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Abstract

Identification of Novel Biomarkers and Drug Candidates

via Web—based Bioinformatic Analysis in Fusion—Positive

Cancer

Jae Heon Jeong
Department of Engineering
The Graduate School

Seoul National University

At present, cancer continues to be a major health problem around the world. The
breakthroughs in cancer biology via development of high—throughput sequencing
technologies have enabled the development of novel diagnostic and therapeutic
approaches. Recently, due to the specificity of fusion genes in cancer, a large number of
them have been identified as cancer biomarkers. Since, about 10,000 fusion genes have
been discovered via development of sequencing technologies, over 90% of them lack

functional mechanisms and therapeutic agents.

Insight into the molecular mechanisms and the identification of potential
therapeutic and diagnostic biomarkers in cancer are both greatly aided by the molecular
profiling data organized by The Cancer Genome Atlas (TCGA) database. It is significant
to offer online platform that make it easy for cancer researchers and clinicians

(regardless of their level of computational expertise) to access, analyze, visualize, and



interpret cancer transcriptomic data. cBioPortal, miRGator v 3.0, TANRIC, and

[SOexpresso are well known public resources that aid researchers to analyze TCGA data.

Here, we report DRPORTAL, an easy to use, interactive web-portal to investigate
potential therapies targeting 9,950 fusion genes based on new bioinformatical strategy.
DRPORTAL uses TCGA level 3 RNA-seq and clinical data from 33 cancer types.
DRPORTAL systematically infer potential drug candidates in fusion positive cancer in
four steps: 1) we first extract fusion expression correlated genes as well as age, sex,
alive status, TNM cancer stages or other clinical features across fusion positive and
negative tumor samples, and 2) select oncogenic signaling pathways containing those
genes; and 3) construct a drug-target network using the CIViC and OncoKB database,

and 4) finally, prioritize suitable cancer drugs.

I have exploited two different fusion positive cancer (ESR1-CCDC170 fusion
positive breast cancer, PTRPRK-RSPO3 fusion positive colorectal cancer) to validate the

reliability of novel therapeutic strategy.

In ESR1-CCDC170 fusion positive breast cancer, six major cancer—related
signaling pathways (p53, ATR/ATM, FOXM1, hedgehog, cell cycle, and Aurora B) were
significantly  altered. Further  investigation  revealed that nine  genes
(AURKB, HDACZ, PLK1, CENPA, CHEK1, CHEKZ2, RB1, CCNAZ2, and MDM2) in
coordination with E:C fusion were found to be common denominators in three or more of
these pathways, thereby making them promising gene biomarkers for target therapy.
Among the 21 putative actionable drugs inferred by drug-target network analysis,
palbociclib, alpelisib, ribociclib, dexamethasone, checkpoint kinase inhibitor AXD 7762,
irinotecan, milademetan tosylate, RO5045337, cisplatin, prexasertib, and olaparib were
considered promising drug candidates targeting genes involved in at least two E:C

fusion-related pathways.

In PTRPRK-RSPO3 fusion positive colorectal cancer, 2505 genes were altered in
RNA expression specific. By pathway analysis based on the altered genes, ten major
cancer-related signaling pathways (Apoptosis, Direct p53, EGFR, ErbB, JAK-STAT,

tyrosine kinases, Pathways in Cancer, SCF-KIT, VEGFR, and WNT-related Pathway)



were significantly altered in P:R fusion-positive CRC. Among these pathways, the most
altered cancer genes (ALK, ACSL3, AXIN, MYC, TP53, GNAQ, ACVR2A, and FAS)
specific for PR fusion and involved in multiple cancer pathways were considered to have
a key role in P:R fusion-positive CRC. Based on the drug-target network analysis,
crizotinib, alectinib, lorlatinib, brigatinib, ceritinib, erdafitinib, infigratinib and pemigatinib

were selected as putative therapeutic candidates.

Based on the two experiments, we confirmed that DRPORTAL can greatly help
cancer biologists and clinicians to identify trustable therapeutic targets and applicable

drug candidates for fusion positive cancer.

keywords: Bioinformatics, Drug repurposing, TCGA, Gene fusion, Cancer, Web Resource,
Bio Platform, Computational Genomics, Transcriptomics, Differentially Expressed Genes

Analysis

Student Number: 2019-20994
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Chapter 1 Introduction

1.1 Research background

Currently, cancer continues to be a major health problem around the
world. According to worldwide cancer statistics for 2022, there will be an
expected 25 million new cases of cancer and 13.3 million deaths from cancer
until 2030. Finding a way to reduce the mortality caused by cancer is the
fundamental goal of society, governments, the medical, and the scientific
community. The breakthroughs in cancer biology via development of high-—
throughput sequencing technologies have enabled the identification of novel

diagnostic and therapeutic approaches.

Cancer 1s caused by a variety of abnormalities to the genome,
involving single nucleotide polymorphisms (SNPs), copy number variations,
and chromosomal rearrangement. Researchers and clinicians can get a
comprehensive understanding of cancer by having access to genomic

complexity in tumorigenesis.

However, fusion genes are a form of fusion product with two originally

separated genes resulting from the DNA structural rearrangement. A

proportion of fusion genes are transcribed into fusion transcripts. These

fusion transcripts could synthesize fusion proteins by maintaining the reading
frame of their parental genes, by regulating parental expression, or by
functioning as long non—-coding fusion RNAs. Many fusion genes have been

explored and utilized as cancer biomarkers due to their specificity in cancer.



Furthermore, many of these fusion genes have been identified as oncogenes
with the ability to induce tumorigenesis and have been utilized as therapeutic
targets. These fusion transcripts have also been reported as promising
biomarkers since their detection could be used to discern the presence of

certain types of cancer cells.

Imatinib, a tyrosine kinase inhibitor, was approved in 2001 for the
treatment of Philadelphia chromosome (BCR-ABL)-positive CML as the first
fusion—targeted drug. Crizotinib is a renowned tyrosine kinase inhibitor that
targets the ALK kinase domain of the EML4-ALK fusion gene in non-small
cell lung cancer (NSCLC). In non-small cell lung cancer, the EML4-ALK
fusion gene was found to be an oncogenic driver. Patients with NSCLC with

EML4-ALK fusion gene were given approval to treat with crizotinib in 2011.

Despite the fact that around 10,000 fusion genes have been discovered
in last five years, more than 90% of them lack functional mechanisms and

applicable therapeutic agents.



1.2 Research aims

Recent advancements in high throughput technologies, such as next-
generation sequencing (NGS) and microarrays, have allowed clinical cancer
researchers to examine molecular alterations in DNA, RNA, and proteins on a
large scale. Using various data platforms, the Cancer Genome Atlas (TCGA)
consortium has generated molecular profiles of over ten thousand samples
assoclated with 33 cancer types, leading to numerous studies involving the
genomic and molecular characterization of specific cancer types.
Computational methods for predictive repurposing provide a relatively rapid
and mechanistically agnostic strategy for identifying therapeutic targets that
can be utilized into clinic fields; this may also be the only option for drug
development in some fusion—-positive cancers for which pathophysiological

mechanisms are lacking.

Prior to the first, in Chapter 2, I will introduce the concept of
molecular—targeted therapy, drug repurposing and computational approaches
which successfully identified therapeutic targets using gene expression
profiles. Many of the recently discerned targets and repurposed drug
candidates are a consequence of the extensive usage of computational
techniques. For this reason, [ will first discuss how these techniques have
been successfully developed from molecular-targeted therapy to
computational methods and introduce good examples of these approaches in

previous studies.

In Chapter 3, DRPORTAL, interactive web-portal, based on novel
bioinformatic techniques to unearth potential drug candidates of fusion

positive cancer will be introduced. Through massive development of



sequencing technology, about 10,000 fusion genes have been identified within
five years. While a large number of fusion genes have specificity in cancer

and have been identified as oncogenic makers, only limited number of them

have applicable drugs. Herein, I will introduce DRPORTAL's main functions

and discuss the reason why this could be extremely helpful in accelerating

fusion—positive cancer research.

In Chapter 4, I will discuss about the molecular—pathological profiles of
ESR1-CCDC170 fusion positive cancer using aforementioned novel
computational techniques. The result of this study are divided in to
clinicopathological characteristics, differentially expressed genes, target

pathways and therapeutic agents, and based on this, predictive ability of

DRPORTAL's therapeutic mechanism has been successfully validated.

Finally, in Chapter 5, I would also like to discuss another application
example of former therapeutic strategy which elucidated cell signaling and
therapeutic targets in PTPRK-RSPO3 fusion—-positive colorectal cancer. As in

Chapter 4, following in silico studies were performed and confirmed.



Chapter 2 Computational approaches in cancer

therapy

2.1 Molecular targeted therapy

Molecular targeted therapy is the application of chemical compounds
or other substances that target specific molecules to inhibit the tumorigenesis
and proliferation of cancer. In the late 1800s, Paul Rich originally outlined the
concept of the "magic bullet," from which targeted therapy was formed. It was
first used to describe the capacity of a drug to target microorganisms

selectively, but the approach has now been broadened to cancer therapies

[1].

Since the Federal Drug Administration (FDA) approved rituximab in
1997, there have been 71 molecular-targeted drugs approved, and 18 of them
could be used for multiple indication. While the number of these drugs
increased, the number of “non-molecular—-targeted” drugs such as cytotoxic
pharmaceuticals and antihormonal agents reduced, even when pegylated and
novel formulations of existing cytotoxic drugs are taken into consideration.
No more than 28 drugs of these “non—-molecular-targeted” drugs have been

approved or reapproved for new indications since 1997- 2017 [2, 3].

Selecting the appropriate targets is crucial for an effective application
of molecular targeted therapies in cancer. Differentiation of the genetic
profiles which leads to mutations or variations in proteins and receptors is
one of the primary drivers of tumorigenesis by regulating cell survival and

proliferation. This specific genetic differentiation, which is appeared to be



differed from cancer and normal cells, can be utilized as molecular targets in
the development of molecular targeted therapies [4]. Researchers have been
able to interrogate molecular therapies to suppress tumor proliferation and
progression by investigating physiology and features of certain molecular

targets in cancer.

Interestingly, cancer biomarkers can be identified using genome
sequencing, which allows researcher to distinguish genes expression profiles
between normal and malignant cells and identify alterations in those
expressions [5]. Various cancer genomes have been analyzed using
sequencing technology to disclose the genetic heterogeneity between
malignant and normal cells within an individual. Among the various targets
selected for molecular targeted therapy are growth factors, signaling
molecules, cell-cycle proteins, apoptosis modulators, and molecules that
promote angiogenesis [6]. Understanding and discerning a specific target

enables the development of successful and effective drugs.

2.2 Drugs used in molecular targeted therapy

The activities and properties of molecular targeted drugs exploited in
cancer therapy may differ. Depending on the targets, they function on cell
surface antigens, growth factors, receptors, or signal transduction pathways
which are known to regulate cell cycle progression, cell death, metastasis,
and angiogenesis [7]. Small molecules, monoclonal anti-bodies,
immunotherapeutic cancer vaccines, and gene therapy are the four major

types of molecular—targeted therapeutic methods [1].



To eliminate cancer cells, drugs applied as molecular targeted therapy
inhibit signaling that promote cancer cell growth, disrupt with cell cycle
regulation, or induce cell death. These drugs may activate the immune system
to attack not just cancer cells, but also components of tumor
microenvironment [8]. When combined with chemotherapy, these drugs can
also prevent the growth and spread of tumors and make resistant tumor more

sensitive to other therapies [9].

2.3 Necessity of drug repurposing

Conventional drug development process encompass target finding and
validation, lead 1identification via high-throughput screening, and lead
optimization through medicinal chemistry. In pre-clinical stage, substance

efficacy and pharmacology (Administration, Metabolism, Distribution,

Elimination "ADME") are assessed in animal models, along with toxicity,

specificity, and drug interaction investigations.

Despite technological advancements and increased understanding of
molecular biology, translation of these insights into therapeutic improvements
has been much slower than anticipated [10, 11]. High attrition rates, longer
times to provide new pharmaceuticals to market, and fluctuating regulatory
standards are compelling the global pharmaceuticals to raise costs of new
drugs [12, 13]. It has been calculated that for every dollar spent on research
and development (R&D), less than a dollar is returned on average, which may

make the pharmaceutical industry a less attractive investment option [14].



Therefore, a large number of cancer drugs on the market are too
expensive in present for the vast majority of patients around the world, and
there are some studies that new drugs may not have meaningful therapeutic
benefits. In addition, no correlation has been identified between drug costs
and the advantages to patients [15, 16]. Because of this severe issue,
researchers at universities and other non-profit organizations have been

coming up a with new idea, drug repurposing [17, 18].

2.3 Drug repurposing

Drug repurposing (also known as drug repositioning) is a method for
mapping new indications for approved or experimental drugs that have initial
medical indication [10]. Compared to developing a new drug for a given
indication, this approach has numerous benefits. First, the risk of failure is
much lower; It is because repurposed drug has proven to be adequately safe
in preclinical models and humans from previous trials, it is less likely to fail in
new indications from a safety standpoint. Second, the drug development
timeline may be shortened since much of the preclinical trials, safety
evaluation, and, in some cases, formulation development will have been

finished already. Third, less money is required, although this may differ
considerably depending on the stage and process of candidate’'s development
[19]. Although repurposed drug may have similar regulatory and phase III

costs, significant amount of costs may be saved in preclinical and phase [ and

II costs.

When taken together, these benefits suggest that developing

repurposed drugs could yield a faster and safer return on investment, as well



as lower expense once failures have been considering (In fact, bringing a

repurposed drug to market is calculated to cost approximately $300 million,

whereas bringing a new drug to market is calculated to cost $2-3 billion [20]).

Conclusively, repurposed drugs can elucidate novel targets and
pathways that could be used in further studies. Drug repurposing has
conventionally been a result of chance and serendipity; once a drug was
discovered to have an off-target effect or a newly identified on—-target effect,
it was applied for commercial use. The effective repurposing of sildenafil
citrate for erectile dysfunction depended on retrospective clinical experience,
while the successful repurposing of thalidomide for erythema nodosum
leprosum (ENL) and multiple myeloma was based on serendipity, rather than
a systematic method [10]. As of 2012, global sales of Viagra made from the
sildenafil, which had been created as an antihypertensive but repurposed by
Pfizer for the treatment of erectile dysfunction reached $2.05 billion, giving
Viagra a 47% share of the erectile dysfunction market. Thalidomide, when it
was discovered that pregnant women who took the sedative thalidomide
during the first trimester of their pregnancies were at risk for having babies
with severe skeletal birth abnormalities, the drug was pulled off the market

worldwide within 4 years [10].

As a consequence, more systematic and computational approaches to
the identification of repurposable drugs have been encouraged. PubMed data
reveal that a large number of studies about drug repurposing has increased
massively since 2004 [21]. These methods have led to the discovery of many
potential drugs candidate, some of which are now undergoing advanced-stage

clinical trials in multiple cancer types [14].



2.4 Repurposed drugs in cancer

In cancer, thalidomide, repurposed drug, is now considered as
standard therapy. The FDA authorized this drug in 1998 as combination with
dexamethasone for the treatment of newly diagnosed multiple myeloma.
Nonetheless, the National Comprehensive Cancer Network (NCCN) guidelines
now recommend this drug as a main therapeutic option in combination with
bortezomib and dexamethasone. It is interesting to note that thalidomide is
not often utilized in the United States but is more accessible and economical

in other regions of the countries with less resources [22].

Treatment for acute promyelocytic leukemia now includes arsenic
trioxide, which was previously used in traditional Chinese medicine, and all-
trans retinoic acid (ATRA), which had been used since 1962 for skin
disorders but was licensed by the FDA in 2000. Only these three drugs have

been successfully repurposed for use in cancer treatment [23, 24].

Additionally, repurposing drug candidates have been unearthed novel
mechanisms into molecular pathophysiology of cancer. The finding in 2001
that AMP-activated protein kinase (AMPK), was the target of metformin,
followed by the evidence that AMPK is also a cancer target, 1S an example
that exemplifies this case [25]. Investigating the anticancer effects of
previously approved drug is another method of off-target toxicity. For
example, hydralazine and procainamide, originally used to treat autoimmune
disorders, have been repurposed to DNA methyltransferase inhibitors for

cancer drugs [26].



2.5 Computational approaches using gene expression profile in cancer

Identification of target candidates for a given indication (hypothesis
generation); systematic assessment of the pharmacological effects in animal
models; and evaluation of efficacy in phase II clinical trials (assuming there is
adequate safety data from phase I, which have already evaluated for original
indication) are the three big phases of a drug repurposing. Among these three
phases, step 1 — Identifying the appropriate drug candidates for new
indication with a high level of confidence is the most important, and there are
many new tools for hypothesis generation. These systematic processes may
be classified into computational and experimental approaches, both of which

can synergistically exploited. These two main categories include clinical data.

Researchers are able to obtain vast amounts of experimental data as a
result of development in technologies such as next—-generation sequencing
and rapidly decreasing sequencing costs. These data include high—-throughput
DNA and RNA sequencing, mass spectrometry, metabolomics and
transcriptomic data, phenotyping data, and many more. In addition, large
amounts of clinical data are increasingly viable through electronic health
records (EHRs), clinical trials, and biobanks. Big data refers to data
collections that are so big and complicated that conventional data processing

techniques are inadequate [27].

Consequently, computational approaches, often referred to as
bioinformatic analysis, have emerged. Bioinformatics employs various
computational techniques, including sequence and structural alignment,

designing databases, data mining, macromolecular geometry, building



phylogenetic trees, predicting protein structure and function, identifying new
genes, and clustering expression data. Bioinformatics is becoming more
commonly used and many of the candidates for repurposing that have been

recently discovered come from this computational approach.

Computational analysis can be conducted using a various type of data,
including transcriptomics, genomes, proteomics, epigenomics, and
metabolomic profiles, adverse effects, phenotypes, or a combination of these.
Since the publicly accessible databases for transcriptomic data are well-
known and contain normalized data, they are also used in other well-
established resources such as cBioPortal, miRGator v3.0, TANRIC, and
[SOexpresso. This is reason why transcriptomic profile from TCGA database
was interrogated into DRPORTAL, also. As so, | will introduce good example

of computational approaches based on transcriptomics, genomics, and

pathway analysis that are applicated in DRPORTAL’s bioinformatical analyses.

Transcriptomic profiles can offer a list of under— and over— expressed
genes In an experimental environment, such as disease versus normal or
drug-treatment group versus control. These gene lists may then be exploited
to identify dysregulated pathways or networks. The Connectivity Map (CMap)
1s a good example of this concept; it is a huge collection of transcriptomes
from cell lines treated with 1300 drug-like compounds that uses a pattern-
matching approach to unearth differences and similarities in complicated
diseases [28]. Using publicly accessible transcriptomic profiles, lorio and
colleagues built a drug network based on the "guilt by association" concept to
identify drugs that had a similar transcriptional signature and, hence, a
perceived similar mechanism of action [29, 30]. Based only on these

transcriptomic profiles, a drug network was constructed with 1,302 drugs as



nodes and 41,047 edges (showing similarity between pairs of drugs).
Remarkably, nine known anticancer drugs' mechanisms were successfully

validated using this network, demonstrating its predictive ability.

As a result of the significant progress in human genetics, "druggable"
targets may be identified by identifying the associations between genes and
diseases. The use of genetic or genomic methods, particularly large—scale
genetic investigations such as genome—-wide association studies, are reported
to be twice as likely to be approved compared to drugs with no such links [31,
32]. With this method, it was possible to identify the genes that encode for
the drug targets of tamoxifen (ESR1) and aromatase inhibitors (CYP19A1),
which are correlated to genetic differences that increase the risk of breast
and endometrial cancer [33, 34]. These two drugs are FDA-approved for

breast and endometrial cancer.

Approaches based on pathways or networks have been used
extensively to discover medications or pharmacological targets with potential
for repurposing [35]. As mentioned before, despite the fact that some of the
putative targets identified by genomics or transcriptomic data may be directly
amenable as therapeutic targets, these genes are often not ideal therapeutic
targets. In this case, a pathway—-based strategy could give information about
genes that are either upstream or downstream of the target and could be used
to find new uses for them [36]. Network analysis is the construction of drug
or 1illness networks based on gene expression patterns, disease
pathophysiology, and protein interactions to help in the identification of
repurposing candidates. Several signature matching studies based on the

transcriptome profile also use the network analysis method [29, 37].



2.6 Computational approaches of drug repurposing in fusion positive cancer

Since some fusion genes have been found to be dominant in various
cancer, researchers discovered that these genes have significant functions in
tumorigenesis [38, 39]. Therefore, diverse efforts have been progressed to
identify the molecular pathological profiles of the fusion gene and confirmed
that successful targeted therapies have been accomplished when these genes

were inhibited [40, 41].

Imatinib, a tyrosine kinase inhibitor, was approved in 2001 for the
treatment of Philadelphia chromosome (BCR-ABL)-positive CML as the first
fusion—targeted drug. Crizotinib is a renowned tyrosine kinase inhibitor that
targets the ALK kinase domain of the EML4-ALK fusion gene in non-small
cell lung cancer (NSCLC). Patients with NSCLC with EML4-ALK fusion gene

were given approval to treat with crizotinib in 2011.

However, there are many other fusion genes that cannot be directly
targeted with this conventional approach. In order to overcome this limitation,
it was necessary to newly explore the targetable genes and signaling
pathways that function in the downstream level of fusion gene. Thus, current
studies that elucidated the novel targets and applicable drugs with

computational approaches have been emerged [38, 42-44].

First, in the case of using tyrosine kinase inhibitors (TKIs) as standard
molecular targeted therapy for BCR-ABL fusion positive chronic myeloid
leukemia (CML), researchers identified novel targetable markers to prevent
drug resistance caused by TKIs. In this study, DEG analysis was processed

using gene expression data (GEO database) between pre—treatment and post—



treatment of TKI, and target pathways were identified through two pathway
analysis (gene ontology; GO terms and KEGG pathway). Therapeutic
compounds which have high correlation with the target genes were selected
through drug response gene signature database, Connectivity Map. However,
in the case of Cmap database, it only comprises gene signature data for four
cancer cell lines (breast cancer, prostate cancer, leukemia, and skin cancer).
Therefore, it is difficult to search for therapeutic agents in other types of

cancer [43].

In other study, RUNX1-RUNXI1T1 fusion gene plays a crucial role in
the tumorigenesis of Acute Myeloid Leukemias (AML), but since direct
targeting 1s difficult, researchers tried to investigate signaling pathways that
can be targeted. Using TCGA mRNA expression data, they found 293 genes
highly related to the RUNX1-RUNXI1T1 fusion, and based on these genes,
two pathway analysis (ORA and GSEA) were performed to identify fusion-
related signaling pathways. As a result, it was possible to discern
cyclooxygenase (COX), vascular endothelial growth factor receptor (VEGFR),
platelet—-derived growth factor receptor (PDGFR), and fibroblast growth
factor receptor (FGFR) pathways. In vitro experiments were also conducted
to validate whether the identified signaling pathways were actually targets of
R:R fusion positive AML. As a consequence, when the 4 pathways were
pharmacologically inhibited, it was confirmed that the proliferation of AML
cells significantly decreased in fusion positive compared to fusion negative

[42].

In last study, molecular signaling was investigated and potential
therapeutic targets were curated for TMPRSS2-ERG fusion positive cancer,

which is likely to account for nearly 50% of prostate cancer patients. Then,



3,870 differentially expressed genes between fusion—-positive and negative
groups were identified, and pathway analysis was conducted based on these
genes. Finally, based on the drug-target database (CIViC), 55 drug candidates
were repurposed to these targets, and in vitro experiments discerned the six
drugs from previous candidates which were effective to fusion positive

cancer [44].

Taken together, all these three studies identified target genes and
pathways via DEG analysis and pathway analysis. Based on the public
transcriptomic data (GEO, TCGA), significantly altered genes were selected
and, pathway analysis was conducted based on these DEGs to investigate

cellular processes.

In RUNX1-RUNXIT1 fusion and TMPRSS2-ERG fusion studies, in
vitro experiments were also performed to verify the reliability of target
pathways and genes found in silico, and it was successfully validated because
a fraction of drugs successfully reduced the proliferation of fusion positive
cancer cell by inhibiting the targets [42, 44]. From this point of view,
bioinformatic analysis commonly used in previous drug repurposing studies is
effective in identifying putative target genes and pathways and can prioritize

some effective drug candidates which can be utilized in further experiments.

However, these fusion positive cancers have been analyzed
individually only in a very limited number. With the development of deep
sequencing and detection algorithms, more than 90% of 10,000 fusion genes
have been identified within the last 5 years, and the cellular mechanism has
not been fully identified since most of the fusion genes have been recently

discovered [38, 45].



If the aforementioned computational analysis is performed for each
fusion positive cancer, it will take a long time and not be easy to reproduce
for some clinicians and cancer researchers who lack bioinformatic or
programming skills. Furthermore, it will require more effort and time to
change some experimental conditions or update numerous, complex
databases. Therefore, interactive web-resource can help these researchers
to access various types of complex databases and investigate the molecular

pathological characteristics easily.
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Chapter 3 DRPORTAL: A Web—Portal for
repurposing potential drug candidates in

fusion positive cancer

3.1 Introduction

Next—-generation sequencing (NGS) and microarrays are examples of
recently developed high throughput technologies that have allowed cancer
researchers to investigate molecular alterations in DNA, RNA, and proteins
on a massive scale [46-48]. Using numerous data platforms (including DNA
methylation and copy number, as well as RNA and protein expression), the
Cancer Genome Atlas (TCGA) collaboration has constructed molecular
profiles of over ten thousand samples linked to 33 types of cancer, generating
a large number of studies including the genomic and molecular

characterization of individual cancer types [49-68].

Clinicians and researchers who lack bioinformatics abilities have
difficulty to undertake in—depth analysis of TCGA cancer genomics data due
to its massive complexity and accessibility in diverse data formats. Numerous
analytical platforms have been developed in order to facilitate fundamental
data queries. cBioPortal is one such application that allows users to input
gene sets for a specific type of cancer. cBioPortal provides RNA level
expression data, mutation events, copy number variations, protein expression
by Reverse Phase Protein Array (RPPA), a survival plot, and a list of co-

expressed and mutually expressed genes for each gene that is queried. Other



tools like as miRGator v3.0 [69], TANRIC [70], and ISOexpresso [71] can be
used to examine differential expression of specific biomolecules including
miRNA, lincRNA, and transcript isoforms. Using TCGA data, the Gene-Drug
Interaction for Survival in Cancer (GDISC) [72] web platform evaluates the
effect of gene—-drug interactions on various cancer types. The Stanford
Cancer Genome Atlas Clinical Explorer (Stanford—-TCGA-CE) [73] aids in the
detection of associations between genomic/proteomic characteristics and
clinical parameters, hence easing the identification of clinically relevant
genes. PROGgeneVZ2 enables extensive survival analysis of publicly
accessible gene expression data, such as TCGA [74]. Using TCGA and other
public ¢cDNA, Affymetrix, and I[llumina microarray data, Oncomine [75, 76]

offers an interactive platform for gene expression profiling.

Researchers have created various computational tools to assist them in
conducting specific analyses of TCGA data.; however, there is need for new
tool to analyze the molecular pathological features across a large number of
fusion positive cancer (n=9,950). Due to the specificity of fusion genes in
cancer, some of them have been developed as cancer biomarkers. Since over
9,000 fusion genes have been discovered in last 5 years, 90% of them lack

functional insights and applicable drugs.

Here, we report DRPORTAL (Figure 1-2), an easy to use, interactive
web-portal to investigate potential therapies targeting 9,950 fusion genes
based on new bioinformatical strategy. DRPORTAL utilizes TCGA level 3
RNA-seq and clinical profiles from 33 cancer types. The web resource
systematically infer potential drug candidates in fusion positive cancer in four
steps: 1) we first extract fusion expression correlated genes as well as age,

sex, survival status, TNM cancer stages or other clinical features across



fusion positive and negative tumor samples, and 2) select oncogenic signaling
pathways containing those genes; and 3) construct a drug—target network
using the CIViC and OncoKB database, and 4) finally, prioritize suitable

cancer drugs.

This resource serves as a foundation for validating fusion genes
through computer simulation and discovering potential drug candidates. Thus,
DRPORTAL could be extremely helpful in accelerating fusion—positive cancer

research.
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3.2 Materials and Methods

3.2.1 mRNA expression data

Gene level 3 (RNA-seq by expectation—maximization, RSEM) mRNA
expression with normalized read count values of 33 TCGA cancer types was
obtained from the Broad GDAC Firehose website
(https://gdac.broadinstitute.org). “illuminahiseq_rnaseqv2
RSEM_genes_normalized (MD5)” files were obtained for primary solid tumor
for each cancer. This file includes gene expression values estimated by
RSEM algorithm for 20,531 genes; Each column represents the patient 1D,
while each row represents the entrez gene ID. Related clinical feature data,
including information about age, sex, mutation annotation format (MAF) files,
molecular subtypes, and tumor—-node-metastasis (TNM) stages, were

obtained from the website mentioned above.

3.2.2 Case—control selection and Differential Expressed Genes analysis

RNA expression data from TCGA were made into a two—-dimensional
matrix composed of the selected fusion tumor samples and control tumor
samples. I downloaded 9,950 fusion gene samples using the TCGA fusion
gene data portal (The Jackson Laboratory, https://www.tumorfusions.org).
For control tumor sample selection, 50 samples were randomly selected
among the samples with low fusion gene expression (less than the median
value of reference gene RNA expression). [ used two different statistic

methods to select differentially expressed genes between two tumor groups.



First, Wilcoxon rank sum tests were performed between fusion-
positive and fusion—negative patients to select genes in coordination
with fusion gene in the RNA expression. Then, above tests were repeated 100
times. Based on the median of p—values from 100 tests, 20,531 genes were
sorted in decreasing order and selected only when it satisfies “cut-off” over
80 times among 100 tests. Using this condition, mostly affected genes were

selected by “cut-off” p—value (default adjusted p-value < 0.01).

Second, Pearson correlation tests were performed in fusion—-positive
and fusion—negative cases to obtain R-values of 20,531 genes in correlation
with fusion gene **in RNA expression. Then, above tests were repeated 100
times also. Based on the median of absolute R values from 100 tests, 20,531
genes were sorted in decreasing order. Using the median of absolute R values,
mostly affected 2,505 genes were selected by correlation cut—off (default

R>0.2).

3.2.3 Identification of key altered genes via ConsensusPathDB (CPDB) and

Over-representation analysis (ORA)

Pathway enrichment analysis is useful for researchers to gain an
understanding of the underlying mechanisms of gene lists obtained from
large-scale (omics) experiments, particularly DEGs (Differentially Expressed
Genes). This approach is used to find biological pathways that have more
genes from a given gene list than what would be expected by random chance.
ConsensusPathDB  (http://consensuspathdb.org/) is a meta—database
combining interactions of diverse types from 31 public resources for humans.

According to BioCarta (http://www.biocarta.com/], 177 biological pathways



were combined from the following sources: INOH, KEGG, NetPath, PID,
Reactome and Wikipathways. Using ConsensusPathDB, researchers commonly
evaluate lists of genes, proteins, and metabolites against sets of molecular
interactions defined by pathways, Gene Ontology and network neighborhoods
and retrieve complex molecular neighborhoods formed by heterogeneous

interaction types.

The aforementioned differentially expressed genes were used to
perform over-representation analysis (ORA), pathway analysis, using
ConsensusPathDB. In over-representation analysis, the p—value is determined
using the hypergeometric distribution which reflects the significance of the
observed relationship between the input gene list and the members of the
pathway in comparison to random expectations. Analyzing the ontological
features and the proportion of duplicated genes, the pathways enriched with
chosen differentially expressed genes were collapsed into cancer-related

pathways, having key altered genes as components.

3.2.4 Inferring and prioritizing actionable drugs via CIViC and OncoKB

The “Clinical Evidence Summaries” data, released on 1 December
2021, were downloaded from the Clinical Interpretations of Variants in
Cancer (CIViC) website (https://civic.genome), and the “Actionable Variants”
data were accessed and downloaded on 1 December 2021 from the OncoKB
website (http://oncokb.org/). Each drug database comprise 3,374 actionable
variations (470 genes) and 670 variants (161 genes). CIVIC is a
knowledgebase that is created by a combination of experts and the public to

provide information about the significance of inherited and somatic variants in



cancer treatment, diagnosis, prognosis, and predisposition. OncoKB also
annotates the biologic and oncogenic effects and prognostic and predictive
significance of somatic molecular alterations. The information about the
potential treatment impact of a specific molecular alteration is sorted
according to the level of evidence that it can predict drug response. The
evidence 1s based on the labeling and guidelines of the US Food and Drug
Administration, National Comprehensive Cancer Network, recommendations

of disease—focused expert groups and scientific literature.

OncoKB database is from MSKCC (Memorial Sloan Kettering Cancer
Center), and CIViC database is from Washington University. As such, these
are all databases curated by experts, and in our experience, when comparing
the above two databases with experimental studies and literature reviews, the

results were more than 95% accurate.

A clinical evidence statement is a piece of information that has been
carefully selected from reliable medical literature, it refers to the variant or
genomic event that has an impact on cancer predisposition, diagnosis,
prognosis, or the prediction of response to therapy, that has been manually
curated. Evidence level in each database describes the robustness of the

study supporting the evidence item.

In CIViC database, five different evidence levels are supported: “A -
Validated association”, “B - Clinical evidence”, “C - Case study”, “D -
Preclinical evidence”, and “E - Inferential association”. Clinical evidence A
drugs have a proven or clinical consensus on the variant association in human
medicine. Typically, these evidence items describe Phase III clinical trials or

have associated companion diagnostics. Clinical evidence B drugs have



typically large clinical trials or other primary patient data supporting the
clinical association. These evidence items usually include more than 5

patients supporting the claim made in the evidence statement.

In OncoKB database, four different evidence levels are supported: “1 -
FDA-approved drug as FDA-recognized”, “2 - FDA-approved drug as
standard care”, “3 - Compelling clinical evidence”, and “4 - Compelling
biological evidence”. Level 1 drugs are FDA-recognized biomarker
predictive of response to an FDA-approved drug in this indication. Level 2
drugs are standard care biomarker recommended by the NCCN or other
professional guidelines predictive of response to an FDA-approved drug in

this indication.

Thus, exploiting the drugs that have high clinical evidence level in
both drug-target database, a total of 740 CIViC (level A -Validated
association, level B —Clinical evidence) and 182 OncoKB (level 1 - FDA
approved drug as FDA-recognized, level 2 — FDA approved drug as standard

care) drugs were matched to key altered genes and fusion-related pathways.

Then drug-target relationships were prioritized based on the scenario
that properly working cancer drugs are generally inhibitors for activated

oncogenes or activators for down-regulated tumor suppressor genes.

3.2.5 Statistical analysis and data visualization

All statistical analyses, including the Pearson correlation tests,
Wilcoxon rank sum test, and Over-representation analysis were performed

using the open software Python 3.10.9. SciPy (https://docs.scipy.org/), a



Python package, a collection of mathematical algorithms and convenience
functions built on the NumPy extension of Python was used for statistical
analyses. Plotly.js, Open—-Source Graphing Libraries was used to visualize an
RNA expression heatmap and all the other graphical figures. The
comprehensive network between targetable drugs and therapeutic agents was
analyzed and illustrated using Cytoscape 3.5.3. Also signaling pathways and
overlapped genes network is also visualized by Cytoscape. In this study,
statistical significance was determined as a p-value of 0.05 and false

detection rate (FDR) as a g-value of 0.01.

3.2.6 Web—application development via software programming languages

Front-end software engineering was developed by open—-source
library, React.js, more commonly known as React, is a free, open—source
JavaScript library. It works best to build user interfaces by combining
sections of code (components) into full websites. Building rest APIs of back-
end software engineering was developed by open—-source library, Fast API, a
new, high-performance web framework for creating APIs in Python 3.7 or
later. It uses Python's standard type hints to build the API. The server that is
used to host the service was created by AWS (Amazon Web Services), which
1s a wide-ranging and constantly developing cloud computing platform offered
by Amazon. It includes a combination of Infrastructure-as—a-Service (IaaS),

Platform—-as—a-Service (PaaS), and Software—as—a—-Service (SaaS) options.



3.3 Result and Discussion

3.3.1 Clinicopathological characteristics

First, the clinicopathological characteristics of fusion—-positive and
fusion—negative patients among total cancer patients in Broad GDAC Firehose
were analyzed. By comparing cancer-related parameter such as age, sex,
alive status, Tumor Node Metastasis stage, and Mutation Annotation Files,
researchers were able to analyze specific clinical features of fusion positive

cancer patients among other control patients (Figure 3).
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index Category Fusion Positive Fusion Negative P
* * (N=T7) (N=186) value
1 Age 4647 31~90 NS
2 Male(sex) 3/5(60.0%) 68/121(56.2%) 1
3 Female(sex) 2/5/(40.0%) 53/121(438%) 1
4 Aive 5/5(100.0%) 101/121(83.8%) NS
5 Dead 0/5(0.0%) 20/121 (165%) NS
6  Stagel 0/4(0.0%) 20/116(17.2%) NS
7 Stage2 2/4(50.0%) 48/116 (41.4%) NS
8 Staged 2/4(50.0%) 33/116(28.4%) NS
9 Staged 0/4(0.0%) 15/116 (13.0%) NS
10 TPS3mutation 3/4(75.0%) 113/186(60.8%) NS
11 KRAS mutation 1/4(25.0%) 80/186(19.4%) NS
12 PIK3CAmutation 377 (42.9%) 50/186(43.0%) NS

Figure 3. DRPORTAL output page listing clinicopathological characteristic of fusion positive and negative patients. It comprises age, sex, alive status, TNM
stages, and mutation information.
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3.3.2 Key genes and pathways altered in fusion—positive cancer

Differentially expressed genes obtained by Wilcoxon rank sum test
either Pearson correlation test were inputted for performing the over-—
representation analysis (ORA) by using ConsensusPathDB to select fusion-

related cancer pathways.

[ utilized 37 cancer signaling pathways with frequent genetic variations,
with key cancer genes established in previous research (TCGA [77], KEGG
pathway [78]), and focused on pathway members likely to be cancer drivers

or therapeutic targets.

The pathways used are: (1) Adipocytokine (2) Apoptosis, (3) Axon
Guidance, (4) Bladder cancer, (5) Brest cancer, (6) Carcinoma, (7) Cell cycle,
(8) Colorectal cancer, (9) EGFR, (10) Endometrial, (11) ErbB, (12) FGFR, (13)
Gastric cancer, (14) Hippo, (15) Irinotecan, (16) JAC-STAT, (17) Leukemia,
(18) Lung cancer, (19) Melanoma, (20) Metabolism, (21) MicroRNAs, (22)
Migrations, (23) Migration, (24) Notch, (25) P53, (26) Pathways in cancer, (27)
PI3K, (28) Prostaglandin, (29) Prostate cancer, (30) SCF-KIT, (31) Stem cell,
(32) Thyroid cancer, (33) TNF, (34) TP53, (35) Tyrosine kinase, (36) VEGF,
and (37) WNT.

Fusion-related cancer pathways were discerned among these 37
cancer-signaling pathways and hypergeometric distribution p-value was
exploited for ORA (g-value < 0.01). As a result, Figure 4 comprises key

altered genes which were enriched in fusion-related cancer pathways.

Gene expression heatmaps of obtained cancer-related pathways
correlated with fusion mRNA expression were visualized in Figure 5. The x-

axis is indicative of the sample, while the y—axis is indicative of its respective



RNA expression. The RNA expression was converted into z—score prior to

representation on the heatmap.

Putative target genes involved in multiple cancer-related pathways of
fusion—-positive cancer were visualized via Cytoscape (Figure 6). These genes
are important for tumor proliferation and maintenance specific to fusion-
positive patients. Putative target genes involved in multiple pathways were

organized in Figure 7.
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3.3.3 Identification of actionable targets and potential therapeutic choice using

network analysis

Actionable target genes and drugs that have high clinical evidence
were extracted by mapping key altered genes from pathway analysis in the
following drug databases. Drug-target network was visualized based on CIViC
(n=673) and OncoKB (n = 262) databases (Figure 8-9): Yellow boxes, drugs;
red circles, genes that are over—expressed in fusion—positive cancer; green
circles, genes that are under—expressed in fusion—positive cancer. Drug-
target table comprises putative target genes, target pathways, actionable

drugs, clinical evidence of drugs and original indication of cancer drugs.

However, there are three classes for activation signaling including
hotspot mutation, amplification, and overexpression. For this study, RNA
sequence-based overexpression was considered an activating signal. CIViC
and OncoKB drug database provides information on the relationship between
the activating signaling (three classes mentioned above) and available drugs.
For example, MET activating mutations are including amplification, over-
expression, and activating point mutations and the three class of mutations
are mostly sharing target—drug sensitivity (capmatinib, tepotinib). So, the
three types of mutations were considered as showing similar target—drug
sensitivity in silico level. Although the sensitivity of the drugs may differ
according to the various types of signal activation, the purpose of this study
1s to enroll as many drugs with high potential as possible. It would be ideal for
these hypotheses to be validated with further additional experimentations.
However, the scope of this study does not encompass validation experiments

and will take into consideration for future studies.
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3.3.4 Discussion

There are numerous web portals for drug repurposing in cancer

previously. Drug Repurposing Hub (http://www.broadinstitute.org/repurposing)

has manually curated collection of 4,707 experimentally validated drugs. The
collection includes 3,422 drugs that are marketed worldwide or tested in
human clinical trials. DrugSig

(https://biotechlab.fudan.edu.cn/database/drugsig) is a drug response gene

signatures database containing more than 1,300 drugs, 7,000 microarray and

800 targets. RepurposeDB (http://repurpsedb.dudelylab.org) is a collection of

253 repurposed drugs, drug target and diseases, which was assembled,

indexed, and annotated from public data. DrugCentral (http://drugcentral.org)

integrates structure, bioactivity, regulatory, pharmacologic actions, and
indications for around 4,444 active drugs approved by regulatory agencies.

KsRepo  (http://github.com/adam-sam-brown/ksRepo) interrogates any

case/control disease study expression profile. Researchers can use any pair
of disease expression dataset and compound exposure database with the
constraint that they are mappable to a single, common identifier system.

DeSigN (http://design.cancerresearch.my) can be used to identify drugs with

unknown efficacy against cancer cell lines. It consists of a set of differentially
expressed genes (DEG) signatures, a pattern—-matching algorithm and
reference database. RE:fine drugs (http://drug
repurposing.nationwidechildrens.org/search) is an interactive website for
search and discovery of drug repurposing candidates from GWAS and

PheWAS repurposing datasets.



However, previous drug repurposing portals generally provide
database related to pharmacologic indications and drug response gene
signatures. And some of them have tried to discover prognosis-related
biomarkers using differentially expressed genes (DEGs) analysis. To our best
knowledge, our study differs from previous strategies in two respects. First,
the purpose of this study is to discover novel targets and therapeutics related
to original mutations by analyzing downstream pathways and genes affected
by target mutations that cannot be directly targeted. Second, our study is
based on a structural variation (fusion by DNA structural variation) that is a
driver mutation in fusion positive cancer. As consequence, almost all genes
correlated with gene fusion are downstream-level genes affected by fusion.
In this aspect, our study is different from other studies, and, for example, it is
not clear whether prognosis-related biomarkers found by previous portals

are primary driver or is affected by other drivers in those approaches.

In addition, even though a large number of fusion genes have been
identified to have oncogenic function and successfully developed as
therapeutic targets, most of them confronts obstacles due to the absence of
high throughput analyzation tool. Although only a limited number of them have
been studied in previous research, over 9,000 fusion genes lack functional
insights and druggable targets. Thus, there remains a need for fast and
reliable bioinformatic web-resource allowing cancer researcher to examine

biological backgrounds of fusion positive cancer.

By providing an interactive web-resource, all researchers can
investigate the landscape of molecular signaling and curate potential
therapeutic agents for any fusion positive cancer regardless of their

bioinformatics abilities. DRPORTAL can suggest three main utilities to cancer



researchers, clinicians and pharmaceutical company researchers

First, for fusion genes that cannot be directly targeted, DRPORTAL
can search for new druggable targets and applicable therapeutic agents. In
addition, it can also help to expand molecular pathological insights into fusion
gene by identifying genes and cell signaling affected by the fusion gene.
Besides, for fusion genes that targeted drugs already exist, DRPORTAL can

suggest other drug candidates that can act synergistically in combination.

DRPORTAL also allows researchers to easily conduct analysis and
customize various parameters, such as the statistical techniques used and the
cut—-off values. Also, the ability to visualize the results interactively through
graphical figures is also useful, as it can help researchers better understand

and interpret the results.

Finally, since all processes and database linkage are automated, even
if there is an update to the gene expression profile, fusion gene, signaling
pathways, and drug-target database, researchers can continue the analysis
without any extra effort. It is certainly true that automating processes and
linking them to databases can make research more efficient, as it can
eliminate the need for manual data entry and reduce the potential for errors.
Automation can also help researchers save time, as they can focus on other
aspects of their work rather than having to spend time on data management

tasks.

In summary, DRPORTAL will be able to maximize the speed of drug
repurposing research on fusion positive cancer for clinicians, biologists, and

pharmaceutical company researchers.

Since DRPORTAL identifies targets and drug candidates within in silico



level, further experimental validation 1s needed. However, in vitro
experiments were previously performed on computationally identified targets,
and confirmed the proliferation of fusion positive cancer cell was successfully

reduced by inhibiting these targets.

Rationally designed targeted therapies are likely to have solid
scientific basis [79]. This can be supported by the large number of molecular
targeted drugs that have already been approved and successfully used. (A
drug targeting BCR-ABL in chronic myeloid leukemia [80], c-kit in
gastrointestinal stromal tumors [81], EGFR in non- small-cell lung cancer
[82], monoclonal antibody in HERZ2 positive breast cancer [83]). However,
molecular—targeted drugs have little effect on symptom control and survival
due to genetic heterogeneous of tumors in clinical areas. In particular, it is
reported that the effect on progression—free survival of common solid tumors

usually lasts only for a few weeks to a few months [84, 85].

In summary, we believe that DRPORTAL, which has novel therapeutic
strategy specific to fusion—positive cancer, can greatly aid cancer biologists
and clinicians not only with identifying novel diagnostic and therapeutic
targets but also investigating the mechanisms of fusion gene by analyzing
various molecular—-pathological characteristics. We hope that our findings will
be the steppingstone for future investigations, leading to the promotion of a

targeted cancer therapy.



Chapter 4 Identification of new therapeutic

targets and applicable drug candidates in

ESR1-CCDC170 fusion positive breast cancer

4.1 Introduction

Breast cancer, aside from skin cancer, is the most commonly
diagnosed cancer in women worldwide [86]. Recent statistics report the
emergence of 250,000 new cases of breast cancer solely in 2017 contributing
to the 12% of women diagnosed with breast cancer in the United States [87].
Molecular classification divides breast cancer into four major classes: luminal
A, luminal B, and human epidermal growth factor receptor 2 (HER2)-enriched
(HER2-E), and basal-like subtype [87]. Among them, luminal B remains to be
the most common subtype in young women, accounting for 15-20% of total
breast cancer cases, and within luminal B, ESR1-CCDC170 fusion positive
subtype, constituting 6 to 8% of the luminal B class, persists to be the most

dominant subtype [88-95].

ESR1-CCDC170 fusion causing chimeric mRNA is known to be formed
by a tandem duplication at 6g25.1 location on coiled-coil domain containing
170 (CCDC170) adjacent to ESR1 gene [89, 96]. It has been reported that
polymorphism of CCDC170 gene correlates with breast cancer susceptibility
[97, 98]. ESR1-CCDC170 fusion-positive patients undergoing ER-positive
(ER+ ) breast cancer endocrine therapy have demonstrated reduced treatment
efficiency and growth of aggressive ER+ breast cancer [99]. Although its

effect has been studied in relation to ovarian cancer, the molecular signaling



involved in the induction of ESR1-CCDC170 fusion—-positive breast cancer

has yet to be elucidated [100].

Herein, we systematically analyze the molecular pathological features
of ESR1-CCDC170 fusion—positive breast cancer through the data analysis of
TCGA and identified the activated oncogenic pathways. In addition, putative
target genes and actionable drugs were inferred and prioritized by performing
network analysis using both transcriptomic signatures and the drug-target

databases such as OncoKB and CIViC.

4.2 Materials and Methods

4.2.1 Sample acquisition and quality control

Gene level 3 (RSEM) mRNA expression with normalized read count
values of the Cancer Genome Atlas (TCGA) breast cancer carcinoma (BRCA)
was obtained from the Broad GDAC Firehouse website
(https://gdac.broadinstitute.org). Related clinical features data including
information about the samples’ MAF files, molecular subtypes, and TNM

stages were obtained from the website mentioned above.

4.2.2 Case—-Control selection

Previous study confirmed 319 fusion genes in TCGA clinical breast
cancer tumors [101]. Unlike other in-frame fusion genes, ESR1-CCDC170 is
known as breast cancer-specific oncogenic fusion gene. Using the TCGA

fusion gene data portal (The Jackson Laboratory,



https://www.tumorfusions.org), we identified eleven samples of CCDC170
fusion, which were cross—checked with increased CCDC170 expression level.
Furthermore, only tumor samples that have the barcode O1A were selectively
chosen by disregarding other types of tumor samples, 11A (Normal) or 06A
(Metastasized). Among the remaining samples, 50 samples with the highest
expression of CCDC170 were confirmed as up-regulated controls for
analyzing the network within the non-coding region of the fusion gene. From
the upregulated control samples, 2 outlier samples were filtered out using the
IQR (Inter Quartile Range) method. The same number of controls (n=48) with
the lowest expression of CCDC170 were then selected from the remaining

samples.

4.2.3 Selection of genes affected by E:C Fusion

RNA expression data from TCGA were made into two—-dimensional
matrix comprised of the selected 11 fusion samples and 48 control samples.
Each column represents the patient ID while each row represents the gene
name. Based on the RNA expression matrix, variance tests were conducted
using independent two-sample t-tests. To select genes in coordination with
CCDC170 in RNA expression, t—-tests were performed between E:C fusion-
positive and fusion—negative cases. Mostly affected 1,000 genes were

selected (adjust p—-value < 2.0 E-0R).



4.2.4 Pathway analysis via ConsensusPathDB (CPDB) and Over—Representation

The selected 1,000 genes that correlate to the reference gene
(CCDC170) from the aforementioned RNA expression data were used to
perform over—-representation analysis (ORA) via ConsensusPathDB (CPDB,
http://cpdb.molgen.mpg.de/CPDB) using recent protocols. 113 biological
pathways were merged from the following sources, according to data from
BioCarta (http://www.biocarta.com), INOH [102], KEGG [103], NetPath
[104], PID [105], Reactome [106] and Wikipathways [107]. In consideration
of the ontological characteristics and the proportion of duplicated genes, the
pathways, which were enriched with selected 1,000 genes (g-value < 0.05),
were condensed into 15 cancer-related pathways, and their component were

184 genes.

4.2.5 Druggable pathway analysis via CIViC and OncoKB

The “Clinical Evidence Summaries” data, released on October 1, 2017,
was downloaded from the Clinical Interpretations of Variants in Cancer (CIViC)
website  (https://civic.genome.wustl.edu/releases), and the “Actionable
Variants” data was accessed and downloaded on October 17, 2017 from the
OncoKB website (http://oncokb.org/). 673 CIViC variants (181 genes) with
expected therapy efficacy 148 OncoKB actionable variants (53 genes) were
integrated. 113 CCDC170-correlated genes were matched to the CIViC and

OncoKB variants.



4.2.6 Statistical analysis and data visualization

Open software R version 3.4.3 was used to process all statistical
analysis for selecting genes correlated to CCDC170 including the variance
test and independent two-sample t-test. RNA expression heatmap was also
visualized wusing Complexheatmap, a package for R. KEGG mapper
(https://www.genome.jp/kegg/mapper.html) was used to visualize target
pathways related to DNA damage response. Cytoscape version 3.5.3 was
used to analyze and express the complex network between targetable drugs
and therapeutic agents. Our study defined statistical significance with p—value

of < 0.05 and false detection rate (FDR) with g-value of <0.001.

4.3 Results

4.3.1 Clinicopathological characteristics

We checked the clinicopathological characteristics of 11 ESRI1-
CCDC170 fusion-positive and 48 fusion negative patients amongst 1,093
breast cancer patients in Broad GDAC Firehose (Figure 10, Tablel). Two
significant differences were identified between fusion—positive and negative
patients. First, CCDC170-fusion—positive patients had a high rate of ER-
positive (90.0%) and PR positive (60.0%), whereas fusion—negative patients
displayed significantly lower rates of 15.9% and 4.7%, respectively (p < 0.05).
Additionally, HER2 immunohistochemistry (IHC) results showed significantly
higher rate of 3+ for fusion-positive patients than for patients with fusion-

negative (44.4% vs 6.5%, p < 0.05, Table 1). According to the findings above,



CCDC170-fusion—positive BRCA appears to closely resemble characteristics

typical of triple—positive breast cancer in this cohort.

Analysis for potential drugs
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Figure 10. Overall schematics. Transcriptome data for breast cancer (BRCA) was obtained from the
Broad GDAC Firehose database. Following the RNA measurement analysis of a total of 20,531 genes,
1,000 genes correlated with CCDC170 were selected. (q< 2.0 E-08). Over-representation analysis of
the 1,000 genes demonstrated significant relation to six major cancer-related pathways (p53,
ATR/ARM, hedgehog, FOXMI1, cell cycle, Aurora B). Potential gene targets and drug candidates
were isolated via drug-network analysis using a drug-target database on genes correlated to CCDC170
and literature review.



Table 1. Comparisons in clinical and pathological characteristics of ESR1-CCDC170 fusion positive,
negative BRCA patients and control cohorts. The clinical and pathological characteristics between

ESR1-CCDC170 fusion positive, negative BRCA, and control cohorts were compared.

Total control fusion p
(N=929) (N=44) ~N=10) e
age 48~70 44~68 49~72 NS
sex
- female 929 (100.0%) 44 (100.0%) 10 (100.0%)
Vital status 1
- alive 837 (90.1%) 38 (86.4%) 9 (90.0%)
- dead 92 (9.9%) 6 (13.6%) 1 (10.0%)
Stage NS
- stage ] 84 (9.1%) 1(2.3%) 1 (10.0%)
- stage Ia 68 (7.4%) 3(6.8%) 1 (10.0%)
- stage Ib 5(0.5%) 0 (0.0%) 0 (0.0%)
- stage II 4 (0.4%) 0 (0.0%) 0 (0.0%)
- stage ITa 311 (33.7%) 23 (52.3%) 2 (20.0%)
- stage IIb 215 (23.3%) 8 (18.2%) 3 (30.0%)
- stage Illa 132 (14.3%) 4 (9.1%) 2 (20.0%)
- stage ITIb 24 (2.6%) 0 (0.0%) 0 (0.0%)
- stage Illc 52 (5.6%) 3(6.8%) 1 (10.0%)
- stage Iv 14 (1.5%) 1(2.3%) 0 (0.0%)
- stage x 12 (1.3%) 1(2.3%) 0 (0.0%)
ER status 0
- positive 685 (77.2%) 7 (15.9%) 9 (90.0%)
- negative 200 (22.5%) 37 (84.1%) 0 (0.0%)
- indeterminate 2 (0.2%) 0 (0.0%) 1 (10.0%)
PR status 0
- positive 594 (67.0%) 2 (4.7%) 6 (60.0%)




- negative 288 (32.5%) 41 (95.3%) 4 (40.0%)

- indeterminate 4 (0.5%) 0 (0.0%) 0 (0.0%)
HER2 IHC 0.013

0 57 (10.6%) 8 (25.8%) 0 (0.0%)

-1+ 234 (43.4%) 11 (35.5%) 3 (30.0%)

-2+ 171 (31.7%) 10 (31.2%) 1 (10.0%)

-3+ 77 (14.3%) 2 (6.5%) 4 (40.0%)

NA 0 (0.0%) 0 (0.0%) 2 (20.0%)
subtype 0

- Basal 168 (18.1%) 40 (90.9%) 0 (0.0%)

- Her2 74 (8.0%) 4 (9.1%) 1(9.1%)

-LumA 493 (53.1%) 0 (0.0%) 4 (40.0%)

-LumB 194 (20.9%) 0(0.0%) 5 (45.5%)
PIK3CA mutation 293 (31.5.5%) 3 (6.8%) 1 (10.0%) NS
CDH1 mutation 91 (9.8%) 0 (0.0%) 1 (10.0%) NS
TP53 mutation 266 (28.6%) 29 (65.9%) 3 (30.0%) NS
BRCA1 mutation 11 (1.2%) 0 (0.0%) 0 (0.0%) NA
BRCA2 mutation 12 (1.3%) 1(2.7%) 1 (10.0%) NS




Secondly, the pathological subtype of fusion—positive patients was
found to have a high proportion of Luminal A (40.0%) and Luminal B subtype
(45.5%), while 90.9% of the 48 cases with the lowest CCDC170 expression
were found to be basal-type (p < 0.05, Table 1). Taken together, the
CCDC170 fusion-positive BRCA showed a mutually exclusive relationship

with the basal-type breast cancer cells.

On the other hand, no significant differences in the age, sex, vital
status, and TNM stage was observed between the two groups. In addition, the
five gene variants (PIK3CA, CDH1, TP53, and BRCA1/2) frequently found in
BRCA showed no significant difference between the two groups. Based on
these results, CCDC170 fusion positive BRCA patients have distinct
pathological characteristics in terms of tumor subtype and triple positive

tendency.

4.3.2 Key pathways and genes altered in E:C fusion—positive breast cancer

One thousand genes were obtained by an independent t-test (Q <
2.0E-08) and inputted for performing the Over Representation Analysis (ORA)
of the ConsensusPathDB website to select cancer-related pathways. As a
result, a total of six cancer-related pathways (pb53, ATR/ATM, FOXMI,

Hedgehog, Cell cycle, Aurora B related signaling pathways) were discerned.

In the six major cancer-related pathways, 137 genes were
significantly over— or under—-expressed in the CCDC170 fusion—positive cases
compared to the CCDC170 fusion—-negative controls. (Figure 11, Supplement

1.
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Figure 11. Gene expression heatmap of cancer-related pathways correlated with CCDC170 RNA
expression. Of the analyzed genes, 72 of genes associated with P53, ATR/ATM, FOXM1, hedgehog,
and aurora demonstrated significant differences in expression in CCDC170 fusion-positive BRCA
samples when compared to the control group. Over-representation analysis using CPDB yielded
statistically significant pathways related to cancer (q < 0.05). The x-axis is indicative of the sample,
while the y-axis is indicative of its respective RNA expression. The RNA expression was converted
into z-score prior to representation on the heatmap.
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Of the six pathways, two concerning pb3 and ATR/ATM-related
signaling pathway were associated with DNA damage response. Mapping with
the KEGG pathway revealed 22 genes that are involved in the p53-related

pathway and 17 genes, the ATR/ATM-related pathway. Both pathways are

highly relevant to the promotion and maintenance of the cell cycle (Figure 12).

Genes with multiple hits of more than 2 that coincide for both, p53 and
ATR/ATM-related signaling pathways, are CCNA2(CycA), MDM2,

CHEK1(Chk1), CHEK2(Chk2).
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Figure 12. Over- and under-expressed genes are enriched in human cell cycle pathway. The KEGG
pathway map for the human cell cycle signaling pathway, has04110, was visualized using the KEGG
Mapper. Among the pathways, p53 and ATR/ATM shared significant correlation with the identified
genes; genes associated with p53 signaling pathway are boxed in yellow, ATR/ATM, in orange, and
common denominators for both pathways, in purple.



For genes with hits of more than 3 with implications of its role in
multiple pathways, 39 genes were identified (Figure 13). Of which, AURKRB,
HDACZ2, PLK1, CENPA, CHEK1, CHEKZ, RB1, and MDMZ2 were included in at
least three pathways that are important for tumor proliferation and

maintenance specific to ESR1-CCDC170 fusion positive BRCA patients.

Further investigation of the 48 samples of highest mRNA levels of
CCDC170 with the Differentially Expressed Gene (DEG) analysis showed
similar patterns as the TCGA data obtained above in fusion—-positive samples
when compared to the control samples (Supplementary Figure 2). This
suggests that similar cell signaling is activated not just with fusion but other

possibilities in CCDC170 overexpression.
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Figure 13. Putative target genes involved in multiple pathways of ESR1-CCDC170 fusion-positive
cancer. 6 major cancer signaling pathways associated with p53, ATR/ATM, FOXM1, hedgehog, cell
cycle and aurora B in accordance with its respective genes were visualized. Potential gene candidates
involved in these pathways were discerned.
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Figure S2: Heatmap of cancer-related and other miscellaneous genes with altered expression
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4.3.3 Identification of actionable targets and potential therapeutic choice using

network analysis

Actionable target genes and potentially available drugs were extracted
by inputting the 137 genes in the following drug databases, CIViC (n=673) and
OncoKB (n=262). ESR1, CDK4, RAD50, CHEK1, MDM2, and SMO were
mapped as targetable genes. Results indicated the following drug-target
relationship: letrozole, palbociclib, fulvestrant, AZD9496, tamoxifen for ESR1;
palbociclib, alpelisib, ribociclib, dexamethasone for CDK4; checkpoint kinase
inhibitor AZD7762, irinotecan for RAD5O0; cisplatin, prexasertiv, olaparib for
CHEK1; milademetan tosylate, RO5045337 for MDMZ2; PSI, vismodegib,

patidegib, arsenic trioxide for SMO (Figure 14).
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Figure 14. Drug-target network of ESRI-CCDC170 fusion-positive BRCA cancer. Network
visualization was demonstrated with Cytoscape, and drug-target relation was identified with Civic and

OncoKB. Green boxes are representative of pathways, white boxes, of drugs, and oval boxes, of genes.

Red, oval boxes are genes that are over-expressed in fusion-positive cancer whereas blue, oval boxes
are genes that are under-expressed in fusion-positive cancer.



Observing the druggable target genes associated with the main
pathways of E:C fusion—-positive BRCA, ESR1, CDK4 genes were included in
the FOXM1-related signaling pathway, RAD5S0 in the ATR/ATM-related
signaling pathway, CHEKI1l, MDM?Z2 genes in the P53-related signaling
pathway, CDK4, RAD50, and MDM2 genes in the cell cycle-related signaling
pathway, and SMO genes in the hedgehog-related signaling pathway.
Interestingly, four of the six targetable genes, CDK4, RAD50, CHEK1, and
MDM?2 were involved in two or more major cancer-related pathways. In the
case of MDM2, three of the six pathways associated with E:C fusion—positive

were 1dentified to be involved.

4.3.4 Discussion

In this study, characteristics concerning ER-positive molecular
subtype in CCDCI170-subtype breast cancer was identified, and genes
specifically regulated in E:C BRCA were identified and screened for BRCA-
cancer related signaling pathways. Also, information regarding optimal
treatment targets and drugs for targeted therapy were provided. E:C fusion-
positive BRCA requires a new therapeutic approach to overcome its relatively

low response to hormone therapy [91, 99, 108-110].

A recent study on the potential targeted therapy for E:C BRCA
performed by Li et al. was met with limitations with regards to a restricted
number of cell line samples and proteins [99]. Our study has addressed this

issue by performing analysis on a sufficient number of case-control using



TCGA human cancer samples and systematically testing the DEGs using more
than 20,000 genes and cancer specific pathways. Finally, we were able to

propose a number of potential drugs with promising therapeutic effects.

The common early treatment options for breast cancer are generally
divided into conventional chemotherapy (i.e., Adriamycin, cyclophosphamide,
paclitaxel, docetaxel), endocrine therapy (tamoxifen, letrozole, anastrozole,
exmenestane), ERBB-targeted therapy (trastuzumab, pertuzumab), and
combination treatment methods according to the pathological and molecular
classification of breast cancer [87]. In case of metastatic breast cancer,
CDK4/6 inhibitor and PARP inhibitor are considered to be additional options

[87].

Among repositioned drugs inferred in our study, CDK4/6 inhibitor
(Palbociclib), cisplatin, and PARP inhibitor are the drugs used as standard
treatments for breast cancer patients with or without metastasis. On the other
hand, AZD9496, alpelisib, dexamethasone, checkpoint kinase inhibitor
AZD7762, irinotecan, cisplatin, prexasertiv, milademtan tosylate, R0O5045337,
PSI, vismodegib, patidegib, and arsenic trioxide are seen as putative
actionable drugs that can be used for E:C fusion positive BRCA proceeding

in—-vitro and in—vivo validation.

AURKB, HDACZ, PLKI, CENPA, CHEKI, CHEKZ, RBI, and MDM?Z
genes, which were included in at least three pathways, are expected to play
an important role in the promotion and maintenance of CCDCI170 subtype
breast cancer [111]. For instance, PLKI may act as a tumor suppressor
gene that regulates estrogen receptor (ER)-regulated gene transcription in

breast cancer; KB gene, also a tumor suppressor gene, however, frequently



lost in triple-negative breast cancer [112]; CENPA 1s a significant
prognostic marker for ER-positive patient [113]; HDACZ2 and CHEKZ genes
have been significantly correlated to CCDC170 fusion—-subtype and have been
reported to be associated with DDR functioning [114, 115], which is also

suggestive of CCDC170 fusion subtype’s relation to DDR.

In summary, this study presents core biomarkers and potentially
actionable drugs specific to E:C fusion—positive breast cancer. Via in-vitro
experimentation, these candidates were confirmed to be strongly associated
with this type of cancer and their roles were verified by discerning its
assoclated signaling pathways. We hope that our findings will be the
steppingstone for future investigations leading to the promotion of targeted

cancer therapy.



4.4 Conclusion

Amongst the various types of breast cancer, luminal B subtype is the
most common in young women, and £SRI-CCDC170 (E:C) fusion is the most
frequent oncogenic fusion driver of the luminal B subtype. Nevertheless,
treatments targeting E:C fusion has not been well established yet. Hence, the
aim of this study is to investigate for potential therapies targeting E:C fusion
based on systematic bioinformatical analysis of The Cancer Genome Atlas
(TCGA) data. 1,000 genes related were extracted using transcriptome
analysis, and major signaling pathways associated with breast cancer were
identified with over-representation analysis. Then, we conducted drug-target
network analysis based on OncoKB and CIViC database, and finally selected
potentially applicable drug candidates. Six major cancer-related signaling
pathways (p53, ATR/ATM, FOXM]1, hedgehog, cell cycle, and Aurora B) were
significantly altered in E:C fusion positive cases of breast cancer. Further
investigation revealed that eight genes (AURKB, HDACZ PLKI, CENPA,
CHEKI, CHEKZ RBI1, and MDMZ) in coordination with E:C fusion were found
to be common denominators for three or more of these pathways, thereby
making them promising gene biomarkers for target therapy. Among the 21
putative actionable drugs inferred by drug-target network analysis,
palbociclib, alpelisib, ribociclib, dexamethasone, checkpoint kinase inhibitor
AXD 7762, irinotecan, milademtan tosylate, RO5045337, cisplatin, prexasertib,
and olaparib were considered as promising drug candidates targeting genes

involved in at least two E:C fusion-related pathways.



Chapter 5 Investigation of cell signalings and
therapeutic targets in PTPRK-RSPO3 fusion-

positive colorectal cancer.

5.1 Introduction

Colorectal cancer (CRC) is the third most fatal and fourth most
diagnosed cancer worldwide, according to 2018 global cancer data released
by the IARC. Approximately 2 million new cases were recorded in year 2018
alone, resulting in approximately 1 million fatalities [86, 116, 117]. With the
development of NGS technology, simultaneous detection of various mutations
in colorectal cancer has become possible, including SNV, INDEL, CNV, fusion,
and MSI [118-121]. The reason that the detection of these mutations is
important is that it can be used as a target therapy for gene mutations, for
example, EGFR-inhibitor for ARAS wildtype CRC and immune checkpoint

inhibitors for MSI-high solid tumor [122].

The efforts to develop targeted drugs for treating colorectal cancer
are increasing, however, the candidates of target drugs other signaling
pathways besides EGFR and mismatch Repair are limited. WNT signaling is
known as a major pathway in colorectal cancer and mostly is activated by
mutation of the APC gene, which plays an important role in the pathogenesis
of colorectal cancer [123-127]. Recently, PTPRK-RSPOS3 (P:R) fusion also
contributes to the activation of WNT signaling and causes colorectal cancer,
and this mutation is mutually exclusive with the AZPC mutation and is

recognized as another important mutation contributing to the development of



colorectal cancer [128-131]. Recent studies have reported that LGK974 and
RSPOS antibodies may be beneficial at in vitro and in vivo levels, however,
the development of targeted therapeutics for colorectal cancer patients with

P:R fusions is still in its infancy [132, 133].

Herein, we systematically inferred drug candidates in P:R fusion
colorectal cancer. First, we extracted RSPOS expression correlated genes
and selected oncogenic cell signal pathways containing those genes. Then,
we constructed a drug-target network in P:R fusion colorectal cancer using
the drug-target database, and finally, we prioritized a suitable therapeutic

agent.



5.2 Materials and Methods

5.2.1 Sample collection and quality control

The Broad GDAC Firehouse website (https://gdac.broadinstitute.org)
provided gene level 3 (RSEM) mRNA expression with normalized read count
values of the Cancer Genome Atlas (TCGA) colorectal cancer (CRC). The
above—mentioned website provided information on the samples' MAF files,

TNM stages, and molecular subtypes among other clinical characteristics.

5.2.2 Case—-Control selection and selection of genes affected by P:R Fusion

We found seven samples with P7PRK-RSPOS3 fusion using the TCGA
fusion gene data portal (The Jackson Laboratory,
https://www.tumorfusions.org), which were cross—checked with elevated
RSPO3 expression levels. Additionally, 372 tumor samples with the barcode
O1A were chosen, with other types of tumor samples, 11A (Normal) or
06A(Metastasized), being excluded. For control sample selection, 50 samples
were randomly selected among the samples with low RSPOS expression (less
than the median value of RSPOS3 RNA expression, N=186). To obtain R-values
of 20,531 genes in correlation with ASPOS in RNA expression, Pearson
correlation—tests were performed in seven P7TPRK-RSFPOS fusion—positive
cases and 50 controls. Then, above tests were repeated 100 times. Based on
the median of absolute R values from 100 tests, 20,531 genes were sorted in
decreasing order. Using the median of absolute R values, mostly affected

2,505 genes were selected by correlation cut—-off (R > 0.2). The R cut-off



value, 0.2, were selected based on the 100,000 permutation tests. For each
permutation test, randomly ordered expression values of a randomly selected
gene were tested using Pearson correlation test with the expression values of
reference gene (RSPO3) in 7 cases and 50 controls. After 100,000 tests,
falsely selected genes correlated with RSPO.S are assumed to be 0.37% when

the cut—off value for R was 0.2.

5.2.3 Pathway analysis via ConsensusPathDB (CPDB)

The aforementioned R-value data were used to perform over-—
representation analysis (ORA) using ConsensusPathDB (CPDB,
http://cpdb.molgen.mpg.de/CPDB) using recent protocols. 113 biological
pathways were merged from the following sources, according to data from
BioCarta (http://www.biocarta.com), INOH [102], KEGG [103], NetPath
[104], PID [105], Reactome [106] and Wikipathways [107]. Analyzing the
ontological features and the proportion of duplicated genes, the pathways
enriched with chosen 2,505 genes (g-value < 0.05) were collapsed into 10

cancer-related pathways, having 848 genes as components.

5.2.4 Inferring and prioritizing actionable drugs

The “Clinical Evidence Summaries” data was downloaded from the
Clinical Interpretations of Variants in Cancer (CIViC) website
(https://civic.genome.wustl.edu/releases) on July 1, 2021, and the “Actionable

Variants” data was accessed and downloaded from the Precision Oncology



Knowledge Base (OncoKB) website (http://oncokb.org/) on July 1, 2021.
RSPO3-crrelated genes were annotated using 673 CIViC variations (181
genes) with predicted treatment effectiveness and 148 OncoKB actionable
variants (53 genes). Then drug—target relationships were prioritized based on
the scenario that properly working cancer drugs are generally inhibitors for
activated oncogenes or activators for down-regulated tumor suppressor

genes.

5.2.5 Statistical analysis and data visualization

All statistical analyses, including the Pearson correlation—tests, were
performed using the open software R version 3.4.4. Complexheatmap, a R
package, was used to visualize an RNA expression heatmap. KEGG mapper
(https://www.genome.jp/kegg/mapper.html) was used to display target genes
associated to WN'T signaling pathway. The comprehensive network between
targetable drugs and therapeutic agents was analyzed and illustrated using
Cytoscape 3.5.3. In this study, statistical significance was determined as a p—
value of 0.05 and false detection rate (FDR) as a g-value of 0.2 in over-

representation analysis.



5.3 Results and Discussion

5.3.1 Clinicopathological characteristics

Using the Broad GDAC Firehose (Figure 15), 443 colorectal cancers
were screened for P:R fusion positive cases. 7 patients demonstrated
presence of the fusion mutation whereas the remaining 416 patients were

negative for the fusion based on the clinic-pathological characteristics (Table

2).

There showed no definite statistical significance of histological type,
age, sex, vital status and TNM stage between fusion—positive cases and
controls. Notably, no other mutation driver was identified in P:R fusion-
positive patients, showing mutual exclusiveness. However, one case of
microsatellite instability—high (MSI-H) was identified in these P:R fusion
positive patients, implying the possibility of the co-occurrence of two

oncogenic aberrations.
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Fig 15. Overall design of this study. Transcriptome data for colorectal cancer (CRC) was attained
from the Broad GDAC Firehose database. Following the RNA expression analysis of a total of 20,531
genes, 2,505 genes correlated with RSPO3 expression were selected. (R-value > 0.2, see Methods).
Over-representation analysis of the 2,505 genes showed significant relation to 10 major cancer-related
pathways (Apoptosis Related Pathway, Direct p5S3 Related Pathway, EGFR Related Pathway, ErbB
Related Pathway, JAK-STAT Related Pathway, JAK-STAT Related Pathway, Tyrosine Kinases
Related Pathway, Pathways in Cancer, SCF-KIT Related Pathway, VEGFR Related Pathway, WNT
Related Pathway). Potential targets and repurposed drugs were inferred by analyzing target-drug
associations via literature reviews and network analysis using the differentially expressed gene list

and target-drug databases.



5.3.2 Key genes and pathways altered in P:R fusion—positive colorectal cancer

By the correlations test and permutation tests (See Methods), 2,505
genes were passed the Pearson correlation—test with an R-value greater than
the cut-off value. Eighteen genes including PPP1R12B, NPY, VIP, C2orf72,
IQGAP2, SYT2, ADCYAP1, ZNF385D, SCIN, MAGEEZ, SDCBP2, AHCYLZ,
C6orfl105, ZNF229, BTNLE, SLC7A14, GPRE88, and ASTN1 showed good

correlation (R > 0.5) with RSPO3 in RNA expression (Table S1).



Table 2. Clinicopathological characteristics of PTPRK-RSPO3 fusion-positive and fusion-negative
cases in TCGA colorectal cancer.

*Fusion **Control ***p values
(N=7) (N=186)
Age 46~76 31~90 NS
Sex 1
- Male 3/5 (60.0%) 68/121 (56.2%)
- Female 2/5 (40.0%) 53/121 (43.8%)
Vital status NS
- Alive 5/5 (100.0%) 101/121 (83.8%)
- Dead 0/5 (0.0%) 20/121 (16.5%)
Stage NS
- Stage | 0/4 (0.0%) 20/116 (17.2%)
- Stage II 2/4 (50.0%) 48/116 (41.4%)
- Stage III 2/4 (50.0%) 33/116 (28.4%)
- Stage Iv 0/4 (0.0%) 15/116 (13.0%)
Microsatellite instability NS
- MSI-high 1/5 (20.0%) 18/121 (14.5%)
- MSI-low 0/5 ( 0.0%) 19/121 (15.9%)
- MSS 4/5 (80.0%) 84/121 (69.4%)
Histological type NS
- Adenocarcinoma 3/4 (75.0%) 113/120 (88.0%)
Fi



-Mucinous 1/4 (25.0%) 7/120 (12.0%)

Adenocarcinoma

Mutation profile

- TP53 mutation 3/7 113/186 NS
(42.9%) (60.8%)

- KRAS mutation 2/7 80/186 NS
(28.6%) (19.4%)

- PIK3CA mutation 2/7 50/186 NS
(28.6%) (43.0%)

- PTEN mutation 1/7 15/186 NS
(14.3%) (8.0%)

- BRAF mutation 2/7 23/186 NS
(28.6%) (12.7%)

* Samples harboring PTPRK-RSPO3 fusion

** Control group was extracted from samples demonstrating the lower median of RSPO3 mRNA

expressions.

***p-value was calculated between fusion positive samples and controls using moonBook R package.



In pathway analysis, ten different pathways were shown to be
statistically significant: apoptosis-related pathway, direct pb3-related
pathway, EGFR-related pathway, ErbB-related pathway, JAK-STAT-related
pathway, JAK-STAT-related pathway, tyrosine kinases-related pathway,
pathways in cancer, SCF-KIT-related pathway, VEGFR-related pathway, and
WNT-related pathway. Of these pathways, the P:R fusion-positive cases in
comparison to the P:R fusion—negative control demonstrated 848 significantly
over— or under—expressed RNA expressions of 848 genes (Figure 16-17 and

Figure S3-S4 ).
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Fig 16. Gene expression heatmap of 7 cancer-related pathways enriched with genes that were
correlated to RSPO3 in RNA expression. A total of 256 genes associated with Apoptosis, Direct p53,
EGFR, ErbB, SCF-KIT, VEGFR, WNT signaling showed significant differences in expression
between RSPO3 fusion-positive colorectal samples and the control samples (see details in methods).
The RNA expression was transformed to z-score. The x-axis represents the sample, and the y-axis
represents the RNA expression.
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Among the 848 genes, 36 genes were annotated as cancer genes using
the cancer gene census database offered by the
CatalogueOfSomaticMutationsInCancer DB (COSMIC,
https://cancer.sanger.ac.uk). Of these, ten genes from highest R-values were
as follows: ALK, ACSL3, AXINZ, PTPRK, CDX2, MYC, TP53, GNAQ, ACVRZA,
and FAS. RSPOS3-correlated cancer genes involved in more than four
pathways were as follows; JUN was involved the most in 9 of 10 pathways,
APC, 6 pathways, AXINZ, 5 pathways, FGFRZ, 5 pathways, JAKZ, 7 pathways,
MDM?Z 5 pathways, MYC, 9 pathways, RACI, 8 pathways, and lastly, 7753, 7
pathways. In addition, 4 genes were associated with 4 pathways, 4 genes in 3
pathways and 7 genes in 2 pathways (Figure S5). Amongst these genes, those
with a correlation R-value greater than 0.3 were ALKR=0.44),
ACSLAR=0.43), AXINR=-0.38), MYC (R=-0.34), 7TP53 (R=-0.33), GNAQ
(R=0.31), ACVRZ2A (R=0.31), and FAS (R=0.31).
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5.3.3 Identification of actionable targets and potential therapeutic choice using

network analysis

By matching the 848 genes included in the 10 pathways associated
with P:R fusion—-positive colorectal cancer using the CiVIC database and
OncoKB, we were able to infer 673 and 262 drugs to have actionable target

potential.

In the CIViC database, following 19 genes among 848 genes were
related with actionable drugs: ALK, FGFR2, TP53, HIF1A, EPAS1, KRAS,
CEBPA, NOTCH1, STK11, JAKZ, PGR, RAD50, PIK3R1, CDKNI1B, NQOI,
NT5E, MAP2K1, GNAQ, and PTEN. ALK was identified to be a class A-type
drug (Proven/consensus association in human medicine) which can be
targeted using crizotinib, alectinib and ceritinib. In other class—type (B, C, D,
and E) gene-drug association, additional thirteen drugs were found,
considering the scenario for inhibitors for activated oncogenes or activators

for down-regulated tumor suppressor genes (Figure 18A).

When using the OncoKB database, 4 genes (KRAS, FGFR2, ALK, and
JAK?2) were identified and they were all included in the inferred results using
CIViC database. Level 1 drugs (FDA-recognized biomarker predictive of
response to an FDA-approved drug) for target genes are as follows: lorlatinib,
brigatinib, crizotinib, ceritinib, alectinib for ALK; erdafitinib, infigratinib,
pemigatinib for FGFR2; sotorasib for KRAS. These cancer drugs appeared to

be inhibitors for activated oncogenes (Figure 18B).

Of 19 druggable genes, five were involved in the multiple pathway:

FGFR2 for 5 cancer-related pathways (gastric cancer pathway, VEGFR



related pathway, tyrosine kinases, stem cell, and pathways In cancer); JAKZ2
for 7 cancer-related pathways (JAK-STAT pathway, adipocytokine, VEGFR
related pathway, SCF-KIT, pathways in cancer, tyrosine kinases pathway,
and stem cell pathway); ALK for 2 cancer-related pathways (VEGFR related
pathway and pathways in cancer); HIFIA for 2 cancer-related pathways
(VEGFR related pathway and pathways in cancer); S7K/712 for 2 cancer-—
related pathways (adipocytokine-related pathway, energy metabolism-related

pathway).
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Fig 18. Inferred drug-target network in PTPRK-RSPO3 fusion-positive colorectal cancer. Drug-target
relation was obtained based on CIViC and OncoKB databases: white boxes, drugs; circles, underlined
white boxes, substitute drugs; genes; red circles, genes that are over-expressed in fusion-positive
cancer; blue circles, genes that are under-expressed in fusion-positive cancer. The red lines are
prioritized drug-target relationships based on the scenario that properly working cancer drugs are
generally inhibitors for activated oncogenes or activators for down-regulated tumor suppressor genes.
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5.3.4 Discussion

In this study, drug candidates were 1dentified in P:R fusion colorectal
cancer as follows. First, genes correlated with RSPO3 RNA expression were
extracted, and oncogenic cell signaling pathways including these genes were
selected. We then used the drug target database to build a drug target
network in P:R fusion colorectal cancer and prioritize suitable therapeutics
(Fig 4). As a result, this study is expected to provide an opportunity to try a
wider range of therapeutics in colorectal cancer, where EGFR inhibitors and

ICI are limitedly used as targeted therapeutics [107].

Previous studies that systematically explore gene biomarkers with
bioinformatics analysis in colorectal cancer have focused on discovering
prognosis—-related biomarkers using differentially expressed genes (DEGs)
analysis and machine learning techniques [134, 135]. To our best knowledge,
our study differs from previous studies in two respects. First, the purpose of
this study is to discover novel targets and therapeutics related to original
mutations by analyzing downstream pathways and genes affected by target
mutations that cannot be directly targeted. Second, our study is based on a
structural variation (P:R fusion by DNA structural variation) that is a driver
mutation in colorectal cancer. As consequence, almost all genes correlated
with P:R fusion are downstream-level genes affected by fusion. In this aspect,
our study is different from other studies, and, for example, it is not clear
whether COL11A1 is a primary driver or is affected by other drivers in the

study by Ritwik et al [135].

The WNT signaling pathway is an important mediator in tissue

homeostasis and recovery while it acts an important role in tumor-



development of colorectal cancer [132]. Both in vitro experiments in human-
colon cancer cell line HT-29 and in vivo experiments in CRISPR-based
xenograft mice provided the evidence that £SPOS3 fusion gene was involved in
the initiation and development of CRC via activating WNT signaling [128,
133]. This means that human CRC is a sensitive tumor for WNT-targeted
treatment, suggesting that £SPOS fusion gene can be an effective therapeutic

target.

As a result of our analysis, it is interesting that ALK up-regulated in
P:R fusion—-positive CRC has the following three characteristics. First, the
correlation between ALK RNA expression and RSFPOS3 RNA expression in P:R
fusion—-positive CRC was the highest among COSMIC common oncogenes
(R=0.44). Second, ALK was a gene involved in multiple cancer pathways.
Finally, ALK inhibitors are FDA-approved therapeutics that perform well in
other carcinomas (e.g. lung cancer) [136, 137]. Taken together, in-silico
analysis showed that ALK inhibitors were highly likely to act in P:R fusion

positivity [138].

Despite the limited number of samples, the clinical characteristics of
P:R-positive and P:R-negative patients were found to be similar. This
indicates that even if the clinical properties are similar, the molecular
properties may be different, which may require treatment to target the
molecular properties. One interesting point is that P:R fusions can also be
found in MSI-H. In this case, further clinical evaluation is needed to
determine if there is a synergistic effect between ICI and the targeted

therapy we propose.

In summary, we were able to present key indicators and clinically



viable therapeutics for P:R fusion—-positive CRC. Our findings will serve as a
steppingstone for future research in the development of precision medicine

targeting colorectal cancer.



5.4 Conclusion

Colorectal cancer (CRC) is one of the most deadly and common
diseases in the world, accounting for over 881,000 casualties in 2018. The
PTPRK-RSPO3 (P:R) fusion is a structural variation in CRC and well known
for its ability to activate WNT signaling and tumorigenesis. However, till now,
therapeutic targets and actionable drugs are limited in this subtype of cancer.
The purpose of this study is to identify key genes and cancer-related
pathways specific for P:R fusion—-positive CRC. In addition, we also inferred
the actionable drugs in bioinformatics analysis using the Cancer Genome
Atlas (TCGA) data. 2,505 genes were altered in RNA expression specific for
P:R fusion-positive CRC. By pathway analysis based on the altered genes, ten
major cancer-related signaling pathways (Apoptosis, Direct p53, EGFR, ErbB,
JAK-STAT, tyrosine kinases, Pathways in Cancer, SCF-KIT, VEGFR, and
WNT-related Pathway) were significantly altered in P:R fusion—-positive CRC.
Among these pathways, the most altered cancer genes (ALK, ACSLS, AXIN,
MYC, TP53, GNAQ, ACVRZA, and FAS) specific for P:R fusion and involved in
multiple cancer pathways were considered to have a key role in P:R fusion-
positive CRC. Based on the drug—-target network analysis, crizotinib, alectinib,
lorlatinib, brigatinib, ceritinib, erdafitinib, infigratinib and pemigatinib were
selected as putative therapeutic candidates, since they were already used in
routine clinical practice in other cancer types and target genes of the drugs

were involved in multiple cancer-pathways.
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