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Abstract

As the concept of Al and data science is gaining popularity in solving real-world
problems, many application areas are being discussed. Among those, time-series data
is found readily in the real-world — sales data, electric vehicle (EV) battery data,
sensor data from various appliances, stock market data, etc., and is used for anomaly
detection and forecasting to name a few. This research focused on solving the time-
series forecasting problem, where multiple pieces of equipment’s share their results

real-time and help each other forecast one’s own future referring to others’ past

behaviors. In the novel concept of Frontier-Follower Learning, the players are
divided into either Frontiers — whose past behaviors (results) be reference points for
learning by others - , or Followers — who mainly refer to the past behaviors of
Frontiers. Frontiers and Followers are not static but are reassigned dynamically by
the degree of similarity among past data points. Frontiers’ past records are evaluated
by the means of similarity index, which in this paper used dynamic time warping
(DTW), and the information of the Frontiers’ reference data points is fed into the
model only to the degree of its similarity to the Followers’ model. Several scenarios
with cases have been experimented with to validate the concept : base cases with 10
pieces of equipment with different usage behaviors, by increasing the number of
equipment, increasing the time gap among equipment, comparison with teacher-
student network model, and even validation using the real-world data of BXB
corporation. The results proved that the novel concept of evaluating the value of the
information and dynamically updating the model referring to its Frontiers has better
performance. The concept can be further applied to real-world settings where

multiple players respectively have a limited number of past records, but a
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collectively meaningful amount for training.
Keyword : Time-series learning, teacher-student network, dynamic time warping,

similarity index, frontier-follower learning

Student Number : 2020-24711
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Chapter 1. Introduction

Time series forecasting plays a crucial role in solving real-world problems. Financial
institutions want to use it for stock market pricing forecasts, manufacturing
companies to estimate market demand, and supply chain companies to optimize the
use of their supply chain fleet. Nowadays, thanks to the fast introduction of electric
vehicles, time series forecasting is now even used for estimating remaining battery
values as well [5]. In real-world problems, there are environments where multiple
similar equipment data are collected. Energy Consumption [4], EV Batteries [5], and

even household appliances such as fridges and dishwashers could be examples.

Here, 1 would like to bring up two real-world examples that use time-series
forecasting extensively. One of the dishwasher companies wanted to study the aging
issues with their dishwashers. [Fig 1] In the ideal and mature situation, the company
can collect big enough data from devices of their own. However, even though they
wanted to collect data, since the machine requires a lot of electricity to run, and its
wear-down period or end-of-life after the complete usage lifecycle is too long, the
company could not run the tests thus resulting in the limited number of the data.
Even though, the company considers collecting the data from the devices that were
sold, in the new launch period, not enough sales volumes could be attained thus
resulting in the limited number of available data again. The minimum requirement
of the dataset was to have a 10+ year-long dataset with several events that lead to the
wear-down of the device. However, they wanted to use a small number of

dishwashers to forecast the future.



Ideal and mature situation Small data, early-stage situation
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Fig 1. A dishwasher aging problem. LHS shows the ideal and mature situation,
and RHS illustrates the opposite under the limited setting.
Similarly, BXB, a technological subsidiary of Brambles Group in Australia
specialized in data management and analytics for its parent company’s logistics data,
wanted to monitor containers and know when to change the communication module
batteries. [Fig2] The communication module, which is attached to the containers,
transmits critical information on the location of the containers, the external
environment, and most importantly remaining values of the batteries. Since the
module transmits critical information, the company wanted to know when exactly
the module would need to change batteries. However, as it was for the dishwasher
cases, the module uses Bluetooth technology which requires low battery use, and to
save the electricity the information is transmitted in a very limited manner, thus hard

to collect the full cycled battery use information for the model training.
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Fig 2. Forecasting the future remaining values of the battery

Thus, I suggest a FRONTIER-FOLLOWER learning — where participants in the
learning are grouped as FRONTIERS and FOLLOWERS. The FRONTIERS are the
participants who have longer timestamps with extensive usage information, while
the FOLLOWERS are participants who follow the trajectories of the FRONTIERS.
One of the analogies could be found in the investment philosophy of Mr. Son of
Softbank company. Mr. Son invests in companies in East Asia whose business
models are similar to their counterparts in North America. For example, the business
model of Alibaba group of China is similar to Amazon of the USA, and again, the
business model of Coupang is two predecessors. These predecessors can be
considered as Frontiers, and Coupang, a follower can benefit from learning from its
Frontiers’ past experiences. As long as the business models are similar to each other,
ranging from the demographics, competitive landscapes, and customers’ preferences,

similar conditions that Frontiers has already experienced can give valuable

information to the companies that follow years later even in different co jtrles :
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Chapter 2. Related Works

Time-series forecasting is not a new domain. There have been conventional
statistical approaches such as ARIMA (Autoregressive Integrated Moving Average)
[8], exponential smoothing and to name a few. Nowadays, many time-series
forecasting technics are based on Machine Learning techniques, and one of the
notable well-known approaches is RNN (Recurrent Neural Networks) which makes
a chained network where the memory of the past is passed along to the nearby models.
Not to mention LSTM and GRU which are based on the RNN-based approach. Even

some Deep Learning based approaches, such as N-Beats were introduced as well. [9]

With the advent of Transformer-based models [10], even in the domain of Time-
Series, many studies have been conducted to develop based on the Transformers. [2]
However, Transformers were considerably computationally heavy — since it is also
used for large language models and even Zeng. A. et al. proved in their paper, that
even a simple linear model can beat the Transformer-based time-series forecasting
model’s performance. [1] (Detailed explanation of the model architecture is further

described in section 5)

The transformer-based approach in the Time-series model assumes that there is a
semantic embedding among points, however, when it comes to the serial number
where the order of the numbers is important, it is very hard to assume that the
embedding among points exists — which leads to better performance. The linear
model, on the other hand, which uses two components: Decomposition and Linear

components guarantees high efficiency and interpretability, and it is easy to use. [1]



When it comes to the study of similarities between time-series data, DTW (Dynamic
Time Warping) techniques are widely used. [12] DTW lets you calculate between
different time horizons regardless of the actual length difference there might be. The
cosine similarity approach - which is conventionally used for similarity calculation
in word embeddings [13] — is now being considered for time-series learning as well,
and is even tested in sales forecasting. [11] However, time-series learning is prone

to learning the noises leading to bad model performance.

Instead of using the conventional concept of DTW, Soft-DTW will be used here. It
proposes the use of a soft minimum in replacement of the real minimum value. This
enables differentiation so that the gradient can then be used as a gradient to update

the model by backpropagation. [15]

The concept of learning from others was studied in the form of referring to other
similar yet bigger models, or a teacher network. [14] Usually, a teacher network
model is the biggest model that is pre-trained with all available data. Several student
networks, which are presumed to behave similarly to the teacher network are then
trained with their data, while expecting knowledge from the teacher network be

integrated into the training period by ‘knowledge distillation’.



Chapter 3. Approach

For example, if a certain electric vehicle is extensively driven, its time for wearing
down would be faster than the rest of the ordinary electric vehicles. This vehicle can
be considered as one of the FRONTIERS. [Fig 4] The FOLLOWERS, then are
expected to follow the steps of the FRONTIERS. However, there could be some
FOLLOWERS who share similar usage behaviors or preset characteristics to the
certain FRONTIER, while others do not. Based on this intuition, thus, I would like
to introduce a novel approach to incorporate and re-evaluate the value of the
respective data based on the similarities within peers and how much experience the
FRONTIERS are. The FRONTIERS can be constantly changed as time goes by -
since the behavior of the current FRONTIER can easily be replaced with its
CONTENDERS. A frequent update of the relationship among peers makes the model
update every day. The FOLLOWERS learn from FRONTIERS, especially
FOLLOWERS try to follow the trajectories of the FRONTIERS. Like Time-
Machine, the FRONTIERS' prior experience and knowledge are integrated into the

framework.

However, one thing to note is that, there could be multiple FRONTIERS for a single
FOLLOWER, while there could be only one or no FRONTIER for some of the
FOLLOWERS, the positions (roles) for each of the participants in the learning can

change depending on the focus of the models.
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Fig 3. Proposed Approach under three equipment (trucks) situation



Chapter 4. Scenarios

In order to validate the proposed approach, three scenarios including the proposed

approach, FFL (FRONTIER-FOLLOWER LEARNING) can be studied. [Fig 5]

Central Learning is where all data is transmitted and collated in the server, to build
one uniform model. The model is player-agnostic in training and inference.
Individual Learning is where multiple models are built using only respective data of
each of the equipment. The data is not collated together and not shared with other
players in the learning. FFL (FRONTIER — FOLLOWER LEARNING) is where the
data is gathered, and compared simultaneously with each other to calculate the

similarities and differences.

Individual
e s 1 Voo [T e

Central Learning Frontier-Follower Learning

Wm ﬁ W Value
e m W Value S TREY | m

Central Learning is where all data is Individual Learning is where all data is FFL is where the data is gathered, and
transmitted and collated, to build one transmitted but not collated, thus models compared simultaneously with each other to
uniform model, do not interfere with each other calculate the similarities and differences
Description
Central Learning All data is gathered, and collated
Individual Learning Data is gathered, but not collated / Siloed
FFL Data is gathered, and compared. Selectively used for the respective model build

Fig 4. Central Learning, Individual Learning, and FFL (FRONTIER-FOLLOWER
LEARNING) in regards to its use of individual data and training
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Chapter 5. Frontier-Follower Learning (FFL)

Algorithm

5-1. How it works

FFL Algorithm is based on the DLinear model. [1] The DLinear model is a
Decomposition Linear model which showed simple yet powerful performance in
forecasting the future. The reason for choosing this basic model is that a single-layer
linear network is the simplest model that can compress information from the past to
predict the future. Plus, in the previous studies, the time series decomposition was
proven to improve the performance of Transformer-based models — which is also

applicable to linear models in that it is model-agnostic.

The model is composed of a decomposition component and a linear network
component. In the decomposition component, it decomposes the data into the trend

part and the remainder, which are trained independently and then merged. [Fig 5]
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Linear layer

'
1| Prediction window
|
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Prediction
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Trend Linear layer
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I

|

Lookback window _|!

Fig 5. Illustration of DLinear Model
Imagine, there are three players in the model. [Fig 6] FRONTIER 1 (Red),
FRONTIER 2 (Green), and FOLLOWER (Blue). The objective of the example is to
forecast the FOLLOWER’s future based on the data from FRONTIERs. The

9



historical timestamps — denoted as X values, and prediction timestamps — denoted as

Y are paired to be fed into the model on the rolling window basis. Each set of

historical and prediction timestamps are paired up to be fed into the model.

Data feed-in (Rolling Windows)

1000 A
'\\
N\,
800 \'\_\
N
600
o
=4
3
=]
400
200 -
° R A
L . ‘ . . ,
0 200 400 600 800 1000

|
FRONTIER 1
X2

Paired

Split the data by rolling windows (i.e.

Lookback X1, Forecast Y1) and make pairs

Fig 6. How data is fed into the model
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Fig 7. FFL Model Training

When training the model in FFL, the training takes five steps [Fig 7]:

10



(1) The FOLLOWER’s data (Blue) is fed into the model, the Loss is calculated
for the backpropagation, and the model is trained

(2) The FOLLOWER’s data is then compared with one of the FRONTIER’s
data (Red / Green) for Similarity Calculation [Fig 8]. Each of the data
passes through the encoder and decoder network to calculate the cosine
similarity. [3]

(3) The FRONTIER’s data (Red / Green) is fed into the model, and the
Frontier Loss is calculated for the backpropagation.

(4) The Gradient from (3) is then multiplied with the “Sim” value from (2) and
the model is trained

(5) Repeat for all the relevant data points

DTW Value Sim1

T

Reciprocal

Fig 8. Similarity Calculation

Here are the highlights of the algorithm. Multiple time-series can be compared by
single value — dynamic time warping (DTW) similarity. DTW is a metric used to
calculate the warping distance — based on the Euclidean distance between two time
series points. DTW is appropriate for the analysis since it can compare two time

X 2 11 &1
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series values in different timestamps. The smaller the value is, the more similar two
timeseries are : thus, reciprocal values are used to define the similarity. The similarity
index is then multiplied by the gradient which feeds in the information to the model

on a relative scale.

Cosine similarity, whose calculation considers the latent values, is a metric for
measuring distance when the vector size does not matter. Since the magnitude of the
time-series values is not of our interest, cosine similarity was also considered as one
of the similarity metrics for the model training. However, the cosine similarity is
well known for being prone to training noises — which is not suitable for this case
where the number of the data points goes well beyond 1,500 points. Thus, DTW was

chosen as a metric for the similarity index.

Plus, the Frontier-Follower Learning framework is model agnostic. The similarity
index can be plug-and-played for every model of interest. Here, as discussed earlier,
the linear model is used for its computation efficiency and proven track record, but
the framework is independent of the types of the models — which gives the freedom

of model selection.

5-2. Comparison with teacher-student network

As covered in Chapter 2, FFL concept can be considered similar to that of the
teacher-student network. A teacher network model, which is trained with other bigger
datasets, can give relevant information to the student model. [14]. The difference

comes from that in the teacher-student network, the teacher model is trained with its

. 2] 2 1)



own data, and the data itself is not considered in training the student model — the
model of interest. The research focused on whether the differences from the input of
data and calculating the differences among data make differences in the results as
well. Instead of comparing the single datasets, the module of training a student model
is composed of calculating the distillation loss. Referring to the original concept of
the teacher-student network where the knowledge distillation captures the
information and pass to the student model, the teacher-student network was built in
two steps. [Fig 10] First, build a teacher model (individual model) based on the data
of that particular model (here, blue model). Second, train a student model following

the steps below:

(1) Feed in the data of the Blue model, X1, into the Red model and return the
output value, Y1’

(2) Feed in the data of the Blue model, X1, into the Blue model and return the
output value, Y1~

(3) Calculate the loss between Y1’ and Y17, which is a distillation loss

(4) Calculate the loss between Y17 and Y1 (the real data), which is a student
loss

(5) Add two losses, distillation loss, and student loss, and update the model

based on the gradient from the loss

13 A 22 TH
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Fig 10. Build a teacher student network

In FFL, all datasets are compared and similarities are calculated with their peers
(frontiers). Thus, the relevant information from the other datasets is fed into the
model directly via gradient, resulting in better performance. The magnitude of the

information from the main model, and the rest are collectively combined.

In the teacher-student network model, the information on each of the datapoints is
collected in the format of model, and its distillation loss which contains the info is
calculated. The model is updated via the loss fed from the frontiers’ models. Efficient

only when the big overarching model exists.
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Chapter 6. Experiment

6-1. Overview

Three scenarios including FFL have been preliminarily experimented with. For the
experiment to validate the FFL approach, the dataset has been synthesized with 1,000
timestamps. Each of the pieces of equipment were given with respective behaviors.
Two major parameters that influence virtual situation was (1) Usage Patterns, and (2)
External / Shared environment. [Fig 11]

Scenario 1

1000 1

-

g Health Information:
. Cycle Count: 58
g 3 Condition: Normal
w1 Maximum Capacity: 99%
200 3 Macbook’s battery information

0 200 400 600 800 1000
Date

2 External / Shared

Fig 11. Experiment data synthesis rationale

Dual-angular approach

Consider both the usage pattern and the external factored data together for the

similarity calculation and training:

(1) Usage Pattern
Depending on the equipment usage behavior, the health of the battery and dropping
rate is different. i.e., the more cycles the battery went through, the less capacity it

has, and also the dropping rate and behavior. [Fig 10] The accelerated deteriorating
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behavior was considered in building the data-generating module.

(2) External / Shared
At a certain period, the external/shared environment has an impact on the values. i.e.,
at a certain date, if there were severe outside weather conditions, the behaviors might

have been affected altogether.

6-2. Cases and datasets

The three scenarios (Central learning, Individual learning, and FFL) were
experimented with in five major cases using synthetic data that resembles the real-
world dataset. Those five cases consist of (1) Base cases, where the same/different
time and starting values were tested, (2) Long and short time cases, where different
time gaps among equipment were tested, (3) More number of pieces of equipment
cases, where the number of equipment increased by two times, and four times, (4)
Different usage behaviors cases, where the different intensity of the usage behaviors
was tested, and (5) Teacher-student network. The experiment is then further

expanded to validate the idea using the real-world data of BXB technologies.

As adefault setting, 1,000 hypothetical days of data are synthesized for 10 equipment

(1) Base case (with four sub-cases)
* Case 1-1. Same starting time, same starting value
* Case 1-2. Different starting time, same starting value

* Case 1-3. Same starting time, different starting value

16 M 2t} &



* Case 1-4. Different starting time, Different starting value

Fig 12. Conditions and plots for case 1

(2) Long and short time periods
Different time gaps among equipment, as the gap between each of the equipment are
wider, the more room for learning from past experience with more data points.
*  Case 2-0 : Same as Case 1-2 for reference
* Case 2-1: -25 for low 5 equipment / +200 for top 5 equipment to widen 125
timestamps
*  Case 2-2 : -50 for low 5 equipment / +400 for top 5 equipment to widen 125

timestamps

Case 1-2/ Original

Case 2-1 Case 22

1000 o 200 400 600 800 1000

Fig 13. Conditions and plots for case 2

(3) Various number of equipment
More number of equipment, as the number of equipment increases, the more data
points to learn from. However, the time for learning might get longer.

* Case 3-0 : Same as Case 1-2 for reference, 10 equipment

¥ 5 2] 8 5



* Case 3-1 : 20 equipment
* Case 3-2 : 40 equipment

Case 3-0 Case 3-1 Case 32

Voltage %

200 400 600 800 1000
Days oays

Fig 14. Conditions and plots for case 3

(4) Different usage behaviors

Under the imaginary case where equipments are from different manufacturers,

hypothetically, each piece of equipment might behave differently

Case 4-0 : Homogenous equipment, all the equipment behaves identically

Case 4-1 : Heterogenous equipment with mild usage behavior

Case 4-2 : Heterogenous equipment with heavy usage behavior

Homogeneous equipment Heterogeneous equipment

Hetero 1 Hetero 2
1001 w A N

100

Voltage %
2

Voltage %
Voltage %

] 200 “ & 800 1000 Py o F o 50
s Days 200 400 600 800 1000
Days

Fig 15. Conditions and plots for case 4

(5) Teacher-student network

The data and the settings are the same as its reference case, Case 1-2.

(6) Real-world data (BXB)
18 ; .-"{-| '.::'i' ]_-l| 'f:-'-_l_l' -|_]|r_

F e



BXB shared 12,668 records (data points) for 10 devices of the dataset which were
collected from the device attached to the containers around the world [Fig 2]. The
dataset is composed of 26 columns which included server time, device time, link,
message type, types, counter, temperatures, accelerator, voltage, timestamp, etc. The
voltage, which is a proxy for the battery life, drops when the energy is consumed and
the information kept (e.g., messages, and message types) could have used energy to
drop the voltage levels. [Fig 16] Raw data is pre-processed in terms of noise handling

and timestamps adjustment so that it resulted in the 160-day-long dataset with 10

devices.

350

| TR
310 ' - Wu »&Mﬂ -”Tj ‘ll' l‘

—t—T T T—t+—T—T— T t T T T +— T t T
5/2020 7/2020 9/2020 11/2020 1/2021

330 4

\oltage

320 3

"

Datetime

Fig 16. Voltage level movement for one of the devices

The research here is to focus on the univariate time-series forecasting model, thus,
the relationship between time and voltage is investigated. [Fig 17] Unlike the
synthetic data used for the hypothetical cases discussed above, BXB did not have
enough data that span the entire lifecycle for each of the devices which resulted in

limited experiments and the results will be discussed in the following Chapter 7.
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0 20 40 60 80 100 120 140 160
Days

Fig 17. BXB dataset

6-3. Results

As used in the DLinear work and other previous works, following previous works
[1, 7], Mean Squared Error (MSE) and Mean Absolute Error (MAE) are calculated
as metrics. However, to minimize the impact/influence of the different distributions
each of the data is coming from, the entire dataset has been normalized between 0
and 1 for model training. Thus, MSE results are getting too small for the value being

between 0 and 1, so that MAE is primarily investigated for the result interpretation.

[Case 1] Base case — same/different starting time, same/different starting value

MSE MAE
Description
CL IL FFL CL L FFL
1-1 Same starting time, starting value 0.3982 0.0656 0.0407 1.6207 0.5616 0.4172
1-2 Different starting time, same starting value 0.2830 0.0757 0.0593 1.3495 0.6313 0.4482
Case 1
1-3 Same starting time, different starting value 0.2023 0.0066 0.0016 1.0531 0.0504 0.0236
1-4 Different starting time, starting value 0.2586 0.0068 0.0047 1.2510 0.1811 0.1491

For all cases, FFL showed better performance than CL and IL. Case 1-3, generally
showed better performance than other cases since it all starts at the same starting

time, which implies that there were more data points to refer to, and different starting
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values give them a clear distinction between frontiers and followers compared to

case 1-1.
1.6207 MAE
1.3495 CL
1.251 IL
1.0531 I FFL
0.5616 06313
0.4172 0.4482
0.1811 1491
0.0504 0236 -_
1-1 12 13 14
[Case 2] Long- and short-time horizons
MSE MAE
Description
CL IL FFL CL L FFL
1-2 Ref. 0.2830 0.0757 0.0593 1.3495 0.6313 0.4482
c‘?::cz 21 225 time gap 0.3156 0.0086 0.0069 1.5405 0.1860 0.1634
2-2 450 time gap 0.4124 0.0082 0.0064 1.7869 0.1728 0.1602

For CL, as the time gap widens the accuracy went down since it does not take into
consideration the value of the different information. However, for FFL, wider time
gap among agents gave explicit distinction between frontier and followers, leading
to better performance than CL and IL scenarios. Also, there was a slight better gain
in the performance between 225 timestamps case, and the 450 timestamps case. It
implies that the greater number of points to compare to, either by increasing the
number of equipment or the number of Frontiers, the better performance a model can

expect.

21 "':l"\-_s _'\-\.I:-'_ T



=
>
m

1.7869 cL
1.5405 IL
1.3495 M FFL
0.6313
0.4482
. 0.1860 0.1634 0.1728 0.1602
0 (Ref) 225 time gap 450 time gap
[Case 3] Various number of equipment
MSE MAE
Description
CL L FFL CL L FFL
1-2 Ref (10 devices) 0.0283 0.0076 0.0059 0.1350 0.0631 0.0478
Case3 | 3-1 20 devices 0.0308 0.0103 0.0061 0.1527 0.0730 0.0374
32 40 devices 0.0203 0.0132 0.0119 0.1160 0.0534 0.0254

The overall MAE result is downward trend. FFL went down from equipment # 10 to
20, while CL and IL’s accuracy went worse. However, from equipment # 20 to 40,
FFL’s performance did not increase drastically, and is since there were many
followers not frontiers, thus the information gained from similarity values did not

increase to sufficient #.

MAE
0.1527 CL
0.135 IL
0.116 I FFL
0.073
0.0631
0.0478 0.0534
0.0374
. 0.0254
10 20 40
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[Case 4] Usage behaviors

MSE MAE
Description
CL L FFL CL L FFL
4-0 Homogeneous 0.4331 0.0259 0.0045 1.7067 0.3033 0.1315
Case 4 41 Heterogeneous (Mild use) 0.1098 0.2617 0.2849 0.8167 0.6190 0.6120
4-2 Heterogeneous (Heavy use) 0.6238 0.0010 0.0017 24288 0.0906 0.0862

Regardless of the usage behaviors or homogeneity of the equipment, FFL showed
better performance than CL and IL. However, in the case of heavy usage (where the
voltage value dropped faster than mile usage case), the accuracy gap between CL
and FFL is more drastic than that of other cases. It can be comprehended as since all
the voltage values drop fast, there is limited room for noise to take part in thus

resulting in, so bigger odds for FFL to find similarities from the Frontiers.

MAE
2.4288 CL
IL
1.7067 I PR
0.8167
0.619 0.612
0.3033
0.1315 0.0906 0.0862
I —
10 20 40
[Case 5] Teacher-Student Network
MSE MAE
Description
CL IL FFL CL IL FFL
1-2 (ref) 0.2830 0.0757 | 0.0593 1.3495 0.6313 | 0.4482
Gases TSN Teacher-student network model N/A N/A 0.0976 N/A N/A 0.7908

Compared to the teacher-student network (TSN), FFL showed ~76% better

performance. Even though TSN had lower MAE than CL, it could not beat either IL
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or FFL. Training the model based on the second-hand information by the means of

knowledge distillation did not show sufficient performance.

AE
1.3495 CL
IL
B FrL
o 0.7908 B TSN
0.6313
04482  ~——_—
C1-2 TSN
[Case 6] Real data (BXB)
MSE MAE
Description
CL L FFL CcL L FFL
BXB* I Real l BXB Dataset for 10 devices 10.9086 10.6686 9.6428 6.5916 6.1848 5.5706

FFL showed better performance compared to CL and IL by 15%. However, due to
the limited number of data points, only limited experiment could be conducted, and

resulting in the limited enhance performance of FFL compared to CL and IL

MAE
cL
6.5916 -
-6.1848---y M FrL
5.5706
BXB
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Chapter 7. Interpretation

In most cases, FFL resulted in better performance compared to Central Learning(CL)
and Individual Learning(IL). Even though the degrees of better performance vary by
cases investigated, in general, FFL proved its value. In the study to compare with
already existing concepts in order to validate the novelty, the Teacher-student
network showed less accuracy compared to FFL. It implies that the direct
comparison of the data points has better performance. Teacher student network is
more suitable for cases where soft labels exist (i.e., deep learning image
classification), but not for time-series data training where the soft labels do not exist

and the size of the data for training is not too computationally heavy.

In the cases of testing robustness, even when the number of equipment increases,
FFL still showed better performance compared to CL and IL. The higher the time
gap between equipment is, the higher the performance is. It is due to more data points
collected from the past frontiers helping followers make more reference points. The
types of equipment — whether the equipment is completely identical or not - have
limited influence on the results. It implies that the concept of FFL can be further
utilized for the cases even when the origin of the data is slightly different (i.e.,
utilizing the data streamed from the older version of an electronics model for the

newer version).

Due to a limited number of samples, BXB data could not be fully studied - no full
cycle data was provided, however, still in the BXB case, FFL showed better

performance compared to CL and IL.
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Fig 18. Training time by # of equipment

When it comes to real-world utilization, the time used for training matters. Even
though the accuracy of the novel idea is higher than the conventional approach, if it
takes longer training, then the business value of the novel idea cannot be
comprehensible. In the empirical study, the elapsed time for training has increased
by O(NlogN). Although the number of equipment increased, its training time did not

grow exponentially.

However, if the number of timestamps to refer to increases, the time needed for
training and inference might go beyond the expected limit boundary. In order to cater
to this, one can consider using only selective datasets that contain the most
information. Only vertical usage patterns from [Fig 11] could be considered, and the
results showed roughly much faster training time of 147% reduction with a 17% of
performance trade-off. (Lower performance). When external conditions are similar,
thus its influence on the model training is limited, the approach of smaller training

can be considered as well.
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MSE MAE .
Description t_Trammg
FFL FFL ime (sec.)
Selective Model only using selective usage patterns 0.0739 0.6062 1,097
Ref. | 11 Original model 0.0531 0.5025 444
@ @ M Selective
0.6062 Original

0.5025

1097

Training time (Seconds)

There are mainly two values for using FFL. First, Learn-as-you-go. The model does

not request to wait until all the data is gathered — until the end of life. However, the

model lets you have the best possible result, by evaluating the value of the

information gathered as of now and approximate based on the similarities among

followers. Second, the model lets you multiply unusual rare cases. When collecting

data from containers worldwide, rare cases might happen — certain behaviors are

seldom captured. To investigate the issues associated with the rare cases, one must

gather very long-time horizon data — which is inefficient and time-consuming. If we

can use the data of other similar frontiers, it will eventually make us use multiplied

rare cases with minimal efforts.
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Chapter 8. Conclusion / Future works

The study started by solving the real-world problem: how to efficiently build and
train the models in the low data regime — especially where identical players
(equipment) are in the different stages of respective life cycles. The novel idea of
evaluating the value of the information fed into the model and selectively training
the model was examined. Under the controlled environments of 10,000 ~ 15,000 data
records for each of the cases, the novel idea, Frontier-Follower-Learning (FFL)
proved its potential by showing better performance than the conventional approaches.
Even when the real data was tested, FFL proved its better performance than the
conventional approaches. The learnings from this algorithm can be further tested and
utilized in settings where distributed systems exist: such as an electric vehicle battery
management system to better forecast the state and health of each battery,
airplane/vessel parts that deteriorate over multiple times all around the world, etc.
Further study on the additional datasets to validate solving real-world problems is

needed.
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