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Abstract

Accurate Graph Classification via
Two-Staged Contrastive Curriculum

Learning

Sooyeon Shim
Interdisciplinary Program in Artificial Intelligence

College of Engineering
Seoul National University

Given a graph dataset, how can we generate meaningful graph representations

that maximize classification accuracy? Learning representative graph embeddings is

important to solve various real-world graph-based tasks. Graph contrastive learn-

ing aims to learn representations of unlabeled graphs by capturing the relationship

between graphs. Recently, data augmentation has been widely used for contrastive

learning. However, previous contrastive learning methods with random-based aug-

mentations fail to capture semantic information within graphs. Furthermore, graph

contrastive learning approaches with carefully designed augmentations are compu-

tationally inefficient.

We propose TAG (Two-staged contrAstive curriculum learning forGraphs),

a two-staged contrastive learning method for graph classification. TAG exploits six

model-agnostic augmentation algorithms that preserve the graph semantics by con-

sidering the degree centrality. The augmentation algorithms are used for the two-
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staged learning of graph representations: node-level and graph-level. Experiments

show that TAG outperforms both unsupervised and supervised methods in classifi-

cation accuracy, achieving up to 4.21% and 4.76% points higher than the second-best

unsupervised and supervised methods on average, respectively.

Keywords : Graph Classification, Contrastive Learning, Curriculum Learning

Student Number : 2021-28209
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Chapter 1

Introduction

How can we generate graph representations for accurate graph classification? Various

GNNs have been proposed to solve graph-based tasks such as link prediction [1, 2],

node classification [3–7], and graph classification [8–13]. However, most GNNs for

graph classification show high performance in only one of the two settings: unsuper-

vised and supervised settings. Furthermore, graph classification models designed for

supervised settings are not even applicable to unsupervised settings. There arises the

need for designing an accurate graph classification model for both settings.

Graph contrastive learning learns the representations of graphs based on the

similarity between graphs. The learning algorithm can be used in both settings: un-

supervised and supervised settings [14–16]. Recent graph contrastive learning meth-

ods utilize data augmentation to ensure the similarity of the original graph and the

newly generated graph. Random-based augmentations are used to generate graphs

in [17–19], but information loss is inevitable in those methods. Graph contrastive

learning with carefully designed augmentations [8, 20, 21] preserve more graph se-

mantics compared to those with random-based ones. However, these methods in-

crease the complexity of the model.

In this paper, we propose TAG (Two-staged contrAstive curriculum learn-

ing for Graphs), an accurate graph contrastive learning approach that can be ap-

plied to both supervised and unsupervised graph classification. We design six model-

agnostic augmentation algorithms that preserve the semantic information of graphs.
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Figure 1: Overall performance of TAG with unsupervised and supervised graph clas-
sification methods. (a-d) are the performance in unsupervised setting, and (e-f) are
that in supervised one. Note that TAG shows the highest classification accuracy with
the shortest running time in both settings.

Three algorithms change the features of nodes, and the other three modify the struc-

ture of graphs based on degree centrality. We then conduct graph contrastive learning

in two levels: node-level and graph-level. Node-level contrastive learning learns node

embeddings based on the relationship between nodes. Graph-level contrastive learn-

ing learns the embeddings of graphs based on the computed node embeddings. Thus,

the relationships of both nodes and graphs are reflected in the graph representations.

Furthermore, TAG exploits a curriculum learning strategy to enhance performance.

Figure 1 shows the overall performance of TAG; note that TAG outperforms the com-
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Table 1: Description of symbols.

Symbol Description

D a set of graphs for training
Gi i-th graph in a set D

G f ,i feature-modified graph originated from Gi

Gs,i structure-modified graph originated from Gi

v j j-th node in a graph Gi

u j j-th node in a graph G f ,i

petitors in both unsupervised and supervised settings. Table 1 describes symbols used

in this paper.

Our main contributions are summarized as follows:

• Data augmentation.We propose six model-agnostic augmentation algorithms

for graphs. Every augmentation method considers node centrality to preserve

semantic information of original graphs.

• Method.We propose TAG, a two-staged contrastive curriculum learning method

for accurate graph classification. The two-staged approach embeds the rela-

tional information of both nodes and graphs into the graph representations.

• Experiments. We perform experiments on seven benchmark datasets in su-

pervised and unsupervised settings, achieving the best performance for most

cases.

The rest of the paper is organized as follows. In Chapter 2, we introduce previous

works related to ours. In Chapter 3, we propose TAG in detail. We show the experi-

mental results in Chapter 4 and conclude in Chapter 5. The code of TAG is available

at https://github.com/anonymous-tag-2022/TAG-2022.
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Chapter 2

Related Works

2.1 Graph Contrastive Learning

Graph contrastive learning methods are categorized into node-level and graph-level

contrastive learning methods for node and graph classification tasks, respectively.

2.1.1 Node-level Graph Contrastive Learning

Node-level graph contrastive learning methods are designed to handle node classi-

fication task in the unsupervised setting. DGI [10] is the first work that applies the

concept of contrastive learning to the graph domain. JGCL [22] joints supervised

setting, semi-supervised setting, and unsupervised setting to learn the optimal node

representations. GMI [23] defines the concept of graph mutual information(GMI) and

aims to maximize the mutual information in terms of node features and topology of

the graph. GCC [24] learns transferable structural representation across various net-

works to guide the pre-training of graph neural networks. GRACE [25] jointly con-

siders both topology and node attribute levels for corruption to generate graph views

and maximizes the agreement in the views at the node level. Zhu et al. [26] propose

GCA that removes unimportant edges by giving them large removable probabilities

on the topology level and adds more noise to unimportant feature dimensions on the

node attribute level for the adaptive augmentation. BGRL [27] is a scalable method

with two encoders that learns by predicting alternative augmentations of the input.
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Graph Barlow Twins(G-BT) [28] is a model that replaces negative samples with a

cross-correlation-based loss function and does not introduce asymmetry in the net-

work. TIFA-GCL [29] improves the performance of semi-supervised node classifica-

tion task by focusing on the information distribution of a few labeled nodes from the

global and local view. GCNSS [30] obtains node embeddings by designing a strategy

for selecting negative samples which selects some nodes instead of using all nodes

as negative samples and performing node-level contrastive learning. STENCIL [31]

adopts multiview contrastive objective and learns node embeddings of a heteroge-

nous graph by regarding a node in different views as positive samples and all other

nodes in a graph as negative samples. PASCAL [32] merges all motifs that include the

target node to construct subgraphs for the target node and captures topological infor-

mation within local structures. SAIL [33] operates self-augmentation through graph

knowledge distillation composed of two modules: intra-distilling module and inter-

distilling module. Previous node-level graph contrastive learning approaches do not

handle graph classification task. We jointly perform node-level contrastive learning

with the graph-level for graph classification.

2.1.2 Graph-level Graph Contrastive Learning

Previous graph-level contrastive learning methods are divided into two types: model-

specific and model-agnostic ones. Model-agnostic approaches use augmentation al-

gorithms which do not engage in the training process. GraphCL [19] brings the con-

trastive learning method for images to the graph domain. CuCo [18] extends GraphCL

by applying curriculum learning to properly learn the negative samples. MVGRL [17]

learns graph-level representations by contrasting encodings from first-order neigh-

bors and graph diffusion. These methods use random-based graph augmentations

5



that cannot preserve the core information of graphs well. We propose a graph con-

trastive learning method along with degree-based augmentations to address the issue.

Model-specific augmentation approaches directly participate in the training process.

InfoGraph [9] learns graph representations by contrasting them with patch-level rep-

resentations obtained from the training process. You et al. [20] propose JOAO which

changes the simple augmentations to be learnable. AD-GCL [21] adopts the structure

of an adversarial attack to obtain graph representations. AutoGCL [8] generates new

graphs by changing the softmax function into the Gumbel-Softmax function. These

approaches are more complex than model-agnostic models. Therefore, we propose a

contrastive learning method with simple augmentations for computational efficiency.

2.2 Graph Augmentation

Graph augmentation algorithms are divided into two types: model-specific and model-

agnostic augmentation. Model-specific augmentation algorithms are restricted to a

certain model. Thus, it is not easy for them to be generalized to contrastive learn-

ing directly. Model-agnostic graph augmentations are applied to any graph neural

network. You et al. [19] suggest DropNode and ChangeAttr for graph contrastive

learning. DropNode discards randomly selected nodes with their connections and

ChangeAttr converts features of randomly selected nodes into random values. DropE-

dge [34] changes graph topology by removing a certain ratio of edges. GraphCrop [35]

selects a subgraph from a graph through a random walk. Wang et al. [36] introduce

NodeAug which contains three different augmentations: ReplaceAttr, RemoveEdge,

and AddEdge. ReplaceAttr substitutes the feature of a chosen node with the average

of its neighboring nodes’ features. RemoveEdge discards edges based on the impor-

tance score of the edges. AddEdge attaches new edges to a central node which is
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designated based on the importance score for nodes. Motif-similarity [37] adds and

deletes edges from motifs that are frequent in a particular graph. Yoo et al. [38] pro-

poses NodeSam and SubMix. NodeSam performs split and merge operations on nodes.

SubMix replaces a subgraph of a graph with another subgraph cut off from another

graph. However, previous model-agnostic augmentation algorithms changes nodes

or edges that are randomly selected. On the other hand, our proposed TAG changes

nodes based on the degree centrality, to keep crucial information of graphs.
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Chapter 3

Proposed Method

We propose TAG, a two-staged contrastive curriculum learning framework for graphs.

The main challenges and our approaches are as follows:

1. How can we generate graph representations in both unsupervised and

supervised settings? We propose a two-staged graph contrastive curriculum

learning method that is applied to both settings through two types of loss func-

tions.

2. How can we design augmentations for contrastive learning to preserve

the semantics well? We propose six data augmentation algorithms for graph

contrastive learning. The augmentation algorithms consider degree centrality

to minimize information loss.

3. How can we determine the order of feeding the negative examples in

contrastive learning? We exploit curriculum learning to determine the order

of negative samples and maximize the performance of the model.

The overall process of TAG is illustrated in Figure 2. Given a graph dataset, we

first augment graphs, and then perform contrastive curriculum learning in two levels:

nodes and graphs.
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Graph-level 
Contrastive Learning

Node-level 
Contrastive Learning

Augmentation 
for Graphs

Figure 2: Overview of the proposed method. TAG performs node-level and graph-
level contrastive learning on the feature-augmented graph G f ,i and the structure-
augmented graph Gs,i obtained from the original graph Gi. In the contrastive learning
steps, nodes and graphs colored with blue are positive samples, and those colored
with red are negative ones.

3.1 Data Augmentation

Data augmentation is used to ensure the similarity between samples in contrastive

learning. The most important challenge of augmentation is preserving the semantics,

or keeping crucial information in determining graph labels. If augmentation cannot

preserve the semantics well, the original graph and the augmented graph have differ-

ent labels which increases the dissimilarity. Therefore, we propose six model-agnostic

graph augmentation algorithms based on degree centrality to minimize information

loss. Our idea is to change low-degree nodes to minimize the loss of semantics.

We categorize the six augmentation methods into two types: feature and struc-

ture modification. Feature modification algorithms generate new graphs by changing

only the node feature. On the other hand, structure modification algorithms change

the graph structure. We propose three algorithms for each type. The three algorithms

designed for feature augmentation are listed as follows:

1. Edit feature. Randomly change the features of nodes with low degrees.
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2. Mix feature. Mix the features of two selected nodes and then substitute the

mixed features for the features of nodes with lower degrees.

3. Add noise. Add noise to the features of selected nodes. The nodes with low

degrees are selected to be modified.

The algorithms for structure augmentation are as follows:

1. Delete node. Discard nodes with low degrees along with their connections.

2. Delete edge. Remove edges that are chosen from nodes with low degrees.

3. Cut subgraph. Select a subgraph with high degrees.

All algorithms consider degree centrality to keep semantic information. The number

of nodes or edges to be augmented is decided through the augmentation ratio which

is given as a hyperparameter. The augmentation is separately conducted with the

contrastive learning process to improve the computational efficiency.

3.2 Two-staged Contrastive Learning

Graph contrastive learning is a self-supervised approach that allows a model to learn

the representations of graphs without labels by teaching the model which graph in-

stances are similar or different. We use the data augmentation algorithms proposed

in Section 3.1 to generate similar graphs. TAG is composed of two stages, node-level

and graph-level contrastive learning.

3.2.1 Node-level Contrastive Learning

The node-level contrastive learning in TAG embeds the nodes into a latent space

where positive pairs of nodes are more closely located than negative ones.

10



Original graph Feature-modified graph

Positive samples

Negative samples from

Negative samples from

Figure 3: Positive and negative samples of the node-level contrastive learning. Nodes
v j and vk are selected from the original graph Gi while nodes u j and uk are sampled
from a feature-augmented graph G f ,i at the same position, respectively.

Positive pairs (v j,u j) of nodes are obtained by selecting a node v j from an orig-

inal graph Gi, and a node u j from a feature-augmented graph G f ,i with the same

position.

There are two types of negative node pairs: 1) pairs (v j,vk) of nodes both sam-

pled from the original graph Gi, and 2) pairs (v j,uk) of nodes sampled from Gi and

G f ,i, respectively. All nodes in Gi which are not selected for the positive pairs are

used to generate the negative samples vk. Similarly, every node uk from G f ,i except

for the selected positive node u j is treated as a negative sample. The process of sam-

pling positive and negative pairs of nodes for the node-level contrastive learning is

illustrated in Figure 3.

The node-level contrastive loss ln is defined as follows:

ln =
K∑

j=1

log
exp(sim(v j,u j)/τ)∑K

k ̸= j exp(sim(v j,vk)/τ)+
∑K

k ̸= j exp(sim(v j,uk)/τ)
(3.1)

where sim(·) denotes the cosine similarity function, τ is the temperature parameter,

and K is the number of nodes in a graph. Vectors v j and u j are the hidden represen-

tations of nodes v j and u j, respectively.
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Positive samples

Negative samples

Feature-modified graph set Structure-modified graph set

Figure 4: Illustration of positive and negative samples for graph-level contrastive
learning. (G f ,i, Gs,i) is a positive pair originated from a graph Gi, and (G f ,i, Gs,i′ ) for
i ̸= i′ are negative pairs.

3.2.2 Graph-level Contrastive Learning

Graph representations are learned based on node embeddings. As with node-level

contrastive learning, positive and negative samples are defined using augmentation

in graph-level contrastive learning.

A positive pair (G f ,i,Gs,i) of graphs contains a feature-modified graph G f ,i and a

structure-modified graph Gs,i of a graph Gi. Negative pairs are (G f ,i,Gs,i′) where Gi′

is a different graph from Gi. Figure 4 explains positive and negative samples designed

for graph-level contrastive learning.

The graph-level contrastive loss lg is written as below:

lg = log
exp(sim(z f ,i,zs,i)/τ)∑N

n̸=i exp(sim(z f ,i,zs,n)/τ)
(3.2)

where z·,i is a representation of graph G·,i and N is the number of graphs for training.

The final loss function L for TAG jointly uses the node-level and graph-level

12



contrastive losses. Given a set D of graphs for training,

L =− 1
|D|

∑
i∈D

(ln(i)+ lg(i)) (3.3)

where ln(i) and lg(i) are node- and graph-level losses for a graph Gi, respectively.

3.2.3 Supervised Contrastive Learning

TAG supports supervised classification by using the cross-entropy loss lce(·). Specif-

ically, lce(yi, ŷi) between the one-hot encoded label yi and the prediction probability

ŷi of a graph Gi is computed as follows:

lce(yi, ŷi) =

C∑
c=1

yi(c) log ŷi(c) (3.4)

where C is the number of classes, yi(c) is c-th element of yi, and ŷi(c) is the prediction

probability of a graph Gi to class c. The probability vector ŷi is obtained through the

softmax function after a fully-connected layer which is attached to the final layer of

the graph neural network.

The final loss Lsup for supervised learning is computed by adding the cross-

entropy loss to the original loss in Equation (3.3):

Lsup =− 1
N

N∑
i=1

(ln(i)+ lg(i)+ lce(yi, ŷi)) (3.5)

where ln(i) and lg(i) are node- and graph-level losses for a graph Gi, respectively. N

denotes the size of a set D .
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3.3 Curriculum Learning

We exploit a curriculum learning strategy to enhance the performance of the pro-

posed method. Curriculum learning imitates the learning process of humans who

starts learning from easier samples, and then learns more from harder samples. The

difficulty of data is measured by a scoring function. We set the similarity function

of contrastive loss as a scoring function. As the similarity of a positive and a nega-

tive samples increases, the score for hardness increases. Thus, we feed easier negative

samples first, and then move on to harder negative samples as training continues to

facilitate effective training.

14



Chapter 4

Experiments

We perform experiments to answer the following questions:

Q1. Performance on Unsupervised Classification (Section 4.2). How fast and

accurate is TAG compared to previous methods for unsupervised graph classi-

fication?

Q2. Performance on Supervised Classification (Section 4.3). Does TAG show

superior performance than other baselines in supervised graph classification

task?

Q3. Effectiveness of Proposed Augmentations (Section 4.4). Do the proposed

augmentation algorithms improve the performance of TAG?

Q4. Ablation Study (Section 4.5). Do our ideas, such as two-staged structure, cur-

riculum learning, or proposed augmentations improve the accuracy of graph

classification?

4.1 Experimental Settings

We introduce our experimental settings including datasets, competitors, and hyper-

parameters. All of our experiments are done on a single GPU machine with GeForce

GTX 1080 Ti.
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Table 2: Summarization of datasets.

Dataset Graphs Nodes Edges Features Classes

MUTAG1 188 3,371 3,721 7 2
PROTEINS1 1,113 43,471 81,044 3 2
NCI11 4,110 122,747 132,753 37 2
NCI1091 4,127 122,494 132,604 38 2
DD1 1,178 334,925 843,046 89 2
PTC-MR1 344 4,915 5,054 18 2

DBLP1 19,456 203,954 764,512 41,325 2
1 https://chrsmrrs.github.io/datasets/

4.1.1 Datasets

We use seven benchmark datasets for graph classification task in our experiments,

which are summarized in Table 2. MUTAG, PROTEINS, NCI1, NCI109, DD, and PTC-

MR [39] are molecular datasets where the nodes stand for atoms and are labeled by the

atom type, while edges are bonds between the atoms. DBLP [40] is a citation network

dataset in the computer science field whose nodes represent scientific publications.

4.1.2 Competitors

We compare TAG in supervised and unsupervised settings. For the unsupervised set-

ting, we compare TAG with ten previous approaches for unsupervised graph classi-

fication, including those for contrastive learning.

• DGK [41] learns latent representations of graphs by adopting the concept of

the skip-gram model.

• sub2vec [42] is an unsupervised learning algorithm that captures two proper-

ties of subgraphs: neighborhood and structure.

• graph2vec [43] extends neural networks for document embedding to the graph

domain, by viewing the graphs as documents.
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• InfoGraph [9] generates graph representations by maximizing mutual infor-

mation between graph-level and patch-level representations.

• MVGRL [17] learns graph representations by contrasting two diffusion matri-

ces transformed from the adjacency matrix.

• GraphCL [19] brings image contrastive learning to graphs.

• JOAO [20] jointly optimizes augmentation selection together with the con-

trastive objectives.

• AD-GCL [21] uses an adversarial training strategy for edge-dropping augmen-

tation of graphs.

• CuCo [18] adopts curriculum learning to graph contrastive learning for per-

formance improvement.

• AutoGCL [8] uses the node representations to predict the probability of se-

lecting a certain augment operation.

In the supervised setting, we compare the accuracy of TAG with four baselines:

• GCN+GMP [44] uses the graph convolutional network (GCN) to learn the

node representations, and the global mean pooling (GMP) is applied to obtain

the graph representation.

• GIN [11] uses multi-layer perceptrons (MLP) to update node representations,

and sums them up to generate the graph representation.

• ASAP [12] alternatively clusters nodes in a graph and gathers the representa-

tions of clusters to obtain graph representations.

• GMT [13] designs graph pooling layer based on multi-head attention.
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Figure 5: Overall performance of TAG with unsupervised graph classification meth-
ods. Note that TAG shows the highest classification accuracy with the shortest run-
ning time in most cases.

4.1.3 Hyperparameters

We use GCN [44] to learn node embeddings and apply the global mean pooling al-

gorithm to generate a graph embedding. The augmentation ratio is set to 0.4 which

decides the amount of data to be changed. We train each model using the Adam op-

timizer with a learning rate of 0.0001. We set the number of epochs to 5.

4.2 Performance on Unsupervised Classification

We evaluate TAG by measuring unsupervised graph classification accuracy and run-

ning time. We compare the graph classification accuracy of TAG with previous un-
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Table 3: Accuracy of graph classification in unsupervised setting. Bold and under-
lined text denote the best and the second-best accuracy, respectively. OOM and Avg.
denote the out of memory error and average accuracy, respectively. Note that TAG
shows the best classification accuracy.

Method Unsupervised Setting (SVM) Unsupervised Setting (MLP)
MUT. PROT. NCI1 N109 DD PTC DBLP Avg. MUT. PROT. NCI1 N109 DD PTC DBLP Avg.

DGK [41] 85.67 66.67 65.47 65.86 73.35 61.03 79.49 71.08 66.46 67.40 54.18 53.02 62.31 49.10 75.25 61.10
sub2vec [42] 74.42 71.88 57.40 57.26 68.25 53.80 62.71 63.67 55.26 53.91 51.75 51.56 47.95 51.20 60.37 53.15
graph2vec [43] 68.57 59.57 54.04 52.41 57.98 60.50 55.12 58.31 64.94 56.79 54.36 52.17 55.34 55.84 54.69 56.30

InfoGraph [9] 85.12 75.65 73.65 72.52 78.27 66.92 80.48 76.09 71.78 69.28 60.27 60.20 73.07 57.61 76.49 66.96
MVGRL [17] 83.33 OOM OOM OOM OOM 64.71 OOM 21.15 89.47 OOM OOM OOM OOM 58.82 OOM 21.19
GraphCL [19] 86.67 74.48 66.89 67.26 78.86 61.93 76.33 73.20 75.06 69.37 60.10 59.49 71.73 60.50 75.28 67.36
JOAO [20] 88.25 74.76 66.84 67.17 79.96 62.50 76.34 73.69 75.53 69.28 60.17 59.71 73.18 63.19 75.21 68.04
AD-GCL [21] 88.82 75.03 71.85 71.46 76.39 57.61 81.65 74.69 81.76 62.14 58.09 59.56 61.08 55.97 77.51 65.16
CuCo [18] 87.31 73.50 64.33 63.83 76.66 72.78 76.34 73.54 71.23 66.59 60.46 58.89 73.52 57.25 73.46 65.91
AutoGCL [8] 89.42 74.93 71.43 74.34 81.69 67.50 82.82 77.45 84.21 70.54 60.56 59.98 72.03 68.03 79.06 70.63

TAG 90.83 81.98 74.70 74.82 86.32 79.41 83.56 81.66 93.10 71.17 60.58 60.16 73.91 77.14 78.00 73.44

Table 4: Accuracy of graph classification in supervised setting. Bold and underlined
text denote the best and the second-best accuracy, respectively. Avg. denotes the av-
erage accuracy. Note that TAG shows the best accuracy.

Supervised Setting

Method MUT. PROT. NCI1 N109 DD PTC DBLP Avg.

GCN+GMP [44] 82.35 73.56 63.21 63.19 62.00 75.35 79.88 71.36
GIN [11] 90.49 75.77 73.94 70.00 77.78 73.77 77.31 77.01
ASAP [12] 86.52 77.56 74.19 74.51 82.66 71.83 90.98 79.75
GMT [13] 89.07 79.73 73.67 73.93 84.95 75.74 91.82 81.27

TAG 95.45 87.68 76.19 75.89 92.40 80.86 93.73 86.03

supervised methods in Table 3. We adopt support vector machine (SVM) and multi-

layer perceptron (MLP) as base classifiers for TAG and the baselines. Note that TAG

achieves the best accuracy, giving 4.21% points and 2.81% points higher accuracy

than the second-best competitors on average with SVM and MLP classifiers, respec-

tively.

The overall performance of TAG including the running time is summarized in

Figure 5. Note that TAG shows the highest classification accuracy in most cases with

the shortest running time.

19



BEST

(a) MUTAG

BEST

(b) PROTEINS

BEST

(c) NCI1

BEST

(d) NCI109

BEST

(e) DD

BEST

(f) PTC-MR

BEST

(g) DBLP

Figure 6: Overall performance of TAG with supervised graph classification methods.
Note that TAG shows the highest classification accuracy with the shortest running
time for most datasets.

4.3 Performance on Supervised Classification

We compare the proposed method with four baselines designed for graph classifi-

cation in supervised settings. We use classification accuracy and running time as

evaluation metrics. Table 4 shows the classification accuracy of TAG along with the

competitors. TAG gives the highest accuracy, with 4.76% points higher average accu-

racy than the second-best method. Note that TAG in the supervised setting achieves

4.37% points and 12.59% points higher average accuracy than that in the unsuper-

vised setting with SVM and MLP classifiers, respectively.

Figure 6 shows the running time of TAG and baselines in supervised setting.

Note that TAG presents the shortest running time with the highest accuracy in most
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Table 5: Comparison of the proposed augmentation by TAG with previous ap-
proaches. We report the best and the second-best accuracy as bold and underline,
respectively. Avg. denotes the average accuracy. Note that TAG presents the best ac-
curacy among the models.

Method MUT. PROT. NCI1 N109 DD PTC DBLP Avg.

CuCo + DropNode [19] 87.31 73.50 64.36 63.80 76.75 60.52 76.33 71.80
CuCo + DropEdge [34] 88.86 72.61 63.72 63.41 77.50 64.81 76.33 72.46
CuCo + GraphCrop [35] 88.28 72.96 63.24 63.32 77.17 63.37 71.59 71.42
CuCo + ChangeAttr [19] 86.23 73.68 63.60 63.75 76.66 61.05 69.87 70.69
CuCo + NodeAug [36] 82.46 74.24 64.48 63.93 79.70 78.33 78.77 74.56
CuCo + Motif-Similarity [37] 90.00 70.68 66.64 63.92 78.79 77.50 77.19 74.96
CuCo + NodeSam [38] 89.11 76.74 64.23 64.69 82.05 79.17 78.98 76.42
CuCo + SubMix [38] 89.04 76.97 64.48 67.99 78.94 79.17 78.77 76.48

TAG 90.83 81.98 74.70 74.82 86.32 79.41 83.56 81.66

of the cases. This shows that TAG learns meaningful graph representations not only

for unsupervised graph classification, but also supervised one.

4.4 Effectiveness of Proposed Augmentations

We compare the proposed augmentations of TAG with eight previous model-agnostic

augmentation algorithms for graphs. ChangeAttr modifies features and the other

methods change the structure of graphs. Recall that TAG performs graph contrastive

learning in two levels: node-level and graph-level. For node-level, TAG needs feature-

augmented graphs. For graph-level, TAG needs feature and structure augmentations.

Thus, both augmentation algorithms are necessary for TAG. MVGRL [17], GraphCL

[19], and CuCo [18] are previous methods that adopt model-agnostic graph aug-

mentations. However, MVGRL causes out-of-memory errors for large-scale graph

datasets. CuCo is more elaborate than GraphCL since it additionally performs cur-

riculum learning. Therefore, we compare TAG with previous augmentation algo-

rithms by applying them to CuCo.
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Table 6: Ablation study for TAG. We report accuracies of graph classification using
SVM and MLP classifiers. Bold, underlined, and Avg. text denote the best, the second-
best, and the average accuracy, respectively. The methods w/o curriculum and w/o
node-level refer to the proposed method without curriculum learning and node-level
contrastive learning, respectively. The other methods operate TAG by fixing the aug-
mentations. TAG shows the best performance for all cases.

Method Unsupervised Setting (SVM) Unsupervised Setting (MLP)
MUT. PROT. NCI1 N109 DD PTC DBLP Avg. MUT. PROT. NCI1 N109 DD PTC DBLP Avg.

w/o curriculum 90.07 78.14 65.99 64.66 80.36 70.08 78.06 75.33 91.18 67.58 54.88 55.15 69.73 70.77 76.68 69.42
w/o node-level 90.40 77.07 65.20 65.25 80.14 69.32 77.48 74.98 86.09 66.80 54.36 55.06 70.34 70.94 76.71 68.61

Edit feature + Delete node 90.70 80.75 67.25 65.06 81.09 79.29 80.54 77.81 92.70 69.90 58.08 56.91 72.27 75.10 77.39 71.76
Edit feature + Delete edge 90.54 81.11 66.61 64.41 80.25 79.04 83.14 77.87 87.55 69.96 59.55 58.78 68.60 76.58 76.99 71.14
Edit feature + Cut subgraph 90.82 80.85 66.13 63.54 80.08 66.30 78.58 75.19 92.47 70.95 55.16 56.58 67.63 74.94 77.33 70.72
Mix feature + Delete node 90.76 79.93 74.61 72.91 86.00 71.93 82.71 79.83 92.94 70.35 60.33 59.20 65.98 74.47 72.96 70.89
Mix feature + Delete edge 90.65 81.56 73.05 73.91 85.52 77.77 83.48 80.85 88.30 70.01 59.32 57.31 70.71 70.26 73.17 69.87
Mix feature + Cut subgraph 90.77 78.95 74.55 74.76 82.54 78.56 83.03 80.45 93.10 69.45 60.10 56.19 69.40 77.12 77.88 71.89
Add noise + Delete node 90.83 80.63 67.06 64.35 82.11 71.59 78.45 76.43 91.37 68.36 56.94 58.10 68.70 72.89 76.91 70.47
Add noise + Delete edge 90.36 81.05 65.44 64.63 80.75 71.90 83.30 76.78 91.62 69.49 58.86 55.92 70.76 76.81 77.30 71.54
Add noise + Cut subgraph 90.75 81.30 66.62 65.84 81.11 71.20 79.04 76.55 90.01 70.73 58.01 58.13 69.24 75.58 77.67 71.34

TAG 90.83 81.98 74.70 74.82 86.32 79.41 83.56 81.66 93.10 71.17 60.58 60.16 73.91 77.14 78.00 73.44

Table 5 shows the classification results using different augmentations. TAG out-

performs the baselines in all cases. Specifically, TAG achieves 5.18% points higher av-

erage accuracy than the strongest baseline SubMix. Note that random-based augmen-

tations DropNode, DropEdge, GraphCrop, and ChangeAttr degrade the performance

of CuCo for all datasets. This proves that random-based augmentation methods have

difficulty preserving the semantics. In contrast, TAG with the proposed augmenta-

tions help enhance the performance.

4.5 Ablation Study

We perform an ablation study for TAG and report the result in Table 6. The methods

w/o curriculum and w/o node-level are the proposed method without curriculum

learning and without two-staged structure which performs only graph-level con-

trastive learning, respectively. We also run TAG by fixing the proposed augmenta-

tions. For example, the Edit feature + Delete node method operates TAG using edit
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feature and delete node algorithms for feature and structure modification, respec-

tively. TAG with the curriculum learning improves the classification performance

of SVM and MLP by 6.33% and 4.02% points on average, respectively, compared

to that without the curriculum learning. Operating TAG using both node-level and

graph-level contrastive learning achieves 6.68% and 4.83% points higher average ac-

curacy than performing TAG only using graph-level contrastive learning with SVM

and MLP classifiers, respectively. Furthermore, TAG achieves the best performance

when it utilizes all of the proposed augmentation algorithms. The results show that

the proposed ideas, i.e., the two-staged framework, exploitation of curriculum learn-

ing, and the proposed augmentation algorithms for contrastive learning improve the

accuracy of graph classification.
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Chapter 5

Conclusion

We propose TAG, a two-staged contrastive curriculum learning model for graphs. We

introduce two types of data augmentations for graphs and propose six model-agnostic

augmentation algorithms that minimize information loss. The proposed method con-

ducts contrastive curriculum learning in two stages. In the first stage, TAG gathers the

relational information between nodes from an original graph and a feature-modified

graph. In the second stage, the proposed method utilizes both feature-modified and

structure-modified graphs to learn the similarity between them. We exploit curricu-

lum learning to effectively train the model via carefully selected ordering of feeding

negative samples. We evaluate TAG by measuring the graph classification accuracy

and running time. TAG shows the fastest running time and the best accuracy achiev-

ing up to 4.21% points and 4.76% points higher average accuracy than the second-

best competitors in unsupervised and supervised settings, respectively. Future works

include designing an accurate graph classification method for hypergraphs.
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요 약

그래프데이터셋이주어졌을때,어떻게하면그래프분류성능을최대화하는의미

있는그래프표현을학습할수있을까?표현력있는그래프임베딩을학습하는것은

다양한실세계그래프기반문제들을해결하는데중요하다.그래프대조학습은그

래프사이의관계를분석하여레이블이없는그래프들의표현을학습하는방법이다.

최근에등장한대조학습방법들은데이터증강기법을사용한다.그러나무작위기

반의 증강 기법을 사용하는 이전 방법들은 그래프 내의 주요 정보를 얻기 어렵다.

주요정보를잘추출하기위해신중히설계된증강기법을사용하는방법들의경우,

연산적으로비효율적이라는단점이있다.

본 논문에서는 그래프 분류를 위한 두 단계의 대조 학습 방법인 TAG (Two-

staged contrAstive curriculum learning for Graphs)를 제안한다. TAG 는 정

점의연결중심성을계산함으로써그래프내의주요정보를잘보존하는여섯개의

모델 독립적인 증강 기법들을 활용한다. 증강 기법들은 두 단계, 즉 정점 단계와 그

래프단계로이루어진그래프표현학습에사용된다.실험을통해 TAG가기존의비

지도학습모델들중가장뛰어난성능을가진모델보다평균적으로 4.21%더높은

그래프분류성능을달성하였으며,기존의지도학습모델들중가장뛰어난성능을

보인모델보다평균적으로 4.76%더높은그래프분류성능을기록함을보여준다.

주요어 : 그래프분류,대조학습,커리큘럼학습

학번 : 2021-28209
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