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Abstract

Keyword : Panel Data, Time-—series, Meta learning, Few shot
learning
Student Number : 2021—-22944

Panel data refers to data with observations for multiple entities over
time. The data is being used in diverse fields of research, including
economics, energy, medical science, and physics. When dealing with
panel data, researchers often encounter circumstances in which new

entities are added. Researchers struggle to make prediction for these

new entities owing to insufficient amount of data and distribution shift.

Previous deep learning models lack generalizability to forecast the
behavior of new entity in an unseen time, and none of the research
addressed this challenge specifically. In this paper, we propose
meta—learning based approach that enables model to extract general
feature, or meta—knowledge across entities and times. The proposed
approach can enhance the adaptability against unseen entity by
leveraging this meta—knowledge and providing entity —specific few—
shot adaptation. We designed unique task setting method for meta—
learning that can well consider temporal characteristics of entity in
panel data. We also suggest novel data split method which can
represent the 3 different situations that can occur in panel data
forecasting: existing entities in unseen time, unseen entity in existing
time, and most importantly, unseen entity in unseen time. In
evaluation on various panel data from broad range of domains, the
results have demonstrated the effectiveness of meta—learning on
panel data forecasting by achieving the performance improvement
over conventional baseline models with most of the situations.
Notably, our approach excelled the most in the situation of unseen
entity and unseen time, which we are targeting on the most. It
supports that our approach strengthens the model's generalizability
to unseen data.
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Chapter 1. Introduction

1.1. Study Background

With the remarkable achievements of deep learning to process data
and perform classification or regression tasks, deep learning
technology has been actively studied in the fields of computer vision,
natural language processing, and audio recognition. Recently, deep
learning is expanding its applications to domains such as economics,
manufacturing, medical, and climate study. The emergence of deep
learning technology such as RNN networks and sequence to sequence
learning to model sequential data for language processing and
speech—to—text transcription, has enlarged the application field of
deep learning to both univariate and multivariate time —series data as
part of sequential data across different domains.

Compared to traditional methods which have mainly focused on
domain specific prior knowledge to build parameteric models, modern
methods with machine learning and deep learning try to learn
temporal dynamics and representations from the data itself according
to [1]. ML and DL struggled to outperform classical statistical
approaches until the recent approach such as N—-BEATS in [2]
proved the effect of pure ML in time —series forecasting. Nonetheless,
there still exists some persistent challenges such as non—stationarity
and covariate shift in time—series forecasting, degrading
performance in test time. Research in [3] has validated that meta
learning can be a solution to overcome these challenges in time—
series data.

Panel data is extended version of time—series data on entity or
individual unit in specific domain. It is defined as cross—sectional
time—series dataset which contains measurements of features over
periods of time on multiple observed entities or units. Entities can be
firms, households, countries, devices, demographic groups, or others
depending on domains. Panel data is largely being used in areas like

econometrics, social sciences, and medical study. It is complicated to
[
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analyze and forecast panel data because the model needs to capture
both common and unique behaviors of entities considering temporal
dynamics, handling the underlying challenges in time —series data at
the same time. Conventional research dealing with panel data has
been mainly focused on regression—based statistical model [4, 5].
However, it is difficult to capture nonlinear patterns and overcome
non—stationarity with linear models. Additionally, data distribution
differs not only by time axis, but also by entity. Therefore, the model
can show limited performance without further adaptation and or
technique to handle distribution shifts in case of unseen entity and

timestep.

1.2. Purpose of Research

This research concentrates on verifying the effect of meta—learning
on short—term panel data forecasting by overcoming the concept drift
and non-—stationarity problem, extracting the meta behaviors or
patterns of entities over time, and providing additional adaptation for
specific time and entity from the meta knowledge. The proposed
method is generalizable in both the time and entity axes, working well
even In a situation to forecast newly added entity containing small
number of historical data. This scenario can often occur during panel
study, such as the situations when stock is newly listed in stock
market, new household is added for measuring energy consumption,
or when the global disease starts to break out in new country. The
contributions of this research can be summarized as:

* First approach to apply meta—learning methodology and to
verify its effect on panel data forecasting through experiments
using diverse panel datasets.

* Novel task design and train/validation/test set split method to

consider time and entity axes of panel data.



Chapter 2. Related Work

2.1. Panel data forecasting

Panel data, or longitudinal data refers to data with time series
observations of multiple entities or individuals. Thus, the data
involves at least two dimensions, a cross—sectional dimension and
time series dimension, and more than two dimensions if the data
contains multiple features. Standard regression model based on the
assumption of linear relation between variables is typical model for
panel data forecasting. Methodological literature on panel data
analysis [6] suggested ways to decompose parameters into
structural parameters which are invariant across time and entity, and
incidental parameters which vary though cross—section units and
time series observations. Modeling unobserved heterogeneity among
entities and over time is one of the main challenges in panel data
analysis. The model is referred to as random effects model when
heterogeneity is assumed as random variables, and fixed effects
model when assumed as fixed parameters, and mixed effects model
when assumed as both according to [7]. [5] demonstrated the
superiority of machine learning methods such as decision tree, and
random forest over linear methods in panel data prediction. These
methods have limited ability to capture the complex temporal
dynamics in data.

One of the main reasons that researchers have not used ML or DL
for panel data was due to lack of interpretability compared to
statistical models. To improve the interpretability of neural network
model, [8] proposed interpretable neural network model to predict
individual’s monthly employment status, which is panel data.
However, none of the research focused on building adaptive model
which is generalizable to entity and timestep that were not seen when
fitting model and does not handle the non—stationary characteristic
of the data properly. The propose idea in this paper attempts to

overcome these limitations by adopting meta—learning methodology.



2.2. Meta Learning

Meta—learning, or learning—to—learn, refers to the learning
techniques for generalization and quick adaptation to new task. It is
typically used to perform few—shot learning tasks in situations with
limited data. When it is required to make prediction for entity with
small number of time—series observations in panel data, few—shot
learning can be effective. Meta—learning provides an advantage to
improve learning performance for a new task, by being trained over
multiple learning episodes, as explained in [9]. On top of that, Woo
et al. [3] demonstrated that meta—learning gives additional benefit to
avoid critical problem of conditional distribution shift occurred in
time—series prediction due to distribution differences between train
and test set. As the panel data is composed of timeseries, handling
unstationarity is significant to achieve performance improvement as
in time —series data. Designing task used in meta—training and testing
to include data from nearby timestamps allows the model to utilize
the locally stationary distribution.

Meta learning algorithms can be categorized as metric—based and
optimization—based. The former targets on learning similarity
between samples within the same class in embedding space while the
latter aims to find optimal set of model parameters that are capable
of adapting to each task with only a small number of gradient updating
steps. Metric—based algorithms such as Siamese network from [10],
prototypical network from [11] and matching network from [12]
learn a metric or distance function over samples. Metric—based
techniques are conceptually simple and can be fast when the number
of tasks is small. However, they are unable to learn when tasks from
meta—train time and meta—test time are distant. Additionally, when
tasks become larger, the models are computationally expensive.
Unlike metric—based approaches, optimization—based approaches
can achieve good performance on wider range of task distributions.
Finn et al. [13] presented model—agnostic meta—learning (MAML),
which is the representative method of optimization based meta—
learning. The method attained exceptional attention with its simplicity
and powerful performance. Reptile from [14] 1is another
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optimization—based method, which saves time and computation with
slight sacrifice on performance compared to MAML. Compared to
image classification, there has not been a lot of research to apply
meta—learning on time —series or panel data. In this research, MAML
algorithm is used to validate the effect of meta—learning on panel

data forecasting.



Chapter 3. Method

3.1. Task definition

Each entity is assumed to have different distribution and follow
locally stationary distribution at nearby timestamps. Therefore,
every task with different entity and timestamp is an independent task
of data samples following similar distribution each.

T ~ P(Tlem:tn) (1)

In eq. (1), T, indicates task instance i, e, and t, denote the entity
m and timestamp n. Tasks are grouped into disjoint sets, training
meta—set S¥, validation meta—set S, and test meta—set Stst, St
is used to train meta—learner, validation meta—set is used for model
selection, and test meta—set is used to evaluate mode’s
generalizability performance. Validation meta—set is separated into 3
subsets {SVal1,svalz gvalsy =~ gvali differs from S¥ in time axis, SV3l
differs in entity axis, and SY2s differs in both axes. Similar to
validation meta—set, test meta—set is also partitioned into 3 subsets:
{Stests gtest; Gtestsy hy time and entity axes. Model with highest f1
score of 3 validation sets is selected for test time to enable model to

adapt well in all the test sets.

Time
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Figure 1: Meta—Training, Meta—Validation, Meta-Test sets

Each task instance t; is sampled from the distribution of eq. (D)
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which is sampled from time—series of each entity. The task consists
of support set D and a query set DY@, Support set design differs
depending on the type of problem. In classification task, support set
DY includes the closest N *K subsequence samples, K samples for
each of the N classes to ensure that the model can learn dynamics of
both classes evenly. In regression task, support set DY includes the
Ns subsequence samples which are continuous. Each subsequence
sample is composed of features in lookback window {X4q_w,..,Xq-1}
where w denotes the window size, and corresponding labels or
target values within forecast horizon h from target day d, which
are {yg, ., Va+h-1}. Query set D'@ contains the subsequence sample
that comes right after the last sample in support set. Fig 2 shows how
support set and query set are decided in each task. Since subseries
samples in a task are selected from nearby timeseries, model can
effectively utilize locally stationary property instead of struggling
from non—stationary problem.

Classification Task Regression Task
Support set D" Support set D"
(ex. N=2, K=2, H=1) (ex. Ng =4, H=1)
X1 X2 X3 X4 X5 Yo X1 X2 X3 X4 Xs Ye
X2 X3 Xq Xs X6 Va7 X2 X3 X4 X5 X6 Y7
X3 Xq Xs X6 X7 Vs X3 X4 X5 X6 X7 Vs
X6 X7 Xg X9 X10 Y11 Xq Xs X6 X7 Xg Yo
Query set DV Query set DV@
X7 Xg X9 X10 X11 Y12 X5 X6 X7 Xg X9 Y10
Class 1 Class 2

Figure 2: Support & Query set example
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3.2. Model

Model Overview

I propose model framework based on model—agnostic meta—learning
(MAML) algorithm from [13] to update model and task parameters.
Meta—learning aims to make model which can quickly learn a new
task from few unseen data by exposing and training model on many
different tasks. The main point underlying the MAML algorithm is to
optimize model’s initial parameters (meta—learner) that allow model
to adapt to new task only after few parameters update steps with a
small amount of data. The intuition behind the approach is that there
exist some meta—knowledge or representations than can be shared
broadly with other tasks. The transferrable meta representations can
help tasks to learn more rapidly. In panel data, this can be the
undefined common characteristics among entities, and task—wise
adaptation is beneficial to capture task—specific patterns for entity in
an unseen time. MAML involves 2 training stages: one 1s inner loop
to update task—wise parameters for task—specific adaptation and the
other 1s outer loop to update model—parameters for meta—
optimization. Any model that can encode temporal dynamics in
sequences can be used to be optimized.

A
/, \\ 9;
N
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0] @

T T;

Figure 3: MAML algorithm for task adaptation in new entity



Inner—Loop

Inner—loop is where task—specific adaptation takes place. Starting
from the optimized initial meta—parameters, task—wise parameters
1s updated on gradient descent update using the loss produced from
support set in given task T;. The meta model parameters 6 become

@’y after inner adaptation as in equation (2). a is inner learning rate.
8; = 8 — aVgLr, (fo) (2)

Outer—Loop

Outer—loop is to perform meta—optimization over model parameters
0. Query losses from adapted task—wise parameters across sampled
tasks in a batch are used to update the model parameters as in
equation(3), and the parameters are updated via stochastic gradient
descent (SGD) with the outer learning rate B as in equation(4).

min z Lr, (fei’)= z Ly, (Fo-avoL, () (3)
Ti~p(T) Ti~p(T)

0 « 06— BV z Ly, (fg)) (4)
Ti~p(T)

Loss functions
Cross—entropy in equation (6) is used to update gradient descent for
classification task and mean—squared error in equation (5) is used

for regression task in this research.

Ly, (fs,) = Z 16, (x®) —Y“)||§ (5)

XD yO~T;

Lr(f) = D yOlogh (@) + (1-y?)log (1 - £, (x0)) 6)
%0y 0 ~T;



Encoder

Any models that can effectively capture temporal dynamics in
sequence data can be used as encoder. Models used in the
experiments in this paper are Attention—LSTM(ALSTM) network
from [15] to embed inputs considering temporal dependencies.
LSTM (Long short—term memory) in [16] learns a representation of
the time—series by updating cell state and hidden state through time
steps. ALSTM is LSTM network combined with attention mechanism
to reflect importance of each time step effectively. Instead of only
using the last hidden state, ALSTM takes all the hidden states to
make encoded output. It computes the attention score «a; for each
time step i, which is shown in equation (7). The embedded output h

is computed as h = Y a;h;.

exp (hThy) (7)
o =
Y, exp (h'hy)

Chapter 4. Experiments

4.1. Experiment Settings

Data

In the experiments, two public panel data sets from different domains
(economics and environment) are used to demonstrate the effect of
meta learning. Because there has not been active research on
forecasting panel data, I selected the panel data sets that are
commonly used in multivariate time—series forecasting task without
considering entity axis, aiming at short—term forecasting.

First dataset is the KDD17 [18], which includes stock price data of
each firm. The dataset contains stock prices data of 50 companies
from Jan—01—-2007 to Jan—01—-2016 in U.S markets. It has 11
features to express the trend of each stock, processed from historical
prices (open, close, low, high, adj—close). The task is classification
task to predict the movement of stock price. Labels are given by the

10 "':lﬂ_-i _'k.::._ T



movement of close prices, as the data instances with movement
percent = 0.55% are labeled as positive, and < —0.5% are labeled

as negative samples. Table 1 shows how KDD17 dataset is split.

Other 3 datasets are the benchmark datasets typically used for
multivariate timeseries task [19]. Second dataset is the electricity
consumption data to forecast the electricity consumption for client,
which is regression task. The dataset is recorded with electricity
consumption in KkWh for 321 clients between 2012 and 2014, and the
data is converted to hourly consumption in the experiment. Third
dataset is Solar—Energy dataset, which contains the solar power
production records in 2006. Records are sampled every 10 minutes
from 137 plants in Alabama State. Last data set is exchange—rate
dataset with daily exchange rates of eight countries from 1996 to
2016.

All the data sets are split into train, validation—time (vall),
validation—entity (val2), validation—mix(val3), test—time (testl),
test—entity (test2), and test—mix (test3). 60% of the data is used for
training set both in time and entity axes, and 20% for validation set,

and remaining 20% for test set.

Baselines

The performance of the proposed method is compared with ALSTM
from [15] and Adv—ALSTM in [16] with KDD17. ALSTM [15] and
was used as feature extractor for electricity consumption, solar—

energy, and exchange rate dataset.

Evaluation metrics
The performances of the methods are evaluated with accuracy,

- * 100 for KDD17, and evaluated with
Batch size
MAE and MSE for electricity dataset.

# of correct samples

defined as the
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Dataset | KDD17
Time Entity

Train (07/01/01~14/12/31) | 35
Vall (15/01/01~15/12/31) | 35
Val2 (07/01/01~14/12/31) | 10
Val3 (15/01/01~15/12/31) | 10
Testl (16/01/01~16/12/31) | 35
Test2 (07/01/01~14/12/31) | 5
Test3 (16/01/01~16/12/31) |5

Table 1: Train set, Validation sets, Test sets split for KDD17

Hyperparameter Settings
The proposed method TEAP is implemented with Pytorch and the

Adam optimizer is used in outer loop update. In the experiment with
KDD17, hidden size in ALSTM is 32, window size is 15, inner learning

rate is fixed to 0.01, and initial outer learning rate is set to 0.005. 5

gradient updates take place in each inner loop. Hyperparameters used

for the experiment in table 3 are shown in table 4.

Hyperparameter | hidden | Inner—Ir | Outer—Ir n—inner—step horizon Lookback
window
Electricity 64 0.0001 0.009 10 3 168
Solar—Energy 64 0.001 0.0001 10 3 160
Exchange—rate 64 0.0001 0.00001 10 3 179

Table 4: Hyperparameter settings on Electricity, Solar—-Energy, Exchange-

rate datasets

12



4.2. Experiment Results
Performance Comparison

Table 2 and Table 3 show the performances of baselines and
proposed method on KDD17 and electricity dataset respectively. As
can be seen in table 4, the proposed method TEAP outperforms
baselines with KDD17. It is especially notable that the performance
gap Is larger between proposed model and baselines with test3,
compared to testl and test2. Also, the model showed better
prediction results with test3 than testl in solar
energy and exchange rate dataset. Heterogeneity between
tasks from meta—train and meta—test are largest with test3, and
smallest with test2. Outstanding performance in test3 implies that the
meta—learning effectively enhances the model’s generalizability to
completely new data. I attribute the performance improvement of
TEAP to capturing meta—knowledge across entities and times using

meta—learning and task—wise adaptation for each entity.

Method ALSTM Adv—ALSTM | TEAP
Metric Accuracy Accuracy Accuracy
Testl 51.26 51.53 52.66
Test2 54.18 54.07 53.44
Test3 49.48 49.10 54.84

Table 2: Performance comparison on KDD17
Dataset Electricity Solar—Energy Exchange—rate
Metric MSE MAE MSE MAE MSE MAE
Testl 0.1079 1 0.2481 | 0.0508 | 0.1519 | 0.0541 | 0.2250
Test2 0.1064 | 0.2441 | 0.0586 | 0.1630 | 0.0025 | 0.0413
Test3 0.1123 ] 0.2460 | 0.0430 | 0.1430 | 0.0158 | 0.1071

Table 3: TEAP’s Performance of 3 test sets on Electricity, Solar—-Energy,
Exchange- rate datasets

Among 3 test sets (testl, test2, test3), this research is primarily

focused on test3, representing the different entity and time from train _
1 i 11 =k —
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set. Therefore, test 3 is used in the fallowing experiments.

Ablation Study
Effect of varying window during training in KDD17

Unlike conventional models that could only be trained with certain
window, TEAP allows model to learn dynamic patterns from varying
window sizes during training time by task—based learning.

It is shown that robust window training can raise performance and
achieve efficiency since it does not need to be trained multiple times
for each window size and model can learn various temporal patterns.
Figure 4 verifies the effectiveness of robust window training
compared to baselines. When TEAP is trained window sizes of
[5,10,15,20] with KDD17, it outperforms baselines especially when
window size is large.

60
Method
ALSTM
55 4 W Adv-LSTM
mm TEAP
+3.9W
50 4 49.48 8.58

354

Window Size

Figure 4: Performance comparison by window sizes

Effect of number of support samples (K shots) in KDD17

TEAP’ s performance showed tendency to rise as the number of
support samples per each class K increases. Figure 5 showed it
achieves performance gain over 5%p when K = 10, and 2%p only
when K = 1. Test3’ s performance improvement by increasing K
can be interpreted that it can adapt better given more data since
test3 involves data which is different from train set in both time and
entity axes.
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+5.36%R4 54

+3.80%p3.28
+2.24%ps1.72

49.48

K

Figure 5: Performance change by K shot
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Chapter 5. Conclusion

In this paper, I propose a novel methodology using deep learning
based on meta—learning to perform panel data forecasting. Deep
learning has not been heavily used for panel data forecasting so far,
as it has been considered difficult to model common characteristics
across entities and over time, as well as unique patterns of each
entity at the same time. The proposed method can effectively
discover meta—knowledge across entities and adapt rapidly to new
task with few samples in sequence by task—based learning.
Researchers can often face the problem of data scarcity while
analyzing panel data when the new entity is added. The proposed
method i1s especially powerful in such circumstances, outperforming
the baseline models that do not use meta—learning. Also, the non—
stationarity in data makes forecasting even harder in test time since
the distribution can be different from train time. The proposed
method mitigates distribution shift problem by splitting tasks into
shorter subsequences in nearby timesteps. I demonstrated the
method’s effectiveness especially at the situation of unseen time
and unseen time using 4 panel datasets from different domains of
economics and energy. I expect that the method be utilized in other

areas such as medical science, or physics.

16 ._,1_]|



Bibliography

1] Lim, Bryan, and Stefan Zohren. "Time —series forecasting with
deep learning: a survey." Philosophical Transactions of the Royal
Society A 379.2194 (2021): 20200209.

[2] Oreshkin, Boris N., et al. "N—=BEATS: Neural basis expansion
analysis for interpretable time series forecasting." arXiv preprint
arXiv:1905.10437 (2019).

[3] Woo, Gerald, et al. "DeepTIMe: Deep Time—Index Meta—
Learning for Non—Stationary Time—Series Forecasting." arXiv
preprint arXiv:2207.06046 (2022).

[4] Baltagi, Badi H. "Forecasting with panel data." Journal of
forecasting 27.2 (2008): 153—173.

[5] Chen, James Ming. "An introduction to machine learning for
panel data." International Advances in Economic Research 27.1
(2021): 1-16.

[6] Hsiao, Cheng. Analysis of panel data. Cambridge university
press, 2022.

[7] Hsiao, Cheng. "Panel data analysis—advantages and challenges."
Test 16.1 (2007): 1-22.

[8] Yang, Yucheng, and Zhong Zheng. "Interpretable neural
networks for panel data analysis in economics." arXiv preprint
arXiv:2010.05311 (2020).

[9] Hospedales, Timothy, et al. "Meta—learning in neural networks:
A survey." IEEE transactions on pattern analysis and machine
intelligence 44.9 (2021): 5149-51609.

17 .__:l'x ! _'\«.I:I_ -I_-li ."‘.ll_ o



[10] Koch, Gregory, Richard Zemel, and Ruslan Salakhutdinov.
"Siamese neural networks for one—shot image recognition." ICML

deep learning workshop. Vol. 2. 2015.

[11] Snell, Jake, Kevin Swersky, and Richard Zemel. "Prototypical
networks for few—shot learning." Advances in neural information

processing systems 30 (2017).

[12] Vinyals, Oriol, et al. "Matching networks for one shot learning."

Advances in neural information processing systems 29 (2016).

[13] Finn, Chelsea, Pieter Abbeel, and Sergey Levine. "Model—
agnostic meta—learning for fast adaptation of deep networks."

International conference on machine learning. PMLR, 2017.

[14] Nichol, Alex, Joshua Achiam, and John Schulman. "On first—
order meta—learning algorithms." arXiv preprint arXiv:1803.02999
(2018).

[15] Li, Hao, Yanyan Shen, and Yanmin Zhu. "Stock price prediction
using attention—based multi—input LSTM." Asian conference on
machine learning. PMLR, 2018.

[16] Nelson, David MQ, Adriano CM Pereira, and Renato A. De

Oliveira. "Stock market's price movement prediction with LSTM
neural networks." 2017 International joint conference on neural
networks (IJCNN). leee, 2017.

[17] Bai, Shaojie, J. Zico Kolter, and Vladlen Koltun. "An empirical
evaluation of generic convolutional and recurrent networks for

sequence modeling." arXiv preprint arXiv:1803.01271 (2018).

18 .__:l'x ! _'k.l_-l_ -I-li -__.:.I ; o



[18] Xu, Yumo, and Shay B. Cohen. "Stock movement prediction from
tweets and historical prices." Proceedings of the 56th Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long
Papers). 2018.

[19] Lai, Guokun, et al. "Modeling long—and short—term temporal
patterns with deep neural networks." The 41st international ACM
SIGIR conference on research & development in information retrieval.
2018.

19 M &t 8



x =

Keyword : g d|olH, AAE, wEtHd, 7549
Student Number : 2021—-22944

= A7 oY MAEE 559 Atels #5s8k] A2 HolE <l
g HolE ] A5 Ews &
]_

N
30
s
o
o
v
ol
1o
for
_\"L_Il
i
A
o\
e
=
o

R AggE Aeeet E=e gad MR stEtelE A5} o) 7o
A RS e 54 JiAe 54 Aol e i e F744
0% ST £ ARSF & Bl vF 549 MY 545 1T g
2 F e dh 719 E FUh dlolE el FEpoldE  ouA 2w
F dolHAE A AYS Fdf viE Hde B Sl AR )

Ask AeelA e Qs A6 =gl BE wAFYT. B A7 9
g dolE A% A | #del 2 54 wolFe, Ad vole
AR A & BE nAS AR Haa 24 AHT dolHA

=53] dlojE 9] ool %

i
2
30
rlr
=
i
Mo
=
2
=
o
2
e
mlo
0:1:1

Fafof stz el o]

MED BAHOR G5% 5 U8R Grhs Mol fgdA 288 &

20 -":I:-. : 'k:i' 1_-]i



	Chapter 1. Introduction
	Chapter 2. Related Work
	Chapter 3. Method 
	Chapter 4. Experiments
	Chapter 5. Conclusion
	Bibliography 
	Abstract in Korean


<startpage>6
Chapter 1. Introduction 1
Chapter 2. Related Work 3
Chapter 3. Method  6
Chapter 4. Experiments 10
Chapter 5. Conclusion 16
Bibliography  17
Abstract in Korean 20
</body>

