
 

 

저 시-비 리- 경 지 2.0 한민  

는 아래  조건  르는 경 에 한하여 게 

l  저 물  복제, 포, 전송, 전시, 공연  송할 수 습니다.  

다 과 같  조건  라야 합니다: 

l 하는,  저 물  나 포  경 ,  저 물에 적 된 허락조건
 명확하게 나타내어야 합니다.  

l 저 터  허가를 면 러한 조건들  적 되지 않습니다.  

저 에 른  리는  내 에 하여 향  지 않습니다. 

것  허락규약(Legal Code)  해하  쉽게 약한 것 니다.  

Disclaimer  

  

  

저 시. 하는 원저 를 시하여야 합니다. 

비 리. 하는  저 물  리 목적  할 수 없습니다. 

경 지. 하는  저 물  개 , 형 또는 가공할 수 없습니다. 

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/


M.S. THESIS

Splash: Thermal-aware Mobile-Cloud

Collaborative Inference

열 인지 기반 모바일-클라우드 협동 추론

2023 년 2 월

서울대학교 대학원

협동과정 인공지능전공

정 창 진





M.S. THESIS

Splash: Thermal-aware Mobile-Cloud

Collaborative Inference

열 인지 기반 모바일-클라우드 협동 추론

2023 년 2 월

서울대학교 대학원

협동과정 인공지능전공

정 창 진





Splash: Thermal-aware Mobile-Cloud Collaborative

Inference

열 인지 기반 모바일-클라우드 협동 추론

지도교수 전 병 곤

이 논문을 공학석사 학위논문으로 제출함

2022 년 12 월

서울대학교 대학원

협동과정 인공지능전공

정 창 진

정창진의 석사 학위논문을 인준함

2023 년 2 월

위 원 장 유 승 주 (인)

부위원장 전 병 곤 (인)

위 원 이 영 기 (인)





Abstract

Continuous vision AI applications request multiple Deep Neural Network

(DNN) model inferences on mobile devices for a long time which incurs the

overheating problem. While running a DNN inference on mobile devices is

growing in prominence, heat generated by utilizing multiple processors con-

currently makes the device temperature exceed the predefined threshold eas-

ily. Alternative approaches of mobile-cloud collaborative systems have the

limitation of only focusing on minimizing the makespan of inference requests

without considering the thermal conditions of mobile devices.

This paper introduces Splash, a thermal-aware mobile-cloud collabo-

rative DNN inference system, exploiting observations that performance per

temperature among heterogeneous processors varies with the type of work-

load and dynamic condition changes. With the lightweight and efficient pre-

diction models of future temperature and the latency of inference requests,

Splash can leverage augmented heat budgets through thermal-aware schedul-

ing. We evaluate our system using realistic workloads on two commodity

smartphones for 10 minutes and show that Splash achieves up to 1.93×

higher FPS without throttling than the state-of-the-art multi-DNN inference

framework.

Keywords: Mobile Deep Learning, Thermal Throttling, Cloud Offloading,

Multi-DNN Inference

Student Number: 2021-21645
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Chapter 1

Introduction

The rapid advance of deep neural networks (DNN) stimulates the emergence

of continuous vision AI applications (Figure 1.1). They provide highly immer-

sive user experiences in diverse application domains such as education, remote

work, entertainment, and health care [9, 4, 10, 11]. Especially, many vision

AI applications execute multiple DNN models concurrently to analyze the

scenes, generate virtual contents and seamlessly render them [12, 13]. They

impose multiple challenging requirements such as tight end-to-end latency

(e.g., >50 ms for an extended reality application), high analysis accuracy,

and stable long-time execution [14].

The thermal problem remains the central challenge for the long-term and

stable execution of continuous vision AI applications. Recently, there has

been a rich body of work to support the on-device execution of neural net-

works including the development of neural accelerators [15, 16, 17, 18, 19, 20],

lightweight models [21, 5, 22], and inference systems [12, 13]. However, their

primary focus lies in accelerating the inference speed. Such works indirectly
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Figure 1.1: An illustration of continuous vision AI application [1]. It executes

both a text detection model [2] and an object detection model [3] concurrently

for a long time.

help to reduce the heat for a short-term execution, but still do not prevent

excessive heat generation in long-term operation.

Mobile devices adopt a dynamic voltage and frequency scaling system

(DVFS) [23] to cool down hardware components. For heterogeneous proces-

sors, manufacturer-specific thermal management systems are typically used

such as Qualcomm SDM [24] for Qualcomm Snapdragon-powered devices and

Exynos TMU [25] for Samsung devices. However, they result in a sudden

performance drop, which degrades the quality of experience. Various works

extend the existing DVFS to minimize performance loss based on application-

aware optimization with heterogeneous processors [26, 27, 28]. Yet, the cur-

rent approaches have limitations on practicality in that they build prediction

models in advance or require an external power monitor [29] for learning.

Offloaded or split inference approaches can be considered as an alternative

solution [30, 31, 32]. However, it is also non-trivial to adopt them due to the

heat generated by network transmission along with dynamic DVFS configu-

rations affected by the heat.
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In this paper, we present Splash, a thermal-aware DNN inference system

effectively utilizing heterogeneity of thermal efficiency across mobile proces-

sors and cloud offloading. To quantify the thermal efficiency, we define Per-

formance Per Temperature (PPT) as a ratio of the FPS and the temperature

increase for the execution of a task. Based on the definition, we present two

key observations: (1) the rank of the PPT across processors can significantly

change due to the difference in workload characteristics. For example, in the

object detection task, the PPT of the GPU is the highest among processors,

but in the segmentation task, it becomes the lowest. (2) the PPTs vary by

67% with the dynamics of network bandwidth, so the rank of PPT of the

cloud offloading can also fluctuate depending on network bandwidth.

By leveraging such observations, Splash selects the optimal worker pre-

dicted to be helpful for alleviating thermal throttling according to workloads

and network conditions. In addition to the utilization of PPT, Splash is

designed under three considerations that are required for practicality. First,

the system needs to be deployed without any additional measurement instru-

ment (C1). Second, the system requires to be independent of the device (C2).

Third, the scheduler has to achieve satisfactory accuracy without the signifi-

cant overhead (C3). So, Splash only uses obtainable values from sensors on

the device to monitor the device status to address C1. For C2, we design an

online prediction model for temperature and latency that does not require

the offline profiling stage, which is often used to model the target device. We

also engineer the models to be lightweight and accurate in dealing with the

dynamic nature of temperature and network bandwidth for C3.

We evaluate Splash in two realistic multi-DNN workload applications on

two mobile commodity devices. From the experiments, Splash increases the

frame rate without throttling up to 1.93× more compared to the state-of-
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the-art baseline and 1.63× to the best-extended baseline. Through the case

study, we show that Splash runs up to 2.20× more time to throttling by

exploiting augmented thermal budgets attributed to assigning more tasks to

thermally efficient workers.

The key contributions of this paper are as follows:

• We demonstrate the prevalence of thermal throttling with multi-DNN

workloads and the severity of the performance degradation from ther-

mal throttling through motivational studies.

• We define a metric, Performance Per Temperature, to quantify ther-

mal efficiency with both the performance of each DNN model and the

temperature increase corresponding to a processor.

• We propose Splash, a mobile-cloud collaborative DNN inference sys-

tem utilizing the heterogeneity of thermal efficiency among processors.

Splash is the first mobile-cloud collaborative DNN inference system

to take the thermal properties of mobile devices into account.

• We evaluate with two real workloads and extend the FPS without throt-

tling up to 1.63× on Google Pixel 4, and up to 1.93× on Samsung

Galaxy S20 without prior knowledge of the devices.

12



Chapter 2

Motivation

In this chapter, we delve into the effect of thermal throttling on perfor-

mance when running multi-DNN workloads through the following experi-

ments. Then, we show existing DNN inference engines do not take into ac-

count the thermal efficiency of the processor, revealing that only minimizing

the latency results in poor performance for long-term execution.

Performance drop by thermal throttling. Simultaneously running

multiple processors on a mobile platform can occur thermal throttling in a

short time, incurring severe degradation of user experiences. Unlike desk-

tops and servers, mobile devices are equipped with system-on-chips (SoC),

and heterogeneous processors are in the same SoC die, which leads to tight

thermal coupling that the processors affect the temperature of one another,

restricting heat transfer [33]. In addition, because of the small form factor,

mobile devices cannot equip active cooling methods such as external fans and

liquid cooling.

We experimented with a synthetic workload running MobileNet [21] on

13



Platform Mobile (Google Pixel 4) Cloud

CPU Kryo 485 64-bit 2.84 GHz Octa-Core AMD Ryzen 7 2700X 3.7 GHz Octa-Core

GPU Adreno 640 NVIDIA Titan RTX

Accelerators Hexagon 690, Google Edge TPU -

Memory 6 GB LPDDR4 32 GB DDR4

OS Android 11 Ubuntu 20.04

Table 2.1: Specification of the mobile and cloud platform.

the state-of-the-art heterogeneous DNN inference engine, Band [12], con-

currently and continuously for 10 minutes.1 The specification of the mobile

device, Google Pixel 4, used in the experiment is shown in Table 2.1.

The experimental results of the timeline of temperature and latency of

each processor are described in Figure 2.1. In just 40 seconds, the tempera-

tures of all processors increase rapidly over 80°C (①). When the temperature

measured from the SDM (i.e., Qualcomm thermal management system) ex-

ceeds the first pre-defined thermal threshold, 49°C, the system incrementally

drops the frequency of the CPU and GPU. Accordingly, the CPU and GPU

latency increases step-wise, as shown in Figure 2.1b②. Although the thermal

throttling temporarily lowers each temperature of the CPU and GPU, the

temperature of SDM keeps increasing because of continuous heat generation

from the processors. After 170 seconds from the start, the temperature of

SDM reaches the second thermal threshold depicted as the red dotted hor-

izontal line on Figure 2.1a, 51°C. On that critical level of thermal status,

the system turns off NPU and lowers the frequency of CPU and GPU fur-

ther (③). As a consequence, the temperature of the device decreases and

makes the NPU turn back on to continue to rerun inferences (④). This cycle

1We conducted all measurements in Chapter 2 and 3 with Google Pixel 4 on the same
ambient temperature, 25°C, using the thermal incubator [7]
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(a) The timeline of temperature changes on processors. The temperature reaches its
peak in 40 seconds.
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(b) The timeline of latency changes of inference requests on processors. The latency of
MobileNet [21] of most processors increases step-wise because of thermal throttling.

Figure 2.1: Performance degradation from thermal throttling. The NPU shut-
down and latency increase of processors deteriorate the user experience.

happens repeatedly but with a shorter activation period each time.

Limitations of existing DNN inference systems. Even with the help

of a cloud server, we observe that the state-of-the-art inference engine cannot

avoid thermal throttling since it does not take network costs on the thermal

conditions of mobile devices. We conducted an experiment with a person

finder application [4] specified in Table 6.1. As shown in Figure 2.2, thermal

throttling occurs with the workload on the state-of-the-art engine (Figure 2.2

Mobile) at 200 seconds. When we augment the system with a cloud, the
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Figure 2.2: The timeline of latency changes during the execution of the person
finder workload [4] on the existing DNN inference system. The Mobile-Cloud
system is throttled 40 seconds earlier than Mobile system.

Processor CPU GPU DSP NPU CLOUD

Latency (ms) 10.99 7.65 8.62 9.39 8.80

Performance (FPS) 90.92 130.66 115.93 106.43 113.51

Temperature increase (°C) 6.9 1.9 1.2 0.4 0.4

Performance per temperature (FPS/°C) 13.18 68.77 72.46 266.09 283.79

Table 2.2: Thermal efficiency among processors and cloud offloading varies in
the same model, RetinaFace [8]. The measured network bandwidth on cloud
offloading is 249 Mbps.

latency of each frame gets faster overall, thanks to offloading inferences to

the cloud server, resulting in a rising SLO satisfaction rate of 43.7%. However,

cloud offloading also costs the thermal budgets of mobile devices since the

extra heat source (i.e., the modem for data transfer) comes in. As a result, the

extended engine (Figure 2.2 Mobile+Cloud) faces earlier thermal throttling

at 240 seconds, resulting in faster degradation of user experience.

It is noteworthy that even if a processor has the highest performance, it

can be undesirable for the long-term execution to select the fastest processor

if it generates a large amount of heat. For example, we measured the latency

and the amount of temperature increase while executing the face detection

task with RetinaFace [8]. In Table 2.2, it is shown that the FPS of the GPU

16



is 1.15× higher than that of the cloud. However, the temperature increases

4.75× more. Thus, the cloud can be a better choice for long-term execution

when the execution on the cloud fits SLO, and the mobile device temperature

is about to reach the throttling threshold.

Summary. In mobile devices, thermal management systems can cause

severe performance degradation when utilizing heterogeneous processors, as

they do not take the performance cost incurred by heat generation into ac-

count. Näıvely offloading the inferences to the cloud cannot strike a balance

between the gain in performance and cost in performance due to the heat

generation from extra sources. To this end, we present a mobile-cloud collabo-

rative DNN inference engine that proactively mitigates the thermal throttling

problem by adaptively choosing cloud offloading when the SLO permits and

maximizing the utilization of the on-device heterogeneous processors while

keeping them from reaching the throttling threshold.
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Chapter 3

Performance Per Temperature
(PPT)

To identify the thermal impact of the execution, we define an efficiency metric

regarding thermal information, which a thermal-aware scheduling policy can

utilize.

In order to consider both temperature and performance, and compare

them quantitatively, we introduce Performance Per Temperature (PPT) as

a measure for pursuing the minimal temperature increase and the maximal

throughput as below.

PPT =
FPS

∆temp
(3.1)

By defining PPT as a ratio of the FPS and the temperature increase for

the execution of a task, it effectively specifies the thermal efficiency of the

execution, allowing us to find the following key observations.

Workload affects the rank of performance per temperature across

18
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Figure 3.1: The processors’ performance per temperature across workloads.
MobileNetV2 [5], EAST [2], EfficientDet-Lite [3], and DeepLabV3 [6] are used
for the image classification, the text detection, the object detection, and the
segmentation task respectively. The range of the error depicts the instrument
error.

processors. The rank of the PPT is not fixed for processors, but it is depen-

dent on the characteristics of a workload. Figure 3.1 shows the PPT of each

processor corresponding to the workload. For the image classification task

and the text classification task, the rank is CPU < GPU < DSP < NPU.

However, for the object detection task, the order of GPU, DSP, and NPU is

changed. Especially for the segmentation task, the GPU becomes the worst.

One cause for this is the difference in software- and hardware-level imple-

mentation across DNN architectures which influences the power consumption

and the latency. If the power consumption and the execution time are linearly

correlated to the computation size, the rank of the PPT would barely change

across processors. However, as [34, 35] point out, the amount of computation

does not represent the inference time due to the difference in memory access

in actual implementation such as firmware, libraries, and algorithms. Also,

[36] reports that the correlation between the power consumption and the

computation size is reduced underlying different DNN models. Thus, based

on the implementation, the latency and the temperature increase can change,

making a difference in the rank of PPT according to the workload.
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Figure 3.2: The performance per temperature with the variation of network
bandwidth. The measured bandwidth of Strong, Regular, and Weak is 249
Mbps, 128 Mbps, and 13 Mbps, respectively.

The other cause for this phenomenon is fallback operators. When the

processor cannot run some operators in the requested model, it is inevitable

to execute it on the CPU processor, partially accelerating the supported

operations [12]. In the case of the segmentation task, 17.9% of operators are

unsupported by the GPU, thereby significantly reducing the PPT. Note that

the PPT of the GPU is even less than that of the CPU due to the copy

overhead.

The performance per temperature of a cloud changes due to

dynamic network conditions. Because of the dynamics of the wireless

network, the PPT of the cloud differs. Factors that affect signal strength, such

as the distance between a device and a router, and the structure of a place,

make it difficult to predict the end-to-end latency. In addition, uncertainty

is added since the network routing between the server and the end device

changes.
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Figure 3.2 illustrates the PPT variation depending on the signal strength,

only adjusting the RSSI controlling the distance. In the case of the weak

signal, the latency of the cloud processor increases by 2.99×, and the PPT

decreases by 67% compared to the strong signal case, so the PPT becomes

similar to the DSP processor.

This implies that the thermal-aware scheduling system should also be

aware of the dynamic network condition as well to utilize the cloud processor

intelligently.
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Chapter 4

SPLASH

In this chapter, we propose Splash, a thermal-aware DNN inference sys-

tem with mobile-cloud collaborative execution to maximize long-term per-

formance. To the best of our knowledge. Splash is the first system that

considers both temperature and latency and maximizes the long-term per-

formance for DNN execution on heterogeneous processors. Splash assigns

the requested inference of the DNN model to one of the processors by calcu-

lating the real-time ever-changing thermal efficiency of the processors. To do

this, we build system components that predict the thermal efficiency of the

given workload and the network condition. As continuous vision AI applica-

tions demand the stream execution of DNN models, our system continuously

selects the processor per each request.

4.1 System Overview

Figure 4.1 illustrates the system architecture of Splash. User applications

request an inference (①) of a DNN model registered beforehand. Then, a cen-
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Figure 4.1: System architecture of Splash.

tral Thermal-aware Scheduler creates a task corresponding to the request

and enqueues it to the task queue. Before assigning the task, the sched-

uler fetches device information (②) spanning temperatures of components,

frequencies of processors, and signal strength of network connection from

Resource Monitor so that Thermal Model can estimate the future temper-

ature of each worker after a worker executes the task while Latency Model

predicts the expected latency (③).

Given the information predicted, the scheduler assigns the task (④) to

one of the available Workers, following its specific policy, which is pluggable

according to the users’ needs. The workers execute the inference with input

data on its processor and then give the output to the scheduler, which passes

it to the user (⑤). When the scheduler gives a task to Cloud Worker, the

worker offloads the task to the cloud, which can utilize a powerful server GPU

with a DNN serving engine. After finishing the user request, the scheduler

feeds back to the prediction models to update their model parameter (⑥)

with the result for a more accurate next prediction.
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4.2 Considerations for Practicality

We focus on building a system that can be deployed practically on mobile

devices by identifying the following considerations for the prediction models

of Splash.

C1: A practical system requires to use of only internal sensors

on the device. Various research [26, 37] has proposed thermal management

systems that use additional instruments such as power monitors. However, in

practical usage, service developers cannot benefit from the systems because

they typically cannot utilize such instruments. In order to be deployed to the

users, the system has to avoid the use of the additional device. Therefore, we

design our system to fetch the values only from the available sensors on the

mobile device.

C2: A deployable system needs to be independent of the device.

Some work [38, 39] utilizes offline profiling or device-specific information such

as floorplan to precisely model certain devices. The models so created are

accurate since they are specialized to the target device, but sacrifice porta-

bility. As the modern smartphone market is hugely fragmented [40], such an

approach cannot be used for a large portion of users. Thus, to be indepen-

dent of the target device model, Splash profiles the thermal status and the

latency information on runtime only.

C3: The scheduling module should provide sufficient accuracy

without substantial overhead. Online models are known to be prone to

error with coarse-grained sampling [41], because of the dynamic nature of

thermal and network behavior. So, we adopt fine-grained sampling to re-

trieve the thermal status and the latency per request. However, with such

granularity, the scheduling overhead can significantly hinder performance.
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So, we engineer a lightweight model for temperature and latency to yield

satisfactory accuracy with negligible overhead.

4.3 Lightweight Thermal Model

We estimate the future temperature with a simple-yet-effective linear model,

which jointly considers the thermal coupling of the hardware components, la-

tency, and network communication. Predicting the temperature of a system

can be seen as a typical system identification problem that requires selecting

a model structure based on an understanding of real system dynamics. Sub-

sequently, the model parameters are optimized via parameter updates from

the data collected in the actual environment. Prior works [42, 41, 43] have

addressed modeling of the future temperature as a linear combination of cur-

rent temperature and power consumption based on the previous study [44]

as below:

Tt+1 = ATt +BPt (4.1)

where Tt and Pt are the temperature and the power consumption of a

timestamp t, respectively.

As processors are thermally coupled in SoC [33], all temperatures of pro-

cessors should be packed into the current temperature. So, we denote the

current temperature of the processors as a column vector T as below:

T = [Tw1 , Tw2 , ..., Tw|W | ] (4.2)

where W is a set of available workers.

Unfortunately, most commodity smartphones do not have available sen-

sors for measuring the power consumption of each hardware component [41].
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While previous work [26] utilizes a power monitor device [29] to overcome

the limitation, building prediction models offline would not be acceptable

in actual use cases (C1). Instead, we estimate the power usage only using

observable features in mobile devices.

As we aim to model for DNNs that are relatively not complex in control

flow and mainly consist of data flow, we found a linear model can effectively

forecast the temperature increase. As it will be shown in Chapter 6.5, it

predicts the future temperature with insignificant overhead because we choose

a lightweight model structure with a restricted number of model parameters

(C1, C2).

Modeling for processor workers. For processor workers, power con-

sumption can be estimated from core frequency, F, which is known to have a

strong linear relationship with power consumption [43].

F = [Fw1 , Fw2 , ..., Fw|W | ] (4.3)

Plus, the expected latency L is included in the feature to reflect the

amount of computation in the task and the idle energy consumption.

Considering the two features F and L, the thermal structure for processors

is modeled with XP as follow:

Tt+1 = θ0Tt + θ1Ft + θ2Lt + θ3︸ ︷︷ ︸
Power estimation

(4.4)

where θi is the model parameter for each feature.

Modeling for a cloud worker. Although a cloud worker does not com-

pute the inference directly, it consumes power while transmitting input and

receiving an output, generating heat in the process.
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Feature Description

XP
F Frequency of all processors
L Expected latency

XC

I Size of the input to transmit
O Size of output to receive from the server
R Received Signal Strength Indicator (RSSI)
Lcloud Expected latency to offloading.

Table 4.1: Features for the estimation of power consumption for the thermal
model.

For the cloud worker, we select four features, denoted as XC , that have

a strong correlation with the power consumption of the network usage as

shown in Table 4.1. The sizes of the input and output are directly connected

to the power consumed by Network Interface Card (NIC) for both transmit-

ting and receiving data. Note that since the power to transmit and receive

data differs, the size of input and output should have separate model param-

eters. The signal strength of a wireless network influences the power usage in

that the mobile platform adjusts the transmitting power depending on the

strength [45] and, in the case it is weak, triggers the retransmission, thus in-

creasing transmission time [46]. So, it is included in the model parameter. The

expected latency should also be considered as NIC goes into the idle power

usage state while it waits for the output, affecting the power consumption.

After all, the thermal model structure for the cloud worker is formulated

as follows:

Tt+1 = θ0Tt + θ1It + θ2Ot + θ3Rt + θ4L
cloud
t + θ5︸ ︷︷ ︸

Power estimation

(4.5)

where θi is the model parameter for each feature. According to the type
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of network (e.g., Wi-Fi, LTE, and 5G), power consumption must be differen-

tiated so that Splash prepares a thermal model per each network type.

Parameter updates. The thermal model updates its parameter by solv-

ing a least square problem with a normal equation, defined like below:

θ = (XTX)−1XTY (4.6)

where X and Y are the features and the measured temperature, respec-

tively. The thermal-aware scheduler logs the features input to the previous

prediction and the measured target, i.e., the true temperature and latency.

Then, using the history, it updates the model at each inference. In order

to avoid excessive memory use and to follow the recent trend, Splash does

not store all the inference history, but only the recent part of them with the

window size.

4.4 Adaptive Latency Model

While an inference time of the DNN model is considered to be predictable

since it has few control flows [47], in the mobile device, it does not hold since

thermal management systems like DVFS keep modifying the frequency of

the processor. For example, the executions of the same DNN model show 3×

difference according to the device temperature, as already depicted in Fig-

ure 2.1b. Additionally, when it comes to cloud augmentation, the latency of

the cloud differs depending on the network condition, as shown in Figure 3.2.

Thus, we design our latency model to be adaptive to such latency variety. As

the inference request should wait until the earlier tasks are exhausted in a

queue to respect the potential dependence, the latency is obtained by adding

the inference time and the expected queuing delay.
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Latency estimation for processor workers. For processors, the la-

tency variability is originated from the core frequency change by thermal

management systems. So, we model the inference time for processors as a

map from the device temperature to the expected duration with a granular-

ity of 1°C. Each value is updated by applying an exponential moving average

with a factor of 0.1 after completing the task.

Latency estimation for a cloud worker. An inference time for a

cloud worker consists of communication time and computation time, so it is

formulated as below:

Lcloudt = Compt + Commt (4.7)

Compared to mobile devices, the computation time Compt of the server

shows fewer variability [47]. So, for computation time, the inference server

profiles the execution time for the request, and reply it to the cloud worker.

Then, the latency model of the cloud worker updates the computation time

with a momentum similar to the processor workers without temperature map-

ping.

For the estimation of communication time Commt, we model the commu-

nication time with bandwidth and latency for both downlink and uplink:

Commt = α↑
t +

It

β↑
t

+ α↓
t +

Ot

β↓
t

(4.8)

where I and O are the size of inputs and outputs respectively. The latency

and bandwidth for uplink and downlink are denoted as α and β with ↑ and

↓, respectively.

We design a linear regression for estimating communication time Commt

with a short period of data to swiftly adapt to drastically changing network
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Algorithm 1 Splash scheduler

1: function Schedule
2: workers, waiting time← [ ], [ ]
3: for task in task queue do
4: workers← GetAvailableWorkers()
5: waiting time← UpdateWaitingTime(workers)
6: wo ← GetOptimalWorker(task, waiting time)
7: EnqueueTask(wo, task)

conditions. The model structure of the communication time estimation is as

follows:

Commt = θ0Rt + θ1It + θ2Ot + θ3 (4.9)

where R is the signal strength characterized by RSSI on mobile devices,

which reflects the quality of the wireless connection. The model parameter

tracks the up- and down-stream bandwidth (θ1, θ2), latency (θ3), and RSSI-

latency relationship (θ0, θ3) based on history. The model parameters are

updated with the same logic as the temperature model.

4.5 Thermal-aware Scheduling and Policies

The scheduler of Splash schedules an inference request to one of the workers

by making use of the real-time PPT value. When a user request inference to

Splash, the scheduler crafts a task with a model identifier and a service-level

objective designated by the user, and enqueues the task in its task queue.

After fetching the status of the mobile device from the resource monitor

and it schedules a task in a first-in-first-out manner, which is described in

Algorithm 1 in detail. As a central scheduling component, it checks the health

of all workers first and calculates waiting times for executing the current task

on each worker (lines 4-5). Based on the information, the scheduler selects
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Algorithm 2 Minimum Heat within SLO policy

1: function GetOptimalWorker(job, waiting time)
2: opt worker,min ∆temp← null,∞
3: for worker in workers do
4: exec time← PredictExecutionTime(worker, job)
5: latency ← exec time+ waiting time[worker]
6: if latency > job.slo then
7: continue
8: ∆temp← PredictTemperature(worker, job)
9: if min ∆temp > ∆temp then

10: opt worker,min ∆temp← worker,∆temp

11: return opt worker

an optimal worker according to its specific policy and enqueues the task into

the device queue of the worker (lines 6-7).

A scheduling policy used by the scheduler can be switched to any others,

as the policy of the scheduler is designed to be pluggable to meet the ap-

plication demand. We present several exemplary scheduling policies that can

balance the latency and the heat generation with configurable parameters: (i)

Minimum temperature increase within an SLO constraint and (ii) Maximum

weighted PPT.

Minimum Heat within SLO. By the monotonous property of the loga-

rithm, maximizing the PPT is the same as maximizing the difference between

the logarithmic FPS and the logarithmic temperature increase as well.

w∗ =w∈W PPTw

=w∈W log FPSw − log∆tempw

(4.10)

For the ideal case, the optimal solution would expect the maximal FPS

and the minimal temperature increase. However, in a realistic setting, the

latency and the amount of heat generation do not hold in the linear rela-

tionship due to multiple factors introduced in Chapter 3, so finding the ideal
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Algorithm 3 Max Weighted PPT policy

1: function GetOptimalWorker(job, waiting time)
2: opt worker,max ppt← null,−∞
3: for worker in workers do
4: ∆temp← PredictTemperature(worker, job)
5: exec time← PredictExecutionTime(worker, job)
6: latency ← exec time+ waiting time[worker]
7: ppt← (η − 1) ∗∆temp− η ∗ latency
8: if max ppt < ppt then
9: opt worker,max ppt← worker, ppt

10: return opt worker

solution becomes infeasible. Thus, to solve the multi-objective problem, we

adopt the ϵ-constraint method to transform it into a single objective problem

with SLO constraints.

w∗ =w∈W − log∆tempw

s.t. log FPSw > log SLO

=w∈W ∆tempw

s.t. FPSw > SLO

(4.11)

By doing so, the scheduler can switch between to pursue performance

maximization or temperature increase minimization based on the given SLO

constraint. In addition, by converting constraints into the penalty term, we

formulate an unconstrained optimization problem.

w∗ =w∈W ∆tempw + ηmax(0, SLO− FPSw) (4.12)

This formulation enables the scheduling policy to include explicit infor-

mation about the SLO. So, the scheduler can make more precise decisions

under the consideration of SLO violation.

Max Weighted PPT. Assigning the inference request just to the max-

imal PPT processor may result in a sub-optimal decision since the objective
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treats the temperature increase and latency in the same dimension.

w∗ =w∈W log PPTw =w∈W latencyw +∆tempw (4.13)

To balance the impact between the temperature increase and the latency,

the policy adds the weight parameter η to the Equation 4.13, which becomes:

w∗ =w∈W ηlatencyw + (1− η)∆tempw (4.14)

Equation 4.14 can be simplified into line 7 in Algorithm 3 by taking the

logarithm. When the weight parameter is η = 1, then the policy becomes

the thermal-agnostic system considering only the minimal latency. In other

words, when the weight parameter is η = 0, the policy only maximizes the

thermal efficiency without considering the time the processor spends. Accord-

ing to the application requirements, users can configure the weight parameter

so that the system can achieve a satisfactory QoE for long-term execution.

4.6 Summary

To the best of our knowledge, we design the first system that can directly

balance heat generation and instantaneous throughput for maximizing long-

term performance on DNN execution. With lightweight prediction models,

the system is capable of predicting the temperature and the latency of the

given task with decent accuracy. Also, since Splash is designed with consid-

erations for practicality, it can be deployed to various mobile devices without

requiring additional measurement instruments and device-specific informa-

tion.
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Chapter 5

Implementation

We implement the mobile runtime of Splash upon TensorFlow Lite 2.3.0 [48]

with 1.8K lines of C++ code. ResourceMonitor of Splash samples the sen-

sor values of thermal zones and current frequencies of processors from An-

droid kernel sysfs, and the type of network and signal strength from An-

droid system service, NetworkManager. ResourceMonitor runs on a separate

thread of one of the Little CPU cores, affecting little impact on the main pro-

cesses. It samples all the values every 1 ms and stores them in the memory

to return instantly when the prediction models or the scheduler of Splash

require.

Splash uses gRPC as the communication protocol between the mobile

and server runtime. The cloud worker calls API of RequestInference with

the model id, and the width, height, and byte array of the input image. Then,

the server executes the corresponding DNN model with the input image and

then responds to the client with the output of the inference and computation

time.
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The cloud server uses TensorRT engine 8.5.0 with the runtime imple-

mented with 0.3K lines of Python 3.8 code. We use full-integer quantized

models both on the cloud server and mobile devices to maintain the same

accuracy.1 We use DNN models listed in Table 6.1.

1In our experiment, we verified a negligible difference in accuracy between mobile and
cloud on image classifications with ImageNet.
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Chapter 6

Evaluation

In this chapter, we evaluate Splash extensively to answer the following ques-

tions below:

• Can Splash perform better on long-term workloads? (Chapter 6.2)

• How Splash performs better than the thermal-agnostic system? (Chap-

ter 6.3)

• How accurate is the thermal prediction model of Splash? (Chapter 6.4)

• What overheads are imposed to support thermal-aware scheduling?

(Chapter 6.5)

6.1 Evaluation Setup

Figure 6.1 shows our environmental setup. We deploy Splash on two repre-

sentative mobile devices: Google Pixel 4 and Samsung Galaxy S20, and also

deploy the server runtime of Splash to the machine depicted in Table 2.1.
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Workload Task Model Input # of Requests

Person
Finder

Face
Detection

RetinaFace-
MobileNet [8]

160×160×3 4

Face
Recognition

ArcFace-
MobileNet [49]

112×112×3 8

Live Video
Analytics

Object
Detection

EfficientDet-Lite0 [3] 360x×360×3 2

Image
Classification

MobileNetV2 [5] 224×224×3 10

Table 6.1: Two continuous vision AI application workloads.

For Samsung Galaxy S20, Kryo 585 2.84GHz Octa-Core, Adreno 650, and

Hexagon 698 are equipped. NPU for Samsung Galaxy S20 is Hexagon Tensor

Accelerator, which is included in Hexagon 698 chipset.

For a fair comparison, we have the mobile devices wait enough time inside

the thermal incubator to adapt to the ambient temperature, 25°C. Also, we

set up an isolated wireless network where only one hop between the mobile

and the server exists to maintain the same bandwidth. Except in cases where

we adjust the RSSI, we maintain the exact distance between the mobile device

and the router during the experiments.

Baselines. We evaluate the performance of Splash with two baselines.

We use the state-of-the-art multi-DNN inference framework, Band [12], that

runs the model-level Heterogeneous earliest finish time (HEFT) [50] schedul-

ing policy as our baseline. As the second baseline, we extend Band to include

an option for cloud offloading to have equal physical resources, Band+Cloud.

Metrics. We use time to throttling that measures how a system can last

without throttling. Also, to assess the overall service quality, the SLO satis-

faction rate is used. We denote a device is throttled when the thermalStatus

from PowerManager in Android system service becomes severe, which is the

level that user experience is largely impacted, according to [51].
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Figure 6.1: The evaluation setup for Splash with two mobile devices, one
cloud server with a network router, and the thermal incubator [7].

Workloads.We evaluate Splash with two workloads that have a camera

frame sampling rate as a service-level objective as follows:

• Person Finder [4]: An application for finding a specific person such as

a lost child or a criminal to chase.

• Live Video Analytics [52]: An analysis application of live video for de-

tecting the object and classifying the object types in the large image.

The detail of the workloads is listed in Table 6.1. For the person finder work-

load, we assume a scenario in which the user application divides the cam-

era frame into 4 subframes and issues requests for a face detection model,

RetinaFace-MobileNet [8], on each frame. Then, the face detection requests

return a total of 8 faces from all the subframes, so the user issues requests for

a face recognition model, ArcFace-MobileNet [49] for each face. For the live

video analytics, we assume a scenario in which the user application gives two
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Figure 6.2: Experiment results over camera frame rate. Splash outperforms
the baselines on both Google Pixel 4 and Samsung Galaxy S20 with two
realistic workloads, reducing the amount of heat generation on the same
performance. It displays the FPSes at which a system is first throttled.

camera frames to the object detection model, EfficientDet-Lite0 [3], where

the model returns 10 bounding boxes. Then, the user requests image classi-

fication by executing MobileNet-V2 [5] for each box.

6.2 Performance for Long-term Workload

We evaluate our systems with the person finder and the live video analytics

workloads in the long term, comparing two baselines on Google Pixel 4 and

Samsung Galaxy S20 for 10 minutes.

For the mobile-only baseline in the person finder workload, our system

extends the operational range of FPS without throttling by 1.53× and 1.93×

on Google Pixel 4 and Samsung Galaxy S20 respectively, as shown in Fig-

ure 6.2. In the live video analytics workload on Samsung Galaxy S20, it

achieves 1.5× FPS increase on operation without throttling. Note that the

mobile-only baseline cannot preserve the thermal budget through offload-

ing, so the time to throttling rapidly diminishes compared to Splash as the

camera frame rate increases.
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Figure 6.3: Experiment results of the person finder [4] workload with 30 FPS.
Splash serves up to 2.20× longer to severe throttling status, resulting in a
higher SLO satisfaction rate than baselines.

For the cloud-augmented baseline, our system increases the maximal FPS

without throttling by up to 1.63×, effectively utilizing the saved thermal bud-

get. The performance increase is more notable on Google Pixel 4 compared

to that on Samsung Galaxy S20 (up to 1.16×) because the thermal cost of

offloading is much larger in Google Pixel 4 than Samsung Galaxy S20 and

the second baseline greedily assigns the task to the cloud worker to minimize

the latency.

Figure 6.3 shows experimental results of the person finder workload on

Google Pixel 4 and Samsung Galaxy S20. As Band does not leverage offload-

ing and assigns all tasks to processors, the temperature of the device increases

quickly, resulting in being throttled just in 242 seconds on Google Pixel 4 and

254 seconds on Samsung Galaxy S20. Thermal throttling degrades the per-

formance in that it cannot satisfy the SLO of the user resulting in a lower
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SLO satisfaction rate of 49.2%.

Although Band+Cloud is capable of offloading to the cloud, it still uti-

lizes all the processors on the device at the same time to minimize latency.

This thermal-agnostic task assignment makes the system be throttled in 203

seconds, which is earlier than the mobile-only baseline in the case of Google

Pixel 4. However, after the processors are throttled, the system can offload

tasks to the cloud alternatively, resulting in a higher SLO satisfaction ratio

of 92.9%.

Splash with the Minimum Heat within SLO policy chooses the most

thermally efficient worker within the SLO constraint. By thermally efficient

task assignments, Splash preserves the temperature of hardware components

on the mobile device, resulting in 2.20× more time to throttling in the long

run.

6.3 Case study: Band+Cloud vs Splash

The scheduling difference at the specific frame between the second baseline

and Splash is shown in Figure 6.4. Band+Cloud does not leverage the slack

between the deadline and the finish time of the frame request as it is not de-

signed to take care of thermal conditions, but only to minimize the makespan

of one frame. Therefore, it assigns 4 RetinaFace inferences to three processors,

GPU, DSP, and Cloud to work concurrently. This schedule can be optimal

for minimizing latency but is not desirable for thermal aspects. In contrast,

Splash assigns tasks considering both latency and temperature increase, so

it utilizes the slack time to save the thermal budgets while respecting the

deadline. It assigns all RetinaFace inferences to the Cloud of the highest

thermal efficiency across workers as far as it does not make SLO violations.

In the same context, it utilizes NPU at most for ArcFace-MobileNet requests.
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Figure 6.4: The difference of scheduling between Band+Cloud and our system
within one frame on the person finder workload with 30 FPS. Splash assigns
tasks to thermally efficient workers first.

Figure 6.5 shows the timelines of latency changes for the person finder 30

FPS experiment of Band+Cloud and Splash. As a result of the short-term

perspective of scheduling, Band+Cloud shows a higher throughput at the

start, but soon it gets throttled at 203 seconds, resulting in increased latency

later. On the other side, our system saves thermal budgets proactively, lasting

longer without being throttled until 436 seconds. Even after being throttled,

Band+Cloud does assign a task without taking the temperature into account,

so the thermal status gets worse, significantly violating the SLO. However,

Splash is able to continuously select the thermal-efficient workers to manage

the increase in temperature, which leads to a better SLO satisfaction ratio.
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Figure 6.5: The timeline of latency changes over time of Band+Cloud and
Splash in the person finder workload with FPS 30 on Google Pixel 4.
Band+Cloud uses all available resources greedily for latency only, so it faces
throttling sooner.

6.4 Thermal Model Accuracy

We assess the accuracy of thermal models in Splash. We run an application

that issues requests for 4 models in Table 6.1 with a policy where the scheduler

assigns the tasks randomly on any worker for 10 minutes with 15 ms intervals

on Google Pixel 4 device. Then, we measure the root-mean-square deviation

(RMSE) value for each prediction of thermal models per worker. As shown

in Figure 6.6, we observe that our model predicts future temperature with

acceptable accuracy in real-time. The thermal models give an error of 1.88°C,

0.40°C, 0.62°C, 0.34, and 1.00°C RMSE for each processor, respectively. For

comparison, we measure the RMSE value between the current temperature

and the future temperature as our baseline. The baseline gives an RMSE

value of 4.8°C, 0.79°C, 1.53°C, 0.36, and 0.93°C, respectively. Note that due to

frequency scaling by DVFS, the CPU temperature exhibits a larger error than

those of other processors. Overall, our thermal model provides comparable

accuracy to prior works [41, 53].
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Figure 6.6: The performance of the thermal models of Splash. The predicted
values follow the same trend as the measured values.

6.5 Scheduling Overhead

We evaluate the computational overhead for thermal-aware scheduling of

Splash. We measure execution time on thermal prediction, scheduling with

a policy, and parameter updates while running an application that issues an

inference request of the EfficientDet-Lite0 [3] model repeatedly. Linear regres-

sion of future temperature prediction follows time complexity with O(X×θ).

As the number of features in XP and XC are 9 and 6, respectively, the over-

head of temperature prediction is negligible, which is less than 2 microsec-

onds. Scheduling with Minimize heat generation with SLO constraint policy
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only takes less than 20 microseconds, including both the temperature and the

latency model. Compared to the end-to-end latency (45 ms), the scheduling

overhead of 20 microseconds is negligible, which takes only 0.04%.

For updating model parameters of the prediction models, Splash exe-

cutes a normal equation whose time complexity follows with O(X2×W ). We

experimentally found that the window size of 2000 yields useful performance.

The process takes up to 150 microseconds for the thermal models and 15 mi-

croseconds for the latency model of the cloud worker. However, it does not

affect user experience as the update process can be progressed in a system

idle state.
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Chapter 7

Related Work

Mobile thermal management system. To resolve the overheating prob-

lem on mobile devices, prior works improve the existing vanilla DVFS. zTT [26]

designed a DVFS that jointly scales CPU and GPU frequencies to achieve

zero throttling by learning environmental changes based on deep reinforce-

ment learning. Bhat et al. [27] proposed a technique to estimate power bud-

gets based on the predicted temperature and utilize it on frequency scaling.

There also have been efforts to mitigate thermal problems by efficient task

scheduling. Lee et al. [33] suggested a thermally balanced assignment by ex-

ploiting processors’ temperature imbalance.

Splash adapts to the existing thermal management systems and miti-

gates the thermal issues by scheduling tasks according to the heterogeneity

of thermal efficiency across processors and collaboration with a cloud server.

On-device inference with heterogeneous processors. Considerable

benefits of on-device inferences in terms of responsiveness have made ac-

tive research on improvements. Band [12], the state-of-the-art multi-DNN
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inference framework, used heterogeneous processors by partitioning a DNN

model into subgraphs with considering fallback operators. CoDL [54] pro-

posed an inference framework to co-utilize CPU and GPU by exploiting ef-

ficient data sharing and a lightweight latency predictor. Heimdall [13] pro-

posed the pseudo-preemption technique for coordinating DNN and rendering

for high GPU utilization. DeepMon [55] suggested a caching mechanism to

reuse intermediate results of convolution layers to utilize mobile GPUs.

Compared to the prior works, Splash does consider thermal throttling

due to heat generated while on-device inference by utilizing multiple pro-

cessors with an understanding of the thermal coupling across processors on

SoC.

Mobile-cloud collaborative execution. CloneCloud and Maui [56, 57]

developed a system to decide partitioning points to divide an execution por-

tion for mobile devices and the other for servers. To avoid immoderate de-

pendence on network conditions and benefit from the performance increase

of mobile devices, mobile-cloud collaborative DNN execution has been pro-

posed. Neurosurgeon [58] extended a collaborative system with partition-

ing DNN models to maximize end-to-end throughput and energy efficiency.

SPINN [30] suggested a progressive inference network for exploiting an early-

exit in the collaboration process. Walle [31] and DynO [32] proposed a system

to disperse loads of servers into mobile devices to leverage on-device inference

performance.

However, Splash can be differentiated in that it takes the thermal condi-

tions of mobile devices into account for deciding where to assign tasks across

mobile processors and the cloud.
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Chapter 8

Conclusion

Thermal throttling is a prevalent and severe problem for mobile devices,

so thermal management systems have been of significant importance for

continuous AI applications. In this paper, we presented Splash, the first

thermal-aware DNN inference engine with mobile-cloud collaborative execu-

tion. Splash assigns user inference requests to thermally efficient workers

based on the ever-changing PPT value of each worker according to the type

of workload and network dynamism. Through extensive experiments on re-

alistic multi-DNN workloads with representative hand-held devices, we have

shown that Splash can save the thermal budgets of mobile devices by as-

signing tasks to more thermal efficient workers than the fastest-only workers.

Splash can support 1.93× higher FPS without throttling than the state-of-

the-art multi-DNN inference engine.
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초록

모바일 기기에서 연속적인 시각 인공지능 서비스를 사용하는 경우, 오랜 시간

동안연속적으로발생하는다수의딥뉴럴네트워크 (DNN)추론으로인해모바

일 기기의 과열 문제가 발생하게 된다. 모바일 기기의 여러 프로세서를 동시에

활용하는 것이 DNN 추론 실행에 유망한 반면, 이로 인해 발생하는 열은 모바일

기기의 온도 임계치를 초과하게 만드는 원인이 된다. 대안으로 모바일 기기와

클라우드가 협동하여 추론하는 시스템이 제안되고 있지만, 기존 시스템은 단순

히추론의지연시간을최소화하는것에만목적을두고모바일기기의열상태를

고려하지 않는다는 한계가 있다.

본 논문에서는 이기종 프로세서 간의 온성비가 실행하는 워크로드와 동적

인 네트워크 상태 변화에 따라 우선 순위가 변경하는 사실을 활용하는 열 인지

기반 모바일-클라우드 DNN 협동 추론 시스템인 Splash 를 제안한다. Splash

는 미래의 온도와 지연 시간을 효율적으로 추측하는 모델을 바탕으로 열 인지

스케줄링을 통해 모바일 기기의 열 여유를 확보한다. 본 논문에서는 두 개의

스마트폰에서 실제 워크로드를 10분간 실행하는 실험을 진행하여, Splash 가

기존 다중 DNN 추론 시스템에 비해 1.93 배 더 높은 FPS를 모바일 기기의

쓰로틀링 없이 지원할 수 있음을 보인다.

주요어: 모바일 딥러닝 추론, 쓰로틀링, 클라우드 오프로딩

학번: 2021-21645
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