

저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

Master’s Thesis of Cho Gyeongje

Efficient Methods for Integer only

Quantization

February 2023

Graduate School of Data Science

Seoul National University

 Data Science Major

Cho Gyeongje

Efficient Methods for Integer only

Quantization

Name of Examiner

Submitting a master’s thesis of
Data Science

March 2023

Graduate School of Data Science

Seoul National University
Data Science Major

Cho Gyeongje

Confirming the master’s thesis written by

Cho Gyeongje

Month Year

Chair (Seal)

Vice Chair (Seal)

Examiner (Seal)

 i

Abstract

Transformer is the most popular Neural Network Architecture

currently achieving state-of-art in various fields. Therefore, many

people have tried to quantize this model so that inference can be made

only with integer arithmetic (Integer-only Quantization) so that it

can operate on edge devices. However, there were constraints for

the general hardware and efficient calculation of non-linear functions,

so the quantization method did not change significantly. Therefore,

we studied new methods that can be used in Integer-only

Quantization to overcome the limitations of existing methods.

Keyword : Quantization, Machine Learning, Transformer,

Student Number : 2021-24348

 ii

Table of Contents

Chapter 1. Introduction .. 1

Chapter 2. Method ... 2

Chapter 3. Experiments ... 7

Chapter 4. Conclusion .. 10

Bibliography ... 12

Abstract in Korean .. 15

 １

Chapter 1. Introduction

1.1. Purpose of Research

Transformer([20]) is currently one of the most popular neural

network model structures. Transformer is achieving State of Art

performance in various fields such as NLP ([12], [14], [20], [2])and

Computer Vision([5]). However, despite these promising results, it

is becoming more difficult to actually use them due to the complex

structure and the gradually increasing model size. Therefore, it is one

of the essential tasks to adjust the model so that it can operate with

a device which has limited resource.

Quantization([8], [7]) is one of the best ways to solve this problem

which converts the parameters of the model to low precision. This

process can reduce the model's accuracy but can significantly reduce

the model size. In addition, by applying quantization to activation can

substantially improve the inference time by changing the floating

point operation required for inference to an int operation. Many

previous studies have already shown that quantization can be used

successfully in various model structures such as CNN([11], [22],

[6]) and RNN([23]).

Many previous studies have shown that quantization can be

successfully applied to Transformers as well. However, most

studies([18], [4], [3]) have used the simulated quantization method,

which means that even if the model parameters are stored at low

precision, all or part of the values is calculated using floating points

during inference. This means that it is difficult to apply to some edge

devices specialized for integer arithmetic. Also, compared to

Integer-only quantization, in which all calculations are performed

only by Int operations, this method has difficulties in obtaining

benefits in areas such as latency, power consumption, and area

efficiency. In particular, this difference becomes even more

 ２

pronounced when supporting fast, low-precision operations such as

NVIDIA V100 and Titan RTX([10]).

To solve this problem, I-BERT([12]) and I-ViT([13]) proposed a

method of compressing the transformer using integer-only

quantization. They offered an approximation formula that allows

non-linear functions such as GeLU([9]), Softmax, and Layer

Normalization([1]) to operate only with integer and can achieve

successful performance. However, as it only quantizes the model with

int8, it did not show a higher compression rate compared to the

method using simulated quantization.

Therefore, in this study, we propose a quantization method that can

solve these limitations. We study new integer-only quantization

methods using only low bits (e.g., int8, int4) and a strategy to reduce

the error that occurs by using low bits. The specific details are as

follows.

⚫ We propose new quantization methods called Pseudo Float

Quantization (PFQ) and Group Quantization (GQ) for Integer-

only Quantization. PFQ can express a wide range of numbers

using only low-bit, enabling us to effectively quantize the

value of the variance skewed to 0, like the weight of the

Neural Network. GQ considers the NPU(Neural Processing

Unit), so that it can operate efficiently in most hardware.

⚫ We propose an error compensation method based on Taylor

Expansion to solve quantization errors in non-linear

functions. As the non-linear function operates only with

integers, the overflow problem can occur, but this method can

reduce quantization error freely from this problem.

1.2. Related Work

Quantization refers to a method of expressing continuous values

with low precision. In some cases, the model's size is reduced by

 ３

quantizing the parameters of the neural network model. The

inference time is greatly improved by quantizing the activation value

so that the operations required for inference operate only in int. it

may reduce accuracy to some extent because it cannot accurately

represent the actual value. Still, many studies have confirmed that it

is possible to trade off accuracy and performance at an appropriate

level when using fp16 or int8.

Quantization is classified into uniform and non-uniform

quantization according to the interval of quantized values. Uniform

quantization is a method to keep the gap of quantized values constant,

and Symmetric Uniform Quantization([11], SUQ) is the most

representative. It performs quantization using only scaling and

rounding, and because the operation is simple, the operation speed is

fast, and it works well on all hardware. In addition, quantized values

can be efficiently processed even when complex operations, such as

non-linear operations, need to be applied.

Non-uniform quantization([16], [17]) is a method in which the

intervals of quantized values are not constant. Since quantization is

performed considering the distribution of actual values, less

quantization error occurs compared to uniform quantization. Various

methods, such as log and cluster, are used. Among them, the usual

way mainly applied to the transformer is Binary Coding Quantization

(BCQ, [19]). BCQ will express the weight parameter as the sum of

the 1-bit matrix with fp32 as the weight. Since the matrix consists

of 1-bit, it is possible to compress it at a high level, and it has the

advantage of being able to control the quantization error by adjusting

the number of matrices. However, hardware that can efficiently

operate Matrix Multiplication (MMP) operation with a 1-bit matrix is

required for speed improvement([18]). There is a problem that a

process is necessary.

Since expressing all layers of a neural network model with low

bits can significantly reduce accuracy, methods of applying different

 ４

precision to each layer have been actively studied. This method is

called mixed-precision quantization. Usually, quantization sensitivity

is measured using the degree of quantization of each layer on the

result. After that, the level of precision to be applied to each layer is

determined based on this. In the case of the transformer([3], [4]), it

has been confirmed through various experiments that non-linear

functions such as GeLU, Softmax, and LayerNorm and the Feed

Forward Layer of the Encoder/Decoder Layer are sensitive to

quantization.

Chapter 2. Method

We suppose that minimizing the error caused by quantization is crucial

to maintain accuracy even after performing quantization. In addition,

in Integer-only Quantization, it is important that variables in each layer

be quantized to share the same fp32 value in order to separate integer

and float operations during inference, so we considered this condition

can be satisfied.

2.1. Pseudo Float Quantization

To reduce the error caused by quantization, it is essential to express

the actual value using the broadest possible range of numbers.

However, there is a clear limit to the degree of numbers that low-bit

can represent. We expressed the quantized value using the floating-

point format to overcome this limitation. We first set an appropriate

scale value and then proceeded with quantization through the same

process as scaling quantization. Then, each quantized value can be

expressed as two low-bit values. The actual value is expressed as

follows.

r ≈ s × q ≈ s × 2𝑞𝑒 × 𝑞𝑚

q𝑒 , 𝑞𝑚 is expressed using b𝑒 , 𝑏𝑚 bit, 0 ≤ qe ≤ 2𝑏𝑒 − 1, −2{bm−1} ≤

 q𝑚 ≤ 2b𝑚−1 − 1 . When the quantized value is not accurately

 ５

expressed in the form above, the quantized value can be changed to

the closest value that can be expressed.

 One value is expressed using an exponent of 2 because if both

values are expressed as int4, three int4 values are multiplied during

the actual Matrix Multiplication operation. This process deals with

different precision, such as int4 and int8. This is because there is a

problem with calculating. To solve this problem, an exponent of 2 is

used, which replaces one multiplication operation with a bit-shift

function to minimize the cost required for the process.

The scaling factor of this method becomes exponentially smaller so

it cannot express large values in detail. Therefore, the quantization

error of a small value can be significantly reduced, but when the value

is large, the quantization error does not change. Thus, a significant

effect can be seen when most values are biased toward the small side

and there are a few outliers. Fortunately, most Neural Network

weights follow this distribution in practice, so we can say that

quantization like this is appropriate.

2.2. Group Quantization

Pseudo Float Quantization has the advantage of being able to express

the distribution of parameters of a neural network well. However,

since each parameter has a different coefficient, there is a problem

that NPU operations such as Tensor Core, which is operated in group

units, cannot be used. NPU has the disadvantage that only specific

operations cannot be performed, such as GEMM, but it has the

advantage of being able to process the operation very quickly.

Therefore, we have improved the existing quantization method to use

these calculation devices.

First, since NPU calculation is performed in group units, each

calculated group must have the same coefficient value. Therefore, we

set the operation unit as a quantization group size and apply SUQ.

 ６

Also, for non-linear functions to be processed only with integer

arithmetic, all parameters must be expressed only as integers except

for common float scale values. For this purpose, we quantized the

scale value of each group once more.

r ≈
𝐺

𝑁
⋅ 𝑞𝑥 =

𝑋

𝑁

𝐺

𝑋
⋅ 𝑞𝑥 ≈

𝑋

𝑁
⋅ 𝑠𝑔 ⋅ 𝑞𝑔 ⋅ 𝑞𝑥 = 𝑠 ⋅ 𝑞𝑔 ⋅ 𝑞𝑥

Above, N means 2(𝑏𝑖𝑡−1) − 1 , G and X mean the largest absolute

value in the group and total of parameters. We compared the variance

of error (α) when quantizing a group's scale value. We confirmed that

the error is sufficiently small when the scale values of the group are

quantized using the quantization bit applied to each group.

𝑉𝑎𝑟 (𝑥 −
𝑋

𝑁
𝑞𝑥) ≥ 𝑉𝑎𝑟 (𝑥 −

𝑋

𝑁
(

𝐺

𝑋
+ 𝛼) 𝑞𝑔) = 𝑉𝑎𝑟 (𝑥 −

𝐺

𝑁
𝑞𝑔 −

𝑋

𝑁
𝑞𝑔𝛼)

1

3
(

𝑋

𝑁
)

2

≥
1

3
(

𝐺

𝑁
)

2

+ (
𝑋

𝑁
)

2

𝑉𝑎𝑟(𝑞𝑔)𝑉𝑎𝑟(𝛼)

∴ 𝑉𝑎𝑟(𝛼) ≤
1

𝑉𝑎𝑟(𝑞𝑔)

1

3
(1 −

𝐺2

𝑋2) ≤
1

𝑉𝑎𝑟(𝑞𝑔)
=

1

𝑉𝑎𝑟 (
𝑥
𝐺

)
≤

1

𝑁2

This method does not accurately express the distribution of

parameters, but because quantization is performed for each group, it

shows some strength in outliers. In addition, since we quantized the

scale value of each group once more, it requires only a bit more

memory than the existing scale quantization (about 1/256 of the total

when quantized with int8 under the assumption that Tensor Core is

used). Since the unit is considered, it is possible to process quickly.

2.3. Error Compensation using Taylor Expansion

The above two methods minimized the error of the weight parameter

to improve the accuracy. However, the above methods cannot be

applied to non-linear functions without weight parameters.

Therefore, we find out how to minimize the error in the non-linear

function changed to operate only with Integer arithmetic.

 ７

I-BERT([12]) showed that non-linear functions mainly used in

Transformer structures could be sufficiently approximated by

integer arithmetic. However, since the operation process involves

repetitive operations between integers, the risk of overflow may

occur. Therefore, there is a limit to how to reduce the error by

increasing the quantization bit. In this situation, we tried to reduce

the error by using Error Compensation. This has the advantage that

it can be easily applied anywhere because there is no need to change

the previously presented formula.

Taylor expansion was used to approximate the error caused by

quantization. Non-linear functions can be expressed by Taylor

expansion as in the equation below, 𝑓′(𝑞𝑥) represents the Jacobian

Matrix. Since there is a limit to the values that can be expressed

using only integers, all terms corresponding to O(ϵ𝑥) are ignored.

𝑓(𝑥) ≈ 𝑓(𝑞𝑥) + 𝑓′(𝑞𝑥) ⋅ 𝜖𝑥

Since derivatives are defined in all non-linear functions, it is possible

to calculate the second term using them. However, it does not

guarantee that the computation of the second term is simple. In the

case of GeLU, Softmax the calculation process was very complicated.

On the other hand, in the case of LayerNorm, it was possible to

calculate quickly because the Jacobian Matrix could be approximated

with a Diagonal Matrix. In addition, since the standard deviation

calculation formula in LayerNorm was a section where overflow

frequently occurred, it was used to reduce the error.

Chapter 3. Experiments

3.1. Quantization Error

In order to show that the quantization method proposed by us

dramatically reduces errors, the errors were measured by quantizing

 ８

the weights of the GPT-2 model provided by Huggingface.

Quantization bit used 4-bit and 8-bit. In the case of PFQ, the

exponent is also 4 bits when mantissa is 4-bit, and only a 2-bit

exponent term is used to prevent overflow problem when mantissa is

8-bit. It is possible to check the detailed results from the graph in

Figure 1.

Figure 1. Quantization Error according to quantization method. x-axis means

weight of i-th Linear Layer of GPT-2

Looking at the graph, we can see that the proposed method has a

lower error than the existing methods. In addition, it can be confirmed

that the error is slightly lower when quantized with bits such as PFQ

rather than Group Quantization. In particular, when the PFQ method

was used with 4-bit, it showed better performance than the 8-bit

quantization that occupies the same memory.

Next, we measured the performance of Error Compensation. The

IntLayerNorm proposed by I-BERT was used, and the error was

measured by changing the quantization bit applied to the input. For

the error used for Error Compensation, a 8-bit quantized value was

 ９

used.

Figure 2. Quantization Error of LayerNorm. There was a good effect was in the

original LayerNorm, but no significant effect was shown in the LayerNorm

converted to integer arithmetic version.

It was confirmed that the error was significantly reduced when Error

Compensation was applied to the original LayerNorm. However,

IntLayerNorm, composed of integer arithmetic, had no significant

effect. We thought this phenomenon occurred because the Jacobian

obtained from IntLayerNorm was inaccurate, and its error was more

significant than the error reduction amount by Error Compensation.

Finally, we measured the accuracy of MRPC Task using the Robert-

base model. In the case of some methods, it was impossible to

implement them optimally, so the accuracy was measured using

simulated quantization. Embedding Layer and Activation were

implemented using 8-bit Scaling Quantization because it took a long

time for quantization, and there were cases where Group Quantization,

which is applied due to the size of the group, could not be applied.

Therefore, the model size and performance were measured by

applying various bits and quantization methods only to all weights of

the linear layer. For non-linear functions, the method proposed by

 １０

I-BERT was used as it is. In addition, in the case of the experiment

below, the performance was measured immediately after proceeding

only with quantization without independent learning.

 Precision

(bit)

Model Size

(MB)

Accuracy w/o

Finetuning (%)

Accuracy after

Finetuning (%)

Original 32 928.793 87.75 -

PFQ(int8) 10(2+8) 290.522 88.48 87.99

GQ(int8) 8.024 232.814 88.24 87.74

PFQ(int4) 8(4+4) 232.497 87.01 87.99

Int8 8 232.497 87.99 88.23

GQ(int6) 6.018 174.789 87.00 87.99

PFQ(int4) 6(2+4) 174.473 83.82 88.48

Int6 6 174.473 80.64 86.76

GQ(int4) 4.012 116.765 79.41 80.39

Int4 4 116.448 62.01 68.38

Table 1. Comparison of accuracy and quantized model size of roberta-base

according to quantization method and precision

From the table above, we can confirm that when the quantization

error is small, high accuracy can be preserved without additional

training . In particular, it was confirmed that the size of the model is

comparable to SUQ, even when Group Quantization was applied. In

addition, when less than 8-bit, the difference in accuracy with SUQ

began to appear clearly, and when 4-bit was applied, Accuracy of

SUQ was reduced to less than 70%, but GQ maintained about 80%.

Chapter 4. Conclusion

In this study, we looked at various ways to improve the performance

of Integer-only Quantization. All methods identified were able to

reduce errors due to quantization compared to the previous ones.

However, some quantization methods were almost impossible to

implement in the current software and hardware, and in the case of

Error Compensation, there was no significant effect. However,

suppose an environment in which this can be implemented is given.

 １１

In that case, high-performance improvement can be expected, Error

Compensation is also thought to be a good solution to solve the

overflow of non-linear operation if additional research is conducted.

 １２

Bibliography

[1] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer

normalization. arXiv preprint arXiv:1607.06450, 2016.

[2] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared

D Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam,

Girish Sastry, Amanda Askell, et al. Language models are few-shot

learners. Advances in neural information processing systems,33:1877–

1901, 2020.

[3] Yelysei Bondarenko, Markus Nagel, and Tijmen Blankevoort.

Understanding and overcoming the challenges of efficient transformer

quantization. arXiv preprint arXiv:2109.12948, 2021.

[4] Insoo Chung, Byeongwook Kim, Yoonjung Choi, Se Jung Kwon,

Yongkweon Jeon, Baeseong Park, Sangha Kim, and Dongsoo Lee.

Extremely low bit transformer quantization for on-device neural

machine translation. arXiv preprint arXiv:2009.07453, 2020.

[5] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk

Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani,

Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image is

worth 16x16 words: Transformers for image recognition at scale.

arXiv preprint arXiv:2010.11929, 2020.

[6] Elias Frantar and Dan Alistarh. Optimal brain compression: A

framework for accurate post-training quantization and pruning. arXiv

preprint arXiv:2208.11580, 2022.

[7] Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W

Mahoney, and Kurt Keutzer. A survey of quantization methods for

efficient neural network inference. arXiv preprint arXiv:2103.13630,

2021.

[8] Robert M. Gray and David L. Neuhoff. Quantization. IEEE

transactions on information theory, 44(6):2325–2383, 1998.

[9] Dan Hendrycks and Kevin Gimpel. Gaussian error linear units

(gelus). arXiv preprint arXiv:1606.08415, 2016.

[10] Mark Horowitz. 1.1 computing’s energy problem (and what we

can do about it). In 2014 IEEE International Solid-State Circuits

 １３

Conference Digest of Technical Papers (ISSCC), pages 10–14. IEEE,

2014.

[11] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu,

Matthew Tang, Andrew Howard, Hartwig Adam, and Dmitry

Kalenichenko. Quantization and training of neural networks for

efficient integer-arithmetic-only inference. In Proceedings of the

IEEE conference on computer vision and pattern recognition, pages

2704–2713, 2018.

[12] Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W Mahoney, and

Kurt Keutzer. I-bert: Integer-only bert quantization. In International

conference on machine learning, pages 5506–5518. PMLR, 2021.

[13] Zhikai Li and Qingyi Gu. I-vit: Integer-only quantization for

efficient vision transformer inference. arXiv preprint

arXiv:2207.01405, 2022.

[14] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi,

Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin

Stoyanov. Roberta: A robustly optimized bert pretraining approach.

arXiv preprint arXiv:1907.11692, 2019.

[15] Daisuke Miyashita, Edward H Lee, and Boris Murmann.

Convolutional neural networks

using logarithmic data representation. arXiv preprint

arXiv:1603.01025, 2016.

[16] Eunhyeok Park, Junwhan Ahn, and Sungjoo Yoo. Weighted-

entropy-based quantization for deep neural networks. In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition,

pages 5456–5464, 2017.

[17] Gunho Park, Baeseong Park, Se Jung Kwon, Byeongwook Kim,

Youngjoo Lee, and Dongsoo Lee. nuqmm: Quantized matmul for

efficient inference of large-scale generative language models. arXiv

preprint arXiv:2206.09557, 2022

[18] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali

Farhadi. Xnor-net: Imagenet classification using binary convolutional

neural networks. In European conference on computer vision, pages

525–542. Springer, 2016.

[19] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei,

 １４

Ilya Sutskever, et al. Language models are unsupervised multitask

learners. OpenAI blog, 1(8):9, 2019.

[20] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,

Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin.

Attention is all you need. Advances in neural information processing

systems, 30, 2017.

[21] Xiuying Wei, Yunchen Zhang, Xiangguo Zhang, Ruihao Gong,

Shanghang Zhang, Qi Zhang, Fengwei Yu, and Xianglong Liu. Outlier

suppression: Pushing the limit of low-bit transformer language models.

arXiv preprint arXiv:2209.13325, 2022.

[22] Chen Xu, Jianqiang Yao, Zhouchen Lin, Wenwu Ou, Yuanbin Cao,

Zhirong Wang, and Hongbin Zha. Alternating multi-bit quantization for

recurrent neural networks. arXiv preprint arXiv:1802.00150, 2018.

 １５

Abstract

Transformer는 다양한 분야에서 최고 성능을 달성한 현재 가장 유명한

인공 신경망 구조이다. 따라서 많은 사람들이 이 모델의 추론이 정수 연

산으로만 이루어질 수 있도록 양자화(Integer-only Quantization)를 적

용하여 엣지 장치에서도 동작할 수 있도록 하고자 하였다. 하지만, 일반적

인 하드웨어의 연산 특징과 비선형 함수의 효율적인 계산을 위해 제약조

건이 존재하였고, 때문에 양자화 방법은 크게 달라지지 않았다. 따라서 우

리는 Integer-only Quantization에서 사용할 수 있는 새로운 방법들을

연구하여, 기존의 방법들의 한계를 넘을 수 있도록 하였다.

	Chapter 1. Introduction
	Chapter 2. Method
	Chapter 3. Experiments
	Chapter 4. Conclusion
	Bibliography
	Abstract in Korean

<startpage>6
Chapter 1. Introduction 1
Chapter 2. Method 4
Chapter 3. Experiments 7
Chapter 4. Conclusion 10
Bibliography 12
Abstract in Korean 15
</body>

