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ABSTRACT

The Protumor Effect of CXCL10/CXCR3 Axis in

Canine Mammary Gland Tumor

(Supervisor: Yongbaek Kim, D.V.M, Ph.D.)

Soyeon Cho

Major in Veterinary Clinical Sciences
(Veterinary Clinical Pathology)
Graduate School of Veterinary Medicine

Seoul National University

Chemokines and chemokine receptors play critical roles in cancer
progression. CXCR3 is a chemokine receptor expressed in T cells,
which mediates the anti—tumor effect. In contrast, CXCR3 in
malignant cells promotes tumor proliferation and metastasis in human
breast cancer. Little is known about the function of CXCR3 in canine
mammary gland tumor (cMGT) cells. This study investigated the

function of CXCR3 and its ligand, CXCL10, in cMGT cells. Two cMGT
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cell lines, CIPp (primary) and CIPm (metastatic) were used for the
study. To determine the cellular effect of interaction between
CXCL10 and CXCR3, we assessed cell proliferation and migration
potential. Moreover, we investigated the underlying molecular
mechanism of the CXCL10/CXCR3 axis. Compared to CIPp cells, the
CXCR3 expression level was significantly higher in CIPm cells.
Similar to other G protein—coupled receptor mechanisms, CXCL10
induced CXCR3 internalization in both cell lines. Treatment with
CXCL10 resulted in enhanced proliferation and migration and
increased phosphorylated AKT1 and ERK levels. This study revealed
that ligand binding caused CXCR3 internalization and activation of the
CXCL10/CXCR3 axis, promoting proliferation and migration in cMGT
cells. The data suggest that CXCR3 could be a potential therapeutic

target to regulate cMGT progression.
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LITERATURE REVIEW

Chemokine and chemokine receptor

Chemokines are a broad family of small chemotactic cytokines (8
to 12 kDa) with a conserved tetra cysteine motif (Miller and Mayo,
2017). They help cell-cell communication via autocrine and
paracrine pathways, specifically facilitating cell trafficking.
Chemokines are commonly categorized into four sub—families based
on the placement of the first two of four highly conserved cysteine
residues: C, CC, CXC, and CXC3C. Among them, The CXC family is
further subdivided into two groups based on the presence of the
glutamic acid—leucine—arginine (ELR) motif, which is critical for
receptor binding and selectivity (Strang et al., 2020). Generally, CXC
chemokines with the ELR motif stimulate angiogenesis, while those
without the motif exhibit angiostatic characteristics (Ma et al., 2015).

Chemokines can interact with chemokine receptors, G protein—
coupled receptor (GPCR) superfamily seven—transmembrane
proteins (Miller and Mayo, 2017). Although specific chemokine—
chemokine receptor interactions are selective, many chemokine
receptors bind multiple chemokines, resulting in chemotactic

redundancy and plasticity (Allen et al., 2007). The activation of

-
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chemokine receptors by their ligands causes conformational changes,
which activate an intracellular signaling cascade. When chemokine
receptors are activated, signaling 1is strictly regulated by
desensitization, internalization, and lysosomal sorting (Patwardhan et

al., 2021).

CXCR3 & its ligands: CXCL9, CXCL10, CXCL11

CXCRS3 is a chemokine receptor which expressed on various cell
types, including monocytes, T cells, dendritic cells, NK cells, and
cancer cells. CXCR3 binds with the ELR—negative CXC chemokine
subfamily, including CXCL9, CXCL10, and CXCL11 (Kuo et al., 2018).
There are three CXCR3 isoforms with distinct characteristics;
CXCR3A, CXC3B, and CXCR3—alt. CXCR3A plays classic CXCR3
functions such as chemotaxis and cell proliferation in interferon— 7y
(IFN=7) induced immune responses. Conversely, CXCR3B, spliced
at a 52 amino acid extension of the N terminus, promotes cell
apoptosis and inhibits cell migration. CXCR3—alt, a 101 —aminoacid—
truncated version via exon skipping, mediates the functions of
CXCL11 (Kuo et al., 2018; Tokunaga et al., 2018). However, there
are very few studies on CXCR3—alt compared to other CXCR3
1soforms. CXCR3A and CXCR3B mediate distinct signaling cascades

that depend on specific G protein coupling and different binding
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affinity of the ligands and cell types. CXCR3A couples with G a.iq and
results in downstream activation of Ras/Raf/ERK and PI3K/AKT
signaling leading to cell proliferation, survival, and migration/invasion.
CXCRS3B signals through G as result in adenyl cyclase and PKA and
p38 and p21 activation, leading to the sensitization of cells to stress
and apoptotic signals (Kuo et al., 2018).

The key chemokine ligands of CXCR3 are CXCL9, CXCL10, and
CXCL11, which interact with the extracellular domains of CXCR3 (Ma
et al., 2015). These ligands have a different affinity with the receptor.
Human CXCL11 has the highest affinity for CXCR3, followed by
CXCL10 and CXCL9 (Kuo et al., 2018). In homeostasis, the ligands
are typically expressed at low levels, but cytokine stimulation
increases their expression (Tokunaga et al.,, 2018). CXCL10 and
CXCL11 can be induced by both IFN— 7y and type I interferons, while
I[FN— 7 primarily induces CXCL9 (Kuo et al., 2018). Many cell types,
including endothelial cells, fibroblasts, monocytes, and cancer cells,
can release CXCL9/10/11 in response to IFN— 7y (Tokunaga et al.,
2018).

The main functions of the CXCL9, CXCL10, and CXCL11/ CXCR3
axis include immune cell migration, differentiation, and activation.
CXCR3 is expressed on all three variants on T cells for immune cell

migration, where CXCL9, —10, and —11 concurrently stimulate the
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loss of surface CXCR3 expression and elicit directed migratory
responses to the focal areas (Korniejewska et al., 2011). Chheda et
al. demonstrated a critical role of CXCR3 for cytotoxic T lymphocyte
(CTL) migration in a syngeneic murine model of B16 melanoma with
CXCRS3 knock—out mice, which indicated significant tumor growth and
shortened survival time (Chheda et al., 2016).

For immune differentiation, some research showed that CXCL9, —
10, and —11 all lead to Thl polarization via CXCR3 (Yang et al., 2011;
Zohar et al., 2014). CXCL10 enhanced T-bet and RORy
transcription, leading to the polarization of Fox—p3 type 1
regulatory (Trl) cells or T helper 17 (Th17) cells from naive T cells
via STAT1, STAT4 and STATS phosphorylation (Zohar et al., 2014).
Unlike CXCL10, CXCL11 reduced transcription of ROR 7, causing
Trl or Tr2 cells to polarize from naive T cells via p70 kinase/mTOR
pathways (Apetoh et al., 2010). Also, the CXCL9, —10, —11/CXCR3
axis regulates tumor—associated macrophage (TAM) polarization,
modulating the tumor microenvironment(TME). In a mouse breast
cancer model, CXCR3—deficient mice had increased ILL—4 production
and M2 polarization and reduced innate and immune cell-mediated
anti—tumor responses (Oghumu et al., 2014).

For immune cell activation, the CXCL9, —10, —11/CXCR3 axis

stimulated polarization and activation of Thl cells, producing

3 D +11 &=
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cytokines including IFN—7y, —ea, and IL—2. These -cytokines
stimulate CTLs, NK cells, NKT cells, and macrophages (Mosser and
Edwards, 2008; Schoenborn and Wilson, 2007). In addition, IFN—
7y dependent immune activation loop induces the secretion of CXCL9,

—-10, —11.

CXCL9, —10, —11/CXCRS3 in cancer

Considering that CXCR3A plays a vital role in proliferation and
metastasis, treatments targeting CXCR3A may be helpful in
metastatic cancer (Liet al., 2019; C. Yang et al., 2016). Many studies
on the anti—tumor effects of CXCL9, —10, —11/CXCR3 axis have
been investigated because CXCR3 is primarily expressed on immune
cells. However, In CXCR3 expressed cancer cells, autocrine CXCL9,
—10, —11/CXCR3 signaling promotes cell proliferation, angiogenesis,
and metastasis. Previous research has revealed that CXCR3 —positive
cancer cells tend to metastasize in vitro and in vivo due to autocrine
signaling from the pre—metastatic niche (Cambien et al., 2009;
Nagpal et al., 2006; Zhu et al., 2015).

Moreover, CXCR3 expression in clinical cancer samples is
correlated to metastatic potential and poor prognosis (Kawada et al.,

2007; Monteagudo et al., 2007). Therefore, this axis could be used
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to predict treatment efficacy or as a prognostic marker. Although
CXCL10/CXCR3 co—expression has been shown to have a vital role
in boosting metastatic potential by Wightman et al. (2015), the
correlation between the expression levels of the three ligands and
metastasis or prognosis is still controversial. Some groups agree that
the expression of CXCL9 (Mir et al., 2015) and CXCL10 (Liu et al.,
2016) is associated with a poor prognosis or a response to therapy,
whereas other groups claim that CXCL9 (Wu et al.,, 2016) and
CXCL10 (Sato et al., 2016) are related to the opposite outcomes.
These discrepancies in studies could be related to the intricate

relationship that each ligand has with different cancer types.

CXCR3 in veterinary medicine

In veterinary medicine, CXCR3 expression was utilized to
evaluate the polarization and differentiation state of antigen—
specific T lymphocytes. To investigate the immune response to the
inflammatory disease, several canine studies assessed the
expression of CXCR3 on T cells (Guedes et al., 2010; Park et al.,
2013; Vandamme et al., 2022). However, research on canine
tumors related to CXCR3 is still limited, and only a few studies have

been performed on canine mammary gland tumors (cMGTs). In
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cMGTs, an increase in tumor development and spread has been
linked to CXCR3 expression (Ariyarathna et al., 2020; Bujak et al.,
2020). Nevertheless, only gene expression in tumor tissue was
confirmed, and no research has been conducted on whether CXCR3
1s actually expressed in mammary gland tumor cells or the role of

CXCR3. So, further research in this field is needed.
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Introduction

The chemokine receptor 1s seven transmembrane proteins
belonging to the G—protein coupled protein group (Kuo et al., 2018).
The chemokine is composed of low molecular weight cytokines with
an essential role in inflammation and immunity. (Mollica Poeta et al.,
2019). Chemokines are classified into four groups by the pattern of
cysteine residues: CXC, CC, C, and CX3C. Although the primary
function of chemokine receptor signaling is leukocyte trafficking,
they participate in various pathophysiological conditions, including
human cancers (Mollica Poeta et al., 2019). The role of chemokines
in cancer extends beyond recruiting immune cells into tumor sites
including regulation of tumor angiogenesis and tumor cell
dissemination. (Mantovani et al., 2010)

Among the several chemokine receptors associated with cancer,
recent studies have focused on the CXCR3 and its ligands (Karin,
2020; Kuo et al., 2018; Tokunaga et al., 2018). CXCR3 is a chemokine
receptor that interacts with CXC group chemokines: CXCL9, CXCL10,
and CXCL11. CXCR3 expressed on immune cells promotes
chemotaxis, differentiation, and activation by interacting with its
ligands (Strang et al., 2020). In the tumor environment, this paracrine

axis stimulates the recruitment of tumor—specific immune cells into
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tumor sites, resulting in tumor suppression. Interestingly, in specific
situations where the tumor cells express the CXCR3 receptor, the
autocrine axis of CXCR3 and its ligands impact growth, progression,
and metastasis. Through pathways, including activation of MAPK and
PI3K/AKT signaling, CXCR3 activation promotes the invasion and
migration of cancer cells (Cannon et al., 2021). So, CXCR3—targeted
therapy has been proposed as a treatment option and prognostic
marker for various cancers, especially breast cancer (Tokunaga et
al., 2018; Zhang et al., 2018).

Mammary gland tumors are one of the most frequent cancers in dogs,
particularly in intact females, and are still one of the leading causes
of mortality in dogs (Benavente et al., 2016; Salas et al., 2015;
Sorenmo, 2003). Human breast cancers and canine mammary gland
tumors (cMGTs) share numerous characteristics, including a
hormonal influence on development, histopathologic characteristics,
expression patterns of several molecular markers, and an
unpredictable clinical outcome (Abdelmegeed and Mohammed, 2018;
Gray et al., 2020). Only a few studies have evaluated the expression
of CXCR3 in canine tumor tissues. In these studies, CXCR3
expression is highly associated with the malignancy of cMGT
(Ariyarathna et al., 2020; Bujak et al., 2020). However, there was

simply the identification of gene expression in cMGT tissue and no

9 ] 2- 1_l|
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research on whether CXCR3 was expressed in cMGT cells or the role

of CXCR3.

The objectives of this study were to assess CXCR3 expression in

cMGT cell lines; to examine the effects of CXCR3 expressed in cMGT

cells.
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Materials and methods

Cell lines and culture

The present study used two cell lines (CIPp and CIPm), which
originate from one dog. The CIPp cell line was collected from a
primary lesion in the mammary gland, and the CIPm cell line was
collected from an enlarged regional lymph node (Uyama et al., 2006).
CIPp and CIPm were kindly provided by the Department of Veterinary
Pharmacology, Seoul National University (SNU). The cells were
cultured in Roswell Park Memorial Institute (RPMI) 1640 medium
(Cytiva, Marlborough, MA, USA) at 37C with 5% COz. The culture
medium was supplemented with 10% fetal bovine serum (GE
Healthcare), 10 mM HEPES (Sigma—Aldrich, St. Louis, MO, USA),
2.0 g/L sodium bicarbonate (Sigma—Aldrich), 1 mM sodium pyruvate
(Thermo Fisher, San Diego, CA, USA), and 100U/100 pg/mL

penicillin—streptomycin (Thermo Fisher)

Quantitative real—time reverse transcription—

polymerase chain reaction (RT—qPCR)

Total RNA was isolated from CIPp and CIPm cells using Trizol

(Invitrogen; Thermo Fisher), and quantitation was performed using a

-

11 A =2-TH



286  BioTek Epoch Microplate Spectrophotometer (Izasa, Barcelona,
287 Spain). Total RNA was subjected to cDNA synthesis using a
288  QuntiTect Reverse Transcription Kit (Enzynomics, Seoul, South
289  Korea). An SYBR Green RT-PCR Kit (Enzynomics) was used for
290 gene expression analysis. The primers for the target genes are listed
291 in Table 1. The relative changes in gene expression levels were
292 normalized to Glyceraldehyde 3—phosphate dehydrogenase
293 (GAPDH).

294
295 Western blot assay

296  Western blot assay was perfomed to determine the changes in

297  related proteins. The cells were lysed using EzRIPA buffer (ATTO,
298  Tokyo, Japan). The lysate protein concentration was quantified by a
299  Bradford assay (BioRad, Hercules, CA, USA) and measured using a
300 BioTek Epoch Microplate Reader. Thirty micrograms of protein

301  were subjected to 10—12% sodium dodecyl sulfate—polyacrylamide
302  gel electrophoresis and transferred to a nitrocellulose membrane
303 (Amersham, GE Healthcare, Barcelona, Spain) using the

304  electrophoretic method. The membrane was blocked by a phosphate
305 buffered saline—tween (PBS-T) solution which contained 5% skim
306  milk for 60 minutes at room temperature. Primary antibodies,

307  including CXCR3 (Bioss Antibodies, Woburn, MA, USA), phospho—
12 ’}ﬁ-! "NI:.' 1_l| ol
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329

AKT1 (Thermo—Fisher), AKT (Cell Signaling Technology,
Danvers, MA, USA), p—ERK (Cell Signaling Technology), ERK
(Cell Signaling Technology), Sodium—potassium adenosine
triphosphatase (Na" — K" ATPase) (Abcam, Cambridge, MA, USA),
and B —actin (Cell Signaling Technology), were diluted 1:1,000 in
immunoreaction enhancer solution (TOYOBO, Japan) and incubated
overnight at 4C. The secondary HRP—conjugated anti—rabbit
(Santa Cruz Biotechnology, Dallas, TX, USA) and anti—mouse
(Santa Cruz Biotechnology) antibodies were used at a dilution of
1:4,000 in a blocking solution (PBS—T with 4% BSA) for 2 hrs.
Protein expression was detected by a chemiluminescence imaging
system (ATTO) after spreading the Luminata Forte Western HRP

Substrate (Merck Millipore, Burlington, MA, USA).

Flow cytometric analysis

To evaluate the expression of CXCR3 on the cMGT cell membrane,
we cultured CIPp and CIPm cells within the 6—well plates and
exposed them to 10 ng/mL of CXCL10 recombinant protein
(AssayGenie, Dublin, Ireland) for 0, 5, 15, 30, 45 and 60 min. After
cell digestion and collection, cells were incubated for 1hr at 4'C with
CXCR3 (Invitrogen) in a 100:1 ratio. After washing with PBS, we

immediately analyzed using FACSVerse (Becton Dickinson
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Biosciences).

Membrane fractionation assay

Subcellular fractionation of the cytosol and membrane was

achieved using a Mem—PER™ Plus Membrane Protein Extraction Kit

(Thermo—Fisher) according to the manufacturer’s recommendations.

Na"—K* ATPase (Abcam) was used as endogenous control marker

for the membrane.

Cell proliferation assay

Cell proliferation was determined using Cell Counting Kit—=8
(Dojindo Molecular Technologies, Inc., Rockville, MD, USA)
according to the manufacturer’s instructions. Cells were treated with
CXCL10 (AssayGenie) (10 ng/mL) and AMG487 (MedChemExpress,
USA) (1 uM) for 24 hrs. The cells were seeded at 5 x 10° cells per
well in 96—well plates. Cell viability was quantified by measuring
photometric absorbance at 450nm wusing Epoch Microplate
Spectrophotometer (Bio Tek Instruments) and expressed as a

percentage relative to the viability of untreated control cells.

Scratch wound—healing assay
14 -":lx_! _'q.;:-' T
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To investigate mobility, the CIPp and CIPm cells (1 x 10° per well)
were cultured overnight to reach at least 80% confluence and
scratched with a 200 uL pipette tip to create wound areas. The cells
were then treated with or without CXCL10 (10 ng/mL) or AMG487
(1 uM) for incubation time (0, 2, 4, 6 hrs). The wound gap was
observed, and cells were photographed using phase—contrast
microscopy. The images were then analyzed using Image J software
1.53 s version (National Institutes of Health, Bethesda, Md, USA) to

measure the scratch area.

Statistical analysis

All experiments were repeated at least 3 times, and the data were
presented as the means * standard error of the mean (SEM).
GraphPad Prism 9 software (GraphPad Software) was used to
perform statistical analysis, including an unpaired Student’s t—test
and one—way analysis of variance (ANOVA), and to generate all

graphs. Statistical significance was determined at P < 0.05, P < 0.01,

or P <0.001.
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Table 1. Primer sequences of the genes used for gqRT—PCR

Gene Direction Primer sequences (5' — 3")
Forward TTCTTTGCCATCCCAGATTTC
CXCR3
Reverse ATGCATGGCATTTAGGCG
Forward GGAGAAAGCTGCCAAATATG
GAPDH
Reverse ACCAGGAAATGAGCTTGACA
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Results

The expression of CXCR3 in cMGT cell lines

CXCR3 has been reported to show higher expression in metastatic
canine mammary gland tumor tissue than in primary malignant
mammary gland tumor tissue (Ariyarathna et al., 2020). To
investigate the expression of CXCR3 in the cMGT cell line, we used
the CIPp and CIPm cell lines. We first performed RT—qPCR to
compare the expression of CXCR3 in these cell lines. CXCR3
expression was significantly higher in CIPm than CIPp (Figure 1 A).
The results were further validated with western blot analysis of
CXCR3 in CIPp and CIPm (Figure 1 B). We then confirmed the
expression of CXCR3 proteins using flow cytometry. Consistent with
the RT—gPCR and the Western—blot data, the CIPm expressed

CXCR3 significantly higher than the CIPp (Figure 1 C).
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Figure 1. The CXCR3 expression in two cMGT cell lines.

(A) The mRNA expression of CXCR3 was measured in CIPp and CIPm cells.
Significance: "P < 0.05, P < 0.01, and ™ P < 0.001. Each data represents the mean
+ SEM (n = 4). (B) Western blot analysis of CXCR3 expression from both cell lines.
The B —actin was used for normalization. (C) Analysis of the expression of CXCR3

by flow cytometry in both cell lines.
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CXCL10 reduced CXCR3 expression on the surface of

cMGT cells

To determine the effect of CXCL10 on CXCR3 expression, the CIPp
and CIPm cell lines were cultured in a conditioned medium containing
CXCL10 ligand. Flow cytometry measured the surface expression of
CXCR3 depending on CXCL10 concentration (0, 1, 10 and 100 ng/mL)
and treatment time (0, 5, 15, 30, 45 and 60 min). Incubation with
CXCL10 induced a dose—dependent loss of CXCR3 from the cell
surface (Figure 2 A). Using 10 ng/mL concentrations of CXCL10, the
expression of CXCR3 was subsequently examined. Loss of CXCR3
was observed by 45 minutes in both cell lines. The CXCR3
expression increased in 60 minutes in two cell lines (Figure 2 B). To
further confirm whether CXCL10 could reduce CXCR3 expression on
protein levels in cMGT cells, membrane and cytosolic proteins were
fractionated using Mem—PER™ Plus Membrane Protein Extraction
Kit and then detected using Western blotting. We found that CXCR3
was downregulated in membrane proteins in both cell lines after
incubation with CXCL10. The membrane protein levels of CXCR3
were lowest at 45 minutes. In cytosolic fraction, the CXCR3 level was
slightly increased at 15 min. In CIPp, it tended to fall to 45 minutes

before increasing to 60 minutes, while it remained at a similar level

19 .__:Ix_s _'q.;:-' ok



454

in CIPm. (Figure 2 C, D).
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Figure 2. Downregulation of CXCR3 by CXCL10

(A) CIPp and CIPm cells were cultured in a complete medium without or with the
increasing concentrations of CXCL10 for 24hrs. Surface—expressed CXCR3 was
detected by flow cytometry. (B) CIPp and CIPm cells were cultured in a complete
medium with 10 ng/mL CXCL10 for the times indicated. Surface —expressed CXCR3
was detected by flow cytometry. All error bars represent SEM with n = 3.
Significance: "P< 0.05, “P<0.01, and “*P<0.001. (C, D) CIPm cells were stimulated
with 10 ng/mL CXCL10 at 15, 30, 45, and 60 min. Western blot analyses of CXCR3
expression from the membrane and cytosolic fractions. B —actin was used as a

cytosolic marker, whereas Na*—K* ATPase was used as a cell membrane marker.
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CXCL10/CXCR3 axis promotes tumor cell proliferation

in cMGT cells

Cell proliferation assay was performed to determine the cellular
effect of the CXCL10/CXCR3 axis. The CIPp and CIPm cell lines were
cultured for 24hrs without or with CXCL10 (10 ng/mL) or co—treated
CXCL10 (10 ng/mL) and AMG487 (1 x«M). The proliferation was
significantly increased with only CXCL10 in both cell lines. In the co—
treatment group, there was no difference in proliferation from the

control group (Figure 3).
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Figure 3. CXCL10/CXCRS3 axis induces cell proliferation

The proliferation of CIPp (A) and CIPm (B) cells treated with only CXCL10 (10
ng/mL) or cotreated with CXCL10 (10 ng/mL) and AMG487 (1 M) was analyzed
using CCK—8 assay. All error bars represent SEM with n = 3. Significance: "P <

0.05, "P<0.01, ™P<0.001 and ns : Not Statistically Significant.
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CXCL10/CXCR3 axis significantly increased the

migration of cMGT cells

A scratch—wound—healing assay was then conducted to determine
the effect of CXCL10 on cMGT cell migration. After CXCL10 (10
ng/mL) or co—treatment with CXCL10 (10 ng/mL) and AMG487 (1
1« M), the gap area was measured at 0, 2, 4, and 6 hrs. The cMGT
cells treated with CXCL10 showed significantly more migration

capacity than control and cotreated cells (Figure 4).
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Figure 4. CXCL10/CXCR3 axis induces cMGT cells migration

Scratch wound—healing assay. CIPp (A) and CIPm (B) Cells were treated with
either 10 ng/mL CXCL10 or co—treatment of 10 ng/mL CXCL10 and 1 M AMG487
for 0, 2, 4, and 6hrs. Representative images from a scratch wound—healing assay
are shown. Yellow outlines indicated the edge of the wound. The gap width
percentage signifies the remnant gap size after making scratches, compared to the
initial gap size. All error bars represent SEM with n = 3. Significance: "7 < 0.05, P

<0.01, and ™" P < 0.001.
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CXCL10/CXCR3 axis stimulated the phosphorylation of

AKT and ERK

To explore the possible signaling pathway by which CXCL10 binds
CXCR3, several signal transduction pathways, including AKT and
ERK, were assessed by western blot analysis. Exposure of CIPp and
CIPm to CXCL10O for different periods resulted in increased
phosphorylation of both ERK and AKT1. The addition of CXCL10
caused an increase in the phosphorylation of ERK and AKT1 (Figure

5).
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533 60 min. p—AKT1/AKT and p—ERK/ERK levels were detected by Western blot assay.
534 (A) Protein expression of p—ERK, ERK, p—AKT1 and AKT1 in CIPp and CIPm. (B)

535 Quantification of protein expression in CIPp and CIPm.
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Discussion

CXCR3 and its ligands have been the main focus of immunity
research because it primarily affects immune cell activation and
differentiation. Recent research showed that they also play a
tumorigenic involvement in some tumors by enhancing tumor cells
proliferation and migration. For the first time, we focused on whether
CXCR3 expresses on cMGT cells and how the CXCL10/CXCR3 axis
affects tumor progression in cMGT.

Although studies on CXCR3 expression are few In veterinary
medicine, in some studies performed from cMGT, CXCR3 showed
higher gene expression in metastatic tissues than in normal, benign,
and primary malignant tumors. To confirm this finding in cell lines,
two cMGT cell lines originating from primary and metastatic lesions
were chosen. Our data revealed that both cell lines expressed CXCR3
mRNA and protein and that CIPm had significantly higher expression
of CXCR3 compared CIPp. These results demonstrated the
correlation of CXCR3 level with the metastatic ability in cultured cell
lines. Similarly, a previous study reported that CXCR3 expression
was the highest in the 4T1 cell line, which is the most malignant in
murine mammary gland tumor cell lines. (Zhu et al., 2015).

CXCR3 stimulates cellular downstream pathways by responding

29 A “._, ‘_]l



558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

o717

978

579

with its ligands: CXCL9, CXCL10, and CXCL11l. Among them,
CXCL10 is well known to be significantly correlated with tumor grade
and poor prognosis in numerous cancers, including human melanoma
(Wightman et al., 2015), colorectal carcinoma (Toiyama et al., 2012),
prostate cancer (Nagaya et al., 2020) and breast cancer (Clark et al.,
2021). Furthermore, CXCL10 was the most abundant ligand in triple—
negative human breast cancer disease (Clark et al., 2021). So, we
focused on CXCL10/CXCR3 axis in this study. Concerning CXCR3
expression on tumor cells, prior studies in human cancers have
demonstrated that CXCL10 can induce upregulation of CXCR3
(Goldberg—Bittman et al., 2004; Nagpal et al., 2006). Contrary to our
expectation, our results showed that the cell surface level of CXCR3
was significantly decreased by CXCL10 with increasing
concentration and time. In addition, we observed by cellular
membrane fractionation studies that CXCL10 caused a reduction in
the levels of CXCR3 at the tumor cell membrane. The reason for this
is considered to be due to the internalization of CXCR3. CXCR3 is a
GPCR that is typically internalized into cells following ligand binding.
Once internalized, GPCR has multiple fates, including recycling,
degradation, and endosomal signaling (Patwardhan et al., 2021). In
the case of CXCRS3, following internalization, CXCRS3 is degraded, and

de novo synthesis of the receptor replenishes it at the cell surface
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(Meiser et al., 2008). According to this mechanism, the cytosolic
protein is reduced after 15 minutes due to the degradation process
that occurs following internalization.

After identifying the expression of CXCR3 on cMGT cells, the next
aim was to determine how CXCR3 influenced the malignancy of cMGT
cells by interacting with CXCL10. Our results showed that the
proliferation of both cell lines was increased significantly by CXCL10
through the CCK—8 assay. Moreover, CXCR3 expression in cMGT
cells enhanced the migratory ability of tumor cells in the presence of
CXCL10 by scratch wound healing assay. In addition, the proliferation
and migration of cMGT cells were inhibited significantly by CXCR3
inhibitor =~ AMG487. These results demonstrated that the
CXCL10/CXCR3 receptor—ligand interaction might promote cMGT
cell progression by enhancing the proliferation and migration of tumor
cells. Like other chemokine receptors, CXCR3 triggers several
downstream pathways that affect cellular responses. In human
medicine, after CXCL10 binding, CXCR3 changes its conformation and
recruits the specific coupled G protein. This stimulation activates the
MAPK/ERK and the PI3K/AKT pathways.

Similarly, our results demonstrated that the phosphorylation levels
of AKT1 and ERK were increased with CXCL10 incubation. In other

words, upregulating CXCL10 expression could activate the AKT and
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ERK signaling pathways in cMGT cells. Therefore, the AKT and ERK
signaling pathways might be correlated with proliferation and
migration induced by the CXCL10/CXCR3 axis.

Although this study offers new information regarding the
expression and function of CXCR3 in cMGT cell lines, several
limitations should be addressed. First, since this study only identified
the interaction between exogenous CXCL10 and CXCR3, further
studies are needed on CXCL10 secreted by tumor cells to confirm
the CXCL10/CXCR3 autocrine axis. Second, we observed our in—
vitro findings for increased proliferation and migration in response to
exogenous CXCL10 in a controlled, artificial environment. This
investigation could not determine whether similar biologic responses
by ¢cMGT cells occur within the natural tumor microenvironment.
Third, despite the finding that cMGT cells express CXCR3, this study
was not designed to look into the clinical significance of these results.
Given that CXCR3 expression affects disease progression and
prognosis in human breast cancer patients (Ma et al., 2009; Hilborn
et al.,, 2014). Therefore, future research into the clinical relevance
of CXCR3 expression as a prognostic marker for cMGT may be
warranted.

In conclusion, our study revealed the expression of CXCR3 and its

interaction with CXCL10 in cMGT cells. Our data also proved that
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CXCR3 has a protumor effect in tumor cells. Despite some limitations,

this study suggests that CXCR3 could be a potential therapeutic

target for regulating tumor progression in cMGT.
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Conclusion

The data in the present study make it clear that CXCR3 is
expressed in cMGT cell lines and that the metastatic cell line has a
higher expression of CXCR3 than the primary cell line. Additionally,
when binding with CXCL10, the membrane protein level of CXCR3
decreased. These results are presumed to be through internalization.
We found that the CXCL10/CXCR3 axis mediates the proliferation and
migration of cMGT cells. Furthermore, we explored the signaling
pathways that promote cMGT cell progression, including AKT and
ERK. Although there are some limitations in the present study, these
results indicate that CXCR3 is valuable as a potential therapeutic

target for regulating cMGT progression.
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