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Abstract

Federated Learning (FL) is a machine learning paradigm in which multiple hetero-

geneous clients train local models with their data and only share the parameters to the

server to create a centralized model. This paradigm, however, is based upon an unre-

alistic assumption that every client has fully labeled data readily available for training.

Since labeling the data generally requires domain expertise and consistency, which

are difficult to attain in a federated setup, it is more pragmatic to consider a scenario

where clients own completely unlabeled data, whereas the server contains a small frac-

tion of labeled data (”Labels-At-Server”)[20]. The methods to exploit unlabeled data

at clients are actively being researched, which takes advantage of stochastic augmen-

tations to improve the quality of pseudo-labels. Inspired by recent SSL methods and

knowledge distillation, we propose a Semi-Supervised FL teacher-student architec-

ture FedSup to tackle this problem. To demonstrate its validity, we conduct various

experiments on CIFAR-10/CIFAR-100/STL-10 using naive applications of four pop-

ular SSL methods to FL and state-of-the-art Semi-Supervised FL methods, FedMatch

and FedRGD. On both Independent and identically distributed (IID) and non-IID data,

FedSup demonstrates higher accuracy on all three datasets compared to other meth-

ods under finetuning. Also, we conduct ablation studies on CIFAR-10 to explore why

FedSup works better.

keywords: Federated Learning, Semi-Supervised Learning

student number: 2021-26031
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Chapter 1

Introduction

Large-scale data is one of the most important factors in training a deep learning model;

nevertheless, data are distributed across different places in practice, and thus have to

be transferred to a centralized server for training, which can cause violation of privacy

[13] and higher communication cost. FL handles this problem by building multiple

local models at the distributed places, or clients, using their computing resources and

aggregating the parameters at the server [23] [34], without sending the local data to

the server.

One of the key challenges that FL faces is that many parties hold data of het-

erogeneous class distributions. Previous studies such as FedProx [37], FedNova [40],

SCAFFOLD [21] design clients to learn effectively from non-IID data, i.e. data het-

erogeneity. However, a more critical challenge is the scarcity of labels; FL inevitably

suffers from label deficiency, as the parties involved in FL may not be able to provide

reliable labels for their own data. FedEMA [47] tackles the lack of labels at clients by

applying label-agnostic SSL at the clients, such as BYOL [14], SimCLR [5] and Sim-

Siam [8], while FedMatch [20] and FedRGD [45] seek to improve pseudo-labeling at

the clients. However, as these SSL methods are proposed for centralized training, naive

combinations are not as effective in a federated setup. Also, using pseudo-labeling to

train the model as FedMatch and FedRGD can cause negative impacts on the model
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performance, which we elaborate in Chapter 2.

Hence, in this paper, we develop a FL framework FedSup to improve SSL applied

on unlabeled clients without pseudo-labeling. Our framework design is motivated by

BYOL [14] that uses an exponential moving averaged (EMA) online network as a

target network for training. Since BYOL is designed for a centralized setup, it is not

suitable for FL in which stateless clients participate in each round, i.e. they do not

retain the target network once they have finished training. This discontinuous target

network that only persists for several local epochs provides inconsistent training sig-

nals and increases the diversity across the client networks since they are trained with

different target networks, which are known to damage the performance of the model

[45]. Instead, we modify its architecture for a federated setup, such that the target net-

work is trained at the server with labeled data. With this architecture, we can achieve

more reliable regression targets from the continuously trained target network, at an

expense of additional transmission. Also, as all clients see one target network, this can

reduce the diversity across the client networks. More importantly, the learning of the

target and online networks can be separated; the idea of learning the target and online

network from labeled and unlabeled data separately is inspired by the claim in Fed-

Match that learning a shared set of parameters from both data can cause the network to

forget the knowledge learned from labeled data when being additionally trained with

unlabeled data [20]. Further inspirations of our design are explained in 4.1.1.

Experiments on IID and non-IID data show that FedSup achieves the state-of-

the-art performance under finetuning and linear evaluation for 10% labeled-unlabeled

ratio. Our contributions are as follows:

• We introduce a FL framework FedSup to exploit unlabeled clients with labeled

server.

• We conduct various experiments to validate the effectiveness of FedSup.

• FedSup outperforms other Semi-Supervised Federated Learning methods, in-

2



cluding the naive applications of SSL to FL and the state-of-the-art methods,

verifying its ability to extract useful values from unlabeled data and preserve

knowledge learned from labeled data.
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Chapter 2

Related works

2.1 Federated Learning

Federated Learning (FL) leverages multiple clients with computing capabilities and lo-

cal data to collaboratively train a unified model at the server. The central server sends

up-to-date model parameter to all clients at each round. Each client then trains the re-

ceived model for multiple local epochs, minimizing the cross-entropy between the pre-

dictions and one-hot encoded labels, and sends back the trained parameter to the server.

These parameters are aggregated and updated at the server by a de facto standard ap-

proach, FedAvg [34], which takes a weighted average of them. This simple approach,

however, suffers performance degradation for non-IID data. FedProx [37] proposes

a simple remedy for this problem that restricts the divergence of the model parame-

ters caused during training by heterogeneous class distributions at clients, applying L2

regularization between the received and the local model parameters. FedNova [40] nor-

malizes cumulative gradient updates to optimize the model, so it becomes less sensi-

tive to heterogeneous class distributions. On the other hand, SCAFFOLD [21] reduces

inter-client variance to correct for client drifts caused by non-IID data. Also, FedRGD

[45] resolves the divergence by group-wise averaging of client parameters and using

Group Normalization instead of Batch Normalization. Likewise, we adopt group-wise

4



averaging to maximize the generalization, which is explained in 4.1.

2.2 Unsupervised Representation Learning

Unsupervised Representation Learning aims to train an encoder using unlabeled data

that extracts robust representations, which can be transferred to downstream tasks like

classification with a small fraction of labeled data. Obtaining such representations from

unlabeled data is important in a real-world setting, where labeled data is few and costly.

For representation learning with visual data, there are two mainstream methods, gener-

ative or contrastive [29]. Generative approaches learn representations by reconstruct-

ing the partially cropped data, employing Generative Adversarial Networks (GAN)

[6][36][15][26]. However, the computational burden of generative models makes them

unappealing for FL as each client does not hold strong computing resources. There-

fore, we focus on contrastive approaches, which utilize less expensive stochastic data

augmentation for training. Contrastive learning trains a model by imposing the con-

straint that the model should output similar representations for augmented views of a

same image (positive pairs) and different ones for views of different images (negative

pairs). The detailed explanations of contrastive learning methods that we employ in

this work are presented in 3.2. The well-known issue of contrastive learning is that

the network’s output can easily collapse to a single point or to a subspace, resulting

in futile solutions. SimCLR [5] observes that maintaining a large number of negative

pairs within each batch is crucial for mitigating this issue. Thus, MoCo [16][7] keeps

a dictionary of recent batch encodings in the memory bank to increase the number of

negative pairs. In contrast, SimSiam [8] prevents collapse by adopting stop-gradient.

Furthermore, BYOL [14] attains a target network through EMA of an online network,

which provides regression targets for the online network.
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2.3 Semi-Supervised Federated Learning

Given that reliably and consistently labeling data in each client is difficult in FL, Semi-

Supervised FL has been researched actively [12] [20] [30] [31] [43] [45] [47] to exploit

abundant unlabeled or partially labeled data at the clients. One popular method is to

use pseudo-labeling [25] that takes the high confidence model predictions on unlabeled

instances to advance the model, but this encapsulates several potential issues when

applied to FL. Therefore, FedMatch [20] additionally uses other clients’ models to

obtain more reliable pseudo-labels. Also, FedRGD [45] applies strong and weak data

augmentations on the instance to extract more robust pseudo-labels and aggregates the

parameters with group-wise averaging, which reduces the gradient diversity of client

models and further improves the performance.

2.4 Bias in Classifier

Learning good visual representation is very important for high classification perfor-

mance of the model, but it has been reported that representations can be disturbed by

the bias created at the classification layer [19] [32]. UBNet [19] claims that the clas-

sification performance of the model can be improved by using the feature maps from

the front layers, which are less biased than those from the rear layers. Moreover, it is

suggested that the performance degradation of a classification model in FL is caused

by low similarity among feature maps from the rear layers of the model [32]. This

implicates that even if the standard FedAvg [34] procedure composes a good encoder,

high diversity in the rear layers, especially in the classification layer, may result in de-

creased classification performance. To prevent this, we design our framework to train

a linear classifier only with the labeled data at the server, not adopting pseudo-labeling

to train multiple classifiers at the clients.
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Chapter 3

Background

3.1 Supervised Federated Learning

For a standard Supervised FL, each client k ∈ [1,K] possesses labeled dataset Dk =

{(xi, yi)}Nk
i=1, where xi is an input, yi ∈ {1, ..., C} is a label and Nk is the number of

data. For each training round t ∈ {1, ..., T}, the server selects a subset of clients A(t)

that participate in the current round and broadcasts a model f (t)
θ parametrized by θ to

them. Then, the client k ∈ A(t) updates the model as f (t+1)
θk

through gradient descent

for multiple local epochs E and sends the trained parameter to the server. The server

collects these parameters and updates the global model by taking a weighted average

of them with FedAvg [34]:

f
(t+1)
θ =

∑
k∈A(t)

Nk∑
k′∈A(t) Nk′

· f (t+1)
θk

. (3.1)

3.2 Semi-Supervised Learning

Here we enumerate SSL methods adopted for our experiments, which are depicted on

Figure 3.1.
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Figure 3.1: SSL methods. All methods except FixMatch apply a strong augmenta-

tion A twice to the image x. FixMatch applies a weak augmentation α to x to obtain

pseudo-labels.

3.2.1 FixMatch

FixMatch [39] extends pseudo-labeling by using augmentations. It adds strong (Cutout

[11], CTAugment [3], and RandAugment [10]) and weak (translation and horizontal

flip) data augmentations on the instances to extract good pseudo-labels from unlabeled

data. The loss of FixMatch is designed as:

L =
1

B

B∑
b=1

H(yb, fθ(α(xb))) +
λu

µB

µB∑
b=1

1(max(ŷb) > τ) H(ŷb, fθ(A(ub))). (3.2)

The first term is a supervised loss, which is a mean cross-entropy H between weakly

augmented inputs α(xb) and labels yb over B examples. The second is an unsuper-

vised loss, which is also a mean cross-entropy between pseudo-labels ŷb = fθ(α(ub))

from weakly augmented unlabeled instances α(ub) and predictions from strongly aug-

mented instances fθ(A(ub)). 1(max(ŷb) > τ) ∈ {0, 1} indicates that the loss is only

computed for pseudo-labels with probability greater than τ . This unsupervised loss
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is modulated by a hyperparameter λu and the ratio of the amount of unlabeled set to

labeled is controlled by µ. In our scenario, where clients hold only unlabeled data, we

update the model using the supervised loss at the server and the unsupervised loss at

the clients.

3.2.2 SimCLR

SimCLR [5] applies a stochastic data augmentation two times on each image xb in the

training batch of size B, resulting in xb1, xb2. Then, the augmented views xb1, xb2 are

fed into the encoder to obtain representations, which are again projected by a MLP

(projector) to vectors zb1, zb2 of smaller dimension. The network is trained by maxi-

mizing the cosine similarity between the projection vectors zb1 and zb2 (positive pairs)

while minimizing it between the projection vectors from different images (negative

pairs) in the batch. A positive pair of xb1 and xb2 composes the following loss function

(NT-Xent)[5]:

lb(1, 2) = − log
exp(sim(zb1, zb2)/τ)∑B

b′=1 1(b
′ ̸= b)(exp(sim(zb1, zb′1)/τ) + exp(sim(zb1, zb′2)/τ))

(3.3)

where τ is a hyperparameter to control the sharpness of the softmax values,

1(b′ ̸= b) = 1 if b′ ̸= b otherwise 0 and sim(·, ·) is cosine similarity between two

vectors. This loss function is evaluated for every positive pair in the batch and sym-

metrized as L = 1
2B

∑B
b=1 lb(1, 2) + lb(2, 1), which trains the encoder and the projec-

tor. When training is done, the projector is thrown away and a linear layer is attached

to the encoder and trained for one epoch to assess the classification performance.

The drawback of SimCLR is that it requires extremely large batch size to obtain

many negative pairs for faster convergence and better test accuracy, as [5] reported

that the best performance is attained for batch size greater than 2048. However, in FL,

the client usually has a memory of limited size, so large mini-batch may not fit into its

memory. Moreover, the training items in each client are not as abundant. Therefore, we

anticipate that the naive combination of SimCLR and FL will not work well for Semi-
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Supervised FL, as corroborated in [43], but we still test its performance to compare

with other methods.

3.2.3 SimSiam

Unlike SimCLR, SimSiam learns visual representations, neglecting the negative pairs.

In addition to SimCLR, SimSiam uses a predictor that outputs the prediction vectors

from the projection vectors. The projection vectors zb1, zb2 and the prediction vectors

pb1, pb2 extracted from xb constitute loss for a positive pair

lb =
1

2
D(pb1, zb2) +

1

2
D(pb2, zb1) (3.4)

where D(pi, zj) = − pi.zj
||pi||2||zj ||2 . This is evaluated for every positive pair in the batch

and averaged to form

L =
1

B

B∑
b=1

lb (3.5)

which is the loss function.

Although above loss can be easily minimized through gradient descent, simple

minimization causes representation collapse [8]: the model outputs a constant vector

regardless of the input. SimSiam resolves such problem by using stop-gradient, which

can be implemented by preventing back-propagation through zb1 and zb2. Reflecting

the stop-gradient, the above loss function can be rewritten as:

L =
1

2B

B∑
b=1

D(pb1, zb2.detach()) +D(pb2, zb1.detach()). (3.6)

Compared to other SSL frameworks, SimSiam avoids representation collapse

with minimal cost and surpasses performances of all other SSL frameworks presented

in this paper, without Momentum Encoder [16] and Online Clustering [4]. Also, unlike

SimCLR, SimSiam does not require large batch to train, as it receives loss only from

positive pairs, which makes it a promising candidate for Semi-Supervised FL.
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3.2.4 BYOL

The architecture and the loss of BYOL (Equation 3.6) are same as SimSiam, but BYOL

constructs a target network ξ from the online network θ being trained. Concretely,

the EMA of the online network ξ ← µξ + (1 − µ)θ is used as the target network to

extract zb1 and zb2 where µ controls the weight of updated θ for computing the average.

This does not involve negative pairs, but achieves surprisingly good performance, not

collapsing into degenerate solutions.

3.3 Gradient Diversity

FedRGD adopts the gradient diversity introduced in [41] to measure the dissimilar-

ity between local gradient updates at the clients in FL [45]. High gradient diversity

is caused by gradient updates towards different directions, so it is problematic to per-

form FedAvg. For a successful distributed learning of a model, reducing the gradient

diversity is important [41].
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Chapter 4

Methods

4.1 Algorithm

4.1.1 FedSup

Here we describe our main algorithm FedSup and its design principles. The model

architecture is depicted on Figure 4.1 and the training procedure on Figure 4.2.

Disjoint Learning of Supervised and Unsupervised Networks In deep learning,

neural networks have a tendency to forget previously learned information when ac-

cepting new knowledge from unseen data. This phenomenon is called ”catastrophic

forgetting” [38], which also occurs in SSL and should be avoided, especially when

labeled data is limited [46]. There have been attempts to deal with this issue in Con-

tinual Learning [22] [42]. In FL, FedMatch [20] addresses this problem with disjoint

learning of the supervised and unsupervised parameters, only combining them at the

server. This helps preserve knowledge from labeled data, while improving representa-

tions via unlabeled data. Likewise, we segregate learning of two sets of parameters in

our proposed training regime.
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Figure 4.1: FedSup architecture. FedSup is trained with two losses: consistency loss

LCon and feature map MSE loss LMSE . The consistency loss is defined between the

outputs of the online and target networks from the raw images and the augmented im-

ages, like in SimSiam [8] and BYOL [14]. The distinction between the target networks

of FedSup and SimSiam/BYOL is that the target network in FedSup is the network

supervised at the server, which is contrasted to the Siamese network in SimSiam and

the EMA network in BYOL. Also, the MSE loss between the feature maps extracted

by two networks from the raw images is applied.

Layer-wise MSE loss Layer-wise feature map lossLMSE is adopted in knowledge

distillation [1] [28] [44], in which a teacher network transfers knowledge to a student

network via comparison of layer-wise feature maps. It is observed that supervising the

network with softmax outputs as originally suggested in [18] can produce vastly differ-

ent feature maps, not fully delivering the knowledge of the teacher model and deterio-

rating the generalization [1]. Such difference in feature maps can be more detrimental

in FL, as it can induce higher gradient diversity that harms the generalization [45]. To

alleviate this issue, we apply MSE loss between the feature maps of the unsupervised

client network and the supervised target network. Specifically, the feature maps from

13
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Figure 4.2: FedSup training procedure. 1⃝ The server trains the network with la-

beled data DServer 2⃝ The supervised network f
(t)
θServer

and the online network are

distributed to the clients 3⃝ The clients train the online network with their unlabeled

dataset Dk, replacing the target network fξ in BYOL with f
(t)
θServer

and applying layer-

wise Mean Squared Error (MSE) loss between feature maps of two networks 4⃝ The

trained online networks are sent back to the server 5⃝ They are aggregated using group-

wise averaging [45] to update the online network only. This process is repeated for T

rounds.
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each of four convolutional blocks in ResNet-18 are compared. We also adopt a hyper-

parameter λs to decrease this loss by a factor of λt/T
s , where t is the current round and

T is the total number of rounds, thus increasing the effect of unlabeled data towards

the end of the training. We test the performance for λs = [100, 10−2, 10−4] and select

λs = 10−4 that demonstrates the highest test accuracy.

Without Pseudo-Labeling For Labels-At-Server scenario, we hypothesize that

pseudo-labeling based methods to learn from unlabeled data can be rather disadvanta-

geous. For instance, FixMatch performs back-propagation based on the combination of

both supervised and unsupervised losses, where the unsupervised loss is modulated by

a small hyperparameter λu, which is described in 3.2.1. This makes the model mostly

learn from the labeled data, while the unsupervised loss that improves generalization

constantly being rectified by the supervised loss. In the absence of such supervised

loss at the clients, the models can be drifted by a large margin mainly due to unreliable

pseudo-labels, which is also discussed in [2]: since the model learns based on what

it already knows, it causes a confirmation bias that harms the model. Also, as men-

tioned in 2.4, the classifier is easily biased, leading to poor classification performance.

This hypothesis is substantiated by our experiments, in which FixMatch that utilizes

pseudo-labeling achieves consistently the lowest accuracy. For these reasons, we do

not employ pseudo-labeling to train the client networks in FedSup.

Group-wise Averaging FedRGD [45] proposes a method that replaces FedAvg in

Labels-At-Server scenario, where the parameters from the clients are divided into S

groups and group-wise averaging is performed to update the model. After receiving

the client model parameters, the server randomly assigns each parameter into one of

the groups from {Gi}Si=1 such that each group contains the same number of model

parameters. Since five clients are used for our experiments, we divide them into groups

of two and three to perform this averaging. The group-wise averaging algorithm is

described in Algorithm 2.
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4.1.2 Semi-Supervised Federated Learning

The training procedure of SSL (FixMatch, SimCLR, SimSiam, BYOL) in our FL setup

is presented on Figure 4.3.

…
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Figure 4.3: Semi-Supervised FL training procedure. 1⃝ The server trains the net-

work with supervised dataset DServer 2⃝ The trained parameter is broadcasted to each

client 3⃝ The network is trained at each client with unlabeled dataset Dk using SSL 4⃝
The trained parameters f (t+1)

θk
are sent to the server and 5⃝ aggregated with FedAvg.

This process is repeated for T rounds.
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Chapter 5

Experimental Details

5.1 Experiments

5.1.1 Setup
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Figure 5.1: Class distributions for IID and non-IID data. The class distributions

of five clients with 500 items for α = 105 and α = 10−1. For higher α, the class

distribution approaches uniform distribution and for smaller α, the clients are assigned

unbalanced amounts of samples for each class.

Three datasets CIFAR-10, CIFAR-100 [24] and STL-10 [9] are used in our ex-
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periments. For CIFAR-10 and CIFAR-100, we split the data into 50, 000 for training,

5, 000 for labeled and 5, 000 for test data. The training data is distributed across 100

clients by sampling class priors using Dirichlet distribution with different values of α

to simulate IID and non-IID as [27] and [31] did, so each client sees 500 unlabeled in-

stances. We define IID when α = 105 and non-IID when α = 10−1. Figure 5.1 shows

how two class distributions across five clients differ. For STL-10, we take the original

splits as 100, 000 for training, 5, 000 for labeled and 8, 000 for test data. Since it was

originally curated for SSL, STL-10 does not hold the labels for unlabeled set, prevent-

ing sampling class priors for IID and non-IID data. Therefore, we randomly assign

1, 000 unlabeled samples to each client. In all experiments, ResNet-18 [17] is used

as the encoder and five clients are selected for each round from a pool of 100 clients,

which are simulated on 4 NVIDIA RTX 3090 GPUs. All methods are implemented us-

ing PyTorch [35] and Torchvision [33] with multiprocessing for parallel training. We

use the temperature 0.5 for SimCLR, the probability threshold 0.95 for FixMatch, the

projection dimension of 512 for SimCLR, Simsiam, BYOL, and the prediction dimen-

sion of 512 for SimSiam and BYOL. We run FL for 100 global rounds on CIFAR-10,

200 rounds on CIFAR-100 and STL-10, with 5 local epochs and batch size of 128. For

Centralized Supervised Learning, the model is trained for 100 epochs with the same

batch size.

5.1.2 Evaluation

To evaluate the model performance, a linear classifier is attached on top of the trained

encoder and the model is finetuned end-to-end with the labeled set at the server (Table

6.1). Also, for Semi-Supervised FL and FedSup, we evaluate the quality of representa-

tions by only training a linear classifier on top of the frozen encoder (Table 6.2), which

is a common practice in SSL [47] [31] and is referred to as linear evaluation.

In Labels-At-Server scenario, STL-10 [9] cannot be evaluated as Fully Supervised

FL, as it does not have labels for data distributed to the clients. Also, as FedMatch
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[20] and FedRGD [45] did not benchmark on CIFAR-100 and STL-10, we omit their

results.

We run following experiments:

• Fully Supervised FL: The clients with fully labeled dataset train models fol-

lowing the procedure described in 3.1. Also, the network is additionally trained

with the labeled dataset at the server after aggregation. This is the upper bound

of the methodologies.

• Centralized Supervised Learning: The model is trained with labeled dataset at

the server. This experiment is the lower bound of the methodologies.

• Semi-Supervised FL: Every client trains the local model with the state-of-the-

art SSL methods, SimCLR, SimSiam, FixMatch and BYOL, utilizing the unla-

beled data. Then, the aggregated model is supervised with labeled data at the

server. The frameworks and the training procedure are explained in 3.2 and Fig-

ure 4.3.

• FedSup: This is our proposed method. The training procedure is depicted on

Figure 4.2 and elaborated in 4.1.1.
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Chapter 6

Results and Discussions

6.1 Experimental Results

6.1.1 Main observations

We make the following observations: i) FedSup outperforms other methods on all three

datasets under finetuning, and underperforms on CIFAR-100 under linear evaluation

for both IID and non-IID, ii) When the label ratio is reduced to 1% for CIFAR-10, such

that the server only contains 500 labeled data, FedSup shows similar performance to

other methods, because FedSup relies on a highly biased server network for training,

iii) FedSup outperforms both FedRGD [45] and FedMatch [20], which implies Fed-

Sup can utilize both labeled and unlabeled data more effectively than state-of-the-art

methods, iv) The performance gain of FedSup is mainly due to layer-wise MSE loss,

v) FedSup slows the convergence down, but reaches higher top accuracy, as shown on

Figure 8.1, 8.2, 8.3 in Appendix.
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Test Accuracy under Finetuning (%)

CIFAR-10 CIFAR-100 STL-10

Method IID Non-IID IID Non-IID

Centralized 56.92 22.72 55.68

Fully Supervised 79.50 77.30 34.04 32.18 -

FixMatch 59.76 59.62 23.16 22.70 57.45

SimCLR 61.50 61.38 26.82 27.02 61.44

SimSiam 61.08 58.56 24.74 26.34 59.89

BYOL 64.10 62.66 28.28 28.26 64.25

FedMatch [20] [45] 46.81 47.11 - - -

FedRGD [45] 63.32 63.24 - - -

FedSup 69.54 68.84 30.14 28.68 66.68

Table 6.1: Semi-Supervised FL on IID and non-IID data under finetuning. For

FedMatch and FedRGD, we take their values from the paper [45]. It should be noted

that FedRGD used the measure of iid-ness 0 ≤ R ≤ 1 to simulate IID and non-IID

data, whereas we use a parameter α for Dirichlet distribution. FedRGD defined IID

and non-IID as R = 0 and R = 0.4, and we define them as α = 106 and α = 10−1.

6.1.2 Statistical Heterogeneity

Although FedSup shows higher test accuracy than FedRGD, it increases the accuracy

gap between IID and non-IID data to 0.7%, as shown in Table 6.1. However, this gap

is reduced to 0.1% for linear evaluation in Table 6.2, which suggests that finetuning

diminishes the model’s capability of dealing with heterogeneity, in exchange for better

generalization.

It is also observed that SimSiam and BYOL, which are label-agnostic, are also

adversely affected by the heterogeneity, which requires further analysis in the future.
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Test Accuracy under Linear Evaluation (%)

CIFAR-10 CIFAR-100 STL-10

Method IID Non-IID IID Non-IID

Centralized 56.92 22.72 55.68

Fully Supervised 79.50 77.30 34.04 32.18 -

FixMatch 59.52 59.40 21.94 23.34 57.36

SimCLR 60.70 60.34 25.30 24.94 59.66

SimSiam 59.44 57.20 23.58 23.96 55.79

BYOL 62.96 61.68 26.82 26.90 64.03

FedSup 66.26 66.10 25.36 25.62 65.80

Table 6.2: Semi-Supervised FL on non-IID and IID data under linear evaluation.

FedSup outperforms the other methods on CIFAR-10 and STL-10 under linear evalu-

ation, but BYOL [14] shows the highest accuracy on CIFAR-100.

6.1.3 Label Ratio

The variation of the performances on CIFAR-10 with different label ratios at the server

is presented on Figure 6.1. With 1% labels, FedSup underperforms 2 ∼ 3% compared

to BYOL and SimCLR on both IID and non-IID data. However, it improves signifi-

cantly for higher label ratio compared to all other methods, which demonstrates the

effectiveness of FedSup for reasonable amount of labels.

6.1.4 Ablation for Loss

FedSup adopts the ideas in the state-of-the-art methods, such as group-wise averaging

that replaces FedAvg in FedRGD [45] and disjoint learning of supervised and unsuper-

vised parameters in FedMatch [20], and achieves stronger generalization performance.

Through an ablation study varying the numbers of feature maps that contribute to the

loss, we find that this improvement is attributed to the layer-wise MSE loss. In detail,
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Figure 6.1: Semi-Supervised FL on CIFAR-10 for different label ratios. The label

ratio is the proportion of the server data with respect to the training data. For instance,

the server owns 50, 000× 0.1 = 5, 000 samples for the label ratio of 10% and approx-

imately 45, 800× 0.2 = 9, 160 samples for 20%.

Test Accuracy (%)

N IID Non-IID

0 57.20 56.80

1 66.72 67.66

2 68.44 66.74

3 67.68 68.24

4 69.54 68.84

Table 6.3: Performance for different numbers of feature maps N contributing to

the loss. For N > 0, the test accuracy significantly improves in comparison to N = 0.

This shows that this loss is an essential factor to the improvements of FedSup.

we include the MSE loss computed with first N ∈ {0, 1, 2, 3, 4} feature maps from

the convolutional blocks in ResNet-18 and present the result on Table 6.3. The experi-

ment shows significant performance gain compared to N = 0 that achieves almost the

same accuracy as the centralized network with no layer-wise loss. This implies that

this layer-wise loss is essential for FedSup.
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Ablation on CIFAR-10

Loss Test Accuracy (%)

Consistency MSE IID Non-IID

✓ ✓ 69.54 68.84

✓ 67.76 68.54

✓ 57.20 56.80

Table 6.4: Ablation on the loss of FedSup. In the absence of the MSE loss, FedSup

does not show any improvements compared to the centralized network, which achieves

an accuracy of 56.92%. In contrast, in the absence of the consistency loss, FedSup

demonstrates better accuracy on non-IID data than on IID data.

Furthermore, we study the effects of removing the consistency loss and the MSE

loss from FedSup. As shown in Table 6.4, without the consistency loss, the accuracy

on non-IID data drops by 0.3% while it plummets on IID data by 1.8%. This shows

that the consistency loss and its associated MLP are less beneficial for non-IID data.

We hypothesize that certain bias is created in the MLP for non-IID data, similar to the

one in the classifier mentioned in 2.4.

6.1.5 Hyperparameter Search

To properly tune the hyperparameters, we vary the batch size and the learning rate for

local training, and choose the ones that show the highest accuracy on CIFAR-10 [24].

As shown in Table 6.5 and 6.6, FedSup shows the best performance with batch size of

128 and local learning rate of 10−3, which are used in all experiments.
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Test Accuracy (%)

Batch Size IID Non-IID

16 68.44 67.10

32 68.72 68.42

64 68.14 67.32

128 69.54 68.84

Table 6.5: Sensitivity to local batch size. Although the maximum performance is

attained using a large batch size of 128, FedSup achieves the highest accuracy even for

smaller batch sizes.

Test Accuracy (%)

Local Learning Rate IID Non-IID

10−1 28.72 26.44

10−2 63.86 65.24

10−3 69.54 68.84

10−4 64.90 64.70

Table 6.6: Sensitivity to local learning rate.

6.2 Discussions

6.2.1 Semi-Supervised Learning for Federated Learning

Although we expected that SimCLR [5] would perform worse than other SSL meth-

ods, as it is known to demand large batch size for training, it performs competitively

to other methods and even exceeds SimSiam [8] and FixMatch [39]. This is consistent

with the result in [47], but [31] presents that its performance is 3% lower than Sim-

Siam and 7% than BYOL. This implies that its performance cannot be generalized and

may be subject to the implementation details, training environments or various hyper-

parameters. Also, the strengths of SSL methods can be different when applied to FL;

for example, SimSiam accomplishes the best performance in centralized training [8]
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but consistently shows low accuracy in FL. Though it is not inspected in this work,

it would be an interesting research direction to examine the reason why SimCLR can

work competitively to even the state-of-the-art SSL methods in FL.

6.2.2 Lack of Labels

There is a clear limitation in FedSup; when there is an extremely small amount of

labels at the server, the supervised network becomes overfitted and thus cannot supply

robust training signals to the unsupervised client network. Also, for real-world setting,

the server may not hold balanced dataset and may even have missing labels, which

can damage the performance of FedSup more severely than other methods. This is not

investigated in this work, but it is possible that FedSup may not be scalable for larger

scale FL that involves a lot more unlabeled data than labeled data. Our assumption is

that if the labels at the server are just enough for centralized network to generalize to a

certain degree, it can still utilize unlabeled data fairly well. This is left to future work.
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Chapter 7

Conclusion

To run Federated Learning in real-world setting, where labeled data is scarce and ex-

pensive, it is crucial to harvest useful values from vast unlabeled data. To this end,

we presented FedSup that operates in Labels-At-Server scenario, in which the labels

only exist at the server. Built on several assumptions and claims in Semi-Supervised

Learning and Federated Learning, FedSup achieves state-of-the-art performances in

both finetuning and linear evaluation schemes, bridging the gap to Fully Supervised

FL. We hope that this work brings useful insights and invokes questions for future

research.
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Chapter 8

Appendix

8.1 Detailed Experimental Results
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Figure 8.1: Training curve on CIFAR-10.
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Figure 8.2: Training curve on CIFAR-100.
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8.2 Algorithms
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Algorithm 1 Semi-Supervised Federated Learning with FixMatch/SimCLR/SimSiam/
BYOL. Each client is indexed k and the model is parametrized by θ.
Server Executes
Initialize f

(1)
θ

for each round t = 1, 2, ...T do
Train f

(t)
θ with DServer

Randomly select K clients A(t)

for each client k ∈ A(t) run parallel
f
(t+1)
θk

← ClientUpdate(f (t)
θ , Dk)

f
(t+1)
θ ←FedAvg(f (t+1)

θ[1...K]
)

Finetune f
(t+1)
θ with DServer

ClientUpdate(fθ, D)
B ← Split D into batches of size B
for local epoch e = 1, 2, ...E do

for batch b ∈ B do
for x ∈ b do

θ ← θ − η∇θL(x; θ)
return fθ
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Algorithm 2 Semi-Supervised Federated Learning with FedSup. Each client is in-
dexed k and the model is parametrized by θ.
Server Executes
Initialize f

(1)
θ , f

(1)
Server

for each round t = 1, 2, ...T do
Train f

(t)
Server with DServer

Randomly select K clients A(t)

for each client k ∈ A(t) run parallel
f
(t+1)
θk

← ClientUpdate(f (t)
θ , f

(t)
Server, Dk)

f
(t+1)
θ ←GroupwiseAverage(f (t+1)

θ[1...K]
, f

(t)
Server)

GroupwiseAverage(f (t+1)
θ[1...K]

, f
(t)
Server)

Gi ← Randomly divide f
(t+1)
θ[1...K]

into S groups
for each Gi do
f
(t+1)
θi

← FedAvg(f (t+1)
θ[j∈Gi]

, f
(t)
Server)

return FedAvg(f (t+1)
θ[1...S]

)

ClientUpdate(fθ, f
(t)
Server, D)

B ← Split D into batches of size B
for local epoch e = 1, 2, ...E do

for batch b ∈ B do
for x ∈ b do

θ ← θ − η∇θ(LCon(x; θ, f
(t)
Server) + LMSE(x; θ, f

(t)
Server))

return fθ
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초록

연합학습(FL)은여러클라이언트가로컬데이터로모델을훈련하고매개변수

만 서버에 공유하여 중앙 집중식 모델을 만드는 머신 러닝 패러다임이다. 그러나

이패러다임은모든데이터에레이블이완전히지정되어있다는비현실적인가정에

기초한다.데이터에레이블을지정하려면일반적으로도메인전문성과일관성이필

요한데,이는연합학습에서는달성하기어렵다.그래서,클라이언트가레이블이없

는 데이터를 소유하는 반면, 서버에는 레이블이 지정된 데이터(”Labels-At-Server”

[20])가 포함되어 있는 시나리오를 고려하는 것이 더 실용적이다. 클라이언트에서

레이블이 지정되지 않은 데이터를 활용하는 방법이 활발히 연구되고 있으며, 이는

확률적 데이터 증강을 활용하여 의사 라벨 (pseudo label)의 품질을 향상시킨다. 최

근의 SSL방법론들과지식증류에서영감을받아,우리는이문제를해결하기위해

준지도연합학습을위한교사-학생아키텍처 FedSup을제안한다. FedSup의타당성

을 입증하기 위해, 우리는 최근 준지도 연합학습 방법론인 FedMatch, FedRGD와

네가지의 SSL방법론을연합학습에적용하여 CIFAR-10/CIFAR-100/STL-10에대

한다양한실험을수행한다.독립항등분산(IID)데이터와비 IID데이터모두에서

FedSup은미세조정중인다른방법에비해세가지데이터모두에서더높은정확도

를 보여준다. 또한, 우리는 FedSup이 잘 작동하는 이유를 탐구하기 위해 CIFAR-10

에대한절제연구를수행하였다.

주요어:연합학습,준지도학습

학번: 2021-26031
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