; it is a huge collection of transcriptomes 

from cell lines treated with 1300 drug-like compounds that uses a pattern-

matching approach to unearth differences and similarities in complicated 

diseases [28]. Using publicly accessible transcriptomic profiles, Iorio and 

colleagues built a drug network based on the "guilt by association" concept to 

identify drugs that had a similar transcriptional signature and, hence, a 

perceived similar mechanism of action [29, 30]. Based only on these 

transcriptomic profiles, a drug network was constructed with 1,302 drugs as 



 

nodes and 41,047 edges (showing similarity between pairs of drugs). 

Remarkably, nine known anticancer drugs' mechanisms were successfully 

validated using this network, demonstrating its predictive ability. 

 As a result of the significant progress in human genetics, "druggable" 

targets may be identified by identifying the associations between genes and 

diseases. The use of genetic or genomic methods, particularly large-scale 

genetic investigations such as genome-wide association studies, are reported 

to be twice as likely to be approved compared to drugs with no such links [31, 

32]. With this method, it was possible to identify the genes that encode for 

the drug targets of tamoxifen (ESR1) and aromatase inhibitors (CYP19A1), 

which are correlated to genetic differences that increase the risk of breast 

and endometrial cancer [33, 34]. These two drugs are FDA-approved for 

breast and endometrial cancer. 

 Approaches based on pathways or networks have been used 

extensively to discover medications or pharmacological targets with potential 

for repurposing [35]. As mentioned before, despite the fact that some of the 

putative targets identified by genomics or transcriptomic data may be directly 

amenable as therapeutic targets, these genes are often not ideal therapeutic 

targets. In this case, a pathway-based strategy could give information about 

genes that are either upstream or downstream of the target and could be used 

to find new uses for them [36]. Network analysis is the construction of drug 

or illness networks based on gene expression patterns, disease 

pathophysiology, and protein interactions to help in the identification of 

repurposing candidates. Several signature matching studies based on the 

transcriptome profile also use the network analysis method [29, 37].  



 

2.6 Computational approaches of drug repurposing in fusion positive cancer 

 

 Since some fusion genes have been found to be dominant in various 

cancer, researchers discovered that these genes have significant functions in 

tumorigenesis [38, 39]. Therefore, diverse efforts have been progressed to 

identify the molecular pathological profiles of the fusion gene and confirmed 

that successful targeted therapies have been accomplished when these genes 

were inhibited [40, 41].  

 Imatinib, a tyrosine kinase inhibitor, was approved in 2001 for the 

treatment of Philadelphia chromosome (BCR-ABL)-positive CML as the first 

fusion-targeted drug. Crizotinib is a renowned tyrosine kinase inhibitor that 

targets the ALK kinase domain of the EML4-ALK fusion gene in non-small 

cell lung cancer (NSCLC). Patients with NSCLC with EML4-ALK fusion gene 

were given approval to treat with crizotinib in 2011. 

 However, there are many other fusion genes that cannot be directly 

targeted with this conventional approach. In order to overcome this limitation, 

it was necessary to newly explore the targetable genes and signaling 

pathways that function in the downstream level of fusion gene. Thus, current 

studies that elucidated the novel targets and applicable drugs with 

computational approaches have been emerged [38, 42-44].  

 First, in the case of using tyrosine kinase inhibitors (TKIs) as standard 

molecular targeted therapy for BCR-ABL fusion positive chronic myeloid 

leukemia (CML), researchers identified novel targetable markers to prevent 

drug resistance caused by TKIs. In this study, DEG analysis was processed 

using gene expression data (GEO database) between pre-treatment and post-



 

treatment of TKI, and target pathways were identified through two pathway 

analysis (gene ontology; GO terms and KEGG pathway). Therapeutic 

compounds which have high correlation with the target genes were selected 

through drug response gene signature database, Connectivity Map. However, 

in the case of Cmap database, it only comprises gene signature data for four 

cancer cell lines (breast cancer, prostate cancer, leukemia, and skin cancer). 

Therefore, it is difficult to search for therapeutic agents in other types of 

cancer [43].  

 In other study, RUNX1-RUNX1T1 fusion gene plays a crucial role in 

the tumorigenesis of Acute Myeloid Leukemias (AML), but since direct 

targeting is difficult, researchers tried to investigate signaling pathways that 

can be targeted. Using TCGA mRNA expression data, they found 293 genes 

highly related to the RUNX1-RUNX1T1 fusion, and based on these genes,  

two pathway analysis (ORA and GSEA) were performed to identify fusion-

related signaling pathways. As a result, it was possible to discern 

cyclooxygenase (COX), vascular endothelial growth factor receptor (VEGFR), 

platelet-derived growth factor receptor (PDGFR), and fibroblast growth 

factor receptor (FGFR) pathways. In vitro experiments were also conducted 

to validate whether the identified signaling pathways were actually targets of 

R:R fusion positive AML. As a consequence, when the 4 pathways were 

pharmacologically inhibited, it was confirmed that the proliferation of AML 

cells significantly decreased in fusion positive compared to fusion negative 

[42]. 

 In last study, molecular signaling was investigated and potential 

therapeutic targets were curated for TMPRSS2-ERG fusion positive cancer, 

which is likely to account for nearly 50% of prostate cancer patients. Then, 



 

3,870 differentially expressed genes between fusion-positive and negative 

groups were identified, and pathway analysis was conducted based on these 

genes. Finally, based on the drug-target database (CIViC), 55 drug candidates 

were  repurposed to these targets, and in vitro experiments discerned the six 

drugs from previous candidates which were effective to fusion positive 

cancer [44].  

 Taken together, all these three studies identified target genes and 

pathways via DEG analysis and pathway analysis. Based on the public 

transcriptomic data (GEO, TCGA), significantly altered genes were selected 

and, pathway analysis was conducted based on these DEGs to investigate 

cellular processes. 

 In RUNX1-RUNX1T1 fusion and TMPRSS2-ERG fusion studies, in 

vitro experiments were also performed to verify the reliability of target 

pathways and genes found in silico, and it was successfully validated because 

a fraction of drugs successfully reduced the proliferation of fusion positive 

cancer cell by inhibiting the targets [42, 44]. From this point of view,  

bioinformatic analysis commonly used in previous drug repurposing studies is 

effective in identifying putative target genes and pathways and can prioritize 

some effective drug candidates which can be utilized in further experiments. 

 However, these fusion positive cancers have been analyzed 

individually only in a very limited number. With the development of deep 

sequencing and detection algorithms, more than 90% of 10,000 fusion genes 

have been identified within the last 5 years, and the cellular mechanism has 

not been fully identified since most of the fusion genes have been recently 

discovered [38, 45].  



 

 If the aforementioned computational analysis is performed for each 

fusion positive cancer, it will  take a long time and not be easy to reproduce 

for some clinicians and cancer researchers who lack bioinformatic or 

programming skills. Furthermore, it will require more effort and time to 

change some experimental conditions or update numerous, complex 

databases. Therefore, interactive web-resource can help these researchers 

to access various types of complex databases and investigate the molecular 

pathological characteristics easily. 

  



 

 

Chapter 3 DRPORTAL: A Web-Portal for 

repurposing potential drug candidates in 

fusion positive cancer 

 

3.1 Introduction 

 Next-generation sequencing (NGS) and microarrays are examples of 

recently developed high throughput technologies that have allowed cancer 

researchers to investigate molecular alterations in DNA, RNA, and proteins 

on a massive scale [46-48]. Using numerous data platforms (including DNA 

methylation and copy number, as well as RNA and protein expression), the 

Cancer Genome Atlas (TCGA) collaboration has constructed molecular 

profiles of over ten thousand samples linked to 33 types of cancer, generating 

a large number of studies including the genomic and molecular 

characterization of individual cancer types [49-68].  

 Clinicians and researchers who lack bioinformatics abilities have 

difficulty to undertake in-depth analysis of TCGA cancer genomics data due 

to its massive complexity and accessibility in diverse data formats. Numerous 

analytical platforms have been developed in order to facilitate fundamental 

data queries. cBioPortal is one such application that allows users to input 

gene sets for a specific type of cancer. cBioPortal provides RNA level 

expression data, mutation events, copy number variations, protein expression 

by Reverse Phase Protein Array (RPPA), a survival plot, and a list of co-

expressed and mutually expressed genes for each gene that is queried. Other 



 

tools like as miRGator v3.0 [69], TANRIC [70], and ISOexpresso [71] can be 

used to examine differential expression of specific biomolecules including 

miRNA, lincRNA, and transcript isoforms. Using TCGA data, the Gene-Drug 

Interaction for Survival in Cancer (GDISC) [72] web platform evaluates the 

effect of gene-drug interactions on various cancer types. The Stanford 

Cancer Genome Atlas Clinical Explorer (Stanford-TCGA-CE) [73] aids in the 

detection of associations between genomic/proteomic characteristics and 

clinical parameters, hence easing the identification of clinically relevant 

genes. PROGgeneV2 enables extensive survival analysis of publicly 

accessible gene expression data, such as TCGA [74]. Using TCGA and other 

public cDNA, Affymetrix, and Illumina microarray data, Oncomine [75, 76] 

offers an interactive platform for gene expression profiling. 

 Researchers have created various computational tools to assist them in 

conducting specific analyses of TCGA data.; however, there is need for new 

tool to analyze the molecular pathological features across a large number of 

fusion positive cancer (n=9,950). Due to the specificity of fusion genes in 

cancer, some of them have been developed as cancer biomarkers. Since over 

9,000 fusion genes have been discovered in last 5 years, 90% of them lack 

functional insights and applicable drugs.  

 Here, we report DRPORTAL (Figure 1-2), an easy to use, interactive 

web-portal to investigate potential therapies targeting 9,950 fusion genes 

based on new bioinformatical strategy. DRPORTAL utilizes TCGA level 3 

RNA-seq and clinical profiles from 33 cancer types. The web resource 

systematically infer potential drug candidates in fusion positive cancer in four 

steps: 1) we first extract fusion expression correlated genes as well as age, 

sex, survival status, TNM cancer stages or other clinical features across 



 

fusion positive and negative tumor samples, and 2) select oncogenic signaling 

pathways containing those genes; and 3) construct a drug-target network 

using the CIViC and OncoKB database, and 4) finally, prioritize suitable 

cancer drugs. 

 This resource serves as a foundation for validating fusion genes 

through computer simulation and discovering potential drug candidates. Thus, 

DRPORTAL could be extremely helpful in accelerating fusion-positive cancer 

research. 

 



 

 

 

Figure 1. Overall schema of DRPORTAL. 

 



 

 
 

Figure 2. DRPORTAL input page. Researcher can select cancer type, 5’ fusion gene, 3’ fusion gene, method of DEG analysis, cut-off value of DEG analysis  . 



 

 

3.2 Materials and Methods 

 

3.2.1 mRNA expression data  

 Gene level 3 (RNA-seq by expectation-maximization, RSEM) mRNA 

expression with normalized read count values of 33 TCGA cancer types was 

obtained from the Broad GDAC Firehose website 

(https://gdac.broadinstitute.org). “illuminahiseq_rnaseqv2 

RSEM_genes_normalized (MD5)” files were obtained for primary solid tumor 

for each cancer. This file includes gene expression values estimated by 

RSEM algorithm for 20,531 genes; Each column represents the patient ID, 

while each row represents the entrez gene ID. Related clinical feature data, 

including information about age, sex, mutation annotation format (MAF) files, 

molecular subtypes, and tumor-node-metastasis (TNM) stages, were 

obtained from the website mentioned above. 

 

3.2.2 Case-control selection and Differential Expressed Genes analysis 

 RNA expression data from TCGA were made into a two-dimensional 

matrix composed of the selected fusion tumor samples and control tumor 

samples. I downloaded 9,950 fusion gene samples using the TCGA fusion 

gene data portal (The Jackson Laboratory, https://www.tumorfusions.org). 

For control tumor sample selection, 50 samples were randomly selected 

among the samples with low fusion gene  expression (less than the median 

value of reference gene RNA expression). I used two different statistic 

methods to select differentially expressed genes between two tumor groups. 



 

 First, Wilcoxon rank sum tests were performed between fusion-

positive and fusion-negative patients to select genes in coordination 

with fusion gene in the RNA expression. Then, above tests were repeated 100 

times. Based on the median of p-values from 100 tests, 20,531 genes were 

sorted in decreasing order and selected only when it satisfies “cut-off” over 

80 times among 100 tests. Using this condition, mostly affected genes were 

selected by “cut-off” p-value (default adjusted p-value < 0.01). 

 Second, Pearson correlation tests were performed in fusion-positive 

and fusion-negative cases to obtain R-values of 20,531 genes in correlation 

with fusion gene **in RNA expression. Then, above tests were repeated 100 

times also. Based on the median of absolute R values from 100 tests, 20,531 

genes were sorted in decreasing order. Using the median of absolute R values, 

mostly affected 2,505 genes were selected by correlation cut-off (default 

R > 0.2). 

 

3.2.3 Identification of key altered genes via ConsensusPathDB (CPDB) and 

Over-representation analysis (ORA) 

 Pathway enrichment analysis is useful for researchers to gain an 

understanding of the underlying mechanisms of gene lists obtained from 

large-scale (omics) experiments, particularly DEGs (Differentially Expressed 

Genes). This approach is used to find biological pathways that have more 

genes from a given gene list than what would be expected by random chance. 

ConsensusPathDB (http://consensuspathdb.org/) is a meta-database 

combining interactions of diverse types from 31 public resources for humans. 

According to BioCarta (http://www.biocarta.com/], 177 biological pathways 



 

were combined from the following sources: INOH, KEGG, NetPath, PID, 

Reactome and Wikipathways. Using ConsensusPathDB, researchers commonly 

evaluate lists of genes, proteins, and metabolites against sets of molecular 

interactions defined by pathways, Gene Ontology and network neighborhoods 

and retrieve complex molecular neighborhoods formed by heterogeneous 

interaction types. 

 The aforementioned differentially expressed genes were used to 

perform over-representation analysis (ORA), pathway analysis, using 

ConsensusPathDB. In over-representation analysis, the p-value is determined 

using the hypergeometric distribution which reflects the significance of the 

observed relationship between the input gene list and the members of the 

pathway in comparison to random expectations. Analyzing the ontological 

features and the proportion of duplicated genes, the pathways enriched with 

chosen differentially expressed genes were collapsed into cancer-related 

pathways, having key altered genes as components. 

 

3.2.4 Inferring and prioritizing actionable drugs via CIViC and OncoKB 

 The “Clinical Evidence Summaries” data, released on 1 December 

2021, were downloaded from the Clinical Interpretations of Variants in 

Cancer (CIViC) website (https://civic.genome), and the “Actionable Variants” 

data were accessed and downloaded on 1 December 2021 from the OncoKB 

website (http://oncokb.org/). Each drug database comprise 3,374 actionable 

variations (470 genes) and 670 variants (161 genes). CIViC is a 

knowledgebase that is created by a combination of experts and the public to 

provide information about the significance of inherited and somatic variants in 



 

cancer treatment, diagnosis, prognosis, and predisposition. OncoKB also 

annotates the biologic and oncogenic effects and prognostic and predictive 

significance of somatic molecular alterations. The information about the 

potential treatment impact of a specific molecular alteration is sorted 

according to the level of evidence that it can predict drug response. The 

evidence is based on the labeling and guidelines of the US Food and Drug 

Administration, National Comprehensive Cancer Network, recommendations 

of disease-focused expert groups and scientific literature. 

 OncoKB database is from MSKCC (Memorial Sloan Kettering Cancer 

Center), and CIViC database is from Washington University. As such, these 

are all databases curated by experts, and in our experience, when comparing 

the above two databases with experimental studies and literature reviews, the 

results were more than 95% accurate. 

  A clinical evidence statement is a piece of information that has been 

carefully selected from reliable medical literature, it refers to the variant or 

genomic event that has an impact on cancer predisposition, diagnosis, 

prognosis, or the prediction of response to therapy, that has been manually 

curated. Evidence level in each database describes the robustness of the 

study supporting the evidence item.  

 In CIViC database, five different evidence levels are supported: “A - 

Validated association”, “B - Clinical evidence”, “C - Case study”, “D - 

Preclinical evidence”, and “E - Inferential association”. Clinical evidence A 

drugs have a proven or clinical consensus on the variant association in human 

medicine. Typically, these evidence items describe Phase III clinical trials or 

have associated companion diagnostics. Clinical evidence B drugs have 



 

typically large clinical trials or other primary patient data supporting the 

clinical association. These evidence items usually include more than 5 

patients supporting the claim made in the evidence statement. 

 In OncoKB database, four different evidence levels are supported: “1 - 

FDA-approved drug as FDA-recognized”, “2 - FDA-approved drug as 

standard care”, “3 - Compelling clinical evidence”, and “4 - Compelling 

biological evidence”.  Level 1 drugs are FDA-recognized biomarker 

predictive of response to an FDA-approved drug in this indication. Level 2 

drugs are standard care biomarker recommended by the NCCN or other 

professional guidelines predictive of response to an FDA-approved drug in 

this indication. 

 Thus, exploiting the drugs that have high clinical evidence level in 

both drug-target database, a total of 740 CIViC (level A -Validated 

association, level B -Clinical evidence) and 182 OncoKB (level 1 - FDA 

approved drug as FDA-recognized, level 2 - FDA approved drug as standard 

care) drugs were matched to key altered genes and fusion-related pathways. 

 Then drug-target relationships were prioritized based on the scenario 

that properly working cancer drugs are generally inhibitors for activated 

oncogenes or activators for down-regulated tumor suppressor genes. 

 

3.2.5 Statistical analysis and data visualization 

 All statistical analyses, including the Pearson correlation tests, 

Wilcoxon rank sum test, and Over-representation analysis were performed 

using the open software Python 3.10.9. SciPy (https://docs.scipy.org/), a 



 

Python package, a collection of mathematical algorithms and convenience 

functions built on the NumPy extension of Python was used for statistical 

analyses. Plotly.js, Open-Source Graphing Libraries was used to visualize an 

RNA expression heatmap and all the other graphical figures. The 

comprehensive network between targetable drugs and therapeutic agents was 

analyzed and illustrated using Cytoscape 3.5.3. Also signaling pathways and 

overlapped genes network is also visualized by Cytoscape. In this study, 

statistical significance was determined as a p-value of 0.05 and false 

detection rate (FDR) as a q-value of 0.01. 

 

3.2.6 Web-application development via software programming languages 

 Front-end software engineering was developed by open-source 

library, React.js, more commonly known as React, is a free, open-source 

JavaScript library. It works best to build user interfaces by combining 

sections of code (components) into full websites. Building rest APIs of back-

end software engineering was developed by open-source library, Fast API, a 

new, high-performance web framework for creating APIs in Python 3.7 or 

later. It uses Python's standard type hints to build the API. The server that is 

used to host the service was created by AWS (Amazon Web Services), which 

is a wide-ranging and constantly developing cloud computing platform offered 

by Amazon. It includes a combination of Infrastructure-as-a-Service (IaaS), 

Platform-as-a-Service (PaaS), and Software-as-a-Service (SaaS) options. 

  



 

3.3 Result and Discussion 

 

3.3.1 Clinicopathological characteristics 

 First, the clinicopathological characteristics of fusion-positive and 

fusion-negative patients among total cancer patients in Broad GDAC Firehose 

were analyzed. By comparing cancer-related parameter such as age, sex, 

alive status, Tumor Node Metastasis stage, and Mutation Annotation Files, 

researchers were able to analyze specific clinical features of fusion positive 

cancer patients among other control patients (Figure 3). 

 



 

 
 

Figure 3. DRPORTAL output page listing clinicopathological characteristic of fusion positive and negative patients. It comprises age, sex, alive status, TNM 
stages, and mutation information. 

 



 

3.3.2 Key genes and pathways altered in fusion-positive cancer 

 Differentially expressed genes obtained by Wilcoxon rank sum test 

either Pearson correlation test were inputted for performing the over-

representation analysis (ORA) by using ConsensusPathDB to select fusion-

related cancer pathways.  

 I utilized 37 cancer signaling pathways with frequent genetic variations, 

with key cancer genes established in previous research (TCGA [77], KEGG 

pathway [78]), and focused on pathway members likely to be cancer drivers 

or therapeutic targets.  

 The pathways used are: (1) Adipocytokine (2) Apoptosis, (3) Axon 

Guidance, (4) Bladder cancer, (5) Brest cancer, (6) Carcinoma, (7) Cell cycle, 

(8) Colorectal cancer, (9) EGFR, (10) Endometrial, (11) ErbB, (12) FGFR, (13) 

Gastric cancer, (14) Hippo, (15) Irinotecan, (16) JAC-STAT, (17) Leukemia, 

(18) Lung cancer, (19) Melanoma, (20) Metabolism, (21) MicroRNAs, (22) 

Migrations, (23) Migration, (24) Notch, (25) P53, (26) Pathways in cancer, (27) 

PI3K, (28) Prostaglandin, (29) Prostate cancer, (30) SCF-KIT, (31) Stem cell, 

(32) Thyroid cancer, (33) TNF, (34) TP53, (35) Tyrosine kinase, (36) VEGF, 

and (37) WNT. 

 Fusion-related cancer pathways were discerned among these 37 

cancer-signaling pathways and hypergeometric distribution p-value was 

exploited for ORA (q-value < 0.01). As a result, Figure 4 comprises key 

altered genes which were enriched in fusion-related cancer pathways. 

 Gene expression heatmaps of obtained cancer-related pathways 

correlated with fusion mRNA expression were visualized in Figure 5. The x-

axis is indicative of the sample, while the y-axis is indicative of its respective 



 

RNA expression. The RNA expression was converted into z-score prior to 

representation on the heatmap. 

 Putative target genes involved in multiple cancer-related pathways of 

fusion-positive cancer were visualized via Cytoscape (Figure 6). These genes 

are important for tumor proliferation and maintenance specific to fusion-

positive patients. Putative target genes involved in multiple pathways were 

organized in Figure 7.



 

 

Figure 4. DRPORTAL output page listing key genes and pathways altered in fusion-positive cancer 

 



 

 
 

Figure 5. DRPORTAL output page visualizing gene expression heatmap of cancer-related pathways enriched with genes that were correlated to fusion gene’s 
RNA expression. 



 

 
 

 



 

 

Figure 6. DRPORTAL output page visualizing putative target genes involved in multiple pathways of fusion-positive cancer. 



 

 

 

Figure 7. DRPORTAL output page listing putative target genes involved in multiple pathways of fusion-positive cancer. 



 

3.3.3 Identification of actionable targets and potential therapeutic choice using 

network analysis 

 Actionable target genes and drugs that have high clinical evidence 

were extracted by mapping key altered genes from pathway analysis in the 

following drug databases. Drug-target network was visualized based on CIViC 

(n = 673) and OncoKB (n = 262) databases (Figure 8-9): Yellow boxes, drugs; 

red circles, genes that are over-expressed in fusion-positive cancer; green 

circles, genes that are under-expressed in fusion-positive cancer. Drug-

target table comprises putative target genes, target pathways, actionable 

drugs, clinical evidence of drugs and original indication of cancer drugs. 

 However, there are three classes for activation signaling including 

hotspot mutation, amplification, and overexpression. For this study, RNA 

sequence-based overexpression was considered an activating signal. CIViC 

and OncoKB drug database provides information on the relationship between 

the activating signaling (three classes mentioned above) and available drugs. 

For example, MET activating mutations are including amplification, over-

expression, and activating point mutations and the three class of mutations 

are mostly sharing target-drug sensitivity (capmatinib, tepotinib). So, the 

three types of mutations were considered as showing similar target-drug 

sensitivity in silico level. Although the sensitivity of the drugs may differ 

according to the various types of signal activation, the purpose of this study 

is to enroll as many drugs with high potential as possible. It would be ideal for 

these hypotheses to be validated with further additional experimentations. 

However, the scope of this study does not encompass validation experiments 

and will take into consideration for future studies. 



 

 
 

Figure 8. DRPORTAL output page listing drug-gene-pathway table of fusion-positive cancer 



 

 

 
 

Figure 9. DRPORTAL output page visualizing drug-target network of fusion-positive cancer



 

3.3.4 Discussion 

 

 There are numerous web portals for drug repurposing in cancer 

previously. Drug Repurposing Hub (http://www.broadinstitute.org/repurposing) 

has manually curated collection of 4,707 experimentally validated drugs. The 

collection includes 3,422 drugs that are marketed worldwide or tested in 

human clinical trials. DrugSig 

(https://biotechlab.fudan.edu.cn/database/drugsig) is a drug response gene 

signatures database containing more than 1,300 drugs, 7,000 microarray and 

800 targets. RepurposeDB (http://repurpsedb.dudelylab.org) is a collection of 

253 repurposed drugs, drug target and diseases, which was assembled, 

indexed, and annotated from public data. DrugCentral (http://drugcentral.org) 

integrates structure, bioactivity, regulatory, pharmacologic actions, and 

indications for around 4,444 active drugs approved by regulatory agencies. 

KsRepo (http://github.com/adam-sam-brown/ksRepo) interrogates any 

case/control disease study expression profile. Researchers can use any pair 

of disease expression dataset and compound exposure database with the 

constraint that they are mappable to a single, common identifier system. 

DeSigN (http://design.cancerresearch.my) can be used to identify drugs with 

unknown efficacy against cancer cell lines. It consists of a set of differentially 

expressed genes (DEG) signatures, a pattern-matching algorithm and 

reference database. RE:fine drugs (http://drug 

repurposing.nationwidechildrens.org/search) is an interactive website for 

search and discovery of drug repurposing candidates from GWAS and 

PheWAS repurposing datasets. 

   



 

 However, previous drug repurposing portals generally provide 

database related to pharmacologic indications and drug response gene 

signatures. And some of them have tried to discover prognosis-related 

biomarkers using differentially expressed genes (DEGs) analysis. To our best 

knowledge, our study differs from previous strategies in two respects. First, 

the purpose of this study is to discover novel targets and therapeutics related 

to original mutations by analyzing downstream pathways and genes affected 

by target mutations that cannot be directly targeted. Second, our study is 

based on a structural variation (fusion by DNA structural variation) that is a 

driver mutation in fusion positive cancer. As consequence, almost all genes 

correlated with gene fusion are downstream-level genes affected by fusion. 

In this aspect, our study is different from other studies, and, for example, it is 

not clear whether prognosis-related biomarkers found by previous portals 

are primary driver or is affected by other drivers in those approaches.  

 In addition, even though a large number of fusion genes have been 

identified to have oncogenic function and successfully developed as 

therapeutic targets, most of them confronts obstacles due to the absence of 

high throughput analyzation tool. Although only a limited number of them have 

been studied in previous research, over 9,000 fusion genes lack functional 

insights and druggable targets. Thus, there remains a need for fast and 

reliable bioinformatic web-resource allowing cancer researcher to examine 

biological backgrounds of fusion positive cancer.  

 By providing an interactive web-resource, all researchers can 

investigate the landscape of molecular signaling and curate potential 

therapeutic agents for any fusion positive cancer regardless of their 

bioinformatics abilities. DRPORTAL can suggest three main utilities to cancer 



 

researchers, clinicians  and pharmaceutical company researchers 

 First, for fusion genes that cannot be directly targeted, DRPORTAL 

can search for new druggable targets and applicable therapeutic agents. In 

addition, it can also help to expand molecular pathological insights into fusion 

gene by identifying genes and cell signaling affected by the fusion gene. 

Besides, for fusion genes that targeted drugs already exist, DRPORTAL can 

suggest other drug candidates that can act synergistically in combination. 

 DRPORTAL also allows researchers to easily conduct analysis and 

customize various parameters, such as the statistical techniques used and the 

cut-off values. Also, the ability to visualize the results interactively through 

graphical figures is also useful, as it can help researchers better understand 

and interpret the results.  

 Finally, since all processes and database linkage are automated, even 

if there is an update to the gene expression profile, fusion gene, signaling 

pathways, and drug-target database, researchers can continue the analysis 

without any extra effort. It is certainly true that automating processes and 

linking them to databases can make research more efficient, as it can 

eliminate the need for manual data entry and reduce the potential for errors. 

Automation can also help researchers save time, as they can focus on other 

aspects of their work rather than having to spend time on data management 

tasks.  

 In summary, DRPORTAL will be able to maximize the speed of drug 

repurposing research on fusion positive cancer for clinicians, biologists, and 

pharmaceutical company researchers. 

 Since DRPORTAL identifies targets and drug candidates within in silico 



 

level, further experimental validation is needed. However, in vitro 

experiments were previously performed on computationally identified targets, 

and confirmed the proliferation of fusion positive cancer cell was successfully 

reduced by inhibiting these targets. 

 Rationally designed targeted therapies are likely to have solid 

scientific basis [79]. This can be supported by the large number of molecular 

targeted drugs that have already been approved and successfully used. (A 

drug targeting BCR-ABL in chronic myeloid leukemia [80], c-kit in 

gastrointestinal stromal tumors [81], EGFR in non- small-cell lung cancer 

[82], monoclonal antibody in HER2 positive breast cancer [83]). However, 

molecular-targeted drugs have little effect on symptom control and survival 

due to genetic heterogeneous of tumors in clinical areas. In particular, it is 

reported that the effect on progression-free survival of common solid tumors 

usually lasts only for a few weeks to a few months [84, 85]. 

 In summary, we believe that DRPORTAL, which has novel therapeutic 

strategy specific to fusion-positive cancer, can greatly aid cancer biologists 

and clinicians not only with identifying novel diagnostic and therapeutic 

targets but also investigating the mechanisms of fusion gene by analyzing 

various molecular-pathological characteristics. We hope that our findings will 

be the steppingstone for future investigations, leading to the promotion of a 

targeted cancer therapy. 

 

  



 

 

Chapter 4 Identification of new therapeutic 

targets and applicable drug candidates in  

ESR1-CCDC170 fusion positive breast cancer 

4.1 Introduction 

 Breast cancer, aside from skin cancer, is the most commonly 

diagnosed cancer in women worldwide [86]. Recent statistics report the 

emergence of 250,000 new cases of breast cancer solely in 2017 contributing 

to the 12% of women diagnosed with breast cancer in the United States [87]. 

Molecular classification divides breast cancer into four major classes: luminal 

A, luminal B, and human epidermal growth factor receptor 2 (HER2)-enriched 

(HER2-E), and basal-like subtype [87]. Among them, luminal B remains to be 

the most common subtype in young women, accounting for 15-20% of total 

breast cancer cases, and within luminal B, ESR1-CCDC170 fusion positive 

subtype, constituting 6 to 8% of the luminal B class, persists to be the most 

dominant subtype [88-95].  

 ESR1-CCDC170 fusion causing chimeric mRNA is known to be formed 

by a tandem duplication at 6q25.1 location on coiled-coil domain containing 

170 (CCDC170) adjacent to ESR1 gene [89, 96]. It has been reported that 

polymorphism of CCDC170 gene correlates with breast cancer susceptibility 

[97, 98]. ESR1-CCDC170 fusion-positive patients undergoing ER-positive 

(ER+) breast cancer endocrine therapy have demonstrated reduced treatment 

efficiency and growth of aggressive ER+ breast cancer [99]. Although its 

effect has been studied in relation to ovarian cancer, the molecular signaling 



 

involved in the induction of ESR1-CCDC170 fusion-positive breast cancer 

has yet to be elucidated [100].  

 Herein, we systematically analyze the molecular pathological features 

of ESR1-CCDC170 fusion-positive breast cancer through the data analysis of 

TCGA and identified the activated oncogenic pathways. In addition, putative 

target genes and actionable drugs were inferred and prioritized by performing 

network analysis using both transcriptomic signatures and the drug-target 

databases such as OncoKB and CIViC. 

 

4.2 Materials and Methods 

 

4.2.1 Sample acquisition and quality control 

 Gene level 3 (RSEM) mRNA expression with normalized read count 

values of the Cancer Genome Atlas (TCGA) breast cancer carcinoma (BRCA) 

was obtained from the Broad GDAC Firehouse website 

(https://gdac.broadinstitute.org). Related clinical features data including 

information about the samples’ MAF files, molecular subtypes, and TNM 

stages were obtained from the website mentioned above. 

 

4.2.2 Case-Control selection 

 Previous study confirmed 319 fusion genes in TCGA clinical breast 

cancer tumors [101]. Unlike other in-frame fusion genes, ESR1-CCDC170 is 

known as breast cancer-specific oncogenic fusion gene. Using the TCGA 

fusion gene data portal (The Jackson Laboratory, 



 

https://www.tumorfusions.org), we identified eleven samples of CCDC170 

fusion, which were cross-checked with increased CCDC170 expression level. 

Furthermore, only tumor samples that have the barcode 01A were selectively 

chosen by disregarding other types of tumor samples, 11A (Normal) or 06A 

(Metastasized). Among the remaining samples, 50 samples with the highest 

expression of CCDC170 were confirmed as up-regulated controls for 

analyzing the network within the non-coding region of the fusion gene. From 

the upregulated control samples, 2 outlier samples were filtered out using the 

IQR (Inter Quartile Range) method. The same number of controls (n=48) with 

the lowest expression of CCDC170 were then selected from the remaining 

samples. 

 

4.2.3 Selection of genes affected by E:C Fusion 

 RNA expression data from TCGA were made into two-dimensional 

matrix comprised of the selected 11 fusion samples and 48 control samples. 

Each column represents the patient ID while each row represents the gene 

name. Based on the RNA expression matrix, variance tests were conducted 

using independent two-sample t-tests. To select genes in coordination with 

CCDC170 in RNA expression, t-tests were performed between E:C fusion-

positive and fusion-negative cases. Mostly affected 1,000 genes were 

selected (adjust p-value < 2.0 E-08). 

  



 

4.2.4 Pathway analysis via ConsensusPathDB (CPDB) and Over-Representation 

 The selected 1,000 genes that correlate to the reference gene 

(CCDC170) from the aforementioned RNA expression data were used to 

perform over-representation analysis (ORA) via ConsensusPathDB (CPDB, 

http://cpdb.molgen.mpg.de/CPDB) using recent protocols. 113 biological 

pathways were merged from the following sources, according to data from 

BioCarta (http://www.biocarta.com), INOH [102], KEGG [103], NetPath 

[104], PID [105], Reactome [106] and Wikipathways [107]. In consideration 

of the ontological characteristics and the proportion of duplicated genes, the 

pathways, which were enriched with selected 1,000 genes (q-value < 0.05), 

were condensed into 15 cancer-related pathways, and their component were 

184 genes. 

 

4.2.5 Druggable pathway analysis via CIViC and OncoKB 

 The “Clinical Evidence Summaries” data, released on October 1, 2017, 

was downloaded from the Clinical Interpretations of Variants in Cancer (CIViC) 

website (https://civic.genome.wustl.edu/releases), and the “Actionable 

Variants” data was accessed and downloaded on October 17, 2017 from the 

OncoKB website (http://oncokb.org/). 673 CIViC variants (181 genes) with 

expected therapy efficacy 148 OncoKB actionable variants (53 genes) were 

integrated. 113 CCDC170-correlated genes were matched to the CIViC and 

OncoKB variants. 

 

  



 

 

4.2.6 Statistical analysis and data visualization 

 Open software R version 3.4.3 was used to process all statistical 

analysis for selecting genes correlated to CCDC170 including the variance 

test and independent two-sample t-test. RNA expression heatmap was also 

visualized using Complexheatmap, a package for R. KEGG mapper 

(https://www.genome.jp/kegg/mapper.html) was used to visualize target 

pathways related to DNA damage response. Cytoscape version 3.5.3 was 

used to analyze and express the complex network between targetable drugs 

and therapeutic agents. Our study defined statistical significance with p-value 

of < 0.05 and false detection rate (FDR) with q-value of <0.001. 

 

4.3 Results 

 

4.3.1 Clinicopathological characteristics 

 We checked the clinicopathological characteristics of 11 ESR1-

CCDC170 fusion-positive and 48 fusion negative patients amongst 1,093 

breast cancer patients in Broad GDAC Firehose (Figure 10, Table1). Two 

significant differences were identified between fusion-positive and negative 

patients. First, CCDC170-fusion-positive patients had a high rate of ER-

positive (90.0%) and PR positive (60.0%), whereas fusion-negative patients 

displayed significantly lower rates of 15.9% and 4.7%, respectively (p < 0.05). 

Additionally, HER2 immunohistochemistry (IHC) results showed significantly 

higher rate of 3+ for fusion-positive patients than for patients with fusion-

negative (44.4% vs 6.5%, p < 0.05, Table 1). According to the findings above, 



 

CCDC170-fusion-positive BRCA appears to closely resemble characteristics 

typical of triple-positive breast cancer in this cohort. 

 

 

 
 
Figure 10. Overall schematics. Transcriptome data for breast cancer (BRCA) was obtained from the 
Broad GDAC Firehose database. Following the RNA measurement analysis of a total of 20,531 genes, 
1,000 genes correlated with CCDC170 were selected. (q< 2.0 E-08). Over-representation analysis of 
the 1,000 genes demonstrated significant relation to six major cancer-related pathways (p53, 
ATR/ARM, hedgehog, FOXM1, cell cycle, Aurora B). Potential gene targets and drug candidates 
were isolated via drug-network analysis using a drug-target database on genes correlated to CCDC170 
and literature review. 

  



 

 

Table 1. Comparisons in clinical and pathological characteristics of ESR1-CCDC170 fusion positive, 
negative BRCA patients and control cohorts. The clinical and pathological characteristics between 
ESR1-CCDC170 fusion positive, negative BRCA, and control cohorts were compared. 

 

                    Total 

(N=929) 

control 

(N=44) 

fusion 

(N=10) 

p 
values 

 age                48~70 44~68 49~72 NS 

 sex                
    

   - female         929 (100.0%) 44 (100.0%) 10 (100.0%) 
 

 Vital status       
   

1 

   - alive          837 (90.1%) 38 (86.4%) 9 (90.0%) 
 

   - dead           92 ( 9.9%) 6 (13.6%) 1 (10.0%) 
 

 Stage  
   

NS 

   - stage I        84 ( 9.1%) 1 ( 2.3%) 1 (10.0%) 
 

   - stage Ia       68 ( 7.4%) 3 ( 6.8%) 1 (10.0%) 
 

   - stage Ib 5 ( 0.5%) 0 ( 0.0%) 0 ( 0.0%) 
 

   - stage II 4 ( 0.4%) 0 ( 0.0%) 0 ( 0.0%) 
 

   - stage IIa      311 (33.7%) 23 (52.3%) 2 (20.0%) 
 

   - stage IIb      215 (23.3%) 8 (18.2%) 3 (30.0%) 
 

   - stage IIIa     132 (14.3%) 4 ( 9.1%) 2 (20.0%) 
 

   - stage IIIb 24 ( 2.6%) 0 ( 0.0%) 0 ( 0.0%) 
 

   - stage IIIc     52 ( 5.6%) 3 ( 6.8%) 1 (10.0%) 
 

   - stage Iv       14 ( 1.5%) 1 ( 2.3%) 0 ( 0.0%) 
 

   - stage x        12 ( 1.3%) 1 ( 2.3%) 0 ( 0.0%) 
 

ER status          
   

0 

   - positive       685 (77.2%) 7 (15.9%) 9 (90.0%) 
 

   - negative       200 (22.5%) 37 (84.1%) 0 ( 0.0%) 
 

   - indeterminate  2 ( 0.2%) 0 ( 0.0%) 1 (10.0%) 
 

PR status          
   

0 

   - positive       594 (67.0%) 2 ( 4.7%) 6 (60.0%) 
 



 

   - negative       288 (32.5%) 41 (95.3%) 4 (40.0%) 
 

   - indeterminate  4 ( 0.5%) 0 ( 0.0%) 0 ( 0.0%) 
 

HER2 IHC           
   

0.013 

    0 57 (10.6%) 8 (25.8%) 0 ( 0.0%) 
 

   - 1+             234 (43.4%) 11 (35.5%) 3 (30.0%) 
 

   - 2+             171 (31.7%) 10 (31.2%) 1 (10.0%) 
 

   - 3+            

  NA  

77 (14.3%) 

0 ( 0.0%) 

2 ( 6.5%) 

0 ( 0.0%) 

4 (40.0%) 

2 (20.0%) 

 

 subtype            
   

0 

   - Basal          168 (18.1%) 40 (90.9%) 0 ( 0.0%) 
 

   - Her2           74 ( 8.0%) 4 ( 9.1%) 1 ( 9.1%) 
 

   - LumA           493 (53.1%) 0 ( 0.0%) 4 (40.0%) 
 

   - LumB           194 (20.9%) 0 ( 0.0%) 5 (45.5%) 
 

PIK3CA mutation    293 (31.5.5%) 3 (6.8%) 1 (10.0%) NS 

CDH1 mutation    91 (9.8%) 0 (0.0%) 1 (10.0%) NS 

TP53 mutation    266 (28.6%) 29 (65.9%) 3 (30.0%) NS 

BRCA1 mutation    11 (1.2%) 0 (0.0%) 0 (0.0%) NA 

BRCA2 mutation    12 (1.3%) 1 (2.7%) 1 (10.0%) NS 

 
  



 

 

 Secondly, the pathological subtype of fusion-positive patients was 

found to have a high proportion of Luminal A (40.0%) and Luminal B subtype 

(45.5%), while 90.9% of the 48 cases with the lowest CCDC170 expression 

were found to be basal-type (p < 0.05, Table 1). Taken together, the 

CCDC170 fusion-positive BRCA showed a mutually exclusive relationship 

with the basal-type breast cancer cells. 

 On the other hand, no significant differences in the age, sex, vital 

status, and TNM stage was observed between the two groups. In addition, the 

five gene variants (PIK3CA, CDH1, TP53, and BRCA1/2) frequently found in 

BRCA showed no significant difference between the two groups. Based on 

these results, CCDC170 fusion positive BRCA patients have distinct 

pathological characteristics in terms of tumor subtype and triple positive 

tendency. 

 

4.3.2 Key pathways and genes altered in E:C fusion-positive breast cancer 

 One thousand genes were obtained by an independent t-test (Q < 

2.0E-08) and inputted for performing the Over Representation Analysis (ORA) 

of the ConsensusPathDB website to select cancer-related pathways. As a 

result, a total of six cancer-related pathways (p53, ATR/ATM, FOXM1, 

Hedgehog, Cell cycle, Aurora B related signaling pathways) were discerned.  

 In the six major cancer-related pathways, 137 genes were 

significantly over- or under-expressed in the CCDC170 fusion-positive cases 

compared to the CCDC170 fusion-negative controls. (Figure 11, Supplement 

1).  



 

 

 

 

Figure 11. Gene expression heatmap of cancer-related pathways correlated with CCDC170 RNA 
expression. Of the analyzed genes, 72 of genes associated with P53, ATR/ATM, FOXM1, hedgehog, 
and aurora demonstrated significant differences in expression in CCDC170 fusion-positive BRCA 
samples when compared to the control group. Over-representation analysis using CPDB yielded 
statistically significant pathways related to cancer (q < 0.05). The x-axis is indicative of the sample, 
while the y-axis is indicative of its respective RNA expression. The RNA expression was converted 
into z-score prior to representation on the heatmap. 
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Figure S1: Heatmap of cell cycle-related and other miscellaneous genes with altered expression 
correlating to CCDC170 expression. 
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 Of the six pathways, two concerning p53 and ATR/ATM-related 

signaling pathway were associated with DNA damage response. Mapping with 

the KEGG pathway revealed 22 genes that are involved in the p53-related 

pathway and 17 genes, the ATR/ATM-related pathway. Both pathways are 

highly relevant to the promotion and maintenance of the cell cycle (Figure 12). 

Genes with multiple hits of more than 2 that coincide for both, p53 and 

ATR/ATM-related signaling pathways, are CCNA2(CycA), MDM2, 

CHEK1(Chk1), CHEK2(Chk2). 

  



 

 

Figure 12. Over- and under-expressed genes are enriched in human cell cycle pathway. The KEGG 
pathway map for the human cell cycle signaling pathway, has04110, was visualized using the KEGG 
Mapper. Among the pathways, p53 and ATR/ATM shared significant correlation with the identified 
genes; genes associated with p53 signaling pathway are boxed in yellow, ATR/ATM, in orange, and 
common denominators for both pathways, in purple. 

  



 

 

 For genes with hits of more than 3 with implications of its role in 

multiple pathways, 39 genes were identified (Figure 13). Of which, AURKB, 

HDAC2, PLK1, CENPA, CHEK1, CHEK2, RB1, and MDM2 were included in at 

least three pathways that are important for tumor proliferation and 

maintenance specific to ESR1-CCDC170 fusion positive BRCA patients. 

 Further investigation of the 48 samples of highest mRNA levels of 

CCDC170 with the Differentially Expressed Gene (DEG) analysis showed 

similar patterns as the TCGA data obtained above in fusion-positive samples 

when compared to the control samples (Supplementary Figure 2). This 

suggests that similar cell signaling is activated not just with fusion but other 

possibilities in CCDC170 overexpression. 

  



 

 

Figure 13. Putative target genes involved in multiple pathways of ESR1-CCDC170 fusion-positive 
cancer. 6 major cancer signaling pathways associated with p53, ATR/ATM, FOXM1, hedgehog, cell 
cycle and aurora B in accordance with its respective genes were visualized. Potential gene candidates 
involved in these pathways were discerned. 
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Figure S2: Heatmap of cancer-related and other miscellaneous genes with altered expression 
correlating to CCDC170 expression in DEG analysis 
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4.3.3 Identification of actionable targets and potential therapeutic choice using 

network analysis 

 Actionable target genes and potentially available drugs were extracted 

by inputting the 137 genes in the following drug databases, CIViC (n=673) and 

OncoKB (n=262). ESR1, CDK4, RAD50, CHEK1, MDM2, and SMO were 

mapped as targetable genes. Results indicated the following drug-target 

relationship: letrozole, palbociclib, fulvestrant, AZD9496, tamoxifen for ESR1; 

palbociclib, alpelisib, ribociclib, dexamethasone for CDK4; checkpoint kinase 

inhibitor AZD7762, irinotecan for RAD50; cisplatin, prexasertiv, olaparib for 

CHEK1; milademetan tosylate, RO5045337 for MDM2; PSI, vismodegib, 

patidegib, arsenic trioxide for SMO (Figure 14).  

  



 

 

Figure 14. Drug-target network of ESR1-CCDC170 fusion-positive BRCA cancer. Network 
visualization was demonstrated with Cytoscape, and drug-target relation was identified with Civic and 
OncoKB. Green boxes are representative of pathways, white boxes, of drugs, and oval boxes, of genes. 
Red, oval boxes are genes that are over-expressed in fusion-positive cancer whereas blue, oval boxes 
are genes that are under-expressed in fusion-positive cancer. 

  



 

 

 Observing the druggable target genes associated with the main 

pathways of E:C fusion-positive BRCA, ESR1, CDK4 genes were included in 

the FOXM1-related signaling pathway, RAD50 in the ATR/ATM-related 

signaling pathway, CHEK1, MDM2 genes in the P53-related signaling 

pathway, CDK4, RAD50, and MDM2 genes in the cell cycle-related signaling 

pathway, and SMO genes in the hedgehog-related signaling pathway. 

Interestingly, four of the six targetable genes, CDK4, RAD50, CHEK1, and 

MDM2 were involved in two or more major cancer-related pathways. In the 

case of MDM2, three of the six pathways associated with E:C fusion-positive 

were identified to be involved. 

 

4.3.4 Discussion 

 

 In this study, characteristics concerning ER-positive molecular 

subtype in CCDC170-subtype breast cancer was identified, and genes 

specifically regulated in E:C BRCA were identified and screened for BRCA-

cancer related signaling pathways. Also, information regarding optimal 

treatment targets and drugs for targeted therapy were provided. E:C fusion-

positive BRCA requires a new therapeutic approach to overcome its relatively 

low response to hormone therapy [91, 99, 108-110].  

 A recent study on the potential targeted therapy for E:C BRCA 

performed by Li et al. was met with limitations with regards to a restricted 

number of cell line samples and proteins [99]. Our study has addressed this 

issue by performing analysis on a sufficient number of case-control using 



 

TCGA human cancer samples and systematically testing the DEGs using more 

than 20,000 genes and cancer specific pathways. Finally, we were able to 

propose a number of potential drugs with promising therapeutic effects. 

 The common early treatment options for breast cancer are generally 

divided into conventional chemotherapy (i.e., Adriamycin, cyclophosphamide, 

paclitaxel, docetaxel), endocrine therapy (tamoxifen, letrozole, anastrozole, 

exmenestane), ERBB-targeted therapy (trastuzumab, pertuzumab), and 

combination treatment methods according to the pathological and molecular 

classification of breast cancer [87]. In case of metastatic breast cancer, 

CDK4/6 inhibitor and PARP inhibitor are considered to be additional options 

[87].  

 Among repositioned drugs inferred in our study, CDK4/6 inhibitor 

(Palbociclib), cisplatin, and PARP inhibitor are the drugs used as standard 

treatments for breast cancer patients with or without metastasis. On the other 

hand, AZD9496, alpelisib, dexamethasone, checkpoint kinase inhibitor 

AZD7762, irinotecan, cisplatin, prexasertiv, milademtan tosylate, R05045337, 

PSI, vismodegib, patidegib, and arsenic trioxide are seen as putative 

actionable drugs that can be used for E:C fusion positive BRCA proceeding 

in-vitro and in-vivo validation.  

 AURKB, HDAC2, PLK1, CENPA, CHEK1, CHEK2, RB1, and MDM2 

genes, which were included in at least three pathways, are expected to play 

an important role in the promotion and maintenance of CCDC170 subtype 

breast cancer [111]. For instance, PLK1  may act as a tumor suppressor 

gene that regulates estrogen receptor (ER)-regulated gene transcription in 

breast cancer; RB1 gene, also a tumor suppressor gene, however, frequently 



 

lost in triple-negative breast cancer [112]; CENPA  is a significant 

prognostic marker for ER-positive patient [113]; HDAC2 and CHEK2 genes 

have been significantly correlated to CCDC170 fusion-subtype and have been 

reported to be associated with DDR functioning [114, 115], which is also 

suggestive of CCDC170 fusion subtype’s relation to DDR.  

 In summary, this study presents core biomarkers and potentially 

actionable drugs specific to E:C fusion-positive breast cancer. Via in-vitro 

experimentation, these candidates were confirmed to be strongly associated 

with this type of cancer and their roles were verified by discerning its 

associated signaling pathways. We hope that our findings will be the 

steppingstone for future investigations leading to the promotion of targeted 

cancer therapy. 

  



 

 

4.4 Conclusion 

 Amongst the various types of breast cancer, luminal B subtype is the 

most common in young women, and ESR1-CCDC170 (E:C) fusion is the most 

frequent oncogenic fusion driver of the luminal B subtype. Nevertheless, 

treatments targeting E:C fusion has not been well established yet. Hence, the 

aim of this study is to investigate for potential therapies targeting E:C fusion 

based on systematic bioinformatical analysis of The Cancer Genome Atlas 

(TCGA) data. 1,000 genes related were extracted using transcriptome 

analysis, and major signaling pathways associated with breast cancer were 

identified with over-representation analysis. Then, we conducted drug-target 

network analysis based on OncoKB and CIViC database, and finally selected 

potentially applicable drug candidates. Six major cancer-related signaling 

pathways (p53, ATR/ATM, FOXM1, hedgehog, cell cycle, and Aurora B) were 

significantly altered in E:C fusion positive cases of breast cancer. Further 

investigation revealed that eight genes (AURKB, HDAC2, PLK1, CENPA, 

CHEK1, CHEK2, RB1, and MDM2) in coordination with E:C fusion were found 

to be common denominators for three or more of these pathways, thereby 

making them promising gene biomarkers for target therapy. Among the 21 

putative actionable drugs inferred by drug-target network analysis, 

palbociclib, alpelisib, ribociclib, dexamethasone, checkpoint kinase inhibitor 

AXD 7762, irinotecan, milademtan tosylate, R05045337, cisplatin, prexasertib, 

and olaparib were considered as promising drug candidates targeting genes 

involved in at least two E:C fusion-related pathways.  



 

 

Chapter 5 Investigation of cell signalings and 

therapeutic targets in PTPRK-RSPO3 fusion-

positive colorectal cancer. 

5.1 Introduction 

 Colorectal cancer (CRC) is the third most fatal and fourth most 

diagnosed cancer worldwide, according to 2018 global cancer data released 

by the IARC. Approximately 2 million new cases were recorded in year 2018 

alone, resulting in approximately 1 million fatalities [86, 116, 117]. With the 

development of NGS technology, simultaneous detection of various mutations 

in colorectal cancer has become possible, including SNV, INDEL, CNV, fusion, 

and MSI [118-121]. The reason that the detection of these mutations is 

important is that it can be used as a target therapy for gene mutations, for 

example, EGFR-inhibitor for KRAS wildtype CRC and immune checkpoint 

inhibitors for MSI-high solid tumor [122]. 

 The efforts to develop targeted drugs for treating colorectal cancer 

are increasing, however, the candidates of target drugs other signaling 

pathways besides EGFR and mismatch Repair are limited. WNT signaling is 

known as a major pathway in colorectal cancer and mostly is activated by 

mutation of the APC gene, which plays an important role in the pathogenesis 

of colorectal cancer [123-127]. Recently, PTPRK-RSPO3 (P:R) fusion also 

contributes to the activation of WNT signaling and causes colorectal cancer, 

and this mutation is mutually exclusive with the APC mutation and is 

recognized as another important mutation contributing to the development of 



 

colorectal cancer [128-131]. Recent studies have reported that LGK974 and 

RSPO3 antibodies may be beneficial at in vitro and in vivo levels, however, 

the development of targeted therapeutics for colorectal cancer patients with 

P:R fusions is still in its infancy [132, 133]. 

 Herein, we systematically inferred drug candidates in P:R fusion 

colorectal cancer. First, we extracted RSPO3 expression correlated genes 

and selected oncogenic cell signal pathways containing those genes. Then, 

we constructed a drug-target network in P:R fusion colorectal cancer using 

the drug-target database, and finally, we prioritized a suitable therapeutic 

agent. 

  

  



 

 

5.2 Materials and Methods 

 

5.2.1 Sample collection and quality control 

 The Broad GDAC Firehouse website (https://gdac.broadinstitute.org) 

provided gene level 3 (RSEM) mRNA expression with normalized read count 

values of the Cancer Genome Atlas (TCGA) colorectal cancer (CRC). The 

above-mentioned website provided information on the samples' MAF files, 

TNM stages, and molecular subtypes among other clinical characteristics. 

 

5.2.2 Case-Control selection and selection of genes affected by P:R Fusion 

 We found seven samples with PTPRK-RSPO3 fusion using the TCGA 

fusion gene data portal (The Jackson Laboratory, 

https://www.tumorfusions.org), which were cross-checked with elevated 

RSPO3 expression levels. Additionally, 372 tumor samples with the barcode 

01A were chosen, with other types of tumor samples, 11A (Normal) or 

06A(Metastasized), being excluded. For control sample selection, 50 samples 

were randomly selected among the samples with low RSPO3 expression (less 

than the median value of RSPO3 RNA expression, N=186). To obtain R-values 

of 20,531 genes in correlation with RSPO3 in RNA expression, Pearson 

correlation-tests were performed in seven PTPRK-RSPO3 fusion-positive 

cases and 50 controls. Then, above tests were repeated 100 times. Based on 

the median of absolute R values from 100 tests, 20,531 genes were sorted in 

decreasing order. Using the median of absolute R values, mostly affected 

2,505 genes were selected by correlation cut-off (R > 0.2). The R cut-off 



 

value, 0.2, were selected based on the 100,000 permutation tests. For each 

permutation test, randomly ordered expression values of a randomly selected 

gene were tested using Pearson correlation test with the expression values of 

reference gene (RSPO3) in 7 cases and 50 controls. After 100,000 tests, 

falsely selected genes correlated with RSPO3 are assumed to be 0.37% when 

the cut-off value for R was 0.2. 

 

5.2.3 Pathway analysis via ConsensusPathDB (CPDB) 

 The aforementioned R-value data were used to perform over-

representation analysis (ORA) using ConsensusPathDB (CPDB, 

http://cpdb.molgen.mpg.de/CPDB) using recent protocols. 113 biological 

pathways were merged from the following sources, according to data from 

BioCarta (http://www.biocarta.com), INOH [102], KEGG [103], NetPath 

[104], PID [105], Reactome [106] and Wikipathways [107]. Analyzing the 

ontological features and the proportion of duplicated genes, the pathways 

enriched with chosen 2,505 genes (q-value < 0.05) were collapsed into 10 

cancer-related pathways, having 848 genes as components. 

 

 

5.2.4 Inferring and prioritizing actionable drugs 

 The “Clinical Evidence Summaries” data was downloaded from the 

Clinical Interpretations of Variants in Cancer (CIViC) website 

(https://civic.genome.wustl.edu/releases) on July 1, 2021, and the “Actionable 

Variants” data was accessed and downloaded from the Precision Oncology 



 

Knowledge Base (OncoKB) website (http://oncokb.org/) on July 1, 2021. 

RSPO3-crrelated genes were annotated using 673 CIViC variations (181 

genes) with predicted treatment effectiveness and 148 OncoKB actionable 

variants (53 genes). Then drug-target relationships were prioritized based on 

the scenario that properly working cancer drugs are generally inhibitors for 

activated oncogenes or activators for down-regulated tumor suppressor 

genes. 

 

5.2.5 Statistical analysis and data visualization 

 All statistical analyses, including the Pearson correlation-tests, were 

performed using the open software R version 3.4.4. Complexheatmap, a R 

package, was used to visualize an RNA expression heatmap. KEGG mapper 

(https://www.genome.jp/kegg/mapper.html) was used to display target genes 

associated to WNT signaling pathway. The comprehensive network between 

targetable drugs and therapeutic agents was analyzed and illustrated using 

Cytoscape 3.5.3. In this study, statistical significance was determined as a p-

value of 0.05 and false detection rate (FDR) as a q-value of 0.2 in over-

representation analysis. 

  



 

 

5.3 Results and Discussion 

 

5.3.1 Clinicopathological characteristics 

 Using the Broad GDAC Firehose (Figure 15), 443 colorectal cancers 

were screened for P:R fusion positive cases. 7 patients demonstrated 

presence of the fusion mutation whereas the remaining 416 patients were 

negative for the fusion based on the clinic-pathological characteristics (Table 

2). 

 There showed no definite statistical significance of histological type, 

age, sex, vital status and TNM stage between fusion-positive cases and 

controls. Notably, no other mutation driver was identified in P:R fusion-

positive patients, showing mutual exclusiveness. However, one case of 

microsatellite instability-high (MSI-H) was identified in these P:R fusion 

positive patients, implying the possibility of the co-occurrence of two 

oncogenic aberrations. 

  



 

 

Fig 15. Overall design of this study. Transcriptome data for colorectal cancer (CRC) was attained 
from the Broad GDAC Firehose database. Following the RNA expression analysis of a total of 20,531 
genes, 2,505 genes correlated with RSPO3 expression were selected. (R-value > 0.2, see Methods). 
Over-representation analysis of the 2,505 genes showed significant relation to 10 major cancer-related 
pathways (Apoptosis Related Pathway, Direct p53 Related Pathway, EGFR Related Pathway, ErbB 
Related Pathway, JAK-STAT Related Pathway, JAK-STAT Related Pathway, Tyrosine Kinases 
Related Pathway, Pathways in Cancer, SCF-KIT Related Pathway, VEGFR Related Pathway, WNT 
Related Pathway). Potential targets and repurposed drugs were inferred by analyzing target-drug 
associations via literature reviews and network analysis using the differentially expressed gene list 
and target-drug databases. 

  



 

 

5.3.2 Key genes and pathways altered in P:R fusion-positive colorectal cancer 

 By the correlations test and permutation tests (See Methods), 2,505 

genes were passed the Pearson correlation-test with an R-value greater than 

the cut-off value. Eighteen genes including PPP1R12B, NPY, VIP, C2orf72, 

IQGAP2, SYT2, ADCYAP1, ZNF385D, SCIN, MAGEE2, SDCBP2, AHCYL2, 

C6orf105, ZNF229, BTNL8, SLC7A14, GPR88, and ASTN1 showed good 

correlation (R > 0.5) with RSPO3 in RNA expression (Table S1). 

  



 

Table 2. Clinicopathological characteristics of PTPRK-RSPO3 fusion-positive and fusion-negative 
cases in TCGA colorectal cancer.  
 
 

*Fusion 

(N=7) 

**Control 

(N=186) 

***p values 

Age 46~76 31~90 NS 

Sex 
  

1 

- Male 

- Female 

3/5 (60.0%) 

2/5 (40.0%) 

68/121 (56.2%) 

53/121 (43.8%) 

 

 

Vital status 
  

NS 

- Alive 5/5 (100.0%) 101/121 (83.8%) 
 

- Dead 0/5 (0.0%) 20/121 (16.5%) 
 

Stage 
  

NS 

- Stage I  0/4 (0.0%) 20/116 (17.2%)  

- Stage II 2/4 (50.0%) 48/116 (41.4%)  

- Stage III 2/4 (50.0%) 33/116 (28.4%)  

- Stage Iv 0/4 (0.0%) 15/116 (13.0%)  

Microsatellite instability 

 

  
NS 

- MSI-high 1/5 (20.0%) 18/121 (14.5%) 
 

- MSI-low  0/5 ( 0.0%) 19/121 (15.9%) 
 

- MSS 4/5 (80.0%) 84/121 (69.4%)  

Histological type 
  

NS 

- Adenocarcinoma 3/4 (75.0%) 113/120 (88.0%) 
 



 

 

* Samples harboring PTPRK-RSPO3 fusion 

** Control group was extracted from samples demonstrating the lower median of RSPO3 mRNA 
expressions. 

***p-value was calculated between fusion positive samples and controls using moonBook R package. 

 

  

-Mucinous 

Adenocarcinoma 

1/4 (25.0%) 7/120 (12.0%) 
 

Mutation profile 
   

- TP53 mutation  3/7  

(42.9%) 

113/186 

(60.8%) 

NS 

- KRAS mutation  2/7  

(28.6%) 

80/186 

(19.4%) 

NS 

- PIK3CA mutation 2/7  

(28.6%) 

50/186 

(43.0%) 

NS 

- PTEN mutation  1/7  

(14.3%) 

15/186 

(8.0%) 

NS 

- BRAF mutation  2/7  

(28.6%) 

23/186 

(12.7%) 

NS 

     



 

 

 In pathway analysis, ten different pathways were shown to be 

statistically significant: apoptosis-related pathway, direct p53-related 

pathway, EGFR-related pathway, ErbB-related pathway, JAK-STAT-related 

pathway, JAK-STAT-related pathway, tyrosine kinases-related pathway, 

pathways in cancer, SCF-KIT-related pathway, VEGFR-related pathway, and 

WNT-related pathway. Of these pathways, the P:R fusion-positive cases in 

comparison to the P:R fusion-negative control demonstrated 848 significantly 

over- or under-expressed RNA expressions of 848 genes (Figure 16-17 and 

Figure S3-S4 ). 
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Fig 16. Gene expression heatmap of 7 cancer-related pathways enriched with genes that were 
correlated to RSPO3 in RNA expression. A total of 256 genes associated with Apoptosis, Direct p53, 
EGFR, ErbB, SCF-KIT, VEGFR, WNT signaling showed significant differences in expression 
between RSPO3 fusion-positive colorectal samples and the control samples (see details in methods). 
The RNA expression was transformed to z-score. The x-axis represents the sample, and the y-axis 
represents the RNA expression.  
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Fig 17. Over- and under-expressed genes are highlighted in WNT signaling pathway. The KEGG 
pathway map for the human WNT signaling pathway (hsa 04310) was illustrated using the KEGG 
Mapper; genes correlated with RSPO3 expression are colored in pink. 
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Figure S3. Gene expression heatmap of cancer-related pathways enriched with genes correlated to 
RSPO3 in RNA expression.  
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Figure S4. The KEGG pathway maps for the human ERBB signaling pathway and pathways in cancer 
using the KEGG Mapper; genes correlated with RSPO3 expression are colored in pink. 

  



 

 

 Among the 848 genes, 36 genes were annotated as cancer genes using 

the cancer gene census database offered by the 

CatalogueOfSomaticMutationsInCancer DB (COSMIC, 

https://cancer.sanger.ac.uk). Of these, ten genes from highest R-values were 

as follows: ALK, ACSL3, AXIN2, PTPRK, CDX2, MYC, TP53, GNAQ, ACVR2A, 

and FAS. RSPO3-correlated cancer genes involved in more than four 

pathways were as follows; JUN was involved the most in 9 of 10 pathways, 

APC, 6 pathways, AXIN2, 5 pathways, FGFR2, 5 pathways, JAK2, 7 pathways, 

MDM2, 5 pathways, MYC, 9 pathways, RAC1, 8 pathways, and lastly, TP53, 7 

pathways. In addition, 4 genes were associated with 4 pathways, 4 genes in 3 

pathways and 7 genes in 2 pathways (Figure S5). Amongst these genes, those 

with a correlation R-value greater than 0.3 were ALK(R=0.44), 

ACSL3(R=0.43), AXIN(R=-0.38), MYC (R=-0.34), TP53 (R=-0.33), GNAQ 

(R=0.31), ACVR2A (R=0.31), and FAS (R=0.31). 

 

 

 



 

 

Figure S5. Putative target genes involved in multiple pathways of PTPRK-RSPO3 fusion-positive 
cancer. 
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5.3.3 Identification of actionable targets and potential therapeutic choice using 

network analysis 

 By matching the 848 genes included in the 10 pathways associated 

with P:R fusion-positive colorectal cancer using the CiVIC database and 

OncoKB, we were able to infer 673 and 262 drugs to have actionable target 

potential. 

 In the CIViC database, following 19 genes among 848 genes were 

related with actionable drugs: ALK, FGFR2, TP53, HIF1A, EPAS1, KRAS, 

CEBPA, NOTCH1, STK11, JAK2, PGR, RAD50, PIK3R1, CDKN1B, NQO1, 

NT5E, MAP2K1, GNAQ, and PTEN. ALK was identified to be a class A-type 

drug (Proven/consensus association in human medicine) which can be 

targeted using crizotinib, alectinib and ceritinib. In other class-type (B, C, D, 

and E) gene-drug association, additional thirteen drugs were found, 

considering the scenario for inhibitors for activated oncogenes or activators 

for down-regulated tumor suppressor genes (Figure 18A). 

 When using the OncoKB database, 4 genes (KRAS, FGFR2, ALK, and 

JAK2) were identified and they were all included in the inferred results using 

CIViC database. Level 1 drugs (FDA-recognized biomarker predictive of 

response to an FDA-approved drug) for target genes are as follows: lorlatinib, 

brigatinib, crizotinib, ceritinib, alectinib for ALK; erdafitinib, infigratinib, 

pemigatinib for FGFR2; sotorasib for KRAS. These cancer drugs appeared to 

be inhibitors for activated oncogenes (Figure 18B).  

 Of 19 druggable genes, five were involved in the multiple pathway: 

FGFR2 for 5 cancer-related pathways (gastric cancer pathway, VEGFR 



 

related pathway, tyrosine kinases, stem cell, and pathways In cancer); JAK2 

for 7 cancer-related pathways (JAK-STAT pathway, adipocytokine, VEGFR 

related pathway, SCF-KIT, pathways in cancer, tyrosine kinases pathway, 

and stem cell pathway); ALK for 2 cancer-related pathways (VEGFR related 

pathway and pathways in cancer); HIF1A for 2 cancer-related pathways 

(VEGFR related pathway and pathways in cancer); STK112 for 2 cancer-

related pathways (adipocytokine-related pathway, energy metabolism-related 

pathway). 



 

 

Fig 18. Inferred drug-target network in PTPRK-RSPO3 fusion-positive colorectal cancer. Drug-target 
relation was obtained based on CIViC and OncoKB databases: white boxes, drugs; circles, underlined 
white boxes, substitute drugs; genes; red circles, genes that are over-expressed in fusion-positive 
cancer; blue circles, genes that are under-expressed in fusion-positive cancer. The red lines are 
prioritized drug-target relationships based on the scenario that properly working cancer drugs are 
generally inhibitors for activated oncogenes or activators for down-regulated tumor suppressor genes.  
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Figure S6. Inferred drug-target network in PTPRK-RSPO3 fusion-positive colorectal cancer based on 
VICC database. 
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"Famitinib"

"SAR405838"

"GANETESPIB"

"ENZALUTAMIDE"

"BRONTICTUZUMAB"

"Sonolisib"

"NAPABUCASIN

"Pelareorep"

"BEVACIZUMAB"

"RIGOSERTIB"

"NS-018"

"Rogaratinib"

"PAZOPANIB"

"FLUOROURACIL

"BINIMETINIB"

"ENTRECTINIB"

"VEGFB"

"SCHEMBL16560855"

"CYTARABINE

"BI-69A11"
"603107-76-2

"TRASTUZUMAB

"BAY1125976"

"Irinotecan"

"PF-04691502"

"EZH2 [Homo sapiens]"

"JAK2"

"Derazantinib"

"ERDAFITINIB"

"FH535"

"JW67"

"X-976"

"DASATINIB

"VENETOCLAX"

"ALRN-6924"

"RO6839921"

"AZD8055"

"DEXAMETHASONE

"ZSTK474"

"TEMSIROLIMUS"

"EVEROLIMUS"

"Romidepsin"

"AZ-TAK1"

"HIF1A"

"COPA"

"FGFR2"

"CCT070535"

"iCRT-14"

"PEMBROLIZUMAB"

"AZD6738"

"VORINOSTAT"

"MI-63"

"ABIRATERONE

"DOCETAXEL"

"PACLITAXEL"

"PICTILISIB"

"UC-857993"

"Irinotecan

"SIROLIMUS

"OLAPARIB"

"S-49076"

"EREG"

"VANDETANIB"

"NICLOSAMIDE"

"X-376"

"TANESPIMYCIN"

"Unspecified VEGFR inhibitor"

"Cyclophosphamide

"VS-5584"

"PREDNISOLONE

"AZD-8835"

"RAFFINOSE"

"VOLASERTIB"

"COPANLISIB"

"ALPELISIB

"HDAC2"

"AZD4547"

"PANITUMUMAB"

"StAx-35"

"indocyanine green"

"Pf-06463922"

"DUVELISIB"

"KEVETRIN"

"MK-8745"

"AZD8186"

"METHOTREXATE

"BORTEZOMIB

"737

"Metformin"

"AZD8186

"SOTRASTAURIN ACETATE

"FIIN-1"

"EGF"

"VANTICTUMAB"
"APC"

"CISPLATIN

"IDELALISIB

"OLENDALIZUMAB

"MVAp53"

"NVP-BGT226"

"PF-03084014"

"MK-1775"

"voxtalisib"

"PIMASERTIB

"GSK343

"ARABINO-FLAVIN-ADENINE DINUCLEOTIDE"

"2-Butanone"

"SUNITINIB"

"AZD1480"

"4-[(3aR

"alanylleucyllysine"

"CRIZOTINIB"

"BUPARLISIB

"TANESPIMYCIN

"NSC319726"

"TEMOZOLOMIDE

"foton

"PI3k"

"SCH772984"

"LY3009120"

"Silicon monoxide

"PANITUMUMAB

"SOTRASTAURIN ACETATE"

"AZ8010"

"TOFACITINIB"

"SIROLIMUS"

"X-396"

"CERITINIB"

"SELICICLIB"

"NAPABUCASIN"

"ETOPOSIDE"

"(4e"RO4929097

"SALIRASIB"

"PEMETREXED

"TVB-2640"

"Futuximab"

"XL147"

"ENZASTAURIN"

"NINTEDANIB"

"MOMELOTINIB"

"SULINDAC"

"Delantercept"

"alanylleucyllysine

"Nutlin-3"

"DS-7423"

"TP53"

"Gdc"

"ASPARAGINASE

"MIDOSTAURIN"

"CABOZANTINIB

"CARBOPLATIN"

"COBIMETINIB

"4-(Methylamino)azobenzene

"malathion"

"LUCITANIB"

"RUXOLITINIB"

"ETC159"

"Delantercept

"AZD3463"



 

5.3.4 Discussion 

 

 In this study, drug candidates were identified in P:R fusion colorectal 

cancer as follows. First, genes correlated with RSPO3 RNA expression were 

extracted, and oncogenic cell signaling pathways including these genes were 

selected. We then used the drug target database to build a drug target 

network in P:R fusion colorectal cancer and prioritize suitable therapeutics 

(Fig 4). As a result, this study is expected to provide an opportunity to try a 

wider range of therapeutics in colorectal cancer, where EGFR inhibitors and 

ICI are limitedly used as targeted therapeutics [107]. 

 Previous studies that systematically explore gene biomarkers with 

bioinformatics analysis in colorectal cancer have focused on discovering 

prognosis-related biomarkers using differentially expressed genes (DEGs) 

analysis and machine learning techniques [134, 135]. To our best knowledge, 

our study differs from previous studies in two respects. First, the purpose of 

this study is to discover novel targets and therapeutics related to original 

mutations by analyzing downstream pathways and genes affected by target 

mutations that cannot be directly targeted. Second, our study is based on a 

structural variation (P:R fusion by DNA structural variation) that is a driver 

mutation in colorectal cancer. As consequence, almost all genes correlated 

with P:R fusion are downstream-level genes affected by fusion. In this aspect, 

our study is different from other studies, and, for example, it is not clear 

whether COL11A1 is a primary driver or is affected by other drivers in the 

study by Ritwik et al [135]. 

 The WNT signaling pathway is an important mediator in tissue 

homeostasis and recovery while it acts an important role in tumor-



 

development of colorectal cancer [132]. Both in vitro experiments in human-

colon cancer cell line HT-29 and in vivo experiments in CRISPR-based 

xenograft mice provided the evidence that RSPO3 fusion gene was involved in 

the initiation and development of CRC via activating WNT signaling [128, 

133]. This means that human CRC is a sensitive tumor for WNT-targeted 

treatment, suggesting that RSPO3 fusion gene can be an effective therapeutic 

target. 

 As a result of our analysis, it is interesting that ALK up-regulated in 

P:R fusion-positive CRC has the following three characteristics. First, the 

correlation between ALK RNA expression and RSPO3 RNA expression in P:R 

fusion-positive CRC was the highest among COSMIC common oncogenes 

(R=0.44). Second, ALK was a gene involved in multiple cancer pathways. 

Finally, ALK inhibitors are FDA-approved therapeutics that perform well in 

other carcinomas (e.g. lung cancer) [136, 137]. Taken together, in-silico 

analysis showed that ALK inhibitors were highly likely to act in P:R fusion 

positivity [138]. 

 Despite the limited number of samples, the clinical characteristics of 

P:R-positive and P:R-negative patients were found to be similar. This 

indicates that even if the clinical properties are similar, the molecular 

properties may be different, which may require treatment to target the 

molecular properties. One interesting point is that P:R fusions can also be 

found in MSI-H. In this case, further clinical evaluation is needed to 

determine if there is a synergistic effect between ICI and the targeted 

therapy we propose. 

 In summary, we were able to present key indicators and clinically 



 

viable therapeutics for P:R fusion-positive CRC. Our findings will serve as a 

steppingstone for future research in the development of precision medicine 

targeting colorectal cancer.  

  



 

 

5.4 Conclusion 

 

  Colorectal cancer (CRC) is one of the most deadly and common 

diseases in the world, accounting for over 881,000 casualties in 2018. The 

PTPRK-RSPO3 (P:R) fusion is a structural variation in CRC and well known 

for its ability to activate WNT signaling and tumorigenesis. However, till now, 

therapeutic targets and actionable drugs are limited in this subtype of cancer. 

The purpose of this study is to identify key genes and cancer-related 

pathways specific for P:R fusion-positive CRC. In addition, we also inferred 

the actionable drugs in bioinformatics analysis using the Cancer Genome 

Atlas (TCGA) data. 2,505 genes were altered in RNA expression specific for 

P:R fusion-positive CRC. By pathway analysis based on the altered genes, ten 

major cancer-related signaling pathways (Apoptosis, Direct p53, EGFR, ErbB, 

JAK-STAT, tyrosine kinases, Pathways in Cancer, SCF-KIT, VEGFR, and 

WNT-related Pathway) were significantly altered in P:R fusion-positive CRC. 

Among these pathways, the most altered cancer genes (ALK, ACSL3, AXIN, 

MYC, TP53, GNAQ, ACVR2A, and FAS) specific for P:R fusion and involved in 

multiple cancer pathways were considered to have a key role in P:R fusion-

positive CRC. Based on the drug-target network analysis, crizotinib, alectinib, 

lorlatinib, brigatinib, ceritinib, erdafitinib, infigratinib and pemigatinib were 

selected as putative therapeutic candidates, since they were already used in 

routine clinical practice in other cancer types and target genes of the drugs 

were involved in multiple cancer-pathways. 
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Abstract in Korean 

 

1. 국문요약 

 현재까지도 암은 전세계적으로 높은 발병률과 치사율을 보이고 있다. 차세대 

염기서열 시퀀싱 기술의 개발을 비롯한 암 생물학 분야의 획기적인 발전은 새로운 진단 및 

치료 방법들의 개발을 가능하도록 하였다. 최근에는, 융합 유전자 (gene fusion)들이 각종 

암종에서 빈번하게 발견되면서 주요 치료 타겟 및 암의 예후 마커로써 활용되고 있다. 딥 

시퀀싱 기술의 발전을 통해 약 1만개의 융합 유전자가 최근 5년 동안 발견되었지만, 이들 중 

90% 이상은 분자병리학적인 메커니즘 연구 및 치료제 개발이 제대로 진행되지 못한 

상황이다. 

 분자 메커니즘 연구 및 잠재적인 치료 마커의 탐색은 모두 The Cancer Genome 

Atlas(TCGA) 데이터베이스에 의해 구성된 암 유전체 빅데이터에 의해 빠른 속도로 발전할 

수 있었다. 이에, 임상의 및 암 연구자들에게 소프트웨어 능력과 관계없이 복잡한 암 유전체 

데이터에 쉽게 접근, 분석, 시각화 그리고 해석까지 도와주는 다양한 웹 리소스들이 

개발되었다. cBioPortal, miRGator v 3.0, TANRIC 및 ISO express는 연구자들이 TCGA 

데이터베이스를 분석하는데 다양한 기능을 제공하는 대표적인 웹 포탈들이다. 따라서, 이번 

연구에서는 새로운 생물정보학 분석기법을 기반으로 약 1만개의 융합 유전자들의 

분자병리학적인 특징들을 분석하고, 잠재적인 치료 타겟까지 탐색하는 웹 포탈인, 

DRPORTAL을 개발하였다. DRPORTAL은 TCGA로부터 33개 암종에 대한 유전체 및 임상 

빅데이터, Jackson laboratory의 유전자 융합 빅데이터, CIViC과 OncoKB의 항암제 

빅데이터, 그리고 ConsensuPathDataBase로부터의 세포신호경로 빅데이터를 활용하였다. 

DRPORTAL은 4단계에 걸쳐 융합 유전자 양성암의 잠재적 약물 후보들을 분석한다. 1) 

먼저 융합 유전자 양성 환자군과 음성 환자군에서 연령, 성별, 생존 상태, TNM 암 단계, 

유전자 변이 정보 등의 임상병리학적인 특징들을 분석하고, DEG (Differentially 

Expressed Genes) 분석을 통해 융합 유전자와 상관관계가 높은 유전자군들을 추출한다. 

이후, 2) 높은 관계성을 가지는 유전자들을 기반으로 Pathway 분석을 진행하여 주요 암 



 

관련 신호 경로들을 식별한다. 그리고 3) CIViC 및 OncoKB 약물 데이터베이스를 활용하여 

약물 표적 네트워크를 구축하고, 4) 마지막으로 선별된 항암제 후보물질들의 우선 순위를 

지정해준다. 

 DRPORTAL에 사용된 생물정보학 분석기법의 신뢰성을 검증하기 위해 ESR1-

CCDC170 (E:C) 융합 유전자 양성 유방암 연구와 PTRPRK-RSPO3 (P:R) 융합 유전자 

양성 대장암 연구를 진행하였다. 

 E:C 융합 유전자 양성 유방암 연구를 진행하기 위해 유방암 환자의 mRNA 발현량 

데이터에서 11명의 E:C 융합 유전자 양성 환자 샘플과 48명의 음성 환자 샘플을 

분석하였다. 그 결과, E:C 융합 유전자 양성 유방암의 임상병리학적인 특징이 triple-

positive 유방암과 비슷했으며, basal-type 유방암과는 상호 배타적인 관계인 것으로 

확인되었다. 또한 6개 주요 암세포 신호 경로들이 타겟 경로들로 식별되었다 (p53, 

ATR/ATM, FOXM1, Hedgehog, Cell cycle, Aurora B 관련 세포 신호 경로). 타겟 유전자 

들중 8개 유전자 (AURKB, HDAC2, PLK1, CENPA, CHEK1, CHEK2, RB1,  MDM2)들이 

E:C 융합 유전자의 RNA 발현량과 상관관계가 높았고, 3개 이상의 암 세포 신호 경로들에서 

공통적으로 발견되었다. 마지막으로, 약물 데이터베이스로부터 21개의 후보 물질들을 타겟 

유전자들과 재배치시켰으며, 그 중 palbociclib, alpelisib, ribociclib, dexamethasone, 

checkpoint kinase inhibitor AZD7762, irinotecan, milademtan tosylate, R05045337, 

cisplatin, prexasertib, olaparib 약물들은 2개 이상의 암세포 신호 경로에 포함된 

유전자들을 타겟하고 있었다. 

 P:R 융합 유전자 양성 대장암 연구를 진행하기 위해 mRNA 발현량 데이터에서 

7명의 P:R 융합 유전자 양성 환자 샘플과  50개의 음성 환자 샘플을 분석하였다. 그 결과, 

앞선 유방암 연구와 같은 DEG 분석을 통해, 2,505개의 유전자가 P:R 융합 유전자와 

상관관계가 높은 유전자군으로 식별되었다. 이 유전자군을 기반으로 Pathway 분석을 

진행하였고, 10가지 주요 암 세포 신호 경로들(Apoptosis, Direct p53, EGFR, ErbB, JAK-

STAT, tyrosine kinases, Pathways in Cancer, SCF-KIT, VEGFR 및 WNT 관련 세포 

신호 경로)이 확인되었다. 선별된 세포 신호 경로들 중에서 P:R 융합 유전자에 특이적이고 

여러 암 경로에 동시에 관여하는 주요 타겟 유전자 (ALK, ACSL3, AXIN, MYC, TP53, 

GNAQ, ACVR2A, FAS)들은 P:R 융합 유전자 양성 대장암에서 핵심적인 역할을 하는 



 

것으로 예상한다. 마지막으로, 약물 데이터베이스로부터 crizotinib, alectinib, lorlatinib, 

brigatinib, ceritinib, erdafitinib, infigratinib 그리고 pemigatinib 약물들이 타겟 

유전자들과 연결되었으며, 해당 약물들은 이미 다른 암종에서 상용화되고 있기 때문에 이번 

연구에서 최종 약물 후보 물질들로 선정되었다. 

 결과적으로, 이번 연구를 통해 임상의와 여러 연구자들이 생물정보학 분석능력에 

관계없이 약 1만개 융합 유전자들에 대한 유전체 데이터를 쉽게 분석, 해석 그리고 

시각화까지 할 수 있을 것으로 예상하며, 더 나아가 아직 분자병리학적인 메커니즘이 

밝혀지지 않은 융합 유전자 양성 암종들에 대해 잠재적인 약물후보물질들을 제공해줄 수 

있다는 점에서 정밀 의료의 발전과 암 치료 개선에 기여했다고 예상한다. 

 

주요어 : 생물정보학, 약물재배치, 융합 유전자, 전산 유전체학, 전사체학, DEG 분석 
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