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Abstract

Seungjae Lee

The Department of Applied Bioengineering

The Graduate School

Seoul National University

The difference in restricted mean survival time (RMST) has been increasingly

used as an alternative measure to hazard ratio in survival analysis. Unlike

relative effect measure such as hazard ratio, RMST difference provides infor-

mation about an intuitively interpretable absolute risk and is known to be

robust regardless of the proportional hazards assumption.

In experimental studies such as a randomized controlled trial, the RMST

is calculated by integrating the area under the Kaplan-Meier curve up to a

specific time point, and the difference in RMST between the two groups is used

as a causal effect of exposure. However, in observational studies, the standard

Kaplan-Meier estimator cannot be directly used for calculating the RMST

because of confounding bias due to non-random exposure assignment. The

difference in RMST adjusted for potential confounders can be estimated using

methods such as direct RMST regression, inverse probability weighting, G-

computation, etc. Through multiple simulation studies in which all the models

were correctly specified, we confirmed that all the methods being considered

provided the unbiased estimates with the percentile bootstrap confidence

intervals achieving near nominal coverage probability.

Although several methods have been developed for evaluating the difference

in RMST adjusted for potential confounders in the observational study, there
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is no study on the sensitivity analysis of unmeasured confounding. Therefore,

we propose a novel sensitivity analysis method that considers unmeasured con-

founding for evaluating the estimate of the difference in adjusted RMST. Given

a user-specified sensitivity parameter, one can obtain the sensitivity range and

confidence interval of bias-adjusted difference in RMST. It is necessary to solve

a complex optimization problem to obtain the sensitivity range and confidence

interval, but there is no analytic solution except in special cases. While the

optimization problem can be directly solved by using an optimization algorithm

such as L-BFGS-B (hereafter referred to this method as the direct optimization

method), it takes considerable computational time. Therefore, we propose

an approximate optimization method comparable to the direct optimization

method in terms of bias, achieving substantial reduction in the computational

time. Through intensive Monte Carlo simulation studies, we showed that the

proposed approximate optimization method can be a practical alternative.

When applying our sensitivity analysis method in practice, we recommend

using the approximate optimization method in case that the censoring rate is

less than 0.7. Otherwise, one may use the direct optimization method using

an optimization algorithm.

Keywords: restricted mean survival time, causal inference, survival analysis,

observational study, sensitivity analysis, unmeasured confounding

Student Number: 2020-30064
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Chapter 1

Introduction

The difference in restricted mean survival time (RMST) has been increasingly

used as an alternative measure to hazard ratio in survival analysis (Royston

and Parmar, 2013; Uno et al., 2014; Trinquart et al., 2016; Kim, Uno, and Wei,

2017; Pak et al., 2017; Kloecker et al., 2020; Han and Jung, 2022). Although

the hazard ratio is the most commonly used measure of exposure in survival

analysis, its causal interpretation is often risky because the risk set is updated

without randomization (Hernán, 2010; Stensrud et al., 2019; Stensrud and

Hernán, 2020). Unlike relative effect measure such as hazard ratio, the difference

in RMST provides information about an intuitively interpretable absolute risk

and is known to be robust regardless of the proportional hazards assumption

(Hernán, 2010; Royston and Parmar, 2011). In experimental studies such as a

randomized controlled trial, the RMST is calculated by integrating the area

under the Kaplan-Meier curve up to a specific time point, and the difference

in RMST between the exposure groups is used as a causal effect of exposure.

However, in observational studies, the standard Kaplan-Meier estimator

cannot be directly used for calculating the RMST because of confounding bias
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due to non-random exposure assignment, and thus the difference in RMST

based on the Kaplan-Meier estimator may be interpreted as an association.

In other words, some strong assumptions should be required to interpret

the association from an observational study as the causation. One of the

key assumptions is a conditional exchangeability assumption (also referred

to as no unmeasured confounding or ignorability assumption) (De Finetti,

1974; Rubin, 1978), which means that given a set of covariates, the potential

outcome is independent of the exposure. Under the conditional exchangeability

assumption, various statistical methods such as propensity score (PS) matching

(Rosenbaum and Rubin, 1983), inverse probability (IP) weighting (Horvitz and

Thompson, 1952), G-estimation (Robins, 1989), and G-computation (Robins,

1986) have been developed to estimate the causal estimand of interest. By

applying these methods to the RMST, the difference in RMST adjusted for

confounders can be estimated using methods such as direct RMST regression

(Andersen, Hansen, and Klein, 2004; Tian, Zhao, and Wei, 2014), IP weighting

(Hernán, Brumback, and Robins, 2000; Cole and Hernán, 2004; Xie and Liu,

2005; Hernán, 2010), G-computation (Chatton et al., 2022), etc. In order to

have a causal interpretation, these methods require a full adjustment for all

possible confounders. In this thesis, several simulation studies are performed to

assess whether the methods being considered provide the unbiased estimates

of the difference in adjusted RMST along with confidence intervals achieving

near nominal coverage probability when all the models are correctly specified.

Even if a researcher makes effort to adjust for all possible potential con-

founders, it is generally unverifiable by observed data that these confounders

satisfy the conditional exchangeability. When a researcher is concerned about
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possible unmeasured confounding (i.e., a violation of conditional exchangeabil-

ity), it is necessary to investigate how the analysis results would be vary by

the degree of violation of the conditional exchangeability assumption. This

is so-called sensitivity analysis for unmeasured confounding (Cornfield et al.,

1959; Lin, Psaty, and Kronmal, 1998; Robins, 1999; Scharfstein, Rotnitzky,

and Robins, 1999; Robins, Rotnitzky, and Scharfstein, 2000; Rosenbaum, 2002;

Brumback et al., 2004; Tan, 2006; Zhao, Small, and Bhattacharya, 2019; Dorn

and Guo, 2022). There is a long history of sensitivity analysis in observational

studies. Cornfield et al. (1959) is considered a monumental paper in sensi-

tivity analysis for unmeasured confounding. Lin, Psaty, and Kronmal (1998)

assessed the sensitivity of regression analysis results including binary response

and censored time data as special cases to the residual confounding by an

unmeasured confounder. Robins (1999) and Brumback et al. (2004) performed

an interesting sensitivity analysis using the difference of the expectation of a

potential outcome between with and without the exposure, given the measured

confounders. Similarly, Robins, Rotnitzky, and Scharfstein (2000) performed

a sensitivity analysis using the difference of the conditional distribution of

exposure between with and without the potential outcome, given the measured

confounders. For matched observational study, Rosenbaum (2002) developed a

sensitivity analysis considering that two individuals with the same measured

confounders can have different odds of exposure due to unmeasured confounder.

Recently, based on Rosenbaum (2002) and Tan (2006), Zhao, Small, and Bhat-

tacharya (2019) proposed a parametric sensitivity model, and this approach

allowed each individual to have the true odds of exposure that can differ from

the odds of exposure estimated by measured confounders.
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Most of the sensitivity analysis methods for unmeasured confounding in

observational survival data have been developed for Cox proportional hazards-

type models (Klungsøyr et al., 2009; Lin, Logan, and Henley, 2013; Huang, Xu,

and Dulai, 2020) and studied how much the hazard ratio changes with respect to

the amount of unmeasured confounding. Similarly, RMST can also suffer from

unmeasured confounding because of complexity of data generating mechanism.

To best our knowledge, there is few studies on the sensitivity analysis for RMST

regarding the degree of unmeasured confounding. Therefore, by adapting Zhao,

Small, and Bhattacharya (2019)’s parametric sensitivity model for non-survival

data and using the estimate of adjusted RMST up to specific time point

obtained by integrating Xie and Liu (2005)’s adjusted Kaplan-Meier curve, we

propose a novel sensitivity analysis method for the estimate of the difference in

RMST adjusted only for measured confounders when unmeasured confounding

is suspected. By using our sensitivity analysis method, one can obtain the

sensitivity range of the point estimates for the difference in bias-adjusted

RMST along with confidence interval for theirs partially identified region. To

facilitate its use in practice, we made an R package, entitled RMSTSens, to

perform sensitivity analysis of unmeasured confounding for the estimate of the

difference in adjusted RMST and plot the results of the sensitivity analysis

(https://github.com/seungjae2525/RMSTSens).

The remainder of this thesis is organized as follows. In Chapter 2, we

present notation and assumptions and describe the definition of the difference

in RMST. Chapter 3 reviews the methods for estimating the difference of RMST

adjusted for confounders, compares the performance between the methods being

considered through simulation studies, and applies each method to real data.

We propose a novel sensitivity analysis method in Chapter 4. We also show

4
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the Monte Carlo simulation results to demonstrate that our proposed method

performs well under a variety of settings and illustrate the proposed method

with two real data. Finally, a discussion and summary are presented in Chapter

5. The overall flow diagram of thesis structure is shown in Figure 1.1.

Figure 1.1 Overall flow diagram of thesis structure
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Chapter 2

Restricted Mean Survival Time

2.1 Notation and assumptions

Let (T̃i, δi, Ai,Li) denote an independent sample of right-censored survival

data for subject i (i = 1, . . . , N). N is a sample size. T̃i = min{Ti, Ci} is an

observed survival time where Ti is the event time and Ci is the censoring time.

δi = I(Ti ≤ Ci) is an event indicator where I(·) denotes the indicator function

taking the value 1 when the condition is true and 0 otherwise. Ai is a binary

exposure indicator which is 1 for the exposed group and 0 for the unexposed

group. Li is a vector of relevant prognostic factors. Define

P (Ai = 1 | Li) (2.1)

as the propensity score (PS) which is the conditional probability of receiving

exposure given Li (Rosenbaum and Rubin, 1983). In practice, P (Ai = 1 | Li)

can be estimated by using maximum likelihood estimation. Let P̂ (Ai = 1 | Li)

be a consistent estimate of P (Ai = 1 | Li).

In the counterfactual framework by Rubin (1974) and Holland (1986),

denote T a and Ca as the potential outcomes for event time and censoring time
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had subject received exposure a, respectively. Also, define δa = I(T a ≤ Ca).

To estimate causal effects from observational survival studies, the following

identifiability conditions are assumed in this thesis:

For a ∈ {0, 1},

(A1) Consistency: T a = T and Ca = C, if A = a.

(A2) Independent censoring: T a ⊥⊥ Ca | (A,L).

(A3) Conditional exchangeability: T a ⊥⊥ A | L and Ca ⊥⊥ A | L.

(A4) Positivity: 0 < P (A = a | L) < 1.

Note that the assumption (A1) connects the potential outcomes to the ob-

servable outcomes. The assumption (A2) means that in each exposure arm,

the prognostic factors L suffice to explain the dependence between the event

and censoring times. And, the assumption (A3) means that L can block all

backdoor paths between the exposure and the survival time (Pearl, 1995), so

that there is no unmeasured confounding. Under the assumptions (A1)–(A3),

the assumption (A1) implies that δa = δ if A = a and the assumption (A3)

implies that δa ⊥⊥ A | L. The assumption (A4) guarantees that there should be

existed both the exposed and unexposed subjects at all possible combinations

of the values of the prognostic factors (Westreich and Cole, 2010).

We additionally assume that one subject’s potential outcome under expo-

sure a does not rely on the others’ exposure values (Cox, 1958) and there is no

multiple version of exposure value. These assumptions are collectively referred

to as the stable unit treatment value assumption (STUVA) (Rubin, 1980).

2.2 Difference in RMST

Let S(t) = P (T > t) denote the (factual) survival function and Sa(t) = P (T a >

t) denote the survival function of the potential (counterfactual) outcome for

7



event time under exposure a. Suppose that we are interested in comparing

RMST up to τ between the exposure groups where τ (> 0) is the fixed

truncation time point which is pre-specified at the study design stage based on

clinical domain knowledge. When supposing P (T a ≥ τ) > 0, the RMST up to

τ under exposure a (i.e., µa
τ ) (Irwin, 1949; Chen and Tsiatis, 2001) is defined

as

µa
τ = E(T a

τ ) =

∫ τ

0
Sa(t) dt (2.2)

where T a
τ = min{T a, τ}. Therefore, the difference in RMST (i.e., average causal

effect on RMST) can be defined as

µ1
τ − µ0

τ = E(T 1
τ )− E(T 0

τ ) =

∫ τ

0
S1(t) dt−

∫ τ

0
S0(t) dt.
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Chapter 3

Methods for Estimation of

Difference in RMST

3.1 Difference in RMST in randomized

controlled trial

Suppose that the events occur atD distinct times in the whole sample. Without

loss of generality, assume that the first n subjects are exposed (A = 1) and the

rest N − n are unexposed (A = 0) in total N subjects and that the first m of

n subjects experience the events of interest in the exposed group and the first

D −m of N − n subjects experience the events of interest in the unexposed

group. Also, assume that in each exposure group, the event times are ordered

increasingly (i.e., t1 < . . . < tm are event times in the exposed group and

tn+1 < . . . < tn−m+D are event times in the unexposed group). At time tj ,

j = 1, . . . ,m, n+ 1, . . . , n−m+D, there are daj events out of Y a
j subjects at

risk under exposure a ∈ {0, 1}. Then, we can write daj =
∑

i:Ti=tj
δiI(Ai = a)

and Y a
j =

∑
i:Ti≥tj

I(Ai = a).
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In randomized controlled trials, subjects are randomly assigned to either

exposed or unexposed group, so that both assumptions (A3) and (A4) are

satisfied without conditioning on the prognostic factors L. Therefore, Kaplan-

Meier estimate of the survival function at time t under exposure a (Kaplan

and Meier, 1958) is

Ŝa(t) =


1 if t < ta1∏

j:tj≤t

(
1−

daj
Y a
j

)
if t ≥ ta1

(3.1)

if Y a
j > 0 and where ta1 is the first event time for the exposure group a. Therefore,

the estimate of the difference in RMST based on Kaplan-Meier estimate is

µ̂1
τ − µ̂0

τ = Ê(T 1
τ )− Ê(T 0

τ ) =

∫ τ

0
Ŝ1(t) dt−

∫ τ

0
Ŝ0(t) dt.

Using Greenwood formula (Greenwood, 1926), the asymptotic variance of µ̂a
τ

(Klein and Moeschberger, 2003; Cox and Oakes, 2018) is estimated by

V̂
(
µ̂a
τ

)
=
∑

j:taj≤τ

∫ τ

taj

Ŝa(t) dt

2

daj
Y a
j (Y

a
j − daj )

where taj denotes the event time for the exposure group a. Then, the variance

for the estimate of the difference in RMST is

V̂
(
µ̂1
τ − µ̂0

τ

)
= V̂

(
µ̂1
τ

)
+ V̂

(
µ̂0
τ

)
.

The estimate of the difference in RMST can be obtained using survfit

function in survival package (Therneau, 2022) and rmst function in RISCA

package (Foucher et al., 2022) in the software environment R (R Core Team,

2021). Otherwise, one can obtain the estimate with its asymptotic variance by

using rmst2 function without “covariates” argument in survRM2 package (Uno

10



et al., 2022) in R. Whichever method is used, the values of the estimate are

the same. We provide example code in Section A.1.1.

3.2 Difference in RMST in observational

study

In observational studies, we need to adjust for the potential confounders L to

obtain a consistent causal effect of exposure. Given L that satisfy assumptions

(A2)–(A4), there have been proposed several methods available to estimate

the difference in RMST adjusted for L (hereinafter referred to as the difference

in adjusted RMST) in observational survival studies. In this Section, we focus

on five methods described in below Subsections because they are the most

commonly used in applied practice and are available in standard statistical

software packages. Because we only compare these methods, this thesis is not a

comprehensive evaluation of methods for estimating the difference in adjusted

RMST. Also, the results for simulation study and real data analysis cannot

be exploited out of context as a pretext for preferring one estimation method

over the others.

3.2.1 Direct regression

3.2.1.1 Pseudo-observation

Andersen, Hansen, and Klein (2004) proposed the estimation method using

regression model for the difference in adjusted RMST based on the pseudo-

observations. Let µ̂τ,pseudo be the estimate of RMST up to pre-specified time

point τ from the Kaplan-Meier estimator and µ̂
(−i)
τ,pseudo be the leave-one-out

estimate of RMST up to τ from the Kaplan-Meier estimator obtained by

11



eliminating the i-th subject. For i-th subject, the pseudo-observation is defined

as µτ,pseudo,i = N × µ̂τ,pseudo − (N − 1) × µ̂
(−i)
τ,pseudo. See Andersen and Perme

(2010) for the details of pseudo-observations in various survival analyses.

Andersen, Hansen, and Klein (2004) considered the regression model for

pseudo-observations which corresponds to a specification of the relation be-

tween µτ,pseudo,i and L∗
i = (1, Ai,L

⊺
i )

⊺. To access the effect of exposure on the

RMST adjusted for confounders L, we can use a generalized linear model with

identity link function, as follows:

E(µτ,pseudo,i | Ai,Li) = β0 + β1Ai + β⊺
l Li = β⊺L∗

i

where β = (β0, β1, β
⊺
l )

⊺. Then, the coefficient of exposure, β1, corresponds to

the difference in adjusted RMST. The estimates of β can be estimated from

the generalized estimating equation (GEE) (Liang and Zeger, 1986; Zeger and

Liang, 1986)

∑
i

(
∂

∂β
(β⊺L∗

i )

)⊺

V −1
i

(
µτ,pseudo,i − β⊺L∗

i

)
= 0

where Vi is a working covariance matrix. A sandwich variance estimator can be

used to estimate the variance of β̂ (White, 1982). See details for the variance

estimate for β̂ in Andersen, Klein, and Rosthøj (2003).

The pseudo-observations can be obtained using pseudomean function in

pseudo package (Perme, Gerster, and Rodrigues, 2017) in R. Based on the

obtained pseudo-observations, the estimate of the difference in adjusted RMST

and its sandwich variance estimate can be obtained using geeglm function

in geepack package (Højsgaard, Halekoh, and Yan, 2006) in R. See details

for pseudo package in Klein et al. (2008). We provide example code in Sec-

tion A.1.2.
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3.2.1.2 ANCOVA-type model

Tian, Zhao, and Wei (2014) proposed the analysis of covariance (ANCOVA)-

type covariate adjustment method using regression model for estimating the

difference in adjusted RMST. Followed from Andersen, Hansen, and Klein

(2004)’s regression model, Tian, Zhao, and Wei (2014) considered the linear

model

E(Tτ,i | Ai,Li) = β0 + β1Ai + β⊺
l Li = β⊺L∗

i

where Tτ,i = min{Ti, τ}, β = (β0, β1, β
⊺
l )

⊺, and L∗
i = (1, Ai,L

⊺
i )

⊺. Then, the

coefficient of exposure, β1, corresponds to the difference in adjusted RMST.

To estimate the coefficients β while considering the censoring, Tian, Zhao,

and Wei (2014) considered the inverse probability (IP) censoring weighted

estimating equation

S(β) =
1

n

N∑
i=1

∆̃i

Ĝ(Tτ,i)
L∗

i

{
Tτ,i − β⊺L∗

i

}
where ∆̃i = I(Tτ,i ≤ Ci) and Ĝ(Tτ,i) is the Kaplan–Meier estimator of the

censoring time C based on {(T̃i, 1−∆i); i = 1, . . . , N}. They showed that under

mild regularity conditions, n1/2(β̂ − β) is asymptotically normal, and thus the

asymptotic variance of β̂ can be obtained. See details in the supplementary

material of Tian, Zhao, and Wei (2014).

The estimate of the difference in adjusted RMST using ANCOVA-type

model and its asymptotic variance can be obtained using rmst2 function with

“covariates” argument in survRM2 package (Uno et al., 2022) in R. See details

for survRM2 package in Uno (2015). We provide example code in Section A.1.3.
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3.2.2 Inverse probability weighting

3.2.2.1 IP weighted Cox model

The Cox proportional hazards model (hereinafter referred to as Cox model) is

widely used to compare the survival experiences between the exposure groups

after adjusting for prognostic factors (or risk factors) that affect the outcome.

Given the confounders L, Cox model (Cox, 1972, 1975) is

h(t;Ai,Li) = h0(t) exp(β1Ai + β⊺
l Li) = h0(t) exp(β

⊺L∗
i ) (3.2)

where h0(t) is the baseline hazard function, β = (β1, β
⊺
l )

⊺, and L∗
i = (Ai,L

⊺
i )

⊺.

Cole and Hernán (2004) described the method to estimate the adjusted

survival curve using Cox model weighted by IP weights. Using the PS (2.1),

the IP weights are defined by

wi =
I(Ai = 1)

P (Ai = 1 | Li)
+

I(Ai = 0)

P (Ai = 0 | Li)
. (3.3)

They proposed using a null Cox model with IP weights that is stratified on

exposure levels. Then, the adjusted survival curve under exposure a, Ŝa
cox(t),

can be estimated from this IP weighted Cox model. The difference in adjusted

RMST is obtained by

µ̂1
τ,cox − µ̂0

τ,cox =

∫ τ

0
Ŝ1
cox(t) dt−

∫ τ

0
Ŝ0
cox(t) dt.

When the IP weights are highly variable, one can use the stabilized IP weights

(Robins, 1998)

swi =
I(Ai = 1)P (Ai = 1)

P (Ai = 1 | Li)
+

I(Ai = 0)P (Ai = 0)

P (Ai = 0 | Li)
(3.4)

instead of non-stabilized IP weights (3.3). Although the robust variance esti-

mator for the estimate of hazard ratio can be estimated by using the partial
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likelihood for the IP weighted Cox model (Lin and Wei, 1989; Binder, 1992; Shu

et al., 2021), to best our knowledge, there is no study on estimating the variance

of adjusted RMST estimated from IP weighted Cox model. Alternatively, we

can use the bootstrap method to obtain the variance of the estimate.

The estimate of the difference in adjusted RMST using IP weighted Cox

model can be obtained by using coxph and survfit functions in survival

package (Therneau, 2022) and the rmst function in RISCA package (Foucher

et al., 2022) in R. Otherwise, one can obtain the estimate by using svydesign

and svykm functions in survey package (Lumley, 2010) and rmst function in

RISCA package (Foucher et al., 2022) in R. Whichever method is used, the

values of the estimate are the same. We provide example code in Section A.1.4.

3.2.2.2 Adjusted Kaplan–Meier estimator

Xie and Liu (2005) proposed the adjusted Kaplan-Meier estimator using IP

weighting method. They considered the weighted number of events under

exposure a as d̃aj =
∑

i:Ti=tj

(
δiI(Ai = a)/P̂ (Ai = a | Li)

)
and the weighted

number at risk as Ỹ a
j =

∑
i:Ti≥tj

(
I(Ai = a)/P̂ (Ai = a | Li)

)
. Then, the ad-

justed Kaplan-Meier estimator at time t under exposure a is obtained by

Ŝa
adj(t) =


1 if t < ta1∏

j:tj≤t

(
1− d̃aj

Ỹ a
j

)
if t ≥ ta1

(3.5)

if Ỹ a
j > 0 and where ta1 is the first event time for the exposure group a. Xie

and Liu (2005) shown that under the identifiability conditions (A1)–(A4), the

adjusted Kaplan-Meier estimator (3.5) is a consistent estimate of Sa(t). For

details of the theoretic results and proofs, see Section 3 and Appendix A.2

and A.3 in Xie and Liu (2005). Based on the adjusted Kaplan-Meier estimator

15



(3.5), the estimate of adjusted RMST up to τ under exposure a is

µ̂a
adj,τ =

∫ τ

0
Ŝa
adj(t) dt (3.6)

and the estimate of the difference in adjusted RMST is

µ̂1
adj,τ − µ̂0

adj,τ =

∫ τ

0

 ∏
j:tj≤t

(
1−

d̃1j

Ỹ 1
j

)
−
∏

j:tj≤t

(
1−

d̃0j

Ỹ 0
j

) dt

=

∫ τ

0

[ ∏
tj≤t

(
1−

∑
i:Ti=tj

δiI(Ai=1)

P̂ (Ai=1|Li)∑
i:Ti≥tj

I(Ai=1)

P̂ (Ai=1|Li)

)

−
∏
tj≤t

(
1−

∑
i:Ti=tj

δiI(Ai=0)

1−P̂ (Ai=1|Li)∑
i:Ti≥tj

I(Ai=0)

1−P̂ (Ai=1|Li)

)]
dt. (3.7)

Xie and Liu (2005) also shown that the asymptotic variance for the adjusted

Kaplan-Meier estimator (3.5) can be estimated by

V̂
[
Ŝa
adj(t)

]
=
[
Ŝa
adj(t)

]2 ∑
j:tj≤t

d̃aj

Ma
j (Ỹ

a
j − d̃aj )

(3.8)

where taj denotes the event time for the exposure group a and

Ma
j =

[∑
i:Ti≥tj

I(Ai = a)/P̂ (Ai = a | Li)
]2

∑
i:Ti≥tj

[
I(Ai = a)/P̂ (Ai = a | Li)

]2 .
Based on the estimate of asymptotic variance for the adjusted Kaplan-Meier

estimator (3.8), Conner et al. (2019) proposed that the asymptotic variance

for the estimate of adjusted RMST (3.6) can be estimated by

V̂
(
µ̂a
adj,τ

)
=
∑

j:taj≤τ

 τ∑
i=j

Ŝa
adj(ti)× (ti+1 − ti)

2

d̃aj

Ma
j (Ỹ

a
j − d̃aj )

.

When the IP weights are considered fixed and the adjusted RMSTs are thus

independent, the variance for the estimate of the difference in adjusted RMST
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(3.7) is estimated by

V̂
(
µ̂1
adj,τ − µ̂0

adj,τ

)
= V̂

(
µ̂1
adj,τ

)
+ V̂

(
µ̂0
adj,τ

)
.

The estimate of the difference in adjusted RMST using the adjusted Kaplan-

Meier estimator can be obtained by using ipw.survival and rmst functions

in RISCA package (Foucher et al., 2022) in R. The asymptotic variance of

the estimate can be obtained using function available in https://github.com/

s-conner/akm-rmst/blob/master/AKM rmst.R. We provide example code in

Section A.1.5.

3.2.3 G-computation

Chatton et al. (2022) proposed the method using G-computation for estimating

the difference in adjusted RMST. Let H0(t) =
∫ t
0 h0(s) ds be the cumulative

baseline hazard function. To estimate the survival function from the Cox

model (3.2), Breslow (1974) proposed that both H0(t) and β =
(
β1, β

⊺
l

)⊺
can

be simultaneously estimated using the Breslow’s likelihood. Then, the estimates

of H0(t) can be obtained by

Ĥ0(t) =
∑
ti≤t

1∑
j∈R(ti)

exp
(
β̂1Aj + β̂⊺

l Lj

)
where R(ti) is the risk set at time ti, and Ĥ0(t) is referred to as the Breslow

estimator of the cumulative baseline hazard function. Using Ĥ0(t) and β̂ =(
β̂1, β̂

⊺
l

)⊺
, the estimate of adjusted survival function under exposure a given

the potential confounders L is given by

Ŝa
gc(t) =

1

N

N∑
i=1

exp
[
−Ĥ0(t)× exp(β̂1a+ β̂⊺

l Li)
]
.
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Then, the difference in adjusted RMST is obtained by

µ̂1
τ,gc − µ̂0

τ,gc =

∫ τ

0
Ŝ1
gc(t) dt−

∫ τ

0
Ŝ0
gc(t) dt.

To best our knowledge, there is no study on estimating the variance of adjusted

RMST estimated from G-computation method. Alternatively, we can use the

bootstrap method to obtain the variance of the estimate.

The estimate of the difference in adjusted RMST using G-computation

with its bootstrap confidence interval can be obtained by using gc.survival

function in RISCA package (Foucher et al., 2022) in R. We provide example

code in Section A.1.6.

3.3 Simulation study 1

We performed the simulation studies for comparing the performance of five

methods described in Section 3.2. To evaluate the estimate of the difference

in adjusted RMST, we examined the bias of the estimate and the coverage

rate of the confidence interval. For all methods, we conducted 1,000 simulation

replications for each parameter combination and constructed the 95% percentile

bootstrap confidence interval with bootstrap resampling B = 1,000 times. All

analyses of this thesis were used through R (Version 4.1.0) (R Core Team,

2021) using 8 CPU cores in parallel.

3.3.1 Simulation settings

We randomly generatedN = 500 of the confounder L1 from normal distribution

with mean 1 and standard deviation 0.25 and the confounder L2 from Bernoulli

distribution with probability 0.5. The exposure A was generated from Bernoulli
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distribution with the true PS P (A = 1 | L1, L2) = expit{β0 + 1.5L1 + 0.8L2}

where expit{x} = 1/(1 + exp{−x}) and β0 was set at different values to yield

an approximately certain probability (β0 = −1.9 for E(A | L1, L2) ≈ 0.5 and

β0 = −0.425 for E(A | L1, L2) ≈ 0.8).

The potential outcomes for event times T a under exposure a were ran-

domly generated using the inverse transform sampling method via Cox model

with Weibull-distributed baseline hazard as a function of L1 and L2 (Bender,

Augustin, and Blettner, 2005) where

T a = 5×
[
− log(Ua)

0.95× exp{log(2.5)a+ log(1.2)L1 + log(0.7)L2}

]1/1.8
(3.9)

and Ua were generated from uniform distribution on (0, 1). Then, the event

times T = I(A = 1)× T 1 + I(A = 0)× T 0. And, the censoring times C were

randomly generated from Weibull distribution with scale parameter λ and

shape parameter ν = 0.6. We set the values of scale parameter λ ∈ {0.052,

0.178, 0.354, 0.643, 1.365} to obtain the simulated data that correspond to

approximate censoring rate c ∈ {0.1, 0.3, 0.5, 0.7, 0.9}, respectively. Then, the

observed survival time is the minimum of the event time and the censoring

time (i.e., T̃ = min{T,C}). Two values of specific time point τ ∈ {1, 3} are

considered. Then, the total number of combinations of β0, c, and τ is 20.

3.3.2 True value of difference in RMST

To evaluate bias and coverage rate, we need to know the true value of difference

in RMST. Based on the definition of difference in RMST expressed in (2.2),

the true value of RMST under exposure a is written as

µa
τ =

∫ τ

0
Sa(t) dt
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=

∫ τ

0

∫
l
Sa(t; l) dl dt

=

∫
l

∫ τ

0
Sa(t; l) dt dl =

∫
l
µa
τ (l) dl.

Because the true event times were generated from Cox model with Weibull-

distributed baseline hazard (3.9), the true value of conditional RMST is

µa
τ (l) = E[min{T a, τ} | L]

=

∫ τ

0
Sa(t; l) dt

=

∫ τ

0

[
exp

(
−λtν

5ν

)]exp{log(2.5)a+log(1.2)l1+log(0.7)l2}

dt

=

5× γ

(
1

ν
,
exp{log(2.5)a+ log(1.2)l1 + log(0.7)l2}λτν

5ν

)
ν ×

(
exp{log(2.5)a+ log(1.2)l1 + log(0.7)l2}

)1/ν × λ1/ν
(3.10)

where γ(s, x) =
∫ x
0 ts−1 exp(−t) dt is the lower incomplete gamma function. A

detailed proof of (3.10) is given in Appendix A.2. Then, we can obtain the

approximate value of true difference in RMST by calculating the values of

standardized mean, as follows:

µ1
τ − µ0

τ =

∫
l
µ1
τ (l) dl −

∫
l
µ0
τ (l) dl

≈ 1

n

n∑
i=1

µ1
τ (li)−

1

N − n

N−n∑
i=1

µ0
τ (li). (3.11)

Note that the true value of difference in RMST is irrelevant to both β0 and

c in our simulation setting. Therefore, we first generated the confounders L1

and L2 from superpopulation with sample size N = 1,000,000, and based on

them, calculated (3.11) using values of (3.10) for each exposure group. When

λ = 0.95 and ν = 1.8, the approximate value of true difference in RMST

µ1
1 − µ0

1 = −0.027 for τ = 1 and µ1
3 − µ0

3 = −0.417 for τ = 3, respectively.
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3.3.3 Simulation study 1 results

The simulation results for sample size N = 500 are reported in Tables 3.1–3.5

and Figures 3.1 and 3.2. In our simulation studies, when the all models are

correctly specified, the estimates of the difference in adjusted RMST for all

methods showed the unbiased estimators, except for IP weighted Cox model

when the censoring rate was 0.9. In terms of the coverage rate, all methods

tended to achieve the desired coverage rate (i.e., 0.95) and did not appear to

be conservative, except that the true PS was 0.8 and the censoring rate was

0.9. When the true PS was 0.8 and the censoring rate was 0.9 (specifically,

when τ = 3), the estimate of the IP weighted Cox model was slightly biased,

and the coverage rate of the confidence interval exhibited poor coverage rate.

The simulation results for sample size N = 1,000 are reported in Ta-

bles A.3.1–A.3.5 and Figures A.3.1 and A.3.2. These results were similar to

Table 3.1 Simulation study 1 results (N = 500): Pseudo-observation

τ
RMST
(True)

E(A|L)
Censoring

rate
RMST

(Estimate)
Bias

95% confidence
interval

Coverage
rate

1 -0.027

0.5

0.1 -0.027 0.000 [-0.050, -0.004] 0.947
0.3 -0.027 0.000 [-0.050, -0.003] 0.944
0.5 -0.027 0.000 [-0.052, -0.003] 0.943
0.7 -0.027 0.001 [-0.054, 0.000] 0.944
0.9 -0.026 0.001 [-0.060, 0.005] 0.938

0.8

0.1 -0.027 0.000 [-0.052, -0.001] 0.928
0.3 -0.029 -0.002 [-0.053, -0.003] 0.926
0.5 -0.027 0.000 [-0.053, 0.001] 0.925
0.7 -0.028 -0.001 [-0.056, 0.001] 0.920
0.9 -0.027 0.000 [-0.062, 0.010] 0.913

3 -0.417

0.5

0.1 -0.416 0.001 [-0.559, -0.269] 0.957
0.3 -0.416 0.001 [-0.564, -0.259] 0.935
0.5 -0.415 0.001 [-0.581, -0.247] 0.944
0.7 -0.408 0.008 [-0.600, -0.213] 0.942
0.9 -0.414 0.002 [-0.710, -0.117] 0.947

0.8

0.1 -0.427 -0.010 [-0.595, -0.257] 0.940
0.3 -0.424 -0.007 [-0.603, -0.243] 0.947
0.5 -0.421 -0.005 [-0.617, -0.219] 0.948
0.7 -0.423 -0.007 [-0.655, -0.182] 0.946
0.9 -0.423 -0.006 [-0.774, -0.058] 0.942
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Table 3.2 Simulation study 1 results (N = 500): ANCOVA-type model

τ
RMST
(True)

E(A|L)
Censoring

rate
RMST

(Estimate)
Bias

95% confidence
interval

Coverage
rate

1 -0.027

0.5

0.1 -0.027 0.000 [-0.050, -0.004] 0.948
0.3 -0.027 0.000 [-0.051, -0.003] 0.943
0.5 -0.027 0.000 [-0.052, -0.003] 0.947
0.7 -0.027 0.000 [-0.054, 0.000] 0.944
0.9 -0.026 0.001 [-0.061, 0.006] 0.938

0.8

0.1 -0.027 0.000 [-0.053, -0.001] 0.929
0.3 -0.029 -0.002 [-0.054, -0.003] 0.922
0.5 -0.027 0.000 [-0.053, 0.001] 0.923
0.7 -0.028 -0.001 [-0.057, 0.001] 0.919
0.9 -0.027 0.000 [-0.063, 0.011] 0.907

3 -0.417

0.5

0.1 -0.416 0.001 [-0.558, -0.270] 0.958
0.3 -0.416 0.001 [-0.564, -0.259] 0.934
0.5 -0.416 0.001 [-0.582, -0.246] 0.952
0.7 -0.409 0.007 [-0.607, -0.209] 0.942
0.9 -0.421 -0.004 [-0.773, -0.091] 0.959

0.8

0.1 -0.427 -0.010 [-0.597, -0.259] 0.934
0.3 -0.424 -0.008 [-0.604, -0.240] 0.949
0.5 -0.422 -0.006 [-0.618, -0.218] 0.945
0.7 -0.422 -0.006 [-0.657, -0.181] 0.941
0.9 -0.432 -0.015 [-0.856, -0.022] 0.940

Table 3.3 Simulation study 1 results (N = 500): IP weighted Cox model

τ
RMST
(True)

E(A|L)
Censoring

rate
RMST

(Estimate)
Bias

95% confidence
interval

Coverage
rate

1 -0.027

0.5

0.1 -0.027 0.000 [-0.050, -0.004] 0.950
0.3 -0.027 0.000 [-0.050, -0.004] 0.937
0.5 -0.027 0.000 [-0.052, -0.003] 0.940
0.7 -0.026 0.001 [-0.053, 0.000] 0.943
0.9 -0.026 0.001 [-0.059, 0.005] 0.933

0.8

0.1 -0.027 0.000 [-0.051, -0.002] 0.918
0.3 -0.028 -0.001 [-0.052, -0.005] 0.928
0.5 -0.026 0.001 [-0.051, 0.000] 0.913
0.7 -0.027 0.000 [-0.053, 0.000] 0.913
0.9 -0.024 0.003 [-0.058, 0.016] 0.905

3 -0.417

0.5

0.1 -0.414 0.002 [-0.557, -0.267] 0.955
0.3 -0.414 0.002 [-0.564, -0.258] 0.938
0.5 -0.414 0.003 [-0.580, -0.243] 0.946
0.7 -0.406 0.010 [-0.598, -0.211] 0.944
0.9 -0.408 0.008 [-0.720, -0.072] 0.954

0.8

0.1 -0.420 -0.003 [-0.589, -0.248] 0.928
0.3 -0.416 0.000 [-0.594, -0.231] 0.941
0.5 -0.414 0.003 [-0.609, -0.210] 0.941
0.7 -0.417 -0.001 [-0.642, -0.180] 0.943
0.9 -0.348 0.068 [-0.717, 0.586] 0.877
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Table 3.4 Simulation study 1 results (N = 500): Adjusted Kaplan-Meier

τ
RMST
(True)

E(A|L)
Censoring

rate
RMST

(Estimate)
Bias

95% confidence
interval

Coverage
rate

1 -0.027

0.5

0.1 -0.027 0.000 [-0.050, -0.004] 0.950
0.3 -0.027 0.000 [-0.051, -0.004] 0.936
0.5 -0.027 0.000 [-0.052, -0.003] 0.940
0.7 -0.027 0.001 [-0.054, 0.000] 0.943
0.9 -0.026 0.001 [-0.060, 0.005] 0.933

0.8

0.1 -0.027 0.001 [-0.051, -0.002] 0.918
0.3 -0.028 -0.001 [-0.052, -0.005] 0.927
0.5 -0.026 0.001 [-0.051, 0.000] 0.914
0.7 -0.027 0.000 [-0.054, 0.000] 0.913
0.9 -0.026 0.001 [-0.059, 0.006] 0.907

3 -0.417

0.5

0.1 -0.415 0.001 [-0.559, -0.268] 0.956
0.3 -0.416 0.001 [-0.566, -0.259] 0.936
0.5 -0.415 0.001 [-0.582, -0.244] 0.946
0.7 -0.408 0.008 [-0.601, -0.212] 0.946
0.9 -0.415 0.002 [-0.714, -0.120] 0.951

0.8

0.1 -0.418 -0.002 [-0.588, -0.245] 0.929
0.3 -0.415 0.002 [-0.594, -0.228] 0.944
0.5 -0.412 0.005 [-0.609, -0.206] 0.943
0.7 -0.415 0.002 [-0.642, -0.174] 0.942
0.9 -0.409 0.007 [-0.749, -0.023] 0.931

Table 3.5 Simulation study 1 results (N = 500): G-computation

τ
RMST
(True)

E(A|L)
Censoring

rate
RMST

(Estimate)
Bias

95% confidence
interval

Coverage
rate

1 -0.027

0.5

0.1 -0.027 0.000 [-0.038, -0.017] 0.946
0.3 -0.027 0.000 [-0.039, -0.016] 0.943
0.5 -0.027 0.000 [-0.040, -0.015] 0.958
0.7 -0.027 0.000 [-0.043, -0.014] 0.955
0.9 -0.027 0.000 [-0.051, -0.007] 0.944

0.8

0.1 -0.027 0.000 [-0.038, -0.018] 0.943
0.3 -0.027 0.000 [-0.038, -0.017] 0.941
0.5 -0.027 0.000 [-0.039, -0.016] 0.950
0.7 -0.027 0.000 [-0.041, -0.013] 0.935
0.9 -0.026 0.001 [-0.049, -0.005] 0.950

3 -0.417

0.5

0.1 -0.416 0.000 [-0.518, -0.327] 0.953
0.3 -0.415 0.002 [-0.526, -0.313] 0.954
0.5 -0.416 0.000 [-0.542, -0.294] 0.947
0.7 -0.412 0.004 [-0.573, -0.256] 0.949
0.9 -0.411 0.006 [-0.686, -0.142] 0.947

0.8

0.1 -0.418 -0.001 [-0.517, -0.319] 0.935
0.3 -0.415 0.002 [-0.526, -0.301] 0.953
0.5 -0.411 0.005 [-0.543, -0.277] 0.952
0.7 -0.412 0.005 [-0.581, -0.237] 0.946
0.9 -0.401 0.015 [-0.697, -0.086] 0.951

23



Figure 3.1 Bias for simulation study 1 (N = 500). Adjusted KM = adjusted

Kaplan-Meier estimator; ANCOVA = ANCOVA-type model; IPW Cox = IP

weighted Cox model; G-comp = G-computation; Pseudo = pseudo-observation.

Dashed line in the plot represents a bias of 0.

Figure 3.2 Coverage rate for simulation study 1 (N = 500). Adjusted KM

= adjusted Kaplan-Meier estimator; ANCOVA = ANCOVA-type model; IPW

Cox = IP weighted Cox model; G-comp = G-computation; Pseudo = pseudo-

observation. Dashed line in the plot represents a coverage rate of 0.95.
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those in sample size N = 500. Unlike the results for sample size N = 500,

when the true PS was 0.8 and the censoring rate was 0.9, the bias for the

estimate of the IP weighted Cox model was vanished, and the coverage rate of

the confidence interval achieved the nominal coverage rate 0.95.

In summary, when there is neither a large censoring rate nor extreme PS,

we confirmed that all the methods being considered provide the unbiased

estimates with the percentile bootstrap confidence intervals achieving near

nominal coverage probability. As the sample size increased, the bias was reduced

and the coverage rate seemed to improve.

3.4 Real data analysis 1: Colon cancer data

Colon cancer data were included patients who (a) were newly diagnosed with

colon adenocarcinoma from January 1, 2009 to December 31, 2015, (b) had early-

stage colon cancer, which was defined as clinical stage 0/I disease on staging

abdominal computed tomography (CT), and (c) did not have synchronous

rectal cancer located within 15 cm of the anal verge (Lee et al., 2023). Patients

were divided into either of with-staging chest CT or without-staging chest CT

group according to whether they underwent staging chest CT. The with-staging

chest CT group included 606 patients, and the without-staging chest CT group

included 385 patients. Survival outcome was overall survival, which was defined

as the time interval from the date of staging abdominal CT scan to the date

of death from any cause. The date of staging abdominal CT scan was different

for each patients. Patients without death records were administrative censored

on December 31, 2019, and there is no censoring apart from administrative

censoring at the end of follow-up. Of 991 patients, there were 111 events (76 for

with-staging chest CT group versus 35 for without-staging chest CT group).
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In Lee et al. (2023), the minimally sufficient adjustment set of covariates

which was consisted of prognostic factors that needed to be adjusted for included

age at study entry (years), sex (male vs. female), smoking behavior (never-,

former-, and current-smoker), year at diagnosis (2009-2012 vs. 2013-2015),

referral from another hospital (yes vs. no), Charlson comorbidity index (no,

mild, moderate, and severe), family history of colonic neoplasm (yes vs. no),

family history of any cancer (yes vs. no), endoscopic appearance (superficial

vs. advanced), and histologic grade via endoscopic procedure (well, moderately,

and poorly differentiated). The minimally sufficient adjustment set of covariates

was identified from the causal diagram. Detailed information about data is

given in the supplementary material of Lee et al. (2023). They measured

the difference in RMST between the exposure groups (with-staging chest CT

group minus without-staging chest CT group). Therefore, negative values of the

difference in RMST indicate an increased risk after the use of staging chest CT.

The difference in unadjusted RMST was estimated using the Kaplan–Meier

estimator (3.1). The difference in adjusted RMST was estimated using the

adjusted survival curve from the IP weighted pooled logistic regression model.

See details for estimating the difference in adjusted RMST from the IP weighted

pooled logistic regression model in Appendix A.4.

Using this data, we compared whether there was a difference between the

methods for the estimates of the difference in average overall survival time up

to τ . Because Lee et al. (2023) were considered a 5 years RMST in the primary

analysis, we also set a specific time point τ to 5 years (12 × 5 months). For

five methods described in Section 3.2, we estimated the differences in adjusted

RMST and constructed the 95% percentile bootstrap confidence intervals with
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Table 3.6 Real data analysis results for colon cancer data

Method

RMST

difference

(Months)

95% confidence interval
(Months)

Lower Upper

Unadjusted Kaplan-Meier estimator -0.779 -1.620 -0.014

Pooled logistic regression 0.424 -0.797 2.058

Pseudo-observation 0.402 -0.981 2.450

ANCOVA-type model 0.459 -0.804 1.754

IP weighted Cox model 0.486 -1.038 2.877

Adjusted Kaplan-Meier estimator 0.492 -1.037 2.899

G-computation 0.481 -0.535 1.653

bootstrap resampling B = 1,000 times. And, we compared the results with

those of Lee et al. (2023).

The results are reported in Table 3.6. The results in the first two rows of

Table 3.6 (i.e., unadjusted Kaplan-Meier estimator and pooled logistic regres-

sion) were the same as in Lee et al. (2023). The point estimate of the difference

in unadjusted RMST up to 5 years was statistically significant (-0.779 [95% CI:

-1.620 to -0.014] months). However, after adjusting for potential confounders,

the point estimates of the difference in adjusted RMST up to 5 years were

not statistically significant although there were sightly different in terms of

the point estimates and confidence intervals. Therefore, after adjusting for

potential confounders, the use of staging chest CT did not affect the overall

survival in patients with early-stage colon cancer.
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Chapter 4

Sensitivity Analysis

In this Chapter, using an adjusted Kaplan-Meier curve (Xie and Liu, 2005)

described in Section 3.2.2.2 and adapting a parametric sensitivity model for

non-survival data (Zhao, Small, and Bhattacharya, 2019), we propose a novel

sensitivity analysis method for the difference in adjusted RMST that can

be performed when the residual confounding by unmeasured confounders is

suspected. Alternative sensitivity analysis methods for the other estimation

methods and their limitations are discussed in Chapter 5.

The proposed method will be formulated an optimization problem. Simple

analytic solutions are derived for some special cases. In general cases, we explain

the practical optimization methods to solve the optimization problem.

4.1 Background

Note that in order to interpret the estimate of the difference in adjusted RMST

(3.7) as a causal effect, the conditional exchangeability assumption (A3) is

critical. When there exists an unmeasured confounder, this opens the backdoor

path, and thus the assumption (A3) is violated (Pearl, 1995). Furthermore,
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P̂ (Ai = a | Li) may not be a consistent estimate of the true PS, which

makes (3.7) a biased estimate of the causal effect. The key problem is that it

is generally untestable from observed data to check whether the assumption

(A3) is violated (Greenland and Robins, 1986). Therefore, a sensitivity analysis

should be considered to investigate how sensitive the estimate of the difference

in adjusted RMST (3.7) is to the degree of unmeasured confounding. Therefore,

we propose a novel sensitivity analysis method which considers unmeasured

confounding for evaluating the estimate of the difference in adjusted RMST.

4.2 Sensitivity model

We extend the marginal sensitivity model proposed by Tan (2006) and Zhao,

Small, and Bhattacharya (2019) to survival analysis and follow the notation

stated in Rosenbaum (2002) and Dorn and Guo (2022). Assume that if we

adjusted for unmeasured confounders (which we denoted by U) along with

measured confounders L, then all confounding is removed. Thus, we can define

e0(l,u) = P (A = 1 | L = l,U = u) as the true PS. Also, denote e(l) = P (A =

1 | L = l) as the PS only based on measured confounders L. The following is

a key definition required to propose our sensitivity analysis method.

Definition 4.1 (Zhao’s marginal sensitivity model) For a fixed sensi-

tivity parameter Λ ≥ 1, assume that the true PS e0(l,u) ∈ E(Λ) where the set

of marginal sensitivity models is defined by

E(Λ) =
{
e(l,u) :

1

Λ
≤ odds{e(l,u)}

odds{e(l)}
≤ Λ, for all l ∈ L and u ∈ U

}
and odds{p} = p/(1− p).

29



Remark 4.1 The marginal sensitivity model implies that within each stra-

tum of the measured confounders L, measuring the unmeasured confounders

U can only change the odds of e(l) by a factor of at most Λ. It thus means

that under the specified sensitivity model e(l,u),

P

(
odds{e(l,u)} ∈

[
1

Λ
× odds{e(l)}, Λ× odds{e(l)}

] ∣∣∣∣ U = u

)
= 1.

Practically, e(l) is often estimated parametrically, and thus we can denote its

estimate as eβ(l) which is closest to e(l) in Kullback–Leibler divergence. As in

Zhao, Small, and Bhattacharya (2019), it is handy to represent eβ(l) and e0(l,u)

as log odds scale. Denote gβ(l) = logit{eβ(l)} and g0(l,u) = logit{e0(l,u)}

where logit{p} = log{p/(1−p)}. And, let hβ0(l,u) = gβ(l)−g0(l,u) be the log

odds scale difference between eβ(l) and e0(l,u). Through the parameterization

of PS and the newly introduced notations, we can redefine Definition 4.1 as

follows:

Definition 4.2 (Zhao’s parametric sensitivity model) For Λ ≥ 1, as-

sume that hβ0(l,u) ∈ ε(Λ) where the set of parametric sensitivity models is

defined by

ε(Λ) =
{
h(l,u) : sup |h(l,u)| ≤ log(Λ), for all l ∈ L and u ∈ U

}
.

The parametric sensitivity model h(l,u) implies that measuring U can only

change the log odds of PS, gβ(l), by a factor of at most log(Λ). Accordingly,

we can define the following shifted PS.

Definition 4.3 (Shifted propensity score) Under any specified sensitivity

model h(l,u) ∈ ε(Λ), the shifted PS is defined by

e(h)(l,u) =
[
1 + exp{h(l,u)− gβ(l)}

]−1
. (4.1)
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Remark 4.2 Practically, the shifted PS (4.1) is an alternative PS obtained

by taking into account a user-specified sensitivity parameter Λ which reflects

the degree of unmeasured confounding. Note that if Λ = 1 and thus h(l,u) =

hβ0(l,u), then e(h)(l,u) is equal to the true PS e0(l,u), so there is no unmea-

sured confounding.

The corresponding shifted PS (4.1) can be estimated by

ê(h)(l,u) =
1

1 + exp{h(l,u)− ĝβ(l)}
(4.2)

where ĝβ(l) = logit{P̂β(A = 1 | L = l)} which is estimated from observed

data.

4.3 Estimate of difference in bias-adjusted

RMST

When unmeasured confounding is suspected, by substituting P̂ (A = 1 | L) in

the estimate of the difference in adjusted RMST (3.7) with the estimate of the

shifted PS (4.2), we can rewrite expression (3.7) as

µ̂(h),1
τ − µ̂(h),0

τ =

∫ τ

0

[ ∏
tj≤t

(
1−

∑
i:Ti=tj

δiI(Ai=1)

ê(h)(li,ui)∑
i:Ti≥tj

I(Ai=1)

ê(h)(li,ui)

)

−
∏
tj≤t

(
1−

∑
i:Ti=tj

δiI(Ai=0)

1−ê(h)(li,ui)∑
i:Ti≥tj

I(Ai=0)

1−ê(h)(li,ui)

)]
dt (4.3)

and denote the set of (4.3)

{µ̂(h),1
τ − µ̂(h),0

τ : h(l,u) ∈ ε(Λ)} (4.4)

as a partially identified region of (4.3). We will refer to (4.3) simply as “the

estimate of the difference in bias-adjusted RMST” in the rest of this thesis.
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Note that because the true value of e(h)(l,u) is generally not identifiable from

data, the value of (4.3) cannot directly estimated. However, we can estimate

the sensitivity range (i.e., minimum and maximum) of the point estimates (4.3)

and confidence interval for partially identified region (4.4), given the specified

sensitivity parameter Λ. We defer the construction of the confidence interval

until Section 4.7. For now, we will focus on constructing the sensitivity range

of (4.3).

4.4 Sensitivity range

In Section 3.1, we assumed that the first n of N subjects are exposed and

the rest N − n are unexposed. We can simplify expression for the estimate

of the difference in bias-adjusted RMST (4.3) by substituting ê(h)(l,u) in

(4.3) with the right-hand side of (4.2) and by introducing the variables wi

and zi for each exposure group separately. Let wi = exp{−ĝβ(Li)} for the

exposed group (i = 1, . . . , n) and wi = exp{ĝβ(Li)} for the unexposed group

(i = n+ 1, . . . , N), respectively. Also, let zi = exp{h(Li,U i)} for the exposed

group and zi = exp{−h(Li,U i)} for the unexposed group, respectively. Because

the postulated sensitivity model h(Li,U i) ∈ [− log(Λ), log(Λ)], it is clear that

zi ∈ [1/Λ,Λ]. Therefore, the sensitivity range of (4.3) can be evaluated by

solving the optimization problem as follows:

min ormax

∫ τ

0

[ ∏
tj≤t

(
1−

∑
i:Ti=tj

δiI(Ai = 1)[1 + ziwi]∑
i:Ti≥tj

I(Ai = 1)[1 + ziwi]

)

−
∏
tj≤t

(
1−

∑
i:Ti=tj

δiI(Ai = 0)[1 + ziwi]∑
i:Ti≥tj

I(Ai = 0)[1 + ziwi]

)]
dt

subject to
1

Λ
≤ zi ≤ Λ, for i = 1, . . . , N. (4.5)
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The lower and upper bounds of sensitivity range correspond to the solution of

minimization and maximization problems in (4.5), respectively. Note that solv-

ing the optimization problem (4.5) only depend on the optimization parameter

zi. Therefore, when performing our sensitivity analysis method, it does not

matter which model is used to estimate gβ(Li).

Because the optimization problem (4.5) can be separated into two parts

related to the exposed and unexposed groups, we can obtain the solution of

minimization or maximization problem in (4.5) by 1) solving both minimization

or maximization problem for the exposed group

min ormax

∫ τ

0

∏
tj≤t

(
1−

∑
i:Ti=tj

δi[1 + ziwi]∑
i:Ti≥tj

[1 + ziwi]

)
dt

subject to
1

Λ
≤ zi ≤ Λ, for i = 1, . . . , n, (4.6)

where wi = exp{−ĝβ(Li)} and zi = exp{h(Li,U i)} and maximization or

minimization problem for the unexposed group

max ormin

∫ τ

0

∏
tj≤t

(
1−

∑
i:Ti=tj

δi[1 + ziwi]∑
i:Ti≥tj

[1 + ziwi]

)
dt

subject to
1

Λ
≤ zi ≤ Λ, for i = n+ 1, . . . , N, (4.7)

where wi = exp{ĝβ(Li)} and zi = exp{−h(Li,U i)} and 2) computing the

difference between solutions of (4.6) and (4.7).

Note that to minimize the objective function in (4.6) or (4.7) subject to

the optimization parameter zi ∈ [1/Λ,Λ], zi’s for subjects who are censored

should be equal to 1/Λ because zi’s for censored subjects are only included

in the denominator. Similarly, to maximize the objective function in (4.6) or

(4.7), zi’s for censored subjects should be equal to Λ. Therefore, by using the

event indicator δi, the optimization problems (4.6) and (4.7) can be divided
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according to whether or not subjects experience the event of interest. Consider

the minimization or maximization problem in (4.6) first (i.e., optimization

problems for the exposed group). Each problem in (4.6) can be simplified as

follows:

min

∫ τ

0

∏
tj≤t

1−
∑

i:{Ti=tj ,δi=1}(1 + ziwi)∑
i:{Ti≥tj ,δi=1}(1 + ziwi) +

∑
i:{Ti≥tj ,δi=0}(1 +

1
Λwi)

 dt

subject to
1

Λ
≤ zi ≤ Λ, for i = 1, . . . , n, (4.8)

or

max

∫ τ

0

∏
tj≤t

(
1−

∑
i:{Ti=tj ,δi=1}(1 + ziwi)∑

i:{Ti≥tj ,δi=1}(1 + ziwi) +
∑

i:{Ti≥tj ,δi=0}(1 + Λwi)

)
dt

subject to
1

Λ
≤ zi ≤ Λ, for i = 1, . . . , n, (4.9)

where wi = exp{−ĝβ(Li)} and zi = exp{h(Li,U i)}. As can be seen in

optimization problems (4.8) and (4.9), zi’s for censored subjects are already

determined as 1/Λ or Λ, so that we only need to solve the problems for m

(the number of events in the exposed group) out of n optimization parameters

z = (z1, . . . , zn). It implies that as the censoring rate decreases, the more z need

to be determined, and thus the more computational time is required to obtain

the solution. Ultimately, the censoring rate is a key factor for computational

time in our optimization problem. The maximization or minimization problem

in (4.7) can be simplified in a similar way (i.e., optimization problem for the

unexposed group):

max

∫ τ

0

∏
tj≤t

(
1−

∑
i:{Ti=tj ,δi=1}(1 + ziwi)∑

i:{Ti≥tj ,δi=1}(1 + ziwi) +
∑

i:{Ti≥tj ,δi=0}(1 + Λwi)

)
dt

subject to
1

Λ
≤ zi ≤ Λ, for i = n+ 1, . . . , N, (4.10)
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or

min

∫ τ

0

∏
tj≤t

1−
∑

i:{Ti=tj ,δi=1}(1 + ziwi)∑
i:{Ti≥tj ,δi=1}(1 + ziwi) +

∑
i:{Ti≥tj ,δi=0}(1 +

1
Λwi)

 dt

subject to
1

Λ
≤ zi ≤ Λ, for i = n+ 1, . . . , N, (4.11)

where wi = exp{ĝβ(Li)} and zi = exp{−h(Li,U i)}. Similarly in this case, we

only need to solve the optimization problem for D−m (the number of events in

the unexposed group) out ofN−n optimization parameters z = (zn+1, . . . , zN ).

4.5 Analytic solution to bias-adjusted RMST

in special case

There are special settings in which optimization problems (4.8–4.11) can be

solved analytically. Consider a closed cohort that the study entry times t0 = 0

are the same for all subjects and there is no censoring apart from administrative

censoring at the end of follow-up. Without loss of generality, let the first m

subjects experience the event of interest in the exposed group (i.e., δ1 = · · · =

δm = 1 and δm+1 = · · · = δn = 0) and the first D −m subjects experience the

event in the unexposed group (i.e., δn+1 = · · · = δn−m+D = 1 and δn−m+D+1 =

· · · = δN = 0). Also, assume that the event times are continuous and ordered

increasingly (i.e., t1 < · · · < tm in the exposed group and tn+1 < · · · < tn−m+D

in the unexposed group). Since we assume that the only censoring is due to

administrative censoring, the last event time in each group (tm or tn−m+D) is

less than or equal to the administrative censoring time.

When the pre-specified time point τ ∈ (tk−1, tk] for any k ∈ {2, . . . ,m}, the

objective function in (4.8) can be reduced to linear fractional programming, as
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follows (a detailed proof is given in Appendix B.1):

∫ τ

0

∏
tj≤t

1−
∑

i:{Ti=tj ,δi=1}(1 + ziwi)∑
i:{Ti≥tj ,δi=1}(1 + ziwi) +

∑
i:{Ti≥tj ,δi=0}(1 +

1
Λwi)

 dt

=

k−1∑
l=0

∏
tj≤tl

∑i:{Ti>tj ,δi=1}(1 + ziwi)+
∑

i:{Ti≥tj ,δi=0}(1 +
1
Λwi)∑

i:{Ti≥tj ,δi=1}(1 + ziwi)+
∑

i:{Ti≥tj ,δi=0}(1 +
1
Λwi)

(tl+1 − tl)

=

∑n
i=1(1 + ziwi)ti∑n
i=1(1 + ziwi)

where t = (t1, . . . , tn) = (t1, . . . , tk−1, τ, . . . , τ), wi = exp{−ĝβ(Li)}, and z =

(z1, . . . , zn) = (z1, . . . , zm, 1/Λ, . . . , 1/Λ), for i = 1, . . . , n. Therefore, the opti-

mization problems (4.8) and (4.9) can be computed by using linear fractional

programming

min ormax

∑n
i=1(1 + ziwi)ti∑n
i=1(1 + ziwi)

subject to
1

Λ
≤ zi ≤ Λ, for i = 1, . . . , n (4.12)

where t = (t1, . . . , tk−1, τ, . . . , τ), wi = exp{−ĝβ(Li)}, and z = (z1, . . . , zn) =

(z1, . . . , zm, 1/Λ, . . . , 1/Λ) for the minimization problem and z = (z1, . . . , zm,

Λ, . . . ,Λ) for the maximization problem. Also, when τ ∈ (tk−1, tk] for any

k ∈ {n+ 2, . . . , n−m+D}, the optimization problems (4.10) and (4.11) can

be computed by using linear fractional programming

max ormin

∑N
i=n+1(1 + ziwi)ti∑N
i=n+1(1 + ziwi)

subject to
1

Λ
≤ zi ≤ Λ, for i = n+ 1, . . . , N (4.13)

where t = (tn+1, . . . , tN ) = (tn+1, . . . , tk−1, τ, . . . , τ), wi = exp{ĝβ(Li)}, and

z = (zn+1, . . . , zN ) = (zn+1, . . . , zn−m+D, Λ, . . . ,Λ) for the maximization

problem and z = (zn+1, . . . , zn−m+D, 1/Λ, . . . , 1/Λ) for the minimization

problem.
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Because the problems (4.12) and (4.13) can be transformed to linear

programming by the Charnes-Cooper transformation (Charnes and Cooper,

1962), it can be computed effectively by solving linear programming based

on Proposition 2 in Zhao, Small, and Bhattacharya (2019). It implies that to

obtain the solution of optimization problems (4.8) and (4.9), we have only to 1)

compute the objective functions of minimization and maximization problems

in (4.12) for at most m candidates of z where

zi =


Λ if 1 ≤ i ≤ v

1
Λ if v + 1 ≤ i ≤ m

& zi =


1
Λ if 1 ≤ i ≤ v

Λ if v + 1 ≤ i ≤ m

(4.14)

for v ∈ {1, . . . ,m}, respectively, and 2) choose the minimum and maximum

value of them as the solutions of minimization and maximization problems,

respectively. Similarly, to obtain the solutions of the maximization and mini-

mization problems in (4.13), we only need to consider at mostD−m candidates

of z where

zi =


1
Λ if n+ 1 ≤ i ≤ v

Λ if v + 1 ≤ i ≤ n−m+D

& zi =


Λ if n+ 1 ≤ i ≤ v

1
Λ if v + 1 ≤ i ≤ n−m+D

(4.15)

for v ∈ {n+ 1, . . . , n−m+D}, respectively.

There is an alternative setting which translates (4.8–4.11) into linear

programming. Consider that a closed cohort where the study entry times

are the same for all subjects. Without loss of generality, let the event times

be continuous and ordered increasingly (i.e., t1 < · · · < tm in the exposed

group and tn+1 < · · · < tn−m+D in the unexposed group). Also, the censoring

times are ordered non-decreasingly in each exposure group, respectively (i.e.,
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tm+1 ≤ . . . ≤ tn in the exposed group and tn−m+D+1 ≤ . . . ≤ tN in the

unexposed group). In the exposed group, if τ ∈ (tk−1, tk] and the minimum

censoring time tm+1 ≥ tk−1 for certain k ∈ {2, . . . ,m}, then the problems (4.8)

and (4.9) can be reduced to linear programming (4.12). A proof is included in

Appendix B.2. Also, it can be considered similarly to the problems (4.10) and

(4.11) in the unexposed group.

In real applications, if the both minimum censoring times in each exposure

group are longer than or equal to τ , we solve the optimization problem by

reducing it to linear programming problem. Otherwise, use the optimization

methods explained in the next Section.

4.6 Methods for solution of optimization

problem in general case

In many survival analysis, the study entry times are different for each subject,

or censoring is not necessarily just administrative censoring. In this case, the

optimization problems (4.8–4.11) cannot be translated into linear fractional pro-

gramming, so some optimization parameters z may not converge to boundary

value of 1/Λ or Λ but converge to value between 1/Λ and Λ. We prove this by

constructing a counter-example (See details in Appendix B.3). In our counter-

example, for simplicity, we consider only four subjects, all in the exposed group.

Also, the study entry times are the same for all subjects. Additionally, let the

first, third, and fourth subjects experience the event of interest, but the second

subject be censored (i.e., δ1 = δ3 = δ4 = 1 and δ2 = 0). And, let the survival

times be ordered increasingly (i.e., t1 < t2 < t3 < t4). Taking τ = t4, the

objective function in (4.8) is represented as follows (a detailed proof is given
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in Appendix B.3):

∫ τ

0

∏
tj≤t

1−
∑

i:{Ti=tj ,δi=1}(1 + ziwi)∑
i:{Ti≥tj ,δi=1}(1 + ziwi) +

∑
i:{Ti≥tj ,δi=0}(1 +

1
Λwi)

dt

= t1 +

(
(1 + 1

Λw2) + (1 + z3w3) + (1 + 1
Λw4)

(1 + Λw1) + (1 + 1
Λw2) + (1 + z3w3) + (1 + 1

Λw4)

)

×

(
(1 + z3w3)(t3 − t1) + (1 + 1

Λw4)(τ − t1)

(1 + z3w3) + (1 + 1
Λw4)

)
. (4.16)

Note that because the numerator and denominator of (4.16) are consisted by a

quadratic function of z3, this objective function can be locally convex or concave

for z3 between 1/Λ and Λ depending on the situation. In Appendix B.3, we

showed that z3 converges to values between 1/Λ and Λ with simple numerical

data. It implies that when solving the optimization problems (4.8–4.11), some

of zi may not converge to boundary value 1/Λ or Λ.

Because there is no closed-form solution for almost z in general setting

and each of z is ranged between 1/Λ and Λ, the optimum values of z can

be determined by using an optimization algorithm such as the L-BFGS-B

optimization method (Byrd et al., 1995) in the optim function of stats package

in R. We refer to this method as “the direct optimization method”. We used the

optimParallel function in optimParallel package (Gerber and Furrer, 2019)

which provides a parallel extension of the L-BFGS-B optimization method

in the optim function. Although parallel processing reduces the computing

time, as the censoring rate decreases, the more optimum values of z need

to be determined, and thus the more computational time is taken to solve

the optimization problem. Therefore, we propose alternative method with

reasonable computational time to find the solution.

In minimizing the problem (4.8), it can be easily known that z1 should be

equal to Λ and zm should be equal to 1/Λ. When the problem (4.8) is solved
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using the direct optimization method and the index i increases sequentially, it

is empirically confirmed that zi converges to Λ from i = 1 to one particular

i = u and converges to 1/Λ from another particular i = u+v to i = m, for some

unknown constants u and v. For i ∈ (u, u + v), zi can converge to any value

between 1/Λ and Λ. Although there are some zi’s which may not converge

to boundary value, we empirically founded that when there is neither a large

censoring rate nor extreme PS, almost all of z converge to boundary value 1/Λ

or Λ and there is only one changing point from Λ to 1/Λ. This pattern was

similarly founded in the other problems (4.9–4.11) as well. It suggests that

one of the candidates of z as in (4.14) or (4.15) may be a practical solution to

our optimization problem. Therefore, the objective function in minimization

problem (4.8) is computed for m candidates of z as in (4.14), and then, one

choose the minimum value of them as the solution of minimization problem.

Also, the other problems (4.9–4.11) can be solved in similar way. We refer to

this method as “the approximate optimization method”. To further reduce

the computing time, we used the parSapply function in parallel package

(R Core Team, 2021) in R. Since there is no simple theoretical solution, we

will resort the performance of our approximate optimization method to Monte

Carlo simulations, as described in Section 4.8.1.

4.7 Confidence interval for partially identified

region

In addition to the sensitivity range of the point estimates (4.3), Zhao, Small,

and Bhattacharya (2019) proposed the percentile bootstrap confidence interval

with at least 1− α coverage rate for partially identified region (4.4) which is
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asymptotically valid and computationally tractable. For details of the theorems

and lemma, see Section 4.3.2 in Zhao, Small, and Bhattacharya (2019). In this

thesis, we briefly explain how to construct the 1 − α confidence interval for

partially identified region (4.4) as follows:

(a) Obtain the numberB bootstrap samples by taking samples of size N from

the original data (T̃i, δi, Ai,Li), i = 1, . . . , N , using random sampling

with replacement.

(b) In each bootstrap sample b, for b = 1, . . . , B, re-estimate the PS and then

calculate the sensitivity range by solving the optimization problem (4.5).

i.e., lower bound of range: min[µ̂
(h),1
τ,b − µ̂

(h),0
τ,b ] and upper bound of range:

max[µ̂
(h),1
τ,b − µ̂

(h),0
τ,b ], respectively.

(c) Finally, use the α/2 percentile among lower bounds of the bootstrap

sensitivity ranges, Qα/2

{(
min[µ̂

(h),1
τ,b − µ̂

(h),0
τ,b ]

)
b∈[B]

}
, as a lower limit of

confidence interval and the 1−α/2 percentile among upper bounds of the

bootstrap sensitivity ranges, Q1−α/2

{(
max[µ̂

(h),1
τ,b − µ̂

(h),0
τ,b ]

)
b∈[B]

}
, as a

upper limit of confidence interval for partially identified region.

Remark 4.3 Note that Λ = 1.0 means that there is no unmeasured confound-

ing. In this case, the 1−α percentile bootstrap confidence interval for partially

identified region is the same as the 1−α percentile bootstrap confidence interval

of point estimate for the difference in adjusted RMST (3.7) obtained from the

adjusted Kaplan-Meier estimator (3.5).

4.8 Simulation study 2

In this Section, we perform two simulation studies to evaluate the performance

of 1) approximate optimization method and 2) sensitivity range and percentile

bootstrap confidence interval.
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4.8.1 Simulation study 2.1: Bias and computational

time

First, assume that the sensitivity range of the point estimates for the difference

in bias-adjusted RMST obtained from the direct optimization method is consid-

ered as the correctly calculated sensitivity range. Then, we illustrate that the

approximate optimization method is valid and practical by comparing the bias

and computational time between the two optimization methods. We simulated

the data as described in Section 3.3.1 with the following modifications: (i) let

L2 be the unmeasured confounder, (ii) consider the four values of the sensitivity

parameter Λ ∈ {1.1, 1.3, 1.5, 2.0}. Then, the total number of combinations of

β0, c, Λ, and τ is 80.

The parametric approximation of the PS, Pβ(A = 1 | L1), was estimated

from logistic regression model. When estimating Pβ(A = 1 | L1) from super-

population with sample size N = 1,000,000, P̂β(A = 1 | L1) was range from

0.1321 to 0.8609 for β0 = −1.9 (i.e., Pβ(A = 1 | L1, L2) ≈ 0.5) and from

0.3780 to 0.9640 for β0 = −0.425 (i.e., Pβ(A = 1 | L1, L2) ≈ 0.8). Also, the

approximately true values of exp{hβ0(l,u)} were exp{ĥβ0(l,u)} = ĝβ0(l) −

ĝ0(l,u) ∈ (1/1.602, 1.606) for β0 = −1.9 and exp{ĥβ0(l,u)} ∈ (1/1.637, 1.489)

for β0 = −0.425 where ĝβ0(l) and ĝ0(l,u) were estimated from superpopulation

with sample size N = 1,000,000.

For each combination of coefficient for intercept term β0 in the exposure

generating model and censoring rate c, we simulated the data 200 times to

obtain the mean and range (minimum and maximum) of (i) bias and (ii)

computational time difference and ratio. When calculating the sensitivity

range of the estimates for the difference in bias-adjusted RMST, the bias was
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measured by calculating the difference between the lower (or upper) bound

of the estimates of the difference in bias-adjusted RMST obtained by the

approximate optimization method and that obtained by the direct optimization

method. Also, the computational time difference and ratio between the direct

optimization method and the approximate optimization method per eachMonte

Carlo data was measured.

First, consider the case when β0 = −1.9. The simulation results are reported

in Figures 4.1 and 4.2 and Tables B.4.1–B.4.4. Regardless of Λ and τ , when

the censoring rate was less than 0.7, the bias was hardly different from 0,

as seen in Figure 4.1 and Tables B.4.1 and B.4.2 (maximum mean bias for

lower bound: 0.000000 [range: 0.000000 to 0.000004]; minimum mean bias for

upper bound: 0.000000 [range: -0.000003 to 0.000000]). However, when the

censoring rate was greater than or equal to 0.7, the bias was slightly different

from 0 (maximum mean bias for lower bound: 0.000180 [range: 0.000000 to

0.017455]; minimum mean bias for upper bound: -0.000218 [range: -0.024271

to 0.000022]). Note that, in contrast to the increase in bias when the censoring

rate was greater than or equal to 0.7, the computational time difference and

ratio between two methods was not significantly different, as seen in Figure 4.2

and Tables B.4.3 and B.4.4 (maximum mean computational time difference:

4.07 [range: 2.18 to 6.44] seconds; maximum mean computational time ratio:

2.46 [range: 1.80 to 3.07] times). The results when β0 = −0.425 were similar

to those in β0 = −1.9, as can be seen from Figures B.5.1 and B.5.2 and

Tables B.5.1–B.5.4 in Appendix B.5.

These simulation results suggest that if the censoring rate is less than 0.7,

the approximate optimization method is not inferior to the direct optimization

method in terms of bias, but is superior to in terms of computational time.
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Figure 4.1 (Top): Bias for lower bound of sensitivity range. (Bottom): Bias

for upper bound of sensitivity range. The mean is represented by red dot. The

range of bias is represented by lower and upper horizontal bar.
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Figure 4.2 (Top): Difference in computational time between two methods

per each Monte Carlo data. (Bottom): Ratio of computational time between

two methods per each Monte Carlo data. The mean is represented by red dot.

The range of computational time difference is represented by lower and upper

horizontal bar.
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Therefore, we can use the approximate optimization method in case that the

censoring rate is less than 0.7. Otherwise, one can use the direct optimization

method to perform our sensitivity analysis, although it takes slightly more

computational time than the approximate optimization method.

4.8.2 Simulation study 2.2: Sensitivity range and

coverage rate

To evaluate the coverage rate of the percentile bootstrap confidence interval for

partially identified region (4.4) described in Section 4.7, we conducted a second

simulation study. As a result of the simulation results in Section 4.8.1, we con-

structed the percentile bootstrap confidence interval by using the approximate

optimization method.

We simulated the data as described in Section 3.3.1 with the following

modifications: (i) let L2 be the unmeasured confounder, (ii) consider β0 = −1.9

only, (iii) administrative censoring time was set to tc for all subjects where tc was

adjusted to obtain the simulated data that correspond to approximate censoring

rate c, and (iv) consider the three values of censoring rate c ∈ {0.0, 0.3, 0.5} and

the five values of the sensitivity parameter Λ ∈ {1.0, 1.1, 1.3, 1.5, 2.0}. Then,

the total number of combinations of β0, c, Λ, τ is 30. We simulated 1,000

replications with sample size N = 500 for each censoring rate and constructed

the 90% and 95% percentile bootstrap confidence interval for partially identified

region with bootstrap resampling B = 1,000 times, respectively.

Considering that the PS was estimated using the measured confounder

only (i.e., L2 is unmeasured) and that the degree of unmeasured confounding

would be expected to be on the order of Λ, the true partially identified regions

were approximately calculated by using superpopulation with sample size
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N = 1,000,000 and true event times T a (i.e., survival times when all subjects

experience the event of interest), for each combination of τ and β0. In this case,

because there is no censored subject, the approximately true partially identified

region can be obtained by using analytic solution described in Section 4.5.

Based on 1,000 bootstrap replicates, both the median values for lower and upper

bounds of sensitivity range and the respective 90% or 95% percentile bootstrap

confidence interval were calculated. Also, the coverage rate was calculated as

the proportion of replications that the percentile bootstrap confidence interval

covered the true partially identified region.

The simulation results are reported in Table 4.1. The median sensitivity

range did not seem to differ from the approximately true partially identified

region although there was a slight difference when the censoring rate was 0.5

and Λ increased gradually. The percentile bootstrap confidence intervals for

partially identified region had desired coverage rate (90% or 95%) and did

not appear to be conservative, although there was a slight difference from the

desired coverage rate as the censoring rate increased.

4.9 Real data analysis 2

We applied the proposed sensitivity analysis methods described in this Sec-

tion to 1) German breast cancer study group (GBSG) data, available in

the survival package (Therneau, 2022), and 2) non–small cell lung cancer

(NSCLC) data, recently published medical research in Song et al. (2021). In

both data, the sensitivity range of the point estimates for the difference in

bias-adjusted RMST at the pre-specified time point and the 95% confidence

interval for theirs partially identified region that is constructed by the percentile

bootstrap with 1,000 replications were calculated.
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4.9.1 Real data analysis 2.1: GBSG data

GBSG data were included for patients with histologically verified primary

breast cancer (positive regional lymph nodes but no distant metastases) to

investigate the effects of chemotherapy and hormone therapy on the recurrence-

free survival time (Schumacher et al., 1994). This data contained 686 patients

with complete data for the prognostic factors. Survival outcome was recurrence-

free survival time (days). Exposure was 2 years of hormonal therapy with

tamoxifen. Event indicator was dichotomized into alive without recurrence and

recurrence or death (censoring rate: 61.7% [235 of 440] for hormone-treated

group and 53.4% [152 of 246] for hormone-untreated group). And, prognostic

factors which were considered in Model Section of Royston and Altman (2013)

were age at primary surgery (years), menopausal status (premenopausal vs.

postmenopausal), tumor size (mm), the number of positive lymph nodes (n),

and estrogen receptors (fmol/l). We preprocessed this data as delineated in

Royston and Altman (2013). Detailed information about GBSG data is shown

in Schumacher et al. (1994) and Royston and Altman (2013).

Using this data, we validated whether the mean recurrence-free survival

time between hormonal therapy groups differs when patients are followed up

to τ . Because Royston and Altman (2013) were considered 2 years and 5

years recurrence-free survival probabilities, we considered here two values of

specific time point τ (2 years [365.25 × 2 days] and 5 years [365.25 × 5 days]).

And, we performed a sensitivity analysis for unmeasured confounding via our

proposed method. First, the PS was estimated via a logistic regression model

conditioning on prognostic factors. In the PS model, age was transformed into

both age3 and age3 × log(age), tumor size was categorized into three groups
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(≤ 20 mm, 20 to 50 mm, and > 50 mm), and the number of positive lymph

nodes was transformed into square root value. We considered the seven values

of the sensitivity parameter Λ ∈ {1.0, 1.1, 1.2, 1.3, 1.5, 1.7, 2.0}.

In GBSG data, the bias of lower and upper bound of sensitivity range

between the approximate and direct optimization methods was hardly different

from 0 (maximum bias for lower bound of sensitivity range < 0.000001 and

minimum bias for upper bound of sensitivity range > -0.000001, for τ = 2 years;

maximum bias for lower bound of sensitivity range < 0.000001 and minimum

bias for upper bound of sensitivity range -0.000102, for τ = 5 years). Also,

the bias of lower and upper bound of 95% confidence interval was less than

0.000001 and greater than -0.000001 for both values of τ . Therefore, we only

report the results obtained by the approximate optimization method.

In Table 4.2 and Figure 4.3, the point estimate of the difference in adjusted

RMST up to 5 years (i.e., Λ = 1.0) was statistically significant (156.32 [95%

Table 4.2 Sensitivity range and 95% confidence interval for difference in
bias-adjusted RMST up to 2 and 5 years

Sensitivity range 95% confidence interval
τ Λ (days) (days)

Lower bound Upper bound Lower bound Upper bound

2y

1.0 22.89 22.89 -2.37 45.52
1.1 12.88 32.59 -13.44 54.23
1.2 3.50 41.20 -23.97 62.11
1.3 -5.35 48.92 -33.30 69.58
1.5 -21.66 62.24 -51.35 82.59
1.7 -36.42 73.47 -66.92 93.68
2.0 -56.13 87.59 -88.57 109.04

5y

1.0 156.32 156.32 60.22 261.67
1.1 103.62 207.99 4.82 309.70
1.2 54.67 254.07 -45.45 350.81
1.3 8.96 295.44 -93.26 387.46
1.5 -73.75 366.76 -178.17 450.61
1.7 -146.62 426.23 -251.04 507.01
2.0 -241.02 499.29 -346.60 575.41
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τ = 2 years

τ = 5 years

Figure 4.3 Top: Difference in bias-adjusted RMST up to 2 years. Bottom:

Difference in bias-adjusted RMST up to 5 years. Red solid line represents the

difference in adjusted RMST. Black dashed line represents 0. Dark pink region

represents the interval of point estimate. Light pink region represents the 95%

confidence interval of point estimate. Blue points represent the lower and upper

bound of sensitivity range using the sensitivity parameter Λ ∈ {1.0, 1.1, 1.2,
1.3, 1.5, 1.7, 2.0}.
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CI: 60.22 to 261.67] days), although during 2 years of follow-up, it was not

significant (22.89 [95% CI: -2.37 to 45.52] days). As a result of the sensitivity

analysis, results drawn only from measured prognostic factors were quite

sensitive to unmeasured confounding because the confidence interval contained

0 for sensitivity parameter Λ near 1.1. In the previous study (Schumacher

et al., 1994), the effect of hormonal therapy on recurrence-free survival was

not statistically significant (hazard ratio: 0.75 [95% CI: 0.54 to 1.04]; P =

.084), which was evaluated by means of a multivariate Cox model. In our

sensitivity analysis results, by using the difference in RMST (i.e., absolute risk)

as the effect measure of exposure, we showed that even in the presence of weak

unmeasured confounding, the 95% confidence interval contained 0. It suggests

that great caution is required in interpreting the results and additional studies

are needed to determine the effect of hormonal therapy with tamoxifen on

recurrence-free survival.

4.9.2 Real data analysis 2.2: NSCLC data

NSCLC data were included patients with initial diagnosis of NSCLC to evaluate

the prognostic performance of the proposed N descriptors for clinical staging

(Song et al., 2021). This data contained 1,271 patients who divided by four

clinical N stages (cN0, cN1, cN2, and cN3). For the illustration of our method,

we only considered 248 patients in cN1 or cN2 group. Survival outcome was

overall survival, which was measured from the date of staging chest CT to

the date of any cause of death. The study entry times were different for each

patients, but patients without death records were administrative censored on

May 15, 2020 (censoring rate: 48.8% [42 of 86] for cN1 group and 25.3% [41 of

162] for cN2 group). Prognostic factors which were considered in Cox model of
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Song et al. (2021) were age (≤ 60 years vs. > 60 years), sex (male vs. female),

smoking history (never-, former-, and current-smoker), family history of lung

cancer (yes vs. no), tumor type (solid vs. subsolid), tumor location (upper or

middle vs. lower), histologic type (adenocarcinoma vs. others), and clinical T

stage (cTis/cT1, cT2, cT3, and cT4). Detailed information about data is given

in Song et al. (2021).

Using this data, we compared how the mean overall survival time between

risk groups (cN1 vs. cN2) differs when patients are followed up to τ . Because

Song et al. (2021) were considered a 5 years overall survival probabilities,

we also set a specific time point τ to 5 years (365.25 × 5 days). And, we

performed a sensitivity analysis for unmeasured confounding via our proposed

method. First, to balance the probability of being in each risk group, the

probability belonging to cN2 conditioning on prognostic factors (alike PS)

was estimated via a logistic regression model. Among those prognostic factors

considered in Song et al. (2021), tumor type was excluded from the model

because patients with subsolid tumor were only 3 and 1 in cN1 group and cN2

group, respectively. Also, clinical T stage was excluded from the model because

it was simultaneously measured with the clinical N stage. We considered the

seven values of the sensitivity parameter Λ ∈ {1.0, 1.1, 1.2, 1.3, 1.5, 1.7, 2.0}.

In NSCLC data, the mean bias of lower and upper bound of sensitivity

range between methods was hardly different from 0 (maximum bias for lower

bound of sensitivity range: < 0.000001 and minimum bias for upper bound of

sensitivity range: > −0.000001). Also, the mean bias of lower and upper bound

of 95% confidence interval was less than 0.000005 and greater than -0.000001.

Therefore, we only report the results obtained by the approximate optimization

method.
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Table 4.3 Sensitivity range and 95% confidence interval for difference in
bias-adjusted RMST up to 5 years

Sensitivity range 95% confidence interval
Λ (days) (days)

Lower bound Upper bound Lower bound Upper bound

1.0 -379.61 -379.61 -546.02 -208.97
1.1 -433.79 -324.37 -594.28 -150.17
1.2 -482.38 -273.13 -637.45 -96.95
1.3 -526.35 -225.45 -677.52 -45.74
1.5 -602.87 -139.11 -744.85 43.32
1.7 -667.10 -63.09 -802.77 118.08
2.0 -746.28 35.00 -874.91 219.37

Figure 4.4 Difference in bias-adjusted RMST up to 5 years. Red solid line

represents the difference in adjusted RMST. Black dashed line represents 0.

Dark pink region represents the interval of point estimate. Light pink region

represents the 95% confidence interval of point estimate. Blue points represent

the lower and upper bound of sensitivity range using the sensitivity parameter

Λ ∈ {1.0, 1.1, 1.2, 1.3, 1.5, 1.7, 2.0}.

In Table 4.3 and Figure 4.4, the point estimate of the difference in bias-

adjusted RMST up to 5 years for Λ = 0 was statistically significant (-379.61

[95% CI: -546.02 to -208.97] days). To the best our knowledge, it is thought that
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there is no unmeasured confounder that would change the probability of being

in each risk group as strong as age. When the other prognostic factors (i.e., sex,

smoking history, family history of lung cancer, tumor location, and histologic

type) are considered as common confounders, the odds ratio of the probabilities

of being in each risk group with and without the age variable changes at most

1.2629 (range: [1/1.1426, 1.2629]). Because the confidence interval did not

contain 0 for sensitivity parameter Λ near 1.4 in our sensitivity analysis, the

result drawn only from measured prognostic factors was considerably robust

to unmeasured confounding. According to the American Joint Committee on

Cancer (AJCC) (Edition et al., 2017), the 5 years overall survival probabilities

for clinical N1 and N2 stage were 37% and 23%, respectively. Also, the hazard

ratio between risk groups estimated by a Cox model adjusting for histology

grade, sex, age, and geographical region were 1.42 (P < 0.0001). Along with

AJCC, our sensitivity analysis further strengthens the evidence that there is

the difference in mean life expectancy between two risk groups.
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Chapter 5

Discussion

The difference in RMST has recently been used frequently as an alternative

measure to hazard ratio for survival analysis in medical fields (Royston and

Parmar, 2013; Uno et al., 2014; Trinquart et al., 2016; Kim, Uno, and Wei,

2017; Pak et al., 2017; Kloecker et al., 2020; Han and Jung, 2022). To reduce

bias of confounding, many statistical methods that make it possible to estimate

the adjusted RMST have been proposed (Andersen, Hansen, and Klein, 2004;

Cole and Hernán, 2004; Xie and Liu, 2005; Tian, Zhao, and Wei, 2014; Chatton

et al., 2022). Based on simulation studies, we confirmed that all the methods

being considered provide the unbiased estimates with the percentile bootstrap

confidence intervals achieving near nominal coverage probability when there

is neither a large censoring rate nor extreme PS. Also, the bias was reduced

and the coverage rate seemed to improve, as the sample size increased.

Despite increasing usage of the difference in RMST as an effect measure,

to our knowledge, there were few available sensitivity analysis methods for

unmeasured confounding when evaluating the estimate of the difference in

adjusted RMST. In this thesis, we proposed a novel propensity score-based
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sensitivity analysis method for the estimate of bias-adjusted RMST to assess the

impact of probably possible unmeasured confounding in observational survival

studies. The proposed method was a direct extension of existing sensitivity

model (Zhao, Small, and Bhattacharya, 2019) which quantifies the degree of

unmeasured confounding where subjects who might appear similar in terms of

measured prognostic factors L may be different in their odds of receiving the

exposure by at most Λ. Given a user-specified sensitivity parameter Λ, one can

obtain a sensitivity range of the estimates for the difference in bias-adjusted

RMST up to pre-specified time point τ along with a confidence interval with

asymptotically at least 1− α coverage probability.

To obtain the sensitivity range of the estimates for the difference in bias-

adjusted RMST, we should solve the optimization problem (4.5). However, as

seen in Section 4.4, the optimization problem (4.5) could not be transformed

into linear (fractional) programming problem in general survival analysis, and

thus there is no analytic solution. Although it can be directly solved by using

an optimization algorithm such as L-BFGS-B, the computational time was non-

negligible. Therefore, we proposed an approximate optimization method and

showed that by resorting to intensive Monte Carlo simulation studies, it can be

an alternative method that is not inferior to the direct optimization method

in terms of bias but superior in terms of computational time. In performing

our sensitivity analysis, we recommend using the approximate optimization

method in case that the censoring rate is less than 0.7. Otherwise, one may use

the direct optimization method although it takes slightly more computational

time than the approximate optimization method.

Compared with other sensitivity analysis methods, the proposed method

has the advantage that one can perform the sensitivity analysis regardless
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of model used for estimating the PS. Also, no assumptions for the relation

between and the distribution of measured and unmeasured confounders are

required. Furthermore, our method needs only one sensitivity parameter Λ.

However, the challenge lies in specifying a sensible sensitivity parameter Λ

which quantifies the degree of unmeasured confounding. Therefore, considerable

domain knowledge about the assignment of exposure may be needed to limit a

controversy about potential unmeasured confounding. In other words, we need

to know how much unmeasured confounding would change the PS. Taking

our second real data analysis (NSCLC) in Section 4.9.2 as an example, when

considering the overall survival time in non–small cell lung cancer and the

nature of age, one might argue that unmeasured confounding will not be as

strongly associated with a probability of being in each risk group (cN1 vs. cN2)

as is the age variable.

Our sensitivity analysis method was based on the IP weighted Kaplan-

Meier curve via Xie and Liu (2005). Alternatively, when the unmeasured

confounding is suspected and the true effect of exposure is represented by

a regression model that includes the exposure as well as both the measured

and unmeasured confounders (such as pseudo-observation method described in

Section 3.2.1.1 or ANCOVA-type model described in Section 3.2.1.2), Lin, Psaty,

and Kronmal (1998)’s sensitivity analysis method can be used. However, it has

many limitations and is not easy to apply in practice. We simply described their

sensitivity analysis method for unmeasured confounding and its limitations in

Appendix C. Also, one might want to perform the sensitivity analysis on the

results of Cox model adjusted for potential confounders using IP weighting

proposed by Cole and Hernán (2004) described in Section 3.2.2.1 or using

G-computation proposed by Chatton et al. (2022) described in Section 3.2.3.
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However, the parametric sensitivity model (Definition 4.2) may not be directly

applicable to methods of Cole and Hernán (2004) and Chatton et al. (2022)

since the equation for the estimate of exposure effect expressed as the shifted

PS (such as the estimate of the difference in bias-adjusted RMST) cannot

be readily derived from Cox model. Further studies are needed to develop

the sensitivity analysis method for unmeasured confounding based on Cole

and Hernán (2004)’s adjusted survival curve or Chatton et al. (2022)’s G-

computation method.

Our study has several limitations. First, our proposed method depends on

the assumptions such as the positivity and consistency which are in fact not

unique to our method but necessary in any propensity score-based methods.

Similarly, the proposed sensitivity analysis methods can be unstable when the

PSs are highly variable. In this case, one can stabilize the PSs via truncation

(Potter, 1993; Cole and Hernán, 2008). Second, we only considered a single

binary exposure. It can be extended to multi-valued categorical, ordinal, or

continuous exposures although the underlying sensitivity model may become

complex. Finally, the performance of our sensitivity analysis methods inevitably

resorted to simulation studies, so that more evidence will be needed to use

widely in real applications. However, based on our intensive simulation studies,

the median sensitivity range did not seem to differ from the approximately true

partially identified region, and the percentile bootstrap confidence intervals for

partially identified region had desired coverage rate and did not appear to be

conservative, although there was a slight degradation in performance as the

censoring rate increased.

In summary, we never know whether the assumption of conditional ex-

changeability is satisfied in observational study. Consequently, it is of interest
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to conduct a sensitivity analysis to quantify how much the analysis results

are varied by unmeasured confounding. In accordance with importance of

sensitivity analysis, we proposed a propensity score-based sensitivity analysis

method for unmeasured confounding of the difference in adjusted RMST in

observational survival studies.
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Appendix A

Appendix for Chapter 3

A.1 Example R codes

Here, we consider simulation setting described in Section 3.3.1 as an example

with the following modifications: (i) sample size N is 10,000 (ii) consider

censoring rate to be 0.5 (i.e., the value of scale parameter λ = 0.354) (iii)

consider the true PS to be approximately 0.5 only (i.e., β0 = −1.9).

## Function for making simulation dataset

simulate data <- function(dataset, baseline="Weibull", N=10000,

params=list(lambda=0.95, nu=1.8),

params.cen=list(lambda=0.354, nu=0.6),

cen.rate=0.5, b0=-1.9) {
## Coef of the time-to-event model (Exponential or Weibull)

bAY <- log(2.5)

bL1Y <- log(0.7)

bL2Y <- log(1.2)

## Coef of exposure model (logistic)

b0 <- b0 # -1.9 ==> P(A=1|L)=0.5 // -0.425 ==>P(A=1|L)=0.8

bL1A <- 0.8

bL2A <- 1.5

## Generate confounders (L1~L2)

for (i in 1:1) {
assign(paste("L", i, sep=""), rbinom(N, 1, prob=0.5))

}
for (i in 2:2) {

assign(paste("L", i, sep=""), rnorm(N, 1, 0.5^2))
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}

## Generate exposure A

probA <- plogis(b0 + bL1A * L1 + bL2A * L2)

A <- rbinom(N, 1, prob=probA)

## Coefficients

beta.all <- c(bAY, bL1Y, bL2Y)

## Draw from a U(0,1) random variable

u <- runif(N)

## Simulate survival times depending on the baseline hazard (exposed)

Covariate.ex <- cbind(rep(1, N), L1, L2)

if (baseline == "Exponential") {
t.true.ex <- 5*(-log(u))/(params$lambda * exp(Covariate.ex %*% beta.all))

} else if (baseline == "Weibull") {
t.true.ex <- 5*(-log(u)/(params$lambda *

exp(Covariate.ex %*% beta.all)))^(1/params$nu)
}

## Draw from a U(0,1) random variable

ustar <- runif(N)

## Simulate survival times depending on the baseline hazard (unexposed)

Covariate.unex <- cbind(rep(0, N), L1, L2)

if (baseline == "Exponential") {
t.true.unex <- 5*(-log(ustar))/(params$lambda *

exp(Covariate.unex %*% beta.all))

} else if (baseline == "Weibull") {
t.true.unex <- 5*(-log(ustar)/(params$lambda *

exp(Covariate.unex %*% beta.all)))^(1/params$nu)
}
# plot(density(t.true))

t.true <- ifelse(A == 1, t.true.ex, t.true.unex)

## Simulate cenosring times

t.cen <- rweibull(N, shape=params.cen$nu,
scale=1/(params.cen$lambda^(1/params.cen$nu)))

## Make observed survival time

t.obs <- ifelse(t.true <= t.cen, t.true, t.cen)

status <- ifelse(t.true <= t.cen, 1, 0)

## True survival probability

st.ex <- exp(-params$lambda * (t.true.ex/5)^params$nu *

exp(Covariate.ex %*% beta.all))

st.unex <- exp(-params$lambda * (t.true.unex/5)^params$nu *

exp(Covariate.unex %*% beta.all))

## Return data frame

dat.temp <- data.frame(dataset=dataset, baseline=baseline,

id=c(1:N), N=N, cen.rate=cen.rate,

A=A, L1=L1, L2=L2,
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t.true.ex=t.true.ex, t.true.unex=t.true.unex,

t.true=t.true, t.cen=t.cen, t.obs=t.obs,

status=status, st.ex=st.ex, st.unex=st.unex,

stringsAsFactors=FALSE, row.names=NULL)

return(dat.temp)

}

## Make simulation dataset

set.seed(221205)

sim.dat <- simulate data(dataset=1, baseline="Weibull", N=10000,

params=list(lambda=0.95, nu=1.8),

params.cen=list(lambda=0.354, nu=0.6),

cen.rate=0.5, b0=-1.9)

A.1.1 R code for Kaplan-Meier estimator

### Estimate of RMST difference in RCT

## Method 1

library(survival)

library(RISCA)

kaplan.fit <- survfit(Surv(t.obs,status) ~ A, data=sim.dat)

dat.surv <- data.frame(strata=summary(kaplan.fit)$strata,
time=summary(kaplan.fit)$time,
surv=summary(kaplan.fit)$surv)

rmst.0.0 <- rmst(times=dat.surv[dat.surv$strata == "A=0",]$time,
surv.rates=dat.surv[dat.surv$strata == "A=0",]$surv,
max.time=5, type='s')

rmst.1.0 <- rmst(times=dat.surv[dat.surv$strata == "A=1",]$time,
surv.rates=dat.surv[dat.surv$strata == "A=1",]$surv,
max.time=5, type='s')

# Estimate of RMST difference

print(rmst.1.0 - rmst.0.0, 5)

## [1] -0.96697

### Method 2

library(survRM2)

# Using rmst2 function without "covariates" argument

rmst2.without.cov <- rmst2(time=sim.dat$t.obs,
status=sim.dat$status, arm=sim.dat$A, tau=5)

print(rmst2.without.cov)

## The truncation time: tau = 5 was specified.

##

## Restricted Mean Survival Time (RMST) by arm

## Est. se lower .95 upper .95

## RMST (arm=1) 2.693 0.025 2.645 2.741

## RMST (arm=0) 3.660 0.026 3.609 3.711

##

## Restricted Mean Time Lost (RMTL) by arm
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## Est. se lower .95 upper .95

## RMTL (arm=1) 2.307 0.025 2.259 2.355

## RMTL (arm=0) 1.340 0.026 1.289 1.391

##

## Between-group contrast

## Est. lower .95 upper .95 p

## RMST (arm=1)-(arm=0) -0.967 -1.037 -0.897 0

## RMST (arm=1)/(arm=0) 0.736 0.719 0.753 0

## RMTL (arm=1)/(arm=0) 1.722 1.648 1.798 0

# Estimate of RMST difference

print(rmst2.without.cov$unadjusted.result[1,1], 5)

## [1] -0.96697

A.1.2 R code for pseudo-observation

## Andersen et al.'s RMST regression-based method (Pseudo-observation)

library(pseudo)

library(geepack)

rmst.pseudo <- pseudomean(time=sim.dat$t.obs, event=sim.dat$status, tmax=5)

fit pseudo <- geeglm(rmst.pseudo ~ A + L1 + L2, data=sim.dat, id=id,

family="gaussian", corstr="independence", scale.fix=F)

summary(fit pseudo)

## Call:

## geeglm(formula = rmst.pseudo ~ A + L1 + L2, family = "gaussian",

## data = sim.dat, id = id, corstr = "independence", scale.fix = F)

##

## Coefficients:

## Estimate Std.err Wald Pr(>|W|)

## (Intercept) 3.62491 0.07770 2176.350 <2e-16 ***

## A -1.02840 0.03765 746.123 <2e-16 ***

## L1 0.36292 0.03704 96.025 <2e-16 ***

## L2 -0.11228 0.07471 2.259 0.133

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

##

## Correlation structure = independence

## Estimated Scale Parameters:

##

## Estimate Std.err

## (Intercept) 3.334 0.03988

## Number of clusters: 10000 Maximum cluster size: 1

# Estimate of RMST difference with Wald confidence interval

print(c(coef(fit pseudo)[2], confint.default(fit pseudo)[2,]), 5)

## A 2.5 % 97.5 %

## -1.02840 -1.10219 -0.95461
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A.1.3 R code for ANCOVA-type model

## Tian et al.'s RMST regression-based method (ANCOVA-type adjusted analyses)

library(survRM2)

# Using rmst2 function with "coavariates" argument

rmst2.with.cov <- rmst2(time=sim.dat$t.obs, status=sim.dat$status,
arm=sim.dat$A, tau=5, covariates=sim.dat[,c("L1","L2")])

print(rmst2.with.cov)

## The truncation time: tau = 5 was specified.

##

## Summary of between-group contrast (adjusted for the covariates)

## Est. lower .95 upper .95 p

## RMST (arm=1)-(arm=0) -1.026 -1.098 -0.954 0

## RMST (arm=1)/(arm=0) 0.722 0.706 0.739 0

## RMTL (arm=1)/(arm=0) 1.778 1.701 1.859 0

##

## Model summary (difference of RMST)

## coef se(coef) z p lower .95 upper .95

## intercept 3.648 0.081 44.836 0.000 3.489 3.808

## arm -1.026 0.037 -27.966 0.000 -1.098 -0.954

## L1 0.363 0.039 9.336 0.000 0.286 0.439

## L2 -0.137 0.079 -1.739 0.082 -0.292 0.017

##

## Model summary (ratio of RMST)

## coef se(coef) z p exp(coef) lower .95 upper .95

## intercept 1.292 0.025 51.054 0.00 3.641 3.465 3.827

## arm -0.325 0.012 -27.543 0.00 0.722 0.706 0.739

## L1 0.114 0.012 9.355 0.00 1.121 1.094 1.148

## L2 -0.043 0.025 -1.750 0.08 0.957 0.912 1.005

##

## Model summary (ratio of time-lost)

## coef se(coef) z p exp(coef) lower .95 upper .95

## intercept 0.295 0.046 6.345 0.000 1.343 1.226 1.471

## arm 0.576 0.023 25.306 0.000 1.778 1.701 1.859

## L1 -0.199 0.022 -9.225 0.000 0.820 0.786 0.855

## L2 0.075 0.043 1.717 0.086 1.077 0.990 1.173

# Estimate of RMST difference

print(rmst2.with.cov$adjusted.result[1,1], 5)

## [1] -1.02644
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A.1.4 R code for IP weighted Cox model

library(survival)

library(RISCA)

## Calculate the stabilized IP weights

denom.fit <- glm(A ~ L1 + L2, family=binomial, data=sim.dat)

pd.A <- predict(denom.fit, type="response")

numer.fit <- glm(A~1, family=binomial(), data=sim.dat)

pn.A <- predict(numer.fit, type="response")

sim.dat$sw <- ifelse(sim.dat$A == 0, ((1-pn.A)/(1-pd.A)), (pn.A/pd.A))

#### Cole and Hernan’s adjusted survival curve with IP Weights

### Method 1

## Fitting a weighted Cox model with robust standard errors

cox.fit <- coxph(Surv(t.obs,status) ~ strata(A) + cluster(id),

weights=sw, data=sim.dat)

adsurv.fit <- survfit(cox.fit)

dat.surv <- data.frame(strata=summary(adsurv.fit)$strata,
time=summary(adsurv.fit)$time,
surv=summary(adsurv.fit)$surv)

rmst.0.0 <- rmst(times=dat.surv[dat.surv$strata == "A=0",]$time,
surv.rates=dat.surv[dat.surv$strata == "A=0",]$surv,
max.time=5, type='s')

rmst.1.0 <- rmst(times=dat.surv[dat.surv$strata == "A=1",]$time,
surv.rates=dat.surv[dat.surv$strata == "A=1",]$surv,
max.time=5, type='s')

# Estimate of RMST difference

print(rmst.1.0 - rmst.0.0, 5)

## [1] -1.02274

### Method 2

## Using survey package

library(survey)

library(RISCA)

sdes <- svydesign(id=~ 0, weights=~sw, data=sim.dat)

dfit <- svykm(Surv(t.obs, status) ~ A, design=sdes, se=TRUE)

rmst.0.2 <- rmst(times=dfit$`0`$time, surv.rates=dfit$`0`$surv,
max.time=5, type='s')

rmst.1.2 <- rmst(times=dfit$`1`$time, surv.rates=dfit$`1`$surv,
max.time=5, type='s')

# Estimate of RMST difference

print(rmst.1.2 - rmst.0.2, 5)

## [1] -1.02274

75



A.1.5 R code for adjusted Kaplan-Meier estimator

### Xie and Liu’s adjusted Kaplan-Meier estimator

library(RISCA)

coxipw <- ipw.survival(times=sim.dat$t.obs, failures=sim.dat$status,
variable=sim.dat$A, weights=sim.dat$sw)

rmst.0.3 <- rmst(times=coxipw$table.surv$times[coxipw$table.surv$variable == 0],

surv.rates=coxipw$table.surv$survival[coxipw$table.surv$variable == 0],

max.time=5, type='s')
rmst.1.3 <- rmst(times=coxipw$table.surv$times[coxipw$table.surv$variable == 1],

surv.rates=coxipw$table.surv$survival[coxipw$table.surv$variable == 1],

max.time=5, type='s')
# Estimate of RMST difference

print(rmst.1.3 - rmst.0.3, 5)

## [1] -1.02297

## Use Conner et al's "akm rsmt" R function from GitHub

## to estimate the variance for RMST difference

akm rsmt <- devtools::source url(

"https://github.com/s-conner/akm-rmst/blob/master/AKM rmst.R?raw=TRUE"

)$value
akm.rsmt.with.sw <- akm rsmt(time=sim.dat$t.obs, status=sim.dat$status,

group=factor(sim.dat$A), weight=sim.dat$sw, tau=5,

alpha=.05, xaxismin=0, xaxismax=max(sim.dat$t.obs))

## RMST calculated up to tau = 5

##

## Restricted Mean Survival Time (RMST) per Group

##

## RMST SE

## Group 0 3.679 0.027

## Group 1 2.656 0.025

##

## Restricted Mean Survival Time (RMST) Differences

##

## Est. SE CIL CIU p

## Groups 1 vs. 0 -1.023 0.037 -1.095 -0.951 0

##

## Restricted Mean Survival Time (RMST) Ratios

##

## Log Est. SE Est. CIL CIU p

## Groups 1 vs. 0 -0.326 0.012 0.722 0.705 0.739 0
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A.1.6 R code for G-computation

### Chatton et al's G-computation with a Cox model

library(RISCA)

## Fit Cox model with confounders

cox.cdt <- coxph(Surv(t.obs,status) ~ A + L1 + L2, data=sim.dat, x=TRUE)

## Set the iterations to 10 because of computational time

gc.ate <- gc.survival(object=cox.cdt, data=sim.dat, group="A", times="t.obs",

failures="status", max.time=5, iterations=10, effect="ATE",

n.cluster=1)

# Estimate of RMST difference with bootstrap confidence interval

print(gc.ate$delta[1,3,4], 5)

## estimate ci.lower ci.upper

## 1 -1.03037 -1.12190 -0.93884

A.2 Proof of true value for difference in

RMST

In the equation for the true value of conditional RMST (3.10), the first and

second equalities follow from the definition of RMST (2.2). The third equality

holds because the true event times were generated from Cox model withWeibull-

distributed baseline hazard (3.9). Now, we show in detail how the last equality

holds.

Proof. To begin with, let k = exp{log(2.5)a+ log(1.2)l1 + log(0.7)l2}. Recall

from (3.10) that the true value of conditional RMST is

∫ τ

0

[
exp

(
−λtν

5ν

)]exp{log(2.5)a+log(1.2)l1+log(0.7)l2}

dt

=

∫ τ

0

[
exp

(
−λtν

5ν

)]k
dt =

∫ τ

0

[
exp

(
−kλtν

5ν

)]
dt.
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When substituting t for
5

k
1
ν λ

1
ν

u, u =
k

1
ν λ

1
ν t

5
and dt =

5

k
1
ν λ

1
ν

du. Then,

∫ τ

0

[
exp

(
−kλtν

5ν

)]
dt =

5

k
1
ν λ

1
ν

∫ k
1
ν λ

1
ν τ

5

0
exp(−uν) du. (A.2.1)

Note that
∫
exp(−uν) du is a special integral of incomplete gamma function

(Abramowitz and Stegun, 1964). That is,

∫
exp(−uν) du = −

Γ( 1ν , u
ν)

ν
. (A.2.2)

where Γ(s, x) =
∫∞
x ts−1 exp(−t) dt is the upper incomplete gamma function.

Using the fact that (A.2.2), (A.2.1) is written by

5

k
1
ν λ

1
ν

∫ k
1
ν λ

1
ν τ

5

0
exp(−uν) du

=
5

k
1
ν λ

1
ν

[
−
Γ( 1ν , u

ν)

ν

]k
1
ν λ

1
ν τ

5

0

=
5

νk
1
ν λ

1
ν

[
−Γ

(
1

ν
,
kλτν

5ν

)
+ Γ

(
1

ν
, 0

)]
. (A.2.3)

Because the ordinary gamma function is defined as

Γ(s) =

∫ ∞

0
ts−1 exp(−t) dt

and the lower incomplete gamma function is defined as

γ(s, x) =

∫ x

0
ts−1exp(−t) dt,

we have

Γ(s) = Γ(s, 0) and γ(s, x) + Γ(s, x) = Γ(s). (A.2.4)
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Then, using properties in (A.2.4), (A.2.3) is reduced by

5

νk
1
ν λ

1
ν

[
−Γ

(
1

ν
,
kλτν

5ν

)
+ Γ

(
1

ν
, 0

)]
=

5

νk
1
ν λ

1
ν

[
γ

(
1

ν
,
kλτν

5ν

)]
.

Therefore, the true value of conditional RMST is

µa
τ (l) =

5× γ

(
1

ν
,
exp{log(2.5)a+ log(1.2)l1 + log(0.7)l2}λτν

5ν

)
ν ×

(
exp{log(2.5)a+ log(1.2)l1 + log(0.7)l2}

)1/ν × λ1/ν
.

A.3 Simulation study 1 results for sample size

1,000

Table A.3.1 Simulation study 1 results (N = 1,000): Pseudo-observation

τ
True
RMST

E(A|L)
Censoring

rate
RMST Bias 95% CI Coverage

1 -0.027

0.5

0.1 -0.027 0.000 [-0.043, -0.011] 0.945
0.3 -0.027 0.000 [-0.044, -0.011] 0.949
0.5 -0.027 0.000 [-0.045, -0.009] 0.938
0.7 -0.027 0.000 [-0.046, -0.009] 0.937
0.9 -0.027 0.001 [-0.050, -0.004] 0.947

0.8

0.1 -0.028 -0.001 [-0.045, -0.010] 0.935
0.3 -0.028 -0.001 [-0.046, -0.009] 0.924
0.5 -0.028 -0.001 [-0.047, -0.008] 0.945
0.7 -0.028 -0.001 [-0.049, -0.007] 0.933
0.9 -0.027 0.000 [-0.052, -0.001] 0.943

3 -0.417

0.5

0.1 -0.416 0.001 [-0.517, -0.314] 0.945
0.3 -0.418 -0.001 [-0.527, -0.310] 0.950
0.5 -0.417 -0.001 [-0.534, -0.297] 0.939
0.7 -0.414 0.002 [-0.551, -0.274] 0.934
0.9 -0.411 0.006 [-0.617, -0.197] 0.950

0.8

0.1 -0.426 -0.010 [-0.542, -0.305] 0.930
0.3 -0.427 -0.011 [-0.553, -0.295] 0.953
0.5 -0.425 -0.009 [-0.564, -0.281] 0.955
0.7 -0.426 -0.009 [-0.587, -0.259] 0.941
0.9 -0.419 -0.002 [-0.664, -0.158] 0.948
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Table A.3.2 Simulation study 1 results (N = 1,000): ANCOVA-type model

τ
True
RMST

E(A|L)
Censoring

rate
RMST Bias 95% CI Coverage

1 -0.027

0.5

0.1 -0.027 0.000 [-0.043, -0.011] 0.942
0.3 -0.027 0.000 [-0.044, -0.011] 0.950
0.5 -0.027 0.000 [-0.045, -0.009] 0.936
0.7 -0.027 0.000 [-0.046, -0.008] 0.938
0.9 -0.027 0.000 [-0.051, -0.003] 0.952

0.8

0.1 -0.028 -0.001 [-0.046, -0.010] 0.936
0.3 -0.028 -0.001 [-0.046, -0.009] 0.926
0.5 -0.028 -0.001 [-0.047, -0.008] 0.949
0.7 -0.028 -0.001 [-0.049, -0.007] 0.928
0.9 -0.027 0.000 [-0.052, -0.001] 0.942

3 -0.417

0.5

0.1 -0.416 0.001 [-0.517, -0.315] 0.945
0.3 -0.418 -0.001 [-0.527, -0.311] 0.950
0.5 -0.418 -0.001 [-0.535, -0.298] 0.938
0.7 -0.414 0.002 [-0.555, -0.274] 0.944
0.9 -0.413 0.003 [-0.641, -0.189] 0.958

0.8

0.1 -0.426 -0.010 [-0.542, -0.306] 0.929
0.3 -0.427 -0.011 [-0.553, -0.296] 0.945
0.5 -0.426 -0.009 [-0.564, -0.282] 0.942
0.7 -0.428 -0.011 [-0.590, -0.262] 0.940
0.9 -0.424 -0.008 [-0.693, -0.145] 0.941

Table A.3.3 Simulation study 1 results (N = 1,000): IP weighted Cox model

τ
True
RMST

E(A|L)
Censoring

rate
RMST Bias 95% CI Coverage

1 -0.027

0.5

0.1 -0.027 0.000 [-0.043, -0.011] 0.947
0.3 -0.027 0.000 [-0.044, -0.011] 0.950
0.5 -0.027 0.000 [-0.045, -0.009] 0.940
0.7 -0.027 0.000 [-0.046, -0.009] 0.937
0.9 -0.026 0.001 [-0.050, -0.004] 0.942

0.8

0.1 -0.027 0.000 [-0.044, -0.009] 0.938
0.3 -0.027 0.000 [-0.045, -0.009] 0.927
0.5 -0.027 0.000 [-0.045, -0.007] 0.935
0.7 -0.027 0.000 [-0.047, -0.007] 0.919
0.9 -0.026 0.001 [-0.050, -0.001] 0.928

3 -0.417

0.5

0.1 -0.416 0.001 [-0.517, -0.314] 0.945
0.3 -0.417 0.000 [-0.526, -0.309] 0.954
0.5 -0.417 0.000 [-0.534, -0.296] 0.937
0.7 -0.413 0.003 [-0.549, -0.273] 0.936
0.9 -0.408 0.009 [-0.611, -0.193] 0.948

0.8

0.1 -0.418 -0.001 [-0.539, -0.298] 0.940
0.3 -0.419 -0.003 [-0.544, -0.283] 0.946
0.5 -0.417 0.000 [-0.556, -0.270] 0.953
0.7 -0.418 -0.002 [-0.578, -0.250] 0.944
0.9 -0.406 0.011 [-0.645, -0.054] 0.950
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Table A.3.4 Simulation study 1 results (N = 1,000): Adjusted Kaplan-Meier

τ
True
RMST

E(A|L)
Censoring

rate
RMST Bias 95% CI Coverage

1 -0.027

0.5

0.1 -0.027 0.000 [-0.043, -0.011] 0.946
0.3 -0.027 0.000 [-0.044, -0.011] 0.950
0.5 -0.027 0.000 [-0.045, -0.009] 0.941
0.7 -0.027 0.000 [-0.046, -0.009] 0.936
0.9 -0.026 0.001 [-0.050, -0.004] 0.942

0.8

0.1 -0.027 0.000 [-0.044, -0.009] 0.938
0.3 -0.027 0.000 [-0.045, -0.009] 0.927
0.5 -0.027 0.000 [-0.045, -0.007] 0.934
0.7 -0.027 0.000 [-0.047, -0.007] 0.919
0.9 -0.026 0.001 [-0.050, -0.001] 0.928

3 -0.417

0.5

0.1 -0.416 0.000 [-0.518, -0.314] 0.945
0.3 -0.418 -0.001 [-0.527, -0.310] 0.953
0.5 -0.417 -0.001 [-0.535, -0.297] 0.936
0.7 -0.414 0.002 [-0.550, -0.274] 0.937
0.9 -0.411 0.006 [-0.615, -0.196] 0.949

0.8

0.1 -0.417 -0.001 [-0.538, -0.297] 0.938
0.3 -0.418 -0.002 [-0.544, -0.282] 0.946
0.5 -0.416 0.001 [-0.556, -0.269] 0.954
0.7 -0.417 0.000 [-0.578, -0.247] 0.944
0.9 -0.408 0.009 [-0.652, -0.148] 0.940

Table A.3.5 Simulation study 1 results (N = 1,000): G-computation

τ
True
RMST

E(A|L)
Censoring

rate
RMST Bias 95% CI Coverage

1 -0.027

0.5

0.1 -0.027 0.000 [-0.035, -0.020] 0.939
0.3 -0.027 0.000 [-0.036, -0.020] 0.944
0.5 -0.027 0.000 [-0.036, -0.019] 0.940
0.7 -0.027 0.000 [-0.037, -0.017] 0.933
0.9 -0.027 0.000 [-0.043, -0.013] 0.953

0.8

0.1 -0.027 0.000 [-0.034, -0.020] 0.941
0.3 -0.027 0.000 [-0.035, -0.020] 0.952
0.5 -0.027 0.000 [-0.036, -0.019] 0.942
0.7 -0.027 0.000 [-0.037, -0.017] 0.942
0.9 -0.026 0.001 [-0.042, -0.012] 0.950

3 -0.417

0.5

0.1 -0.416 0.000 [-0.485, -0.352] 0.946
0.3 -0.418 -0.002 [-0.497, -0.347] 0.949
0.5 -0.418 -0.001 [-0.507, -0.334] 0.928
0.7 -0.414 0.002 [-0.528, -0.309] 0.933
0.9 -0.412 0.004 [-0.604, -0.225] 0.942

0.8

0.1 -0.417 0.000 [-0.488, -0.348] 0.944
0.3 -0.418 -0.001 [-0.497, -0.339] 0.960
0.5 -0.415 0.001 [-0.508, -0.324] 0.948
0.7 -0.415 0.002 [-0.532, -0.295] 0.944
0.9 -0.408 0.009 [-0.616, -0.193] 0.946
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Figure A.3.1 Bias for simulation study 1 (N = 1,000). Adjusted KM =

adjusted Kaplan-Meier estimator; ANCOVA = ANCOVA-type model; IPW

Cox = IP weighted Cox model; G-comp = G-computation; Pseudo = pseudo-

observation. Dashed line in the plot represents a bias of 0.

Figure A.3.2 Coverage rate for simulation study 1 (N = 1,000). Adjusted

KM = adjusted Kaplan-Meier estimator; ANCOVA = ANCOVA-type model;

IPW Cox = IP weighted Cox model; G-comp = G-computation; Pseudo =

pseudo-observation. Dashed line in the plot represents a coverage rate of 0.95.
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A.4 Pooled logistic regression model

Besides the Cox model, there is a simple method to parametrically estimate the

(discrete-time) hazards which use a logistic regression model from data that

transform individual data (with one row per each subject) into person-time

format (with one row per person-time) (D’Agostino et al., 1990). We refer

to this regression model as a pooled logistic regression model. To adjust for

confounding, Hernán, Brumback, and Robins (2000) described a pooled logistic

regression using the IP of treatment and censoring weights when there exist

time-dependent confounders and selection bias due to loss to follow-up. Under

assumptions (A1)–(A4) and without time-dependent confounders, we exploit

and adapt the procedure described by Hernán (2010) to obtain the adjusted

survival curve from the IP weighted pooled logistic regression, and thus we can

estimate the difference in adjusted RMST as follows.

First, restructure the individual data, which has the (stabilized) IP weights

calculated in advance as a separate variable, into the person-time format data.

For example, the first row contains information about first subject at time 0,

the second row contains information about first subject at time 1, and so on.

This process continues until the follow up of first subject is end. In this way,

each subject has multiple row per person-time in the person-time format data.

Additionally, if the first subject experienced the event of interest, the event

indicator variable of the last row is set to 1 and the remaining rows are set to

0. Otherwise (i.e., if the first subject is censored), the event indicator variables

of all rows are set to 0. The other subjects also expand data in the same way.
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Second, using the person-time data format, fit a pooled logistic regression

model weighted by the (stabilized) IP weights (3.3) or (3.4)

logit P (Dk+1 = 1 | Dk = 0, A) = θ0,k + θ1A (A.4.1)

where logit{p} = log{p/(1− p)}, Dk+1 is the event indicator between time k

to time k + 1, and θ0,k is the time-varying intercept. Assume that all subjects

had to survive at time 0 (i.e. D0 = 0). We can estimate θ0,k based on some

flexible function of time (e.g., polynomial splines or cubic splines). Note that

when P (Dk+1 = 1 | Dk = 0, A) is close to zero and P (Dk+1 = 0 | Dk = 0, A)

is thus close to one, the IP weighted pooled logistic regression model (A.4.1)

approximates the IP weighted Cox model, because P (Dk+1 = 1 | Dk = 0, A) is

approximately equal to the hazard P (T = k + 1 | T > k,A) and the log odds

of hazard is

logit P (Dk+1 = 1 | Dk = 0, A) = log

(
P (Dk+1 = 1 | Dk = 0, A)

1− P (Dk+1 = 1 | Dk = 0, A)

)
≈ logP (Dk+1 = 1 | Dk = 0, A)

≈ logP (T = k + 1 | T > k,A)

= log{h0(k) exp(β1A)}

= log{h0(k)}+ β1A = β0,k + β1A. (A.4.2)

where logit{p} = log{p/(1−p)}. Therefore, if P (Dk+1 = 1 | Dk = 0, A) is close

to zero, the log odds ratio θ1 in (A.4.1) approximately equals to the log hazard

ratio β1 in (A.4.2) (Thompson, 1977). The condition that P (Dk+1 = 1 | Dk =

0, A) ≈ 0 can almost always be ensured to hold because if one set the time

interval short enough (e.g., change time interval from days to hours or minutes),

P (Dk+1 = 1 | Dk = 0, A) will be close to zero. In other words, we need to set
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the number of event of interest to be rare in each time interval (as a rule of

thumb, < 10%) (Hernán and Robins, 2022). Technically, under assumptions

(A1)–(A4), the IP weighted pooled logistic regression model (A.4.1) estimates

the parameters of the marginal structural logistic model

logit P (Da
k+1 = 1 | Da

k = 0) = θ0,k + θ1a.

That is, the IP weighted pooled logistic regression model estimates the ratio of

the hazards (i.e., exp{θ1}) that would have been observed if all subjects had

been exposed (a = 1) and if all subjects had been unexposed (a = 0).

Finally, the survival probability at time k+1 under exposure a,P (Da
k+1 = 0),

can obtained by multiplying one minus the hazard P (Da
m = 0 | Da

m−1 = 0)

over all previous times m = 1, . . . , k + 1, as follows:

P (Da
k+1 = 0) =

k+1∏
m=1

[
P (Da

m = 0 | Da
m−1 = 0)

]
=

k+1∏
m=1

[
1− P (Da

m = 1 | Da
m−1 = 0)

]
.

Then, if we substitute the estimates of P (Da
m = 1 | Da

m−1 = 0) for m =

1, . . . , k+ 1 from the IP weighted pooled logistic regression model (A.4.1) into

the above formula, the estimate of the survival probability P (Da
k+1 = 0) can

be obtained. Therefore, using the estimate of the survival probability, we can

easily estimate the adjusted survival curve, and also obtain the estimates of

adjusted RMST for each exposure group and their difference by integrating

the area under the adjusted survival curve up to a specific time point.

To best our knowledge, there is no study on estimating the variance of the

adjusted RMST estimated from G-computation method. Alternatively, we can

use the bootstrap method to obtain the variance of the estimate.
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Appendix B

Appendix for Chapter 4

B.1 Proof of reducing (4.8) to linear fractional

programming in special case

In Section 4.5, we considered a closed cohort that the study entry times t0 = 0

are the same for all subjects and there is no censoring apart from administrative

censoring at the end of follow-up. Without loss of generality, let the first m

subjects experience the events of interest (i.e., δ1 = · · · = δm = 1 and δm+1 =

· · · = δn = 0) in the exposed group and the first D −m subjects experience

the events of interest (i.e., δn+1 = · · · = δn−m+D = 1 and δn−m+D+1 =

· · · = δN = 0) in the unexposed group. Also, assume that the event times are

continuous and ordered increasingly (i.e., t1 < · · · < tm in the exposed group

and tn+1 < · · · < tn−m+D in the unexposed group). Since we assume that the

only censoring is due to administrative censoring, the last event time in each

group (tm or tn−m+D) is less than or equal to the administrative censoring time.

Here, we prove only for the exposed group. Proof for the unexposed group is

similar.
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Let the pre-specified time point τ ∈ (tk−1, tk] for any k ∈ {2, . . . ,m}. In

this setting, we can rewrite the objective function in (4.8) as:

µ̂(h),1
τ

=

∫ τ

0

∏
tj≤t

(
1−

∑
i:{Ti=tj ,δi=1}(1 + ziwi)∑

i:{Ti≥tj ,δi=1}(1 + ziwi) +
∑

i:{Ti≥tj ,δi=0}(1 +
1
Λwi)

)
dt

=

k−1∑
l=0

∏
tj≤tl

(
1−

∑
i:{Ti=tj ,δi=1}(1 + ziwi)∑

i:{Ti≥tj ,δi=1}(1 + ziwi) +
∑

i:{Ti≥tj ,δi=0}(1 +
1
Λwi)

)
(tl+1 − tl)

=

k−1∑
l=0

∏
tj≤tl

(∑
i:{Ti>tj ,δi=1}(1 + ziwi) +

∑
i:{Ti≥tj ,δi=0}(1 +

1
Λwi)∑

i:{Ti≥tj ,δi=1}(1 + ziwi) +
∑

i:{Ti≥tj ,δi=0}(1 +
1
Λwi)

)
(tl+1 − tl)

(B.1.1)

where zi = exp{h(Li,U i)} and wi = exp{−ĝβ(Li)}. Note that the survival

probability at and after tk does not affect the estimate of the bias-adjusted

RMST up to τ ∈ (tk−1, tk]. Because we assume that the event times are

continuous and ordered increasingly, for j = 0, . . . , k − 1, we can rewrite the

numerator of fraction term in (B.1.1) as (1+zj+1wj+1)+ · · ·+(1+zmwm)+(1+

1
Λwm+1) + · · ·+ (1 + 1

Λwn) and denote it as fn
j . Similarly, for j = 1, . . . , k, we

can rewrite the denominator as (1+ zjwj)+ · · ·+(1+ zmwm)+ (1+ 1
Λwm+1)+

· · ·+ (1 + 1
Λwn) and denote it as fd

j . Since there is no event of interest at t0,

fd
0 = (1+ z1w1)+ · · ·+(1+ zmwm)+(1+ 1

Λwm+1)+ · · ·+(1+ 1
Λwn), especially.

Then, the right-hand side in (B.1.1) can be expressed as follows:

µ̂(h),1
τ =

(
fn
0

fd
0

)
(t1 − t0) +

(
fn
0

fd
0

)(
fn
1

fd
1

)
(t2 − t1)+

+

(
fn
0

fd
0

)(
fn
1

fd
1

)(
fn
2

fd
2

)
(t3 − t2)+

...

+

(
fn
0

fd
0

)(
fn
1

fd
1

)(
fn
2

fd
2

)
× · · · ×

(
fn
k−2

fd
k−2

)
(tk−1 − tk−2)

+

(
fn
0

fd
0

)(
fn
1

fd
1

)(
fn
2

fd
2

)
× · · · ×

(
fn
k−1

fd
k−1

)
(τ − tk−1).
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Because fn
0 = fd

0 and fn
j = fd

j+1, then,

µ̂(h),1
τ = t1 +

(
fd
2

fd
1

)
(t2 − t1)

+

(
fd
2

fd
1

)(
fd
3

fd
2

)
(t3 − t2)+

...

+

(
fd
2

fd
1

)(
fd
3

fd
2

)
× · · · ×

(
fd
k−1

fd
k−2

)
(tk−1 − tk−2)

+

(
fd
2

fd
1

)(
fd
3

fd
2

)
× · · · ×

(
fd
k

fd
k−1

)
(τ − tk−1).

When cancelling common terms in the numerator and denominator, inserting

the values of fd
j , and rearranging the resultant equation, we have

µ̂(h),1
τ

= t1+

(
(1 + z2w2) + · · ·+ (1 + zmwm) + (1 + 1

Λwm+1) + · · ·+ (1 + 1
Λwn)

(1 + z1w1) + · · ·+ (1 + 1
Λwn)

)
(t2 − t1)

+

(
(1 + z3w3) + · · ·+ (1 + zmwm) + (1 + 1

Λwm+1) + · · ·+ (1 + 1
Λwn)

(1 + z1w1) + · · ·+ (1 + 1
Λwn)

)
(t3 − t2)+

...

+

(
(1 + zk−1wk−1) + · · ·+ (1 + zmwm) + (1 + 1

Λwm+1) + · · ·+ (1 + 1
Λwn)

(1 + z1w1) + · · ·+ (1 + 1
Λwn)

)
(tk−1 − tk−2)

+

(
(1 + zkwk) + · · ·+ (1 + zmwm) + (1 + 1

Λwm+1) + · · ·+ (1 + 1
Λwn)

(1 + z1w1) + · · ·+ (1 + 1
Λwn)

)
(τ − tk−1)

= t1 +
(1 + z2w2)(t2 − t1)

(1 + z1w1) + · · ·+ (1 + 1
Λwn)

+
(1 + z3w3){(t2 − t1) + (t3 − t2)}
(1 + z1w1) + · · ·+ (1 + 1

Λwn)
+

...

+
(1 + zk−1wk−1){(t2 − t1) + (t3 − t2) + · · ·+ (tk−1 − tk−2)}

(1 + z1w1) + · · ·+ (1 + 1
Λwn)

+
{(1 + zkwk) + · · ·+ (1 + zmwm)}{(t2 − t1) + (t3 − t2) + · · ·+ (τ − tk−1)}

(1 + z1w1) + · · ·+ (1 + 1
Λwn)

+
{(1 + 1

Λwm+1) + · · ·+ (1 + 1
Λwn)}{(t2 − t1) + (t3 − t2) + · · ·+ (τ − tk−1)}

(1 + z1w1) + · · ·+ (1 + 1
Λwn)
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= t1 +
(1 + z2w2)(t2 − t1)

(1 + z1w1) + · · ·+ (1 + 1
Λwn)

+
(1 + z3w3)(t3 − t1)

(1 + z1w1) + · · ·+ (1 + 1
Λwn)

+

...

+
(1 + zk−1wk−1)(tk−1 − t1)

(1 + z1w1) + · · ·+ (1 + 1
Λwn)

+
{(1 + zkwk) + · · ·+ (1 + zmwm)}(τ − t1)

(1 + z1w1) + · · ·+ (1 + 1
Λwn)

+
{(1 + 1

Λwm+1) + · · ·+ (1 + 1
Λwn)}(τ − t1)

(1 + z1w1) + · · ·+ (1 + 1
Λwn)

= t1 −
{(1 + z2w2) + · · ·+ (1 + 1

Λwn)}t1
(1 + z1w1) + · · ·+ (1 + 1

Λwn)

+
(1 + z2w2)t2 + · · ·+ (1 + zk−1wk−1)tk−1 + (1 + zkwk)τ + · · ·+ (1 + 1

Λwn)τ

(1 + z1w1) + · · ·+ (1 + 1
Λwn)

=
(1 + z1w1)t1 + (1 + z2w2)t2 + · · ·+ (1 + zk−1wk−1)tk−1

(1 + z1w1) + · · ·+ (1 + 1
Λwn)

+
(1 + zkwk)τ + · · ·+ (1 + zmwm)τ + (1 + 1

Λwm+1)τ + · · ·+ (1 + 1
Λwn)τ

(1 + z1w1) + · · ·+ (1 + 1
Λwn)

=

∑n
i=1(1 + ziwi)ti∑n
i=1(1 + ziwi)

.

where (z1, . . . , zn) = (z1, . . . , zm−1, zm, 1/Λ, . . . , 1/Λ) and (t1, . . . , tn) = (t1,

. . . , tk−1, τ, . . . , τ).

B.2 Proof of reducing (4.8) to linear fractional

programming in alternative setting

Consider that a closed cohort where the study entry times are the same for

all subjects and that the minimum censoring time is longer than or equal

to the pre-specified time point τ . Also, the censoring times are ordered non-

decreasingly in each exposure group, respectively (i.e., tm+1 ≤ . . . ≤ tn in the

exposed group and tn−m+D+1 ≤ . . . ≤ tN in the unexposed group). Thus, the
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minimum censoring time is tm+1 in the exposed group and tn−m+D+1 in the

unexposed group.

Note that even in this alternative setting, the objective function in (4.8) can

be written the same as (B.1.1). Also, the survival probabilities at and after tk,

for any k ∈ {1, . . . ,m}, do not affect the estimate of the bias-adjusted RMST

up to τ ∈ (tk−1, tk]. Therefore, we can apply results in Appendix B.1 without

further proof. In other words, we set the optimization parameters (z1, . . . , zn)

as (z1, . . . , zm−1, zm, 1/Λ, . . . , 1/Λ) and the survival times (t1, . . . , tn) as (t1,

. . . , tk−1, τ, . . . , τ), and solve the optimization problem using the method

described in Section 4.5.

B.3 Proof of non-convergence to boundary

values

Objective function of (4.8) in a simple setting

Consider a simple setting that there are only four subjects, all in the exposed

group, and the study entry times are the same for all four subjects. Additionally,

let the first, third, and fourth subjects experience the event of interest and

second subject be censored (i.e., δ1 = δ3 = δ4 = 1 and δ2 = 0). And, let the

survival times be ordered increasingly (i.e., t1 < t2 < t3 < t4). In this setting,

data are shown in the below Table B.3.1.
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Table B.3.1 Data structure for simple setting

ti δi wi Ai zi

t0 = 0 – – – –
t1 δ1 = 1 w1 A1 = 1 z1
t2 δ2 = 0 w2 A2 = 1 z2 =

1
Λ

t3 δ3 = 1 w3 A3 = 1 z3
t4 δ4 = 1 w4 A4 = 1 z4

Note: ti: the observed survival time, δ: the event indicator,
wi = exp{−ĝβ(Li)}, Ai: the exposure indicator, zi: the
optimization parameter.

As in case of Appendix B.1, if τ = t4, then the objective function in (4.8)

is represented as follows:

µ̂(h),1
τ =

∫ τ

0

∏
tj≤t

[
1−

∑
i:{Ti=tj ,δi=1}(1 + ziwi)∑

i:{Ti≥tj ,δi=1}(1 + ziwi) +
∑

i:{Ti≥tj ,δi=0}(1 +
1
Λwi)

]
dt

= t1 +

(
(1 + z2w2) + (1 + z3w3) + (1 + z4w4)

(1 + z1w1) + (1 + z2w2) + (1 + z3w3) + (1 + z4w4)

)
(t3 − t1)

+

(
(1 + z2w2) + (1 + z3w3) + (1 + z4w4)

(1 + z1w1) + (1 + z2w2) + (1 + z3w3) + (1 + z4w4)

)
×
(

(1 + z4w4)

(1 + z3w3) + (1 + z4w4)

)
(τ − t3).

Minimizing the above equation, the optimization parameter for the first subject

(i.e., z1) have to be Λ and that for the last subject (i.e., z4) have to be 1/Λ.

Because the second subject is censored, z2 should be equal to 1/Λ. Therefore,

µ̂(h),1
τ = t1 +

(
(1 + z2w2) + (1 + z3w3) + (1 + z4w4)

(1 + z1w1) + (1 + z2w2) + (1 + z3w3) + (1 + z4w4)

)
(t3 − t1)

+

(
(1 + z2w2) + (1 + z3w3) + (1 + z4w4)

(1 + z1w1) + (1 + z2w2) + (1 + z3w3) + (1 + z4w4)

)
×
(

(1 + z4w4)

(1 + z3w3) + (1 + z4w4)

)
(τ − t3)

= t1 +

(
(1 + 1

Λw2) + (1 + z3w3) + (1 + 1
Λw4)

(1 + Λw1) + (1 + 1
Λw2) + (1 + z3w3) + (1 + 1

Λw4)

)
(t3 − t1)

+

(
(1 + 1

Λw2) + (1 + z3w3) + (1 + 1
Λw4)

(1 + Λw1) + (1 + 1
Λw2) + (1 + z3w3) + (1 + 1

Λw4)

)

×

(
(1 + 1

Λw4)

(1 + z3w3) + (1 + 1
Λw4)

)
(τ − t3)
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= t1 −

(
(1 + 1

Λw2) + (1 + z3w3) + (1 + 1
Λw4)

(1 + Λw1) + (1 + 1
Λw2) + (1 + z3w3) + (1 + 1

Λw4)

)
t1

+

[(
(1 + 1

Λw2) + (1 + z3w3) + (1 + 1
Λw4)

(1 + Λw1) + (1 + 1
Λw2) + (1 + z3w3) + (1 + 1

Λw4)

)

−

(
(1 + 1

Λw2) + (1 + z3w3) + (1 + 1
Λw4)

(1 + Λw1) + (1 + 1
Λw2) + (1 + z3w3) + (1 + 1

Λw4)

)

×

(
(1 + 1

Λw4)

(1 + z3w3) + (1 + 1
Λw4)

)]
t3

+

(
(1 + 1

Λw2) + (1 + z3w3) + (1 + 1
Λw4)

(1 + Λw1) + (1 + 1
Λw2) + (1 + z3w3) + (1 + 1

Λw4)

)

×

(
(1 + 1

Λw4)

(1 + z3w3) + (1 + 1
Λw4)

)
τ

= t1 −

(
(1 + 1

Λw2) + (1 + z3w3) + (1 + 1
Λw4)

(1 + Λw1) + (1 + 1
Λw2) + (1 + z3w3) + (1 + 1

Λw4)

)
t1

+

(
(1 + 1

Λw2) + (1 + z3w3) + (1 + 1
Λw4)

(1 + Λw1) + (1 + 1
Λw2) + (1 + z3w3) + (1 + 1

Λw4)

)

×

(
(1 + z3w3)

(1 + z3w3) + (1 + 1
Λw4)

)
t3

+

(
(1 + 1

Λw2) + (1 + z3w3) + (1 + 1
Λw4)

(1 + Λw1) + (1 + 1
Λw2) + (1 + z3w3) + (1 + 1

Λw4)

)

×

(
(1 + 1

Λw4)

(1 + z3w3) + (1 + 1
Λw4)

)
τ

= t1 −

(
(1 + 1

Λw2) + (1 + z3w3) + (1 + 1
Λw4)

(1 + Λw1) + (1 + 1
Λw2) + (1 + z3w3) + (1 + 1

Λw4)

)

×

[
t1 −

(
(1 + z3w3)

(1 + z3w3) + (1 + 1
Λw4)

)
t3

−

(
(1 + 1

Λw4)

(1 + z3w3) + (1 + 1
Λw4)

)
τ

]

= t1 −

(
(1 + 1

Λw2) + (1 + z3w3) + (1 + 1
Λw4)

(1 + Λw1) + (1 + 1
Λw2) + (1 + z3w3) + (1 + 1

Λw4)

)

×

(
(1 + z3w3)(t1 − t3) + (1 + 1

Λw4)(t1 − τ)

(1 + z3w3) + (1 + 1
Λw4)

)
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= t1 +

(
(1 + 1

Λw2) + (1 + z3w3) + (1 + 1
Λw4)

(1 + Λw1) + (1 + 1
Λw2) + (1 + z3w3) + (1 + 1

Λw4)

)

×

(
(1 + z3w3)(t3 − t1) + (1 + 1

Λw4)(τ − t1)

(1 + z3w3) + (1 + 1
Λw4)

)
.

(B.3.1)

Counter-example of simple numerical data

To show that some optimization parameters z may not converge to boundary

value of 1/Λ or Λ but converge to value between 1/Λ and Λ, we construct a

simple counter-example following the setting given in Table B.3.1. Let Λ = 2,

and survival data is given as seen in Table B.3.2.

Table B.3.2 Data for counter-example

ti δi wi Ai zi

t0 = 0 – – – –
t1 = 1 δ1 = 1 w1 = 9.0 A1 = 1 z1 = 2
t2 = 2 δ2 = 0 w2 = 2.3 A2 = 1 z2 =

1
2

t3 = 4 δ3 = 1 w3 = 1.5 A3 = 1 z3
t4 = 14 δ4 = 1 w4 = 0.2 A4 = 1 z4 =

1
2

In this case, (B.3.1) is written as

µ̂(h),1
τ = 1 +

(
1.5z3 + 4.25

1.5z3 + 23.25

)(
4.5z3 + 17.3

1.5z3 + 2.1

)
= 4− 1

2.25

(
69z3 + 72.95

(z3 + 1.4)(z3 + 15.5)

)
.

Minimizing above µ̂
(h),1
τ subject to 1/2 ≤ z3 ≤ 2 is equal to maximizing

69z3 + 72.95

(z3 + 1.4)(z3 + 15.5)
. (B.3.2)

For z3 ∈ [1/2, 2], plot for equation (B.3.2) is shown in Figure B.3.1, and

equation (B.3.2) is maximized at z3 ≈ 1.168. Therefore, this counter-example
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Figure B.3.1 Plot for counter-example of simple numerical data

shows that in some situations, the optimization parameters may not converge

to boundary value of 1/Λ or Λ but converge to value between 1/Λ and Λ.

B.4 Details for simulation study 2.1

(β0 = −1.9)

Simulation 2.1 study tables (β0 = −1.9)
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Table B.4.1 Bias for lower bound of sensitivity range (β0 = −1.9)

Λ τ Censoring rate Mean Lower Upper

1.1

1

0.1 0.000000 -0.000002 0.000000
0.3 0.000000 0.000000 0.000000
0.5 0.000000 0.000000 0.000000
0.7 0.000000 0.000000 0.000000
0.9 0.000000 -0.000005 0.000000

3

0.1 0.000000 0.000000 0.000000
0.3 0.000000 0.000000 0.000000
0.5 0.000000 0.000000 0.000000
0.7 0.000000 0.000000 0.000000
0.9 0.000027 0.000000 0.002806

1.3

1

0.1 0.000000 0.000000 0.000000
0.3 0.000000 0.000000 0.000000
0.5 0.000000 0.000000 0.000000
0.7 0.000000 0.000000 0.000000
0.9 0.000000 -0.000012 0.000000

3

0.1 0.000000 0.000000 0.000000
0.3 0.000000 -0.000005 0.000000
0.5 0.000000 0.000000 0.000001
0.7 0.000000 0.000000 0.000012
0.9 0.000075 -0.000022 0.007333

1.5

1

0.1 0.000000 0.000000 0.000000
0.3 0.000000 0.000000 0.000000
0.5 0.000000 0.000000 0.000000
0.7 0.000000 0.000000 0.000000
0.9 0.000000 -0.000017 0.000000

3

0.1 0.000000 0.000000 0.000000
0.3 0.000000 0.000000 0.000000
0.5 0.000000 0.000000 0.000004
0.7 0.000000 0.000000 0.000001
0.9 0.000111 0.000000 0.010818

2

1

0.1 0.000000 0.000000 0.000000
0.3 0.000000 0.000000 0.000000
0.5 0.000000 0.000000 0.000000
0.7 0.000000 0.000000 0.000000
0.9 0.000000 -0.000022 0.000000

3

0.1 0.000000 0.000000 0.000000
0.3 0.000000 0.000000 0.000000
0.5 0.000000 0.000000 0.000002
0.7 0.000000 -0.000001 0.000046
0.9 0.000180 0.000000 0.017455
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Table B.4.2 Bias for upper bound of sensitivity range (β0 = −1.9)

Λ τ Censoring rate Mean Lower Upper

1.1

1

0.1 0.000000 0.000000 0.000003
0.3 0.000000 0.000000 0.000000
0.5 0.000000 0.000000 0.000000
0.7 0.000000 0.000000 0.000004
0.9 0.000000 0.000000 0.000006

3

0.1 0.000000 0.000000 0.000000
0.3 0.000000 0.000000 0.000000
0.5 0.000000 0.000000 0.000000
0.7 0.000000 0.000000 0.000000
0.9 -0.000028 -0.002963 0.000000

1.3

1

0.1 0.000000 0.000000 0.000006
0.3 0.000000 0.000000 0.000000
0.5 0.000000 0.000000 0.000000
0.7 0.000000 0.000000 0.000011
0.9 0.000000 0.000000 0.000000

3

0.1 0.000000 0.000000 0.000000
0.3 0.000000 0.000000 0.000000
0.5 0.000000 0.000000 0.000000
0.7 0.000000 -0.000001 0.000002
0.9 -0.000077 -0.008510 0.000005

1.5

1

0.1 0.000000 0.000000 0.000000
0.3 0.000000 0.000000 0.000000
0.5 0.000000 0.000000 0.000000
0.7 0.000000 0.000000 0.000000
0.9 0.000000 0.000000 0.000000

3

0.1 0.000000 0.000000 0.000000
0.3 0.000000 0.000000 0.000000
0.5 0.000000 0.000000 0.000000
0.7 0.000000 -0.000001 0.000003
0.9 -0.000119 -0.013571 0.000044

2

1

0.1 0.000000 0.000000 0.000000
0.3 0.000000 0.000000 0.000000
0.5 0.000000 0.000000 0.000000
0.7 0.000000 0.000000 0.000000
0.9 0.000000 0.000000 0.000000

3

0.1 0.000000 0.000000 0.000000
0.3 0.000000 0.000000 0.000000
0.5 0.000000 -0.000003 0.000000
0.7 0.000000 -0.000010 0.000008
0.9 -0.000218 -0.024271 0.000022
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Table B.4.3 Computational time difference (β0 = −1.9)

Λ τ Censoring rate Mean Lower Upper

1.1

1

0.1 119.11 8.11 337.70
0.3 28.17 3.77 166.74
0.5 6.85 -0.05 68.94
0.7 1.38 -3.78 3.00
0.9 0.39 -5.03 0.97

3

0.1 32.20 7.34 111.89
0.3 9.57 4.43 44.74
0.5 4.38 2.29 9.40
0.7 2.14 0.21 6.51
0.9 0.46 -0.21 7.56

1.3

1

0.1 152.15 13.19 422.61
0.3 39.51 7.22 193.54
0.5 10.32 3.07 82.66
0.7 2.16 0.98 9.22
0.9 0.55 -0.27 1.14

3

0.1 48.94 14.35 138.29
0.3 15.03 7.40 61.71
0.5 6.91 3.65 22.07
0.7 2.79 1.20 9.33
0.9 0.57 -0.19 1.84

1.5

1

0.1 163.66 15.06 439.03
0.3 46.20 8.73 204.62
0.5 12.63 4.24 92.52
0.7 2.70 1.18 9.75
0.9 0.68 -0.16 6.80

3

0.1 54.38 17.25 150.15
0.3 17.70 10.24 68.36
0.5 8.22 5.01 20.02
0.7 3.16 1.48 5.71
0.9 0.65 -0.09 5.94

2

1

0.1 176.31 21.70 442.43
0.3 54.20 12.44 210.29
0.5 15.58 6.10 98.16
0.7 3.55 -3.32 14.59
0.9 0.80 0.12 1.51

3

0.1 56.35 23.02 140.20
0.3 23.13 11.49 67.10
0.5 11.40 7.19 30.80
0.7 4.07 2.18 6.44
0.9 0.72 -0.05 1.48
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Table B.4.4 Computational time ratio (β0 = −1.9)

Λ τ Censoring rate Mean Lower Upper

1.1

1

0.1 32.00 3.36 79.89
0.3 9.57 2.28 47.31
0.5 3.30 1.63 18.23
0.7 1.50 1.12 1.85
0.9 1.16 0.97 1.29

3

0.1 9.37 3.64 22.40
0.3 3.87 2.61 8.80
0.5 2.44 1.73 3.35
0.7 1.76 1.30 2.84
0.9 1.18 0.99 1.36

1.3

1

0.1 40.42 5.15 98.46
0.3 13.05 3.18 55.48
0.5 4.41 2.07 18.81
0.7 1.78 1.35 2.23
0.9 1.21 1.00 1.37

3

0.1 13.77 5.45 33.20
0.3 5.59 3.54 14.07
0.5 3.27 2.30 4.72
0.7 2.00 1.51 2.99
0.9 1.22 1.01 1.47

1.5

1

0.1 42.90 6.23 101.60
0.3 15.03 3.79 54.42
0.5 5.15 2.50 21.10
0.7 1.97 1.40 2.52
0.9 1.26 1.00 1.47

3

0.1 15.33 6.07 37.08
0.3 6.35 4.28 13.87
0.5 3.72 2.65 4.93
0.7 2.13 1.56 2.77
0.9 1.24 1.02 1.51

2

1

0.1 46.91 7.57 102.72
0.3 17.41 5.06 57.41
0.5 6.14 2.87 22.73
0.7 2.26 1.76 3.01
0.9 1.30 1.07 1.50

3

0.1 15.46 7.46 34.74
0.3 7.94 5.18 17.20
0.5 4.76 3.42 6.69
0.7 2.46 1.80 3.07
0.9 1.27 1.06 1.48
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B.5 Details for simulation study 2.1

(β0 = −0.425)

Simulation study 2.1 figures (β0 = −0.425)

Figure B.5.1 Left: Bias for lower bound of sensitivity range. Right: Bias

for upper bound of sensitivity range. The mean is represented by red dot. The

range of bias is represented by lower and upper horizontal bar.
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Figure B.5.2 (Top): Difference in computational time between two methods

per each Monte Carlo data. (Bottom): Ratio of computational time between

two methods per each Monte Carlo data. The mean is represented by red dot.

The range of computational time difference is represented by lower and upper

horizontal bar.
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Simulation study 2.1 tables (β0 = −0.425)

Table B.5.1 Bias for lower bound of sensitivity range (β0 = −0.425)

Λ τ Censoring rate Mean Lower Upper

1.1

3

0.1 0.000000 -0.000004 0.000000
0.3 0.000000 -0.000003 0.000000
0.5 0.000000 -0.000003 0.000000
0.7 0.000000 -0.000003 0.000000
0.9 0.000000 -0.000002 0.000000

5

0.1 0.000000 -0.000003 0.000000
0.3 0.000000 0.000000 0.000000
0.5 0.000000 0.000000 0.000000
0.7 0.000000 0.000000 0.000000
0.9 0.001024 0.000000 0.018074

1.3

3

0.1 0.000000 -0.000009 0.000000
0.3 0.000000 -0.000007 0.000000
0.5 0.000000 -0.000007 0.000000
0.7 0.000000 -0.000008 0.000000
0.9 0.000000 -0.000004 0.000000

5

0.1 0.000000 0.000000 0.000000
0.3 0.000000 0.000000 0.000000
0.5 0.000000 0.000000 0.000000
0.7 0.000000 0.000000 0.000002
0.9 0.002850 0.000000 0.044659

1.5

3

0.1 0.000000 -0.000015 0.000000
0.3 0.000000 -0.000011 0.000000
0.5 0.000000 -0.000048 0.000000
0.7 0.000000 -0.000010 0.000000
0.9 0.000000 -0.000006 0.000000

5

0.1 0.000000 0.000000 0.000000
0.3 0.000000 0.000000 0.000000
0.5 0.000000 -0.000003 0.000000
0.7 0.000000 -0.000002 0.000000
0.9 0.004370 0.000000 0.064123

2.0

3

0.1 0.000000 0.000000 0.000000
0.3 0.000000 0.000000 0.000000
0.5 0.000000 -0.000011 0.000000
0.7 0.000000 -0.000012 0.000000
0.9 0.000000 -0.000007 0.000000

5

0.1 0.000000 0.000000 0.000000
0.3 0.000000 -0.000004 0.000000
0.5 0.000000 0.000000 0.000000
0.7 0.000000 0.000000 0.000000
0.9 0.007139 0.000000 0.114290
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Table B.5.2 Bias for upper bound of sensitivity range (β0 = −0.425)

Λ τ Censoring rate Mean Lower Upper

1.1

3

0.1 0.000000 0.000000 0.000006
0.3 0.000000 0.000000 0.000005
0.5 0.000000 0.000000 0.000004
0.7 0.000000 0.000000 0.000004
0.9 0.000000 0.000000 0.000002

5

0.1 0.000000 0.000000 0.000000
0.3 0.000000 0.000000 0.000000
0.5 0.000000 0.000000 0.000000
0.7 0.000000 0.000000 0.000000
0.9 -0.000981 -0.020446 0.000000

1.3

3

0.1 0.000000 0.000000 0.000000
0.3 0.000000 0.000000 0.000000
0.5 0.000000 0.000000 0.000011
0.7 0.000000 0.000000 0.000014
0.9 0.000000 0.000000 0.000008

5

0.1 0.000000 0.000000 0.000001
0.3 0.000000 0.000000 0.000000
0.5 0.000000 -0.000002 0.000000
0.7 0.000000 -0.000050 0.000000
0.9 -0.002541 -0.062602 0.000000

1.5

3

0.1 0.000000 0.000000 0.000000
0.3 0.000000 0.000000 0.000000
0.5 0.000000 0.000000 0.000020
0.7 0.000000 0.000000 0.000024
0.9 0.000000 0.000000 0.000015

5

0.1 0.000000 0.000000 0.000011
0.3 0.000000 -0.000001 0.000000
0.5 0.000000 -0.000002 0.000000
0.7 0.000000 -0.000022 0.000001
0.9 -0.003670 -0.105715 0.000000

2.0

3

0.1 0.000000 0.000000 0.000000
0.3 0.000000 0.000000 0.000000
0.5 0.000000 0.000000 0.000046
0.7 0.000000 0.000000 0.000056
0.9 0.000000 -0.000001 0.000034

5

0.1 0.000000 0.000000 0.000000
0.3 0.000000 -0.000012 0.000000
0.5 -0.000001 -0.000032 0.000000
0.7 -0.000007 -0.000309 0.000000
0.9 -0.005636 -0.213447 0.000007
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Table B.5.3 Computational time difference (β0 = −0.425)

Λ τ Censoring rate Mean Lower Upper

1.1

3

0.1 294.35 10.89 989.53
0.3 63.93 6.84 501.90
0.5 14.38 1.43 254.41
0.7 3.50 1.21 7.41
0.9 0.88 -0.31 9.37

5

0.1 101.92 13.32 465.69
0.3 20.92 6.97 163.21
0.5 10.47 4.82 42.29
0.7 8.21 1.97 45.06
0.9 1.43 -5.82 4.28

1.3

3

0.1 365.07 16.20 1152.71
0.3 80.88 9.42 603.62
0.5 18.28 5.82 297.71
0.7 4.60 2.26 8.49
0.9 0.98 -8.19 1.90

5

0.1 116.92 17.60 399.34
0.3 24.43 10.76 107.86
0.5 13.68 7.24 23.80
0.7 7.66 3.09 35.59
0.9 1.78 0.19 7.85

1.5

3

0.1 392.73 18.78 1242.86
0.3 87.43 11.80 635.26
0.5 20.57 6.76 303.59
0.7 5.26 2.53 10.36
0.9 1.14 0.02 2.51

5

0.1 93.95 28.27 334.75
0.3 28.13 11.53 81.08
0.5 15.72 7.21 27.54
0.7 8.10 2.61 19.75
0.9 1.64 -0.01 6.16

2.0

3

0.1 413.14 23.23 1267.89
0.3 96.11 14.45 648.45
0.5 23.56 8.66 307.20
0.7 6.37 3.31 11.84
0.9 1.34 0.47 4.45

5

0.1 69.48 31.70 194.61
0.3 34.67 18.49 55.63
0.5 20.02 9.87 33.15
0.7 9.41 3.58 23.12
0.9 1.49 -2.88 4.60
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Table B.5.4 Computational time ratio (β0 = −0.425)

Λ τ Censoring rate Mean Lower Upper

1.1

3

0.1 70.63 3.64 200.34
0.3 18.74 3.11 128.64
0.5 5.54 2.11 60.71
0.7 2.16 1.58 2.91
0.9 1.33 1.10 1.55

5

0.1 25.13 4.60 71.68
0.3 6.82 3.59 27.77
0.5 4.27 2.77 6.59
0.7 3.70 1.77 10.52
0.9 1.53 1.11 2.21

1.3

3

0.1 87.13 5.09 243.78
0.3 23.30 3.98 153.78
0.5 6.70 2.83 63.86
0.7 2.52 1.78 3.44
0.9 1.37 1.10 1.63

5

0.1 28.76 6.81 81.07
0.3 7.78 4.50 16.00
0.5 5.29 3.56 7.72
0.7 3.49 2.08 6.01
0.9 1.65 1.17 2.57

1.5

3

0.1 93.95 5.95 253.36
0.3 25.32 4.51 161.71
0.5 7.38 3.29 66.64
0.7 2.73 1.90 3.75
0.9 1.42 1.16 1.69

5

0.1 23.19 8.07 63.99
0.3 8.76 5.56 14.41
0.5 5.95 3.61 8.38
0.7 3.68 2.14 5.72
0.9 1.60 1.14 2.43

2.0

3

0.1 98.59 7.21 264.45
0.3 27.80 5.48 168.35
0.5 8.31 3.82 68.82
0.7 3.10 2.20 4.34
0.9 1.49 1.21 1.86

5

0.1 17.33 9.77 34.14
0.3 10.61 7.12 14.71
0.5 7.26 4.37 10.37
0.7 4.12 2.56 5.78
0.9 1.56 1.21 2.11
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Appendix C

Appendix for Chapter 5

C.1 Alternative sensitivity analysis method

Lin, Psaty, and Kronmal (1998) proposed a sensitivity analysis method for

assessing the sensitivity of the point estimates and their confidence intervals

of exposure effect to the unmeasured confounding after adjusting for measured

confounders. They assumed that the true exposure effect is represented by

a regression model that includes the exposure as well as both the measured

and unmeasured confounders. Among the five methods being considered de-

scribed in Section 3.2, Andersen, Hansen, and Klein (2004)’s pseudo-observation

method and Tian, Zhao, and Wei (2014)’s ANCOVA-type model which directly

relate the RMST to confounders can be applied to the sensitivity analysis

method proposed by Lin, Psaty, and Kronmal (1998). Here, we apply the sen-

sitivity analysis method of Lin, Psaty, and Kronmal (1998) only to ANCOVA-

type regression model to consider unmeasured confounding for evaluating the

estimate of the difference in adjusted RMST. Pseudo-observation method can

be also applied to sensitivity analysis method in Lin, Psaty, and Kronmal

(1998) in a similar way.

105



We first assume that if we adjusted for a single unmeasured confounder

(which we denoted by U) along with measured confounders L, then all con-

founding is removed. Also, assume that the expected value of the restricted

survival time Tτ is related to A, L, and U through the linear model (hereafter

referred to this linear model as the full linear model)

E(Tτ | A,L, U) = β∗
0 + β∗

1A+ β∗⊺
l L+ γAU (C.1.1)

where γ0 and γ1 pertain to the effect of U for the exposed and unexposed

groups, respectively. Note that the parameterization β∗
1A + γAU is equal to

β∗
1A + γ0U + (γ1 − γ0)AU . If γ0 ̸= γ1, then β∗

1 is the main effect of A under

the model in which there is an interaction term between A and U , so that β∗
1

cannot be independently interpreted. For most practical purposes, it is suffices

to set γ0 = γ1.

Since U is unmeasured, one can be forced to fit the reduced linear model

E(Tτ | A,L) = β0 + β1A+ β⊺
l L (C.1.2)

where β0, β1, and β⊺
l are potentially different from β∗

0 , β
∗
1 , and β∗⊺

l in equation

(C.1.1). Lin, Psaty, and Kronmal (1998) referred to β∗
1 and β1 as the true

and apparent differences in RMST (i.e., true and apparent exposure effects),

respectively. Since β∗
1 cannot estimated from the observed data but β1 can be

directly estimated, it is of interest to identify the relation between β∗
1 and β1.

Binary confounder

Let F (u | A,L) be the distribution function of U given A and L. Then, by the

law of conditional expectation,

E(Tτ | A,L) =

∫ ∞

−∞
E(Tτ | A,L, u) dF (u | A,L). (C.1.3)
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Under the full linear model (C.1.1), the conditional expectation (C.1.3) becomes

E(Tτ | A,L) = β∗
0 + β∗

1A+ β∗⊺
l L+

∫ ∞

−∞
γAu dF (u | A,L). (C.1.4)

Assume that the unmeasured confounder U is binary such that F (u | A,L)

is a Bernoulli distribution with success probability PA,L = P (U = 1 | A,L).

Then, equation (C.1.4) becomes

E(Tτ | A,L) = β∗
0 + β∗

1A+ β∗⊺
l L+ γAPA,L

= β∗
0 + β∗⊺

l L+ (γ0P0,L + {β∗
1 + γ1P1,L − γ0P0,L}A). (C.1.5)

If we assume that U is independent of L conditional on A (i.e., U ⊥⊥ L | A, so

PA,L = P (U = 1 | A)) and let PA = P (U = 1 | A), then (C.1.5) is

E(Tτ | A,L) = β∗
0 + β∗⊺

l L+ (γ0P0 + {β∗
1 + γ1P1 − γ0P0}A). (C.1.6)

Considering both (C.1.2) and (C.1.6), the true difference in RMST is

β∗
1 = β1 − (γ1P1 − γ0P0). (C.1.7)

When γ0 = γ1 = γ, (C.1.7) can be reduced by

β∗
1 = β1 − γ(P1 − P0).

Normal confounder

Suppose that conditional on A andL, the unmeasured confounderU is normally

distributed with mean µA,L and variance one. In this case, the true difference

in RMST can be calculated similarly to the case of binary confounder. If U

is independent of L given A, then E(U | A,L) = µA,L = µA. Thus, the true

107



difference in RMST is

β∗
1 = β1 − (γ1µ1 − γ0µ0). (C.1.8)

If γ0 = γ1 = γ, then (C.1.8) can be reduced by

β∗
1 = β1 − γ(µ1 − µ0). (C.1.9)

Note that (C.1.9) does not require the conditional independence of U and L

given A, but the effects of A and L on the mean of U have to be additive. For

example, µA,L = µA + q(L) for normal unmeasured confounder U , where q is

any arbitrary function of L.

C.2 Limitation of alternative method

Lin, Psaty, and Kronmal (1998)’s sensitivity analysis method has some limi-

tations. First, their method deals only with a single unmeasured confounder.

When there are multiple unmeasured confounders, one should substitute multi-

ple unmeasured confounders with a composite of them. Also, the unmeasured

confounder should follow either a Bernoulli distribution or a normal distribution.

Additionally, to apply their method to real applications, the true exposure effect

should be represented by a regression model.

However, our sensitivity analysis method requires only one sensitivity pa-

rameter Λ. Also, our method can be used regardless of the distribution of

unmeasured confounder and regardless of model for the exposure (i.e., regardless

of PS estimation method).
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국 문 초 록

생존분석에서제한된평균생존시간(restricted mean survival time; RMST)

의 차이는 위험 비율(hazard ratio)에 대한 대안 척도로 점점 더 많이 사용되고

있다.위험비율과같은상대적효과측도(relative effect measure)와달리, RMST

차이는직관적으로해석가능한절대위험(absolute risk)에대한정보를제공하며

비례 위험 가정에 관계없이 로버스트한 것으로 알려져 있다.

무작위대조시험에서는 Kaplan-Meier 곡선 아래의 면적을 특정 시점까지 적

분하여 RMST를 계산하고, 두 그룹 간의 RMST 차이를 노출(exposure)의 인

과효과로 사용한다. 이에 반해, 관찰 연구에서는 비무작위 노출 할당으로 인한

교란 편향 때문에 표준적인 Kaplan-Meier 추정량을 RMST 계산에 직접 사용할

수 없다. 이러한 교란 편향을 보정한 RMST의 차이를 계산하는 방법으로는 직접

RMST 회귀, 역 확률 가중치 (inverse probability weighting), G-computation

등이 있다. 모든 모델이 올바르게 지정된 복수의 시뮬레이션을 통해 우리는 고려

한모든방법이비편향추정값(unbiased estimate)을제공하고백분위수붓스트랩

(percentile bootstrap) 신뢰구간이 명목표함확률(nominal coverage probability)

을 달성함을 확인했다.

관찰 연구에서 교란에 대해 보정된 RMST의 차이를 평가하기 위한 몇 가지

방법이 개발되었지만, 측정되지 않은 교란의 민감도 분석(sensitivity analysis)에

대한 연구는 아직까지 없다. 따라서, 우리는 보정된 RMST의 차이를 평가하기

위해 측정되지 않은 교란을 고려하는 새로운 민감도 분석 방법을 제안한다. 사

용자 지정 민감도 매개변수가 주어지면, 편향 조정된 RMST 차이(bias-adjusted

difference in RMST)의 추정치에 대한 민감도 범위(sensitivity range)와 신뢰

구간을 얻을 수 있다. 민감도 범위와 신뢰구간을 얻기 위해서는 복잡한 최적화

문제를 풀어야 하지만, 특별한 경우를 제외하고는 분석적 해가 존재하지 않는다.

최적화 문제의 해를 L-BFGS-B와 같은 최적화 알고리즘을 사용하여 구할 수 있

지만 (직접최적화방법),이경우해를구하기위해상당한계산시간이소요된다.
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따라서, 우리는 편향과 계산시간 모두에서 직접 최적화 방법보다 열등하지 않은

근사 최적화 방법을 제안했고, 집약적인 Monte Carlo 시뮬레이션을 통해 제안

한 근사 최적화 방법이 실용적인 대안책이 될 수 있음을 보였다. 민감도 분석을

실제 문제에 적용할 때, 우리는 중도절단률(censoring rate)이 0.7 미만인 경우

근사최적화방법을사용하고,중도절단률이 0.7이상인경우직접최적화방법을

사용하는 것을 권고한다.

주요어: 제한된 평균 생존 시간, 인과 추론, 생존 분석, 관찰 연구, 민감도 분석,

측정되지 않은 교란

학 번: 2020-30064
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