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Abstract 
 

Keyword : Panel Data, Time-series, Meta learning, Few shot 

learning 

Student Number : 2021-22944 

 

Panel data refers to data with observations for multiple entities over 

time. The data is being used in diverse fields of research, including 

economics, energy, medical science, and physics. When dealing with 

panel data, researchers often encounter circumstances in which new 

entities are added. Researchers struggle to make prediction for these 

new entities owing to insufficient amount of data and distribution shift. 

Previous deep learning models lack generalizability to forecast the 

behavior of new entity in an unseen time, and none of the research 

addressed this challenge specifically. In this paper, we propose 

meta-learning based approach that enables model to extract general 

feature, or meta-knowledge across entities and times. The proposed 

approach can enhance the adaptability against unseen entity by 

leveraging this meta-knowledge and providing entity-specific few-

shot adaptation. We designed unique task setting method for meta-

learning that can well consider temporal characteristics of entity in 

panel data. We also suggest novel data split method which can 

represent the 3 different situations that can occur in panel data 

forecasting: existing entities in unseen time, unseen entity in existing 

time, and most importantly, unseen entity in unseen time. In 

evaluation on various panel data from broad range of domains, the 

results have demonstrated the effectiveness of meta-learning on 

panel data forecasting by achieving the performance improvement 

over conventional baseline models with most of the situations. 

Notably, our approach excelled the most in the situation of unseen 

entity and unseen time, which we are targeting on the most. It 

supports that our approach strengthens the model's generalizability 

to unseen data. 
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Chapter 1. Introduction 
 

 

1.1. Study Background 
 

With the remarkable achievements of deep learning to process data 

and perform classification or regression tasks, deep learning 

technology has been actively studied in the fields of computer vision, 

natural language processing, and audio recognition. Recently, deep 

learning is expanding its applications to domains such as economics, 

manufacturing, medical, and climate study. The emergence of deep 

learning technology such as RNN networks and sequence to sequence 

learning to model sequential data for language processing and 

speech-to-text transcription, has enlarged the application field of 

deep learning to both univariate and multivariate time-series data as 

part of sequential data across different domains.  

Compared to traditional methods which have mainly focused on 

domain specific prior knowledge to build parameteric models, modern 

methods with machine learning and deep learning try to learn 

temporal dynamics and representations from the data itself according 

to [1]. ML and DL struggled to outperform classical statistical 

approaches until the recent approach such as N-BEATS in [2] 

proved the effect of pure ML in time-series forecasting. Nonetheless, 

there still exists some persistent challenges such as non-stationarity 

and covariate shift in time-series forecasting, degrading 

performance in test time. Research in [3] has validated that meta 

learning can be a solution to overcome these challenges in time-

series data.  

Panel data is extended version of time-series data on entity or 

individual unit in specific domain. It is defined as cross-sectional 

time-series dataset which contains measurements of features over 

periods of time on multiple observed entities or units. Entities can be 

firms, households, countries, devices, demographic groups, or others 

depending on domains. Panel data is largely being used in areas like 

econometrics, social sciences, and medical study. It is complicated to 
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analyze and forecast panel data because the model needs to capture 

both common and unique behaviors of entities considering temporal 

dynamics, handling the underlying challenges in time-series data at 

the same time. Conventional research dealing with panel data has 

been mainly focused on regression-based statistical model [4, 5]. 

However, it is difficult to capture nonlinear patterns and overcome 

non-stationarity with linear models. Additionally, data distribution 

differs not only by time axis, but also by entity. Therefore, the model 

can show limited performance without further adaptation and or 

technique to handle distribution shifts in case of unseen entity and 

timestep. 

 

 

1.2. Purpose of Research 
 

This research concentrates on verifying the effect of meta-learning 

on short-term panel data forecasting by overcoming the concept drift 

and non-stationarity problem, extracting the meta behaviors or 

patterns of entities over time, and providing additional adaptation for 

specific time and entity from the meta knowledge. The proposed 

method is generalizable in both the time and entity axes, working well 

even in a situation to forecast newly added entity containing small 

number of historical data. This scenario can often occur during panel 

study, such as the situations when stock is newly listed in stock 

market, new household is added for measuring energy consumption, 

or when the global disease starts to break out in new country. The 

contributions of this research can be summarized as: 

 First approach to apply meta-learning methodology and to 

verify its effect on panel data forecasting through experiments 

using diverse panel datasets. 

 Novel task design and train/validation/test set split method to 

consider time and entity axes of panel data. 
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Chapter 2. Related Work 

 

2.1. Panel data forecasting 
 

Panel data, or longitudinal data refers to data with time series 

observations of multiple entities or individuals. Thus, the data 

involves at least two dimensions, a cross-sectional dimension and 

time series dimension, and more than two dimensions if the data 

contains multiple features. Standard regression model based on the 

assumption of linear relation between variables is typical model for 

panel data forecasting. Methodological literature on panel data 

analysis [6] suggested ways to decompose parameters into 

structural parameters which are invariant across time and entity, and 

incidental parameters which vary though cross-section units and 

time series observations. Modeling unobserved heterogeneity among 

entities and over time is one of the main challenges in panel data 

analysis. The model is referred to as random effects model when 

heterogeneity is assumed as random variables, and fixed effects 

model when assumed as fixed parameters, and mixed effects model 

when assumed as both according to [7]. [5] demonstrated the 

superiority of machine learning methods such as decision tree, and 

random forest over linear methods in panel data prediction.  These 

methods have limited ability to capture the complex temporal 

dynamics in data.  

One of the main reasons that researchers have not used ML or DL 

for panel data was due to lack of interpretability compared to 

statistical models. To improve the interpretability of neural network 

model, [8] proposed interpretable neural network model to predict 

individual’s monthly employment status, which is panel data.  

However, none of the research focused on building adaptive model 

which is generalizable to entity and timestep that were not seen when 

fitting model and does not handle the non-stationary characteristic 

of the data properly. The propose idea in this paper attempts to 

overcome these limitations by adopting meta-learning methodology.  
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2.2. Meta Learning 
 

Meta-learning, or learning-to-learn, refers to the learning 

techniques for generalization and quick adaptation to new task. It is 

typically used to perform few-shot learning tasks in situations with 

limited data. When it is required to make prediction for entity with 

small number of time-series observations in panel data, few-shot 

learning can be effective. Meta-learning provides an advantage to 

improve learning performance for a new task, by being trained over 

multiple learning episodes, as explained in [9]. On top of that, Woo 

et al. [3] demonstrated that meta-learning gives additional benefit to 

avoid critical problem of conditional distribution shift occurred in 

time-series prediction due to distribution differences between train 

and test set. As the panel data is composed of timeseries, handling 

unstationarity is significant to achieve performance improvement as 

in time-series data. Designing task used in meta-training and testing 

to include data from nearby timestamps allows the model to utilize 

the locally stationary distribution.  

Meta learning algorithms can be categorized as metric-based and 

optimization-based. The former targets on learning similarity 

between samples within the same class in embedding space while the 

latter aims to find optimal set of model parameters that are capable 

of adapting to each task with only a small number of gradient updating 

steps. Metric-based algorithms such as Siamese network from [10], 

prototypical network from [11] and matching network from [12] 

learn a metric or distance function over samples. Metric-based 

techniques are conceptually simple and can be fast when the number 

of tasks is small. However, they are unable to learn when tasks from 

meta-train time and meta-test time are distant. Additionally, when 

tasks become larger, the models are computationally expensive. 

Unlike metric-based approaches, optimization-based approaches 

can achieve good performance on wider range of task distributions. 

Finn et al. [13] presented model-agnostic meta-learning (MAML), 

which is the representative method of optimization based meta-

learning. The method attained exceptional attention with its simplicity 

and powerful performance. Reptile from [14] is another 



 

 ５ 

optimization-based method, which saves time and computation with 

slight sacrifice on performance compared to MAML. Compared to 

image classification, there has not been a lot of research to apply 

meta-learning on time-series or panel data. In this research, MAML 

algorithm is used to validate the effect of meta-learning on panel 

data forecasting.  
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Chapter 3. Method 
 

3.1.  Task definition 
 

Each entity is assumed to have different distribution and follow 

locally stationary distribution at nearby timestamps. Therefore, 

every task with different entity and timestamp is an independent task 

of data samples following similar distribution each. 

 

 τi ∼ P(τ|em, tn) (1) 

 

In eq. (1), τ
i
 indicates task instance i, em and tn denote the entity 

m  and timestamp n. Tasks are grouped into disjoint sets, training 

meta-set Str, validation meta-set Sval, and test meta-set Stest. Str 

is used to train meta-learner, validation meta-set is used for model 

selection, and test meta-set is used to evaluate mode’s 

generalizability performance. Validation meta-set is separated into 3 

subsets {Sval1 , Sval2 , Sval3} . Sval1  differs from Str  in time axis, Sval2 

differs in entity axis, and Sval3  differs in both axes. Similar to 

validation meta-set, test meta-set is also partitioned into 3 subsets: 

{Stest1 , Stest2 , Stest3} by time and entity axes. Model with highest f1 

score of 3 validation sets is selected for test time to enable model to 

adapt well in all the test sets.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Each task instance τi  is sampled from the distribution of eq. (1) 

Figure 1: Meta-Training, Meta-Validation, Meta-Test sets 
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which is sampled from time-series of each entity.  The task consists 

of support set Dtr and a query set Dval. Support set design differs 

depending on the type of problem. In classification task, support set 

Dtr includes the closest N ∗ K subsequence samples, K samples for 

each of the N classes to ensure that the model can learn dynamics of 

both classes evenly. In regression task, support set Dtr includes the 

Ns subsequence samples which are continuous. Each subsequence 

sample is composed of features in lookback window {xd−w, … , xd−1} 

where w  denotes the window size, and corresponding labels or 

target values within forecast horizon h from target day d, which 

are {yd, … , yd+h−1}. Query set Dval contains the subsequence sample 

that comes right after the last sample in support set. Fig 2 shows how 

support set and query set are decided in each task. Since subseries 

samples in a task are selected from nearby timeseries, model can 

effectively utilize locally stationary property instead of struggling 

from non-stationary problem. 

 

 
Figure 2: Support & Query set example 
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3.2.  Model 
 

Model Overview 

I propose model framework based on model-agnostic meta-learning 

(MAML) algorithm from [13] to update model and task parameters. 

Meta-learning aims to make model which can quickly learn a new 

task from few unseen data by exposing and training model on many 

different tasks. The main point underlying the MAML algorithm is to 

optimize model’s initial parameters (meta-learner) that allow model 

to adapt to new task only after few parameters update steps with a 

small amount of data. The intuition behind the approach is that there 

exist some meta-knowledge or representations than can be shared 

broadly with other tasks. The transferrable meta representations can 

help tasks to learn more rapidly. In panel data, this can be the 

undefined common characteristics among entities, and task-wise 

adaptation is beneficial to capture task-specific patterns for entity in 

an unseen time. MAML involves 2 training stages: one is inner loop 

to update task-wise parameters for task-specific adaptation and the 

other is outer loop to update model-parameters for meta-

optimization. Any model that can encode temporal dynamics in 

sequences can be used to be optimized.   

 

 

 

 

 

 

 

 

Figure 3: MAML algorithm for task adaptation in new entity 
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Inner-Loop 

Inner-loop is where task-specific adaptation takes place. Starting 

from the optimized initial meta-parameters, task-wise parameters 

is updated on gradient descent update using the loss produced from 

support set in given task τi. The meta model parameters θ become 

θ′i after inner adaptation as in equation (2). α is inner learning rate. 

 

 θi
′ = θ − α∇θLΤi

(fθ) (2) 

 

Outer-Loop 

Outer-loop is to perform meta-optimization over model parameters 

θ. Query losses from adapted task-wise parameters across sampled 

tasks in a batch are used to update the model parameters as in 

equation(3), and the parameters are updated via stochastic gradient 

descent(SGD) with the outer learning rate β as in equation(4).  

 

 min
θ

 ∑ LTi
(fθi

′) = ∑ LTi
(fθ−α∇θLΤi

(fθ))

Τi∼p(Τ)Τi∼p(Τ) 

 (3) 

 

 θ  ← θ − β∇θ  ∑ LΤi
(fθi

′)

Τi∼p(Τ)

 (4) 

 

Loss functions 

Cross-entropy in equation (6) is used to update gradient descent for 

classification task and mean-squared error in equation (5) is used 

for regression task in this research. 

 

LΤi
(fθi

) = ∑ ||fθi
(x(j)) − y(j)||

2

2

x(j),y(j)∼Τi

 (5) 

  

LΤi
(fθi

) = ∑ y(j) log fθi
(x(j)) + (1 − y(j)) log (1 − fθi

(x(j)))

x(j),y(j)∼Τi

 (6) 
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Encoder 

Any models that can effectively capture temporal dynamics in 

sequence data can be used as encoder. Models used in the 

experiments in this paper are Attention-LSTM(ALSTM) network 

from [15] to embed inputs considering temporal dependencies. 

LSTM(Long short-term memory) in [16] learns a representation of 

the time-series by updating cell state and hidden state through time 

steps. ALSTM is LSTM network combined with attention mechanism 

to reflect importance of each time step effectively. Instead of only 

using the last hidden state, ALSTM takes all the hidden states to 

make encoded output. It computes the attention score αi for each 

time step i, which is shown in equation (7). The embedded output h 

is computed as h = ∑ αihii .  

 

 
αi =

exp (hi
ThT)

∑ exp (hj
ThT)T

j=1

 
(7) 

 

 

Chapter 4. Experiments 

 

4.1.  Experiment Settings 
 

Data 

In the experiments, two public panel data sets from different domains 

(economics and environment) are used to demonstrate the effect of 

meta learning. Because there has not been active research on 

forecasting panel data, I selected the panel data sets that are 

commonly used in multivariate time-series forecasting task without 

considering entity axis, aiming at short-term forecasting. 

First dataset is the KDD17 [18], which includes stock price data of 

each firm. The dataset contains stock prices data of 50 companies  

from Jan-01-2007 to Jan-01-2016 in U.S markets. It has 11 

features to express the trend of each stock, processed from historical 

prices (open, close, low, high, adj-close).  The task is classification 

task to predict the movement of stock price. Labels are given by the 
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movement of close prices, as the data instances with movement 

percent ≥ 0.55% are labeled as positive, and  ≤ -0.5% are labeled 

as negative samples. Table 1 shows how KDD17 dataset is split. 

 

Other 3 datasets are the benchmark datasets typically used for 

multivariate timeseries task [19]. Second dataset is the electricity 

consumption data to forecast the electricity consumption for client, 

which is regression task. The dataset is recorded with electricity 

consumption in kWh for 321 clients between 2012 and 2014, and the 

data is converted to hourly consumption in the experiment. Third 

dataset is Solar-Energy dataset, which contains the solar power 

production records in 2006. Records are sampled every 10 minutes 

from 137 plants in Alabama State. Last data set is exchange-rate 

dataset with daily exchange rates of eight countries from 1996 to 

2016. 

 All the data sets are split into train, validation-time(val1), 

validation-entity(val2), validation-mix(val3), test-time(test1), 

test-entity(test2), and test-mix(test3). 60% of the data is used for 

training set both in time and entity axes, and 20% for validation set, 

and remaining 20% for test set. 

 

Baselines 

The performance of the proposed method is compared with ALSTM 

from [15] and Adv-ALSTM in [16] with KDD17. ALSTM [15] and 

was used as feature extractor for electricity consumption, solar-

energy, and exchange rate dataset.  

 

Evaluation metrics  

The performances of the methods are evaluated with accuracy, 

defined as the 
# of correct samples

Batch size
∗ 100 for KDD17, and evaluated with 

MAE and MSE for electricity dataset. 
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Dataset KDD17 

 Time Entity 

Train (07/01/01~14/12/31) 35 

Val1 (15/01/01~15/12/31) 35 

Val2 (07/01/01~14/12/31) 10 

Val3 (15/01/01~15/12/31) 10 

Test1 (16/01/01~16/12/31) 35 

Test2 (07/01/01~14/12/31) 5 

Test3 (16/01/01~16/12/31) 5 

Table 1: Train set, Validation sets, Test sets split for KDD17 

Hyperparameter Settings 

The proposed method TEAP is implemented with Pytorch and the 

Adam optimizer is used in outer loop update. In the experiment with 

KDD17, hidden size in ALSTM is 32, window size is 15, inner learning 

rate is fixed to 0.01, and initial outer learning rate is set to 0.005. 5 

gradient updates take place in each inner loop. Hyperparameters used 

for the experiment in table 3 are shown in table 4.  

 

Hyperparameter hidden Inner-lr Outer-lr n-inner-step horizon 

 

Lookback 

window 

Electricity 64 0.0001 0.009 10 3 168 

Solar-Energy 64 0.001 0.0001 10 3 160 

Exchange-rate 64 0.0001 0.00001 10 3 179 

Table 4: Hyperparameter settings on Electricity, Solar-Energy, Exchange- 

rate datasets 
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4.2.  Experiment Results 
 

Performance Comparison 

 

Table 2 and Table 3 show the performances of baselines and 

proposed method on KDD17 and electricity dataset respectively. As 

can be seen in table 4, the proposed method TEAP outperforms 

baselines with KDD17.  It is especially notable that the performance 

gap is larger between proposed model and baselines with test3, 

compared to test1 and test2. A lso ,  the  mode l  showed  be t te r  

p red ic t i on  resu l t s  w i th  t es t3  than  tes t1  i n  so la r  

ene rgy  and  exchange  r a te  da tase t .  Heterogeneity between 

tasks from meta-train and meta-test are largest with test3, and 

smallest with test2. Outstanding performance in test3 implies that the 

meta-learning effectively enhances the model’s generalizability to 

completely new data. I attribute the performance improvement of 

TEAP to capturing meta-knowledge across entities and times using 

meta-learning and task-wise adaptation for each entity. 

 

Method ALSTM Adv-ALSTM TEAP  

Metric Accuracy Accuracy Accuracy 

Test1 51.26 51.53 52.66 

Test2 54.18 54.07 53.44 

Test3 49.48 49.10 54.84 

Table 2: Performance comparison on KDD17 

Dataset Electricity Solar-Energy Exchange-rate 

Metric MSE MAE MSE MAE MSE MAE 

Test1 0.1079 0.2481 0.0508 0.1519 0.0541 0.2250 

Test2 0.1064 0.2441 0.0586 0.1630 0.0025 0.0413 

Test3 0.1123 0.2460 0.0430 0.1430 0.0158 0.1071 

Table 3: TEAP’s Performance of 3 test sets on Electricity, Solar-Energy, 

Exchange- rate datasets 

Among 3 test sets (test1, test2, test3), this research is primarily 

focused on test3, representing the different entity and time from train 
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set. Therefore, test 3 is used in the fallowing experiments. 

 

Ablation Study 
Effect of varying window during training in KDD17 

 

Unlike conventional models that could only be trained with certain 

window, TEAP allows model to learn dynamic patterns from varying 

window sizes during training time by task-based learning. 

It is shown that robust window training can raise performance and 

achieve efficiency since it does not need to be trained multiple times 

for each window size and model can learn various temporal patterns. 

Figure 4 verifies the effectiveness of robust window training 

compared to baselines. When TEAP is trained window sizes of 

[5,10,15,20] with KDD17, it outperforms baselines especially when 

window size is large. 

 
Figure 4: Performance comparison by window sizes 

Effect of number of support samples (K shots) in KDD17 

 

TEAP’s performance showed tendency to rise as the number of 

support samples per each class K increases. Figure 5 showed it 

achieves performance gain over 5%p when K = 10, and 2%p only 

when K = 1. Test3’s performance improvement by increasing K 

can be interpreted that it can adapt better given more data since 

test3 involves data which is different from train set in both time and 

entity axes.  
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Figure 5: Performance change by K shot 
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Chapter 5. Conclusion 

 
In this paper, I propose a novel methodology using deep learning 

based on meta-learning to perform panel data forecasting. Deep 

learning has not been heavily used for panel data forecasting so far, 

as it has been considered difficult to model common characteristics 

across entities and over time, as well as unique patterns of each 

entity at the same time. The proposed method can effectively 

discover meta-knowledge across entities and adapt rapidly to new 

task with few samples in sequence by task-based learning. 

Researchers can often face the problem of data scarcity while 

analyzing panel data when the new entity is added. The proposed 

method is especially powerful in such circumstances, outperforming 

the baseline models that do not use meta-learning. Also, the non-

stationarity in data makes forecasting even harder in test time since 

the distribution can be different from train time. The proposed 

method mitigates distribution shift problem by splitting tasks into 

shorter subsequences in nearby timesteps. I demonstrated the 

method’s effectiveness especially at the situation of unseen time 

and unseen time using 4 panel datasets from different domains of 

economics and energy. I expect that the method be utilized in other 

areas such as medical science, or physics. 
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본 연구는 여러 개체들을 복수의 시간대에서 관측하여 얻은 데이터인 패

널 데이터의 예측에 도움을 줄 수 있는 메타러닝의 효과를 입증한다. 메

타러닝을 기반으로 한 제안 기법은 모델로 하여금 개체와 시간 축에서의 

메타 지식을 효과적으로 추출할 수 있도록 하여 개체와 시간 축에 대한 

모델의 적응성을 강화한다. 또한 태스크 별로 파라미터 최적화가 이루어

질 수 있도록 하여 특정 개체의 특정 시간대에서의 개별 패턴을 추가적

으로 학습할 수 있도록 하여 모델이 공통 특성과 개별 특성을 고루 학습

할 수 있도록 한다. 기업 별 주가 데이터와 클라이언트 별 에너지 소비

량 데이터셋을 사용한 실험을 통해 메타 러닝을 통한 학습이 새로운 개

체와 시간대에서의 성능 개선에 도움이 됨을 보여주었다. 본 연구는 패

널 데이터 예측 시 딥 러닝의 활용 가능성을 보여주며, 패널 데이터의 

개체와 시간 축을 모두 고려한 새로운 태스크 구성 기법과 데이터셋 분

리 방법을 제안한다는 점에서 가치를 지닌다. 특히 데이터의 양이 한정

되어 있는 새로운 개체에 대한 예측을 수행해야 하는 상황에서 모델이 

빠르고 효과적으로 학습할 수 있도록 한다는 점에서 유용하게 활용될 수 

있다.  
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