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Abstract 

 
Patches are recognized as ecotones as transition zone between 

adjacent patches that exhibit heterogeneity due to differences in 

vegetation conditions. Ecotones play an important role in 

environmental ecology by providing high biodiversity, ecosystem 

connectivity, and diverse habitat environments. Since South Korea 

has experienced spatial changes in patches due to rapid 

industrialization and urbanization, preservation of ecotone depends 

on confirming the impact of human activities on the natural 

environment. Therefore, in order to devise sustainable management 

measures, we tried to monitor the ecotone vegetation dynamics that 

change due to urbanization and evaluate the extent of impact. This 

study proposed an impact assessment tool to predict and quantify the 

range that changes under the influence of urban development projects 

according to the set peripheral distances (25, 50 m, and 100 m). 

Normalized Difference Vegetation Index (NDVI) and Vegetation 

Health Index (VHI) were selected as indices for evaluating the main 

effects, as well as Landsat and Sentinel-based satellite imagery data 

were calculated through the Google Earth Engine platform (GEE). 

Land cover maps provided by the Environmental Spatial Information 

Service as well as average temperature and precipitation data of the 

Korea Meteorological Administration were constructed through 

ArcGIS 10.5. National inventory data of the Environmental Impact 

Assessment Information Support System (EIASS) were processed 

and applied as variables. The data analysis method evaluated the 

vegetation distribution patterns of the research sites using the 



 

 ii 

Artificial Neural Network (ANN) and Random Forest (RF) machine 

learning algorithms, and it was set to predict the range of influence 

on the vegetation index according to the ecotone multiple buffer size. 

As a result of the analysis, it was confirmed that NDVI was mainly 

concentrated on high values after the urban development project, 

while VHI tended to have a high pre-project value, which turned to 

the opposite trend. This can be interpreted as a significant result of 

the establish of new urban green spaces in accordance with the 

provisions of the Act on the Expansion, Management, and Creation of 

Urban Green Areas for Urban Landscape Planning. As a result of the 

performance of the machine learning models, the RF model showed 

the optimal predictive performance in both vegetation indices and 

along the ecotone distances. The modeled probability heatmap shows 

significant results at 90% confidence level (p<10%). Moreover, 

significant results were obtained when comparing the observed and 

predicted values visualized using the assessment tool. Both NDVI and 

VHI showed the tendency of the impact of the target site due to urban 

development to reach a maximum distance of 50 m. This proposal of 

quantitative evaluation tools is meaningful in that it may emphasize 

the decisive role of environmental impact assessment in terms of 

vegetation management by providing information on regional 

ecological restoration. It is expected that the extent of impact on the 

vegetation environment by urbanization can be identified to support 

the project plan while minimizing the loss of vegetation cover. 

 

Keyword: Environmental impact assessment, Land cover change, 

Vegetation index, Edge effect, Machine learning, Remote sensing 

Student Number: 2021-26769 
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Chapter 1. Introduction 
 

 

1.1. Study Background 
 

 Patches are defined as two or more habitat type boundaries, and 

transition zone between adjacent patches that exhibit heterogeneity 

due to differences in vegetation conditions are recognized as 

ecotones (Holland, 1988). The edges generally have different 

species compositions and structures compared to the innermost area; 

a phenomenon known as the edge effect (Fraver, 1994). The 

ecotones include much more diverse organisms, conjoining distinct 

habitats and increase species richness, diversity and abundance in 

various taxonomic groups, such as vegetations (Łuczaj & Sadowska, 

1997). Besides, they serve as a bridge of community to the flow from 

one group to another as well as function as buffer zones to protect 

the periphery of ecosystems from natural and potential disasters. 

Therefore, Ecotone is essential in environmental and ecological 

research.  

Urban patches fragmented into small in size, with edges owing to 

the anthropogenic disturbances as well as natural changes in the 

environment (McKinney, 2006). As rapid urbanization, the more 

accelerated development activities progress, the more extensive 

natural environment alters over the past decades (MEA, 2005). The 

acquired patches generated by human-modified landscapes crucially 

produce multiple peripherals. Previous studies have shown that 

maintaining numerous fragmented small patches is generally more 



 

 ２ 

beneficial for biodiversity conservation than maintaining large 

patches (Arroyo‐Rodríguez et al., 2020). In other words, when 

significant, the responses to isolated patches per se are positive 

(Fahrig, 2017). In addition, it is considered by researchers that in 

terms of environmental heterogeneity, many small patches are easier 

to manage various soil types than some large patches (Phalan, 2018). 

Fragmented patches can achieve biodiversity conservation and 

species coexistence by preventing the spread of competing species, 

unlike broad single patches (Hernández‐Ruedas et al., 2018). 

Therefore, it is a crucial task to conserve and increase the greenness 

of isolated small in size patches in ecosystems (Benchimol & Peres, 

2013; Carrara et al., 2015; Morante‐Filho et al., 2018; Phalan, 2018; 

Arce-Peña et al., 2019; Galán‐Acedo et al., 2019).  

Sustainable ecotone conservation depends on identifying the 

influences of natural environment to human activities. Evaluating 

edge effects is imperative to enhance ecological understanding and 

develop conservation strategies and management in landscape 

ecology. It is considered that research is needed to understand the 

effect of the ecosystems on the periphery of human-modified 

patches by the development activities. Hence, monitoring vegetation 

greenness is needed to minimize vegetation degradation. To monitor 

the vegetation dynamics of terrestrial ecosystems and to devise 

sustainable management measures, remote sensing and geographic 

information system are generally used when evaluating land cover 

and land cover changes along with related planning tasks.  

The methodology discussed in this study is based on the 

application of remote sensing imagery in vegetation. The relationship 
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between vegetation indices and environmental factors is increasingly 

important in ecological research (Liu et al., 2019; Peng et al., 2019) 

and the time-series data have been widely used (Chen, 2021). The 

vegetation Health Index (VHI) is a widely used remote sensing-

based index designed as the weighted sum of two components: the 

Vegetation Condition Index (VCI) and the Thermal Condition Index 

(TCI). The first component characterizes moisture conditions and is 

typically based on information from the visible and near infra-red 

windows of the electromagnetic spectrum, whereas the latter 

characterizes the thermal condition and is based on information from 

the thermal infra-red window. The Normalized Difference 

Vegetation Index (NDVI) and Land Surface Temperature (LST) or 

TOA brightness temperature are commonly used to estimate VCI and 

TCI, respectively. The NDVI, which analyze based on satellite 

imagery data, is used to determine vegetation distribution and 

evaluate productivity (Xiao & Moody, 2004; Evans et al., 2006). The 

NDVI as an indicator has been widely used to evaluate the vegetation 

growth condition within a pixel basis, reflecting the vegetation growth 

and coverage status at spatial and temporal scale (Zhi-qiang, & 

Dennis, 2001; Wan et al., 2004). The VHI was also effective in 

monitoring vegetation health and stress as well as has been widely 

used to estimate crop productivity and biomass evaluation (Kogan, 

1990). Therefore, it is believed that it can be effectively used to set 

a homogeneous unit as an index. 
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1.2. Purpose of Research 
 

The purpose of this study was to evaluate the extent to which 

urban development projects affect the ecotones along three different 

magnitude and extent. An impact assessment model was developed 

that can analyze how vegetation ecology altered and quantitatively 

evaluate the range of its impact. The NDVI and VHI based Landsat 

and Sentinel data were extracted in consideration of the 

spatiotemporal range of the target project, and the analysis 

conditions were established by applying appropriate environmental 

variables using national inventory data. An optimal machine learning 

algorithm comparing the performance of artificial neural networks 

(ANN) and random forest (RF) models was applied to evaluate the 

damage and the extent of impact of the ecotone. The simulation 

approach of this study can be a means to minimize the expected 

potential side effects by predicting and analyzing environmental 

impacts that may occur in the development project process in 

advance.  
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Chapter 2. Literature Review 
 

 

Edge effects which caused by patches fragmented, are involved 

in the effect of species composition, abundance and richness of 

ecosystem. Despite the importance as the advantages of ecotone, 

insufficient researchers have studied the influences of urbanized 

sites and edge effects on the ecosystems of remnant green spaces 

(Guerra et al., 2017). Silva et al. (2018) evaluated the impact on the 

edge effect on ferns of two tropical lowland rainforests and montane 

forests in Mexico by collecting the edaphic parameters through plot 

sampling. The results detected the factors causing biodiversity loss 

in ecotones and provide the indication. Aragón et al. (2015) 

investigate the correlation of edge effects with epiphytes of 

structural and spatial properties by collecting data via experimental 

design for each type of edge. On the other hand, Batáry et al. (2014) 

examined how forest edges and tree diversity affect bird populations, 

breeding, and survival rates based on field experiments. The results 

of this study tried to prove the effect of the periphery, and through 

this, the preservation plan was expected. As a result of the review, 

most studies emphasized the importance of the edge effects, but only 

the current status survey proved the validity of the edge effect 

through the investigation. Data were collected via experiments, and 

through this, they tried to prove the effect of the periphery. However, 

crucially, there were significantly few studies on the edge effects 

related to vegetation cover. Besides, Studies that simulate and 

predict specific environmental conditions by simulating the ecotone 
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as well as emphasize the importance of monitoring the peripheral 

effect and suggesting them as an evaluation tool were shown rarely. 

Besides, Edge effects are the dominant characteristics of 

human-modified patches and are the subject that require empirical 

research. However, the development of methods for effective 

management is being delayed. As a series of contributions to this, 

Ewers et al. (2006) developed a statistical model to quantify the 

variation in response among the edges to measure the extent. As a 

statistical approach to quantify the strength of edge effects, 

proposing a model that can determine the size and range of edge 

effects. It is argued that this could provide an essential management 

tool for monitoring changes in land cover or changes in edge effects 

after habitat restoration. On the other hand, Wilson et al. (2014) 

modeled to test evidence for the edge effects of land cover and 

association of topography with bird habitats. Variable data was 

constructed based on breeding surveys, generalized linear models 

were used for occupancy modelling. Given support for vegetation 

expansion to support climate change mitigation and policy, this study 

is timely. Ahmadi et al. (2020) applied variables of forest edges to 

machine learning algorithms to estimate forest characteristics. The 

major objectives were to predict the most common variables 

necessary for sustainable forest management, and to evaluate the 

indices quantitatively. When reviewed edge effect research conjoined 

with simulation methods, they were related to research developing 

quantitative tools, or developing evaluation indicators. However, the 

studies have investigated terrestrial ecosystem such as community 

of organisms and interactions of biotic and abiotic components. 
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Subsequently, to the best of our knowledge, there was also a lack of 

research on the status of vegetation changes due to changes in land 

cover, and no research was found to predict future situations that will 

change according to artificial activities in the future. 

Moreover, monitoring can be done accurately with lower costs if 

the vegetation index is extracted from the remote sensing imagery. 

This study reviewed previous studies aimed at monitoring performed 

using machine learning approaches with vegetation indices 

information obtained from satellite. Park et al. (2016) investigated a 

meteorological drought index (SPI) and an agricultural drought index 

based on the various factors such as NDVI and VHI, using machine 

learning approaches. The approach in this study is applicable to all 

vegetation areas where remote sensing data is available. Moradi et 

al. (2022) mapped quantitative vegetation vulnerabilities through 

machine learning algorithms based on remote sensing data. In 

addition, a quantification evaluation method was proposed by 

discovering hydrological influencing variables. Most of the machine 

learning-based vegetation distribution analysis was dominated by 

studies aimed at drought monitoring or agricultural yield evaluation. 

On the other hand, Bao et al. (2021) quantified sensitivity of 

vegetation covers to climate change. The relationship between the 

spatial distribution of NDVI sensitivity to climate change was 

analyzed by constructing an ensemble statistical vegetation model 

based on meteorological and geographic data. This may be useful in 

providing a quantitative response to climate vegetation. These 

results have something in common with this study in that they provide 

quantitative tools as well as in-depth understanding to provide 
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mitigation strategy guidance to policymakers in prediction and 

modeling but have different goals for response strategies based on 

the correlation between land cover and vegetation change. 

In order to quantitatively evaluate changes in vegetation affected 

by development activities, it is essential to investigate changes in 

vegetation cover for complex factors in addition to topographical and 

geographical variables. Until now, vegetation zones have evaluated 

the factors affecting the vegetation indices, and green cover 

conditions such as NDVI and VHI have been identified. For impact 

assessment, researchers conducted field measurement campaigns or 

used statistical analysis. However, considering the peripheral effect 

of ecotones with biodiversity, the strategy according to vegetation 

changes is still insufficient, and further research needs to be 

conducted. In addition, it is necessary to simulate changes in the 

vegetation ratio according to changes in the natural environment or 

land cover due to artificial activities and predict changes according to 

future plans. So as to overcome these limitations, this study proposed 

simulation indicators using machine learning algorithms. This is not 

only meaningful in understanding the mechanisms of the vegetation 

system, but also useful in planning and managing land cover.   
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Chapter 3. Materials and Methods 
 

 

3.1. Study flow 
 

The basic approach of the research flow consists of two main 

parts: data collection including preprocessing and environmental 

impact assessment (Figure 1). First of all, in collecting the data, the 

current status of the evaluation report and the impact evaluation 

report became the basis for the research framework. It was based on 

ecotone setting according to the existing urban development project, 

and assorted variables were set as analysis targets. The database 

was constructed based on the data provided by the government. In 

addition, NDVI and VHI indices, which are mainly used to identify 

vegetation distribution and evaluate productivity, were selected to 

analyze greenness in the surrounding area. Also, we inspected the 

accuracy of two different machine learning algorithms to evaluate 

vegetation vitality before and after development projects for 

ecotones. As a data analysis method, the vegetation distribution 

characteristics of the research area were analyzed using ANN and 

RF algorithms, investigating vegetation changes and major factors. 

Subsequently, the effect of changes in land cover on the periphery 

was evaluated. 
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Figure 1 Research flow 

 

3.2. Study scope 
 

This study was aimed at environmental impact assessment 

projects, focused on urban development in South Korea. The 

assessment reports were reviewed to investigate the actual condition 

of environmental impact assessment and to set the scope of the 

research subject as land cover on terrestrial ecosystem are being 

converted to non-forest such as agriculture, energy generation and 

other infrastructure (Curtis et al., 2018). Urban planning in Seoul, 

the capital of South Korea, has been active since the 1980s (Liao & 

Pitts, 2006). Likewise, the Ministry of Land, Infrastructure and 

Transport reported that housing demand exploded in the 1980s and 
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1990s due to the increase in population density of cities and housing 

supply also increased, so that citizens experienced frequent land 

cover changes in the past few decades. By considering the temporal 

scale, development projects that occurred in the 1990s and 2000s 

were reviewed (Table 1). Compared to 1950, the number of houses 

in 2011 increased by about 5.5 times, and the housing penetration 

rate already exceeded 100% in 2000. In the case of housing site 

development, the number of projects has declined since the 1990s, 

but the number has still been high for 2 decades. This is the result of 

various housing-related development policies such as modern 

housing construction projects, housing construction projects, and 

new city construction projects. As the result, it shows that land 

development, urban development and housing complex development 

were the main trends in the period. The past changes in Korea's 

national territory can be summarized as government-led national 

land development projects, urbanization, and industrialization, and the 

urban development projects can be seen as a newly rising business 

keyword of 2000s. 

 

Table 1 Urban development trends in the 1990s and 2000s 

Type Keyword Number(90s) Number(00s) *YoY 

Urban 

planning 

Land 153(50%) 123(36%) -30 

Urban 0 86(25%) 86 

Housing site 0 28(8%) 28 

Sewage 

treatment 
47(15%) 0 -47 

etc 40 91  

Total 307 346  

*YoY: Year on year 
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Even though land cover information and plans for the target sites 

where the project takes place have been established, there is a lack 

of information and investigation for the possibility of influence on 

adjacent areas and ecotones. Besides, it was found that the 

environmental impact assessment was analyzed as a qualitative 

assessment without scientific basis. Accordingly, research is needed 

to develop quantitative indicators. From that, the spatial scope of this 

study was established based on the impact assessment reports 

provided by the Ministry of Environment. Based on the tendency of 

the assessment reports in the 1990s and 2000s, urban development 

projects which was the most dominant, were focused on.  

This study aims to detect the changed environment in the 2000s 

after urban development projects that of 1990s. Therefore, the 

temporal range was set from 2005 to 2015, five years after the actual 

project of the impact assessment report occurred, based on the long-

term project period. The temporal range was also set to compare 

before and after environmental changes according to developmental 

activities, applying of variables such as land cover maps. After 

classifying the types of urban development, the projects were refined 

with the keywords of the urban and housing complex.  

Land cover before the development projects was confirmed using 

land cover mapping, along with in the case of urban or agriculture 

areas, which are difficult to examine the characteristics of vegetation, 

they were deleted from the study sites. This is a process that can 

infer the extent of vegetation green space of the target site, and areas 

without green space before the project cannot produce significant 

results, so it is excluded from the project list. The green area ratio 
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was calculated for the refined study site. The median value (18.50%) 

or less for the ratio of green areas to all target sites was deleted, and 

only development projects including more green areas were 

considered. The progress on areas containing forests and grassland 

was extracted using ArcGIS 10.5 geoprocessing clip feature. In 

addition, classification was conducted according to the green area to 

evaluate the contribution of the ratio of this green area. Accordingly, 

classification was conducted to evaluate the contribution of the ratio 

of the green area ratio (Table 2). Weighted by increasing the median 

value to a minimum of 10% intervals. 

 

Table 2 Grading according to the green area ratio of the study sites 

Percentage of vegetation cover Grading 

18 ~ 27% 1 

28 ~ 37% 2 

38 ~ 47% 3  
48 ~ 57% 4 

58 ~ 100% 5  
 

Since all sites with ecotone land cover changes were deleted 

during the target period, only sites with the same land cover code for 

10 years from 2006 to 2015 were included in the analysis. This can 

only consider the effect of internal changes in the target site as one 

of the analysis variables, and it can be seen that the effect of the 

external ecotone itself has been removed. Five main steps were 

performed to refine the study target site, such as the procedure for 

the scope of the study (Table 3). The study target period was initially 

set from 2005 to 2015, but the remaining business after a series of 

refining processes was actually between 2006 and 2015. We 
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considered that the actual execution and completion of the project 

would be much later than the reception and completion date stated in 

the Impact Assessment because construction would not begin 

immediately after the assessment. To compare and analyze the status 

before and after urban development projects according to land cover 

changes, three points of view were used for land cover map data. The 

land cover before the project was set to 2006, and the land cover 

map of 2011, which is the median value of the project target period, 

was used. And after the project, it was set to about 5 years, which is 

the period required to complete the project after designating the 

urban development zone and set to 2020. This was applied in the 

same way as the five years set when setting the 2000s, an era when 

urbanization occurred and stabilized. In addition, this study found the 

most suitable setting related to it because the purpose of this study 

is not to detect changes, but to evaluate the effects of surrounding 

nature before and after the project occurs. The detailed illustration 

of the cover shows the land cover classification map code. In 

conclusion, a total of 80 sites were deployed (Figure 2). 

 

Table 3 Refining process against study site selection 

Division Detail 

Keyword Urban and housing 

Period 2005 to 2015 

Vegetation cover 
310 and 320 for Forest area 

410 and 420 for Grassland  
Grading Median value (18.50%) and above 

Land cover change 
Changes in land cover of 25 m 

inside the study sites  
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Figure 2 Study sites 

 

The Ecotones conjoin with various habitats and increase species 

richness and diversity in various taxonomic groups, such as plants 

(Łuczaj & Sadowska, 1997). The spatial extent of edge effect may 

be narrow or wide, and edge effect has rarely been quantified (Łuczaj 

& Sadowska, 1997) among taxonomy. Besides, the scope and impact 

of the development project periphery may vary depending on the 

characteristics of the space. As to the characteristics, the spatial 
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range of the ecotone may be contrasting. Hence, in this research, the 

spatial extent of periphery analyzed from various angles.  

The most dominant peripheral distance was a constant multiple 

(Table 4). The most dominant range setting was to evaluate the 

effect of forest edge size on the abundance of forest fragments by 

sampling at four distances: 5, 25, 50 m and 100 m (Rheault et al., 

2003; Esseen et al., 1998). On the other hand, Sampaio et al. (2011) 

established six distances (0, 40, 80, 160, 280 m and 400 m) from the 

edge and studied composition and diversity of tree community. In the 

study of Esseen et al. (2019), the edge effects of 25, 50 m and 100 

m were estimated then reported that maximum edge effects extended 

to 50 m at moderately exposed sites. The commonality of the 

previous research was evaluation of the periphery through the 

expansion of the ecotone buffer. 

 

Table 4 The effect of edge distances (unit: meters) 

Reference Transect 

Alignier et al., 2013 40 

Aragón et al., 2015 100 

Rheault et al., 2003 5/25/50/100 

Kivistö et al., 2000 10/20/50/100 

Esseen et al., 1998 5/25/50/100 

Batáry et al., 2014 210 

Łuczaj et al., 1997 50 

Sampaio et al., 2011 0/40/80/160/280/400 

Magura et al., 2002 39 

Esseen et al., 2019 25/50/100 

 

In addition, the New Zealand Conservation Authority defined that 

many patches of greenness today are small in size, and environmental 

conditions limit the range of green patches for up to 60 m, creating 



 

 １７ 

an edge effect.  

In this study, the distance of multiple 3 of 25, 50, and 100m was 

set as the edge effect distance based on the 100m boundary where 

the edge effect was reported the most. 

 

3.3. Sources of Data Collection 
 

The variables used to achieve the evaluation tool are divided into 

two main variables: the independent variable and the dependent 

variable. In the machine learning algorithms, a total of 7 

environmental factors and vegetation indices are used as independent 

variables as well as dependent variables, respectively, and variables 

were set through literature review. The dependent variables, which 

are the main factors of the analysis, were placed in the analysis 

including 80 development projects provided by environmental impact 

assessment along with NDVI and VHI (Table 5). Other independent 

variables comprise three ecotones according to distance, land cover 

data, topographic variables, and climate variables (Table 6). 

Meteorological effects on NDVI, especially precipitation and 

temperature, can predict vegetation production changes (Wang, 

2003). As weather parameters, data from 1999 to 2001, 2009 to 

2009 and 2019 to 2021 were used. Climate data were obtained from 

the Meteorological Agency (https://data.kma.go.kr). In addition, 

topographic data such as altitude and slope, which are most 

frequently used for domestic research GIS analysis, were acquired 

by Shuttle Radar Topography Mission by using Landsat satellite and 

obtained through the GEE. Land cover changes due to urban 
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development can be applied by applying land cover maps, which can 

be obtained from the Ministry of Environment (http://me.go.kr).  

 

Table 5 Dependent data list with source and period 

Type Data Period Source 

Dependent 

variable 

Normalized Difference 

Vegetation Index (NDVI) 
2004-

2018 
*GEE 

Vegetation Health Index (VHI) 

Urban development projects 
2006-

2015 
**EIASS 

*GEE: Google Earth Engine Platform (https://earthengine.google.com) 

**EIASS: Environmental Impact Assessment Support System 

(https://www.eiass.go.kr) 

 

 

Table 6 Independent data list with source and period 

Type Data Period Source 

Independent 

variable 

Ecotone 

; 20, 50 m and 100 m 
2006-2015 **EIASS 

Land cover (LC) 

; Built-up, Agriculture, Forest, 

Grassland, Wetland, Barren, 

Water 

2006, 2011, 

2020 
***ME 

Elevation 

Slope 
Obtained from 

SRTM by 

using Landsat 

1999-2018 *GEE 

Aspect 

Meteorological parameters 

; Temperature, Precipitation 
2004-2021 ****KMA 

***ME: Ministry of Environment (http://me.go.kr) 

****KMA: Korea Meteorological Administration (https://data.kma.go.kr) 

 

 

Various environmental variables and two difference vegetation 

indices were applied to analyze the effects of ecotone by distance at 

urban development project sites. The spatial aspect was supported 

by applying the three distances of ecotone and topographic variables 

such as elevation, slope, and aspect. The average temperature and 
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precipitation, which are climate factors affecting the vegetation 

indices, were controlled. NDVI and VHI were evaluated by assigning 

a vegetation variable correlation, analyzing the temporal and spatial 

differences between the performance of vegetation dynamics. 

 

3.4. Satellite Data and Preprocessing 
 

According to the advance of remote sensing technology, research 

related vegetation monitoring can apply the satellite images as data 

sources. Satellite imagery was used as a major data source to 

quantitatively evaluate the possibility that urban development 

projects may affect vegetation ecology and change the vegetation of 

ecotone. Two different data sources were used to calculate the NDVI 

and VHI: the Landsat and Sentinel satellites. Both Landsat and 

Sentinel series were obtained via the Google Earth Engine Platform 

(https://earthengine.google.com). GEE is an advantageous cloud 

computing platform, processing, storing and analyzing of petabyte-

scale archives of data on large amounts of remote sensing platforms 

(Gorelick et al., 2017). In the GEE platform, vegetation index analysis 

is possible. Recently, GEE has been widely used in time series data 

processing to extract various phenological indexes (Dong et al., 2016; 

Mutanga & Kumar, 2019). After creating images of 10 years 

according to study period with code through GEE, exported to Google 

Drive.  The NDVI and VHI were employed in this study and obtained 

from the Google Earth Engine 

Platform(https://earthengine.google.com). NDVI and VHI were 

acquired by Landsat-5, Landsat 7 ETM+ and Landsat 8 OLI, at a 
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spatial resolution of 30 m to construct, assessing differences in the 

study sites. Besides, cloud-mask equipped in the GEE can remove 

the pixels which were covered with clouds for Landsat and Sentinel 

data production. The 'QA60' band was applied to filter out cloudy 

pixels. The minimum and maximum NDVI values were chosen from 

NDVI values using GEE code, ranging from 0 to +1. This is the most 

widely adopted indicator (Coluzzi et al., 2007; Pignatti et al., 2015; 

Simoniello et al., 2015). The negative values are generated by factors 

such as clouds, water, and snow. 

Sentinel-2 collects high-resolution multispectral images. Cloud 

masks are applied to represent clear conditions for Level-2A, which 

provide atmospheric floor reflection or modification with subpixel 

multispectral registration. Sentinel-2 launch took place in June 2015. 

Due to the limitation of temporal range, this research focuses on 

defined period that the performances achieved by Sentinel-2. 

Regarding Sentinel satellite data, the identical approaches as Landsat 

were applied. The NDVI was calculated from surface reflection 

Sentinel-2 Multi Spectral Instrument data collected at 10 m 

resolution. To mitigate cloud contamination, the average NDVI of all 

available Sentinel scenes across Korea was calculated during the 

period corresponding to the development project (a total of three 

years, including before and after the project year). The minimum and 

maximum NDVI values were ranged from -1 to +1.  This result will 

be described in the conclusion. 
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The NDVI was determined as follows: 

 

 
𝑁𝐷𝑉𝐼 =

𝑁𝐼𝑅 − 𝑅𝐸𝐷

𝑁𝐼𝑅 + 𝑅𝐸𝐷
 

(1) 

 

The NDVI was calculated for a decade and the minimum and 

maximum reflectance values of NDVI and LST were extracted to 

generate VCI and TCI. The VCI is derived from NDVI values (Kogan, 

1995). Where NIR is the value of the near infrared band, and RED is 

the value of the red band, indicating 845–885 nm and 630–680 nm, 

respectively. 

 

The VHI was determined as follows: 

 

 𝑉𝐻𝐼 = 𝛼 × 𝑉𝐶𝐼 + 𝛽 × 𝑇𝐶𝐼 (2) 

 

VHI is the sum of the weighted value of VCI and TCI reflecting 

temperature and vegetation conditions. From 2006 to 2016, VCI, TCI, 

and VHI were estimated using NDVI and LST remotely detected in 

domestic sites. 

 

3.5. Hyperparameter 
 

To quantitatively evaluate the extent to which the affected 

ecotone vegetation changes in the study area, we applied two 

machine learning methods to the NDVI, and VHI index maps. The 

machine learning algorithms used were ANN, and RF. The 

contribution of development activities to vegetation changes was 
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quantitatively assessed through temporal and spatial based analysis.  

RF is an ensemble learning algorithm for classification, 

regression, and other tasks that operate by constructing multiple 

decision trees in training. The random forest classifier, the output is 

the methods expressed by most decision tree models. For regression 

operations, the average or average prediction of an individual tree is 

returned. Based on the classification and regression tree (Breiman, 

2001), the RF generates numerous independent trees to reach the 

final decision through two randomized approaches to training sample 

selection and variable selection at each node of the tree. 

MLPClassifier analyses were used to show the associations of the 

vegetation indices (NDVI and VHI) in the development activities with 

each reference distances. In this context, the ANN model has been 

applied as a function to model linear and highly nonlinear 

relationships between input and output datasets. By default, ANNs 

consist of one input layer, one output layer, and zero or more hidden 

layers used to solve complex problems. The sklearn package was 

employed in the program language the Python module for machine 

learning in this study. 

To determine the extent of change on vegetation changes for the 

periphery of the urban development sites, an impact evaluation tool 

was devised. After identifying different edge distance, analysis was 

conducted to assess the relationships among the land cover maps, 

topography and meteorological variables. Hyperparameter 

configuration is the process of setting values for each parameter 

before the learning process. Comparison of model performance are 

categorized into training and testing. The training set is used to make 
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network learn. The testing set is used to analyze the neural network.  

   To either enhance the performance and predictive power of 

models or to make the model faster, hyperparameters are used in 

random forests. Estimators that mean number of trees the algorithm 

builds before averaging the predictions was applied. In addition, the 

minimum number of samples required to split an internal node is 

controlled with the parameter and the whole dataset is used to build 

each tree. The classifier was imported and fit the data. The reliability 

of the ANN in the estimation was evaluated using the coefficient of 

accuracy (ACC) measuring the fitness between actual and predicted 

values and Root-Mean-Square Error (RMSE) which means sample 

standard deviation calculated by measuring the difference between 

actual and predicted values. The optimizer ‘Adam’ was chosen to 

train the models. This minimizes the RMSE between the target values 

and the results and sets weights and bias in the ANN. 
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Chapter 4. Results 
 

 

4.1. Vegetation Dynamics Variations 
 

Negative values represent water features, values close to zero 

indicate no vegetation, and positive values indicate the presence of 

green vegetation. Higher values indicate greener, more dense surface 

vegetation (Weier, 2000). The temporal variation of the ecotone 

vegetation indices extracted from the remote sensing imagery 

according to the influence of urban development is displayed (Figure 

3). A visual analysis of the NDVI and VHI temporal dynamics 

indicates two different patterns associated with before and after the 

development projects, which are characterized by a range of values. 

While the NDVI confirmed the tendency to be distributed at high 

values after the development projects, the VHI was distributed at 

high values before the urban projects. The land cover transition from 

vegetation regions to urban areas is the main cause of the tendency 

of declining greenness (Yao et al., 2019), which is the main result of 

the VHI trend in this study. In order to evaluate the dynamics of 

vegetation, the time series of VHI for urban development projects 

was analyzed. Both vegetation indices have respective values before 

and after the development activities. The corresponding values were 

set based on the average for three years before and after the 

completion date of the each of the projects. The NDVI extracted from 

Landsat ranged from 0 to 0.83, including the three different distances. 

It showed NDVI values of 0.829 at 25 m, 0.831 which is the maximum 
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value at 50 m, and 0.798 at a distance of 100 m. However, under the 

same conditions, the Sentinel imagery displayed different results. In 

the order of short distances, 0.728, 0.742 and 0.75, respectively. 

This is relatively low compared to the Landsat data. Parallel could be 

found between the NDVI and the VHI regarding tendency of 

decreasing value after the urban projects and spatial patterns in 

terms of the extent concentrated. The maximum value of VHI was 

0.79 established 25 m, 0.855 at 50 m, and 0.822 at the foremost 

outside distance. In common, VHI and NDVI calculated using Landsat 

imagery presented a tendency to increase in value from 25 m to 50 

m and then detracted at 100 m. This may be interpreted that the 

internal impact of urban development projects reaches up to 50 m.  

Significantly, after urban development, distributions 

concentrated in high NDVI values, turning positive trends. The 

results occurred especially when land cover modification was made 

to residential land. Matters necessary for the expansion, management, 

use, and urban greening of green areas in cities shall be prescribed 

in accordance with the Urban Parks and Green Areas Act in order to 

create a pleasant urban environment. It is stipulated that a plan to 

secure green space must be included in the development plan. In 

addition, the green space of apartments has become abundant since 

1991 when the ratio of green space to land area has been 

strengthened to 30%. This is a result consistent with previous 

studies that the greening trend in some cities was caused by 

construction of urban green space (Zhao et al., 2013; Zhou & Wang, 

2011).
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Figure 3 Trend change in NDVI and VHI time series according to the urban development projects.  

(The bold value above represents the distance from the edge fragment) 
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4.2. Comparing the Performance of Machine Learning 

Algorithms 
 

This study comprised three parts as follows: (1) training and 

testing of various supervised machine learning models for the 

diagnosis of vegetation indices changes before and after urban 

development projects; (2) validation of the best-performing RF and 

ANN models; and (3) heatmap by land covers using final machine 

learning model in the study sites to observe the modeling. The major 

hyperparameters incorporated in the ANN model are as follows: 

activation had a default value with solver as the default data type, and 

max_iter, acc, and RMSE were optimized with the hyperparameter 

values achieved from each iteration as the output. ACC values were 

expressed in various ways according to the ecotone distance and 

cross-validation procedure. As can be observed in Table 8, the ACC 

value reached the maximum value for NDVI, and the optimal 

hyperparameter value was as follows. In addition, Table 9 shows the 

optimal values for VHI.  

 

Table 7 Hyperparameter tuning of Artificial Neural Networks for 

Normalized Difference Vegetation Index 

Hyperparameters 25 m 50 m 100 m 

*solver adam sgd adam 

**max_iter 150 300 100 

***acc 0.778 0.789 0.691 

****RMSE 0.222 0.211 0.309 
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Table 8 Hyperparameter tuning of Artificial Neural Networks for 

Vegetation Health Index 

Hyperparameters 25 m 50 m 100 m 

*solver adam adam adam 

**max_iter 300 250 250 

***acc 0.751 0.720 0.723 

****RMSE 0.249 0.280 0.277 

*solver: Loss function minimization 

**max_iter: The maximum number of major iterations for solution 

***acc: Accuracy 

****RMSE: Root Mean Square Error 

 

Hyperparameters covered in the RF model used in this study are 

listed in Table 9(Sun et al., 2020). The min_samples_split, 

max_depths, max_features and min_samples_leaf had a default data 

type; and n_estimators and bootstrap were optimized, with the 

hyperparameter values of 20 and 'True' respectively obtained in each 

iteration as output. Hyperparameters obtained in iteration training 

were output, which were the identical in entire phase. 

 

Table 9 Hyperparameter tuning of Random Forest for integrated 

vegetation indices 

Hyperparameters 25 m 50 m 100 m 

n_estimators 20 

bootstrap True 

*n_estimators: The number of trees in the forest 

**bootstrap: drawing of sample data 

 

The dataset has been divided into 80% training and 20% testing. 

Initially, 80% of the data were randomly chosen for training, and the 

remaining 20% for testing. In this study, the Receiver Operating 

Characteristic (ROC) curve was used to evaluate the performance of 

each model, which is used as a tool for evaluating the performance of 
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the model in most modeling studies using machine learning (Pham et 

al., 2016; Shahabi & Hashim, 2015). Here, the high ROC value means 

that the prediction performance of the model distinguishing the class 

is high. The cross-validation procedure was reiterated 1000 times. 

To adopt the optimal algorithm for predicting the extent of vegetation 

changes, the two distinct models were compared with regard to the 

accuracy (Table 10). Of the two models compared, RF registered the 

highest area under the receiver operating characteristic curve of 0.96 

(0.81 for ANN), as shown in Figure 4. The results obtained show that 

the RF model demonstrated the best predictive performance in both 

vegetation indices and in details of ecotone distance. Hence, the RF 

model was carried forward entire subsequent analyses. Nevertheless, 

the validation of the NDVI from Sentinel data presented a 

considerable difference in performance. 

 

Table 10 Validation of the NDVI and predicted parameters based on 

the machine learning models 

Metric 25 m 50 m 100 m 

Artificial Neural 

Network 
0.699 0.751 0.537 

Random Forest 0.94 0.933 0.679 

 

 

Table 11 Validation of the VHI and predicted parameters based on 

the machine learning models 

Metric 25 m 50 m 100 m 

Artificial Neural 

Network 
0.707 0.684 0.676 

Random Forest 0.921 0.913 0.901 
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Figure 4 Receiver operating characteristic curves for the Random Forest model 
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4.3. Relationship between Urban Development and 

Vegetation Indices 
 

This study proposed an impact assessment model to predict and 

quantify the extent to which urban development projects affect the 

edges along three different buffer sizes. The prediction is based on a 

predefined set of possibilities and is combined with a predictive 

probability distribution heatmap. Land cover maps, topography, and 

meteorology were set to detect the influence on the vegetation 

indices by ecotone multiple buffer sizes. Hence, spatiotemporal 

pattern for probability of change shown as the heatmap. The 

observations pattern reflected the data based actual NDVI is shown 

as the heatmap (Figure 5a). The estimates represent values modeled 

with the evaluation tool proposed in this study (Figure 5b). The 

absolute value of the predictive probability for each predictor is given 

as a percentage. As land cover types and other variables are 

constrained, the probability of that vegetation indices increases 

compared to predefined set shows the value of the cell. That is, it 

means the possibility that the NDVI value of each target site may 

change positively when the environment changes. If the green area 

ratio falls sharply due to urban development, it will be close to zero, 

and if it forms a green area city after development, it will be close to 

one. In this way, it was set to input values according to specific 

reference values. Shading represents the intensity of vegetation 

changes (see legend in the middle upper aspect). 
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 Figure 5 Heat map of the NDVI changes for the 25 m 

distance buffer 
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Probability heat map modelled demonstrates significant results 

at 90% confidence level (p < 10%) even after multiple testing. When 

land cover changes occur from wetlands to grasslands, the actual 

data-based heatmap results interpreted that NDVI values would 

increase with a 48% probability, while the modeling results were 

considerably low at 24%. In addition, the observed NDVI results 

showed a 33% probability of increasing values from the predefined 

set with NDVI when land cover changed from agriculture to 

impervious, yet the modeled figures were relatively high at 52%. 

Excluding those cells, significant results were derived when 

comparing the observed and predicted values (Figure 5).  

As can be observed in probability heatmap for the NDVI 

extracted from Landsat (Figure 8), the further away from the 

ecotone for 25, 50, and 100 m buffers, the less significant correlation 

with the inner side of the urban development site. In general, as the 

distance from the research site increases, the cell value decreases, 

which means that the probability of being higher than the predefined 

value is lower. In other words, it was expressed that the influence 

from internal environmental variables changed. It can be investigated 

that the color is clearly lighter as it goes up to 100 meters, and the 

changing probability value decreases. However, it was confirmed that 

the prediction performance at 100 m was slightly lower than that of 

25 and 50 m. In about four cells, there was a larger error between 

the observed and predicted values. The singularity is that conditions 

that did not actually exist were also predicted by simulation. 
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Figure 6 Heat map of the comparison between the NDVI modeling 

results for 25, 50 m and 100 m buffers 
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Remote sensing-based vegetation indices have been developed 

and used to predict vegetation yields in different ecosystem. 

Previous research has applied VHI for different approaches that may 

influence ecosystems (Bokusheva et al., 2016; Prasad et al., 2006; 

Ribeiro et al., 2019; Unganai & Kogan, 1998). The entire range of 

VHI was analyzed to detect and predict the average extent of 

vegetation change. The VHI is related to moisture availability and 

represents vegetation stress (Marengo et al., 2021). As VHI is an 

index applied to quantifying wetness and dryness, it can be confirmed 

that the change in land cover type to wetlands is the significant value 

as can be recognized in Figure 7. This trend also occurs in the change 

of land cover to agriculture. The VHI and crop yields are highly 

correlated, especially at the critical stage of crop growth (Prasad et 

al., 2006; Kogan et al., 2012). It can be seen that when urban 

development is influenced in wetland and agriculture, the predefined 

value that converges to approximately 1 is obtained. In addition, most 

of values were found to have a low effect, and the difference in the 

extent of influence for the three buffer sizes could not be confirmed 

significantly. 

The estimated probability heatmap presents a step forward in 

improving the effectiveness of detecting vegetation changes and thus 

its application prospects. Furthermore, the response characteristics 

of various vegetation types are identified, deepening understanding 

on correlations between environmental factors and vegetation indices, 

which may help decision-makers and authorities to develop better 

mitigation and adaptation strategies. 
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Figure 7 Heat map of the comparison between the VHI modeling 

results for 25, 50 m and 100 m buffers 
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Chapter 5. Discussion 
 

 

5.1. Comparison of Landsat and Sentinel data for 

estimation of the NDVI 
 

Both Landsat and Sentinel-2 provide high spatial resolution 

images of 10 m and 30 m respectively. Sentinel-2 data generate high 

resolution cropping intensity maps to provide high-quality 

observations. In this study, Landsat data was used as the main source 

of analysis due to the mismatch between the established temporal 

range and the satellite imagery to be available, and further 

comparative analysis was performed using Sentinel-2 data. The 

Sentinel-2 launched on March 28, 2017, so that data after 2018 was 

applied as the NDVI value after the urban development project.  

Hyperparameters applied in the machine learning models are listed 

(Table 12).  Hyperparameters obtained in iteration training were 

output, were optimized. 

 

Table 12 Hyperparameter tuning of ANN and RF for NDVI from 

Sentinel-2 

Hyperparameters 25 m 50 m 100 m 

*solver adam adam adam 

*max_iter 100 250 200 

*acc 0.858 0.836 0.794 

*RMSE 0.142 0.164 0.206 

**n_estimators 20 

**bootstrap True 

* Hyperparameters covered in ANN model 

**Hyperparameters covered in RF model 

 

Probability heat map modelled with NDVI from Sentinel data 



 

 ３８ 

demonstrates significant results at 80% confidence level. Significant 

results were derived when comparing the observed and predicted 

values. The NDVI was compared using two different satellite images, 

Landsat and Sentinel, under the same premise to quantitatively 

assess the extent of their impact on ecotones over distance (Figure 

8). As can be observed, the values of Sentinel based NDVI were 

clearly lower than the values for Landsat (Figure A 2), and the 

influence from the inner side of the study site was also found to be 

less (Figure 8). What is unusual is that the numerical value of the 

probability heatmap detected the opposite tendency to NDVI from 

Landsat. The values of Landsat based NDVI was generally higher 

than Sentinel. The further away from the ecotone for 25, 50, and 100 

m buffers, it showed a higher correlation. Due to the nature of the 

research area composed of relative high vegetation cover, it may be 

interpreted that the high NDVI value of the surrounding vegetation 

area was included in the pixel of Landsat, which has a relatively low 

spatial resolution, resulting in mixed pixel effect. In the case of forest 

areas, vegetation is distributed over a large dense range, so 

spectroscopic mixing is alleviated, and Sentinel has a lower value, but 

there is no significant difference from Landsat data (Chen et al., 

2018). Using Landsat data at 30 m affects the variation of the mean 

NDVI value, which is inferred by the difference in pixel levels. 

Effective use of images is difficult because Landsat data is 

temporarily discontinuous due to 16-day revisit cycles, cloud 

contamination, and hardware problems with sensors. (Cao et al., 2020; 

Congalton, 2018; Ju & Roy, 2008; Pringle et al., 2009; Santos et al., 

2021; Zhu & Woodcock, 2012). 
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Figure 8 Comparison of estimated results between Sentinel and 

Landset satellite imagery 
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5.2. Building a Classifier 
 

In using decision trees for classification, methods are needed to 

achieve optimal accuracy while avoiding overfitting of training 

datasets (Ho, 1998). The classifier in this study serves as a criterion 

for determining the standard of change in NDVI and is one of the most 

important parts of analysis. The final result is expressed through 

numerous learning between the value of the vegetation indices which 

were affected according to the environmental variables and the value 

by redefined set.  

The business year of each target point was extracted, and the 

value minus the previous year and the following year was set as the 

reference value for each NDVI and VHI. The probability that the value 

of each vegetation index changes to a reference value, that is, a value 

quantifying the degree of influence to change is expressed in the final 

heat map. Accordingly, a change in the final value may occur 

according to a change in the setting of the reference value. For 

example, assuming that the reference value is set to an absolute value, 

the NDVI is likely to be higher than the reference value according to 

the environmental variables that change with urban development. 

These issues limit the design of analytical studies. This procedure 

cannot rule out the possibility of artificially overestimating or 

underestimating the mean NDVI value. 

 

 

5.3. Model Interpretation Strategies 
 

The NDVI based Landsat found a significant correlation in the 
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value of ecotone multiple buffer sizes as the heatmap results, and the 

NDVI based Sentinel was found to be correlated by changes in the 

value of NDVI based Sentinel for urban development projects. These 

differences were statistically further confirmed through the mean and 

variance differences in NDVI exposure. The findings question the 

practice of misaligned connections of green space and 

epidemiological data. 

Since the actual construction period is not specified other than 

the date of completion of the EIASS environmental impact 

assessment, this study is based on the date of completion of the 

agreement and does not support the actual time of completion of the 

construction. Due to data that is partially time-incompatible, the 

accuracy of the evaluation may have been reduced. In addition, there 

are inconsistencies between Landsat and Sentinel data availability 

ranges. In the analysis setting, Landsat data is applied based on urban 

development projects as there is no limit to the temporal range, yet 

Sentinel data is set based on satellite images due to the limit of the 

available range. This is also a factor that is time incompatible and can 

reduce the accuracy of the results.  
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Chapter 6. Conclusions 
 

 

The objective was to analyze the correlation between 

environmental changes according to the urban projects and 

vegetation indices, and to quantify the extent of changes in vegetation 

ecotone along the distances. We interpret the distribution 

characteristics of vegetation cover using two machine learning 

models which is ANN and RF models in study sites. In addition, the 

possibility of ecotone damage and vegetation green change due to 

urban development were predicted through 10 years of vegetation 

green change extracted based on two satellite images. The analysis 

results were found to compare the changes in the actually obtained 

data-based vegetation index with the prediction results according to 

the modeling of this simulation model. Our conclusion is that the 

promotion of urban development projects has a significant effect on 

peripheral vegetation. It includes both negative and opposite 

tendencies. The value of NDVI increased after the development act 

and resulted in greener results, but in the case of VHI, the lower 

value after urban development prevailed, which supports this result. 

Land cover change and urbanization induce a decrease in VHI.  Land 

cover changes are a major factor in environmental degradation, and 

rapid urbanization promotes this situation (Singh et al., 2017). 

Conversely, urban development increases urban green areas by 

contributing to the expansion of green areas. Therefore, it is 

essential to consider various aspects when planning urban 

development. It should be important to quantify the contribution of 
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climatic and human activities as well as policies to vegetation changes 

based on a residual analysis. Also, proposing effective measures to 

improve the services and value provided by ecosystems is 

fundamental. Our tool is the beginning to advanced knowledge in 

improving development of conservation strategies, which may help to 

quantify the edge effect spatially.  It is essential to understand the 

trends of change in Vegetation matters and other relevant parameters 

to effectively address the issues arising from edge effects, while land 

cover change related risks can be minimized through initiating proper 

measures like proper management (Noszczyk et al., 2020). 
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Abstract in Korean 

  

패치는 식생 조건의 차이로 인해 이질성을 보이는 인접 패치 사이의 

전이 영역으로 에코톤으로 인식된다. 에코톤은 높은 생물 다양성, 

생태계 연결성 그리고 다양한 서식 환경을 제공함으로써 생태학적으로 

중요한 역할을 한다. 우리나라는 급격한 산업화 및 도시화로 패치의 

공간적 변화를 경험했기 때문에 에코톤 보존은 인간의 활동이 

자연환경에 미치는 영향을 확인하는 데 달려 있다. 따라서, 지속가능한 

관리방안을 강구하기 위해 도시화로 인해 변화하는 식생동태를 

모니터링하고 그 영향 정도를 평가하고자 하였다. 본 연구는 

도시개발사업의 영향을 받아 변화하는 주연부 범위(25, 50 m 및 100 

m)를 예측하는 정량적 평가도구를 제안하였다. 영향을 평가하기 위한 

지표로는 정규식생지수(NDVI)와 식생건강지수(VHI)가 선정되었으며, 

구글어스엔진(GEE) 플랫폼을 통해 Landsat과 Sentinel 기반의 위성영상 

데이터를 계산하였다. 환경영향평가정보지원시스템(EIASS)의 국가 

인벤토리 데이터를 주요변수로 적용하였으며, ArcGIS 10.5를 통해 

환경공간정보서비스의 토지피복도와 기상청 평균기온 및 강수량 

데이터세트를 구축하였다. 데이터 분석 방법은 인공신경망(ANN)과 

랜덤포레스트(RF) 기계학습 알고리즘을 이용하여 연구대상지의 

식생분포 패턴을 분석하였으며, 에코톤 다중 범위에 따라 식생지수에 

미치는 영향정도를 예측하도록 설정하였다. 분석 결과, NDVI는 주로 

도시개발사업 이후 높은 수치에 집중분포 된 반면, VHI는 사업 전 

수치가 높은 경향을 보여 반대의 추세를 보인 것으로 확인되었다. 이는 

도시녹지 관리 및 도시경관계획을 위한 「도시공원 및 녹지 등에 관한 

법률」의 규정에 따라 새로운 도시녹지를 확충 및 조성에 따른 결과로 

해석된다. 기계학습 모델의 성능 비교결과, RF 모델이 식생 지수와 
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에코톤 거리 모두에서 최적의 예측 성능을 보여주었다. 모델링된 확률 

히트맵은 90% 신뢰 수준(p<10%)에서 유의한 결과를 보여주었다. 또한, 

평가도구를 사용하여 시각화 된 관측값 및 예측값을 비교했을 때 유의한 

결과를 얻을 수 있었다. NDVI와 VHI는 모두 도시개발로 인한 대상지의 

영향이 최대 거리 50m에 달하는 경향을 보였다. 이번 정량평가 도구 

제안은 지역 생태복원에 대한 정보를 제공함으로써 식생관리 측면에서 

환경영향평가의 결정적 역할을 강조할 수 있다는 점에서 의미가 있다. 

도시화에 의한 식생환경에 미치는 영향 정도를 파악하여 식생 피복 

훼손을 최소화하면서 도시개발을 지원할 수 있을 것으로 기대된다. 
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Appendix 

 

Table A 1 Comparison of ANN and RF performance in NDVI from 

Sentinel-2 

Metric 25 m 50 m 100 m 

ANN 0.844 0.784 0.749 

RF 0.925 0.917 0.89 
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Figure A 1 Receiver operating characteristic curves in NDVI calculated by Sentinel-2 for the Random Forest 

machine learning model 
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Figure A 2 The variation of the NDVI derived from Sentinel-2 according to the urban development projects 
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