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Abstract

Self-supervised learning (SSL) in speech involves training a network on large-

scaled unlabeled speech corpora and using the learned representations from the net-

work to perform downstream tasks. Commonly applied speech downstream tasks for

SSL models are content related such as speech recognition and phoneme recognition.

SSL models have achieved successful results in these tasks.

Despite their success, state of the art SSL models have limited usage for perform-

ing ASR in real-world situation. The major downside for using these models in real-

word situation comes from their large parameter size. In order to effortlessly use SSL

models, a resourceful computational environment where GPUs with enough memory

space are available. The large parameter size further limits SSL models’ application in

on-device setting.

To overcome the shortcomings from the parameter size and the limited usage of

SSL models in speech, we develop a parameter efficient using a distillation method

and effectively reduce memory footprint with tolerable degradation in a downstream

task performance. To be specific, we develop a parameter efficient network structure

based on Conformer encoder instead of commonly used Transformer encoder. Our

distillation method uses content informative teacher labels created by quantization of

pre-trained teacher SSL model’s representations. Furthermore, we have shown that our

distillation method suits better for Conformer encoder instead of Transformer encoder.

To measure our model’s representation performance, downstream tasks in speech

processing universal performance benchmark (SUPERB) and ZeroSpeech2021 are

used for evaluation. Our model shows par or better results than some of the existing

SSL models in content related downstream tasks in SUPERB and outperformed the ex-

isting distillation model in phoneme recognition model. Moreover in Zerospeech2021,

our model shows superior performance than the state of the art SSL models like Con-
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tentVec, HuBERR, and wav2vec2.0 in phonetic related tasks.

Furthermore, the techniques used for the distillation methods are investigated through

ablation study. Our model trained by the proposed distillation method reduces the pa-

rameter size of the teacher model by 78% and increases the inference speed by 78%

when only using CPUs and 99% when using single GPU.

Keywords: self-supervised learning, speech representation learning, knowledge

distillation, model compression

Student Number: 2021-24076
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Chapter 1

Introduction

1.1 Motivation

Self-supervised learning (SSL) in speech involves training a speech representation net-

work on a speech data and using the learned representation to perform downstream

tasks. A well-learned speech representation network could distinguish an utterance

made of up different phonemes or sound units for a language, so these representations

can be used as an input for a lightweight network to perform downstream tasks. The

speech representations from SSL models have been applied to various speech related

downstream tasks and achieve successful results.

To learn informative features from speech, SSL methods require a deep network

with heavy memory usage and large-scaled unannoated speech corpora. Training a

deep and heavy neural network on large-scaled speech data expect heavy computa-

tional resources and time. Once the training is over, the network becomes frozen or

fine-tuned with a target dataset to perform downstream tasks.

The most common downstream task for SSL models in speech is automatic speech

recognition (ASR), which transcribes text from speech. In fact, most of the SSL mod-

els report their representation performance by performing ASR on the test dataset of
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LibriSpeech [4]. This is because ASR can be commonly found in people’s daily lives.

For example, Siri, Alexa, Bixby, and other virtual assistants implemented in smart de-

vices receive order from speech and perform ASR before executing the received order.

Although state of the arts SSL models are reported to show powerful performance

in ASR, the deep neural networks for performing ASR in real-life application are recur-

rent neural network (RNN) based models specifically trained for speech recognition.

Such case shows a contradiction between the deep neural network model in the real-life

application and academia. In academia, SSL representations with a small downstream

deep neural network [5, 6, 2] are reported to show powerful performance and outper-

formed RNN based models in ASR. Yet, speech representations from SSL models are

not used for ASR in the real-life situation.

Along with not using SSL models in real-life situation, SSL models are gener-

ally running on the remote server where resourceful computational power is available

and not on-device setting with limited resources. Running a neural network model on-

device means performing inference of a neural network only by using the resource of

the device and not using computational resource outside. On-device neural network

inference gives two major advantages over online inference. First is real-time appli-

cation. On-device inference gives the results right away, as shown in Figure 1.2. It

does not need to go through multiple steps, shown in Figure 1.1 to gives the inference

results. Second is privacy. The input for the neural network, which usually contains

private information such as a picture or speech of the user, stays within the device and

does not need to be sent to the remote server which users cannot access or control.

Using SSL models in on-device setting gives an additional advantage. On-device

SSL model can save memory space for additional neural networks to perform speech

related tasks. Instead of training a deep and heavy network for each of the downstream

task, a minimal network that takes representations of a SSL network as an input is

needed .
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Figure 1.1: A flowchart of online inference process for a neural network to perform

speech recognition task.(1) shows a device receives speech. (2) shows a device sends

speech to the remote server (3) depicts a network in the remote server to perform

speech recognition and sends results back to the device. (4) shows the device showing

results received from the remote sever.

The motivation of the thesis is to develop a SSL model that can be used for real-life

and on-device application. We define the major problem that causes limited application

of SSL model in real-life and on-device setting is coming from the model parameter

size. In order to reduce the number of parameters while maintaining the performance of

SSL models, a knowledge distillation method is adopted to train a parameter efficient

SSL model.
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Figure 1.2: A flowchart of on-device inference process for a neural network. (1) shows

a device receiving speech. (2) shows a device performs speech recognition and gives

the results

1.2 Problem Definition

There are multiple reasons that prevent the self-supervised learning models to be used

for ASR in real-life application, but the major reason we focus on is the model param-

eter size. Parameters are the entities that models learn by optimizing a loss function.

Having a large number of parameter means more parameters to update in the training

time and more parameters to calculate in the inference time. Having a large number of

parameters also means taking a large memory space. Therefore, the state of the art SSL

networks take a logn time to train, large memory space to locate and slow inference

speed to provide representations for downstream tasks.

Most generally used SSL models in speech like wav2vec2.0 [6] and HuBERT [5]

have nearly 95 million parameters for the base models and 317 million parameters for
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the large models. Although showing powerful performance in speech related down-

stream tasks, the state-of-the-art SSL networks can only be effortlessly used in the

environment where GPUs with enough memory are available due to the large number

of parameters. If the state-of-the-art SSL models in speech can reduce the number of

parameters while maintaining their representation performance, their applicability in

real-life can significantly increase. Because SSL model with the less number of pa-

rameters would take less memory space and faster inference time and become more

capable to run in computationally less resourceful environment.

To be more specific, the large parameter size of SSL models majorly comes from

Transformer encoder. Due to its powerful representation performance, using Trans-

former encoder for the SSL models becomes the standard approach in audio, vision,

language and etc. If the alternate encoder that has similar representational performance

but lighter in size is studied, then an efficient SSL model for speech can be developed.

1.3 Overview

To address the issues coming from the large number of parameters of the SSL mod-

els and open up the possibility of real-life and on-device application, we develop a

parameter efficient SSL model that specifically focus on the content related speech

downstream tasks. We focus on the content related speech downstream tasks, such as

speech recognition and phoneme recognition because these tasks are most generally

used to benchmark the performance of SSL models in speech and commonly found in

the real-life application.

Our proposed model is trained by a distillation method. The pseudo-labels are

created by discretizing speech representations of the pre-trained SSL teacher network,

which we call teacher labels. By predicting teacher labels, a student model with the

small number of parameters can learn the representation power of the teacher model.

A student model not only has to be parameter efficient but also needs to be able
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to learn well from the teacher labels. In order to learn speech content representation

from the teacher labels, a student model adopts the structure of the state of the art ASR

model [7]. The motivation for such model structure comes from previous researches

[8, 9, 10, 11, 12] that treat pseudo-labels like contents of the speech. We propose a

parameter efficient network structure that consists of Conformer [7] encoder instead

of commonly used Transformer [13] encoder. Just like Conformer is originally built yo

predict the contents from the speech, we built our model based on Conformer blocks

to predict teacher labels from speech and capture meaningful content information.

After distillation is over, our student model is frozen and evaluated its represen-

tation performance using SUPERB [1] and ABX testing of ZeroSpeech2021 [14].

The contriubting techniques used for distillation method is investigated. The infer-

ence speed is evaluated by measuring the time taken for getting representation of the

dev-set of LibriSpeech [4] using limited computational resource.

1.4 Contribution

Overall, our contributions of the thesis are the following:

• We investigate the performance of Conformer based speech representation model

for our distillation training method. We reduced the number of parameters by 3

million just by changing the encoder than the existing model structure.

• We compared the distillation performance by predicting teacher labels created

by discretizing pre-traiend SSL model’s representations between Conformer and

Transformer based model and showed the strength over Conformer based model

than the Transformer based model in our method.

• The conformer based model is evaluated over wide range of downstream tasks

and shows par to superior performance in content related speech downstream
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tasks than existing SSL models and previous SSL distillation model in speech.

Our model specifically shows strength in phonetically related downstream tasks

• The techniques involved in the distillation method and model structure are in-

vestigated through the ablation study. We analyze the major contributing factor

that affect the performance of our model.

• Our proposed model reduces the number of parameters of the teacher model by

78% and inference time by 99% using single GPU and 78% using 4 CPUs.
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Chapter 2

Background

This chapter describes the basic concepts and related work for helping to understand

the thesis. Basic concepts focus on elaborating the general ideas that set the corner-

stone of developing the proposed model. Self-supervised learning, Transformer, and

knowledge distillation are introduced and explained for the basic concepts. Related

work section shows the history of previous researches on the basic concepts and how

these works related to the proposed model. Related work will explain researches about

self-supervised learning in speech, knowledge distillation of self-supervised learning

in speech, and two benchmarks used to evaluate the performance of the proposed

model.

2.1 Basic Concept

There are three basic concepts that would enhance the understanding of the thesis,

which are self-supervised learning (SSL) Transformer, and knowledge distillation. The

proposed model is categorized under self-supervised learning (SSL), and the proposed

training framework belongs to the knowledge distillation (KD). Lastly, Transformer is
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the essential encoder framework for providing representation of the speech, and the

proposed model uses the convolution augmented version of Transformer to build pa-

rameter efficient self-supervised model structure.

Figure 2.1: Data labeling examples for classification (left), object detection (center),

and speech recognition (right).

2.1.1 Self-supervised Learning

Self-supervised learning (SSL) has been researched to capture hidden structure of raw

data for the target downstream tasks. Before self-supervised learning method is pro-

posed, the applications of deep neural network were mainly supervised learning tasks

such as image classification, object detection, speech recognition, and etc. In order to

perform these tasks, labeling for corresponding data is necessary, as shown in Figure

2.1. An image cannot be classified as a cat or a dog without the labeling of the image

and speech cannot be recognized without knowing the contents of it. Getting labels

for the data costs expensive human labors, and supervised learning tasks with small

labeling data often leads to overfitting and becomes inapplicable to be solved by deep

learning.

To avoid overfitting, transfer learning which reuses the weights of the pre-trained

network for other supervised tasks, has been a popular approach. However, pre-training

a network in a supervised fashion could not capture general representation of the data

and limit its usage for specific tasks only. In order to overcome the shortcomings of a
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deep neural network trained with a lack of data and to allow fine-tuning for wide range

of target tasks, a model that learns task-agonistic features of raw data is developed by

self-supervised learning methods.

The general purpose of self-supervised learning is to capture meaningful repre-

sentation. What defines ”meaningful” can be different according to the domain of its

application. In computer vision, it is essential to represent how an image is related to

one another regardless of position, color, and other nuisance factors. In order to satisfy

this condition, a discriminative method using contrastive learning [15, 16, 17] has been

adopted and shows state-of-the-art performance.

li,j = �log
exp(sim(zi, zj)/⌧)PN

k=1 [k 6=i]exp(sim(zi, zk/⌧)
(2.1)

An example of contrastive loss function is shown in equation 2.1, where z is the

vector representation of an image, sim() operation is measuring cosine similarity dis-

tance between two vectors, and ⌧ is the smoothing temperature hyper-parameter. In

numerator, zi and zj are positive pair whose representations come from the same im-

age with different augmentation. In denominator, sum of zi and zk are negative pairs

whose representation vectors come from different images. The summation in denomi-

nator is done over N mini-batch of images. Overall, the loss tries to shorten the distance

between positive pair and to extend the distance between negative pairs. A diagram of

how self-supervised learning is trained using the contrastive loss is shown in Figure

2.2

In natural language processing, a representation needs to catch context of a sen-

tence or predicts a word given certain contents of a sentence. A mask prediction

method [18, 19] which predicts masked part of the sentence or auto-regressive pre-

diction method [20, 21] which predicts next word given previous words, show the

state of the art performance. Specifically, BERT [18] gives masked input to the Trans-

former encoder to predict the masked part of the sentence, as shown in Figure 2.3. In

speech, both discriminative and mask prediction methods are used to train SSL models

10



Figure 2.2: A diagram of how self-supervised learning model is trained with con-

trastive loss in computer vision. The vector representations of the same image with

different augmentation are attracted to each other and vector representations of the

different images are repelled using the contrastive loss.

because audio can be viewed as signal just like images in vision but also has sequential

and contains discrete contents like a language.

2.1.2 Transformer

Transformer is first introduced in [13] to perform machine translation task in natural

language processing. Then it becomes widely used in other domains such as com-

puter vision and audio. The essential part of Transformer is the multi-head attention

11



Figure 2.3: A diagram of how BERT, a SSL model in natural language processing, is

trained. W stands for the text token input, [mask] stands for the masking token, fW

stands for predicted text token. Text tokens and mask tokens are given as input to a

Transformer to predict corresponding tokens.

module, which divides the dimension of the embedding vector n times and performs

self-attention for each divided vector. The process of self-attention is summarized in

equation 2.2

Attention(Q,K, V ) = Softmax(
QKT

p
dk

)V (2.2)

Q,K,V each stands for query, key, value, and these are obtained from the same em-

bedding vectors. Query and key have dk dimensions, or original embedding vector
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dimension divided by n. The query and transposed key KT vectors are multiplied and

then scaled by dk. Then softmax of resulted output is calculated and multiplied by the

value V . The self-attention mechanism shows how input vector interacts within each

other and which part the ”attention” is needed to be put on. Basically, the weights of

attention applied to the value is calculated by softmax function of a matrix resulted

from query and key transposed multiplication.

Multihead(Q,K, V ) = Concat(head1, ..., headh)W
o

headi = Attention(QWQ
i ,KWK

i , V W V
i )

(2.3)

Multi-head attention uses n number of heads to perform self-attention at multiple as-

pects. Equation 2.3 shows how multi-head attention work. For the dimension of query,

key, and value are divided into n parts, and each head uses self attention for the di-

vided part. After self-attention is done for each sub-key, sub-query, and sub-value, the

resulted outputs are concatenated and send it to the feed-forward module. The overall

diagram of a Transformer encoder is shown in Figure 2.4.

2.1.3 Knowledge Distillation

Knowledge distillation is a method to reduce the model parameter size by using a

teacher and student network. A teacher network, as the name suggests, is the model that

shows promising results in the target downstream task. The student network, which

usually has less number of parameters than the teacher network, learns the knowledge

of the teacher model to perform the same downstream task. When the training is over,

the student model is expected to perform like the teacher model with the less number

of parameter.

The original idea of knowledge distillation in deep neural network comes from

[22]. In this paper, a student network learns teacher network’s knowledge for image
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Figure 2.4: A diagram of a Transformer encoder. Transformer encoder consists of a

multi-head self attenetion module and a feed forward module. Add & Norm stands for

addition from the residual connection and normalization.

classification by using Kullback-Leibler (KL) divergence between teacher models’

logits and student model’s logits. KL divergence is reduced when the classification

probability distribution between the teacher and student’s model is similar. Therefore,

the student model learns teacher models’ classification probability distribution and can

perform like teacher model in the downstream task.

KL(p||q) ' 1

N

NX

n=1

�lnq(xn|✓) + lnp(xn) (2.4)

Equation 2.4 shows the how KL divergence work like an object function in image

classification. Denote p(·) as the probability distribution of the teacher model, and q(·)
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as the probability distribution of the student model, which is parameterized by ✓. x

denotes the image used for training, and N is the total number of images. For each

image, the student model learns parameter to make the probability distribution similar

to that of the teacher model. However, learning teacher model’s performance does not

always need to use KL divergence because the tasks solved by deep learning models

are not always involving classification. Learning features can be done by closing the

distance between teacher model’s feature by L1 or L2 loss.

2.2 Related Work

In this section, previous researches related to the thesis will be introduced. Existing

methods of training and developing self-supervised learning are described. Knowledge

distillation of SSL models in speech is introduced to give an overview of previous dis-

tillation approaches. SUPERB and ZeroSpeech 2021 are used as evaluation metrics for

SSL models in speech.

2.2.1 Self-supervised Learning in Speech

Self-supervised learning in speech can be divided into two categories: generative method

and discriminative method. The models belong to both categories are used as baselines

to compare the performance of the proposed model.

Generative Method A generative method in self-supervised learning in speech learns

representation by predicting or reconstructing acoustic features, such as spectrogram

or mel-spectrogram. APC [23] learns representation by auto-regressively predicting fu-

ture frame from the past frames. MockingJay [24] predicts the current frame from the

past and future frames using bidirectional Transformer. TERA [25] uses masked and
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time-altered acoustic feature as input for the Transformer encoder and learns speech

representation by reconstructing the original acoustic feature. DeCoAR2.0 [26] learns

speech representation by reconstructing acoustic feature from vector-quantized coun-

terpart.

Discriminative Method A discriminative method in self-supervised learning in speech

generally involves contrastive learning method to group features from the same time

step together and put features from different different time step far from each other.

CPC [27] first uses contrastive predictive coding method to learn representation of

various modalities. wav2vec2.0 combines the idea of CPC and VQ-wav2vec [28] and

proposes an end-to-end speech representation learning framework.

Lm = �log
exp(sim(ct, qt)/⌧)P
eq Qt

exp(sim(ct, eq/⌧)
(2.5)

wav2vec2.0 applies contrastive loss on the masked input embedding, inspired by Bert

[18]. As shown in equation 2.5, the cosine similarity between the context vector ct at

time step t in masked region and its vector quantized counterpart qt are measured in nu-

merator. In denominator, the cosine similarity between the context vector ct and vector

quantized part at other time steps besides t are calculated and summed. Therefore, the

contrastive loss tries to group the context vector and the vector quantized counterpart

at time t together and repel vector quantized part at other time steps within the mask

region.

HuBERT [5] predicts pseudo-labels created by quantization of mel frequency cep-

strum coefficient (MFCC) via k-means clustering to learn speech representation. MFCC

is an acoustic feature based on a linear cosine transform of a log power spectrum on a

nonlinear mel scale of frequency. As shown in Figure 2.5, pseudo-labels z are created

by quantization of MFCC feature from speech. An initial feature x is created from

a convolutional neural network (CNN) encoder by taking speech as input. A portion

of x is masked and goes through Transformer and corresponding pseudo-labels z at
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Figure 2.5: A diagram of how HuBERT is trained. z are the pseudo labels created by

quantization of MFCC representations of speech, x are the initial features as speech

goes through CNN encoder.

the same time steps of the masked feature are predicted. For pseudo-labels created

by MFCC, 100 labels are used for quantization. After trained for several epochs, the

pseudo labels are replaced by quantized representations of HuBERT’s 6th Transformer

encoder output and trained for epochs. The number of labels for HuBERT’s represen-

tations was 500. Just like BERT [18], the mask prediction method is used to capture

the context feature of a speech.
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ContentVec Another discriminative method that is heavily related to the thesis is

ContentVec [2]. ContentVec disentangles content from speaker information from Hu-

BERT representations and achieved performance gain in content related downstream

tasks. Contentvec attempts three different disentanglement in training. First is dis-

entanglement in teacher pseudo-labels by performing voice conversion to utterances

in LibriSpeech, obtaining HuBERT representations of all the utterances that went

through voice conversion, and quantizing these represenations using k-means clus-

tering. Second is disentanglement in model by perturbing utterances with the same

method used in [29]. This method involves formant frequency shift, f0 shift, and equal-

izer. Then contrastive loss is used for HuBERT representations of the perturbed utter-

ances. Lastly, the classifier that predicts teacher pseudo-labels are conditioned with

speaker embedding, so the classifier tends to not look at the speaker information. Dis-

cretized ContentVec representations are used as teacher pseudo-labels for this thesis.

2.2.2 Knowledge Distillation of Self-supervised Learning in Speech

Shrinking Bigfoot Knowledge distillation of self-supervised learning in speech is a

relatively new research topic. One of early attempts to distil self-supervised learning in

speech is Shrinking Bigfoot [30]. Shrinking Bigfoot compresses wav2vec2.0 by adopt-

ing weight initialization method from DistilBert [31] and using the KL divergence loss

between wav2vec2.0, the teacher model, and a student model. Along with KL diver-

gence, a L2 regularization is used between CNN encoders’ outputs of the teacher and

a student model. The authors tested multiple student model structures such as having

6,8,10,12 Transformer layers. The authors further push the compression capacity of

the student model by performing weight quantization, which reduces the number of

bits used to represent weights and change the floating points weights to the integer

weights. Weight quantization saves the memory usage and speeds up the inference
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time, but the models with quantize weights can only be used in CPUs because GPUs

do not support integer calculation.

Figure 2.6: A diagram of how HuBERT is trained. z are the pseudo labels created by

quantization of MFCC representations of speech, x are the initial features as speech

goes through CNN encoder.

DistilHuBERT Another distillation approach is DistilHuBERT [3], which adopts

DistilBert’s weight initialization method and multi-task learning framework. Distil-

HuBERT uses 2 Transformer layers and linear prediction heads to predict 4th, 8th, and

12th layers of HuBERT to get a shared representation. The process of how DistilHu-

BERT is trained can be found in Figure 2.6.
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Unlike Shrinking Bigfoot, DistilHubert uses the loss function that combines L1

loss and a loss that increases the cosine similarity between the predicted and Hu-

BERT’s representations. The overall loss used for DistilHuBERT is shown in Equation

2.6

L =
TX

t=1

[
1

D
|hlt � ĥlt|� �log�(sim(hlt, ĥ

l
t))] (2.6)

In Equation 2.6, the original feature vector at time t with dimension D at the layer

l is denoted as hlt and the predicted feature vector is denoted as ĥlt. � denotes the

hyper-parameter of how much put on weights the second term, � denotes the sigmoid

function, and sim() denotes the cosine similarity. As the result, DistilHuBERT could

reduce the parameter size of the teacher network by 73% while achieving powerful

performance in SUPERB benchmark. DistilHuBERT is used as the baseline to com-

pare the performance between the SSL models trained by a distillation method.

2.2.3 Conformer-based Audio Representation Model

There has been previous attempts to capture audio representation using Conformer in-

stead of Transformer. In [32], authors replace Transformer with Conformer in wav2vec2.0

architecture and use contrastive loss to capture audio representation. Unlike wav2vec2.0,

authors use log-mel spectrogram as the input instead of raw audio. On the AudioSet

benchmark, their audio representation acheived a new state-of-the-art mean average

precision of 0.415 for self-supervsied learning model trained with audio data only.

2.2.4 SUPERB

Speech processing universal performance benchmark(SUPERB) [1] is introduced to

evaluate the generalizability and re-usability of the self-supervised learning model

in speech across the different downstream tasks. For evaluation, the pre-traiend self-

supervised models are frozen and lightweight prediction heads are used to perform
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speech-related downstream tasks. Since lightweight neural networks are trained for

the downstream tasks, the results for the downstream tasks depend on the how speech

is well represented rather than the network capacity.

There are total of 11 downstream tasks in SUPERB, and these tasks are grouped by

4 categories: content, speaker, semantics, and paralinguistics. The tasks that we focus

on are content and semantic tasks. The content and semantic related downstream tasks

are most commonly used in people’s daily lives. Moreover, the proposed distillation

involves the teacher model that were specifically trained to capture content related

information from speech.

The content related tasks that our proposed model is evaluated are phoneme recog-

nition (PR), automatic speech recognition (ASR), and keyword spotting (KS). The se-

mantic downstream tasks that our proposed model is evaluated are intent classification

(IC) and slot filling (SF). The detailed descriptions of how each tasks are setup are as

following:

ER =
S +D + I

S +D + C
(2.7)

Phoneme recognition (PR) transcribes speech into phoneme, or sound unit of a

language. The alignment modeling is introduced to avoid the potential inaccurate

forced alignment between speech and phonemes. LibriSpeech [4] train-clean-100, dev-

clean, test-clean subsets are used for training, validation, and testing. The ground truth

phonemes are obtained by the LibriSpeech official g2p-model-5 and the conversion

script in Kaldi librispeech s5 recipe. A frame-wise linear layer with CTC loss is used

for performing training and testing. For evaluation metric, phoneme error rate (PER)

is used. Phoneme error rate is calculated using the equation 2.7, where S is the substi-

tution , D is the deletion, I is the insertion, and C is the correct phoneme unit.
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Automatic speech recognition (ASR) transcribes speech into words. Just like PR,

LibriSpeech train-clean-100, dev-clean, and test-clean subsets are used for training,

validation, and testing. Word error rate (WER) is used for the evaluation metric. A

vanilla 2-layer 1024-unit BLSTM trained by CTC loss on characters are used. Word

error rate is calculated using the equation 2.7, where S is the substitution , D is the

deletion, I is the insertion, and C is the number of correct words.

Keyword Spotting (KS) detects pre-registered keywords by predicting utterances

into a set of words. Speech Commands dataset v1.0 [33] , which contains ten classes of

keywords, a classes of keywords, a class for silence, and an unknown class to include

the false positive, is used. The evaluation metric is classification accuracy. A linear

classification head optimized by cross-entropy loss is used for performing keyword

spotting.

Intent Classification (IC) classifies speech into intent classes to find out the intent

of the speakers. Fluent Speech Commands [34] which has an utterance with its in-

tention label pairs are used. Intention labels include action, object, and location. The

evaluation metric is classification accuracy. A linear classification head optimized by

cross-entropy loss is used for performing intent classifcation.

F1 = 2 ⇤ recall ⇤ precision
recall + precision

(2.8)

Slot Filling (SF) predicts a sequence of slot-types from a speech. For example, when

a spoken word Seoul, a slot value, is given, FromLocation, a slot-type, needs to be pre-

dicted. Audio SNIPS [35] dataset is used, and US-accent speakers are selected for

training, and others are selected for validation and testing. The evaluation metrics are

slot-type F1 score and slot value concept error rate (CER). F1 score is calculated by

using the Equation 2.8. Concept error rate is calculated using the Equation 2.7, where
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S is the substitution , D is the deletion, I is the insertion, and C is the number of slot

value. The special tokens to represent slot-type labels are used to wrap the slot values

for transcription. The rest of the setting for model to perform SF is the same as ASR.

2.2.5 ZeroSpeech 2021

The Zero Resource Speech Benchmark 2021 [14] is introduced to benchmark the lin-

guistic power of the self-supervised models representation without using labels. There

are four categories to evaluate the self-supervised learning models which are phonetics,

lexicon, syntax, and semantics. The proposed model will be evaluated by the phonetic

criteria.

ABX testing is used to evaluating phonetic knowledge of the representation. ABX

test measures the probability that the representation of the given sound is falling into

the same category or the different category. The categories are triphones that only

different in the middle phoneme such as ’aba’ vs. ’apa’. Given a sound x, ABX test

measures the probability that x belongs to category A (’aba’) or B(’apa’). The score

can be computed within speaker, all the sounds are spoken by the same person, or

across the speaker, sound categories are spoken by the same person and x is spoken by

a different person.

ê(A,B) :=
1

nA(nA � 1)nB

X

a,x2A;x 6=a

X

b2B
[1d(b,x)<d(a,x) +

1

2
1d(b,x)=d(a,x)] (2.9)

Equation 2.9 shows the asymmetric score computed asymmetric score with different

tokens belong to category A (nA denotes the cardinality of A) and to category B (nB

denotes the cardinality of B). d denotes the dynamic time wrapping (DTW) distance.

For the dataset to perform ABX test, Libri-light [36] dev and test sets are used.
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Chapter 3

Method

3.1 Introduction

The overall framework of our method is shown in Figure 3.1. Teacher labels of the

corresponding utterances are created by quantizing speech representations of a pre-

trained teacher model. A student model is trained by taking utterances as input and

predicts their teacher labels using a linear prediction head. After training is over, a stu-

dent model without the prediction head is used for performing downstream tasks.

3.2 Teacher Labels

For the teacher labels, pre-trained ContentVec [2] representations are used. We choose

ContentVec because it disentangles speaker and content information from the HuBERT

representation and achieves significant performance gain in content related speech

downstream tasks. Through quantizing ContentVec representations, teacher labels are

expected to contain content information of the speech.

The process of creating teacher labels Z is portrayed in Figure 3.1(a). Denote a

speech utterance as X = [x1, ..., xT ], where xt is the speech sample at frame t. The
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Layer Input Channel Output Channel kernel size stride

1 1 512 10 5

2 512 512 3 2

3 512 512 3 2

4 512 512 3 2

5 512 512 3 2

6 512 512 2 2

7 512 512 2 2

Table 3.1: CNN encoder structure details

corresponding representation feature produced by a self-supervised learning(SSL) net-

work is denoted as R = g(x), where g(·) is the teacher network, and the output rep-

resentation is denoted as R = [r1, ..., rT ], where rt is the feature vector at frame t.

Teacher labels are denoted as Z = [z1, ..., zT ], where a label zt 2 [K] is assigned

to kth cluster and is created by quantizing the continuous representations R, and this

operation is denoted as Z = h(R), where h(·) is k-means clustering.

3.3 Model Structure

This section describes the structure of the proposed model in details. As shown in Fig-

ure 3.1(b), the structure of our student model f(·) consists of a convolutional neural

network (CNN) encoder and 2 Conformer [7] block encoders. The details of the CNN

encoder, the Conformer weight initialization, and Conformer block encoder will be

elaborated.
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Figure 3.1: The overall framework of our proposed method. (a) Teacher labels are

created by the quantization of pre-trained teacher SSL model’s representations via k-

means clustering. (b) Our proposed model consists of CNN encoder and 2 layers of

Conformer blocks and learns speech representation by predicting teacher labels. (c)

After pre-training is over, the frozen network without the linear prediction head is

used to produce speech representation for content related downstream tasks.

3.3.1 CNN Encoder

The CNN encoder consists of 7 layers. The first layer takes a single channel raw wave

audio as the input and uses 1D convolution with output channel of 512, kernel size of

10, and stride of 5 with no padding. The second to fourth layers uses 1D convolution
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which takes input channel of 512 and output channel of 512, kernel size 2 and stride 2

with no padding. The fifth and sixth layers use 1D convolution with 512 input channels,

512 output channels, 2 kernel size, and 2 strides with no pooling. The output feature

of the CNN encoder is down-sampled by the factor of 320. For an audio with sample

rate of 16k, each feature of the CNN encoder contains information of 320ms of the

original audio. This down-sampling factor is kept for the output of the proposed model

because Conformer block does not further down-sample the output feature of the CNN

encoder. In each layer, the layer normalization [37] and GELU activation [38] are used

for the output of the 1D convolution.

3.3.2 Weight Initialization

Inspired by previous distillation approaches in self-supervised learning[31, 3, 30], we

initialized our model’s CNN encoder with the weights of ContentVec’s CNN encoder.

The fact that the proposed model and ContentVec has the same CNN structure is ex-

ploited. Moreover, the weight initialization can be seen as the type of fine-tuning. Just

like fine-tuning starts with the same weight of the pre-trained model for the target task,

our model’s CNN encoder is fine-tuned and offered good starting point for the training

via distillation. The effect of weight initialization is reported in section 4.4.

3.3.3 Conformer Block

The essential difference between the proposed model and the previous SSL models in

speech is the encoder after CNN encoder. Our proposed model uses Conformer instead

of Transformer encoder. A Conformer block encoder is made up of a feed-forward

module, a self-attention module, a convolution module, and another feed-forward mod-

ule, as shown in Figure 3.2. The convolution module consists of a pointwise convolu-

tion, a gated lienar unit (GLU), a single 1D depthwise convolution and batch normal-

ization, swish activation, and another pointwise convolution with dropout. Figure 3.3
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Figure 3.2: A diagram of a conformer encoder. Conformer block consists of feed for-

ward module, multi-head self attention module, convolution module, and another feed-

forward module. A convolution module and another feed-forward module is added to

the original Transformer encoder structure. By having convolution module along with

multi-head self attention module, conformer block can take account of global and local

information.

shows the detailed structure of convolution module. By having a self-attention mod-

ule and a convolution module together, Conformer can capture both global and local

information and achieves better performance in automatic speech recognition (ASR)

task than Transformer [13] based models. Just like predicting text tokens from speech

in ASR, our model predicts teacher labels from speech and learns teacher models’ rep-
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resentation.

Figure 3.3: A diagram of a convolution module of Conformer encoder. The colored

box consists of a neural network and empty box are operations with no trainable pa-

rameters.

To build a parameter efficient model, the channel dimension for the Conformer

block is set to be 512, which follows the original setting of Conformer-L. Unlike

the commonly used 768 channel dimensions, using 512 channel dimensions for Con-

former encoder could reduce the number of parameters. Moreover, the CNN encoder’s

output feature has 512 channel dimensions as well, so there is no need to expand the

output feature of CNN encoder to 768 dimensions before going through the representa-

tion encoder. No expansion in channel dimensions helps to further reduce the number
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of parameters. By reducing the channel dimensions and using Conformer blocks, our

model could achieve less number of parameters than the model traiend by previous

distillation approach [31].

3.4 Objective Function

Just like in HuBERT [5], our objective function, cross-entropy loss is computed over

masked and unmasked time steps. Mask prediction helps to catch the context of the

contents of the speech. The effect of mask prediction during the training will be re-

ported in section 4.5 in details. We denote masked prediction loss as Lm and unmasked

prediction loss, as Lu, which are defined as:

Lm =
X

t2M
logpf (zt|f(xt))

Lu =
X

t/2M

logpf (zt|f(xt))
(3.1)

In Equation 3.1, zt denotes the teacher labels at time step t, f(·) denotes the stu-

dent model, xt denotes the speech sample at time t. M denotes the time steps that

are masked during the training. The overall prediction loss Lpred is computed as the

weighted sum of Lm and Lu, which can be shown as

Lpred = ↵Lm + (1� ↵)Lu (3.2)
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Chapter 4

Experiment

4.1 Implementation Details

As mentioned in section 3.2, our model consists of a 7-layer CNN encoder and 2

Conformer [7] blocks. Each Conformer block has 512 dimensions, 8 attention heads,

64 dimensions per head, and 31 kernel size for the convolution module. For the teacher

labels, the output layer representations of pre-trained ContentVec [2] are used. The

number of clusters for k-means clustering is 500. The ↵ value for the prediction loss

is set to be 0.8.

Our model is trained on six 12GB NVIDIA 2080Ti GPUs for 200k steps with a

batch size of 48 utterances, taking about 27 hours. We use AdamW [39] optimizer

with the initial learning rate of 2e-5, beta values of 0.9 and 0.98, weight decay factor

of 1e-2, and epsilon value of 1e-6. The learning rate linearly increases to 2e-4 during

the first 14000 steps and then linearly decreases to 0 by the end of the training step.
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subset hours per-spkrs minutes female spkrs male spkrs total spkrs

train-clean-100 100.6 25 125 126 251

train-clean-360 363.6 25 439 482 921

train-other-500 496.7 30 564 602 1166

dev-clean 5.4 8 20 20 40

dev-other 5.3 10 16 17 33

test-clean 5.4 8 20 20 40

test-other 5.1 10 17 16 33

Table 4.1: Detailed information of subset of LibiSpeech

4.1.1 Training Dataset

LibriSpeech LibriSpeech dataset [36] consists of train-clean-100, train-clean-360,

train-other-500, dev-clean, dev-other, test-clean, and test-other. All the audio in the

dataset are single channel recordings of audiobooks with the sample rate of 16k. The

division between clean and other is measured by the word error rate (WER) of the

speaker. Speakers with low WER are put into the ”clean” subset and speakers with

high WER are put into the other subset. For the training of our model, we used train-

clean-100, train-clean 360, and train-other 500 or commonly referred as 960-hour Lib-

riSpeech training subset. The detailed information of each subset of LibriSpeech is

shown in Table 4.1.

4.2 SUPERB

We evaluate our model on SUPERB [1], a benchmark dataset containing various su-

pervised speech processing tasks. Our evaluation is done on the contents and semantic

related tasks in SUPERB. These tasks include phoneme recognition (PR), automatic
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#Params PR ASR KS IC SF

Method Millions PER # WER # ACC " ACC " F1↑/ CER #

Generative Models

APC [23] 4.11 41.9 21.2 91.0 74.69 70.4/50.8

TERA [25] 21.33 49.1 18.1 89.4 58.4 67.5/54.1

Mockingjay [24] 85.12 70.1 22.8 83.6 34.3 61.5/58.8

DeCoAR2.0 [26] 85.12 14.9 13.0 94.4 90.8 83.2/34.7

Discriminative Models

CPC [27] 1.84 42.54 20.18 91.8 64.0 71.19/49.91

wav2vec [40] 32.54 31.5 15.8 95.5 84.9 76.3/43.7

wav2vec2.0 [6] 95.04 5.7 6.43 96.2 92.3 88.3/24.7

HuBERT [5] 94.68 5.4 6.42 96.3 98.3 88.5/25.2

ContentVec [2] 94.68 4.9 5.7 96.4 99.1 89.6/23.6

Distillation Models

DistilHuBERT [3] 23.49 16.2 13.3 95.9 94.9 82.5/35.5

Our Model 20.42 15.3 13.5 95.8 93.7 80.1/36.9

Table 4.2: Evaluation results on content and semantic related tasks in SUPERB. The

evaluation metrics for the benchmark are phoneme error rate (PER%), word error rate

(WER%), accuracy (ACC%), F1 score (F1%), an concept error rate (CER%). The

results for APC, TERA, Mockingjay, DeCoAR2.0, CPC, wav2vec, wav2vec2.0, Hu-

BERT are from [1], and results for ContentVec and DistilHuBERT are from their orig-

inal papers [2, 3].

speech recognition (ASR), keyword spotting (KS), intent classification (IC), and slot

filling (SF). During the evaluation, our pre-trained model is frozen, and a minimal

network is used to perform each downstream task to observe the representation perfor-

mance.
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There are ten baseline models to compare, which are contrastive predictive coding

(CPC) [27], APC [23], Mockingjay [24], TERA [25], wav2vec [40], DeCoAR2.0 [26],

wav2vec2.0 [6], HuBERT [5], ContentVec [2], and DistilHuBERT [3]. Among these

model, APC, Mockingjay, TERA, and DeCoAR2.0 are trained by generative methods,

CPC, wav2vec, wav2vec2.0, HuBERT, and ContentVec are trained by discriminative

methods, and DistilHuBERt and our model are trained by distillation methods.

Our model ranked on average of 5.2 among eleven self-supervised learning models

in speech listed in Table 4.2 and ranked third for having lowest number of parameters.

Our model has the lowest number of parameters among the models that is made up of

Transformer based encoders. When compared with the SSL model trained by distilla-

tion method [3], our model showed superior performance in phoneme recognition and

comparable performance in automatic speech recognition and keyword spotting.

4.2.1 Parameter Size

The proposed model ranked third lowest number of parameters with the parameter size

of 20.42 million among the existing SSL models that are used to compare the repre-

sentation performance. Contrastive predictive coding (CPC) ranked the first for having

lowest number of parameters with 1.84 million parameters. CPC has the simplest net-

work structure which consists of 5 layers of CNN and single LSTM layer. APC, which

consists of 3 gated recurrent unit (GRU), ranked second lowest with 4.11 million num-

ber of parameters. TERA, which has 3 Transformer layers, ranked fourth lowest with

21.33 million parameters followed by DistilHuBERT, which consists of 7 layers of

CNN and 2 Transformer layers and has 23.49 million parameters. wav2vec, which has

19 CNN layers and 32.54 million parameters, ranked sixth and DeCoAR2.0, which

has 12 Transformer layers and 85.12 million parameters, ranked sevnth. wav2vec2.0,

HuBERT and ContentVec shared the same the structure which consists of 7 CNN lay-

ers and 12 Transformer layers, but wav2vec2.0 has 95.04 million parameters and is
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Model Network #Params

Generative Models

APC [23] 3-GRU 4.11

TERA [25] 3-Trans 21.33

Mockingjay [24] 12-Trans 85.12

DeCoAR2.0 [26] 12-Trans 85.12

Discriminative Models

CPC [27] 5-Conv, 1-LSTM 1.84

wav2vec [40] 19-Conv 32.54

wav2vec2.0 [6] 7-Conv, 12-Trans 95.04

HuBERT [5] 7-Conv, 12-Trans 94.68

ContentVec [2] 7-Conv, 12-Trans 94.68

Distillation Models

DistilHuBERT [3] 7-Conv, 2-Trans 23.49

Our Model 7-Conv, 2-Conf 20.42

Table 4.3: The network structure of SSL models in speech. GRU stands for gated recur-

rent unit, Conv stands for convolutional neural network, Trans stands for Transformer,

and Conf stands for Conformer.

slightly larger than HuBERT and ContentVec which have 94.68 million parameters.

The proposed model reduces the teacher models’ parameter size by 78%.The details

of network structure of SSl models can be found in Table 4.3.

4.2.2 Phoneme Recognition (PR)

For phoneme recognition, our proposed model ranked fifth with phoneme error rate

(PER) of 15.3. There are four SSL models that showed better performance than the
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proposed model which are ContentVec, HuBERT, wav2vec2.0, and DeCoAR2.0. Con-

tentVec ranked first with 4.9 PER, HuBERT ranked second with 5.4 PER, wav2vec2.0

ranked third with 5.7 PER and DeCoAR2.0 ranked fourth with 14.9 PER. Notice that

the models that performed better than the proposed model have 85 to 95 million pa-

rameters which are 4.2 to 4.6 times larger in size than our model. When compared

to DeCoAR2.0 which has 4.2 more parameters than our model, the PER difference

was only 0.4. Our model did better than DistilHuBERT by 0.9 PER and other existing

models like CPC, APC, TERA, Mockingjay, and wav2vec. The result for phoneme

recognition in SUPERB can be found in third column of Table 4.2.

4.2.3 Automatic Speech Recognition (ASR)

For automatic speech recognition, our proposed model ranked sixth with word error

rate (WER) of 13.5. Our model performed better than CPC, TERA, APC, Mockingjay,

and wav2vec. There are five SSL models that performed better than our model which

are ContentVec, HuBERT, wav2vec2.0, DeCoAR2.0, and DistilHuBERT. ContentVec

ranked first with 4.9WER, HuBERT ranked second with 6.42 WER, wav2vec2.0 ranked

third with 6.43 WER. Our model had close results with DeCoAR2.0 and DistilHu-

BERT. DeCoAR2.0, which has 4.2 times larger number of parameters than our model

resulted with 13.0 WER. DisitlHuBERT has 3 million more parameters than our model

and resulted with 13.3 WER. The automatic speech recognition results can be found

in the fourth column of Table 4.2.

4.2.4 Keyword Spotting (KS)

For keyword spotting, our model ranked fifth with the classification accuracy of 95.8%

among the SSL models listed in Table 4.2. Our model showed only 0.01% difference
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with DistilHuBERT, which ranked fourth in keyword spotting and had 3 million more

parameters. Our model showed superior performance than CPC, TERA, APC, Mock-

ingjay, wav2vec, and DeCoAR2.0. Except for CPC and APC, TERA, APC, Mocking-

jay, wav2vec, and DeCoAR2.0 had about 0.9 million to 65 million more parameters

than our model. ContentVec ranked first with 96.4% accuracy, HuBERT ranked sec-

ond with 96.3%, and wav2vec2.0 ranked third with 96.2%. The results for keyword

spotting can be found in the fifth column of Table 4.2.

4.2.5 Intent Classification (IC)

For intent classification, our model ranked fourth among the existing SSL models

listed in Table 4.2 with the classification accuracy of 93.7%. Our model performed

better than CPC, TERA, APC, Mockingjay, wav2vec, DeCoAR2.0 and wav2vec2.0.

It is noticeable that our model performed better than wav2vec2.0, which has 4.6 times

more parameters and shows better performance in other downstream tasks in Table 4.2.

ContentVec ranked first with 99.1% accuracy, HuBERT ranked second with 98.3% ac-

curacy, and DistilHuBERT ranked third with 94.9% accuracy. The results for intent

classification can be found in the sixth column of Table 4.2.

4.2.6 Slot Filling (SF)

For slot filling, our model ranked sixth among the existing SSL models listed in Table

4.2 with 80.1 F1 score and 36.9 concept error rate(CER). Our model shows superior

results than CPC, TERA, APC, Mockingjay, wav2vec. ContentVec ranked first with

89.6 F1 score and 23.6 CER, HuBERT ranked second on F1 score and third on CER

with 89.6 F1 and 25.2 CER, and wav2vec2.0 ranked third on F1 score and second on

CER. DeCoAR2.0 ranked fourth with 83.2 F1 score and 34.7 CER followed by Distil-

37



Model ABX(w)# ABX(a)#

Our model 3.58 4.23

ContentVec 6.01 6.32

HuBERT 6.06 7.20

wav2vec2.0 8.70 10.34

DistilHuBERT 35.8 39.7

Table 4.4: ZeroSpeech2021 ABX testing results. The results for ContentVec, HuBERT,

and wav2vec2.0 are from [2], and DistilHuBERT results are manually obtained by

using the officially implemented model with the checkpoint used to report in the paper

[3].

HuBERT which resulted with 82.5 F1 score and 35.5 CER. The results for slot filling

can be found in seventh column of Table 4.2.

4.3 ZeroSpeech2021

For ZeroSpeech2021, ContentVec, HuBERT, wav2vec2.0, and DistilHuBERT are used

to compare the performance. ContentVec, HuBERT, and wav2vec2.0 are chosen be-

cause they show state of the art performance in ASR tasks, and DistilHuBERT is se-

lected to compare the performance of a SSL model trained using knowledge distilla-

tion method. Among four criteria in ZeroSpeech2021, ABX testing, which evaluates

acoustic and phonetic representation power, is selected. The evaluation metric is error

rate of a sound that is grouped into wrong category.

ABX(w) ABX(w) tests whether a triphone utterances spoken by the same person is

categorized into the right category. Our model ranked first among five models with

error rate of 3.58. The difference of error rate between the our model and the sec-
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ond best model [2] is 2.43. Notice that ContentVec and HuBERT showed difference

in 0.05, and both of them performed far worse than our model. As shown in Table

4.2, both ContentVec and HuBERT has 4.6 times more parameters than our model.

wav2vec2.0 resulted with 8.7, and DistilHuBERT ranked the last with error rate of

35.8. This is significant that our model, a student, showed better performance than the

teacher model.

ABX(a) ABX(a) tests whether a triphone utterances spoken by a different person is

categorized into the right category. Out model ranked first among five models with

error rate of 4.23. ContentVec ranked second with 6.23 error rate, HuBERT ranked

thrid with 7.20 and wav2vec2.0 ranked fourth with 10.34 error rate. The difference

between ContentVec, the teacher model, and our model or the student, comes out to be

2.09. ContentVec, HuBERT, and wav2vec2.0 have 4.6 times more parameters than our

model. DistilHuBERT which uses distillation method to train, ranked last with 39.7

error rate.

As shown in the Table 4.4, our model shows the best performance among five mod-

els. The main contribution for the result can be thought as the number of teacher labels.

When training our model for distillation, the number of labels is 500. If each label can

be thought as finite unit of sound in speech, then our model learns to distinguish the

minor difference in sound. ContentVec and HuBERT uses 100 labels for learning, and

wav2vec2.0 uses 320 labels. DistilHuBERT does not uses pseudo-label prediction for

training but tries to learn continuous representation of HuBERT. Therefore, having fi-

nite pseudo-labels or number of quantization can be thought as the contributing factor

to distinguish minor sound difference of speech.
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4.4 Ablation Study

This section evaluates how each of our choice in the distillation technique contributes

to the performance of our model. Four variations in technique are reported in Table

4.5, which are (1) when our model is trained with Transformer encoders instead of

Conformer, (2) when our model is trained without weight initialization of the CNN

encoder, (3) when our model is trained without masked prediction and (4) when our

model is trained with HuBERT teacher labels. Just like in [3], we also report ASR, KS,

and IC performance for ablation because these tasks represent recognition, detection,

and semantics in content related downstream tasks.

ASR KS IC

Method WER# ACC" ACC"

Our Model 13.5 95.8 93.7

w/ Transformer 18.7 94.9 89.2

w/o weight init. 14.0 95.3 93.7

w/o masking 13.3 94.9 92.7

w/ HuBERT labels 15.2 95.6 88.3

Table 4.5: Ablation study of the training techniques used

4.4.1 Transformer Encoder

When using two Transformer encoders with 768 dimensions instead of Conformer

blocks are used, degradation in performance could be observed. The model structure

becomes the same as DistilHuBERT, which means that the model tested for this abla-

tion has 3 million more parameters. As the result, WER in ASR increases decreased by
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5.2%, KS decreases by 0.9%, and IC decreases by 4.5%. Notice that performances of

ASR and IC degraded significantly compared to the proposed model, despite having 3

million more parameters. This result shows that the proposed distillation method suits

better for Conformer encoder than Transformer. The third row of Table 4.5 shows the

ablation result for using Transformer encoder instead of Conformer.

4.4.2 Weight Initialization

When the weight initialization for CNN encoder is not used, WER for ASR increases

by 0.5% and KS decreases by 0.5%. Any type of weight initialization is not done

for CNN encoder such as Xavier normal or Kaiming normal initialization. This result

shows that weight initialization offers the good starting point, and the idea of fine tun-

ing can also be applied in this case. The fourth row of Table 4.5 shows the ablation

result for not using weight initialization.

4.4.3 Mask Prediction

Training our model without mask prediction is done by using a regular cross-entropy

loss for every teacher label. Using no mask prediction for the loss decreases the per-

formance in KS and IC because these tasks related to the context of the contents of

the speech. Since masked prediction is to capture context of the contents, this result

fulfills the intention of using mask prediction in self-supervised learning.

Interestingly, WER for automatic speech recognition decreases by 0.2. This result

shows tie performance to DistilHuBERT when using without masked prediction. With-

out mask prediction, the network focus on predicting the sound of the specific location

rather than considering the context of the speech. Therefore, the model is suitable for

direct transcription of the speech. The fifth row of Table 4.5 shows the ablation result
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for not using mask prediction for objective function.

4.4.4 HuBERT Teacher Labels

For creating HuBERT teacher labels, HuBERT’s seventh layer representations are

used. According to [2], seventh layer representation has lower speaker identification

accuracy with comparable content information to sixth layer, which behaves similar to

ContentVec. The number of labels for teacher labels created by HuBERT’s 7th layer

representation is 500 as well.

When our model is trained with the teacher labels created by HuBERT’s represen-

tations, automatic speech recognition performance decreases by 1.7 %, keyword spot-

ting performance decreases by 0.2 % and intent classification performance decreases

by 5.4%. A noticeable difference can be observed for ASR and IC. This result shows

that using ContentVec representations for the teacher labels contribute significantly for

the distillation performance. The sixth row of Table 4.5 shows the ablation result for

using HuBERT representations instead of ContentVec representations for teacher la-

bels.

ASR KS IC

Method WER# ACC" ACC"

ContentVec 5.7 96.4 99.1

Our model(cont.) 24.6 80.5 30.2

Our model(500) 13.5 95.8 93.7

Table 4.6: Distillation analysis for the proposed model
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4.5 Analysis of Distillation Method

This section analyzes the distillation method used for training our model. Our model

is trained by a distillation method to predict the teacher labels that are created by

quantization of continuous ContentVec’s outer representation. The number of labels

are set to 500 because both ContentVec and HuBERT uses 500 labels for training.

One can ask, what if our model learns continuous representation instead of quan-

tized representation of ContentVec? The answer to that question is shown in Table 4.6.

To learn continuous representation, the objective function used for DistilHuBERT is

used. This objective function combines L1 regularization between predicted represen-

tation and the teacher representation with the loss that increases cosine similarity. The

detailed loss is shown in Equation 2.6. When our model is trained to learn the outer

representation of ContentVec, WER for ASR increases by 11.1, accuracy for keyword

spotting decreases by 10.3% and the accuracy for intent classification decreases by

63%. The representation performance decreases for all three downstream tasks, and

the performance decrease in intent classification is very noticeable.

From the result shown in Table 4.6, the conformer encoder is not well suitable for

predicting continuous representation. This result shows interesting contradiction be-

tween the Conformer encoder and Transformer encoder. From table 4.5, Transformer

encoder shows performance decrease when learning by predicting teacher labels. From

these results, it can be assumed that Conformer better learns discretized representation

and Transformer better learns continuous representation in our model structure.

4.6 Inference Speed

We evaluate the inference speed in two different computational environments. Specif-

ically, we checked the inference speed of HuBERT, DistilHuBERT, and our model

when using single NVIDIA 2080 Ti GPU or 4 CPUs. The inference time is measured
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# param. Inf (G) Inf (C)

Model Millions seconds seconds

HuBERT 94.68 57.5 1703

DistilHuBERT 23.49 32.3 1038

Our Model w/ HuBERT 20.42 28.9 957

Table 4.7: Inference speed comparison. Inf (G) is the inference time measured using

single GPU, and Inf (C) is the inference time measured using 4 CPUs. An average

seconds of 3 runs is reported for each measurement. For the objective comparison, our

model trained on using HuBERT teacher labels are used.

Model MAC(G)

DistilHuBERT 3.17

Our Model 3.24

Table 4.8: The number of MAC for performing inference of a 1 second audio with

sampler rate of 16k. The unit of MAC is giga or 109.

by getting representations for entire dev-clean subset of LibriSpeech [4]. Although the

number of parameters is the same, our model trained with HuBERT teacher labels is

used for fair comparison. When observing the inference time for using single GPU,

we performed 10 dummy runs for warm-up before actually performing inference. No

warm-up was done for performing inference using 4 CPUs. An average of 3 trials are

measured. Table 4.7 shows the results of inference time measured in both computa-

tional environment for three models.

Moreover, the number of multiply-accumulate is also measured between our model

and DistilHuBERT to objectively measure the inference speed. Only DistilHuBERT

and our model are used to compare because these models are purposefully built to

perform fast inference compared to HuBERT. The result for MAC is reported in Table
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4.8.

Inference Time on GPU When inference time is measured using single GPU, our

model took the average of 28.9 seconds which is 99% faster than HuBERT or the

teacher model. Our model took less time than DistilHuBERT, which took 32.3 seconds.

Our model shows fastest inference speed using single GPU among three models.

Inference Time on CPU When inference time is measured using 4 CPUs, our model

took the average of 957 seconds, which is 78% faster than HuBERT that took the

average of 1703 seconds. DistilHuBERT took the average of 1038 seconds and was

slower than our model. Our model shows fastest inference speed when using 4 CPUs

among three models.

Multiply Accumulate Multiply accumulate (MAC) counts the number of multipli-

cation and addition to perform inference of a specific size of input. It can be be thought

that having less number of MAC would lead to faster inference speed because of less

number of multiplication or addition operations to complete inference. The input is 1

second single channel audio that has the sample rate of 16k. As reported in Table 4.8,

our model had slightly more MAC than DistilHuBERT. The reason why our model has

more MAC than DistilHuBERT is that our Conformer encoder has convolution mod-

ule which requires more multiplication and addition calculation than DistilHuBERT’s

Transformer encoder which is made up of fully-connected layers.
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Chapter 5

Conclusion

5.1 Overview

We propose a parameter efficient Conformer-based speech representation model. Our

model is developed by a distillation method which predicts teacher labels created

by quantizing representations from the pre-trained self-supervised learning model for

speech. Our model uses Conformer encoder instead of Transformer encoder and could

successfully reduce the number of parameters with tolerable degradation in perfor-

mance. With the reduction of number of parameters, our model shows faster inference

time compared to the teacher model and the model developed by existing distillation

method.

Specifically, our model ranked an average of 5.2 among eleven SSL models in

five content related downstream tasks in SUPERB. For intent classification, our model

outperformed wav2ve2.0 which showed the state-of-the-art performance in automatic

speech recognition. Among eleven models, our model ranked third lowest number

of parameters and had three million less number of parameters than DistilHuBERT,

which is trained by existing distillation approach. Our model showed superior to par

performance in phoneme recognition, automatic speech recognition, and keyword spot-
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ting than DistilHuBERT.

Not just in SUPERB, our model outperformed the state of art SSL models such

as ContentVec, HuBERT, and wav2vec2.0 in ABX testing of ZeroSpeech 2021. There

are two criteria in ABX testing, and our model outperformed in both criteria. The SSL

models such as ContentVec, HuBERT, and wav2vec2.0 have at least 4.6 times more

parameters than our model.

When ablation study is conducted, the training methods used contribute signifi-

cantly to enhance the performance of our model. Especially, using Conformer encoder

instead of Transformer and creating teacher labels with ContentVec instead of Hu-

BERT showed large improvement in ASR and intent classification performance. For

distillation method, predicting discretized teacher model’s representations was better

distillation method for our model than predicting continuous representations.

For inference speed, our model reduced the inference speed by 99% when single

GPU is used and by 78% when 4 CPUs used. Our model showed faster inference speed

than DistilHuBERT. However when MAC is measured, our model had more number

of MAC than DistilHuBERT.

5.2 Future Work And Limitation

Although our model could reduce the number of parameters with tolerable degrada-

tion, more research and experiments need to be conducted to use SSL models in real-

life situation or in on-device setting. Just like in [30], weight quantization can be done

to increase the inference speed. Or weight pruning method can be applied to reduce

the number of weights of the models. The performance of the model after applying

weight quantization and pruning needed to be experimented.

Moreover, our model is not tested for different languages. The downstream task

performance needed to be seen when our model is fine-tuned with different language
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besides English. There are situations when non-native English speakers need assistant

in speech-related downstream tasks as well.

To actually apply SSL models in real-life situation and on-device setting, the model

needs to be more handy and robust to different settings. Not just reducing the number

of parameters of existing models but further compressing the model is needed to be

done. The test cases for real-life situation, not just the benchmark used in academia

needs to be considered and researched for the future work.
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�]

⌧T(speech)– �\ ê�¿ƒYµ®x(self-supervised learning model)@ ⇠Œ

@ ⌧T pt0| ¨©t »(D ƒâ ƒ, ⌧T– �\ π’(representation)D ¨©

XÏ �(⌧ ¸⌧| xîp p ƒ¿D �‰. ⌧T �(⌧ ¸⌧ ⌘– �• TXå

¨©⇠î �\î L1x›tò Lå x›t à<p, \‡ ê0êƒYµ ®x‰@

t¸⌧–⌧‰∞∞⇠\1�DpP»‰.

∞⇠\ 1�D pP»L–ƒ àlX‡ ê�¿ƒYµ®x@ ‰⌧ ∞¨ ¸¿¡

i–⌧L1x›D⌅t¨©⇠î|t∆‰.¯t \îI•àŒ@ëX®xX

‰⌧¿⇠(parameter) L8t‰. Œ@ ëX ‰⌧¿⇠| �‡ àî ®x@ ‰âX0

⌅t⌧îI•àŒ@ÙË0ê–DDî\\‰.

tÏ\ Ë⇣‰D ÙDX0 ⌅t ‰⌧¿⇠ ®(�x ê�¿ƒ Yµ ®xX ⌧

⌧– �\ l| ƒâX�‰. ®x ¿› ùX0ï(knowledge distillation)D µt

0tX\‡1•D¥îê�¿ƒYµ®xDËÏ8(Conformer)|0⇠<\\‰

⌧¿⇠� �@®xD Yµ ‹0‰. l¥�<\ 0tX \‡ 1•D ¥î ê�¿ƒ

Yµ®xX \⌅(representation)‰X t∞T(discretization)D µt⌧ X¨ �t

(pseudo-label)DÃ‰¥YµDƒâX�‰.

¯l–⌧⌧⌧⌧®x@ SUPERB@ ZeroSpeech2021Dµt⌧ÄùDƒâ

X�‰. SUPERB ⇡@Ω∞ 0tX ê�¿ƒYµ ®x‰¸  ¨Xpò T ã@ 1

�D pP»‰. ZeroSpeech2021–⌧î \‡ 1•X ContentVec, HuBERT, ¯¨‡

wav2vec2.0Ù‰Ë,Tã@1�DpP»‰.

¯ l–⌧ ⌧⌧⌧ ®x¿›ùX 0ïD 8ÑT t⌧ Ñ�D ƒâX�‡ ¥
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†\ îå� 1• •¡– ƒ¿t ⇠»î¿ lX�‰. ®x¿›ùX 0ïD µt

⌧⌧⌧ ®x@ 0tX \‡ ®xX ‰⌧¿⇠ ⌧⇠| 78% ⌅�‰. ⇣\ 0t \‡

®x�D¯l–⌧⌧⌧⌧®x@ GPUXò|¨©t⌧î`(inference)Dƒâ

X�DL 99% , 4⌧X CPU|¨©X�DLî 78%Xçƒ•¡DÙ�‰.

¸î¥:ê0¿ƒYµ,π’Yµ,®xΩ…T,®x¿›ùX0ï

Yà: 2021-24076
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