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Abstract 

 
Transformer is the most popular Neural Network Architecture 

currently achieving state-of-art in various fields. Therefore, many 

people have tried to quantize this model so that inference can be made 

only with integer arithmetic (Integer-only Quantization) so that it 

can operate on edge devices. However, there were constraints for 

the general hardware and efficient calculation of non-linear functions, 

so the quantization method did not change significantly. Therefore, 

we studied new methods that can be used in Integer-only 

Quantization to overcome the limitations of existing methods. 
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Chapter 1. Introduction 
 

 

1.1. Purpose of Research 
 

Transformer([20]) is currently one of the most popular neural 

network model structures. Transformer is achieving State of Art 

performance in various fields such as NLP ([12], [14], [20], [2])and 

Computer Vision([5]). However, despite these promising results, it 

is becoming more difficult to actually use them due to the complex 

structure and the gradually increasing model size. Therefore, it is one 

of the essential tasks to adjust the model so that it can operate with 

a device which has limited resource. 

 

Quantization([8], [7]) is one of the best ways to solve this problem 

which converts the parameters of the model to low precision. This 

process can reduce the model's accuracy but can significantly reduce 

the model size. In addition, by applying quantization to activation can 

substantially improve the inference time by changing the floating 

point operation required for inference to an int operation. Many 

previous studies have already shown that quantization can be used 

successfully in various model structures such as CNN([11], [22], 

[6]) and RNN([23]). 

 

Many previous studies have shown that quantization can be 

successfully applied to Transformers as well. However, most 

studies([18], [4], [3]) have used the simulated quantization method, 

which means that even if the model parameters are stored at low 

precision, all or part of the values is calculated using floating points 

during inference. This means that it is difficult to apply to some edge 

devices specialized for integer arithmetic. Also, compared to 

Integer-only quantization, in which all calculations are performed 

only by Int operations, this method has difficulties in obtaining 

benefits in areas such as latency, power consumption, and area 

efficiency. In particular, this difference becomes even more 
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pronounced when supporting fast, low-precision operations such as 

NVIDIA V100 and Titan RTX([10]). 

 

To solve this problem, I-BERT([12]) and I-ViT([13]) proposed a 

method of compressing the transformer using integer-only 

quantization. They offered an approximation formula that allows 

non-linear functions such as GeLU([9]), Softmax, and Layer 

Normalization([1]) to operate only with integer and can achieve 

successful performance. However, as it only quantizes the model with 

int8, it did not show a higher compression rate compared to the 

method using simulated quantization. 

 

Therefore, in this study, we propose a quantization method that can 

solve these limitations. We study new integer-only quantization 

methods using only low bits (e.g., int8, int4) and a strategy to reduce 

the error that occurs by using low bits. The specific details are as 

follows. 

 

⚫ We propose new quantization methods called Pseudo Float 

Quantization (PFQ) and Group Quantization (GQ) for Integer-

only Quantization. PFQ can express a wide range of numbers 

using only low-bit, enabling us to effectively quantize the 

value of the variance skewed to 0, like the weight of the 

Neural Network. GQ considers the NPU(Neural Processing 

Unit),  so that it can operate efficiently in most hardware. 

⚫ We propose an error compensation method based on Taylor 

Expansion to solve quantization errors in non-linear 

functions. As the non-linear function operates only with 

integers, the overflow problem can occur, but this method can 

reduce quantization error freely from this problem. 

 

1.2. Related Work 
 

Quantization refers to a method of expressing continuous values 

with low precision. In some cases, the model's size is reduced by 
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quantizing the parameters of the neural network model. The 

inference time is greatly improved by quantizing the activation value 

so that the operations required for inference operate only in int. it 

may reduce accuracy to some extent because it cannot accurately 

represent the actual value. Still, many studies have confirmed that it 

is possible to trade off accuracy and performance at an appropriate 

level when using fp16 or int8. 

 

Quantization is classified into uniform and non-uniform 

quantization according to the interval of quantized values. Uniform 

quantization is a method to keep the gap of quantized values constant, 

and Symmetric Uniform Quantization([11], SUQ) is the most 

representative. It performs quantization using only scaling and 

rounding, and because the operation is simple, the operation speed is 

fast, and it works well on all hardware. In addition, quantized values 

can be efficiently processed even when complex operations, such as 

non-linear operations, need to be applied. 

 

Non-uniform quantization([16], [17]) is a method in which the 

intervals of quantized values are not constant. Since quantization is 

performed considering the distribution of actual values, less 

quantization error occurs compared to uniform quantization. Various 

methods, such as log and cluster, are used. Among them, the usual 

way mainly applied to the transformer is Binary Coding Quantization 

(BCQ, [19]). BCQ will express the weight parameter as the sum of 

the 1-bit matrix with fp32 as the weight. Since the matrix consists 

of 1-bit, it is possible to compress it at a high level, and it has the 

advantage of being able to control the quantization error by adjusting 

the number of matrices. However, hardware that can efficiently 

operate Matrix Multiplication (MMP) operation with a 1-bit matrix is 

required for speed improvement([18]). There is a problem that a 

process is necessary. 

 

Since expressing all layers of a neural network model with low 

bits can significantly reduce accuracy, methods of applying different 
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precision to each layer have been actively studied. This method is 

called mixed-precision quantization. Usually, quantization sensitivity 

is measured using the degree of quantization of each layer on the 

result. After that, the level of precision to be applied to each layer is 

determined based on this. In the case of the transformer([3], [4]), it 

has been confirmed through various experiments that non-linear 

functions such as GeLU, Softmax, and LayerNorm and the Feed 

Forward Layer of the Encoder/Decoder Layer are sensitive to 

quantization. 

 

Chapter 2. Method 
 

We suppose that minimizing the error caused by quantization is crucial 

to maintain accuracy even after performing quantization. In addition, 

in Integer-only Quantization, it is important that variables in each layer 

be quantized to share the same fp32 value in order to separate integer 

and float operations during inference, so we considered this condition 

can be satisfied. 

 

2.1. Pseudo Float Quantization 
 

To reduce the error caused by quantization, it is essential to express 

the actual value using the broadest possible range of numbers. 

However, there is a clear limit to the degree of numbers that low-bit 

can represent. We expressed the quantized value using the floating-

point format to overcome this limitation. We first set an appropriate 

scale value and then proceeded with quantization through the same 

process as scaling quantization. Then, each quantized value can be 

expressed as two low-bit values. The actual value is expressed as 

follows. 

 

r ≈ s × q ≈ s × 2𝑞𝑒 × 𝑞𝑚 

 

q𝑒 , 𝑞𝑚  is expressed using b𝑒 , 𝑏𝑚  bit, 0 ≤  qe ≤  2𝑏𝑒 − 1, −2{bm−1} ≤

 q𝑚  ≤  2b𝑚−1  −  1 . When the quantized value is not accurately 
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expressed in the form above, the quantized value can be changed to 

the closest value that can be expressed. 

 

 One value is expressed using an exponent of 2 because if both 

values are expressed as int4, three int4 values are multiplied during 

the actual Matrix Multiplication operation. This process deals with 

different precision, such as int4 and int8. This is because there is a 

problem with calculating. To solve this problem, an exponent of 2 is 

used, which replaces one multiplication operation with a bit-shift 

function to minimize the cost required for the process. 

 

The scaling factor of this method becomes exponentially smaller so 

it cannot express large values in detail. Therefore, the quantization 

error of a small value can be significantly reduced, but when the value 

is large, the quantization error does not change. Thus, a significant 

effect can be seen when most values are biased toward the small side 

and there are a few outliers. Fortunately, most Neural Network 

weights follow this distribution in practice, so we can say that 

quantization like this is appropriate. 

 

2.2. Group Quantization 
 

Pseudo Float Quantization has the advantage of being able to express 

the distribution of parameters of a neural network well. However, 

since each parameter has a different coefficient, there is a problem 

that NPU operations such as Tensor Core, which is operated in group 

units, cannot be used. NPU has the disadvantage that only specific 

operations cannot be performed, such as GEMM, but it has the 

advantage of being able to process the operation very quickly. 

Therefore, we have improved the existing quantization method to use 

these calculation devices. 

 

First, since NPU calculation is performed in group units, each 

calculated group must have the same coefficient value. Therefore, we 

set the operation unit as a quantization group size and apply SUQ. 
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Also, for non-linear functions to be processed only with integer 

arithmetic, all parameters must be expressed only as integers except 

for common float scale values. For this purpose, we quantized the 

scale value of each group once more. 

 

r ≈
𝐺

𝑁
⋅ 𝑞𝑥 =  

𝑋

𝑁
 
𝐺

𝑋
⋅ 𝑞𝑥 ≈

𝑋

𝑁
⋅ 𝑠𝑔 ⋅ 𝑞𝑔 ⋅ 𝑞𝑥 = 𝑠 ⋅ 𝑞𝑔 ⋅ 𝑞𝑥 

 

Above, N  means 2(𝑏𝑖𝑡−1) − 1 , G  and X  mean the largest absolute 

value in the group and total of parameters. We compared the variance 

of error (α) when quantizing a group's scale value. We confirmed that 

the error is sufficiently small when the scale values of the group are 

quantized using the quantization bit applied to each group. 
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This method does not accurately express the distribution of 

parameters, but because quantization is performed for each group, it 

shows some strength in outliers. In addition, since we quantized the 

scale value of each group once more, it requires only a bit more 

memory than the existing scale quantization (about 1/256 of the total 

when quantized with int8 under the assumption that Tensor Core is 

used). Since the unit is considered, it is possible to process quickly. 

 

2.3. Error Compensation using Taylor Expansion 
 

The above two methods minimized the error of the weight parameter 

to improve the accuracy. However, the above methods cannot be 

applied to non-linear functions without weight parameters. 

Therefore, we find out how to minimize the error in the non-linear 

function changed to operate only with Integer arithmetic. 
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I-BERT([12]) showed that non-linear functions mainly used in 

Transformer structures could be sufficiently approximated by 

integer arithmetic. However, since the operation process involves 

repetitive operations between integers, the risk of overflow may 

occur. Therefore, there is a limit to how to reduce the error by 

increasing the quantization bit. In this situation, we tried to reduce 

the error by using Error Compensation. This has the advantage that 

it can be easily applied anywhere because there is no need to change 

the previously presented formula. 

 

Taylor expansion was used to approximate the error caused by 

quantization. Non-linear functions can be expressed by Taylor 

expansion as in the equation below, 𝑓′(𝑞𝑥) represents the Jacobian 

Matrix. Since there is a limit to the values that can be expressed 

using only integers, all terms corresponding to O(ϵ𝑥) are ignored. 

 

𝑓(𝑥) ≈ 𝑓(𝑞𝑥) + 𝑓′(𝑞𝑥) ⋅ 𝜖𝑥 

 

Since derivatives are defined in all non-linear functions, it is possible 

to calculate the second term using them. However, it does not 

guarantee that the computation of the second term is simple. In the 

case of GeLU, Softmax the calculation process was very complicated. 

On the other hand, in the case of LayerNorm, it was possible to 

calculate quickly because the Jacobian Matrix could be approximated 

with a Diagonal Matrix. In addition, since the standard deviation 

calculation formula in LayerNorm was a section where overflow 

frequently occurred, it was used to reduce the error. 

 

Chapter 3. Experiments 
 

3.1. Quantization Error 
 

In order to show that the quantization method proposed by us 

dramatically reduces errors, the errors were measured by quantizing 
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the weights of the GPT-2 model provided by Huggingface. 

Quantization bit used 4-bit and 8-bit. In the case of PFQ, the 

exponent is also 4 bits when mantissa is 4-bit, and only a 2-bit 

exponent term is used to prevent overflow problem when mantissa is 

8-bit. It is possible to check the detailed results from the graph in 

Figure 1. 

 

Figure 1. Quantization Error according to quantization method. x-axis means 

weight of i-th Linear Layer of GPT-2 

Looking at the graph, we can see that the proposed method has a 

lower error than the existing methods. In addition, it can be confirmed 

that the error is slightly lower when quantized with bits such as PFQ 

rather than Group Quantization. In particular, when the PFQ method 

was used with 4-bit, it showed better performance than the 8-bit 

quantization that occupies the same memory. 

 

Next, we measured the performance of Error Compensation. The 

IntLayerNorm proposed by I-BERT was used, and the error was 

measured by changing the quantization bit applied to the input. For 

the error used for Error Compensation, a 8-bit quantized value was 
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used. 

 

Figure 2. Quantization Error of LayerNorm. There was a good effect was in the 

original LayerNorm, but no significant effect was shown in the LayerNorm 

converted to integer arithmetic version. 

It was confirmed that the error was significantly reduced when Error 

Compensation was applied to the original LayerNorm. However, 

IntLayerNorm, composed of integer arithmetic, had no significant 

effect. We thought this phenomenon occurred because the Jacobian 

obtained from IntLayerNorm was inaccurate, and its error was more 

significant than the error reduction amount by Error Compensation. 

 

Finally, we measured the accuracy of MRPC Task using the Robert-

base model. In the case of some methods, it was impossible to 

implement them optimally, so the accuracy was measured using 

simulated quantization. Embedding Layer and Activation were 

implemented using 8-bit Scaling Quantization because it took a long 

time for quantization, and there were cases where Group Quantization, 

which is applied due to the size of the group, could not be applied. 

Therefore, the model size and performance were measured by 

applying various bits and quantization methods only to all weights of 

the linear layer. For non-linear functions, the method proposed by 
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I-BERT was used as it is. In addition, in the case of the experiment 

below, the performance was measured immediately after proceeding 

only with quantization without independent learning. 

 

 Precision 

(bit) 

Model Size 

(MB) 

Accuracy w/o 

Finetuning (%) 

Accuracy after 

Finetuning (%) 

Original 32 928.793 87.75 - 

PFQ(int8) 10(2+8) 290.522 88.48 87.99 

GQ(int8) 8.024 232.814 88.24 87.74 

PFQ(int4) 8(4+4) 232.497 87.01 87.99 

Int8 8 232.497 87.99 88.23 

GQ(int6) 6.018 174.789 87.00 87.99 

PFQ(int4) 6(2+4) 174.473 83.82 88.48 

Int6 6 174.473 80.64 86.76 

GQ(int4) 4.012 116.765 79.41 80.39 

Int4 4 116.448 62.01 68.38 

Table 1. Comparison of accuracy and quantized model size of roberta-base  

according to quantization method and precision 

From the table above, we can confirm that when the quantization 

error is small, high accuracy can be preserved without additional 

training . In particular, it was confirmed that the size of the model is 

comparable to SUQ, even when Group Quantization was applied. In 

addition, when less than 8-bit, the difference in accuracy with SUQ 

began to appear clearly, and when 4-bit was applied, Accuracy of 

SUQ was reduced to less than 70%, but GQ maintained about 80%. 

 

Chapter 4. Conclusion 
 

In this study, we looked at various ways to improve the performance 

of Integer-only Quantization. All methods identified were able to 

reduce errors due to quantization compared to the previous ones. 

However, some quantization methods were almost impossible to 

implement in the current software and hardware, and in the case of 

Error Compensation, there was no significant effect. However, 

suppose an environment in which this can be implemented is given. 
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In that case, high-performance improvement can be expected, Error 

Compensation is also thought to be a good solution to solve the 

overflow of non-linear operation if additional research is conducted. 
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Abstract 

Transformer는 다양한 분야에서 최고 성능을 달성한 현재 가장 유명한 

인공 신경망 구조이다. 따라서 많은 사람들이 이 모델의 추론이 정수 연

산으로만 이루어질 수 있도록 양자화(Integer-only Quantization)를 적

용하여 엣지 장치에서도 동작할 수 있도록 하고자 하였다. 하지만, 일반적

인 하드웨어의 연산 특징과 비선형 함수의 효율적인 계산을 위해 제약조

건이 존재하였고, 때문에 양자화 방법은 크게 달라지지 않았다. 따라서 우

리는 Integer-only Quantization에서 사용할 수 있는 새로운 방법들을 

연구하여, 기존의 방법들의 한계를 넘을 수 있도록 하였다. 
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