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Abstract

Image-based statistical learning of liquid

pinch-off dynamics

Junhyeong Jang
School of Chemical and Biological Engineering

The Graduate School

Seoul National University

Functional materials used in many industrial processes are made of various raw
materials such as polymers, metals, and carbon particles to improve their functions.
As aresult, they show various rheological behaviors such as viscoelasticity and yield
behavior. Frequently, such behaviors can be identified in the pinch-off dynamics of
the fluids. The rheological behaviors of fluids appear visually characteristic in the
thinning behaviors. So it is important to analyze the thinning behaviors of fluids vi-
sually.

This thesis describes research on analyzing the overall thinning behaviors of flu-
ids using Machine Learning methods. First, fluid thinning behavior images were ac-
quired using DoS-CaBER(Dripping onto Substrate - Capillary Break-up Extensional
Rheometer). Then, image pre-processing methods were developed for effective Ma-
chine Learning. PCA(Principal Component Analysis) was used as a machine learn-
ing algorithm to obtain new rheological information from the images. As a result,

PCs(Principal Components) and Eigen-thinning, which explain the fluid thinning be-



havior, were obtained. The accuracy of PCs was verified through a PCA-based clas-
sification model, and the rheological complexity of PCs was confirmed through a
comparison between conventional rheological properties and PCs.

Also, we did application tests. The PCs were used for two prediction tests. The
first test was to predict the flow ratio of fluids in complex micro-channels. It showed
that PCs are useful predictive indicators when simple, fast, and rough predictions are
required. The second test was to predict the mixing ratio of the mixture. The feasi-
bility of the predictive model was confirmed when the rheological property dominant
in the PCs had a linear change according to the mixing ratio. Finally, the advan-
tages, limitations, and future development directions of the proposed machine learn-

ing method were explained.

keywords: Fluid thinning, Liquid pinch-off dynamics, Machine learning, PCA, DoS-
CaBER, Rheological property
student number: 2021-26394
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Chapter 1

Introduction

Many materials used in the industrial process of producing electronics have a vari-
ety of rheological behaviors. The rheological behaviors of the materials have a great
influence on process conditions and product quality. Therefore, it is important to un-
derstand the rheological properties of materials. Overall, in past studies, the rheo-
logical behaviors of materials have been mainly studied based on shear properties.
However, depending on the material and process, not only the shear behaviors but
also the extensional behaviors have a lot of influence. Extensional viscosity is a rep-
resentative property explaining the extensional behavior. The extensional viscosity is
relatively difficult to measure compared to the shear viscosity. DoS-CaBER(Dripping
onto Substrate - Capillary Break-up Extensional Rheometer) is an instrument used for
accurate extensional viscosity measurement [1].

In general, studies on extensional behavior using DoS-CaBER have been con-
ducted based on rheological theories by users [2, 3, 4]. Or, they have been studied
based on the user’s visual information [5]. Previous studies have confirmed that vari-
ous rheological behaviors are observed in the overall thinning behavior of fluids [6].
In this thesis, the overall thinning behaviors were analyzed using machine learning

methods rather than the human-based methods used in previous studies. We used



PCA (Principal Component Analysis); a representative machine learning algorithm
that extracts features(features are used interchangeably with variables here). PCA
creates new variables by combining original variables, and the new variables are
called PCs (Principal Components). PCA extracts PCs using a statistical method. The
method has three major advantages: 1)Dimensional reduction, 2)Noise removal, and
3)Feature visualization. Because of these advantages, PCA is used in various ways in
machine learning [7, 8, 9, 10, 11, 12, 13]. In Ch.2, We explained how to extract PCs
using PCA for thinning behavior of several fluids. And we obtained the characteristic
shape of thinning behavior through PCs, which was called Eigen-thinning. In Ch.3,
the Validation of PCs with new variables were described. The accuracy of PCs was
verified through a PCA-based classification model. In addition, the rheological com-
plexity of PCs was confirmed by comparing the conventional rheological property
values and score values of PCs. In Ch.4, two applications using PCs are described,

and the advantages and limitations of utilizing PCs are described.



Chapter 2

Method

Figure?2.1 is the overall flow of this study. The method of this study focused on 1) the

Experiment part, and 2) the Machine learning method part.

2.1 Experimental method

In this study, we measured the rheological behavior of fluids using DoS-CaBER and
a Rotational rheometer. Referring to the general measurement process of previous
studies, extensional properties such as extensional viscosity and relaxation time were
measured. Shear properties such as shear viscosity, storage modulus, and loss mod-
ulus were measured using a rotational rheometer [14]. In this study, a new method
for analyzing rheological behavior was additionally implemented. We tried to analyze
the thinning behavior of fluids using Machine Learning for thinning images measured
using DoS-CaBER. Considering these analysis methods, we set up the DoS-CaBER

measurement conditions and prepared the measurement fluids as follows.



Devices and Operating conditions

Figure 2.2 is a configuration of DoS-CaBER. The overall configuration of DoS-
CaBER followed the configuration of Sharma group [1]. The measurement method is
as follows. The test fluid is moved by the pump and a drop is formed at the end
of the nozzle. The formed drop shows thinning behavior by capillary force from
when it touches the substrate. Depending on the fluid, the thinning behavior occurs
within a few seconds, so it is usually observed through a high-speed camera. Ob-
served video images are stored, and we analyzed the stored thinning images through
Machine Learning. The details of the main components in the measurement process
are as follows. We used a PHD ULTRA Infusion Only model(Harvad Apparatus)
as a pump and an N718 NDL 6 model(HAMILTON) as a needle. The thinning be-
havior of the fluid can also be affected by the state of the substrate. Therefore, in
this study, the slide glass of MARIENFELD’s HSU-1000412 model was consistently
used. VEO710L 72G Mono Camera(Phantom) was used as a high-speed camera to
record the thinning behavior, and an x5 magnification lenscEDMUNDOPTICS) was
used as the lens. The following are the conditions for measurement. The infuse rate of
the pump was set to 0.2mm/hr, and the operation of the pump stopped when the drop
of the fluid made contact with the slide glass. The distance between the needle and
the slide glass was set at 3D;, which is three times the inner diameter of the needle.
The resolution of the high-speed camera was set to 960px * 600px, and the sample

rate was set to 10000fps.

Materials

In this study, 14 fluids were used as shown in the table2.1. In this thesis, the index
for each solution was set for the convenience of the notation of the solution. Based
on the index in the table, F(1)~F(3) are solutions composed of a single material, and

F(4)~F(14) are mixtures of the solutions. The CMC solution corresponding to F (1)



was prepared as a 1wt% solution using M,,=250,000 g/mol CMC(Sigma-Aldrich)
and DI water. The PEO solution corresponding to F(2) was prepared as a 1 wt% so-
Iution using M,,=2,000,000 g/mol PEO(Sigma-Aldrich) and DI water. Carbopol so-
lution corresponding to F(3) was prepared as 0.14wt% solution using Carbomer941.
F(4)~F(6) are mixtures of two solutions of F(1)~F(3), mixed at 1:1 based on mass
ratio, and prepared by stirring at room temperature at 300 rpm for 24 hr. F(7) was
prepared by mixing F(1)~F(3) solutions at a mass ratio of 1:1:1. Solutions corre-
sponding to F(8)~F(14) were prepared by mixing according to the ratio specified in
the fluid type in the table. For example, the PEO3+CMC1+Carbopoll solution corre-
sponding to F(8) was prepared by mixing PEO, CMC, and Carbopol at a mass ratio
of 3:1:1.

2.2 Machine Learning method

In this study, the overall thinning image of the fluid was analyzed using a machine
learning method. For machine learning, 1) Image preprocessing, and 2) Machine

learning algorithm methods were applied.

2.2.1 Image preprocessing

Image preprocessing is a method to improve the quality of data used in machine
learning. Through this method, we tried to increase the amount of information that
can be obtained from data by removing unnecessary data and adding useful data.
In this study, four major steps were performed: 1) Frame range selection, 2) Image

whitening, 3) Image stacking, and 4) Image cropping and centering.



Table 2.1: Material properties

Index fluid type Mo nt, G’ G"
(Pa.s) (Pa.s) (Pa) (Pa)
F(1) CMC 0055 1.8 034 0.03
F(2) PEO 0.08 64 051 0.07
F(3)  Carbopol 52 19 5.01 20.83
F@4) PEO+CMC 0.09 48 055 0.05
F(5) PEO+Carbopol 32 16.6 7.7 17.1
F(6) CMC+Carbopol 0.07 074 03 0.08
F(7)  PEO+CMC+Carbopol 0.2 314 0.81 024
F@) PEO3+CMCl+Carbopoll  0.18 42  0.86 0.19
F(9) PEOI1+CMC3+Carbopoll  0.04 10 03 0.05
F(10) PEO1+CMCIl+Carbopol3  0.05 12 1.0 046
F(11) PEO3+CMC3+Carbopoll 0.045 21.8 0.28 0.04
F(12) PEO3+CMCl+Carbopol3 0.55 228 123 0.57
F(13) PEO1+CMC3+Carbopol3 0.043 6.6 024 0.05
F(14) PEOS5+CMCl+Carbopol5 1.88 124 2.13 1.61

Frame range selection

This is the process of selecting frames that are essential for analysis to remove data
that does not correspond to the fluid characteristics and reduce data capacity and
calculation. The frame where the angle formed by the drop and the needle is lower

than 90 degrees is set as the starting point, ¢,, and the frame where the thread formed

by thinning is pinched-off is set as the last point, t;.



Image whitening

The original image has a noise problem due to light transmission. To solve this prob-
lem, first, the image was polished through canny edge detection, and the area with
fluid between the contours was converted to white color. Through this work, noise
caused by light was removed. Through this process, the image was converted into
a black-and-white image, and the color channel of the pixel consists of 255 or 0.

(Figure2.3)

Image stacking

In previous studies, it was confirmed experimentally or through simulation that the
pinch-off shape according to the fluid type was different. However, we judged that
the characteristics of the fluid will be expressed not only in the pinch-off behavior but
also in the behavior in which thinning occurs. Therefore, the amount of information
about the image is increased through image stacking as shown in the figure2.4. At
this time, the color values of the pixels of each frame image in the ¢; to t; range
are divided by 8000 and then merged to form one frame image. Since the time from
thinning to pinch-off is different for each fluid, the brightness of the thinning image
in the merged frame is different as shown in figure2.6. We tried to indirectly add
time information to the 2D image by creating the brightness difference between these

images.

Image cropping and centering

In the original image measured by DoS-CaBER, the needle is exposed on the upper
part of the image, and the slide glass is exposed on the lower part of the image. Image
data that is not related to the properties of the fluid has a bad effect on the progress
of machine learning. Therefore, the upper and lower parts of the image were cut out

so that only the characteristics of the fluid were well defined as features.(Figure2.5)



We performed image preprocessing for 7 fluids in this study. As a result, a pro-

cessed image like figure2.6 was obtained.

2.2.2 Machine Learning algorithm

In previous studies, rheological properties have been obtained based on rheological
theories from the thinning behavior of the fluid, or pinch-off shapes for each fluid
type have been identified using human visual information. In this study, what hu-
mans have been doing in the past was conducted through machine learning. We tried
to extract useful variables from thinning image data through machine learning and
use them. PCA (Principal Component Analysis) and K-NN (K-Nearest Neighbor)
methods were used as machine learning algorithms in this study. PCA is one of the
unsupervised machine learning methods and is a representative method for dimen-
sionality reduction while maintaining variance as much as possible. PCA mainly has
three functions. The first is dimensionality reduction, and the second is the removal
of unnecessary information. The last is the extraction of new variables called PCs
(Principal Components) [15, 16]. Also, in the case of image data, visualized informa-
tion of PCs can be obtained [17, 18]. We aimed to obtain optimized new variables and
their visualized information for the thinning behavior of fluids using PCA. K-NN is
a simple supervised machine learning algorithm used to evaluate the accuracy of the
PCA model through classification tests. The series of processes applying PCA and

K-NN in this study are as follows.

Stepl. Data preprocessing for PCA

First, vectorize the image data, and stack each sample into each row to create a data
frame in the form of (s x p). Here, s is the number of samples, p is the number
of original variables (or features), and the number of pixels in the case of image

data. In this study, s=227, p=144000. Next, X, Was obtained by subtracting the



average image of the entire image data used from the image of each sample, and this
was called mean subtracted data B. The data structure with the average subtracted to

proceed with PCA is as follows:

X1 —pmr Xig—p2 - Xip—pip Bii Bia -+ By
Xop — 1 Xog—p2 -+ Xop—pp Byy By -+ Bsy
Xmean = . . . . = . . . . = B
_Xsl — M Xsl — M2 - Xsp - /~Lp_ _le le to Bsp_
2.1

Step2. Obtaining PCs(Eigen vectors)

This is the process of extracting PCs, which are new variables. Applying SVD(Singular
Value Decomposition) to B results in the following equation. Here, non-zero singular

values s are obtained:

Un Ui - Uis| [V e 0 Vi Var oeee Vi
B=UZV! = Un Uy oo Uss| | 0 VA oo 0 |Vig Voo -or Vi
Ug Usp - U] [0 o 0] [V Vo -~
2.2)

PCA is a method of extracting features by finding directions with large variances.
Therefore, to apply PCA, the covariance matrix C must be obtained as follows. When

SVD is applied to the covariance matrix, the following equation is obtained:

# T f$ 2vT
(N—l)B B_(N_l)VEV (2.3)

Ccov =
V is a matrix in which each column is an eigen vector of the covariance matrix.
Each column of V corresponding to the eigen vector is a PC, and PCs with large

variance sequentially from the left column. A large variance means that there is a lot

VPP_



of information about data. So, the PC with the most information is PC1, the eigen
vector of the first column from the left. At this time, if the PC is reshaped to the
original image size, a visualized feature of the thinning behavior of the fluid can be
obtained. We called this visualized feature Eigen-thinning.(Figure 2.7) The number
of PCs is a hyper-parameter that the user must decide. The number of PCs means
how many dimensions to reduce and is determined between 1 and s through a hyper-

parameter optimization process.

Step3. Calculating score and loading matrix

Using the eigenvector matrix V, the Z score (or PCA score) can be obtained as fol-
lows. The obtained Z value is the value of the projected sample data of X on the PC
axis. For each new variable (PC), as many Z values as the number of samples (s) are

created. ¢ is equal to the number of dimensions reduced by the number of selected

PCs:
X1 X2 Xip| (Vi1 Va2 Vi Z11 212 AT
Xot Xoo -+ X Vor Voo v Voo Tt oo onv T
7 _xy_ | Xz 2 21 Voo 2| _ [4n 22 2
| Xs1 Xs2 o Xep| |V Vp2 -+ Voi|  |Zan Zop -+ Zsi]
2.4)

The Z value obtained according to equation(2.4) is plotted as figure2.8. Although the
data is projected on i-dimension made of i new variables, the dimension that can be
expressed visually is limited to 3-dimension, it is a graph visualized using only some
PC axes in a 2-dimensional or 3-dimensional coordinate system.

We can also analyze the relationship between the original variables (pixels in
the case of image) of data X and the new variable PCs. We used a method of ob-
taining the loading matrix L and visualizing it through the Circle of correlation

method(figure2.9). In the case of image data, by analyzing the relationship between

1 ™
10 *" == L]



pixels and PCs, it is possible to find out the characteristic image shape highly related

to each PC in the image. L is obtained through the following equation:

Vit Vi - Vil [vVAr 0 - 0 L1 Lo
o L | R L
Vor V2 oo V| | O o --- \/)\7_ | Lpn Lyp -+
(2.5)

Step4. Classification using K-NN

Because PCA is unsupervised learning, it cannot evaluate the model itself. Therefore,
we used K-NN, which is commonly used for classification, as a simple supervised
machine learning algorithm. K-NN is a distance-based classification algorithm like
figure 2.10 and has a hyperparameter called k. This hyper-parameter is determined
through an optimization process together with the number i of PCs. In this study, the
K-NN method was used for the classification of data in the new coordinate system

obtained through PCA.

StepS. Hyperparameter Decision

There were two parameters (Number of PCA components: i, Number of judgment
criteria in K-NN: k) that we have to decide. The classification was possible through
K-NN, and we calculated the accuracy of the model through this. To check the perfor-
mance of the model, accuracy was used as a criterion in hyperparameter optimization.
As shown in figure2.11, we set the i parameter at an interval of 5 from 1 ~ 46, and
set the k parameter at an interval of 1 from 1 ~ 20 according to the i parameter to

calculate the accuracy by iterative calculation.
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Figure 2.4: Image stacking. Images measured from ¢ to ¢ are stacked into one image.
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Figure 2.6: Images of 7 types of fluids. (a):CMC,(b):PEO,(c):Carbopol,(d):PEO+CMC,(e):
PEO+Carbopol,(f): CMC+Carbopol,(g): PEO+CMC+Carbopol.
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Figure 2.10: K-NN algorithm. The distance is calculated based on the Euclidean dis-
tance. k is the number of adjacent data to be used for classification judgment and is
a hyperparameter. The Knn probability for each class is calculated by dividing the
number of data in each class by k, and the test data is classified into the class with the

highest knn probability.
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Chapter 3

Results and Discussion

3.1 Accuracy of PCs

We verified the effect of applying image preprocessing and PCA through the accu-
racy test of the classification model. The performance of classification means that the
new variables (PCs) well classify thinning images of fluids, which means that PCs
explain the thinning behavior of fluids well. We used 7 types of fluids corresponding
to Index F(1) ~ F(7) as the data set for the test. Each F(1) ~ F(3) is a pure solution of
CMC, PEO, or Carbopol, and F(4) ~ F(7) are a mixture of the solutions. Figure3.1
is the accuracy test result in the range of hyper-parameter i = 6 of PCA components
and hyper-parameter k = 1 ~ 20 of K-NN. The four lines in the figure are the results
according to the conditions of PCA and image preprocessing. As a result, when both
images preprocessing and PCA were applied, the highest value was obtained with an
accuracy of 93 ~ 100%. In particular, the effect of PCA was greater for data that was
image preprocessed. This is considered to be because useful data and noise increase
together in the process of increasing the complexity of data by image stacking in im-
age preprocessing. In conclusion, we verified extracted new variables (PCs) through

the PCA classification model from image preprocessed data.
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3.2 Relationship between PCs and rheological properties

PCs of new variables obtained through PCA are created through linear combinations
of original variables. In this study, the original variables are not rheological proper-
ties, but thinning images themselves that show rheological behavior. Since we ex-
tracted new variables from the original variables, We expected that PCs would com-
plexly explain the dominant rheological behaviors existing in the thinning behavior.
Since PCs are variables statistically calculated by machine learning, it is difficult to
directly explain their connection with specific rheological properties. However, we

tried to indirectly interpret the rheological meaning of PCs by comparing the conven-
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tional rheological property values and PC score values for the test fluid. As a result,
in this study, it was confirmed that each of PC1 and PC2 showed a tendency similar to
storage modulus(G”), extensional viscosity(ng), as shown in figure3.2. In conclusion,
we indirectly confirmed that PCs complexly explain the rheological behavior, and in

Application part 1, we conducted an experiment on the complexity of these PCs.

PC# Eigen-thinning PC score Rheological property

PC1 Score . Storage modulus (G')

PC1 - .

o / =\ /N / \

pn \\ \ / \\ / \

Ny ' / N\ / \
P \* \ = / N/
o E N o/ v \_—
| F) F2) F3) FH4) FHs) He) F7) K1) F2) K3 Fu) Fs) Fe) F7)
PC2 Score ) Extensional viscosity ( 1)

<

F1) F2) F3) F&) Fs) Fe) F() 1) F2) FH3) K& K5 Fe) KO

Figure 3.2: Relationship between PCA results and rheological properties.
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Chapter 4

Applications
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4.1 Prediction of flowability in micro-channel

4.1.1 Concept

We conducted a feasibility test to use PCs as an index for processes affected by rhe-
ological behavior. In summary, we tried to predict the flow of certain fluids in a com-
plex micro-channel using several rheological properties and PCs and compared each
prediction result. A channel was made in the form shown in the figure4.1. Some fluid
flowed into the channel. The amount of fluid flowing into the wide area and the nar-
row area was measured and the ratio was obtained. We called that ratio the flow ratio.
Seven types of fluids corresponding to Index F(1) to F(7) were used as classes to
obtain PCs, and solutions corresponding to Index F(8) to F(14), which are mixtures
of the solutions, were used as test fluids to be predicted. For prediction, the flow ratio
of the fluid corresponding to the class was obtained experimentally in advance, and

each flow ratio was normalized to the flow ratio of water.

Flow ratio = massyde pattern/massnarrow pattern 4.1)

(a) (b)

Outlet @

utlet®

Outlet @ Wide
pattern

700um (fixed)

Inlet Measurement
Measurement >
Hremen L Q = 2ml/min

Figure 4.1: Configuration of Micro Channel experimernt. (a): summary of experi-

mental conditions, (b): design of micro-channel.
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4.1.2 Method

Hyperparameter optimization was performed to predict the flow ratio. The decision
criterion was the minimum value of the RMSE between the predicted flow ratio of
the validation data and the experimental flow ratio. As a result of optimization, it was
determined that PCA components i = 1 and K-NN k = 1 as shown in table4.2. The
predicted value of the flow ratio is obtained by the following equation. The KNN
probabilities were calculated by the 2.10 method, and the flow ratio of the class was

experimentally obtained (Table4.1). Here, n is each class number :

n

Flow ratioprediction = Z(knn probabilitycgssny * Flow ratiog,gsmy) (4.2)
1

Table 4.1: Flow ratio of class

Fluid type Flow ratio || Fluid type Flow ratio
CMC 1.11 PEO+Carbopol 0.60
PEO 0.77 CMC+Carbopol 1.19
Carbopol 0.86 PEO+CMC+Carbopol 0.77
PEO+CMC 0.90

4.1.3 Results and Discussion

This is the result of predicting the flow ratio of the cross channel through the model
trained with 7 classes. The results were compared with the predicted results based
on shear viscosity and extensional viscosity. For the prediction using viscosity, the
simple polynomial regression equation obtained through the property information of
class fluid and the flow ratio value was used. As a result, RMSE = 0.12 for prediction

using shear viscosity, RMSE = 0.19 for prediction based on extensional viscosity, and

1 ™
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Table 4.2: hyperparameter optimization

Class Class type PCA components KNN-k RMSE

(CMO)
(PEO)
(Carbopol)
7 (PEO+CMC) 1 1 0.087
(PEO+Carbopol)
(CMC+Carbopol)
(PEO+CMC+Carbopol)

RMSE = 0.09 for prediction using the 7class PCA model.(Figure 4.2) When com-
pared based on RMSE, it was confirmed that the error of the 7-class PCA model was
the smallest. We confirmed that the flow ratio in the channel can be roughly predicted
simply through this PCA model. However, it is difficult to predict the exact value. To
improve predictability, in the case of existing rheological properties, simulations can
be performed using rheological theories and models. On the other hand, since PCs
are not variables based on rheological theories, it is necessary to consider how to use
various PCs in combination. We are considering the application of machine learning

methods such as Neural Network as a rough solution to these problems.

4.2 Prediction of the proportion of mixtures

4.2.1 Concept

We tried to predict the proportion of the mixture as well as the classification using
the new variable PCs. In this experiment, a mixture was prepared using three types of
solutions: PEO, CMC, and Carbopol. Two experiments were carried out, and one was

an experiment to predict the ratio of a mixture(Test fluid: F(4)~F(7)) with 3 classes
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0.6
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02l ¥ Prediction_PCA
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Fluid type

Figure 4.2: Flow Ratio Result. Black line(@) is experimental value, Blue line('V)
is prediction result based on PCA model, Red line(A) is prediction result based on

shear viscosity, Green line(H) is prediction result based on extensional viscosity

(Train fluid: F(1)~F(3)) PCA model. The other was an experiment to predict the
ratio of a mixture(Test fluid: F(8)~F(13)) in which three solutions were mixed in a
specific ratio using 3class(Train fluid: F(1)~F(3)) PCA model and 7class(Train fluid:
F(1)~F(7)) PCA model. The fluid types corresponding to the F(1) to F(13) index are

shown in table2.1.

4.2.2 Method

The finally determined hyperparameters (pca components, and KNN k) are shown in
the table4.3. The hyper-parameter pca components i = 1 ~ 50 were calculated at 5
intervals, and K-NN k = 1 ~ 20 was calculated at 1 interval. The hyper-parameter was

determined based on the minimum value of the actual mixture ratio and the expected
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mixture ratio RMSE. The method of predicting the pure solution proportion of the

test mixture is as follows. Here, n is each class number:

n
CMC ratioprediction = Z(k‘nn probability.iassny * CMC proportion jassn))

1
(4.3)

n
PEO Tatioprediction = Z(knn pTObabilityclass(n) * PEO proportionclass(n))

1
4.4)

n
Carbopol ratiop,ediction = Z(knn probabilityqssny*Carbopol proportion ass(n))
1

4.5)
Table 4.3: hyperparameter optimization of mixture prediction model
Class Class type PCA components KNN-k RMSE
3 (CMC) 21 2 0.08
(for testl) (PEO)
(Carbopol)
3 (CMC) 6 14 0.36
(for test2) (PEO)
(Carbopol)
7 (CMC) 6 15 0.17
(for test2) (PEO)
(Carbopol)
(PEO+CMC)
(PEO+Carbopol)
(CMC+Carbopol)
(PEO+CMC+Carbopol)
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4.2.3 Results and Discussion

The result of predicting mixtures (F(4)~F(7)) through the 3class (F(1)~F(3)) PCA
model was as shown in the figure4.3(a). Through the prediction results of PEO+CMC(F(4)),
PEO+Carbopol(F(5)), CMC+Carbopol(F(6)), PEO+CMC+Carbopol(F(7)) When RMSE
was obtained, each RMSE =0.16, 0.00, 0.36. The predicted values of the PEO+Carbopol
mixture and the PEO+CMC mixture showed a relatively small error, whereas the
predicted values of the CMC+Carbopol mixture showed a large error. Figure4.3 (b)

is a graph in which the score values of each fluid data are scattered on the axes
of PC1 and PC2, which have the largest variance. Looking at the figure, it can be
seen that the CMC+Carbopol solution is distributed in a region that is completely
biased towards the data of the CMC solution, not the midpoint of the CMC and Car-
bopol pure solution. In other words, it can be seen that the thinning behavior of the
CMC+Carbopol solution is similar to that of CMC from the perspective of PCI,
and PC2, not the intermediate behavior of each pure solution. This is also shown in
Figure 4.4. From graph(a), it can be seen that the shear viscosities of the PEO, Car-
bopol, and PEO+Carbopol mixture have relatively linear values. On the other hand,
the shear viscosities of CMC, Carbopol, and CMC+Carbopol mixture show relatively
more non-linear behavior. As a result of the score scattering graph, it can be seen that
the CMC+Carbopol solution has a shear viscosity similar to that of CMC. We addi-
tionally built a classification model based on 7 classes of F(1) ~ F(7) solutions to
predict the proportions of a slightly more complex mixture. Through the model, we
tried to predict the ratio of mixtures (F(8) to F(13)) in which all of F(1) to F(3) were
mixed. Figure 4.5 (a),(b) are the results predicted by the 3class model and the 7class
model. As a result, when using the 7class model, a lower error occurred compared
to the 3class model (RMSE: 0.35 — reduced to 0.14). From this result, it can be in-
ferred that the error will decrease if fluids mixed in various proportions are added as

a new class. However, this is inefficient as it requires more experiments and data. The
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limitation of these predictions is the lack of information obtained through the model.
The lack of information could have several causes. First, the thinning behavior itself
may lack information to predict the proportion of the mixture, and in this case, data
collection through other experiments is required. The second is that the PCA model
in this study uses intensity-based data through image stacking. If thinning behav-
ior occurs in a short time, feature extraction may be difficult due to low intensity in
stacking images. The third is that it is difficult to extract features from the positional
variable image data of PCA itself. Most of the thinning behavior data we used were
collected under equal conditions, the shape was symmetrical, and the position was
rarely changed. However, at the time of pinch-off, it was difficult to obtain a feature
as a shape such as BOAS (Beads On A String) because the position or size was multi-
variable. In summary, the two problems estimated methodologically are as follows. 1)
Limitation of Intensity-based data analysis, 2) Limitation of positional variable data
analysis. To verify this, additional research applying machine learning algorithms
such as CNN (with edge feature method and positional invariance characteristics) is

needed.
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Figure 4.3: A result of prediction test of binary solutions. (a) A 3class-based propor-
tion graph comparing real proportion with the predicted proportion of binary solu-
tions. The black line bars mean the real proportion values, and the red line bars mean
the predicted proportion values. (b) A score scattering graph of solutions on PCl1,
PC2 axis. The black dot line circle indicates CMC, Carbopol pure solutions, and the

mixture of them.
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Figure 4.4: (a) A shear viscosity graph of PEO, Carbopol binary solution, (b) A shear
viscosity graph of CMC, Carbopol binary solution.
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Figure 4.5: (a) A proportion graph of mixtures which are predicted with 3class model,

(b) A proportion graph of mixtures which are predicted with 7class model.
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Chapter 5

Final remarks

This thesis focused on analyzing fluid thinning behavior using machine learning. Our
goal was to obtain new rheological information(PCs, Eigen-thinning) explaining the
overall thinning behavior using the PCA machine learning algorithm.

Two methods have been described for the goal. The first was an experimen-
tal method, which is the acquisition of fluid thinning behavior images using DoS-
CaBER. The second was the machine learning method. We first implemented the
preprocessing method of fluid thinning images for machine learning. Next, new vari-
ables (PCs) were acquired from the image data using the PCA method. The effect and
characteristics of the PCs were verified through the accuracy test of the classification
model and comparison with conventional rheological properties.

We conducted prediction tests using PCs. The first test was an experiment to pre-
dict the flow ratio in the micro-channel, and the second test was to predict the ratio
of the mixture. As a result, we confirmed the proposed method’s advantages and lim-
itations. The first limitation of the method in this study was the problem of the com-
bination of new variables (PCs). For relatively accurate prediction, it is necessary to
develop a method that can properly combine multiple PCs. The second was that some

features of image data may be lost. The PCA model in this study may have problems
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due to the aspects of the image pixel intensity-based method, positional variance, and
statistical variance-based analysis method. Considering these limitations comprehen-

sively, it seems necessary to develop using additional machine learning methods such

as CNN.
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