

저 시-비 리- 경 지 2.0 한민

는 아래 조건 르는 경 에 한하여 게

l 저 물 복제, 포, 전송, 전시, 공연 송할 수 습니다.

다 과 같 조건 라야 합니다:

l 하는, 저 물 나 포 경 , 저 물에 적 된 허락조건
 명확하게 나타내어야 합니다.

l 저 터 허가를 면 러한 조건들 적 되지 않습니다.

저 에 른 리는 내 에 하여 향 지 않습니다.

것 허락규약(Legal Code) 해하 쉽게 약한 것 니다.

Disclaimer

저 시. 하는 원저 를 시하여야 합니다.

비 리. 하는 저 물 리 목적 할 수 없습니다.

경 지. 하는 저 물 개 , 형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

Project Report of Master of Engineering

Early Defects Detection using Test
Cases Prioritization in Iterative
Software Development Process

반복적인소프트웨어개발공정에서의시험사례

우선순위화기법을이용한조기결함탐지

February 2023

Graduate School of Engineering Practice

Seoul National University
Department of Engineering Practice - Data Science Track

Jaesung HWANG

Early Defects Detection using Test Cases
Prioritization in Iterative Software

Development Process

반복적인소프트웨어개발공정에서의시험사례

우선순위화기법을이용한조기결함탐지

Professor Sung-Joon Cho, Seong-Woo Kim

Submitting a Master’s Project Report

February 2023

Graduate School of Engineering Practice

Seoul National University
Department of Engineering Practice - Data Science Track

Jaesung HWANG

Confirming the master’s Project Report written by

Jaesung HWANG
February 2023

Chair Yoon-Mo Koo (Seal)

Examiner Sung-Joon Cho (Seal)

Examiner Seong-Woo Kim (Seal)

Abstract

Large-scale continuous integration environments are increasingly ap-

plied to software development in modern industries. Although this environ-

ment guarantees high development productivity, it is greatly dependent on

the amount of simultaneous testing. Though this environment is suitable for

performing a test cycle as quickly as possible and giving feedback to the

developer, the overall software development process can become slow and

inefficient as the number of test cases increase.

To improve the execution efficiency of software testing, machine learn-

ing techniques based on test execution records accumulated through re-

peated execution were used to derive the test cases that are highly likely

to fail in the next test execution In this study, Shift Left, a test method that

advances execution through finding and preventing defects early in the soft-

ware delivery process, was used to increase the efficiency of the software

development. Specifically, test case prioritization method was applied to de-

tect defects early and report back to the developers with quicker feedback

on the failed test results. The success of the test case prioritization was con-

firmed by measuring the APFD value.

In this study, experiments were executed using test cases that are cur-

rently used in the actual industry. As a result of the Test Case priority of

machine learning introduced in this study measured to be 1.7 times more

effective compared to the test performance, of traditional method that uses

i

a heuristic method strategy.

Keywords : Defect detection, Test case prioritization, Regression testing,

Machine Learning

Student Number : 2020-28114

ii

Contents

I. Introduction . 1

1.1 Background of Research 1

1.2 Scope of Research . 2

1.3 Composition of Paper . 3

II. Related Works . 5

2.1 Test Case Prioritization . 5

2.2 Continuous Integration of Software 6

2.3 Test data features of based ML 7

2.4 Related Works . 8

III. Methodology . 11

3.1 Problem Definition . 11

3.2 Data Collection . 13

3.3 Model Selection . 14

IV. Experiment and Evaluation 17

4.1 Experiment Overview . 17

4.2 Experiment Environment Configuration 17

4.3 Experiment Result and Analysis 20

4.3.1 Device-A Experiment 20

4.3.2 Device-B Experiment 25

4.3.3 Experiment Result Analysis 29

iii

4.3.4 Further Analysis of Experimental Data 32

4.3.5 Further Analysis on Experimental History Length . . 37

V. Conclusion . 42

Bibliography . 45

Abstract . 49

iv

List of Figures

Figure 1. Regression test in a CI environment 5

Figure 2. Continuous Integration of Software 6

Figure 3. APFD = 0.540 , APFD = 0.944 13

Figure 4. Experiment/Evaluation steps 19

Figure 5. MSE Result: Device-A 21

Figure 6. APFD Result: Device-A 22

Figure 7. APFD Result: Device-A Graph 23

Figure 8. Feature Impact Analysis: Device-A graph 24

Figure 9. MSE Result: Device-B 26

Figure 10. APFD Result: Device-B 27

Figure 11. APFD Result: Device-B graph 28

Figure 12. Feature Impact Analysis: Device-B graph 29

Figure 13. MSE Result: SMOTE 33

Figure 14. APFD Result: SMOTE 34

Figure 15. Feature Impact Analysis: SMOTE 36

Figure 16. Analysis on Experimental History Length Graph . . . 39

Figure 17. Number of Total Failed Test Cases graph 41

Figure 18. Data features for test case prioritization 43

v

List of Tables

Table 1. Example Features in Test History Data 7

Table 2. Test case results and duration time by test cycle 9

Table 3. The results and duration of the last five test cycles 9

Table 4. Results of based equation (2-1) 9

Table 5. Results of based equation (2-2) 10

Table 6. Selection of regression model 15

Table 7. Information on setting parameters of the model 16

Table 8. Overview of test history record data set 18

Table 9. List of experiment data features 18

Table 11.MSE Result: Device-A 21

Table 12.APFD Result: Device-A 22

Table 13.MSE Result: Device-B 26

Table 14.APFD Result: Device-B 27

Table 15.Experiment data set . 30

Table 16.Experiments result summary 31

Table 17.Data Augmentation by SMOTE 32

Table 18.MSE Result: SMOTE 33

Table 19.APFD Result: SMOTE 34

Table 20.Analysis on Experimental History Length 38

Table 21.Number of Total Failed Test Cases according to Test

History length . 41

vi

Chapter 1

Introduction

1.1 Background of Research

The software development process is increasing the efficiency of de-

velopment and verification through the continuous integration(CI) environ-

ment [1] [2]. When developing particular software such as an operating sys-

tem(OS), verification process must be repeatedly performed not only on the

part in current development, but also on the part that has been already de-

ployed by repeatedly performing regression tests which eliminates defects

continuously [3] to ensure that there are no residual issues in the previously

deployed version.

In case of operating system software, as the size of modern software

is growing rapidly while being continuously developed and distributed, the

number of test cases that need to be repeatedly verified has to increase in-

evitably. [4] In order to efficiently perform software testing in the continuous

software integration process, a method to increase efficiency by applying

automation technology has been applied, but, currently, automation tech-

nology alone cannot bring about additional efficiency in a situation where

test cases that need to be repeatedly performed are increasing [5].

Regression test is run to spot defects due to changed software configu-

rations by repeatedly performing almost the same test cases that have been

1

accumulated. In this case, the list of test cases is already set before the ac-

tual test begins, and in many cases, the order of test cases for test execution

gets continuously applied without changing. In this case, it is impossible to

predict when a defect will be discovered while executing all test cases [6]

which makes it difficult to give feedback on the defect to the developer until

all tests are completed.

To make up for such disadvantage, a strategy of making case with

higher probability of fail a priority in the test suites gets often applied. By

doing so, it is possible to detect fail of test cases in the early stage of test ex-

ecution, deliver quick feedback to developers, and improve defects quickly.

This research is to propose an algorithm that derives test case priorities

through machine learning with data collected from test execution history

records of webOS operating system software which are under development

in the field, and is to measure the performance when the corresponding test

case ranking is applied to test prioritization with APFD.

1.2 Scope of Research

There have been studies which presented adjusting of test case prior-

itization using test history data accumulated through regression tests in a

continuous integration environment. However, such studies have been de-

termined priorities based on the algorithm created based on the knowledge

and experience of experts or testers who have been rich experience with the

test for a long time. Although the results of research with this approach can

show a significant increase in the APFD value, the specific condition that re-

2

quires professionals with expertise and experience in the field makes it hard

to be universally applied. Moreover, since the test history data gets changed

every time a regression test is performed, expert intervention will be able to

be applied every time.

This Research takes an approach that does not use heuristic logical

methods and instead extract features from test history data accumulated

over a long period of time, and apply machine learning or artificial neu-

ral networks [7] to them to infer the result. In aiming this, the features of the

collected data are selected, and the effectiveness of test case prioritization is

compared and evaluated with APFD values using various models, and then

the results get analyzed.

1.3 Composition of Paper

This paper as the following structure: chapter 1 describes the back-

ground and purpose of this research and then the scope of the research.

chapter 2 examines previous studies related to the theoretical content of the

technology for determining test case prioritization, which is necessary to un-

derstand this research. chapter 3 shows the field test performance data to be

reviewed in this research, and explains the method and evaluation of the pro-

posed test case priority prediction method using machine learning/artificial

neural network through learning. In chapter 4, the feature values extracted

from field test history data and the selected learning model are used to de-

scribe the test case prioritization experiment environment and discuss the

comparative analysis of various experiment results. In chapter 5, finally, the

3

conclusion of this research report is stated, and the results and contents of

the research described are written together with the remaining tasks for the

future.

4

Chapter 2

Related Works

This chapter provides a basic overview of test case prioritization, the

background of this paper, and introduces previous research. In section 1,

firstly, test case prioritization and the data used in machine learning to de-

termine it are presented. Section 2, subsequently introduces related works

of test case priority prediction.

2.1 Test Case Prioritization

By adjusting the test case priority so that the test case with the highest

probability of fail gets executed first, testers can detect defects at an early

stage and can quickly deliver feedback on the results of failed test cases to

developers.

Figure 1: Regression test in a CI environment

5

2.2 Continuous Integration of Software

Continuous integration (CI) refers to the execution of a process where

quality control is continuously applies in software engineering. In a con-

tinuous integration environment, developers’ integrating their work several

times a day into a single source code repository, and managing quality in

conjunction with automated testing tools [8] are becoming software engi-

neering method. The benefit of continuous integration is that defects can

be detected in the early stage of software life-cycle, from development to

production [9].

Figure 2: Continuous Integration of Software

Zhao et al. [10] reported that repeated performance of software devel-

opment projects has a positive effect on reducing defects in the project life-

cycle. However, it is said that the positive effect gradually diminishes over

time after continuous integration is applied, and the trend gets flattened. [11]

To develop software such as an operating system (OS) especially, per-

6

forming repetitive regression tests is a must because the functions of previ-

ously distributed versions must be maintained intact. However, as the cycle

of repetitive test increase, the effect of early detection of defects gradually

declines.

This Research aims to maintain the effect of early defect detection and

the efficiency of test execution by performing the test case prioritization [12]

adjustment at every test cycle.

2.3 Test data features of based ML

Various data and their features that can be used to determine test case

priorities using machine learning. [13] Test case priorities can be deter-

mined by the complexity of the source code, the developer’s code-related

history, the code coverage through test execution, and user input informa-

tion through machine learning as well. Data on the test execution history can

be collected in quality control department where the researcher conducts the

test in the workplace.

Table 1: Example Features in Test History Data

Execution history Description

Duration Last execution time (duration) of test cases
Fail cases Number of failed tests in the current commit
Test case result Test cases’ verdict (PASS/FAIL)
Result History Verdicts which refer to the history length
Change Status Number of changes of verdicts by each test case
Test age Number of test cycles

7

2.4 Related Works

Related Works for determining test case priorities using test execution

records used an approach where a heuristic [14] [15] [16] algorithm was

applied. This is a method of calculating a priority value by characterizing

test case results and execution time data from previous test execution results.

[17] The following two assumptions are made about applying the heuristic

method.

• Recent test result has a bigger influence weight (ω) on test case prior-

ities.

• In case given test cases have the same priority value, the one with the

short duration gets performed first.

Based on this assumption, the priority value is calculated through the fol-

lowing formula. Here, test case (i) / test cycle (j) / Executed Status (ES)

were expressed in recording of the execution.

P(ti) =
∑

j∈1...m

ω j ∗max(ES(i, j),0) (2.1)

P(ti)∔=
max(duration)

mean(durationi)
(2.2)

For instance, assuming that the results and duration of each test case

up to the previous 10 test cycles for three test cases are presented as shown

in Table 2, the priority value is calculated by applying Equation 2.12.2. The

test results are classified by the color of each cell in the table, gray indicates

fail/white indicates pass, and the number in the cell means the execution

8

duration time for each test case.

Table 2: Test case results and duration time by test cycle

Test Cycle -1 -2 -3 -4 -5 -6 -7 -8 -9 -10

Test Case #1 60 64 60 61 84 60 60 64 61 60

Test Case #2 180 61 60 65 76 62 77 61 57 60

Test Case #3 62 88 66 62 40 62 72 64 61 60

The five previous histories are selected here, and a larger weight (ω)

value is given to the latest one in cycle.

Table 3: The results and duration of the last five test cycles

Test Cycle -1 -2 -3 -4 -5

Weight (ω) 0.50 0.20 0.15 0.10 0.005

Test Case #1 60 64 60 61 84

Test Case #2 180 61 60 65 76

Test Case #3 62 88 66 62 40

The results in Table 4 can be obtained by calculated using equation 2.1

based on the results of the last five test cycles data and the weight (ω) value.

Table 4: Results of based equation (2-1)

Test Cycle -1 -2 -3 -4 -5 P(ti)

Test Case #1 0 0.20 0 0 0.005 0.205

Test Case #2 0 0 0.15 0.10 0.005 0.255

Test Case #3 0.50 0.20 0 0 0.005 0.705

When the priority value is finally calculated, the result of Table 5 can

9

be obtained by calculation using Equation 2.2

Table 5: Results of based equation (2-2)

Test Cycle -1 -2 -3 -4 -5 mean P(ti) priority value

Test Case #1 60 64 60 61 84 65.8 2.74 2.95

Test Case #2 180 61 60 65 76 88.4 2.04 2.30

Test Case #3 62 88 66 62 40 63.6 2.83 3.54

The order of test execution was originally performed in the sequence of

‘Test Case 1 → Test Case 2 → Test Case 3’. Based on the above procedures,

if the test execution order is determined by the size of the priority value, it

can be changed to ‘Test Case 3 → Test Case 1 → Test Case 2’.

10

Chapter 3

Methodology

Problems defined in the field are defined and experimental plans are es-

tablished to solve them in this chapter. In the research, test execution record

data used in the field is collected and analyzed, a model that predicts test

case priority using various machine learning and artificial neural networks

is selected, and the optimal method of predicting the next test performance

result is explored.

This paper will further describe the performance evaluation method using

indicators that can evaluate test case priorities for experiment results.

3.1 Problem Definition

In order to detect defects early in a regression test that is repeatedly

performed in a continuous integration environment such as a software op-

erating system [18], a test case priority strategy should be applied so that

tests are performed from test cases with a high probability of occurrence of

defects.

Test case prioritization is defined as following in general [5]

• Assume that a test suite is given as T , a set of permutations of T as

PT , and a objective function from PT to the real value as f

• The problem is to find ∀T ′′ ∈ PT ,T ′′ ̸= T ′ : f (T ′) ≥ f (T ′′) which is

11

like T ′ ∈ PT

Here, f is a function that’s used to accomplish the goal of early defect

detection and its high result value means that the priority of early detection

of defects is good.

This f value is a function that returns the weighted average rate of de-

fect detection(APFD) [19]in this research and this value is used as a priority

evaluation index for early defect detection.

APFD can be calculated by the following equation.

APFD = 1− T F1 + . . .+T Fm

nm
+

1
2n

(3.1)

The APFD value is a real number between 0 and 1 whose higher val-

ues indicate higher priority. n is the number of test cases, m is the number

of defects found through testing, T is a set of test cases, and T Fi is the test

case that identified the i-th defect in test case execution.

The definition of the problem put together , ∀T ′′ ∈PT ,T ′′ ̸=T ′ : APFD(T ′)≥

APFD(T ′′) which is like T ′ ∈ PT is to find a test case priority T ′the objec-

tive function can be defined as Equation 3.2.

g = maximize(APFD) (3.2)

For instance, if APFD value of a test case set is 0.540 and is increased to

0.944 by applying the test case priority method, the test case priority gets

12

improved by 1.7 times when it is interpreted in terms of APFD value. Look-

ing at the defect density graph, the effect can be seen more clearly.

Figure 3: APFD = 0.540 , APFD = 0.944

The horizontal axis of figure 3 shows the order of test execution, and

the vertical axis represents the density of test results success and failure.

The blue line indicates the distribution of pass, and the red line shows the

distribution of fail.

Especially, when checking the red line’s density of fail, the higher

APFD value, 0.944, the higher the defect density at the early stage of the

test, and the effect of early detection (Shift-Left) can be confirmed.

3.2 Data Collection

For field test performance records for use in this research, API (Ap-

plication Programming Interface) testing execution records were collected

13

among the regression tests of the continuous integration environment of we-

bOS operating system development.

This research constructs a model that predicts results of tests that have

not yet been performed by extracting 9 data feature values, including data

from the previous the last five tests. How a model that predicts test case

priorities through data feature values gets selected will be described in the

next chapter.

3.3 Model Selection

This research selects a learning model that can predict test case prior-

ities. As a result of confirming the features of the data, using 9 input vari-

ables, the following test results for each test case predict success/fail, which

is categorical data, so rather a binary classification model can be consid-

ered..

On the other hand, the purpose of the research is to determine the rank-

ing [20], which is an important goal, so Ordinal Regression [21] [22] model

will be applied rather than the binary classification model. Ordinal regres-

sion, which is also known as ordinal classification in statistics, is a type

of regression analysis used to predict variables whose values exist on an

arbitrary scale, where only the relative order among categorical outcomes

matters. Because of this characteristic, ordinal regression is also called rank

learning [23].

That is, test cases are prioritized by ranking from the largest value to

14

Table 6: Selection of regression model

List of selected models

1) Logistic Regression [24]
2) Linear Regression
3) RandomForest Regression
4) XGBoost (eXtreme Gradient Boosting) Regression [25]
5) LGBM (Light Gradient Boosting Machines) Regression
6) ANN Regression

the smallest value, with the value between 0 and 1 as the relative order value

that predicts the fail of the next test case result, using a regression model.

Verification of the test case priorities determined in this way is determined

by calculating APFD value.

In this research, among the following machine learning models, re-

gression models and artificial neural network model are selected and ex-

periments are performed in order to select the model that exhibits the best

performance.

The performance evaluation index of the model is the MSE (Mean

Squared Error) [26] which refers to the average of the squares of the differ-

ence between the actual value(y) and the predicted value(ŷ) gets calculated,

and the formula is the following:

1
n

n∑
i=1

(yi − ŷi)
2 (3.3)

The main setting parameters of the selected models were applied to the

experiment as follows. In case of a machine learning model, only changes

made to the default settings are shown. Also, the weight values for the test

15

case results of the last 5 cycle test results with the heuristic method to be

compared will be described as well.

Table 7: Information on setting parameters of the model

Model name Hyper parameters Value

0) Heuristic Method Weights previous 5-cycle [0.05,0.1,0.15,0.2,0.5]

1) Logistic Regression Penalty ㅣ2
Solver liblinear

Tol 0.1
Max iter 1000

Class weight balanced

2) Linear Regression All Default

3) RandomForest Regression n estimators 1000

4) XGBoost Regression n estimators 1000
booster gbtree

max depth 7

5) LGBM Regression All Default

6) ANN Initialization Xavier (Default) [27]
Activation Function Mish [28]

Hidden Layer 1 10 neurons
Hidden Layer 2 20 neurons
Hidden Layer 3 15 neurons
Training Epochs 30
Loss Function Mean Sqaured Error [26]

Optimizer Adam [29]
Learning Rate 0.001

Total Parameters 651
Trainable Parameters 651

16

Chapter 4

Experiment and Evaluation

4.1 Experiment Overview

Setting up of design and environment for the experiment before con-

ducting an experiment is required. Test execution history data in the field

were collected, and a data set was selected to be put in learning. The test

case priorities extracted through the existing heuristic methodology are to

be proved in this research and the priorities extracted through learning us-

ing machine learning and artificial neural network are compared in order to

evaluate each performance. Subsequently, the evaluation is proceeded with

APFD value, like the defined objective function. Then, additional experi-

ments that require confirmation may be performed after the review of the

experimental results.

4.2 Experiment Environment Configuration

The configuration of the experimental environment in this research en-

tails a pre-processing process for learning models by extracting features

from test history data collected in the field, and detailed setting informa-

tion of each model must be confirmed as well. In terms of learning, the

prediction of pass or fail of this test case is performed by ordinal regression,

17

and the test case prioritization is sorted in the order of the largest predicted

value. Performance evaluation compares and evaluates test case priorities

extracted by heuristic methodology and sequential regression of selected

models based on APFD values, and selects the model with the best perfor-

mance among given models.

Table 8: Overview of test history record data set

Data set Information API Testing (Device-A) API Testing (Device-B)

Test Cases 603 492
Test Executions 25,950 23,508
Failed Test Cases 418 97
Failed Test Executions(ratio) 0.016 0.004

Collection Period 22.04.11 - 05.18 22.07.25 - 09.13

There are many data features in the test execution history data, yet

the following features were extracted and selected from the test record data

stored in the field.

Table 9: List of experiment data features

Features Description

1) Duration Execution time for test case
2) Test Cycle Cycle which test case executed
3) Execute Status (E5) Result of previous 5-th cycle
4) Execute Status (E4) Result of previous 4-th cycle
5) Execute Status (E3) Result of previous 3-th cycle
6) Execute Status (E2) Result of previous 2-th cycle
7) Execute Status (E1) Result of previous 1-th cycle
8) Status Changes Value has been changed up to the previous cycles
9) Last Run Last test case execution time

In the Research, 9 data features are extracted and used for learning,

including execution time, test cycle, record of the results of the previous 5

test cases, the number of test case changes during the previous cycles, and

18

the time when the last test case was executed. Such pre-processed data was

trained to predict the test results of this round. That is, by learning the result

data of the previous 5 test cycles, the priority of the test cases of this round

of test is determined in the order of the highest predicted fail value in the

current test.

The experiment proceeds with the following procedure.

Figure 4: Experiment/Evaluation steps

This research collects test history data stored in the software continu-

ous integration system(a) and extracts features from data to determine pri-

orities(b). To compare the experimental results and priority performance

results, the heuristic method(c) applied in previous studies and the proce-

dure(d) currently being performed in the field are made ready. Machine

19

learning/artificial neural network models are selected(e), and the rank of

modified test cases is extracted(g) by learning with the rank regression method(f).

Test case priority performance results are compared by evaluating (c), (d),

and (g) with APFD(h). In addition, we analyze which data features may

affect the results using the SHAP (Shapley Additive Explanations) [30]

method (i).

4.3 Experiment Result and Analysis

The research collected data sets which are applied to two devices of

API testing in practice. Experiments were performed identically on both

data sets. For each data set, the test case priorities established by ordinal re-

gression were derived using the models, and the test case priorities currently

being performed in the field were derived through the APFD value and the

result derived using a heuristic method are compared and analyzed.

4.3.1 Device-A Experiment

The MSE values are compared to evaluate the performance of the model

trained through the collected data, and then the APFD value results are com-

pared to verify the performance of test case priorities calculated from each

model. The performance change can be intuitively interpreted through the

numerical results of the APFD value and the graph. Finally, SHAP analysis

is checked to analyze the influence of data features on performance results.

20

4.3.1.1 MSE Result: Device-A

Comparing the performance of prediction models through data learning

with MSE values, excluding the test case rankings and heuristic methods

applied to the current practice that cannot be measured, showed that the

LGBM regression model with the lowest value predicted the best with slight

difference with others.

Table 11: MSE Result: Device-A

Model name MSE

Original Test case list N/A

Heuristic Method N/A

Logistic Regression 0.0343

Linear Regression 0.0079

RandomForest Regression 0.0072

XGBoost Regression 0.0065

LGBM Regression 0.0062

ANN 0.0079

Figure 5: MSE Result: Device-A

21

4.3.1.2 APFD Result: Device-A

As a result of predicting by rank learning with each model, the LGBM

Regression model shows the best result: it exhibits about 2.85 times higher

than the result of the original test list used in the field, and 1.66 times higher

than the existing heuristic methodology.

Table 12: APFD Result: Device-A

Model name APFD (%)

Original Test case list 0.3367

Heuristic Method 0.5797

Logistic Regression 0.8891

Linear Regression 0.8585

RandomForest Regression 0.9570

XGBoost Regression 0.9389

LGBM Regression 0.9603

ANN 0.9124

Figure 6: APFD Result: Device-A

22

4.3.1.3 APFD Result: Device-A Graph

In the graph of APFD result, the horizontal axis refers to the test exe-

cution order, and the vertical axis represents the density of test results pass

and fail. Especially, the red line that shows the density of fail should be

noted. It can be seen that as the APFD value increases, the fail density

moves left, which means that the density of immediate defect detection ac-

cording to the order of test execution is high, which can be interpreted as

an early defect detection effect. These three models of machine learning

(LGBM/RandomForest/XGBoost) show similarly good results in the graph.

Figure 7: APFD Result: Device-A Graph

23

4.3.1.4 Feature Impact Analysis: Device-A

The SHAP [30] method is applied to check the impact of specific data

features on the results predicted by the model. In the API Testing (Device-

A) experiment, at two (RandomForest/LGBM) models with the best APFD

values, it is confirmed that which data features affect the test results by using

SHAP.

Figure 8: Feature Impact Analysis: Device-A graph

In the SHAP analysis of the two models, it was found that the data fea-

ture that has the most impact on the prediction result is ’Status Changes/Last

Run’.

24

The calculation of SHAP is defined as the below equation. It is to de-

termine the degree of impacts by calculating how much it contributes to the

result when there is no specific variable ′i′.

Shapley Value function ϕi(f ,x) = Shapley Value of a specific feature i.

ϕi(f ,x) =
∑

S⊆F |i

|S|!(F −|S|−1)!
F!

[fS∪i)(xS ∪i − fs (xs))] (4.1)

• f : Prediction model,

• F : The entire set of variables,

• S : Subset without ’i’th variable,

• fS ∪i (xS∪i)) : Predicted value including ’i’th variable, and

• fS(xS) : Predicted value without ’i’th variable.

4.3.2 Device-B Experiment

As in the Device-A experiment, performance comparison evaluation is

performed with MSE and APFD values, and the influence of data character-

istics is analyzed using SHAP.

4.3.2.1 MSE Result: Device-B

In the same way as Device-A, it can be seen that the Random Forest

Regression model with the lowest value predicted the result with slightly

better performance than that of the other models.

25

Table 13: MSE Result: Device-B

Model name MSE

Original Test case list N/A

Heuristic Method N/A

Logistic Regression 0.0043

Linear Regression 0.0010

RandomForest Regression 0.0007

XGBoost Regression 0.0009

LGBM Regression 0.0011

ANN 0.0021

Figure 9: MSE Result: Device-B

4.3.2.2 APFD Result: Device-B

As per the Device-A results, the LGBM Regression model exhibits the

best results. This is a value improved by about 28.85 times compared to that

of the original test list used in practice, and a result improved by 1.80 times

compared to the existing heuristic method.

26

Table 14: APFD Result: Device-B

Model name APFD (%)

Original Test case list 0.0344

Heuristic Method 0.5528

Logistic Regression 0.9429

Linear Regression 0.9146

RandomForest Regression 0.9647

XGBoost Regression 0.9831

LGBM Regression 0.9924

ANN 0.9308

Figure 10: APFD Result: Device-B

4.3.2.3 APFD Result: Device-B graph

In case of Device-B, it is observed that the fail density of the red line

increases rapidly when the test is finished in the original test case list result

graph. From this, it can be confirmed that the APFD value is remarkably low.

27

The graph below shows similarly good results for the three models

(LGBM/XGBoost/RandomForest) of this machine learning as in Device-A.

Figure 11: APFD Result: Device-B graph

4.3.2.4 Feature Impact Analysis: Device-B

As in the Device-A experiment, SHAP is used in the two (LGBM/XGBoost)

models with the best APFD values to determine which values among the

data features affect the results.

In the SHAP analysis of the two models, as the two data features 1 that

have the most influence on the prediction results,

28

Figure 12: Feature Impact Analysis: Device-B graph

4.3.3 Experiment Result Analysis

It can be confirmed that the number of tests performed/number of failed

test cases is reduced compared to the original amount of data when checking

the data set applied to the experiment. For instance, it can be confirmed that

the total number of tests executed by Device-A was 25,950, but the number

applied to the experiment decreased to 25,387

Table 16 is the summary of the performance of models that extract

test case priorities through experiments in this research. The performance

29

Table 15: Experiment data set

Device-A Device-B

Data set Information Original Experiment Original Experiment

Test Cases 603 603 492 492
Test Executions 25,950 25,387 23,508 22,146

Failed Test Cases 418 391 97 97
Failed Test Executions(ratio) 0.016 0.015 0.004 0.004

of the model was confirmed with the MSE value, and the quality verifica-

tion for the test case prioritization was calculated using the APFD value.

In particular, in the process of predicting results in Device-A/Device-B, the

very fact that the most important data feature is quite different as Status

Changes/E5 shows that valid results are obtained from completely different

features unlike the existing test methodology that applies weight to previous

test records.

30

Ta
bl

e
16

:E
xp

er
im

en
ts

re
su

lt
su

m
m

ar
y

A
PI

Te
st

in
g

(D
ev

ic
e-

A
)

A
PI

Te
st

in
g

(D
ev

ic
e-

B
)

E
xp

er
im

en
tR

es
ul

t
M

SE
A

PF
D

Im
pr

ov
em

en
t

Fe
at

ur
e

M
SE

A
PF

D
Im

pr
ov

em
en

t
Fe

at
ur

e

O
ri

gi
na

lT
es

tc
as

e
lis

t
N

/A
0.

33
67

0
N

/A
N

/A
0.

03
44

0
N

/A
H

eu
ri

st
ic

M
et

ho
d

N
/A

0.
57

97
0.

24
31

N
/A

N
/A

0.
55

28
0.

51
84

N
/A

L
og

is
tic

R
eg

re
ss

io
n

0.
03

43
0.

88
92

0.
55

25
C

yc
le

0.
00

43
0.

94
29

0.
90

85
L

as
tR

un
L

in
ea

rR
eg

re
ss

io
n

0.
00

79
0.

85
85

0.
52

19
St

at
us

C
ha

ng
es

0.
00

10
0.

91
46

0.
88

03
E

5
A

N
N

0.
00

79
0.

91
24

0.
57

57
N

/A
0.

00
21

0.
93

08
0.

89
64

N
/A

X
G

B
oo

st
R

eg
re

ss
io

n
0.

00
65

0.
93

89
0.

60
22

St
at

us
C

ha
ng

es
0.

00
09

0.
98

31
0.

94
88

E
5

R
an

do
m

Fo
re

st
R

eg
re

ss
io

n
0.

00
72

0.
95

70
0.

62
04

St
at

us
C

ha
ng

es
0.

00
07

0.
96

47
0.

93
03

E
5

L
G

B
M

R
eg

re
ss

io
n

0.
00

62
0.

96
04

0.
62

37
St

at
us

C
ha

ng
es

0.
00

11
0.

99
24

0.
95

81
E

5

31

4.3.4 Further Analysis of Experimental Data

The test history data used in this research is a regression test performed

repeatedly in a software continuous integration environment, and the quality

level is stabilized. According to the test results, the number of failed cases

(1.6%), compared to the number of successful cases (98.4%), are markedly

less.

In this case, data imbalance [31] issue occurs as a result of the test

case. Looking at the data set information of Device-A, the number of failed

cases out of the total test results is at the level of 1.6%, which is significantly

smaller than that of the successful results.

Analysis on whether there is an effect on the test results for data im-

balance is further conducted. Firstly, in order to improve data imbalance,

SMOTE (Synthetic Minority Oversampling Technique) [32] is applied to

increase the number of fail results with a small number and reduce the num-

ber of pass results at random sampling and construct the synthesized data

set. As a result, the number of pass and fail results is the same.

Table 17: Data Augmentation by SMOTE

Data set Information API Testing (Device-A) Synthetic Data Set

Test Cases 603 603
Test Executions 25,950 49,992
Failed Test Cases 418 24,996
Failed Test Executions(ratio) 0.016 0.5

After balancing the success and fail data, the MSE and APFD values

are calculated through the same experiment and compared with the previous

32

experimental results.

4.3.4.1 MSE Result: SMOTE

In the same way as Device-A, the result shows that XGBoost Regres-

sion model with the lowest value shows slightly better prediction perfor-

mance. However, the absolute value is about 10 times larger than the pre-

vious result, and this translates into the decreased the prediction accuracy;

how this phenomenon affected the APFD value will be further examined.

Table 18: MSE Result: SMOTE

Model name MSE

Logistic Regression 0.3682

Linear Regression 0.1395

RandomForest Regression 0.0862

XGBoost Regression 0.0773

LGBM Regression 0.0784

ANN 0.1088

Figure 13: MSE Result: SMOTE

33

4.3.4.2 APFD Result: SMOTE

As for the APFD value, XGB Regression model shows the best results.

This is about 2.88 times better than the results of the Original Test list and

1.23 times better than the heuristic method. Even if the methodology of this

research balances it out, it can be inferred that the effectiveness is similar to

that of the existing tests.

Table 19: APFD Result: SMOTE

Model name APFD (%)

Original Test case list 0.2526

Heuristic Method 0.5896

Logistic Regression 0.6851

Linear Regression 0.6799

RandomForest Regression 0.7215

XGBoost Regression 0.7265

LGBM Regression 0.7254

ANN 0.7166

Figure 14: APFD Result: SMOTE

34

4.3.4.3 APFD Result: SMOTE graph

In a similar manner, in the result graph of APFD, the horizontal axis

represents the test execution order, and the vertical axis represents the den-

sity of test results pass and fail. It also shows that as the APFD value in-

creases, the density of fail shifts to the left (Shift-Left). Looking at the graph

after balancing out the data, it is clear that the case of fail is performed first,

and the case of pass is performed next, so it can be seen that the effect

of early defect detection, which is the purpose of this research, has been

applied equally. As in the experiment performed on the graph, the three

machine learning models (LGBM/RandomForest/XGBoost) show similarly

good results.

35

4.3.4.4 Feature Impact Analysis: SMOTE

As in the Device-A experiment, in the two (LGBM/XGBoost) models

with the best APFD values, SHAP is applied to check which values of the

data features affect the results.

Figure 15: Feature Impact Analysis: SMOTE

In the SHAP analysis of the two models, ’duration’ in Table1 acts

greatly as the data that has the most influence on the prediction result, but

in the left graph, there are many distributions below ’0’, indicating that it is

hard to say it has a positive impact. Rather, the 3rd previous cycle record(E2)

36

can be interpreted as the most influential feature.

Through this additional experiment, the results of the experiment in the

field data with severe data imbalance and the result after balancing the data

by applying SMOTE seems to have the same tendency, so it can be seen that

the applied method of the research is effective in test case priority.

On the other hand, in the sense that the application of regression test record

data repeated for a long time in the software continuous integration environ-

ment to the research, in reality, the situation in which the number of failed

results is significantly smaller than the number of pass results in existing

experiments seems to be more closely related to the problem situation.

4.3.5 Further Analysis on Experimental History Length

Test record data used in this research took the history of the previous

five cycles. The reason for proceeding with the length of the test history of

five cycles was determined through the following experiment:

Using Device-A data, the length of test history was distinguished into

7 steps 2(H2), 3(H3), 5(H5), 7(H7), 10(H10), 13(H13), and 20(H20); then,

experiments were performed with the same settings, and the results were

confirmed as shown in Table 20 and Figure 16.

37

Ta
bl

e
20

:A
na

ly
si

s
on

E
xp

er
im

en
ta

lH
is

to
ry

L
en

gt
h

M
od

el
na

m
e

H
2

H
3

H
5

H
7

H
10

H
13

H
20

H
eu

ri
st

ic
M

et
ho

d
0.

52
04

0.
58

43
0.

57
97

0.
62

24
0.

57
08

0.
64

72
0.

55
15

L
og

is
tic

R
eg

re
ss

io
n

0.
79

16
0.

84
54

0.
88

92
0.

89
90

0.
92

12
0.

93
62

0.
94

41

L
in

ea
rR

eg
re

ss
io

n
0.

82
65

0.
86

58
0.

85
85

0.
86

58
0.

92
20

0.
94

68
0.

96
00

R
an

do
m

Fo
re

st
R

eg
re

ss
io

n
0.

90
32

0.
91

58
0.

95
70

0.
94

68
0.

95
86

0.
95

33
0.

95
60

X
G

B
oo

st
R

eg
re

ss
io

n
0.

90
77

0.
92

81
0.

93
89

0.
94

26
0.

95
95

0.
96

29
0.

96
25

L
G

B
M

R
eg

re
ss

io
n

0.
93

42
0.

94
73

0.
96

04
0.

96
51

0.
97

57
0.

98
07

0.
98

78

A
N

N
0.

80
47

0.
87

08
0.

91
94

0.
92

46
0.

93
37

0.
95

69
0.

96
59

38

Figure 16: Analysis on Experimental History Length Graph

Looking at the results, it can be inferred that the longer the test his-

tory length is, the higher the APFD. In other words, it can be seen that the

20(H20) shows better performance than the 5(H5) length in this research.

Looking at the APFD value, it can be concluded that the longer the test his-

tory length is, the better the performance.

However, it is necessary to review the following results together: it is the

total number of test cases and the number of failed test cases according to

the test history length. As can be seen in Tables 21 and 17, it can be seen

that the quantity decreases rapidly after the 5(H5).

When considering performance, the number of total test cases and

failed test cases can be deemed important because APFD is the variable

used to calculate Equation 3.1. It was confirmed that as the number of two

39

test cases decreased, the number of test cases to re-prioritize decreased. The

5(H5), which is the history order before the section where the number of

test cases rapidly decreases, was applied to this research.

40

Ta
bl

e
21

:N
um

be
ro

fT
ot

al
Fa

ile
d

Te
st

C
as

es
ac

co
rd

in
g

to
Te

st
H

is
to

ry
le

ng
th

H
0

H
2

H
3

H
5

H
7

H
10

H
13

H
20

N
um

be
ro

fT
ot

al
Te

st
ca

se
25

,9
50

25
,7

24
25

,5
39

25
,3

87
24

,2
79

22
,6

56
21

,0
73

17
,5

98

N
um

be
ro

fF
ai

le
d

Te
st

ca
se

39
5

39
5

39
3

39
1

36
7

32
7

29
6

23
2

Fi
gu

re
17

:N
um

be
ro

fT
ot

al
Fa

ile
d

Te
st

C
as

es
gr

ap
h

41

Chapter 5

Conclusion

This research defined the problem considering the situation in practice–

how to detect defects early while conducting repeated regression tests in

the software continuous integration environment. Also, features were ex-

tracted from previous studies using the accumulated test performance data,

and test cases were ranked by rank-learning through machine learning and

artificial neural network models, and results were compared through experi-

ments on test case priorities. As a result of the experiment using two device

(A/B) case data of API Testing performed in the existing collaboration, the

APFD value compared to the priority used in the existing work was 2.85

times (Device-A) / 28.85 times (Device-B), compared to the related heuris-

tic research methodology, 1.66 times (Device-A) / 1.80 times (Device-B)

improved results were confirmed.

Through the experimental results of this research, when the LGBM

regression model was applied while running machine learning, it was con-

firmed that the APFD value was higher than that of the existing test case

ranking and heuristic methodology in both devices. This shows that defects

can be detected early whenever repetitive tests are performed in practice by

determining and applying the test record data through machine learning to

prioritize each test case without human intervention.

42

The data, in terms of the software development process stage, is a his-

tory of the system test execution, which is the final stage before the product

gets deployed. In determining test case priorities, there are many data with

various features during the development life cycle other than test history

data.

Figure 18: Data features for test case prioritization

On top of test history, although there are various records to be used

as data features, such as software complexity, developer records, test cov-

erage, and expert settings, these were not applied as in practice only test

execution data would be available for the testing departments. This part will

be expanded through future assignments to study improvement models that

combine various data features.

The improvement my research brought was confirmed through experi-

ments, yet there are various data features that require additional application

as shown in Figure 18 in the field. If the access/usage rights to various data

can be shared through among different parts in business organizations, it

will be possible to construct a model for each data feature and continue

43

to search for improvements in the direction of evolution and development

into an ensemble structure in the future. Moreover, in connection with test

case prioritization, test cases that do not need to be executed are extracted

through test case selection [33] which is intended to lead to research that

continuously improves the efficiency of test execution time and resources.

44

Bibliography

[1] P. M. Duvall, S. Matyas, and A. Glover, Continuous integration: im-

proving software quality and reducing risk. Pearson Education, 2007.

[2] D. Marijan, A. Gotlieb, and S. Sen, “Test case prioritization for con-

tinuous regression testing: An industrial case study,” in 2013 IEEE In-

ternational Conference on Software Maintenance, pp. 540–543, IEEE,

2013.

[3] S. Elbaum, G. Rothermel, and J. Penix, “Techniques for improving re-

gression testing in continuous integration development environments,”

in Proceedings of the 22nd ACM SIGSOFT International Symposium

on Foundations of Software Engineering, pp. 235–245, 2014.

[4] J. Anderson, S. Salem, and H. Do, “Striving for failure: an industrial

case study about test failure prediction,” in 2015 IEEE/ACM 37th IEEE

International Conference on Software Engineering, vol. 2, pp. 49–58,

IEEE, 2015.

[5] S. Yoo and M. Harman, “Regression testing minimization, selection

and prioritization: a survey,” Software testing, verification and relia-

bility, vol. 22, no. 2, pp. 67–120, 2012.

[6] J.-M. Kim and A. Porter, “A history-based test prioritization technique

for regression testing in resource constrained environments,” in Pro-

ceedings of the 24th international conference on software engineering,

pp. 119–129, 2002.

[7] H. Jahan, Z. Feng, S. Mahmud, and P. Dong, “Version specific test case

prioritization approach based on artificial neural network,” Journal of

Intelligent & Fuzzy Systems, vol. 36, no. 6, pp. 6181–6194, 2019.

[8] T. Avgerinos, A. Rebert, and D. Brumley, “Methods and systems for

automatically testing software,” Apr. 11 2017. US Patent 9,619,375.

45

[9] D. Marijan, M. Liaaen, and S. Sen, “Devops improvements for reduced

cycle times with integrated test optimizations for continuous integra-

tion,” in 2018 IEEE 42nd annual computer software and applications

conference (COMPSAC), vol. 1, pp. 22–27, IEEE, 2018.

[10] A. Shi, P. Zhao, and D. Marinov, “Understanding and improving re-

gression test selection in continuous integration,” in 2019 IEEE 30th

International Symposium on Software Reliability Engineering (IS-

SRE), pp. 228–238, IEEE, 2019.

[11] C. Kaner, “Improving the maintainability of automated test suites,” in

International Software Quality Week, 1997.

[12] Y. Zhu, E. Shihab, and P. C. Rigby, “Test re-prioritization in contin-

uous testing environments,” in 2018 IEEE International Conference

on Software Maintenance and Evolution (ICSME), pp. 69–79, IEEE,

2018.

[13] R. Pan, M. Bagherzadeh, T. A. Ghaleb, and L. Briand, “Test case se-

lection and prioritization using machine learning: a systematic litera-

ture review,” Empirical Software Engineering, vol. 27, no. 2, pp. 1–43,

2022.

[14] A. Haghighatkhah, M. Mäntylä, M. Oivo, and P. Kuvaja, “Test prior-

itization in continuous integration environments,” Journal of Systems

and Software, vol. 146, pp. 80–98, 2018.

[15] Z. Li, M. Harman, and R. M. Hierons, “Search algorithms for regres-

sion test case prioritization,” IEEE Transactions on software engineer-

ing, vol. 33, no. 4, pp. 225–237, 2007.

[16] S. Mirarab and L. Tahvildari, “An empirical study on bayesian

network-based approach for test case prioritization,” in 2008 1st Inter-

national Conference on Software Testing, Verification, and Validation,

pp. 278–287, IEEE, 2008.

46

[17] A. Sharif, D. Marijan, and M. Liaaen, “Deeporder: Deep learning for

test case prioritization in continuous integration testing,”

[18] J. Kim, H. Jeong, and E. Lee, “Failure history data-based test case

prioritization for effective regression test,” in Proceedings of the Sym-

posium on Applied Computing, pp. 1409–1415, 2017.

[19] S. Omri, Quality-Aware Learning to Prioritize Test Cases. PhD thesis,

Karlsruhe Institute of Technology, Germany, 2022.

[20] H. Li, “Learning to rank for information retrieval and natural lan-

guage processing,” Synthesis lectures on human language technolo-

gies, vol. 7, no. 3, pp. 1–121, 2014.

[21] P. A. Gutiérrez, M. Perez-Ortiz, J. Sanchez-Monedero, F. Fernandez-

Navarro, and C. Hervas-Martinez, “Ordinal regression methods: sur-

vey and experimental study,” IEEE Transactions on Knowledge and

Data Engineering, vol. 28, no. 1, pp. 127–146, 2015.

[22] P. McCullagh, “Regression models for ordinal data,” Journal of the

Royal Statistical Society: Series B (Methodological), vol. 42, no. 2,

pp. 109–127, 1980.

[23] A. Shashua and A. Levin, “Ranking with large margin principle:

Two approaches,” Advances in neural information processing systems,

vol. 15, 2002.

[24] T. G. Nick and K. M. Campbell, “Logistic regression,” Topics in bio-

statistics, pp. 273–301, 2007.

[25] J. Chen, Y. Lou, L. Zhang, J. Zhou, X. Wang, D. Hao, and L. Zhang,

“Optimizing test prioritization via test distribution analysis,” in Pro-

ceedings of the 2018 26th ACM Joint Meeting on European Soft-

ware Engineering Conference and Symposium on the Foundations

of Software Engineering, ESEC/FSE 2018, (New York, NY, USA),

p. 656–667, Association for Computing Machinery, 2018.

47

[26] K. Das, J. Jiang, and J. Rao, “Mean squared error of empirical predic-

tor,” The Annals of Statistics, vol. 32, no. 2, pp. 818–840, 2004.

[27] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural

networks,” in Proceedings of the fourteenth international conference

on artificial intelligence and statistics, pp. 315–323, JMLR Workshop

and Conference Proceedings, 2011.

[28] D. Misra, “Mish: A self regularized non-monotonic neural activation

function,” arXiv preprint arXiv:1908.08681, vol. 4, no. 2, pp. 10–

48550, 2019.

[29] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-

tion,” arXiv preprint arXiv:1412.6980, 2014.

[30] S. M. Lundberg and S.-I. Lee, “A unified approach to interpreting

model predictions,” Advances in neural information processing sys-

tems, vol. 30, 2017.

[31] H. He and E. A. Garcia, “Learning from imbalanced data,” IEEE

Transactions on knowledge and data engineering, vol. 21, no. 9,

pp. 1263–1284, 2009.

[32] L. Torgo, R. P. Ribeiro, B. Pfahringer, and P. Branco, “Smote for re-

gression,” in Portuguese conference on artificial intelligence, pp. 378–

389, Springer, 2013.

[33] Á. Beszédes, T. Gergely, L. Schrettner, J. Jász, L. Langó, and

T. Gyimóthy, “Code coverage-based regression test selection and pri-

oritization in webkit,” in 2012 28th IEEE international conference on

software maintenance (ICSM), pp. 46–55, IEEE, 2012.

48

Abstract

Early Defects Detection using Test
Cases Prioritization in Iterative
Software Development Process

Jaesung HWANG

Graduate School of Practical Engineering

Seoul National University

현대의산업현장에서소프트웨어를개발하는데에는시간이갈수록큰규

모의 지속적 통합(Continuous Integration) 환경을 적용하고 있다. 이러한

환경은높은개발생산성을보장하는것이지만,동시에테스트수행하는

양에 크게 의존적이다. 가능한한 빨리 시험 차수(Test Cycle)을 수행하여

개발자에게결과를피드백해주기위한환경이지만,점차적으로시험사례

(Test Case)가 많아지면, 전체 소프트웨어 개발공정은느리고 비효율적이

된다.

소프트웨어시험의수행효율성을개선하기위해서본연구에서는반

복수행되어축적된시험수행기록을기반으로기계학습(Machine Learn-

ing)기법을이용하여 학습하여 다음 시험 수행에서 실패할 가능성이 높

은 시험사례를 도출한다. 우선 수행할 수 있는 시험사례우선순위화(Test

Case prioritization)[1]방법을 적용하여, 조기에 결함을 탐지하여 개발자

들에게개선해야할실패한시험사례를좀더빠른피드백으로제공,즉공

정 수행을 앞당기는 효과(Shift-Left)를 통해 소프트웨어 개발공정의 효

49

율성을높히고자하였다.시험사례우선순위화가잘적용되었는지는실패

한시험사례의가중평균값(Average Percentages of Fail Detection, APFD)

값을측정하여확인하였다.

현재 사용되는 산업 현장의 시험사례를 이용하여 실험을 진행하였

다. 전통적으로 사용되었던 휴리스틱 기법의 시험사례우선순위 전략에

비해본연구에서제시하는시험수행결과기록을학습한기계학습의시험

사례우선순위를 APFD값으로 측정한 결과, 기존 기법에 비해 약 1.7배가

개선된것을확인하였다

Keywords : Fault detection, Test case prioritization, Regression testing,

Machine Learning

Student Number : 2020-28114

50

	I. Introduction
	1.1 Background of Research
	1.2 Scope of Research
	1.3 Composition of Paper

	II. Related Works
	2.1 Test Case Prioritization
	2.2 Continuous Integration of Software
	2.3 Test data features of based ML
	2.4 Related Works

	III. Methodology
	3.1 Problem Definition
	3.2 Data Collection
	3.3 Model Selection

	IV. Experiment and Evaluation
	4.1 Experiment Overview
	4.2 Experiment Environment Configuration
	4.3 Experiment Result and Analysis
	4.3.1 Device-A Experiment
	4.3.2 Device-B Experiment
	4.3.3 Experiment Result Analysis
	4.3.4 Further Analysis of Experimental Data
	4.3.5 Further Analysis on Experimental History Length

	V. Conclusion
	Bibliography
	Abstract

<startpage>10
I. Introduction 1
 1.1 Background of Research 1
 1.2 Scope of Research 2
 1.3 Composition of Paper 3
II. Related Works 5
 2.1 Test Case Prioritization 5
 2.2 Continuous Integration of Software 6
 2.3 Test data features of based ML 7
 2.4 Related Works 8
III. Methodology 11
 3.1 Problem Definition 11
 3.2 Data Collection 13
 3.3 Model Selection 14
IV. Experiment and Evaluation 17
 4.1 Experiment Overview 17
 4.2 Experiment Environment Configuration 17
 4.3 Experiment Result and Analysis 20
 4.3.1 Device-A Experiment 20
 4.3.2 Device-B Experiment 25
 4.3.3 Experiment Result Analysis 29
 4.3.4 Further Analysis of Experimental Data 32
 4.3.5 Further Analysis on Experimental History Length 37
V. Conclusion 42
Bibliography 45
Abstract 49
</body>

