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Abstract

Resolution based Incremental Scaling
Methodology for CNNs

Jungsub Lim

Interdisciplinary Program in Artificial Intelligence

College of Engineering
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Seoul National University

Designing an optimal CNN for each embedded device with a different resource budget

would be time-consuming and inefficient. Network scaling provides a viable solution to

tackle this challenge, In this work, we propose a novel network scaling strategy called

RBIS(resolution-based incremental scaling). Unlike the previous works that consider the

width, depth, and input resolution together, we first find the input resolution candidates

on a given hardware platform. For each resolution candidate, we incrementally scale the

depth and width of each stage up to the available resource. Comparison with other scaling

methods proves the superiority of the proposed scaling methodology. Codes are avail-

able at https://anonymous.4open.science/r/RBIS-Resolution-based-Incremental-Scaling-

A661/
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Chapter 1

Introduction

As convolutional neural networks (CNNs) deliver state-of-the-art accuracy in many

computer vision tasks such as image classification, object detection, and segmentation,

there is a growing need to run CNN applications in embedded devices with limited com-

putational resources. When performing CNN applications in embedded devices, we want

to maximize the accuracy under the resource budget of the device. Designing an optimal

CNN for each device with a different resource budget would be time-consuming and in-

efficient. Network scaling has been proven to be an effective way to tackle this challenge.

After we optimally design a baseline CNN for a device with a tight resource constraint,

we can scale the network for a more powerful device in three dimensions: width, depth,

and input resolution.

Many researchers have dealt with the problem of effectively scaling networks. An

early example is a series of ResNet[4] from ResNet-18 to ResNet-152. Meanwhile, WideResNet[5]

increased the width of their models. Another approach is to increase the depth of the

model([4, 6]) or the resolution of the model[7]. EfficientNet[1] initiated a study on how

to scale up the network systematically and efficiently. Fig. 1.1 shows the empirical re-

sults presented in their work. Since the accuracy quickly saturates as only one dimension

is scaled, as shown in this figure, they proposed a novel scaling method called compound

scaling, in which they scale up the network width, depth, and resolution in a balanced
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way. The compound scaling method finds a scaling factor of each dimension (α for depth,

Figure 1.1: Performance saturates as d, w, or r increases alone. This figure is a merger of
three separate graphs in Fig. 3 of EfficientNet[1]

.

β for width, and γ for resolution) and applies a common compound coefficient φ to scale

them uniformly. The scaled computation complexity becomes (α×β2 × γ2)φ in terms of

FLOPS. They determine the actual scaling factors by a grid search method and apply

them to all stages of the network. There are subsequent studies to find a better combina-

tion of scaling factors than compound scaling. Even though compound scaling provides

a simple and effective way to find how to scale the network, it has several drawbacks that

make it sub-optimal. First, they use a hardware-agnostic metric, FLOPs, to balance the

scaling factors of three dimensions. It is well understood that having low FLOPs does not

necessarily guarantee that the latency of the model is also low. For example, NasNet-A

[8] has a similar FLOPs count as MobileNetV1[9], but its complicated and fragmented

cell-level structure is not hardware friendly, so the actual latency is slower. For real-

life applications on an embedded device, we desire models that show a good trade-off
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between accuracy and latency (not FLOPs). Second, determining the scaling factors of

three dimensions is somewhat vague or unclear. Compound scaling uses an exhaustive

grid search method over possible combinations. Third, in compound scaling, the scaling

factors are uniformly applied to all stages. Recognizing this drawback, the same authors

proposed a modified version in EfficientNetV2[10], where they stack more layers to later

stages. However, they do not precisely state the mechanism of how each stage is differ-

ently scaled. In this work, we propose a novel scaling methodology to overcome those

drawbacks, based on the following observations from Fig. 1.1 on which the compound

scaling is based.

• Since the incremental gain of accuracy over a unit delay varies differently, it might

be better to balance the slope, called the cost-performance ratio, among three scal-

ing dimensions.

• Resolution scaling is more slowly saturated than the others. We speculate the rea-

son as follows: While width and depth scaling increases the model parameters for

a given input model, resolution scaling increases the incoming data information.

• The graph is drawn after uniform scaling is performed. Width and depth scaling

may have a different effect on each stage of the network. While input resolution

is applied to all stages, it might be better to scale each stage’s width and depth

differently.

The proposed scaling methodology is called RBIS(Resolution-Based Incremental

Scaling). As the name implies, we treat resolution scaling separately from width and

depth scaling. First, we prepare a set of resolution candidates. Next, we perform incre-

mental scaling separately for each resolution to increase the accuracy within a given

latency constraint. Finally, we choose the best scaled network by comparing the results.

The heart of the proposed methodology is incremental scaling. Unlike the previous scal-

ing methods that apply the same scaling factor to all stages, our incremental scaling

3



Figure 1.2: Accuracy comparison of the networks scaled by the proposed and compound
scaling methods.

method finds the scale factor of each stage differently. We must determine how much

width/depth is increased at a time for incremental scaling. Since we consider each stage

separately, there is a large number of possible ways of scaling a network. We devise a

strategy to make a trade-off between the computation complexity and the performance.

Fig. 1.2 shows the comparison between the proposed and other scaling methods

for EfficientNets, including the original compound scaling method of EfficientNets. Fast

scaling [2] and ResNet-RS scaling [3] (shortly RS scaling) are two other methods that

are compared with the proposed method in experiments. As shown in this figure, RBIS

achieves the highest top-1 accuracy on ImageNet among all methods with comparable

latency. Comparison with the other scaling methods proves the effectiveness of the pro-

posed scaling methodology.
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Chapter 2

Related Work

A number of works propose to scale models by depth, width, or input image resolu-

tion. While ResNets use depth scaling, WideResnet[5] and MobileNets scale the network

by width scaling. It is also well-known that a bigger input image size will help accuracy.

Unlike previous studies that focused on only one of depth, width, and resolution, Effi-

cientNet proposed a method to effectively increase the performance of a CNN network

by simultaneously increasing the network’s depth, width, and resolution, as mentioned

above. Compound scaling is a general scaling method that could be effectively applied to

ResNets and MobileNets. But they used their own NAS framework called MNasNet[11]

to develop the baseline model and applied compound scheduling to obtain EfficientNets

that showed state-of-the-art performance at that time.

There are subsequent studies to find a better combination of scaling factors than

compound scaling. Fast scaling[2] is a method that puts more weight on width, observ-

ing that the activation map size matters more than FLOPs in terms of latency. ResNet-

RS[3] de-emphasizes resolution scaling by slowing down resolution scaling. Their scal-

ing heuristic is to scale the depth in regimes where overfitting occurs by width scaling.

These methods apply a unified principle to scale the whole model, ignoring the stage-wise

differences.

On the other hand, recent studies show that applying the same rules to all stages is
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not optimal for performance improvement. Since the size of the activation map is reduced

by half each time it goes through a stage and each stage has a different number of param-

eters, stages are likely to have different characteristics in terms of cost-performance ratio.

EfficientNetV2[10] modifies the EfficientNet architecture admitting that uniform scaling

strategy is sub-optimal. Their modified scaling strategy is gradually adding more lay-

ers to later stages and restricting the maximum input size to a smaller value. RegNet[12]

also gave many observations of good architecture by experimenting with thousands of ar-

chitectures to find a relationship between widths and depths of good networks. However,

RegNet and EfficientNetV2 do not present a generalized scaling rule like compound scal-

ing. Many NAS(Neural Architecture Search) methodologies have been published, along

with scaling performance as well as how to find the base net. S3NAS[13] proposes a

method to find a sub-optimal neural architecture for various hardware by modifying the

single-path NAS[14] method. After finding the baseline network through S3NAS, they

apply the compound scaling method to scale up the network. This network is selected

as a benchmark to show that the proposed scaling method works better than compound

scaling on an arbitrary CNN network.

The most closely related work is the work in greedy-network enlarging[15]. Simi-

larly to the proposed method, they proposed a kind of incremental scaling method, apply-

ing a different scaling ratio for each stage. However, they do not differentiate resolution

scaling from width/depth scaling. They use a proxy method for performance estimation

to accelerate the scaling process, using a subset of the ImageNet dataset for fast training.

Their claimed performance is not reproducible as their code is not open to the public.
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Chapter 3

Network Scaling Problem

The modern CNN backbone architectures usually consist of a stem layer, network

body, and head. The main burden of FLOPs and parameter size lies in the network body,

as typically, the stem layer is a convolutional layer and the head is a fully-connected layer.

Thus, this paper focuses on the scaling of the network body. The network body consists

of several stages, defined as a sequence of layers or blocks with the same spatial size. For

example, EfficientNet-B0 body is composed of 7 stages.

Scaling up convolutional neural networks is widely used to achieve better accuracy.

If we increase the depth of a stage, we could capture richer and more complex features,

which is likely to improve the accuracy in contrast to a shallow network. If we increase

the width of a stage, more fine-grained features can be learned with more kernels. While

having more kernels is beneficial for accuracy improvement, it is a common practice to

reduce the number of kernels by network pruning to reduce the resource requirement in

embedded systems. Since higher input resolution provides more input information, it is

surely helpful to increase the accuracy. To match the high resolution, however, a deeper

and wider network is needed to acquire large receptive fields to capture richer fine-grained

features. It means that the three dimensions of network scaling are not independent. Sup-

pose that the network body of a baseline network, N, consists of L stages. We let wi and

di be the width and the depth of the i-th stage, respectively where i ∈ {1,2, . . . ,L}. Unlike
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the compound scaling method that applies uniform scaling, we treat each stage separately.

Thus the network scaling problem addressed in this work is defined as follows;

Input: Baseline network, the target embedded device, and the latency constraint, T .

Output: All values of {wi} and {di} as well as input resolution, r, scaling the base-

line network.

Objective: Maximize the accuracy under a given latency constraint.

Since there are 2×L+1 variables to determine, the number of combinations to meet

the latency constraint is too large to explore exhaustively. We propose a novel systematic

solution to this problem, which is explained below.

Figure 3.1: Overview of the proposed RBIS scaling algorithm that consists of three steps:
Candidate resolution selection, stage-dependent incremental scaling, and best network
selection.

.
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Chapter 4

Proposed Scaling Methodology: RBIS

Figure. 3.1 shows the overall flow of the proposed methodology which consists of

three steps. In the first step, we select a set of resolutions to explore. In the proposed

method, the resolution scaling exploration differs from the width and depth scaling. It is

different from other approaches that mostly de-emphasize the resolution scaling.

In the second step, we find all values {wi} and {di} by incremental scaling for each

input resolution. From the baseline model, we incrementally increase each stage’s width

and depth in an iterative fashion. There are several parameters to choose from in this

step: Which stages to consider first, which one to increase between width and depth, and

how much to increase. After the best combination of {wi} and {di} is found for each

resolution from the second step, we choose the best scaled network that gives the highest

accuracy by comparing the results from the second step.

4.1 Step 1: Candidate Resolutions Selection

In a preliminary experiment, a relation between the latency and input resolution is

obtained by running the baseline model on various hardware platforms. We run EfficientNet-

B0 on Pixel2 CPU, RTX3090 GPU, NVIDIA Jetson AGX Xavier, varying batch sizes

(BS) reflecting the computing power of the hardware platform. Fig. 4.1 shows the mea-

sured results after gradually increasing the resolution by 4. TRT and FP16 denote Ten-
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Figure 4.1: Non-linear relationship between input resolution and the measured latency
on various hardware platforms: Pixel2 CPU, RTX3090 GPU, and AGX Xavier. BS means
the batch size.

sorRT conversion and half-precision usage for inference optimization. As shown in the

figure, in all hardware platforms, it is observed that the relationship is not linear but

piece-wise linear, meaning that there are some jumps of rapid latency increment. When

selecting the candidate input resolutions, we skip those resolutions after the jump, assum-

ing that these resolutions are not optimal. It is empirically found that the best resolution

is one of the resolutions just before the jump. A possible interpretation is that we could

deliver the richest possible features to the model while minimizing the latency increment.

Therefore, in this work, we include those resolutions and their neighbors in the candidate

resolution pool.

10



4.2 Step 2: Stage-dependent Incremental Scaling

As mentioned in the introduction, incremental scaling is motivated by our obser-

vations from Fig. 1.1. We aim to scale widths and depths in the decreasing order of

cost-performance ratio, or score that is defined as follows:

Score =
max{Acc−ParentAcc,0}
Latency−ParentLatency

(4.1)

ParentAcc and ParentLatency refer to the accuracy and latency of the network before

scaling, respectively. Acc and Latency refer to the accuracy and latency after incremental

scaling. Max operator is required in case scaled network has a lower accuracy than the

base network.

For width and depth scaling, we need to determine which stages to scale and how

much. Since scaling one dimension only is saturated fast, we scale the width and depth

alternately. Width scaling is performed at the first and odd-numbered iterations, while

depth scaling is done in even-numbered iterations. For width scaling, we increase the

width of a chosen stage by 10 percent and set it to the nearest multiple of 4 by rounding.

Such increment is determined empirically; more iterations will be necessary if we reduce

the increment. If we increase more, the search space of width scaling will be reduced. We

increase the depth of chosen stages by one block for depth scaling.

At each iteration, we decided to scale two stages at a time. By scaling two at a time,

target latency can be reached with fewer iterations than scaling one stage only. Since

there are L stages, the number of combinations for width and depth scaling becomes LH2

each. With 10 TPUs available to us, we could evaluate 10 combinations concurrently and

choose the best one at each iteration. As we scale 5 stages from EfficientNet, we need

to sample 10 combinations out of 5H2 = 15 combinations. We choose 10 combinations

in the increasing order of latency, covering 10 out of 15 of all possible combinations.

From preliminary experiments, it is observed that combinations with higher latency are
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less likely to be selected since their accuracy improvement does not outweigh the latency

increase. If we have more TPUs available, we may scale more stages at each iteration.

In the last iteration, we may decrease the number of stages to one in order to meet the

latency constraints.

We find the scaling decision with the highest score at each iteration and reset the base

network according to equation (4.1). It makes the decision of each iteration depend only

on the current state. This iterative process is repeated until we reach the target latency.

The chosen network of the last iteration stage becomes the network with the best accuracy

with the given resolution input.

Figure 4.2: Illustration of the proposed incremental scaling process from EfficientNet-B0
until the latency of EfficientNet-B1 is reached

The process of scaling EfficientNet-B0 to EfficientNet-B1 is demonstrated in Fig.

4.2, assuming that the input resolution is 256. Note that it took us 6 iterations to reach

EfficientNet-B1 latency and achieved 0.5% higher accuracy gain than EfficientNet-B1

without any training strategy added. The last iteration is not included in the final result

because including it will exceed the latency constraint.
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There are other possible ways to perform incremental scaling. Instead of alternating

the width and depth scaling, one method is to compare both directions at each iteration,

which is the first attempt we tried. In this method, we choose one stage for width scaling

and one stage for depth scaling separately to have 2×L scaling candidates and choose the

best one at each iteration. It turns out that a 10% increment of width results in a noticeably

shorter latency increment than adding one more block in a stage. On the other hand, the

accuracy difference between the width and depth scaling is not as large as the latency

difference. In other words, this method favors width scaling more than depth scaling. It

also explains why we separate resolution scaling from width and depth scaling. Since

incremental resolution scaling tends to give a lower score than width or depth scaling,

resolution scaling would only be taken after the depth-width scaling is saturated, which

explains why the previous work usually de-emphasizes resolution scaling.

4.3 Step3: Choose the Best Network

After we find the scaled network with the highest accuracy for each resolution can-

didate, we compare the found networks in terms of the accuracy to choose the best net-

work. Table 4.1 shows the accuracy obtained for each resolution candidate when we

scale EfficientNet-B0 with the latency constraint set to the latency of EfficientNet-B1.

As shown in the table, the accuracy is highest when the input resolution is increased from

224 to 256. The accuracy obtained from the proposed methodology is 79.23, which is

higher than that of EfficientNet-B1 (78.7).

Table 4.1: Best accuracy for each input resolution.

Resolution 240 256 272 288

Accuracy(%) 79.16 79.23 78.9 78.6

The proposed RBIS is summarized in Algorithm 1 and Algorithm 2. In Algorithm

1, we perform incremental scaling iteratively, alternating width scaling and depth scal-
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Algorithm 1 RBIS
Input: Base Architecture N0
Output: Scaled Architecture
RRR = Select candidate resolutions as in Fig.4.1
NET = [ ], ACC = [ ];
for resol ∈ RRR do

t,a = compute latency and accuracy o f N0 at resol
i = 0;
while t < T do

if i%2 == 0 then
Ni+1,ai+1, t = width scaling(Ni,ai, t) as in Algorithm 2

else
Ni+1,ai+1, t = depth scaling(Ni,ai, t) as in Algorithm 2

end
i++;

end
append Ni to NET;
append ai to ACC;

end
k = argmaxACC
return NET[k]

ing for each resolution candidate. We save the best network model and the associated

latency for each resolution candidate. This iteration process continues until the measured

latency becomes larger than the given latency constraint. After all resolution candidates

are covered, we choose the best network.

Algorithm 2 Width/Depth incremental scaling
Input: Base Architecture N, Parent accuracy/latency a/t
Output: Best scaled architecture N in current iteration
PPP=[K-lowest latency networks among LH2 scaled networks];
for net ∈ PPP do

score = Accnet−a
Lnet−t

if score > curmax then
curmax = score
N = net

end
end
return N
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4.4 Performance Estimation

To guide the search process, we have to estimate the accuracy of a given architec-

ture. Many proxy methods are suggested including shorter training times [12], training

on a subset of the data [16], on proxy data [8] or using network transformations [17]. Un-

fortunately, we could not get satisfactory results from those proxy methods. Even though

those low-fidelity approximations reduce the training time, they introduce bias in the

accuracy estimation which leads to poor rank preservation.

As a result, we decided to use a more accurate method: train each candidate with

the entire training dataset and evaluate the accuracy with the validation data. The execu-

tion time of the proposed technique depends on the following hyper-parameters: (1) the

number of resolutions to be searched, (2) the number of steps for incremental scaling,

(3) how many candidates to examine for each step, and (4) how many epochs to train for

each step. Surely there is a trade-off between the performance and the execution time.

Even though we could obtain similar results by reducing the number of training epochs

for each step, we deliberately perform full training in the current implementation to ver-

ify that the proposed incremental scaling method is valid paying the cost of long training

time. By selecting two stages per iteration and deciding a proper amount of scaling, the

number of iterations could be reduced to 6, as illustrated in Fig. 4.2. It took us about a

week to scale EfficietNet-B0 to EfficientNet-B1. We believe such a long time is tolerable

since the network scaling is performed offline only once for each target hardware plat-

form. Nonetheless, it is left as a future research topic to find a faster method of ranking

the candidates of incremental scaling at each iteration.
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Chapter 5

Experiments

In this section, we show how our scaling method works and evaluate the effective-

ness of our method by comparing it with other methods. The hardware platform used to

measure latency is Pixel2, and latency measurement uses the benchmark binary for TFlite

provided by Tensorflow. We didn’t use multi-cpu nor gpu mode for the sake of simplicity.

We use ImageNet dataset to test our results. As for our computational budget, we use 11

v2-8 TPU pods to do our experiments.

First, we introduce the baseline networks we use for the experiments and the hy-

perparameters used with those networks. Next, we show how to apply RBIS to scale

networks. Lastly, we compare the scaled networks with networks that are scaled using

other scaling methods. In all experiments, we scale our networks up to the latency of

EfficientNet-B2, as our methodology targets embedded and mobile devices.

5.1 Benchmark Networks

EfficientNet is a de-facto network model to evaluate any scaling method for two rea-

sons. First, it applies to embedded devices and shows reasonably good performance with

relatively small latency. Second, since many scaling methods are applied to EfficientNets,

it is easy for us to compare our method with others. As for hyper-parameters, we use the

same setting as the original EfficientNet code in our experiments. As scaling proceeds,
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we change the number of filters and the number of blocks per stage.

While EfficientNet is the most widely used network, we also want to show that our

method works well on another network. We select S3NAS[13] as another benchmark

since its scaling result is available. It is a family of convolutional neural networks gen-

erated from a Neural Architecture Search method. S3NAS also uses MBconv blocks[18]

like EfficientNet, but the kernel size or expansion ratio of blocks may vary within a stage,

and the accumulated number of blocks linearly increases like regnet[12]. It uses more pa-

rameters and higher FLOPs than other networks with similar latency but achieves better

accuracy. After a small baseline network is searched, it also uses compound scaling to

scale up the base network. We scale the found baseline network with several scaling

methods and compare the results. Like the case of EfficientNet, we use hyper-parameters

from the official code repository. Other eminent networks such as ResNets were not used

in our scaling experiments as their latency is much higher than these two lightweight

networks that are developed for embedded devices.

Table 5.1: Scaled Architecture of EfficientNet-B0 using RBIS

Channels Blocks

Stage Eff-B0 Eff-B1 RBIS Eff-B0 Eff-B1 RBIS

Stem 32 32 32 1 1 1
0 16 16 16 1 2 1
1 24 24 24 2 3 2
2 40 40 40 2 3 2
3 80 80 104 3 4 5
4 112 112 112 3 4 3
5 192 192 192 4 5 7
6 320 320 384 1 2 1

Head 1280 1280 1408 1 1 1
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Table 5.2: Comparison of scaled network models obtained by the proposed and other
methods (dwr [1], dWr [2], and rs [3])

Base Network Accuracy Latency(ms)

EfficientNet-B0 76.7 164.978

EfficientNet-B1-dwr 78.7 277.396
EfficientNet-B1-dWr 78.73 269.912
EfficientNet-B1-RBIS 79.23 272.98

EfficientNet-B2-dwr 79.8 378.36
EfficientNet-B2-dWr 79.63 373.352
EfficientNet-B2-rs 79.53 366.262
EfficientNet-B2-RBIS 80.1 370.341

S3NAS-B0 77.4 158.2

S3NAS-B1-dwr 78.95 274.8
S3NAS-B1-dWr 78.4 262.9
S3NAS-B1-RBIS 79.34 275.7

S3NAS-B2-dwr 79.55 377.9
S3NAS-B2-dWr 79.76 378.4
S3NAS-B2-RBIS 80.22 371.4

5.2 Scaling EfficientNet

In the first step of the proposed methodology, we select four different resolutions po-

sitioned just before the steep increase of latency as shown in Fig. 4.1: 240, 256, 272. 288.

For each resolution, we perform incremental scaling until the target latency is reached.

An example of iterative incremental scaling process is displayed in Fig. 4.2. Table 5.1

shows the scaled network produced by RBIS. Note that unlike EfficientNet, the network

obtained by RBIS scales each stage differently. And it is noted that identical stages are

chosen multiple times. This is consistent with the observation from EfficientNetV2 that

it is better to stack more layers in the later stages of the network.

Table 5.2 shows the latency and accuracy of networks obtained when scaled by

compound scaling[dwr] and our method[RBIS]. The best performance could be obtained

when the input resolution is 256. This is larger than the resolution used in the origi-
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nal EfficientNet-B1 architecture which is 240. When scaled further up to the latency of

EfficientNet-B2, we could achieve 0.3 % higher accuracy than EfficientNet-B2 when the

resolution is 272.

In addition, the proposed scaling method is compared with two other methods, fast

scaling method [2], and ResNet-RS method [3]. It can be seen from Table 5.2 that our

scaling method performs the best. The fast scaling method denoted as dWr in Table

3 shows 78.73 % and 79.63 % accuracy when it is scaled to comparable latency with

EfficientNet-B1 and EfficinetNetB2, respectively. The accuracy results may be different

from the paper as we use the hyper-parameters from the original EfficientNet code in-

stead of their settings for fair comparison among all methods. EfficientNet-RS represents

the network obtained by the ResNet-RS method. When scaled to latency comparable

to EfficientNet-B2, it shows lower accuracy with slightly smaller latency compared to

EfficientNet-B2.

5.3 Scaling S3NAS

As shown in Table 5.2, our scaling method shows a better latency-accuracy trade-

off than compound scaling and fast scaling for S3NAS. In this experiment, we borrow

hyper-parameters for each scaling method from the corresponding paper, which may not

be optimal for the S3NAS base network. We admit that skipping hyperparameter search

may hinder fair comparison. However, it highlights the merit of our method that the

proposed scaling method can be applied without hyper-parameter search. We use the fol-

lowing scaling factors in terms of (d,w,r) notation: (1.16, 1.08, 1.13)[dwr], (1.06, 1.27,

1.03)[dWr] for EfficientNet-B1 and (1.25, 1.12, 1.18)[dwr], (1.09, 1.4, 1.04)[dWr] for

EfficientNet-B2. While compound scaling and fast scaling achieve 78.95%, and 78.4%

in accuracy, respectively, RBIS achieves 79.34% within 276ms target latency. With the

target latency of 377ms, compound scaling and fast-accurate scaling achieve 79.55% and

79.76%, respectively, while RBIS achieves 80.22%.
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There are three interesting observations we can make from the experimental re-

sults. First, the scaled networks from S3NAS show higher accuracy than those from Ef-

ficientNet. It implies that the baseline model affects the performance more than the scal-

ing method. Second, the performance gap between the proposed method and compound

scaling is more significant from B1 to B2 scaling than from B0 to B1 scaling, which is

the opposite of EfficientNet. It implies that compound scaling may not be suitable for

S3NAS even though it works well for EfficientNet. On the other hand, the proposed scal-

ing method works well for S3NAS, which confirms the generality of the proposed scaling

method in contrast to the other methods specific to a certain network type.

Last but not least, the best-scaled model from S3NAS requires a resolution of 288,

which is much bigger than EfficientNet-B1 and our scaled model from EfficientNet. The

recommended input resolution from compound scaling is 256. When the resolution is

288, depth scaling is not performed, as it causes the latency of the network to exceed

the target latency. As for width, the 3rd stage out of 5 increased by 10 percent. It clearly

proves that no preference for one dimension should be made, which contradicts the claim

of previous works that prefer width or depth scaling to input resolution. And it confirms

that it is better to treat resolution differently from the width and depth scaling. A possible

reason for this unexpected result for S3NAS is that S3NAS has more parameters than

EfficientNet-B0 since it is wider and deeper. Hence, increasing the input resolution is

more effective than having more parameters.

When we scale again towards EfficientNet-B2 latency(377ms), candidate resolu-

tions become {288, 320}. For two candidate resolutions, 5 and 2 iterations were needed

to reach the target latency, respectively. The final scaling result obtained by RBIS is de-

noted by width[3344] and depth[4555] at resolution 288: it means that the width scaling

is applied to the 3rd and the 4-th layers twice while the depth scaling is applied to the

4-th layer once and to the 5-th layer three times.
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Chapter 6

Conclusion

In this paper, we propose RBIS, a novel neural network scaling method that helps

find networks with a better latency-accuracy trade-off than the popular compound scal-

ing. Unlike the previous works, resolution scaling is treated separately from the width

and depth scaling. Since there is a non-linear relation between the latency and the input

resolution, we select some candidate resolutions in the first step. For each resolution, we

apply incremental width and depth scaling alternately until the latency constraint is met.

There are several hyper-parameters to determine in this step: how many stages to con-

sider, how much to increase, and how many combinations to evaluate. Even though we

decided on those hyper-parameters empirically, there is room for improvement, which is

left as a future research topic. Experiments with two benchmark networks, EfficientNet

and S3NAS, show that the proposed scaling method finds a more accurate model by up to

0.53 percent for EfficientNet-B1 and 0.67 percent for the S3NAS B2 scale. In the current

implementation, we use a full train for the performance estimation of each scaling candi-

date. Reducing the proposed methodology’s computation cost is another future research

topic.
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Chapter 7

Ablation Study

Although RBIS produces good performance through a novel scale method, it takes a

lot of time because RBIS requires full train for network evaluation. Here are two methods

we tried to save time.

7.1 Network transformation

The first method is Network Transformation. Network transformation is a method

first introduced in Net2Net[19] which slightly transforms a part of the network but still

maintains the same function. That is, for the same input, both networks before and after

transformation produce the same output. When another width of channels or blocks are

added, Net2Net adjusts the weight of old parts so that the output value doesn’t change.

ENAS[20] and EAS[21] use network transformation to execute the architecture search in

a short time. In the case of RBIS, the network structure after one step of scaling is quite

similar to the base network. From this, we thought Net2Net fits well with RBIS. But there

were some issues. First, the ranking evaluated by net2net is different from the ranking

evaluated by full train , and the accumulated difference leads to the sub-optimal result.

Table 7.1 shows the accuracy rank difference between full-train and net-transformation

methods. Second, it performed worse than a scratch train. We want to know how much

potential this network has in full train. If you use the net2net method, you can get more
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than 75% performance within 10 epochs, but the performance does not rise further. On

the other hand, scratch train achieves less than 70% performance at 10 epochs, but close

to 80% performance at around 250 epochs. OpenAI has also reported that this weight

reuse attempt yields sub-optimal results to scratch train. [22] As a result, it is difficult to

evaluate the network using the net2net method as a proxy for the evaluation method we

want.

Table 7.1: Ranking Difference between Full-train(FT) and Network-transformation(NT)

Network FT NT

Width w1 10 7
w2 1 2
w3 2 1
w4 3 3
w5 7 5

Depth d1 6 6
d2 9 8
d3 5 10
d4 8 11
d5 4 4

Resol r 11 9

7.2 Zero-shot proxy

ZenNAS[23] predicts the performance of given network structures without training.

With only one forward call, it measures how much the model differentiates the input from

the same input with small noises. The authors of [24] introduce φ− score to calculate

the complexity of vanilla convolution neural network(VCNN). ZenNAS[23] points out

φ−score diverges as the network deepens, and they solve this issue by introducing Batch-

Normalization. They name their zero-shot proxy as Zen-Score, and they claim Zen-Score

preserves ranking well, recording τ=0.88 on CIFAR-100 data. We tried to integrate Zen-

Score in our RBIS framework, replacing the accuracy with Zen-score in incremental

23



scaling for depth and width increment. With vanilla Zen-Score, the performance of the

network obtained was 78.7% in EfficientNet-B1 target, which is not improved from the

original EfficientNet-B1. We observed Zen-Score favors depth direction, which shows

no saturation. To improve this, we normalized the z-score by dividing Zen-Score by the

number of conv blocks used in the network. When using the tuned Zen-score obtained

in this way, we obtained 79.34% targeting EfficientNet-B1, resulting in performance as

good as RBIS. However, when targeting EfficientNet-B2, we achieved only 79.9%, which

fell short of RBIS by 0.2%p.

Figure 7.1: Illustration of the original Zen-Score and our tuned Zen-Score when adding
conv blocks to the network
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