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Abstract

Seungjae Lee
The Department of Applied Bioengineering
The Graduate School

Seoul National University

The difference in restricted mean survival time (RMST) has been increasingly
used as an alternative measure to hazard ratio in survival analysis. Unlike
relative effect measure such as hazard ratio, RMST difference provides infor-
mation about an intuitively interpretable absolute risk and is known to be
robust regardless of the proportional hazards assumption.

In experimental studies such as a randomized controlled trial, the RMST
is calculated by integrating the area under the Kaplan-Meier curve up to a
specific time point, and the difference in RMST between the two groups is used
as a causal effect of exposure. However, in observational studies, the standard
Kaplan-Meier estimator cannot be directly used for calculating the RMST
because of confounding bias due to non-random exposure assignment. The
difference in RMST adjusted for potential confounders can be estimated using
methods such as direct RMST regression, inverse probability weighting, G-
computation, etc. Through multiple simulation studies in which all the models
were correctly specified, we confirmed that all the methods being considered
provided the unbiased estimates with the percentile bootstrap confidence
intervals achieving near nominal coverage probability.

Although several methods have been developed for evaluating the difference

in RMST adjusted for potential confounders in the observational study, there



is no study on the sensitivity analysis of unmeasured confounding. Therefore,
we propose a novel sensitivity analysis method that considers unmeasured con-
founding for evaluating the estimate of the difference in adjusted RMST. Given
a user-specified sensitivity parameter, one can obtain the sensitivity range and
confidence interval of bias-adjusted difference in RMST. It is necessary to solve
a complex optimization problem to obtain the sensitivity range and confidence
interval, but there is no analytic solution except in special cases. While the
optimization problem can be directly solved by using an optimization algorithm
such as L-BFGS-B (hereafter referred to this method as the direct optimization
method), it takes considerable computational time. Therefore, we propose
an approximate optimization method comparable to the direct optimization
method in terms of bias, achieving substantial reduction in the computational
time. Through intensive Monte Carlo simulation studies, we showed that the
proposed approximate optimization method can be a practical alternative.
When applying our sensitivity analysis method in practice, we recommend
using the approximate optimization method in case that the censoring rate is
less than 0.7. Otherwise, one may use the direct optimization method using

an optimization algorithm.

Keywords: restricted mean survival time, causal inference, survival analysis,
observational study, sensitivity analysis, unmeasured confounding
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Chapter 1

Introduction

The difference in restricted mean survival time (RMST) has been increasingly
used as an alternative measure to hazard ratio in survival analysis (Royston
and Parmar, 2013; Uno et al., 2014; Trinquart et al., 2016; Kim, Uno, and Wei,
2017; Pak et al., 2017; Kloecker et al., 2020; Han and Jung, 2022). Although
the hazard ratio is the most commonly used measure of exposure in survival
analysis, its causal interpretation is often risky because the risk set is updated
without randomization (Hernén, 2010; Stensrud et al., 2019; Stensrud and
Hernén, 2020). Unlike relative effect measure such as hazard ratio, the difference
in RMST provides information about an intuitively interpretable absolute risk
and is known to be robust regardless of the proportional hazards assumption
(Hernén, 2010; Royston and Parmar, 2011). In experimental studies such as a
randomized controlled trial, the RMST is calculated by integrating the area
under the Kaplan-Meier curve up to a specific time point, and the difference
in RMST between the exposure groups is used as a causal effect of exposure.

However, in observational studies, the standard Kaplan-Meier estimator

cannot be directly used for calculating the RMST because of confounding bias



due to non-random exposure assignment, and thus the difference in RMST
based on the Kaplan-Meier estimator may be interpreted as an association.
In other words, some strong assumptions should be required to interpret
the association from an observational study as the causation. One of the
key assumptions is a conditional exchangeability assumption (also referred
to as no unmeasured confounding or ignorability assumption) (De Finetti,
1974; Rubin, 1978), which means that given a set of covariates, the potential
outcome is independent of the exposure. Under the conditional exchangeability
assumption, various statistical methods such as propensity score (PS) matching
(Rosenbaum and Rubin, 1983), inverse probability (IP) weighting (Horvitz and
Thompson, 1952), G-estimation (Robins, 1989), and G-computation (Robins,
1986) have been developed to estimate the causal estimand of interest. By
applying these methods to the RMST, the difference in RMST adjusted for
confounders can be estimated using methods such as direct RMST regression
(Andersen, Hansen, and Klein, 2004; Tian, Zhao, and Wei, 2014), IP weighting
(Hernén, Brumback, and Robins, 2000; Cole and Hernan, 2004; Xie and Liu,
2005; Hernan, 2010), G-computation (Chatton et al., 2022), etc. In order to
have a causal interpretation, these methods require a full adjustment for all
possible confounders. In this thesis, several simulation studies are performed to
assess whether the methods being considered provide the unbiased estimates
of the difference in adjusted RMST along with confidence intervals achieving
near nominal coverage probability when all the models are correctly specified.

Even if a researcher makes effort to adjust for all possible potential con-
founders, it is generally unverifiable by observed data that these confounders

satisfy the conditional exchangeability. When a researcher is concerned about



possible unmeasured confounding (i.e., a violation of conditional exchangeabil-
ity), it is necessary to investigate how the analysis results would be vary by
the degree of violation of the conditional exchangeability assumption. This
is so-called sensitivity analysis for unmeasured confounding (Cornfield et al.,
1959; Lin, Psaty, and Kronmal, 1998; Robins, 1999; Scharfstein, Rotnitzky,
and Robins, 1999; Robins, Rotnitzky, and Scharfstein, 2000; Rosenbaum, 2002;
Brumback et al., 2004; Tan, 2006; Zhao, Small, and Bhattacharya, 2019; Dorn
and Guo, 2022). There is a long history of sensitivity analysis in observational
studies. Cornfield et al. (1959) is considered a monumental paper in sensi-
tivity analysis for unmeasured confounding. Lin, Psaty, and Kronmal (1998)
assessed the sensitivity of regression analysis results including binary response
and censored time data as special cases to the residual confounding by an
unmeasured confounder. Robins (1999) and Brumback et al. (2004) performed
an interesting sensitivity analysis using the difference of the expectation of a
potential outcome between with and without the exposure, given the measured
confounders. Similarly, Robins, Rotnitzky, and Scharfstein (2000) performed
a sensitivity analysis using the difference of the conditional distribution of
exposure between with and without the potential outcome, given the measured
confounders. For matched observational study, Rosenbaum (2002) developed a
sensitivity analysis considering that two individuals with the same measured
confounders can have different odds of exposure due to unmeasured confounder.
Recently, based on Rosenbaum (2002) and Tan (2006), Zhao, Small, and Bhat-
tacharya (2019) proposed a parametric sensitivity model, and this approach
allowed each individual to have the true odds of exposure that can differ from

the odds of exposure estimated by measured confounders.



Most of the sensitivity analysis methods for unmeasured confounding in
observational survival data have been developed for Cox proportional hazards-
type models (Klungsgyr et al., 2009; Lin, Logan, and Henley, 2013; Huang, Xu,
and Dulai, 2020) and studied how much the hazard ratio changes with respect to
the amount of unmeasured confounding. Similarly, RMST can also suffer from
unmeasured confounding because of complexity of data generating mechanism.
To best our knowledge, there is few studies on the sensitivity analysis for RMST
regarding the degree of unmeasured confounding. Therefore, by adapting Zhao,
Small, and Bhattacharya (2019)’s parametric sensitivity model for non-survival
data and using the estimate of adjusted RMST up to specific time point
obtained by integrating Xie and Liu (2005)’s adjusted Kaplan-Meier curve, we
propose a novel sensitivity analysis method for the estimate of the difference in
RMST adjusted only for measured confounders when unmeasured confounding
is suspected. By using our sensitivity analysis method, one can obtain the
sensitivity range of the point estimates for the difference in bias-adjusted
RMST along with confidence interval for theirs partially identified region. To
facilitate its use in practice, we made an R package, entitled RMSTSens, to
perform sensitivity analysis of unmeasured confounding for the estimate of the
difference in adjusted RMST and plot the results of the sensitivity analysis
(https://github.com/seungjaec2525/RMSTSens).

The remainder of this thesis is organized as follows. In Chapter 2, we
present notation and assumptions and describe the definition of the difference
in RMST. Chapter 3 reviews the methods for estimating the difference of RMST
adjusted for confounders, compares the performance between the methods being
considered through simulation studies, and applies each method to real data.

We propose a novel sensitivity analysis method in Chapter 4. We also show


https://github.com/seungjae2525/RMSTSens

the Monte Carlo simulation results to demonstrate that our proposed method
performs well under a variety of settings and illustrate the proposed method
with two real data. Finally, a discussion and summary are presented in Chapter

5. The overall flow diagram of thesis structure is shown in Figure 1.1.

Chapter 1.
Introduction
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Chapter 2

Restricted Mean Survival Time

2.1 Notation and assumptions

Let (ﬁ,&i,Ai,Li) denote an independent sample of right-censored survival
data for subject ¢ (i = 1,...,N). N is a sample size. T, = min{7;,C;} is an
observed survival time where T; is the event time and C; is the censoring time.
0; = I(T; < C;) is an event indicator where I(-) denotes the indicator function
taking the value 1 when the condition is true and 0 otherwise. A; is a binary
exposure indicator which is 1 for the exposed group and 0 for the unexposed

group. L; is a vector of relevant prognostic factors. Define
P(A; =1 L;) (2.1)

as the propensity score (PS) which is the conditional probability of receiving
exposure given L; (Rosenbaum and Rubin, 1983). In practice, P(A; =1 | L;)
can be estimated by using maximum likelihood estimation. Let 1’3(14Z =11 L)
be a consistent estimate of P(A; = 1| L;).

In the counterfactual framework by Rubin (1974) and Holland (1986),

denote T and C* as the potential outcomes for event time and censoring time



had subject received exposure a, respectively. Also, define §* = I(T* < C?).
To estimate causal effects from observational survival studies, the following
identifiability conditions are assumed in this thesis:
For a € {0,1},
(A1) Consistency: T* =T and C* = C, if A = a.
(A2) Independent censoring: T* 1L C* | (A, L).
(A3) Conditional exchangeability: 7% 1l A | L and C* 1L A | L.
(A4) Positivity: 0 < P(A=a| L) < 1.
Note that the assumption (A1) connects the potential outcomes to the ob-
servable outcomes. The assumption (A2) means that in each exposure arm,
the prognostic factors L suffice to explain the dependence between the event
and censoring times. And, the assumption (A3) means that L can block all
backdoor paths between the exposure and the survival time (Pearl, 1995), so
that there is no unmeasured confounding. Under the assumptions (A1)—(A3),
the assumption (A1) implies that 6 = 0 if A = @ and the assumption (A3)
implies that ¢ 1l A | L. The assumption (A4) guarantees that there should be
existed both the exposed and unexposed subjects at all possible combinations
of the values of the prognostic factors (Westreich and Cole, 2010).

We additionally assume that one subject’s potential outcome under expo-
sure a does not rely on the others’ exposure values (Cox, 1958) and there is no
multiple version of exposure value. These assumptions are collectively referred

to as the stable unit treatment value assumption (STUVA) (Rubin, 1980).

2.2 Difference in RMST

Let S(t) = P(T > t) denote the (factual) survival function and S°(t) = P(T* >

t) denote the survival function of the potential (counterfactual) outcome for



event time under exposure a. Suppose that we are interested in comparing
RMST up to 7 between the exposure groups where 7 (> 0) is the fixed
truncation time point which is pre-specified at the study design stage based on
clinical domain knowledge. When supposing P(T% > 7) > 0, the RMST up to
7 under exposure a (i.e., u¢) (Irwin, 1949; Chen and Tsiatis, 2001) is defined

as

¢=E@9:KEWMt (2.2)

where T = min{7*, 7}. Therefore, the difference in RMST (i.e., average causal

effect on RMST) can be defined as

ph il = B - B0 = [ st [ s e
0 0

s M E ) 8k o
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Chapter 3

Methods for Estimation of
Difference in RMST

3.1 Difference in RMST in randomized

controlled trial

Suppose that the events occur at D distinct times in the whole sample. Without
loss of generality, assume that the first n subjects are exposed (A = 1) and the
rest N — n are unexposed (A = 0) in total N subjects and that the first m of
n subjects experience the events of interest in the exposed group and the first
D — m of N — n subjects experience the events of interest in the unexposed

group. Also, assume that in each exposure group, the event times are ordered

increasingly (i.e., t1 < ... < t,, are event times in the exposed group and
tnt1 < ... < thp—myp are event times in the unexposed group). At time tj,
j=1,....mn+1,...,n—m+ D, there are d“; events out of Yja subjects at

risk under exposure a € {0,1}. Then, we can write dj = Zi:Ti:tj 0;1(A; = a)

and Y = 3 55y, 1(Ai = a).



In randomized controlled trials, subjects are randomly assigned to either
exposed or unexposed group, so that both assumptions (A3) and (A4) are
satisfied without conditioning on the prognostic factors L. Therefore, Kaplan-
Meier estimate of the survival function at time ¢ under exposure a (Kaplan

and Meier, 1958) is

1 if t < t§
5%(t) = 2 (3.1)
Hj:tjgt <1 - Y*Ja if ¢ > t¢
J

if Y;* > 0 and where t{ is the first event time for the exposure group a. Therefore,

the estimate of the difference in RMST based on Kaplan-Meier estimate is
1 0 _ il 75 (0 " " G0
it =7 = B~ B = [ S'war- [ 5w an

Using Greenwood formula (Greenwood, 1926), the asymptotic variance of ¢

(Klein and Moeschberger, 2003; Cox and Oakes, 2018) is estimated by

2
~ T d¢
V(i) = / St At | e

2=\ VR~

where t denotes the event time for the exposure group a. Then, the variance

for the estimate of the difference in RMST is
V(i — i) =V (iig) + V(7).

The estimate of the difference in RMST can be obtained using survfit
function in survival package (Therneau, 2022) and rmst function in RISCA
package (Foucher et al., 2022) in the software environment R (R Core Team,
2021). Otherwise, one can obtain the estimate with its asymptotic variance by

using rmst2 function without “covariates” argument in survRM2 package (Uno

10 :l_=-| k:_'l'i



et al., 2022) in R. Whichever method is used, the values of the estimate are

the same. We provide example code in Section A.1.1.

3.2 Difference in RMST in observational
study

In observational studies, we need to adjust for the potential confounders L to
obtain a consistent causal effect of exposure. Given L that satisfy assumptions
(A2)—(A4), there have been proposed several methods available to estimate
the difference in RMST adjusted for L (hereinafter referred to as the difference
in adjusted RMST) in observational survival studies. In this Section, we focus
on five methods described in below Subsections because they are the most
commonly used in applied practice and are available in standard statistical
software packages. Because we only compare these methods, this thesis is not a
comprehensive evaluation of methods for estimating the difference in adjusted
RMST. Also, the results for simulation study and real data analysis cannot
be exploited out of context as a pretext for preferring one estimation method

over the others.

3.2.1 Direct regression

3.2.1.1 Pseudo-observation

Andersen, Hansen, and Klein (2004) proposed the estimation method using
regression model for the difference in adjusted RMST based on the pseudo-
observations. Let [i; pseudo be the estimate of RMST up to pre-specified time

(=)

7 pseudo be the leave-one-out

point 7 from the Kaplan-Meier estimator and [

estimate of RMST up to 7 from the Kaplan-Meier estimator obtained by

11 ] © 1



eliminating the i-th subject. For i-th subject, the pseudo-observation is defined
as fbrpseudoi = IN X [ir pseudo — (N — 1) X ﬁg_;?eu 4o+ See Andersen and Perme
(2010) for the details of pseudo-observations in various survival analyses.
Andersen, Hansen, and Klein (2004) considered the regression model for
pseudo-observations which corresponds to a specification of the relation be-
tween fir pseudoi and L = (1, A;, LT)T. To access the effect of exposure on the
RMST adjusted for confounders L, we can use a generalized linear model with

identity link function, as follows:
E(,“T,pseudo,i ‘ Aia Ll) = 50 + BlAl + BlTLz = ﬁTL:

where 8 = (B, b1, BZT )T. Then, the coefficient of exposure, /31, corresponds to
the difference in adjusted RMST. The estimates of 8 can be estimated from
the generalized estimating equation (GEE) (Liang and Zeger, 1986; Zeger and
Liang, 1986)

9 T
5 (5587ED) Vi (teamentod = L) =0
i
where V; is a working covariance matrix. A sandwich variance estimator can be
used to estimate the variance of 3 (White, 1982). See details for the variance
estimate for 3 in Andersen, Klein, and Rosthgj (2003).

The pseudo-observations can be obtained using pseudomean function in
pseudo package (Perme, Gerster, and Rodrigues, 2017) in R. Based on the
obtained pseudo-observations, the estimate of the difference in adjusted RMST
and its sandwich variance estimate can be obtained using geeglm function
in geepack package (Hgjsgaard, Halekoh, and Yan, 2006) in R. See details
for pseudo package in Klein et al. (2008). We provide example code in Sec-

tion A.1.2.

12 :l_=-| '-\.I:_'l'



3.2.1.2 ANCOVA-type model

Tian, Zhao, and Wei (2014) proposed the analysis of covariance (ANCOVA)-

type covariate adjustment method using regression model for estimating the
difference in adjusted RMST. Followed from Andersen, Hansen, and Klein
(2004)’s regression model, Tian, Zhao, and Wei (2014) considered the linear

model

E(Ty,

i) = B0+ P1Ai+ B[ L; = BTL;

19

where Tr; = min{T;, 7}, 8 = (Bo, 51, 5])7, and L} = (1, A;, L])T. Then, the

coefficient of exposure, (31, corresponds to the difference in adjusted RMST.

To estimate the coefficients 8 while considering the censoring, Tian, Zhao,

and Wei (2014) considered the inverse probability (IP) censoring weighted

estimating equation

N

A

Z L*{TH BTLY)
“u &,

:\r—‘
)

where &Z = I(T:; < C;) and G( T;;) is the Kaplan-Meier estimator of the
censoring time C' based on {(TZ, 1—A;);i=1,...,N}. They showed that under
mild regularity conditions, n'/ 2(3 — [3) is asymptotically normal, and thus the
asymptotic variance of B can be obtained. See details in the supplementary
material of Tian, Zhao, and Wei (2014).

The estimate of the difference in adjusted RMST using ANCOVA-type
model and its asymptotic variance can be obtained using rmst2 function with

“covariates” argument in survRM2 package (Uno et al., 2022) in R. See details

for survRM2 package in Uno (2015). We provide example code in Section A.1.3.

13 :l_-E _k:_'l'



3.2.2 Inverse probability weighting

3.2.2.1 IP weighted Cox model

The Cox proportional hazards model (hereinafter referred to as Cox model) is
widely used to compare the survival experiences between the exposure groups
after adjusting for prognostic factors (or risk factors) that affect the outcome.

Given the confounders L, Cox model (Cox, 1972, 1975) is
h(t; Ai, Li) = ho(t) exp(B14; + B L) = ho(t) exp(8TL;) (3.2)

where ho(t) is the baseline hazard function, 8 = (61, 8])7, and L] = (A4;, L])T.
Cole and Hernan (2004) described the method to estimate the adjusted
survival curve using Cox model weighted by IP weights. Using the PS (2.1),

the IP weights are defined by

__I(Ai=1) I(A; = 0)
YT P4, =1Ly + P(A; =0 L;) (3.3)

They proposed using a null Cox model with IP weights that is stratified on
exposure levels. Then, the adjusted survival curve under exposure a, §gox(t),
can be estimated from this IP weighted Cox model. The difference in adjusted

RMST is obtained by
ﬁ’lr,cox - ﬁ?’,cox = / S\(}ox(t) dt — / SV\(?ox(t) dt.
0 0

When the IP weights are highly variable, one can use the stabilized IP weights
(Robins, 1998)

1A =1)P(Ai=1)  I(A; = 0)P(A; = 0)
NS TP, =1 L) P(A=0]Ly)

(3.4)

instead of non-stabilized IP weights (3.3). Although the robust variance esti-

mator for the estimate of hazard ratio can be estimated by using the partial
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likelihood for the IP weighted Cox model (Lin and Wei, 1989; Binder, 1992; Shu
et al., 2021), to best our knowledge, there is no study on estimating the variance
of adjusted RMST estimated from IP weighted Cox model. Alternatively, we
can use the bootstrap method to obtain the variance of the estimate.

The estimate of the difference in adjusted RMST using IP weighted Cox
model can be obtained by using coxph and survfit functions in survival
package (Therneau, 2022) and the rmst function in RISCA package (Foucher
et al., 2022) in R. Otherwise, one can obtain the estimate by using svydesign
and svykm functions in survey package (Lumley, 2010) and rmst function in
RISCA package (Foucher et al., 2022) in R. Whichever method is used, the

values of the estimate are the same. We provide example code in Section A.1.4.

3.2.2.2 Adjusted Kaplan—Meier estimator

Xie and Liu (2005) proposed the adjusted Kaplan-Meier estimator using IP
weighting method. They considered the weighted number of events under
exposure a as c?? = Zz’:Ti:tj (6iI(Ai =a)/P(A; =a| Lz)) and the weighted
number at risk as XN/ja = Zi:Tiztj (I(Ai =a)/P(4A =a LZ)> Then, the ad-

justed Kaplan-Meier estimator at time ¢ under exposure a is obtained by

1 it t <t

Sayt) = (35)

Ja
J

T .
Hj:tjgt (1 - W) itt >t

j
if 17]»“ > (0 and where t{ is the first event time for the exposure group a. Xie
and Liu (2005) shown that under the identifiability conditions (A1)—(A4), the
adjusted Kaplan-Meier estimator (3.5) is a consistent estimate of S%(¢). For
details of the theoretic results and proofs, see Section 3 and Appendix A.2

and A.3 in Xie and Liu (2005). Based on the adjusted Kaplan-Meier estimator
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(3.5), the estimate of adjusted RMST up to 7 under exposure a is

ﬁgdj T / Sad] (36)

and the estimate of the difference in adjusted RMST is

| d! d
~1 ~0
o=l = || 1-— - || 1- dt
Hadjr = Hadjr /o . ( Y1> . ( YO>

Jiti<t Jit; <t

o ) D iiTi—t, P(A;=1|L;)
_ i H — I(A;=1)

Lt;<t Ei:TiZt]’ ﬁ(Ai:”Li)

S, _0il(Ai=0)
v1i=lj 1-P(A;=1|L;)
T <1_ m:()))] dt.  (3.7)

tj<t Zi:TiEtj 1-P(A;=1|L;)

Xie and Liu (2005) also shown that the asymptotic variance for the adjusted

Kaplan-Meier estimator (3.5) can be estimated by

v [Bay0)] = [Sa0)] M@d) (3.8)

jit;<t Y,

where ¢7 denotes the event time for the exposure group a and

[Sirse (A = a)/P(4 = a | L)

MY = — .
i, [I(Ai = @)/ P(A; = a | L)

J

Based on the estimate of asymptotic variance for the adjusted Kaplan-Meier
estimator (3.8), Conner et al. (2019) proposed that the asymptotic variance

for the estimate of adjusted RMST (3.6) can be estimated by

(CYEED i Pok . .
V(ﬁgdj ’T) = ad_] ’L+1 t; )
j:t;‘ST i=j Ma( Yy da)
When the IP weights are considered fixed and the adjusted RMSTs are thus

independent, the variance for the estimate of the difference in adjusted RMST
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(3.7) is estimated by
V (Bagj,r — odir) = V (Bagy.r) + V (A

The estimate of the difference in adjusted RMST using the adjusted Kaplan-
Meier estimator can be obtained by using ipw.survival and rmst functions
in RISCA package (Foucher et al., 2022) in R. The asymptotic variance of
the estimate can be obtained using function available in https://github.com/
s-conner/akm-rmst/blob/master/AKM _rmst.R. We provide example code in

Section A.1.5.

3.2.3 G-computation

Chatton et al. (2022) proposed the method using G-computation for estimating
the difference in adjusted RMST. Let Hy(t) = fg ho(s)ds be the cumulative
baseline hazard function. To estimate the survival function from the Cox
model (3.2), Breslow (1974) proposed that both Hy(t) and 5 = (/Bl,ﬁ;)T can
be simultaneously estimated using the Breslow’s likelihood. Then, the estimates
of Hy(t) can be obtained by

Hy(t) = Z !

t;<t ZjeR(ti) exp (31141‘ + BITLJ)

where R(t;) is the risk set at time ¢;, and ﬁ[o(t) is referred to as the Breslow
estimator of the cumulative baseline hazard function. Using Ho(t) and B =
(31, B\ZT )T, the estimate of adjusted survival function under exposure a given

the potential confounders L is given by

N
~ 1 ~ ~ N
Saelt) = % D exp [—Ho(t) « exp(Bra+ BT Ly)] .
i=1
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Then, the difference in adjusted RMST is obtained by
ﬁi,ge - ﬁg,gc = /0 §g1c(t) dt — /O ggc(t) dt.

To best our knowledge, there is no study on estimating the variance of adjusted
RMST estimated from G-computation method. Alternatively, we can use the
bootstrap method to obtain the variance of the estimate.

The estimate of the difference in adjusted RMST using G-computation
with its bootstrap confidence interval can be obtained by using gc.survival
function in RISCA package (Foucher et al., 2022) in R. We provide example

code in Section A.1.6.

3.3 Simulation study 1

We performed the simulation studies for comparing the performance of five
methods described in Section 3.2. To evaluate the estimate of the difference
in adjusted RMST, we examined the bias of the estimate and the coverage
rate of the confidence interval. For all methods, we conducted 1,000 simulation
replications for each parameter combination and constructed the 95% percentile
bootstrap confidence interval with bootstrap resampling B = 1,000 times. All
analyses of this thesis were used through R (Version 4.1.0) (R Core Team,

2021) using 8 CPU cores in parallel.

3.3.1 Simulation settings

We randomly generated N = 500 of the confounder L; from normal distribution
with mean 1 and standard deviation 0.25 and the confounder Ly from Bernoulli

distribution with probability 0.5. The exposure A was generated from Bernoulli
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distribution with the true PS P(A = 1| L1, La) = expit{fy + 1.5L; + 0.8 L2}
where expit{z} = 1/(1 + exp{—=z}) and [y was set at different values to yield
an approximately certain probability (8o = —1.9 for E(A | L1, Le) ~ 0.5 and
Bo = —0.425 for E(A | Ly, Ly) =~ 0.8).

The potential outcomes for event times T under exposure a were ran-
domly generated using the inverse transform sampling method via Cox model
with Weibull-distributed baseline hazard as a function of L; and Ly (Bender,

Augustin, and Blettner, 2005) where

0.95 x exp{log(2.5)a + log(1.2) L1 + log(0.7) L2}

T =5 x (3.9)

and U® were generated from uniform distribution on (0,1). Then, the event
times T = I(A=1) x T' + I(A = 0) x T°. And, the censoring times C' were
randomly generated from Weibull distribution with scale parameter A and
shape parameter v = 0.6. We set the values of scale parameter A € {0.052,
0.178, 0.354, 0.643, 1.365} to obtain the simulated data that correspond to
approximate censoring rate ¢ € {0.1, 0.3, 0.5, 0.7, 0.9}, respectively. Then, the
observed survival time is the minimum of the event time and the censoring
time (i.e., T = min{7, C}). Two values of specific time point 7 € {1,3} are

considered. Then, the total number of combinations of Sy, ¢, and 7 is 20.

3.3.2 True value of difference in RMST

To evaluate bias and coverage rate, we need to know the true value of difference
in RMST. Based on the definition of difference in RMST expressed in (2.2),

the true value of RMST under exposure a is written as
T
[ = / So(t) dt
0
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//Satldldt
// Se(t: 1) dt dl = / a(1) dl.

Because the true event times were generated from Cox model with Weibull-

distributed baseline hazard (3.9), the true value of conditional RMST is
ua(l) = Blmin{T*, 7} | L]

/S“tl

exp{log(2.5)a+log(1.2)l1+1log(0.7)l2}
] a

511

1 exp{log(2.5)a + log(1.2)l; + log(0.7)la } A"
5 Xy
3.10)

1/v % )\1/’/

v x (exp{log(2.5)a + log(1.2)l1 + log(0.7)l2})
where (s, z) = [t~ exp(—t) d¢ is the lower incomplete gamma function. A
detailed proof of (3.10) is given in Appendix A.2. Then, we can obtain the

approximate value of true difference in RMST by calculating the values of

standardized mean, as follows:

pt=il= [utar— [
IS - S (3.11)
nz‘:lTZ N_nizl o '

Note that the true value of difference in RMST is irrelevant to both By and
¢ in our simulation setting. Therefore, we first generated the confounders L4
and Lo from superpopulation with sample size N = 1,000,000, and based on
them, calculated (3.11) using values of (3.10) for each exposure group. When
A = 0.95 and v = 1.8, the approximate value of true difference in RMST

pt — pd = —0.027 for 7 = 1 and p} — pud = —0.417 for T = 3, respectively.
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3.3.3 Simulation study 1 results

The simulation results for sample size N = 500 are reported in Tables 3.1-3.5
and Figures 3.1 and 3.2. In our simulation studies, when the all models are
correctly specified, the estimates of the difference in adjusted RMST for all
methods showed the unbiased estimators, except for IP weighted Cox model
when the censoring rate was 0.9. In terms of the coverage rate, all methods
tended to achieve the desired coverage rate (i.e., 0.95) and did not appear to
be conservative, except that the true PS was 0.8 and the censoring rate was
0.9. When the true PS was 0.8 and the censoring rate was 0.9 (specifically,
when 7 = 3), the estimate of the IP weighted Cox model was slightly biased,
and the coverage rate of the confidence interval exhibited poor coverage rate.

The simulation results for sample size N = 1,000 are reported in Ta-

bles A.3.1-A.3.5 and Figures A.3.1 and A.3.2. These results were similar to

Table 3.1 Simulation study 1 results (N = 500): Pseudo-observation

RMST Censoring RMST . 95% confidence  Coverage

T (True) E(AIL) rate (Estimate) Bias interval rate
0.1 -0.027 0.000  [-0.050, -0.004] 0.947

0.3 -0.027 0.000 [-0.050, -0.003] 0.944

0.5 0.5 -0.027 0.000 [-0.052, -0.003] 0.943

0.7 -0.027 0.001 [-0.054, 0.000] 0.944

1 -0.027 0.9 -0.026 0.001 [-0.060, 0.005] 0.938
0.1 -0.027 0.000 [-0.052, -0.001] 0.928

0.3 -0.029 -0.002 [-0.053, -0.003] 0.926

0.8 0.5 -0.027 0.000 [-0.053, 0.001] 0.925

0.7 -0.028 -0.001 [-0.056, 0.001] 0.920

0.9 -0.027 0.000  [-0.062, 0.010] 0.913

0.1 -0.416 0.001  [-0.559, -0.269] 0.957

0.3 -0.416 0.001 [-0.564, -0.259] 0.935

0.5 0.5 -0.415 0.001 [-0.581, -0.247] 0.944

0.7 -0.408 0.008 [-0.600, -0.213] 0.942

3 0.417 0.9 -0.414 0.002 [-0.710, -0.117] 0.947
0.1 -0.427 -0.010 [-0.595, -0.257] 0.940

0.3 -0.424 -0.007 [-0.603, -0.243] 0.947

0.8 0.5 -0.421 -0.005 [-0.617, -0.219] 0.948

0.7 -0.423 -0.007 [-0.655, -0.182] 0.946

0.9 -0.423 -0.006  [-0.774, -0.058] 0.942
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Table 3.2 Simulation study 1 results (/N = 500)

: ANCOVA-type model

RMST Censoring RMST . 95% confidence  Coverage

T (True) E(AIL) rate (Estimate) Bias interval rate
0.1 -0.027 0.000  [-0.050, -0.004] 0.948

0.3 -0.027 0.000  [-0.051, -0.003] 0.943

0.5 0.5 -0.027 0.000  [-0.052, -0.003] 0.947

0.7 -0.027 0.000  [-0.054, 0.000] 0.944

1 -0.027 0.9 -0.026 0.001  [-0.061, 0.006] 0.938
0.1 -0.027 0.000  [-0.053, -0.001] 0.929

0.3 -0.029 -0.002  [-0.054, -0.003] 0.922

0.8 0.5 -0.027 0.000  [-0.053, 0.001] 0.923

0.7 -0.028 -0.001  [-0.057, 0.001] 0.919

0.9 -0.027 0.000  [-0.063, 0.011] 0.907

0.1 -0.416 0.001  [-0.558, -0.270] 0.958

0.3 -0.416 0.001  [-0.564, -0.259] 0.934

0.5 0.5 -0.416 0.001  [-0.582, -0.246] 0.952

0.7 -0.409 0.007  [-0.607, -0.209] 0.942

3 0417 0.9 -0.421 -0.004  [-0.773, -0.091] 0.959
0.1 -0.427 -0.010  [-0.597, -0.259] 0.934

0.3 -0.424 -0.008  [-0.604, -0.240] 0.949

0.8 0.5 -0.422 -0.006  [-0.618, -0.218] 0.945

0.7 -0.422 -0.006  [-0.657, -0.181] 0.941

0.9 -0.432 -0.015  [-0.856, -0.022] 0.940

Table 3.3 Simulation study 1 results (N = 500)

: IP weighted Cox model

RMST Censoring RMST . 95% confidence  Coverage

T (True) E(A|L) rate (Estimate) Bias interval rate
0.1 -0.027 0.000  [-0.050, -0.004] 0.950

0.3 -0.027 0.000  [-0.050, -0.004] 0.937

0.5 0.5 -0.027 0.000  [-0.052, -0.003] 0.940

0.7 -0.026 0.001  [-0.053, 0.000] 0.943

1 -0.027 0.9 -0.026 0.001  [-0.059, 0.005] 0.933
0.1 -0.027 0.000  [-0.051, -0.002] 0.918

0.3 -0.028 -0.001  [-0.052, -0.005] 0.928

0.8 0.5 -0.026 0.001  [-0.051, 0.000] 0.913

0.7 -0.027 0.000  [-0.053, 0.000] 0.913

0.9 -0.024 0.003  [-0.058, 0.016] 0.905

0.1 -0.414 0.002  [-0.557, -0.267] 0.955

0.3 -0.414 0.002  [-0.564, -0.258] 0.938

0.5 0.5 -0.414 0.003  [-0.580, -0.243] 0.946

0.7 -0.406 0.010  [-0.598, -0.211] 0.944

3 0417 0.9 -0.408 0.008  [-0.720, -0.072] 0.954
0.1 -0.420 -0.003  [-0.589, -0.248] 0.928

0.3 -0.416 0.000  [-0.594, -0.231] 0.941

0.8 0.5 -0.414 0.003  [-0.609, -0.210] 0.941

0.7 -0.417 -0.001  [-0.642, -0.180] 0.943

0.9 -0.348 0.068  [-0.717, 0.586] 0.877
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Table 3.4 Simulation study 1 results (/N = 500)

: Adjusted Kaplan-Meier

RMST Censoring RMST . 95% confidence  Coverage

T (True) E(AIL) rate (Estimate) Bias interval rate
0.1 -0.027 0.000  [-0.050, -0.004] 0.950

0.3 -0.027 0.000  [-0.051, -0.004] 0.936

0.5 0.5 -0.027 0.000  [-0.052, -0.003] 0.940

0.7 -0.027 0.001  [-0.054, 0.000] 0.943

1 -0.027 0.9 -0.026 0.001  [-0.060, 0.005] 0.933
0.1 -0.027 0.001  [-0.051, -0.002] 0.918

0.3 -0.028 -0.001  [-0.052, -0.005] 0.927

0.8 0.5 -0.026 0.001  [-0.051, 0.000] 0.914

0.7 -0.027 0.000  [-0.054, 0.000] 0.913

0.9 -0.026 0.001  [-0.059, 0.006] 0.907

0.1 -0.415 0.001  [-0.559, -0.268] 0.956

0.3 -0.416 0.001  [-0.566, -0.259] 0.936

0.5 0.5 -0.415 0.001  [-0.582, -0.244] 0.946

0.7 -0.408 0.008  [-0.601, -0.212] 0.946

3 0417 0.9 -0.415 0.002  [-0.714, -0.120] 0.951
0.1 -0.418 -0.002  [-0.588, -0.245] 0.929

0.3 -0.415 0.002  [-0.594, -0.228] 0.944

0.8 0.5 -0.412 0.005  [-0.609, -0.206] 0.943

0.7 -0.415 0.002  [-0.642, -0.174] 0.942

0.9 -0.409 0.007  [-0.749, -0.023] 0.931

Table 3.5 Simulation study 1 results (N = 500)

: G-computation

RMST Censoring RMST . 95% confidence  Coverage

T (True) E(A|L) rate (Estimate) Bias interval rate
0.1 -0.027 0.000  [-0.038, -0.017] 0.946

0.3 -0.027 0.000  [-0.039, -0.016] 0.943

0.5 0.5 -0.027 0.000  [-0.040, -0.015] 0.958

0.7 -0.027 0.000  [-0.043, -0.014] 0.955

1 -0.027 0.9 -0.027 0.000  [-0.051, -0.007] 0.944
0.1 -0.027 0.000  [-0.038, -0.018] 0.943

0.3 -0.027 0.000  [-0.038, -0.017] 0.941

0.8 0.5 -0.027 0.000  [-0.039, -0.016] 0.950

0.7 -0.027 0.000  [-0.041, -0.013] 0.935

0.9 -0.026 0.001  [-0.049, -0.005] 0.950

0.1 -0.416 0.000  [-0.518, -0.327] 0.953

0.3 -0.415 0.002  [-0.526, -0.313] 0.954

0.5 0.5 -0.416 0.000  [-0.542, -0.294] 0.947

0.7 -0.412 0.004  [-0.573, -0.256] 0.949

3 0417 0.9 -0.411 0.006  [-0.686, -0.142] 0.947
0.1 -0.418 -0.001  [-0.517, -0.319] 0.935

0.3 -0.415 0.002  [-0.526, -0.301] 0.953

0.8 0.5 -0.411 0.005  [-0.543, -0.277] 0.952

0.7 -0.412 0.005  [-0.581, -0.237] 0.946

0.9 -0.401 0.015  [-0.697, -0.086] 0.951
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= Adjusted KM <= ANCOVA # IPW Cox < G-comp ** Pseudo
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Figure 3.1 Bias for simulation study 1 (N = 500). Adjusted KM = adjusted
Kaplan-Meier estimator; ANCOVA = ANCOVA-type model; IPW Cox = IP
weighted Cox model; G-comp = G-computation; Pseudo = pseudo-observation.
Dashed line in the plot represents a bias of 0.
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Figure 3.2 Coverage rate for simulation study 1 (N = 500). Adjusted KM
= adjusted Kaplan-Meier estimator; ANCOVA = ANCOVA-type model; IPW
Cox = IP weighted Cox model; G-comp = G-computation; Pseudo = pseudo-
observation. Dashed line in the plot represents a coverage rate of 0.95.

. 2 M2 ojsty



those in sample size N = 500. Unlike the results for sample size N = 500,
when the true PS was 0.8 and the censoring rate was 0.9, the bias for the
estimate of the IP weighted Cox model was vanished, and the coverage rate of
the confidence interval achieved the nominal coverage rate 0.95.

In summary, when there is neither a large censoring rate nor extreme PS,
we confirmed that all the methods being considered provide the unbiased
estimates with the percentile bootstrap confidence intervals achieving near
nominal coverage probability. As the sample size increased, the bias was reduced

and the coverage rate seemed to improve.

3.4 Real data analysis 1: Colon cancer data

Colon cancer data were included patients who (a) were newly diagnosed with
colon adenocarcinoma from January 1, 2009 to December 31,2015, (b) had early-
stage colon cancer, which was defined as clinical stage 0/I disease on staging
abdominal computed tomography (CT), and (c¢) did not have synchronous
rectal cancer located within 15 cm of the anal verge (Lee et al., 2023). Patients
were divided into either of with-staging chest CT or without-staging chest CT
group according to whether they underwent staging chest CT. The with-staging
chest CT group included 606 patients, and the without-staging chest CT group
included 385 patients. Survival outcome was overall survival, which was defined
as the time interval from the date of staging abdominal CT scan to the date
of death from any cause. The date of staging abdominal CT scan was different
for each patients. Patients without death records were administrative censored
on December 31, 2019, and there is no censoring apart from administrative
censoring at the end of follow-up. Of 991 patients, there were 111 events (76 for

with-staging chest CT group versus 35 for without-staging chest CT group).
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In Lee et al. (2023), the minimally sufficient adjustment set of covariates
which was consisted of prognostic factors that needed to be adjusted for included
age at study entry (years), sex (male vs. female), smoking behavior (never-,
former-, and current-smoker), year at diagnosis (2009-2012 vs. 2013-2015),
referral from another hospital (yes vs. no), Charlson comorbidity index (no,
mild, moderate, and severe), family history of colonic neoplasm (yes vs. no),
family history of any cancer (yes vs. no), endoscopic appearance (superficial
vs. advanced), and histologic grade via endoscopic procedure (well, moderately,
and poorly differentiated). The minimally sufficient adjustment set of covariates
was identified from the causal diagram. Detailed information about data is
given in the supplementary material of Lee et al. (2023). They measured
the difference in RMST between the exposure groups (with-staging chest CT

group minus without-staging chest CT group). Therefore, negative values of the

difference in RMST indicate an increased risk after the use of staging chest CT.

The difference in unadjusted RMST was estimated using the Kaplan—Meier

estimator (3.1). The difference in adjusted RMST was estimated using the

adjusted survival curve from the IP weighted pooled logistic regression model.

See details for estimating the difference in adjusted RMST from the IP weighted
pooled logistic regression model in Appendix A.4.

Using this data, we compared whether there was a difference between the
methods for the estimates of the difference in average overall survival time up
to 7. Because Lee et al. (2023) were considered a 5 years RMST in the primary
analysis, we also set a specific time point 7 to 5 years (12 x 5 months). For
five methods described in Section 3.2, we estimated the differences in adjusted

RMST and constructed the 95% percentile bootstrap confidence intervals with
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Table 3.6 Real data analysis results for colon cancer data

RMST 95% confidence interval

Method difference (Months)
(Months) Lower Upper
Unadjusted Kaplan-Meier estimator -0.779 -1.620 -0.014
Pooled logistic regression 0.424 -0.797 2.058
Pseudo-observation 0.402 -0.981 2.450
ANCOVA-type model 0.459 -0.804 1.754
IP weighted Cox model 0.486 -1.038 2.877
Adjusted Kaplan-Meier estimator 0.492 -1.037 2.899
G-computation 0.481 -0.535 1.653

bootstrap resampling B = 1,000 times. And, we compared the results with
those of Lee et al. (2023).

The results are reported in Table 3.6. The results in the first two rows of
Table 3.6 (i.e., unadjusted Kaplan-Meier estimator and pooled logistic regres-
sion) were the same as in Lee et al. (2023). The point estimate of the difference
in unadjusted RMST up to 5 years was statistically significant (-0.779 [95% CI:
-1.620 to -0.014] months). However, after adjusting for potential confounders,
the point estimates of the difference in adjusted RMST up to 5 years were
not statistically significant although there were sightly different in terms of
the point estimates and confidence intervals. Therefore, after adjusting for
potential confounders, the use of staging chest CT did not affect the overall

survival in patients with early-stage colon cancer.
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Chapter 4

Sensitivity Analysis

In this Chapter, using an adjusted Kaplan-Meier curve (Xie and Liu, 2005)
described in Section 3.2.2.2 and adapting a parametric sensitivity model for
non-survival data (Zhao, Small, and Bhattacharya, 2019), we propose a novel
sensitivity analysis method for the difference in adjusted RMST that can
be performed when the residual confounding by unmeasured confounders is
suspected. Alternative sensitivity analysis methods for the other estimation
methods and their limitations are discussed in Chapter 5.

The proposed method will be formulated an optimization problem. Simple
analytic solutions are derived for some special cases. In general cases, we explain

the practical optimization methods to solve the optimization problem.

4.1 Background

Note that in order to interpret the estimate of the difference in adjusted RMST
(3.7) as a causal effect, the conditional exchangeability assumption (A3) is
critical. When there exists an unmeasured confounder, this opens the backdoor

path, and thus the assumption (A3) is violated (Pearl, 1995). Furthermore,
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]3(Ai = a | L;) may not be a consistent estimate of the true PS, which
makes (3.7) a biased estimate of the causal effect. The key problem is that it
is generally untestable from observed data to check whether the assumption
(A3) is violated (Greenland and Robins, 1986). Therefore, a sensitivity analysis
should be considered to investigate how sensitive the estimate of the difference
in adjusted RMST (3.7) is to the degree of unmeasured confounding. Therefore,
we propose a novel sensitivity analysis method which considers unmeasured

confounding for evaluating the estimate of the difference in adjusted RMST.

4.2 Sensitivity model

We extend the marginal sensitivity model proposed by Tan (2006) and Zhao,
Small, and Bhattacharya (2019) to survival analysis and follow the notation
stated in Rosenbaum (2002) and Dorn and Guo (2022). Assume that if we
adjusted for unmeasured confounders (which we denoted by U) along with
measured confounders L, then all confounding is removed. Thus, we can define
eo(l,u) = P(A=1|L =1,U = u) as the true PS. Also, denote e(l) = P(A =
1| L =1) as the PS only based on measured confounders L. The following is

a key definition required to propose our sensitivity analysis method.

Definition 4.1 (Zhao’s marginal sensitivity model) For a fixed sensi-
tivity parameter A > 1, assume that the true PS eg(l,u) € E(A) where the set

of marginal sensitivity models is defined by

odds{e(l,u)}

E(N) = {e(l,u) : % < odds{c(l)} <A, foralll € L and u € U}
and odds{p} = p/(1 — p).
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Remark 4.1 The marginal sensitivity model implies that within each stra-
tum of the measured confounders L, measuring the unmeasured confounders
U can only change the odds of e(l) by a factor of at most A. It thus means

that under the specified sensitivity model e(l,u),

P (odds{e(l,u)} € % x odds{e(l)}, A x odds{e(l)}] ‘ U= u) =1.

Practically, e(l) is often estimated parametrically, and thus we can denote its
estimate as eg(l) which is closest to e(l) in Kullback—Leibler divergence. As in
Zhao, Small, and Bhattacharya (2019), it is handy to represent e5(l) and e (I, u)
as log odds scale. Denote gs(l) = logit{eg(l)} and go(l,u) = logit{eo(l,u)}
where logit{p} = log{p/(1—p)}. And, let hg,(I,u) = gz(l) — go(l, u) be the log
odds scale difference between eg(l) and eg(l, w). Through the parameterization
of PS and the newly introduced notations, we can redefine Definition 4.1 as

follows:

Definition 4.2 (Zhao’s parametric sensitivity model) For A > 1, as-
sume that hg,(l,u) € ¢(A) where the set of parametric sensitivity models is

defined by
e(A) = {h(l,u) : sup |h(l,u)| < log(A), foralllc Landuc U}.

The parametric sensitivity model h(l, u) implies that measuring U can only
change the log odds of PS, gg(l), by a factor of at most log(A). Accordingly,

we can define the following shifted PS.

Definition 4.3 (Shifted propensity score) Under any specified sensitivity

model h(l,u) € £(A), the shifted PS is defined by

e (1) = [1 + exp{h(t,u) — gs(1)}]
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Remark 4.2 Practically, the shifted PS (4.1) is an alternative PS obtained
by taking into account a user-specified sensitivity parameter A which reflects
the degree of unmeasured confounding. Note that if A = 1 and thus h(l,u) =
hg, (1, w), then e™(1,u) is equal to the true PS eg(l,u), so there is no unmea-

sured confounding.

The corresponding shifted PS (4.1) can be estimated by

1
) = S W =5:0) (42

where gg(l) = logit{ﬁg(A = 1| L = 1)} which is estimated from observed

data.

4.3 Estimate of difference in bias-adjusted

RMST

When unmeasured confounding is suspected, by substituting P(A = 1 | L) in
the estimate of the difference in adjusted RMST (3.7) with the estimate of the
shifted PS (4.2), we can rewrite expression (3.7) as

- Z 0;1(A;=1)
~(h),1 _ ~(h),0 _ #Ti=t; e (1;,u,)
g [ 111~ S 3

t;<t Zi:Tith eh) (Liyui)

Simiet; T
vli=t; 1—el™)(l;,u;
_ H (1 — T(A=0) )] dt (4.3)

t;<t Zi:Tiztj 1_@(h)(li’ui)

and denote the set of (4.3)
(A — a0 (1) € e(A)} (4.4)

as a partially identified region of (4.3). We will refer to (4.3) simply as “the

estimate of the difference in bias-adjusted RMST” in the rest of this thesis.
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Note that because the true value of e (I, u) is generally not identifiable from
data, the value of (4.3) cannot directly estimated. However, we can estimate
the sensitivity range (i.e., minimum and maximum) of the point estimates (4.3)
and confidence interval for partially identified region (4.4), given the specified
sensitivity parameter A. We defer the construction of the confidence interval
until Section 4.7. For now, we will focus on constructing the sensitivity range

of (4.3).

4.4 Sensitivity range

In Section 3.1, we assumed that the first n of N subjects are exposed and
the rest N — n are unexposed. We can simplify expression for the estimate
of the difference in bias-adjusted RMST (4.3) by substituting e (I, u) in
(4.3) with the right-hand side of (4.2) and by introducing the variables w;
and z; for each exposure group separately. Let w; = exp{—gg(L;)} for the
exposed group (i =1,...,n) and w; = exp{gg(L;)} for the unexposed group
(t=n+1,...,N), respectively. Also, let z; = exp{h(L;,U;)} for the exposed
group and z; = exp{—h(L;,U;)} for the unexposed group, respectively. Because
the postulated sensitivity model h(L;,U;) € [—log(A),log(A)], it is clear that
zi € [1/A, A]. Therefore, the sensitivity range of (4.3) can be evaluated by

solving the optimization problem as follows:

: T 2 ity 0l (Ai = 1)[1 + zjwi]
min or max /0 [H (1 — Zi;TiZt I(Ai — 1)[1 n Ziwi] >

1

subject to <z <A, fori=1,...,N. (4.5)
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The lower and upper bounds of sensitivity range correspond to the solution of
minimization and maximization problems in (4.5), respectively. Note that solv-
ing the optimization problem (4.5) only depend on the optimization parameter
z;. Therefore, when performing our sensitivity analysis method, it does not
matter which model is used to estimate gg(L;).

Because the optimization problem (4.5) can be separated into two parts
related to the exposed and unexposed groups, we can obtain the solution of
minimization or maximization problem in (4.5) by 1) solving both minimization
or maximization problem for the exposed group

T it 01+ zw;
min or max / H 1-— 2 Ti=t [ ] dt
0 Zi:Tith (1 + 2w

t; <t

subject to <z <A fori=1,...,n, (4.6)

=l

where w; = exp{—gs(L;)} and z; = exp{h(L;,U;)} and maximization or
minimization problem for the unexposed group

T o=, 0i[1 + ziw;
max or min / H (1 — 2 Ti=ty [ ]> dt
0

i<t Zi:Tith (14 zw;]

subject to z <A, fori=n+1,...,N, (4.7)

1

N <
where w; = exp{gg(L;)} and z; = exp{—h(L;,U;)} and 2) computing the
difference between solutions of (4.6) and (4.7).

Note that to minimize the objective function in (4.6) or (4.7) subject to
the optimization parameter z; € [1/A, A], 2;’s for subjects who are censored
should be equal to 1/A because z;’s for censored subjects are only included
in the denominator. Similarly, to maximize the objective function in (4.6) or
(4.7), z;’s for censored subjects should be equal to A. Therefore, by using the

event indicator ¢;, the optimization problems (4.6) and (4.7) can be divided
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according to whether or not subjects experience the event of interest. Consider
the minimization or maximization problem in (4.6) first (i.e., optimization

problems for the exposed group). Each problem in (4.6) can be simplified as

follows:
min /T 1— Zi:{Ti:tj7(5i:1}(]' + zw;) u
O e Siitiot 0=y (L + 200i) + Yiirsy, 5,—0p (1 + Fwi)
1
subject to N <z <A, fori=1,...,n, (4.8)
or

o AT =t 5= 1 + Z; Wy
A / H 1 > .{Tz—t],éz_l}( ) gt
0 <t Z’i:{Tizt]’,éi:l}(]‘ + Z'Lwl) + ZZ’:{TiZt]’,(si:O}(]‘ + Awl)

<z <A fori=1,...,n, (4.9)

==

subject to

where w; = exp{—gg(L;)} and z; = exp{h(L;,U;)}. As can be seen in
optimization problems (4.8) and (4.9), z;’s for censored subjects are already
determined as 1/A or A, so that we only need to solve the problems for m
(the number of events in the exposed group) out of n optimization parameters
z = (z1,...,2n). It implies that as the censoring rate decreases, the more z need
to be determined, and thus the more computational time is required to obtain
the solution. Ultimately, the censoring rate is a key factor for computational
time in our optimization problem. The maximization or minimization problem
in (4.7) can be simplified in a similar way (i.e., optimization problem for the

unexposed group):

T AT =t §:— 1 + Z;Wq
A / H 1 > .{Tz_t],éz_l}( ) 5y
0 ;% Doimyty 0i=13 (L 2Wi) + 35 ip sy s5,—0y (1 4 Awi)

subject to <z <A fori=n+1,...,N, (4.10)

==
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A Ti—t. 5.1y (L 2qw;
i H 2 i Ti=t;.5,=1} ) : &
i<t D (Tt 0=1) (L 20wi) + 25>, 5,—0y (1 + 3wi)
I
AT

subject to , fori=n+1,...,N, (4.11)

where w; = exp{gs(L;)} and z; = exp{—h(L;,U;)}. Similarly in this case, we

only need to solve the optimization problem for D —m (the number of events in

the unexposed group) out of N —n optimization parameters z = (zp41,...,2N).

4.5 Analytic solution to bias-adjusted RMST

in special case

There are special settings in which optimization problems (4.8-4.11) can be
solved analytically. Consider a closed cohort that the study entry times ¢y = 0
are the same for all subjects and there is no censoring apart from administrative
censoring at the end of follow-up. Without loss of generality, let the first m
subjects experience the event of interest in the exposed group (i.e., 1 = -+ =
O0m =1 and 6,41 = --- =, = 0) and the first D — m subjects experience the
event in the unexposed group (i.e.,dp41 =+ = Op—msp = 1 and Op—mip4+1 =
- =0y = 0). Also, assume that the event times are continuous and ordered
increasingly (i.e., t1 < -+ < t;, in the exposed group and t,11 < -+ < tp_m+D
in the unexposed group). Since we assume that the only censoring is due to
administrative censoring, the last event time in each group (¢, or t,—m+p) is
less than or equal to the administrative censoring time.
When the pre-specified time point 7 € (t;_1, x| for any k € {2,...,m}, the

objective function in (4.8) can be reduced to linear fractional programming, as
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follows (a detailed proof is given in Appendix B.1):

/T H 1— Zi:{Ti:tj,(si:l}(l + ziwi) &
DLt Viirzt =y (L 20i) + Xm0y (1 + ywi)

_ i Zi:{Ti>tj75i:1} (1 + Ziwi) +Zil{Ti2tj,5i:0} (1 + %wl)

1
=0 t;<t; Zi:{Tiztj,(;i:l}(]‘ + ziwi>+ZiZ{Ti2t]‘,5i=0}<1 + le)

_ i (Lt ziwi)ts
>oic (L4 zw;)

(tig1 — 1)

where t = (t1,...,tp) = (t1,...,tp—1,7,...,7), w; = exp{—gp(L;)}, and z =
(21, -y 2n) = (21, -y 2m, L/A, ..., 1/A), for i = 1,...,n. Therefore, the opti-
mization problems (4.8) and (4.9) can be computed by using linear fractional

programming

iy (14 zwy)t;

min or max -
?:1(1 + ziwi)
1
subject to A <z <A, fori=1,...,n (4.12)

where t = (t1,...,tk—1,7,...,7), w; = exp{—g3(L;)}, and z = (z1,...,2,) =
(215 -y 2m, 1/A,...,1/A) for the minimization problem and z = (z1,..., 2,
A,...,A) for the maximization problem. Also, when 7 € (t;_1,%;] for any
ke{n+2,...,n—m+ D}, the optimization problems (4.10) and (4.11) can
be computed by using linear fractional programming

St (14 ziwi)ti

S (1 ziwy)

1
subject to ngigA, fori=n+1,...,N (4.13)

max or min

where t = (tpt1,.--,tN) = (tngty -5 the—1,75 ..., 7), w; = exp{gp(L;)}, and

z = (zn41,--,2N) = (Zntly--+y Zn—m+bD, A, ..., A) for the maximization
problem and z = (zp41,---,2n—m+D, 1/A,...,1/A) for the minimization
problem.
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Because the problems (4.12) and (4.13) can be transformed to linear
programming by the Charnes-Cooper transformation (Charnes and Cooper,
1962), it can be computed effectively by solving linear programming based
on Proposition 2 in Zhao, Small, and Bhattacharya (2019). It implies that to
obtain the solution of optimization problems (4.8) and (4.9), we have only to 1)
compute the objective functions of minimization and maximization problems

in (4.12) for at most m candidates of z where

A if1<i<w 1 if1<i<w
Z; = & Z = (4.14)
T ifv+1<i<m A ifo+1<i<m
for v € {1,...,m}, respectively, and 2) choose the minimum and maximum

value of them as the solutions of minimization and maximization problems,
respectively. Similarly, to obtain the solutions of the maximization and mini-
mization problems in (4.13), we only need to consider at most D —m candidates
of z where

tfn+l1<i<w Aifnt+l1<i<vw
Z; = &ZZ':

A ifo+1<i<n—-m+D

==

fo+1<i<n—-m+D

==

(4.15)

forve {n+1,...,n—m+ D}, respectively.

There is an alternative setting which translates (4.8-4.11) into linear
programming. Consider that a closed cohort where the study entry times
are the same for all subjects. Without loss of generality, let the event times
be continuous and ordered increasingly (i.e., t1 < --- < t,, in the exposed
group and t,41 < -+ < tp_mtp in the unexposed group). Also, the censoring

times are ordered non-decreasingly in each exposure group, respectively (i.e.,
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tmtr1 < ... < t, in the exposed group and t,—mips+1 < ... < ty in the
unexposed group). In the exposed group, if 7 € (tx_1,tx] and the minimum
censoring time t,,+1 > t_1 for certain k € {2,...,m}, then the problems (4.8)
and (4.9) can be reduced to linear programming (4.12). A proof is included in
Appendix B.2. Also, it can be considered similarly to the problems (4.10) and
(4.11) in the unexposed group.

In real applications, if the both minimum censoring times in each exposure
group are longer than or equal to 7, we solve the optimization problem by
reducing it to linear programming problem. Otherwise, use the optimization

methods explained in the next Section.

4.6 Methods for solution of optimization

problem in general case

In many survival analysis, the study entry times are different for each subject,
or censoring is not necessarily just administrative censoring. In this case, the
optimization problems (4.8-4.11) cannot be translated into linear fractional pro-
gramming, so some optimization parameters z may not converge to boundary
value of 1/A or A but converge to value between 1/A and A. We prove this by
constructing a counter-example (See details in Appendix B.3). In our counter-
example, for simplicity, we consider only four subjects, all in the exposed group.
Also, the study entry times are the same for all subjects. Additionally, let the
first, third, and fourth subjects experience the event of interest, but the second
subject be censored (i.e., 61 = d3 = 04 = 1 and d3 = 0). And, let the survival
times be ordered increasingly (i.e., t1 < to < t3 < t4). Taking 7 = t4, the

objective function in (4.8) is represented as follows (a detailed proof is given

38 1 O 1



in Appendix B.3):

T Zi!{Ti:tj,(SiZI}(l + Z’Lwl)
1 — | at
0 <t 2 iyt =1y (L 2000) + 3 im54; 5,=0y (1 + Fwi)
— (1+ %U&) + (1 + z3ws) + (1 + %w4)
PO Awn) + (U ) + (1 + 2gwg) + (1+ 2uy)
5 (14 z3ws)(ts — t1) + (1 + twa) (T — t1) (416
(14 z3ws) + (1 + tws) ’ :

Note that because the numerator and denominator of (4.16) are consisted by a
quadratic function of z3, this objective function can be locally convex or concave
for z3 between 1/A and A depending on the situation. In Appendix B.3, we
showed that z3 converges to values between 1/A and A with simple numerical
data. It implies that when solving the optimization problems (4.8-4.11), some
of z; may not converge to boundary value 1/A or A.

Because there is no closed-form solution for almost z in general setting
and each of z is ranged between 1/A and A, the optimum values of z can
be determined by using an optimization algorithm such as the L-BFGS-B
optimization method (Byrd et al., 1995) in the optim function of stats package
in R. We refer to this method as “the direct optimization method”. We used the
optimParallel function in optimParallel package (Gerber and Furrer, 2019)
which provides a parallel extension of the L-BFGS-B optimization method
in the optim function. Although parallel processing reduces the computing
time, as the censoring rate decreases, the more optimum values of z need
to be determined, and thus the more computational time is taken to solve
the optimization problem. Therefore, we propose alternative method with
reasonable computational time to find the solution.

In minimizing the problem (4.8), it can be easily known that z; should be

equal to A and z,, should be equal to 1/A. When the problem (4.8) is solved
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using the direct optimization method and the index 7 increases sequentially, it
is empirically confirmed that z; converges to A from ¢ = 1 to one particular
i = w and converges to 1/A from another particular i = u+wv to i = m, for some
unknown constants v and v. For i € (u,u + v), 2z; can converge to any value
between 1/A and A. Although there are some z;’s which may not converge
to boundary value, we empirically founded that when there is neither a large
censoring rate nor extreme PS, almost all of z converge to boundary value 1/A
or A and there is only one changing point from A to 1/A. This pattern was
similarly founded in the other problems (4.9-4.11) as well. It suggests that
one of the candidates of z as in (4.14) or (4.15) may be a practical solution to
our optimization problem. Therefore, the objective function in minimization

problem (4.8) is computed for m candidates of z as in (4.14), and then, one

choose the minimum value of them as the solution of minimization problem.

Also, the other problems (4.9-4.11) can be solved in similar way. We refer to
this method as “the approximate optimization method”. To further reduce
the computing time, we used the parSapply function in parallel package
(R Core Team, 2021) in R. Since there is no simple theoretical solution, we
will resort the performance of our approximate optimization method to Monte

Carlo simulations, as described in Section 4.8.1.

4.7 Confidence interval for partially identified

region

In addition to the sensitivity range of the point estimates (4.3), Zhao, Small,
and Bhattacharya (2019) proposed the percentile bootstrap confidence interval

with at least 1 — a coverage rate for partially identified region (4.4) which is
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asymptotically valid and computationally tractable. For details of the theorems
and lemma, see Section 4.3.2 in Zhao, Small, and Bhattacharya (2019). In this
thesis, we briefly explain how to construct the 1 — a confidence interval for
partially identified region (4.4) as follows:

(a) Obtain the number B bootstrap samples by taking samples of size N from
the original data (Ti,éi,Ai,Li), i = 1,...,N, using random sampling
with replacement.

(b) In each bootstrap sample b, for b = 1,..., B, re-estimate the PS and then

calculate the sensitivity range by solving the optimization problem (4.5).

~(h),1  ~(h),0

i.e., lower bound of range: min[fi ;" — i ;" | and upper bound of range:
max[ﬁghb) 1 ﬁghb) ’0], respectively.

(c) Finally, use the «/2 percentile among lower bounds of the bootstrap

sensitivity ranges, Qq /o { (min[ﬁglb)vl B ﬂ(:lz’o])be[B]}’ as a lower limit of

confidence interval and the 1 — a//2 percentile among upper bounds of the

bootstrap sensitivity ranges, Q1_q /2 {(max[ﬁg’lgvl _ ﬁii’zb),o])be[B]}, as a

upper limit of confidence interval for partially identified region.
Remark 4.3 Note that A = 1.0 means that there is no unmeasured confound-
ing. In this case, the 1 — @ percentile bootstrap confidence interval for partially
identified region is the same as the 1 —« percentile bootstrap confidence interval
of point estimate for the difference in adjusted RMST (3.7) obtained from the

adjusted Kaplan-Meier estimator (3.5).

4.8 Simulation study 2

In this Section, we perform two simulation studies to evaluate the performance
of 1) approximate optimization method and 2) sensitivity range and percentile

bootstrap confidence interval.
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4.8.1 Simulation study 2.1: Bias and computational

time

First, assume that the sensitivity range of the point estimates for the difference
in bias-adjusted RMST obtained from the direct optimization method is consid-
ered as the correctly calculated sensitivity range. Then, we illustrate that the
approximate optimization method is valid and practical by comparing the bias
and computational time between the two optimization methods. We simulated
the data as described in Section 3.3.1 with the following modifications: (i) let
Lo be the unmeasured confounder, (ii) consider the four values of the sensitivity
parameter A € {1.1,1.3,1.5,2.0}. Then, the total number of combinations of
Bo, ¢, A, and 7 is 80.

The parametric approximation of the PS, Pg(A = 1| L), was estimated
from logistic regression model. When estimating Pg(A = 1 | L1) from super-
population with sample size N = 1,000,000, 135(A = 1| L;) was range from
0.1321 to 0.8609 for By = —1.9 (i.e., Pg(A =1 | L1,L2) ~ 0.5) and from
0.3780 to 0.9640 for By = —0.425 (i.e., P3(A = 1| L1, La) ~ 0.8). Also, the
approximately true values of exp{hg,(l,u)} were exp{/i{go l,u)} = g, (1) —
Jo(l,u) € (1/1.602,1.606) for By = —1.9 and exp{hg, (I, u)} € (1/1.637,1.489)
for By = —0.425 where gg, (1) and go(I, u) were estimated from superpopulation
with sample size N = 1,000,000.

For each combination of coefficient for intercept term Sy in the exposure
generating model and censoring rate ¢, we simulated the data 200 times to
obtain the mean and range (minimum and maximum) of (i) bias and (ii)
computational time difference and ratio. When calculating the sensitivity

range of the estimates for the difference in bias-adjusted RMST, the bias was
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measured by calculating the difference between the lower (or upper) bound
of the estimates of the difference in bias-adjusted RMST obtained by the
approximate optimization method and that obtained by the direct optimization
method. Also, the computational time difference and ratio between the direct
optimization method and the approximate optimization method per each Monte
Carlo data was measured.

First, consider the case when 5y = —1.9. The simulation results are reported
in Figures 4.1 and 4.2 and Tables B.4.1-B.4.4. Regardless of A and 7, when
the censoring rate was less than 0.7, the bias was hardly different from O,
as seen in Figure 4.1 and Tables B.4.1 and B.4.2 (maximum mean bias for
lower bound: 0.000000 [range: 0.000000 to 0.000004]; minimum mean bias for
upper bound: 0.000000 [range: -0.000003 to 0.000000]). However, when the
censoring rate was greater than or equal to 0.7, the bias was slightly different
from 0 (maximum mean bias for lower bound: 0.000180 [range: 0.000000 to
0.017455]; minimum mean bias for upper bound: -0.000218 [range: -0.024271
to 0.000022]). Note that, in contrast to the increase in bias when the censoring
rate was greater than or equal to 0.7, the computational time difference and
ratio between two methods was not significantly different, as seen in Figure 4.2
and Tables B.4.3 and B.4.4 (maximum mean computational time difference:
4.07 [range: 2.18 to 6.44] seconds; maximum mean computational time ratio:
2.46 [range: 1.80 to 3.07] times). The results when 5y = —0.425 were similar
to those in By = —1.9, as can be seen from Figures B.5.1 and B.5.2 and
Tables B.5.1-B.5.4 in Appendix B.5.

These simulation results suggest that if the censoring rate is less than 0.7,

the approximate optimization method is not inferior to the direct optimization

method in terms of bias, but is superior to in terms of computational time.
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Therefore, we can use the approximate optimization method in case that the
censoring rate is less than 0.7. Otherwise, one can use the direct optimization
method to perform our sensitivity analysis, although it takes slightly more

computational time than the approximate optimization method.

4.8.2 Simulation study 2.2: Sensitivity range and

coverage rate

To evaluate the coverage rate of the percentile bootstrap confidence interval for
partially identified region (4.4) described in Section 4.7, we conducted a second
simulation study. As a result of the simulation results in Section 4.8.1, we con-
structed the percentile bootstrap confidence interval by using the approximate
optimization method.

We simulated the data as described in Section 3.3.1 with the following
modifications: (i) let Lo be the unmeasured confounder, (ii) consider Sy = —1.9
only, (iii) administrative censoring time was set to t. for all subjects where t, was
adjusted to obtain the simulated data that correspond to approximate censoring
rate ¢, and (iv) consider the three values of censoring rate ¢ € {0.0,0.3,0.5} and
the five values of the sensitivity parameter A € {1.0,1.1,1.3,1.5,2.0}. Then,
the total number of combinations of fFy, ¢, A, 7 is 30. We simulated 1,000
replications with sample size N = 500 for each censoring rate and constructed
the 90% and 95% percentile bootstrap confidence interval for partially identified
region with bootstrap resampling B = 1,000 times, respectively.

Considering that the PS was estimated using the measured confounder
only (i.e., L2 is unmeasured) and that the degree of unmeasured confounding
would be expected to be on the order of A, the true partially identified regions

were approximately calculated by using superpopulation with sample size
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N = 1,000,000 and true event times T (i.e., survival times when all subjects
experience the event of interest), for each combination of 7 and [y. In this case,
because there is no censored subject, the approximately true partially identified
region can be obtained by using analytic solution described in Section 4.5.
Based on 1,000 bootstrap replicates, both the median values for lower and upper
bounds of sensitivity range and the respective 90% or 95% percentile bootstrap
confidence interval were calculated. Also, the coverage rate was calculated as
the proportion of replications that the percentile bootstrap confidence interval
covered the true partially identified region.

The simulation results are reported in Table 4.1. The median sensitivity
range did not seem to differ from the approximately true partially identified
region although there was a slight difference when the censoring rate was 0.5
and A increased gradually. The percentile bootstrap confidence intervals for
partially identified region had desired coverage rate (90% or 95%) and did
not appear to be conservative, although there was a slight difference from the

desired coverage rate as the censoring rate increased.

4.9 Real data analysis 2

We applied the proposed sensitivity analysis methods described in this Sec-
tion to 1) German breast cancer study group (GBSG) data, available in
the survival package (Therneau, 2022), and 2) non-small cell lung cancer
(NSCLC) data, recently published medical research in Song et al. (2021). In
both data, the sensitivity range of the point estimates for the difference in
bias-adjusted RMST at the pre-specified time point and the 95% confidence
interval for theirs partially identified region that is constructed by the percentile

bootstrap with 1,000 replications were calculated.

47 :l_=-| '-\.I:_'l'



0760 [L012°0 ‘€0¥6°0] €060 [SG8T'0 ‘981670 [9€90°0 ‘6.08°0-] (16900 ‘%8080 0%
9760 [1910°0 ‘20..°0] 806°0 [6900°0- ‘06%L0-]  [L88T°0- ‘GL£9°07] (112170 ‘22£9°0] a1
LV6°0 [€6L0°0- ‘€¥89°0-] L06°0 [£001°0- ‘8€99°0-]  [9612°0- ‘905507 (67120~ ‘66750 el )
0560 [1881°0- ‘12850 016°0 [801Z°0- ‘0295°0-]  [892€°0- ‘0LF¥ 0] [veze 0- ‘echv 0] 11
T96°0 [e6%2°0- ‘2€Ts 0] 116°0 [L1LT°0- ‘7205°0-]  [398€°0- ‘¢98€°0-] [978€°0- ‘9¥8€ 0] 0T
9760 [0L02°0 ‘66€6°0] 2060 [188T°0 ‘9816°0-] (56900 ‘6.08°0-] (16900 ‘¥808°0-] 0%
L¥6°0 [0ST0°0 FTLLO] 2060 [6900°0- ‘86%L°0-]  [0921°0- ‘LL£9°07] [T12T°0- ‘2.£9°0] QT
0260 [7080°0- ‘8489°0-] 6060 [020T°0- ‘2£99'0-]  [9612°0- ‘909G 0] (6712 0- ‘6675°0-] €1 €0 ¢
7860 [1681°0- ‘€¥85°0] 6060 [0112°0- ‘2295°0-] [892€°0- ‘0LF¥ 0] [FeTe 0- ‘e5F¥ 0] T
7560 [F192°0- ‘0225 0] 016°0 (612270~ ‘6205°0-]  [998¢°0- ‘998€°0-] [o78¢°0- ‘o¥8E 0] 071
7960 [980z°0 ‘86£6°07] 106°0 [€981°0 ‘2816°0-]  [9€90°0 ‘6,080 (16900 ‘7808°0-] 0¢
L¥6°0 [6810°0 ‘20LL 0] 806°0 [200°0- ‘€6%L°07]  [0921°0- ‘LL£9°07] [T12T°0- ‘2.£9°0] QT
6760 [£620°0- ‘578970 016°0 [CTOT'0- ‘6£99°0-]  [36T2°0- ‘902507 (671270~ ‘66750 e 00
7560 [988T°0- ‘€£85°0-] 206°0 [8112°0- $29¢°0-]  [892€°0- ‘0L¥¥ 0] [veTe0- ‘eskv 0] T'1
¥66°0 (8672 0- ‘G£TS 0] 606°0 (92,770~ ‘€205°0-]  [998¢°0- ‘998€°0-] [9¥8¢°0- ‘O¥8¢°0-] 01
g88°0 [98€0°0 ‘0TOT 0] 9280 [17€0°0 ‘9960°0-]  [L810°0 ‘#890°0-] (€100 ‘9690°0-] 0¢
7060 [8610°0 ‘€9.0°0] 6£8°0 [2910°0 ‘L120°0] [8200°0- ‘16%0°0-] [¥200°0- ‘26%0°0-] Q1
8160 11100 ‘029070 898°0 (92000 ‘T190°0-]  [9010°0- ‘66£0°0-] (0100~ ‘90%0°0-] o1 g0
LE6°0 (L1000 ‘FEC0O0] 888°0 [L100°0- ‘¢6%0°0-]  [9610°0- ‘€0£0°0-] [9610°0- ‘¢0£0°0-] T'T
760 [2£00°0- ‘0L¥0°0-] £68°0 [L900°0- F€F0°0] [8720°0- ‘8%20°0-] (062070~ ‘0520°0-] 01
688°0 [88€0°0 ‘TT0T 0] qz8'0 [67€0°0 ‘2860°0-]  [L610°0 ‘#890°0-] (€100 ‘9690°0-] 0%
9060 [8610°0 ‘€9.0°0] £r8°0 (19100 ‘C120°0-] [8200°0- ‘16%0°0-] [¥200°0- ‘26%0°0-] G'1
6160 [2110°0 “€990°0-] G98°0 (92000 ‘01900~  [9010°0~ '66£0°0"] [€010°0- *9070°0-] €1 €0 I
GE6°0 (87000 ‘Gec00-] 18870 [L100°0- ‘96%0°0-]  [9610°0- ‘€0£0°0-] [9610°0- ‘¢0£0°0-] T'T
8760 [2£00°0- ‘2L¥0°0] 968°0 (90070~ ‘9€¥0°0-] [8720°0- ‘8%20°0-] [0820°0- 0520°0-] 01
168°0 [8¢0°0 ‘910T°0] 0280 [e7e0°0 ‘2860°0-]  [L2T00 ‘¥890°0-] [e€10'0 ‘969070 0¢
8060 [96T0°0 ‘292070 L¥8°0 [86T0°0 ‘6120°0-]  [8200°0- ‘16¥0°0-] [¥200°0- ‘26%0°0-] c1
9260 [TT10°0 ‘€590°0] 198°0 (92000 ‘T190°0-]  [9010°0- ‘66£0°0-] [€0T0°0- ‘90%0°0-] el 00
1€6°0 [8100°0 ‘¥£<0°0] 988°0 [9100°0- ‘2670°0-]  [36T0°0- ‘€0£0°0-] [9610°0- ‘50£0°0-] T'1
76°0 [¥£00°0- ‘¢L¥0°07] G680 [6900°0- ‘9¢¥0°0-]  [8%20°0- ‘8¥20°0-] [0520°0- ‘0920°0] 01
08RIOA0))  [RAIOJUI 9OUOPYUO)  98RIGAO))  [RAISIUI 9OUSPYUO)) (uetpoIN) (eny Apeyeurrxorddy) 918l
G6°0 (0 — 1) [PA9] @oULpPYUO)) 06°0 (P — 1) [oA9] @ouEPYUO)  dFURI AJIAIIISUSG  UOLZSI PayIjuapl A[[eIjred v Suriosua)) +
(61— = 0g) 91RI 93RISA0D T[IIM [RAISIUI 9DUSPYUOD PUR o3URI ANAINISUSS  ['F 9[qR],

48



4.9.1 Real data analysis 2.1: GBSG data

GBSG data were included for patients with histologically verified primary
breast cancer (positive regional lymph nodes but no distant metastases) to
investigate the effects of chemotherapy and hormone therapy on the recurrence-
free survival time (Schumacher et al., 1994). This data contained 686 patients
with complete data for the prognostic factors. Survival outcome was recurrence-
free survival time (days). Exposure was 2 years of hormonal therapy with
tamoxifen. Event indicator was dichotomized into alive without recurrence and
recurrence or death (censoring rate: 61.7% [235 of 440] for hormone-treated
group and 53.4% [152 of 246] for hormone-untreated group). And, prognostic
factors which were considered in Model Section of Royston and Altman (2013)
were age at primary surgery (years), menopausal status (premenopausal vs.
postmenopausal), tumor size (mm), the number of positive lymph nodes (n),
and estrogen receptors (fmol/1). We preprocessed this data as delineated in
Royston and Altman (2013). Detailed information about GBSG data is shown
in Schumacher et al. (1994) and Royston and Altman (2013).

Using this data, we validated whether the mean recurrence-free survival
time between hormonal therapy groups differs when patients are followed up
to 7. Because Royston and Altman (2013) were considered 2 years and 5
years recurrence-free survival probabilities, we considered here two values of
specific time point 7 (2 years [365.25 x 2 days] and 5 years [365.25 x 5 days]).
And, we performed a sensitivity analysis for unmeasured confounding via our
proposed method. First, the PS was estimated via a logistic regression model
conditioning on prognostic factors. In the PS model, age was transformed into

both age® and age® x log(age), tumor size was categorized into three groups
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(< 20 mm, 20 to 50 mm, and > 50 mm), and the number of positive lymph
nodes was transformed into square root value. We considered the seven values
of the sensitivity parameter A € {1.0, 1.1, 1.2, 1.3, 1.5, 1.7, 2.0}.

In GBSG data, the bias of lower and upper bound of sensitivity range
between the approximate and direct optimization methods was hardly different
from 0 (maximum bias for lower bound of sensitivity range < 0.000001 and
minimum bias for upper bound of sensitivity range > -0.000001, for 7 = 2 years;
maximum bias for lower bound of sensitivity range < 0.000001 and minimum
bias for upper bound of sensitivity range -0.000102, for 7 = 5 years). Also,
the bias of lower and upper bound of 95% confidence interval was less than
0.000001 and greater than -0.000001 for both values of 7. Therefore, we only
report the results obtained by the approximate optimization method.

In Table 4.2 and Figure 4.3, the point estimate of the difference in adjusted

RMST up to 5 years (i.e., A = 1.0) was statistically significant (156.32 [95%

Table 4.2 Sensitivity range and 95% confidence interval for difference in
bias-adjusted RMST up to 2 and 5 years

Sensitivity range 95% confidence interval
T A (days) (days)
Lower bound Upper bound Lower bound Upper bound
1.0 22.89 22.89 -2.37 45.52
1.1 12.88 32.59 -13.44 54.23
1.2 3.50 41.20 -23.97 62.11
2y 1.3 -5.35 48.92 -33.30 69.58
1.5 -21.66 62.24 -51.35 82.59
1.7 -36.42 73.47 -66.92 93.68
2.0 -56.13 87.59 -88.57 109.04
1.0 156.32 156.32 60.22 261.67
1.1 103.62 207.99 4.82 309.70
1.2 54.67 254.07 -45.45 350.81
5y 1.3 8.96 295.44 -93.26 387.46
1.5 -73.75 366.76 -178.17 450.61
1.7 -146.62 426.23 -251.04 507.01
2.0 -241.02 499.29 -346.60 575.41
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CI: 60.22 to 261.67] days), although during 2 years of follow-up, it was not
significant (22.89 [95% CI: -2.37 to 45.52] days). As a result of the sensitivity
analysis, results drawn only from measured prognostic factors were quite
sensitive to unmeasured confounding because the confidence interval contained
0 for sensitivity parameter A near 1.1. In the previous study (Schumacher
et al., 1994), the effect of hormonal therapy on recurrence-free survival was
not statistically significant (hazard ratio: 0.75 [95% CIL: 0.54 to 1.04]; P =
.084), which was evaluated by means of a multivariate Cox model. In our
sensitivity analysis results, by using the difference in RMST (i.e., absolute risk)
as the effect measure of exposure, we showed that even in the presence of weak
unmeasured confounding, the 95% confidence interval contained 0. It suggests
that great caution is required in interpreting the results and additional studies
are needed to determine the effect of hormonal therapy with tamoxifen on

recurrence-free survival.

4.9.2 Real data analysis 2.2: NSCLC data

NSCLC data were included patients with initial diagnosis of NSCLC to evaluate
the prognostic performance of the proposed N descriptors for clinical staging
(Song et al., 2021). This data contained 1,271 patients who divided by four
clinical N stages (cNO, ¢cN1, cN2, and ¢N3). For the illustration of our method,
we only considered 248 patients in ¢N1 or cN2 group. Survival outcome was
overall survival, which was measured from the date of staging chest CT to
the date of any cause of death. The study entry times were different for each
patients, but patients without death records were administrative censored on
May 15, 2020 (censoring rate: 48.8% [42 of 86] for ¢N1 group and 25.3% [41 of

162] for cN2 group). Prognostic factors which were considered in Cox model of
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Song et al. (2021) were age (< 60 years vs. > 60 years), sex (male vs. female),
smoking history (never-, former-, and current-smoker), family history of lung
cancer (yes vs. no), tumor type (solid vs. subsolid), tumor location (upper or
middle vs. lower), histologic type (adenocarcinoma vs. others), and clinical T
stage (cTis/cT1, cT2, ¢T3, and c¢T4). Detailed information about data is given
in Song et al. (2021).

Using this data, we compared how the mean overall survival time between
risk groups (cN1 vs. ¢N2) differs when patients are followed up to 7. Because
Song et al. (2021) were considered a 5 years overall survival probabilities,
we also set a specific time point 7 to 5 years (365.25 x 5 days). And, we
performed a sensitivity analysis for unmeasured confounding via our proposed
method. First, to balance the probability of being in each risk group, the
probability belonging to ¢N2 conditioning on prognostic factors (alike PS)
was estimated via a logistic regression model. Among those prognostic factors
considered in Song et al. (2021), tumor type was excluded from the model
because patients with subsolid tumor were only 3 and 1 in ¢cN1 group and cN2
group, respectively. Also, clinical T stage was excluded from the model because

it was simultaneously measured with the clinical N stage. We considered the

seven values of the sensitivity parameter A € {1.0, 1.1, 1.2, 1.3, 1.5, 1.7, 2.0}.

In NSCLC data, the mean bias of lower and upper bound of sensitivity
range between methods was hardly different from 0 (maximum bias for lower
bound of sensitivity range: < 0.000001 and minimum bias for upper bound of

sensitivity range: > —0.000001). Also, the mean bias of lower and upper bound

of 95% confidence interval was less than 0.000005 and greater than -0.000001.

Therefore, we only report the results obtained by the approximate optimization

method.
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Table 4.3 Sensitivity range and 95% confidence interval for difference in
bias-adjusted RMST up to 5 years

Sensitivity range 95% confidence interval
A (days) (days)
Lower bound Upper bound Lower bound Upper bound
1.0 -379.61 -379.61 -546.02 -208.97
1.1 -433.79 -324.37 -594.28 -150.17
1.2 -482.38 -273.13 -637.45 -96.95
1.3 -526.35 -225.45 -677.52 -45.74
1.5 -602.87 -139.11 -744.85 43.32
1.7 -667.10 -63.09 -802.77 118.08
2.0 -746.28 35.00 -874.91 219.37
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Figure 4.4 Difference in bias-adjusted RMST up to 5 years. Red solid line
represents the difference in adjusted RMST. Black dashed line represents 0.
Dark pink region represents the interval of point estimate. Light pink region
represents the 95% confidence interval of point estimate. Blue points represent
the lower and upper bound of sensitivity range using the sensitivity parameter
A e {1.0,1.1,1.2, 1.3, 1.5, 1.7, 2.0}.

In Table 4.3 and Figure 4.4, the point estimate of the difference in bias-
adjusted RMST up to 5 years for A = 0 was statistically significant (-379.61

[95% CI: -546.02 to -208.97] days). To the best our knowledge, it is thought that
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there is no unmeasured confounder that would change the probability of being
in each risk group as strong as age. When the other prognostic factors (i.e., sex,
smoking history, family history of lung cancer, tumor location, and histologic
type) are considered as common confounders, the odds ratio of the probabilities
of being in each risk group with and without the age variable changes at most
1.2629 (range: [1/1.1426, 1.2629]). Because the confidence interval did not
contain 0 for sensitivity parameter A near 1.4 in our sensitivity analysis, the
result drawn only from measured prognostic factors was considerably robust
to unmeasured confounding. According to the American Joint Committee on
Cancer (AJCC) (Edition et al., 2017), the 5 years overall survival probabilities
for clinical N1 and N2 stage were 37% and 23%, respectively. Also, the hazard
ratio between risk groups estimated by a Cox model adjusting for histology
grade, sex, age, and geographical region were 1.42 (P < 0.0001). Along with
AJCC, our sensitivity analysis further strengthens the evidence that there is

the difference in mean life expectancy between two risk groups.
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Chapter 5

Discussion

The difference in RMST has recently been used frequently as an alternative
measure to hazard ratio for survival analysis in medical fields (Royston and
Parmar, 2013; Uno et al., 2014; Trinquart et al., 2016; Kim, Uno, and Wei,
2017; Pak et al., 2017; Kloecker et al., 2020; Han and Jung, 2022). To reduce
bias of confounding, many statistical methods that make it possible to estimate
the adjusted RMST have been proposed (Andersen, Hansen, and Klein, 2004;
Cole and Hernan, 2004; Xie and Liu, 2005; Tian, Zhao, and Wei, 2014; Chatton
et al., 2022). Based on simulation studies, we confirmed that all the methods
being considered provide the unbiased estimates with the percentile bootstrap
confidence intervals achieving near nominal coverage probability when there
is neither a large censoring rate nor extreme PS. Also, the bias was reduced
and the coverage rate seemed to improve, as the sample size increased.
Despite increasing usage of the difference in RMST as an effect measure,
to our knowledge, there were few available sensitivity analysis methods for
unmeasured confounding when evaluating the estimate of the difference in

adjusted RMST. In this thesis, we proposed a novel propensity score-based
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sensitivity analysis method for the estimate of bias-adjusted RMST to assess the
impact of probably possible unmeasured confounding in observational survival
studies. The proposed method was a direct extension of existing sensitivity
model (Zhao, Small, and Bhattacharya, 2019) which quantifies the degree of
unmeasured confounding where subjects who might appear similar in terms of
measured prognostic factors L may be different in their odds of receiving the
exposure by at most A. Given a user-specified sensitivity parameter A, one can
obtain a sensitivity range of the estimates for the difference in bias-adjusted
RMST up to pre-specified time point 7 along with a confidence interval with
asymptotically at least 1 — « coverage probability.

To obtain the sensitivity range of the estimates for the difference in bias-
adjusted RMST, we should solve the optimization problem (4.5). However, as
seen in Section 4.4, the optimization problem (4.5) could not be transformed
into linear (fractional) programming problem in general survival analysis, and
thus there is no analytic solution. Although it can be directly solved by using
an optimization algorithm such as L-BFGS-B, the computational time was non-
negligible. Therefore, we proposed an approximate optimization method and
showed that by resorting to intensive Monte Carlo simulation studies, it can be
an alternative method that is not inferior to the direct optimization method
in terms of bias but superior in terms of computational time. In performing
our sensitivity analysis, we recommend using the approximate optimization
method in case that the censoring rate is less than 0.7. Otherwise, one may use
the direct optimization method although it takes slightly more computational
time than the approximate optimization method.

Compared with other sensitivity analysis methods, the proposed method

has the advantage that one can perform the sensitivity analysis regardless
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of model used for estimating the PS. Also, no assumptions for the relation
between and the distribution of measured and unmeasured confounders are
required. Furthermore, our method needs only one sensitivity parameter A.
However, the challenge lies in specifying a sensible sensitivity parameter A
which quantifies the degree of unmeasured confounding. Therefore, considerable
domain knowledge about the assignment of exposure may be needed to limit a
controversy about potential unmeasured confounding. In other words, we need
to know how much unmeasured confounding would change the PS. Taking
our second real data analysis (NSCLC) in Section 4.9.2 as an example, when
considering the overall survival time in non-small cell lung cancer and the
nature of age, one might argue that unmeasured confounding will not be as
strongly associated with a probability of being in each risk group (¢N1 vs. cN2)
as is the age variable.

Our sensitivity analysis method was based on the IP weighted Kaplan-
Meier curve via Xie and Liu (2005). Alternatively, when the unmeasured
confounding is suspected and the true effect of exposure is represented by
a regression model that includes the exposure as well as both the measured
and unmeasured confounders (such as pseudo-observation method described in
Section 3.2.1.1 or ANCOVA-type model described in Section 3.2.1.2), Lin, Psaty,
and Kronmal (1998)’s sensitivity analysis method can be used. However, it has
many limitations and is not easy to apply in practice. We simply described their
sensitivity analysis method for unmeasured confounding and its limitations in
Appendix C. Also, one might want to perform the sensitivity analysis on the
results of Cox model adjusted for potential confounders using IP weighting
proposed by Cole and Hernan (2004) described in Section 3.2.2.1 or using

G-computation proposed by Chatton et al. (2022) described in Section 3.2.3.

58 :l_=-| '-\.I:_'l'



However, the parametric sensitivity model (Definition 4.2) may not be directly
applicable to methods of Cole and Hernan (2004) and Chatton et al. (2022)
since the equation for the estimate of exposure effect expressed as the shifted
PS (such as the estimate of the difference in bias-adjusted RMST) cannot
be readily derived from Cox model. Further studies are needed to develop
the sensitivity analysis method for unmeasured confounding based on Cole
and Hernan (2004)’s adjusted survival curve or Chatton et al. (2022)’s G-
computation method.

Our study has several limitations. First, our proposed method depends on
the assumptions such as the positivity and consistency which are in fact not
unique to our method but necessary in any propensity score-based methods.
Similarly, the proposed sensitivity analysis methods can be unstable when the
PSs are highly variable. In this case, one can stabilize the PSs via truncation
(Potter, 1993; Cole and Hernan, 2008). Second, we only considered a single
binary exposure. It can be extended to multi-valued categorical, ordinal, or
continuous exposures although the underlying sensitivity model may become
complex. Finally, the performance of our sensitivity analysis methods inevitably
resorted to simulation studies, so that more evidence will be needed to use
widely in real applications. However, based on our intensive simulation studies,
the median sensitivity range did not seem to differ from the approximately true
partially identified region, and the percentile bootstrap confidence intervals for
partially identified region had desired coverage rate and did not appear to be
conservative, although there was a slight degradation in performance as the
censoring rate increased.

In summary, we never know whether the assumption of conditional ex-

changeability is satisfied in observational study. Consequently, it is of interest
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to conduct a sensitivity analysis to quantify how much the analysis results
are varied by unmeasured confounding. In accordance with importance of
sensitivity analysis, we proposed a propensity score-based sensitivity analysis
method for unmeasured confounding of the difference in adjusted RMST in

observational survival studies.
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Appendix A

Appendix for Chapter 3

A.1 Example R codes

Here, we consider simulation setting described in Section 3.3.1 as an example

with the following modifications: (i) sample size N is 10,000 (ii) consider

censoring rate to be 0.5 (i.e., the value of scale parameter A = 0.354) (iii)

consider the true PS to be approximately 0.5 only (i.e., Sy = —1.9).

## Function for making simulation dataset

simulate_data <- function(dataset, "Weibull", 10000,
list( 0.95, 1.8),
list( 0.354, 0.6),
0.5, -1.9) {

## Coef of the time-to-event model (Exponential or Weibull)
bAY <- log(2.5)
bL1Y <- 1log(0.7)
bL2Y <- log(1.2)

## Coef of exposure model (logistic)

b0 <- b0 # -1.9 ==> P(A=1|L)=0.5 // -0.425 ==>P(A=1/L)=0.8
bL1A <- 0.8
bL2A <- 1.5

## Generate confounders (L1°L2)
for (i in 1:1) {

assign(paste("L", i, """y, rbinom(N, 1, 0.5))
}
for (i in 2:2) {

assign(paste("L", i, "), rnorm(N, 1, 0.572))
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## Generate exposure A
probA <- plogis(bO + bL1A * L1 + bL2A * L2)
A <- rbinom(N, 1, prob=probA)

## Coefficients
beta.all <- c(bAY, bL1Y, bL2Y)

## Draw from a U(0,1) random variable
u <- runif(N)

## Simulate survival times depending on the baseline hazard (exposed)
Covariate.ex <- cbind(rep(1, N), L1, L2)

if (baseline == "Exponential) {
t.true.ex <- 5x(-log(u))/(params$lambda * exp(Covariate.ex %*% beta.all))
} else if (baseline == "Weibull") {

t.true.ex <- 5x(-log(u)/(params$lambda *
exp(Covariate.ex %*) beta.all))) " (1/params$nu)

}

## Draw from a U(0,1) random variable
ustar <- runif(N)
## Simulate survival times depending on the baseline hazard (unezposed)
Covariate.unex <- cbind(rep(0, N), L1, L2)
if (baseline == "Exponential) {
t.true.unex <- 5x(-log(ustar))/(params$lambda *
exp(Covariate.unex %*% beta.all))
} else if (baseline == "Weibull") {
t.true.unex <- 5*(-log(ustar)/(params$lambda *
exp(Covariate.unex %% beta.all)))” (1/params$nu)
}
# plot(density(t.true))
t.true <- ifelse(A == 1, t.true.ex, t.true.unex)

## Simulate cenosring times
t.cen <- rweibull(N, shape=params.cen$nu,
scale=1/(params.cen$lambda” (1/params.cen$nu)))

## Make observed survival time
t.obs <- ifelse(t.true <= t.cen, t.true, t.cen)
status <- ifelse(t.true <= t.cen, 1, 0)

## True survival probability
st.ex <- exp(-params$lambda * (t.true.ex/5) params$nu *
exp(Covariate.ex %*), beta.all))
st.unex <- exp(-params$lambda * (t.true.unex/5) params$nu *
exp(Covariate.unex %*J, beta.all))

## Return data frame

dat.temp <- data.frame(dataset=dataset, baseline=baseline,
id=c(1:N), N=N, cen.rate=cen.rate,
A=A, L1=L1, L2=L2,
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t.true.ex, t.true.unex,

t.true, t.cen, t.obs,
status, st.ex, st.unex,
FALSE, NULL)
return(dat.temp)

}

## Make simulation dataset

set.seed(221205)

sim.dat <- simulate_data( 1, "Weibull", 10000,
list( 0.95, 1.8),

list( 0.354, 0.6),
0.5, -1.9)

A.1.1 R code for Kaplan-Meier estimator

### Estimate of RMST difference in RCT

## Method 1
library(survival)
library (RISCA)
kaplan.fit <- survfit(Surv(t.obs,status) ~ A, sim.dat)
dat.surv <- data.frame( summary (kaplan.fit)$strata,
summary (kaplan.fit)$time,
summary (kaplan.fit)$surv)
rmst.0.0 <- rmst( dat.surv[dat.surv$strata == "A=0",]$time,
dat.surv[dat.surv$§strata == "A=0",]$surv,
5, 's')
rmst.1.0 <- rmst( dat.surv[dat.surv$strata == "A=1",]$time,
dat.surv[dat.surv$strata == "A=1",]$surv,
5, 's')

# Estimate of RMST difference
print(rmst.1.0 - rmst.0.0, 5)

## [1] -0.96697

### Method 2

library(survRM2)
# Using rmst2 function without "covariates" argument
rmst2.without.cov <- rmst2( sim.dat$t.obs,

sim.dat$status, sim.dat$A, 5)
print (rmst2.without.cov)

## The truncation time: tau = 5 was specified.

#i#
## Restricted Mean Survival Time (RMST) by arm
#i# Est. se lower .95 upper .95
## RMST (arm=1) 2.693 0.025 2.645 2.741
## RMST (arm=0) 3.660 0.026 3.609 3.711
#i#

## Restricted Mean Time Lost (RMTL) by arm
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## Est. se lower .95 upper .95

## RMTL (arm=1) 2.307 0.025 2.259 2.355

## RMTL (arm=0) 1.340 0.026 1.289 1.391

##

## Between-group contrast

#i# Est. lower .95 upper .95 p
## RMST (arm=1)-(arm=0) -0.967 -1.037 -0.897 0O
## RMST (arm=1)/(arm=0) 0.736 0.719 0.753 0
## RMTL (arm=1)/(arm=0) 1.722 1.648 1.798 0

# Estimate of RMST difference
print (rmst2.without.cov$unadjusted.result[1,1], 5)

## [1] -0.96697

A.1.2 R code for pseudo-observation

## Andersen et al.'s RMST regression-based method (Pseudo-observation)

library (pseudo)

library(geepack)

rmst.pseudo <- pseudomean( sim.dat$t.obs, sim.dat$status,

fit_pseudo <- geeglm(rmst.pseudo ~ A + L1 + L2, sim.dat, id,
"gaussian", "independence",

summary (fit_pseudo)

## Call:

## geeglm(formula = rmst.pseudo ~ A + L1 + L2, family = "gaussian",

## data = sim.dat, id = id, corstr = "independence", scale.fix = F)

##

## Coefficients:

#it Estimate Std.err Wald Pr(>|Wl()

## (Intercept) 3.62491 0.07770 2176.350 <2e-16 **x*

## A -1.02840 0.03765 746.123 <2e-16 **x

## L1 0.36292 0.03704 96.025  <2e-16 **¥x

## L2 -0.11228 0.07471 2.259 0.133

## -—-

## Signif. codes: 0 ’**x’ 0.001 %%’ 0.01 ’x> 0.05 >.” 0.1 > ’ 1

##

## Correlation structure = independence

## Estimated Scale Parameters:

##

## Estimate Std.err

## (Intercept) 3.334 0.03988

## Number of clusters: 10000 Maximum cluster size: 1

# Estimate of RMST difference with Wald confidence interval
print (c(coef (fit_pseudo) [2], confint.default(fit_pseudo)[2,]), 5)

#i# A 2.5 % 97.5 %
## -1.02840 -1.10219 -0.95461
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A.1.3 R code for ANCOVA-type model

## Tian et al.'s RMST regression-based method (ANCOVA-type adjusted analyses)
library (survRM2)
# Using rmst2 function with "coavariates" argument

rmst2.with.cov <- rmst2(

sim.dat$A,

print (rmst2.with.cov)

#i#
#i#
#i#
#i#
#i#
#i#
#i#
#i#
#i#
#i
#i#
#i#
#i#
#i#
#it
#i#
#i#
#it
#i#
#i#
#it
#i#
#i#
#it
#i
#i#
#it
#i#

The truncation time: tau = 5 was

Summary of between-group contrast

sim.dat$t.obs,

5,

specified.

sim.dat$status,

sim.dat[,c("L1","L2")])

(adjusted for the covariates)

p lower .95 upper .95
3.808
-0.954
0.439
0.017

Est. lower .95 upper .95 p

RMST (arm=1)-(arm=0) -1.026 -1.098 -0.954 0
RMST (arm=1)/(arm=0) 0.722 0.706 0.739 0
RMTL (arm=1)/(arm=0) 1.778 1.701 1.859 0
Model summary (difference of RMST)

coef se(coef) z
intercept 3.648 0.081 44.836 0.000 3.489
arm -1.026 0.037 -27.966 0.000 -1.098
L1 0.363 0.039 9.336 0.000 0.286
L2 -0.137 0.079 -1.739 0.082 -0.292
Model summary (ratio of RMST)

coef se(coef) z p exp(coef)
intercept 1.292 0.025 51.054 0.00 3.641
arm -0.325 0.012 -27.543 0.00 0.722
L1 0.114 0.012 9.355 0.00 1.121
L2 -0.043 0.025 -1.750 0.08 0.957
Model summary (ratio of time-lost)

coef se(coef) z p exp(coef)
intercept 0.295 0.046 6.345 0.000 1.343
arm 0.576 0.023 25.306 0.000 1.778
L1 -0.199 0.022 -9.225 0.000 0.820
L2 0.075 0.043 1.717 0.086 1.077

# Estimate of RMST difference
print(rmst2.with.cov$adjusted.result[1,1], 5)

#i#

[1] -1.02644
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.95
465
.706
094
.912
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.226
.701
.786
.990

upper .95

3.827
0.739
1.148
1.005

upper .95

1.471
.859
.855
.173
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A.1.4 R code for IP weighted Cox model

library(survival)

library(RISCA)

## Calculate the stabilized IP weights

denom.fit <- glm(A ~ L1 + L2, family=binomial, data=sim.dat)

pd.A <- predict(denom.fit, type="response')

numer.fit <- glm(A~1, family=binomial(), data=sim.dat)

pn.A <- predict(numer.fit, type="response")

sim.dat$sw <- ifelse(sim.dat$A == 0, ((1-pn.A)/(1-pd.A)), (pn.A/pd.A))

#### Cole and Hernan’s adjusted survival curve with IP Weights

### Method 1

## Fitting a weighted Coxz model with robust standard errors

cox.fit <- coxph(Surv(t.obs,status) ~ strata(A) + cluster(id),

weights=sw, data=sim.dat)

adsurv.fit <- survfit(cox.fit)

dat.surv <- data.frame(strata=summary(adsurv.fit)$strata,
time=summary(adsurv.fit)$time,
surv=summary (adsurv.fit)$surv)

rmst.0.0 <- rmst(times=dat.surv[dat.surv$strata == "A=0",]$time,
surv.rates=dat.surv[dat.surv$strata == "A=0",]$surv,
max.time=5, type='s')

rmst.1.0 <- rmst(times=dat.surv[dat.surv$strata == "A=1",]$time,
surv.rates=dat.surv[dat.surv$§strata == "A=1",]$surv,

max.time=5, type='s')
# Estimate of RMST difference
print(rmst.1.0 - rmst.0.0, 5)

## [1] -1.02274

### Method 2

## Using survey package

library(survey)

library(RISCA)

sdes <- svydesign(id=" 0, weights="sw, data=sim.dat)

dfit <- svykm(Surv(t.obs, status) ~ A, design=sdes, se=TRUE)

rmst.0.2 <- rmst(times=dfit$ 0 $time, surv.rates=dfit$ 0 $surv,
max.time=5, type='s')

rmst.1.2 <- rmst(times=dfit$ 1 $time, surv.rates=dfit$ 1 $surv,
max.time=5, type='s')

# Estimate of RMST difference

print(rmst.1.2 - rmst.0.2, 5)

## [1] -1.02274
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A.1.5 R code for adjusted Kaplan-Meier estimator

### Xie and Liu’s adjusted Kaplan-Meter estimator

library (RISCA)
coxipw <- ipw.survival( sim.dat$t.obs, sim.dat$status,
sim.dat$A, sim.dat$sw)
rmst.0.3 <- rmst( coxipw$table.surv$times [coxipw$table.surv$variable == 0],
coxipw$table.surv$survival [coxipw$table.surv$variable == 0],
5, 's')
rmst.1.3 <- rmst( coxipw$table.surv$times [coxipw$table.surv$variable == 1],
coxipw$table.surv$survival [coxipw$table.surv$variable == 1],
5, 's')

# Estimate of RMST difference
print(rmst.1.3 - rmst.0.3, 5)

## [1] -1.02297

## Use Conner et al's "akm_rsmt" R function from GitHub

## to estimate the wariance for RMST difference

akm rsmt <- devtools::source_url(
"https://github.com/s-conner/akm-rmst/blob/master/AKM rmst.R?raw=TRUE"

Y$value

akm.rsmt.with.sw <- akm_rsmt( sim.dat$t.obs, sim.dat$status,
factor(sim.dat$A), sim.dat$sw, 5,
.05, 0, max (sim.dat$t.obs))

## RMST calculated up to tau = 5

##

## Restricted Mean Survival Time (RMST) per Group
##

## RMST SE

## Group 0 3.679 0.027
## Group 1 2.656 0.025

##

## Restricted Mean Survival Time (RMST) Differences

##

## Est. SE CIL CIU p

## Groups 1 vs. O -1.023 0.037 -1.095 -0.951 0

##

## Restricted Mean Survival Time (RMST) Ratios

##

## Log Est. SE Est. CIL CIU p
## Groups 1 vs. O -0.326 0.012 0.722 0.705 0.739 0
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A.1.6 R code for G-computation

### Chatton et al's G-computation with a Cox model

library (RISCA)

## Fit Cox model with confounders

cox.cdt <- coxph(Surv(t.obs,status) ~ A + L1 + L2, sim.dat, TRUE)

## Set the tterations to 10 because of computational time

gc.ate <- gc.survival( cox.cdt, sim.dat, "A", "t.obs",
"status", 5, 10, "ATE",
D)

# Estimate of RMST difference with bootstrap confidence interval
print(gc.ate$deltal1,3,4], 5)

#i# estimate ci.lower ci.upper
## 1 -1.03037 -1.12190 -0.93884

A.2 Proof of true value for difference in

RMST

In the equation for the true value of conditional RMST (3.10), the first and
second equalities follow from the definition of RMST (2.2). The third equality
holds because the true event times were generated from Cox model with Weibull-

distributed baseline hazard (3.9). Now, we show in detail how the last equality

holds.

Proof. To begin with, let k = exp{log(2.5)a + log(1.2)l; + log(0.7)l2}. Recall

from (3.10) that the true value of conditional RMST is

[ ] 0[5

" 5 1&g o) 8t

] exp{log(2.5)a+log(1.2)l1+1og(0.7)l2}




5
When substituting ¢ for ——u, u = and dt =

v v

T kEXtY 5 5
exp| — dt = / exp(—u") du. A21
/0 [ ( 5 )] kv av Jo =) (421

Note that f exp(—u”)du is a special integral of incomplete gamma function

du. Then,

(Abramowitz and Stegun, 1964). That is,

/exp(—u”) du = —M. (A.2.2)

14

where I'(s,z) = fmoo t5~lexp(—t)dt is the upper incomplete gamma function.

Using the fact that (A.2.2), (A.2.1) is written by

1
v

N

kv A
5
/ exp(—u”) du
0

1.1
kvAvr

I [ r(;,uV)] 5
— 1.1 |
kv \v v o

1 v 1
:?1[—F(,kM_>+F<m>l (A.2.3)
vkv \v v’ 5 v

Because the ordinary gamma function is defined as

T

5
kv \v

I'(s) = /000 5L exp(—t) dt

and the lower incomplete gamma function is defined as

A(s,x) = / £ eap(—t) dt,
0

we have

I'(s) =T1(s,0) and ~(s,z) +I'(s,z) =T(s). (A.2.4)
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Then, using properties in (A.2.4), (A.2.3) is reduced by

1 kMTY 1 1 kMY
vkv \v S v vkv \v v.5

Therefore, the true value of conditional RMST is

v’ 5
a

pe

- (1 exp{log(2.5)a + log(1.2)l; + log(0.7)l2})\7”>
X
() =

v x (exp{log(2.5)a + log(1.2)l1 + log(0.7)l2}) Vv s av’

A.3 Simulation study 1 results for sample size

1,000

Table A.3.1 Simulation study 1 results (N = 1,000): Pseudo-observation

True Censoring

T RMST E(A|L) rate RMST  Bias 95% CI Coverage
0.1 -0.027 0.000  [-0.043, -0.011] 0.945
0.3 -0.027 0.000  [-0.044, -0.011] 0.949
0.5 0.5 -0.027 0.000  [-0.045, -0.009] 0.938
0.7 -0.027 0.000  [-0.046, -0.009] 0.937
1 -0.027 0.9 -0.027 0.001  [-0.050, -0.004] 0.947
0.1 -0.028  -0.001  [-0.045, -0.010] 0.935
0.3 -0.028  -0.001  [-0.046, -0.009] 0.924
0.8 0.5 -0.028  -0.001  [-0.047, -0.008] 0.945
0.7 -0.028  -0.001  [-0.049, -0.007] 0.933
0.9 -0.027 0.000  [-0.052, -0.001] 0.943
0.1 -0.416 0.001  [-0.517, -0.314] 0.945
0.3 -0.418  -0.001 [-0.527, -0.310] 0.950
0.5 0.5 -0.417  -0.001 [-0.534, -0.297] 0.939
0.7 -0.414 0.002  [-0.551, -0.274] 0.934
3 0417 0.9 -0.411 0.006 [-0.617, -0.197] 0.950
0.1 -0.426  -0.010  [-0.542, -0.305] 0.930
0.3 -0.427  -0.011 [-0.553, -0.295] 0.953
0.8 0.5 -0.425  -0.009 [-0.564, -0.281] 0.955
0.7 -0.426  -0.009 [-0.587, -0.259] 0.941
0.9 -0.419  -0.002 [-0.664, -0.158] 0.948
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Table A.3.2 Simulation study 1 results (N = 1,000): ANCOVA-type model

True Censoring

T RMST E(A|L) rato RMST  Bias 95% CI Coverage
0.1 20.027  0.000 [-0.043,-0.011]  0.942
0.3 -0.027 0.000 [-0.044, -0.011] 0.950
0.5 0.5 -0.027 0.000  [-0.045, -0.009] 0.936
0.7 -0.027 0.000  [-0.046, -0.008] 0.938
1 -0.027 0.9 -0.027 0.000 [-0.051, -0.003] 0.952
0.1 -0.028  -0.001  [-0.046, -0.010] 0.936
0.3 -0.028  -0.001  [-0.046, -0.009] 0.926
0.8 0.5 -0.028  -0.001  [-0.047, -0.008] 0.949
0.7 -0.028  -0.001  [-0.049, -0.007] 0.928
0.9 -0.027 0.000 [-0.052, -0.001] 0.942
0.1 -0.416 0.001  [-0.517, -0.315] 0.945
0.3 -0.418  -0.001  [-0.527, -0.311] 0.950
0.5 0.5 -0.418  -0.001  [-0.535, -0.298] 0.938
0.7 0414 0002 [-0.555,-0.274]  0.944
3 0417 0.9 -0.413 0.003  [-0.641, -0.189] 0.958
0.1 -0.426  -0.010 [-0.542, -0.306] 0.929
0.3 -0.427  -0.011 [-0.553, -0.296] 0.945
0.8 0.5 -0.426  -0.009 [-0.564, -0.282] 0.942
0.7 -0.428  -0.011 [-0.590, -0.262] 0.940
0.9 -0.424  -0.008 [-0.693, -0.145] 0.941

Table A.3.3 Simulation study 1 results (N = 1,000): IP weighted Cox model

True Censoring

T RMST E(A|L) rato RMST  Bias 95% CI Coverage
0.1 -0.027 0.000  [-0.043, -0.011] 0.947
0.3 -0.027 0.000  [-0.044, -0.011] 0.950
0.5 0.5 -0.027 0.000  [-0.045, -0.009] 0.940
0.7 -0.027 0.000  [-0.046, -0.009] 0.937
1 -0.027 0.9 -0.026 0.001  [-0.050, -0.004] 0.942
0.1 -0.027 0.000 [-0.044, -0.009] 0.938
0.3 -0.027 0.000  [-0.045, -0.009] 0.927
0.8 0.5 -0.027 0.000  [-0.045, -0.007] 0.935
0.7 -0.027 0.000  [-0.047, -0.007] 0.919
0.9 -0.026 0.001  [-0.050, -0.001] 0.928
0.1 -0.416 0.001  [-0.517, -0.314] 0.945
0.3 -0.417 0.000  [-0.526, -0.309] 0.954
0.5 0.5 -0.417 0.000 [-0.534, -0.296] 0.937
0.7 -0.413 0.003  [-0.549, -0.273] 0.936
3 0417 0.9 -0.408 0.009 [-0.611, -0.193] 0.948
0.1 -0.418  -0.001 [-0.539, -0.298] 0.940
0.3 -0.419  -0.003  [-0.544, -0.283] 0.946
0.8 0.5 -0.417 0.000 [-0.556, -0.270] 0.953
0.7 -0.418  -0.002 [-0.578, -0.250] 0.944
0.9 -0.406 0.011  [-0.645, -0.054] 0.950
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Table A.3.4 Simulation study 1 results (N = 1,000): Adjusted Kaplan-Meier

True

Censoring

T RMST E(A|L) rato RMST  Bias 95% CI Coverage
0.1 -0.027 0.000  [-0.043, -0.011] 0.946
0.3 -0.027 0.000 [-0.044, -0.011] 0.950
0.5 0.5 -0.027 0.000  [-0.045, -0.009] 0.941
0.7 -0.027 0.000  [-0.046, -0.009] 0.936
1 -0.027 0.9 -0.026 0.001  [-0.050, -0.004] 0.942
0.1 -0.027 0.000  [-0.044, -0.009] 0.938
0.3 -0.027 0.000  [-0.045, -0.009] 0.927
0.8 0.5 -0.027 0.000  [-0.045, -0.007] 0.934
0.7 -0.027 0.000  [-0.047, -0.007] 0.919
0.9 -0.026 0.001  [-0.050, -0.001] 0.928
0.1 -0.416 0.000 [-0.518, -0.314] 0.945
0.3 -0.418  -0.001  [-0.527, -0.310] 0.953
0.5 0.5 -0.417  -0.001  [-0.535, -0.297] 0.936
0.7 -0.414 0.002  [-0.550, -0.274] 0.937
3 0417 0.9 -0.411 0.006 [-0.615, -0.196] 0.949
0.1 -0.417  -0.001 [-0.538, -0.297] 0.938
0.3 -0.418  -0.002  [-0.544, -0.282] 0.946
0.8 0.5 -0.416 0.001  [-0.556, -0.269] 0.954
0.7 -0.417 0.000 [-0.578, -0.247] 0.944
0.9 -0.408 0.009  [-0.652, -0.148] 0.940

Table A.3.5 Simulation study 1

results (N = 1,000): G-computation

True

Censoring

T RMST E(A|L) rato RMST  Bias 95% CI Coverage
0.1 -0.027 0.000  [-0.035, -0.020] 0.939
0.3 -0.027 0.000  [-0.036, -0.020] 0.944
0.5 0.5 -0.027 0.000 [-0.036, -0.019] 0.940
0.7 -0.027 0.000 [-0.037, -0.017] 0.933
1 -0.027 0.9 -0.027 0.000  [-0.043, -0.013] 0.953
0.1 -0.027 0.000  [-0.034, -0.020] 0.941
0.3 -0.027 0.000  [-0.035, -0.020] 0.952
0.8 0.5 -0.027 0.000 [-0.036, -0.019] 0.942
0.7 -0.027 0.000 [-0.037, -0.017] 0.942
0.9 -0.026 0.001  [-0.042, -0.012] 0.950
0.1 -0.416 0.000  [-0.485, -0.352] 0.946
0.3 -0.418  -0.002  [-0.497, -0.347] 0.949
0.5 0.5 -0.418  -0.001  [-0.507, -0.334] 0.928
0.7 -0.414 0.002  [-0.528, -0.309] 0.933
3 L0417 0.9 -0.412 0.004  [-0.604, -0.225] 0.942
0.1 -0.417 0.000  [-0.488, -0.348] 0.944
0.3 -0.418  -0.001  [-0.497, -0.339] 0.960
0.8 0.5 -0.415 0.001  [-0.508, -0.324] 0.948
0.7 -0.415 0.002  [-0.532, -0.295] 0.944
0.9 -0.408 0.009  [-0.616, -0.193] 0.946
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Figure A.3.1 Bias for simulation study 1 (N = 1,000). Adjusted KM =
adjusted Kaplan-Meier estimator; ANCOVA = ANCOVA-type model; IPW
Cox = IP weighted Cox model; G-comp = G-computation; Pseudo = pseudo-
observation. Dashed line in the plot represents a bias of 0.
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Figure A.3.2 Coverage rate for simulation study 1 (N = 1,000). Adjusted
KM = adjusted Kaplan-Meier estimator; ANCOVA = ANCOVA-type model;
IPW Cox = IP weighted Cox model; G-comp = G-computation; Pseudo =
pseudo-observation. Dashed line in the plot represents a coverage rate of 0.95.
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A.4 Pooled logistic regression model

Besides the Cox model, there is a simple method to parametrically estimate the
(discrete-time) hazards which use a logistic regression model from data that
transform individual data (with one row per each subject) into person-time
format (with one row per person-time) (D’Agostino et al., 1990). We refer
to this regression model as a pooled logistic regression model. To adjust for
confounding, Hernén, Brumback, and Robins (2000) described a pooled logistic
regression using the IP of treatment and censoring weights when there exist
time-dependent confounders and selection bias due to loss to follow-up. Under
assumptions (A1)—(A4) and without time-dependent confounders, we exploit
and adapt the procedure described by Hernan (2010) to obtain the adjusted
survival curve from the IP weighted pooled logistic regression, and thus we can
estimate the difference in adjusted RMST as follows.

First, restructure the individual data, which has the (stabilized) IP weights
calculated in advance as a separate variable, into the person-time format data.
For example, the first row contains information about first subject at time 0,
the second row contains information about first subject at time 1, and so on.
This process continues until the follow up of first subject is end. In this way,
each subject has multiple row per person-time in the person-time format data.
Additionally, if the first subject experienced the event of interest, the event
indicator variable of the last row is set to 1 and the remaining rows are set to
0. Otherwise (i.e., if the first subject is censored), the event indicator variables

of all rows are set to 0. The other subjects also expand data in the same way.
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Second, using the person-time data format, fit a pooled logistic regression

model weighted by the (stabilized) IP weights (3.3) or (3.4)
logit P(Dgy1=1| D =0,A) = 907k +60,A (A.4.1)

where logit{p} = log{p/(1 — p)}, Dk+1 is the event indicator between time k
to time k + 1, and 6 ;, is the time-varying intercept. Assume that all subjects
had to survive at time 0 (i.e. Dy = 0). We can estimate 6} based on some
flexible function of time (e.g., polynomial splines or cubic splines). Note that
when P(Dgy1 = 1| Dy =0, A) is close to zero and P(Dyg11 =0 | D =0, A)
is thus close to one, the IP weighted pooled logistic regression model (A.4.1)
approximates the IP weighted Cox model, because P(Dy41 = 1| Dy =0, A) is
approximately equal to the hazard P(T' =k + 1| T > k, A) and the log odds

of hazard is

logitP(DkH:l|Dk:O,A):10g< (Dg41 | Dy, JA) >

1—P(Dky1=1| Dk =0,A)
~log P(Dyy1=1| Dy =0,A)
~logP(T=k+1|T >k, A)

= log{ho(k) exp(B14)}

=log{ho(k)} + 814 = Boi + B1A.  (A42)

where logit{p} = log{p/(1—p)}. Therefore, if P(Dy+1 = 1| Dy = 0, A) is close
to zero, the log odds ratio #; in (A.4.1) approximately equals to the log hazard
ratio #1 in (A.4.2) (Thompson, 1977). The condition that P(Dj41 = 1| D, =
0,A) ~ 0 can almost always be ensured to hold because if one set the time
interval short enough (e.g., change time interval from days to hours or minutes),

P(Dyy1=1| Dy =0,A) will be close to zero. In other words, we need to set
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the number of event of interest to be rare in each time interval (as a rule of
thumb, < 10%) (Hernan and Robins, 2022). Technically, under assumptions
(A1)—(A4), the IP weighted pooled logistic regression model (A.4.1) estimates

the parameters of the marginal structural logistic model
logit P(Djy,; = 1| Dy =0) = 6o, + 01a.

That is, the IP weighted pooled logistic regression model estimates the ratio of
the hazards (i.e., exp{6:1}) that would have been observed if all subjects had
been exposed (a = 1) and if all subjects had been unexposed (a = 0).

Finally, the survival probability at time k+1 under exposure a, P(Dj.,; = 0),

can obtained by multiplying one minus the hazard P(D% = 0 | D% _, = 0)
over all previous times m = 1,...,k + 1, as follows:
k+1
P(Dyy =0) =[] [P(D5, =0] Dy =0)]
m=1
k+1
=[[[1-P@Ds =1|D_, =0)].
m=1

Then, if we substitute the estimates of P(D% = 1| D% _, = 0) for m =
1,...,k+1 from the IP weighted pooled logistic regression model (A.4.1) into
the above formula, the estimate of the survival probability P(Dj , = 0) can
be obtained. Therefore, using the estimate of the survival probability, we can
easily estimate the adjusted survival curve, and also obtain the estimates of
adjusted RMST for each exposure group and their difference by integrating
the area under the adjusted survival curve up to a specific time point.

To best our knowledge, there is no study on estimating the variance of the
adjusted RMST estimated from G-computation method. Alternatively, we can

use the bootstrap method to obtain the variance of the estimate.
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Appendix B

Appendix for Chapter 4

B.1 Proof of reducing (4.8) to linear fractional

programming in special case

In Section 4.5, we considered a closed cohort that the study entry times ty = 0
are the same for all subjects and there is no censoring apart from administrative
censoring at the end of follow-up. Without loss of generality, let the first m
subjects experience the events of interest (i.e., 61 = -+ =, = 1 and 641 =

- = 0, = 0) in the exposed group and the first D — m subjects experience
the events of interest (i.e., 0py1 = -+ = Op—map = 1 and dp_pipy1 =
-+ =9y = 0) in the unexposed group. Also, assume that the event times are
continuous and ordered increasingly (i.e., t; < --- < t,, in the exposed group
and tp41 < -+ < tp_mtp in the unexposed group). Since we assume that the

only censoring is due to administrative censoring, the last event time in each

group (t,, or t,_m+p) is less than or equal to the administrative censoring time.

Here, we prove only for the exposed group. Proof for the unexposed group is

similar.
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Let the pre-specified time point 7 € (tx_1,t;] for any k € {2,...,m}. In

this setting, we can rewrite the objective function in (4.8) as:

ZE
T Zi:{Tith&i:l}(l + Zsz)
) H . - de
0 ¢,<t Zi:{Tith,cSi:l}(l + ziw;) + Zii{Tiztjv‘si:O}(l + Kwi)

) b1 1 Zi:{Ti:tjvéizl}(l + ziw;) (t t)
. - +1— U

1=0t;<t; Zi:{Tith,(Sizl}(l + ziwi) + Zi:{Tith‘si:O}(l )

k-1 11 2isirsty,0m1) (1 F 2000) + Xisgms, 5,0y (1+ 704) (t t)
) 1 — b

1=0 t;<t; 2oismzty,5i=1y (L 2000) + 2050154, 5,20y (1 F aw)

(B.1.1)

where z; = exp{h(L;,U;)} and w; = exp{—gg(L;)}. Note that the survival
probability at and after ¢ does not affect the estimate of the bias-adjusted
RMST up to 7 € (tx—1,tx]. Because we assume that the event times are
continuous and ordered increasingly, for j = 0,...,k — 1, we can rewrite the
numerator of fraction term in (B.1.1) as (1+zj41wjq1)+- -+ (1 +2zmwn )+ (14
%wmﬂ) +-- 4+ 1+ %wn) and denote it as fj”. Similarly, for j =1,...,k, we
can rewrite the denominator as (14 zjw;) +- -+ + (L + 2pwm) + (1 + twm+1) +

4 (1+ %wn) and denote it as f]d Since there is no event of interest at %o,
fé=Q+zw)+ -+ (14 2pwn) + (14 Twmi1) + -+ (14 fwy), especially.
Then, the right-hand side in (B.1.1) can be expressed as follows:

ﬂ(rh)’l—< %) (t1t0)+< %) ( 1d> (ta —t1)+
0 0 1

B

0 1 2

+ (]%) (;}) (ch1> X oo X (&2) (th—1 — tp—2)
n n n fnf

(B () () () o



Because fy = fél and f}' = fj+1’ then,

d

X (;zl_l> (th—1 — th—2)
—2

+ ﬁ j X oo X fg ( —t )
)\ gy

When cancelling common terms in the numerator and denominator, inserting

the values of fjd, and rearranging the resultant equation, we have

2
oy [ zwe) o (U Znwm) + (L yWmgn) -+ (L xwn) (ts — 1)
' I+ ziwi) + -+ (1 + twy) 2
(1+ z3ws) 4+ -+ + (1 + zmwm) + (14 fwWimg1) + -+ (1 + Fwy)
+ T (t3 —to)+
1+ z1w1) + -+ (14 gwn)
(1 + zp—1wp—1) + -+ (L4 2pwm) + (L4 Fwmgr) + - + (14 twy)
+ 1 (th—1 — th—2)
(1+le1)+~~~+(1+an)
N (1+ zpwg) + -+ (L + zmwy) + (1 + Twma1) + -+ (L4 twy,) (o)
T —t_
(1+21w1)+"-+(1+%wn) k=1
1+ zows)(te — 1
I ( 2wa)(ty —t1)

(T4 zqwi) + -+ (1 + twy)
(1 + Z3’w3){(t2 — t1) + (t3 — tg)}
(14 z1wi) + -+ (1 + Twy)

4 (1 + Zk—lwk—l){(tQ — tl) + (t3 — tz) +-- (tk—l - tk_g)}
(T4 zqwi) + -+ (1+ Twy)
L A0t zwe) oA (L Zmwm) {2 = t) + (s = to) - 4 (7 tr1)}
(1 +zwi) +-+ (14 zwy)
{0+ Fwman) + o (U Fwn) Hltz = ) + (s — 1)+ + (7 — ti )}
(L4 z1w01) 4+ -+ + (L + +w,)
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(14 zow2)(te — 1)
(T4 z1wi) + -+ (1 + Twy)
(1+ z3ws)(ts —t1) +
(T4 zqwy) + -+ (1 + twy)

:t1—|—

(1 + zp—1wg—1)(t—1 — t1)
(14 z1wi) + -+ (1 + Twy)
{1+ zgwi) + -+ (1 + zpwm) T — 1)
(14 z1w1) 4 + (14 fwn)
{0+ §wmi) + - 4 (L4 jwa)} T — 1)
(14 z1w1) + - + (1 + fwy)

{1+ z0w2) + -+ (1 + gwa) }ta
(T4 zqwi) + -+ (1+ Twy)
n (1 + Zgwg)tg —+ -4 (1 + Zkflwkfl)tkfl + (]. =+ kak)T —+ -4 (]. + %wn)T
(T4 ziwi) + -+ (1 + Twy)

=11 —

(1+ z1w1)ts + (1 + z0wa)te + -+ + (1 + 2p—1wi—1)tx—1
(14 z1w1) 4+ (1 + fwn)
N (14 ziwi)T + -+ + (14 2mwin)T + (14 fWimng)T + -+ (1 + xwp)7T
(14 z1w1) 4 + (14 fwn)

i (L zwi)t
Yoy (14 zgw)

where (z1,...,2n) = (215 +s Zm—1,2m, L/A, ..., 1/A) and (t1,...,t,) = (t1,

cestp—1, Ty oo, 1) O

B.2 Proof of reducing (4.8) to linear fractional

programming in alternative setting

Consider that a closed cohort where the study entry times are the same for
all subjects and that the minimum censoring time is longer than or equal
to the pre-specified time point 7. Also, the censoring times are ordered non-
decreasingly in each exposure group, respectively (i.e., ty,+1 < ... <, in the

exposed group and t,,—m4+p4+1 < ... <ty in the unexposed group). Thus, the
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minimum censoring time is ¢,,4+1 in the exposed group and ¢,,_,,+p+1 in the
unexposed group.

Note that even in this alternative setting, the objective function in (4.8) can
be written the same as (B.1.1). Also, the survival probabilities at and after ¢,
for any k € {1,...,m}, do not affect the estimate of the bias-adjusted RMST
up to 7 € (tx—1,tx]. Therefore, we can apply results in Appendix B.1 without
further proof. In other words, we set the optimization parameters (21, ..., 2y)
as (21, Zm—1,2m, 1/A,...,1/A) and the survival times (t1,...,t,) as (¢,
vy tg—1, T, ..., 7), and solve the optimization problem using the method

described in Section 4.5.

B.3 Proof of non-convergence to boundary

values

Objective function of (4.8) in a simple setting

Consider a simple setting that there are only four subjects, all in the exposed
group, and the study entry times are the same for all four subjects. Additionally,
let the first, third, and fourth subjects experience the event of interest and
second subject be censored (i.e., 01 = d3 = 04 = 1 and 2 = 0). And, let the
survival times be ordered increasingly (i.e., t1 < to < t3 < t4). In this setting,

data are shown in the below Table B.3.1.
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Table B.3.1 Data structure for simple setting

ti 0; w; A; Zi
to=0 - -

tl 51 =1 w1 Al =1 Z1
tQ 52:0 w9 A2:1 22:%
t3 03 =1 w3 Az =1 23
ty 0g=1 Wy As=1 24

Note: ¢;: the observed survival time, J: the event indicator,
w; = exp{—9gs(Li)}, As: the exposure indicator, z;: the
optimization parameter.

As in case of Appendix B.1, if 7 = t4, then the objective function in (4.8)

is represented as follows:
T i { T =t 6. = 1 + Z; Wy
ﬁs_h)’l _ / H 1— E .{Tlft],&fl}( ) . dt
0 ity 61y (L 2iwi) + 350 sy 5,201 (1 + Fwi)
. +( (14 zowe) 4+ (1 4 z3ws) + (1 + z4wy) )( 1)
! (1+Z1’LU1) —|—(1+22w2) + (1+23w3) + (1—|—Z4w4) 3 !
+( (14 zowa) + (1 + 23w3) + (1 + z4wy) )
(1 + lel) + (1 + zng) + (1 + 23w3) + (1 + Z4w4)
1
" ( (1 + zgwy) ) (7 — ts).

(1 + 23w3) + (1 + z4w4)

Minimizing the above equation, the optimization parameter for the first subject
(i.e., z1) have to be A and that for the last subject (i.e., z4) have to be 1/A.

Because the second subject is censored, z3 should be equal to 1/A. Therefore,

~(h)1 _ (1 + zowa) + (1 4 zz3ws) + (1 + z4wy) B
et =t ((1 + z1w1) + (1 + 20wa) + (1 + zzw3) + (1 + Z4w4)) (ts —t1)
n ( (1 + zows) + (1 + z3w3) + (1 + z4wy) )

(1 + z1w1) + (1 + zowa) 4+ (1 + z3w3) + (1 + z4wy)
(1 +Z4w4) _
x (( > (T t3)

1+ z3ws3) + (1 + z4wy)

1+ Awp) + (14 tws) + (1 + z3ws) + (1 + twa)
( (14 fw2) + (14 z3ws3) + (1 + +wa) )
B\

s (( (14 Lwg) + (14 z3wz) + (1 + 2wy) )(t3—t1)

14+ Awp) + (14 fws) + (1 + z3ws) + (1 + Twa)

(1 + %w4) B
% <(1 + zzws) + (1 + }Xw4)> (7~ ta)
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1 - (1+ Fwn) + (1 + z3ws) + (1 + fwa) 1
(1+ Awy) + (14 gwz) + (1 + zzws) + (1 + gwa)

(14 fws) + (14 z3w3) + (1 + +ws)
(14 Awy) + (14 fws) + (1 + zzws) + (1 + Fws)

B (14 +ws) + (1 + z3ws) + (1 + +wa)
(14 Awy) 4+ (14 fws2) + (1 + zzws) + (1 + Fws)

(]. + iw4)
N (14 tws) + (1 + z3w3) + (1 + Lwy)
(14 Awy) 4+ (14 Fw2) + (14 zzwsz) + (1 + +wa)

« (1 + %w4) -
(14 zzw3) + (1 + ywa)

o (14 +ws) + (1 + z3ws) + (1 + +wa)
- (14 Awy) + (14 fws) + (1 + zzws) + (1 + Twa) '

3

N (1+ %ws) + (14 z3ws) + (1 + +wy)
(1+ Aw) 4+ (14 Fws2) + (1 + zzwsz) + (1 + +wa)

(14 zzws)
X ((1 + zgws) + (1 + }\w4)> s
N (14 *wa) + (14 z3ws) + (1 + fw4)
(1+ Awy) 4+ (14 zw2) + (14 zzws) + (1 + Fws)

y (1 + %w4) -
(14 23w3) + (14 fws)

- (1+ gw2) + (14 z3ws) + (1 4 Fws)
(1+ Awy) + (14 fwa) + (1 + z3ws) + (1 + jwy)

_ (14 23ws)
. ltl ((1+z3w3)+(1+gw4)> s
_ (1 =+ %w4) -
(14 23ws3) + (14 fwa)

- (14 gws) + (1 4 zzw3) + (1 + jwa)
(14 Awy) + (14 fws) + (1 + zzws) + (1 + twy)

y ((1 + z3ws)(t — t3) + (1 + Lag) (8 — T)>

(1+ z3ws) + (14 fws)
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e (1+ fwa) + (1+ zzws) + (1 + fws)
PN+ Awn) + (14 Twa) + (14 z3ws) + (1 + Lwy)

(B.3.1)
y ((1 + z3ws)(ts — t1) + (1 + twa)(r — m) .

(1+ z3ws) + (1 4+ fwa)

Counter-example of simple numerical data

To show that some optimization parameters z may not converge to boundary
value of 1/A or A but converge to value between 1/A and A, we construct a
simple counter-example following the setting given in Table B.3.1. Let A = 2,

and survival data is given as seen in Table B.3.2.

Table B.3.2 Data for counter-example

t; 0; w; A; 2
to=0 R R R R
t1 =1 0 = w; =90 A = z1 =2
to =2 0 =0 wy = 2.3 Ay =1 22:%

t3:4 (53:1 w3:1.5 A3:1 z3
ty =14 04 =1 wy = 0.2 Ay =1 24 =

N[ =

In this case, (B.3.1) is written as

1. 4.2 4. 17.
ﬁ,(rh)’l —1 i 52’3 + 9 523 + 7.3
1.523 +23.25 1.523 +2.1

_ 1 6923 + 72.95
2.25 \ (23 + 1.4)(z3 + 15.5) .

=1

Minimizing above ﬁ&h“ subject to 1/2 < z3 < 2 is equal to maximizing

6923 + 72.95
(23 + 1.4)(Z3 + 155) '

(B.3.2)

For z3 € [1/2,2], plot for equation (B.3.2) is shown in Figure B.3.1, and

equation (B.3.2) is maximized at z3 ~ 1.168. Therefore, this counter-example
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Figure B.3.1 Plot for counter-example of simple numerical data

shows that in some situations, the optimization parameters may not converge

to boundary value of 1/A or A but converge to value between 1/A and A. O

B.4 Details for simulation study 2.1
(Bo = —1.9)

Simulation 2.1 study tables (5y = —1.9)
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Table B.4.1 Bias for lower bound of sensitivity range (fp = —1.9)

A T Censoring rate Mean Lower Upper
0.1 0.000000 -0.000002 0.000000
0.3 0.000000 0.000000 0.000000
1 0.5 0.000000 0.000000 0.000000
0.7 0.000000 0.000000 0.000000
11 0.9 0.000000 -0.000005 0.000000
0.1 0.000000 0.000000 0.000000
0.3 0.000000 0.000000 0.000000
3 0.5 0.000000 0.000000 0.000000
0.7 0.000000 0.000000 0.000000
0.9 0.000027 0.000000 0.002806
0.1 0.000000 0.000000 0.000000
0.3 0.000000 0.000000 0.000000
1 0.5 0.000000 0.000000 0.000000
0.7 0.000000 0.000000 0.000000
1.3 0.9 0.000000 -0.000012 0.000000
0.1 0.000000 0.000000 0.000000
0.3 0.000000 -0.000005 0.000000
3 0.5 0.000000 0.000000 0.000001
0.7 0.000000 0.000000 0.000012
0.9 0.000075 -0.000022 0.007333
0.1 0.000000 0.000000 0.000000
0.3 0.000000 0.000000 0.000000
1 0.5 0.000000 0.000000 0.000000
0.7 0.000000 0.000000 0.000000
15 0.9 0.000000 -0.000017 0.000000
0.1 0.000000 0.000000 0.000000
0.3 0.000000 0.000000 0.000000
3 0.5 0.000000 0.000000 0.000004
0.7 0.000000 0.000000 0.000001
0.9 0.000111 0.000000 0.010818
0.1 0.000000 0.000000 0.000000
0.3 0.000000 0.000000 0.000000
1 0.5 0.000000 0.000000 0.000000
0.7 0.000000 0.000000 0.000000
9 0.9 0.000000 -0.000022 0.000000
0.1 0.000000 0.000000 0.000000
0.3 0.000000 0.000000 0.000000
3 0.5 0.000000 0.000000 0.000002
0.7 0.000000 -0.000001 0.000046
0.9 0.000180 0.000000 0.017455
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Table B.4.2 Bias for upper bound of sensitivity range (fy = —1.9)

A T Censoring rate Mean Lower Upper
0.1 0.000000 0.000000 0.000003
0.3 0.000000 0.000000 0.000000
1 0.5 0.000000 0.000000 0.000000
0.7 0.000000 0.000000 0.000004
11 0.9 0.000000 0.000000 0.000006
0.1 0.000000 0.000000 0.000000
0.3 0.000000 0.000000 0.000000
3 0.5 0.000000 0.000000 0.000000
0.7 0.000000 0.000000 0.000000
0.9 -0.000028 -0.002963 0.000000
0.1 0.000000 0.000000 0.000006
0.3 0.000000 0.000000 0.000000
1 0.5 0.000000 0.000000 0.000000
0.7 0.000000 0.000000 0.000011
1.3 0.9 0.000000 0.000000 0.000000
0.1 0.000000 0.000000 0.000000
0.3 0.000000 0.000000 0.000000
3 0.5 0.000000 0.000000 0.000000
0.7 0.000000 -0.000001 0.000002
0.9 -0.000077 -0.008510 0.000005
0.1 0.000000 0.000000 0.000000
0.3 0.000000 0.000000 0.000000
1 0.5 0.000000 0.000000 0.000000
0.7 0.000000 0.000000 0.000000
15 0.9 0.000000 0.000000 0.000000
0.1 0.000000 0.000000 0.000000
0.3 0.000000 0.000000 0.000000
3 0.5 0.000000 0.000000 0.000000
0.7 0.000000 -0.000001 0.000003
0.9 -0.000119 -0.013571 0.000044
0.1 0.000000 0.000000 0.000000
0.3 0.000000 0.000000 0.000000
1 0.5 0.000000 0.000000 0.000000
0.7 0.000000 0.000000 0.000000
9 0.9 0.000000 0.000000 0.000000
0.1 0.000000 0.000000 0.000000
0.3 0.000000 0.000000 0.000000
3 0.5 0.000000 -0.000003 0.000000
0.7 0.000000 -0.000010 0.000008
0.9 -0.000218 -0.024271 0.000022
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Table B.4.3 Computational time difference (5p = —1.9)

Censoring rate Mean Lower Upper
0.1 119.11 8.11 337.70
0.3 28.17 3.77 166.74
0.5 6.85 -0.05 68.94
0.7 1.38 -3.78 3.00
0.9 0.39 -5.03 0.97
0.1 32.20 7.34 111.89
0.3 9.57 4.43 44.74
0.5 4.38 2.29 9.40
0.7 2.14 0.21 6.51
0.9 0.46 -0.21 7.56
0.1 152.15 13.19 422.61
0.3 39.51 7.22 193.54
0.5 10.32 3.07 82.66
0.7 2.16 0.98 9.22
0.9 0.55 -0.27 1.14
0.1 48.94 14.35 138.29
0.3 15.03 7.40 61.71
0.5 6.91 3.65 22.07
0.7 2.79 1.20 9.33
0.9 0.57 -0.19 1.84
0.1 163.66 15.06 439.03
0.3 46.20 8.73 204.62
0.5 12.63 4.24 92.52
0.7 2.70 1.18 9.75
0.9 0.68 -0.16 6.80
0.1 54.38 17.25 150.15
0.3 17.70 10.24 68.36
0.5 8.22 5.01 20.02
0.7 3.16 1.48 5.71
0.9 0.65 -0.09 5.94
0.1 176.31 21.70 442.43
0.3 54.20 12.44 210.29
0.5 15.58 6.10 98.16
0.7 3.55 -3.32 14.59
0.9 0.80 0.12 1.51
0.1 56.35 23.02 140.20
0.3 23.13 11.49 67.10
0.5 11.40 7.19 30.80
0.7 4.07 2.18 6.44
0.9 0.72 -0.05 1.48
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Table B.4.4 Computational time ratio (5o = —1.9)

A T Censoring rate Mean Lower Upper
0.1 32.00 3.36 79.89

0.3 9.57 2.28 47.31

1 0.5 3.30 1.63 18.23

0.7 1.50 1.12 1.85

11 0.9 1.16 0.97 1.29
0.1 9.37 3.64 22.40

0.3 3.87 2.61 8.80

3 0.5 2.44 1.73 3.35

0.7 1.76 1.30 2.84

0.9 1.18 0.99 1.36

0.1 40.42 5.15 98.46

0.3 13.05 3.18 55.48

1 0.5 4.41 2.07 18.81

0.7 1.78 1.35 2.23

1.3 0.9 1.21 1.00 1.37
0.1 13.77 5.45 33.20

0.3 5.59 3.54 14.07

3 0.5 3.27 2.30 4.72

0.7 2.00 1.51 2.99

0.9 1.22 1.01 1.47

0.1 42.90 6.23 101.60

0.3 15.03 3.79 54.42

1 0.5 5.15 2.50 21.10

0.7 1.97 1.40 2.52

15 0.9 1.26 1.00 1.47
0.1 15.33 6.07 37.08

0.3 6.35 4.28 13.87

3 0.5 3.72 2.65 4.93

0.7 2.13 1.56 2.77

0.9 1.24 1.02 1.51

0.1 46.91 7.57 102.72

0.3 17.41 5.06 57.41

1 0.5 6.14 2.87 22.73

0.7 2.26 1.76 3.01

9 0.9 1.30 1.07 1.50
0.1 15.46 7.46 34.74

0.3 7.94 5.18 17.20

3 0.5 4.76 3.42 6.69

0.7 2.46 1.80 3.07

0.9 1.27 1.06 1.48
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B.5 Details for simulation study 2.1
(By = —0.425)

Simulation study 2.1 figures (5y = —0.425)

A=1.1 A=1.3 N=1.5 N=2.0

0.061 =1

—_— —e—  —tm o o B e I e e L e e T

0.061,=3

0.03 i[
0.00 -.--..-..-..I-.--.--.--.- ——— = —— ——— - ——

0.1 03 0507 09 0.1 03 0507 09 0103050709 01 03 05 0.7 09
Censoring rate

N T T e e e | I e | L S —
-0.05
-0.104 =1

-0.15

-0.20

Bias

0.00 -.--.--.--.-I —— e e e _—— i —m —m —— e e
-0.05 I

-0.101¢=3

-0.20

0.1 03 05 0.7 09 0.1 030507 09 0103050709 01030507 09
Censoring rate

Figure B.5.1 Left: Bias for lower bound of sensitivity range. Right: Bias
for upper bound of sensitivity range. The mean is represented by red dot. The
range of bias is represented by lower and upper horizontal bar.
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Figure B.5.2

per each Monte Carlo data. (Bottom): Ratio of computational time between

0.1 0.3 0.5 0.7 0.9

(Top): Difference in computational time between two methods

0.1 0.3 0.5 0.7 0.9

0.1 0.3 0.5 0.7 0.9

Censoring rate

0.1 0.3 0.5 0.7 0.9

two methods per each Monte Carlo data. The mean is represented by red dot.

The range of computational time difference is represented by lower and upper

horizontal bar.
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Simulation study 2.1 tables (5, = —0.425)

Table B.5.1 Bias for lower bound of sensitivity range (Sp = —0.425)

A T Censoring rate Mean Lower Upper
0.1 0.000000 -0.000004 0.000000
0.3 0.000000 -0.000003 0.000000
3 0.5 0.000000 -0.000003 0.000000
0.7 0.000000 -0.000003 0.000000
11 0.9 0.000000 -0.000002 0.000000
0.1 0.000000 -0.000003 0.000000
0.3 0.000000 0.000000 0.000000
5 0.5 0.000000 0.000000 0.000000
0.7 0.000000 0.000000 0.000000
0.9 0.001024 0.000000 0.018074
0.1 0.000000 -0.000009 0.000000
0.3 0.000000 -0.000007 0.000000
3 0.5 0.000000 -0.000007 0.000000
0.7 0.000000 -0.000008 0.000000
1.3 0.9 0.000000 -0.000004 0.000000
0.1 0.000000 0.000000 0.000000
0.3 0.000000 0.000000 0.000000
5 0.5 0.000000 0.000000 0.000000
0.7 0.000000 0.000000 0.000002
0.9 0.002850 0.000000 0.044659
0.1 0.000000 -0.000015 0.000000
0.3 0.000000 -0.000011 0.000000
3 0.5 0.000000 -0.000048 0.000000
0.7 0.000000 -0.000010 0.000000
15 0.9 0.000000 -0.000006 0.000000
0.1 0.000000 0.000000 0.000000
0.3 0.000000 0.000000 0.000000
5 0.5 0.000000 -0.000003 0.000000
0.7 0.000000 -0.000002 0.000000
0.9 0.004370 0.000000 0.064123
0.1 0.000000 0.000000 0.000000
0.3 0.000000 0.000000 0.000000
3 0.5 0.000000 -0.000011 0.000000
0.7 0.000000 -0.000012 0.000000
20 0.9 0.000000 -0.000007 0.000000
0.1 0.000000 0.000000 0.000000
0.3 0.000000 -0.000004 0.000000
5 0.5 0.000000 0.000000 0.000000
0.7 0.000000 0.000000 0.000000
0.9 0.007139 0.000000 0.114290
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Table B.5.2 Bias for upper bound of sensitivity range (Sy = —0.425)

A T Censoring rate Mean Lower Upper
0.1 0.000000 0.000000 0.000006
0.3 0.000000 0.000000 0.000005
3 0.5 0.000000 0.000000 0.000004
0.7 0.000000 0.000000 0.000004
11 0.9 0.000000 0.000000 0.000002
0.1 0.000000 0.000000 0.000000
0.3 0.000000 0.000000 0.000000
5 0.5 0.000000 0.000000 0.000000
0.7 0.000000 0.000000 0.000000
0.9 -0.000981 -0.020446 0.000000
0.1 0.000000 0.000000 0.000000
0.3 0.000000 0.000000 0.000000

3 0.5 0.000000 0.000000 0.000011
0.7 0.000000 0.000000 0.000014
1.3 0.9 0.000000 0.000000 0.000008
0.1 0.000000 0.000000 0.000001
0.3 0.000000 0.000000 0.000000
5 0.5 0.000000 -0.000002 0.000000
0.7 0.000000 -0.000050 0.000000
0.9 -0.002541 -0.062602 0.000000
0.1 0.000000 0.000000 0.000000
0.3 0.000000 0.000000 0.000000
3 0.5 0.000000 0.000000 0.000020
0.7 0.000000 0.000000 0.000024
15 0.9 0.000000 0.000000 0.000015
0.1 0.000000 0.000000 0.000011
0.3 0.000000 -0.000001 0.000000
5 0.5 0.000000 -0.000002 0.000000

0.7 0.000000 -0.000022 0.000001
0.9 -0.003670 -0.105715 0.000000
0.1 0.000000 0.000000 0.000000
0.3 0.000000 0.000000 0.000000
3 0.5 0.000000 0.000000 0.000046
0.7 0.000000 0.000000 0.000056
20 0.9 0.000000 -0.000001 0.000034
0.1 0.000000 0.000000 0.000000
0.3 0.000000 -0.000012 0.000000
5 0.5 -0.000001 -0.000032 0.000000
0.7 -0.000007 -0.000309 0.000000
0.9 -0.005636 -0.213447 0.000007
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Table B.5.3 Computational time difference (5p = —0.425)

A T Censoring rate Mean Lower Upper
0.1 294.35 10.89 989.53

0.3 63.93 6.84 501.90

3 0.5 14.38 1.43 254.41

0.7 3.50 1.21 7.41

11 0.9 0.88 -0.31 9.37
0.1 101.92 13.32 465.69

0.3 20.92 6.97 163.21

) 0.5 10.47 4.82 42.29

0.7 8.21 1.97 45.06

0.9 1.43 -5.82 4.28

0.1 365.07 16.20 1152.71

0.3 80.88 9.42 603.62

3 0.5 18.28 5.82 297.71

0.7 4.60 2.26 8.49

13 0.9 0.98 -8.19 1.90
0.1 116.92 17.60 399.34

0.3 24.43 10.76 107.86

5 0.5 13.68 7.24 23.80

0.7 7.66 3.09 35.59

0.9 1.78 0.19 7.85

0.1 392.73 18.78 1242.86

0.3 87.43 11.80 635.26

3 0.5 20.57 6.76 303.59

0.7 5.26 2.53 10.36

15 0.9 1.14 0.02 2.51
0.1 93.95 28.27 334.75

0.3 28.13 11.53 81.08

5 0.5 15.72 7.21 27.54

0.7 8.10 2.61 19.75

0.9 1.64 -0.01 6.16

0.1 413.14 23.23 1267.89

0.3 96.11 14.45 648.45

3 0.5 23.56 8.66 307.20

0.7 6.37 3.31 11.84

20 0.9 1.34 0.47 4.45
0.1 69.48 31.70 194.61

0.3 34.67 18.49 55.63

5 0.5 20.02 9.87 33.15

0.7 9.41 3.58 23.12

0.9 1.49 -2.88 4.60
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Table B.5.4 Computational time ratio (5p = —0.425)

A T Censoring rate Mean Lower Upper
0.1 70.63 3.64 200.34

0.3 18.74 3.11 128.64

3 0.5 5.54 2.11 60.71

0.7 2.16 1.58 2.91

11 0.9 1.33 1.10 1.55
0.1 25.13 4.60 71.68

0.3 6.82 3.59 27.77

5 0.5 4.27 2.77 6.59

0.7 3.70 1.77 10.52

0.9 1.53 1.11 2.21

0.1 87.13 5.09 243.78

0.3 23.30 3.98 153.78

3 0.5 6.70 2.83 63.86

0.7 2.52 1.78 3.44

1.3 0.9 1.37 1.10 1.63
0.1 28.76 6.81 81.07

0.3 7.78 4.50 16.00

5 0.5 5.29 3.56 7.72

0.7 3.49 2.08 6.01

0.9 1.65 1.17 2.57

0.1 93.95 5.95 253.36

0.3 25.32 4.51 161.71

3 0.5 7.38 3.29 66.64

0.7 2.73 1.90 3.75

15 0.9 1.42 1.16 1.69
0.1 23.19 8.07 63.99

0.3 8.76 5.56 14.41

5 0.5 5.95 3.61 8.38

0.7 3.68 2.14 5.72

0.9 1.60 1.14 2.43

0.1 98.59 7.21 264.45

0.3 27.80 5.48 168.35

3 0.5 8.31 3.82 68.82

0.7 3.10 2.20 4.34

2.0 0.9 1.49 1.21 1.86
0.1 17.33 9.77 34.14

0.3 10.61 7.12 14.71

5 0.5 7.26 4.37 10.37

0.7 4.12 2.56 5.78

0.9 1.56 1.21 2.11
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Appendix C

Appendix for Chapter 5

C.1 Alternative sensitivity analysis method

Lin, Psaty, and Kronmal (1998) proposed a sensitivity analysis method for
assessing the sensitivity of the point estimates and their confidence intervals
of exposure effect to the unmeasured confounding after adjusting for measured
confounders. They assumed that the true exposure effect is represented by
a regression model that includes the exposure as well as both the measured
and unmeasured confounders. Among the five methods being considered de-
scribed in Section 3.2, Andersen, Hansen, and Klein (2004)’s pseudo-observation
method and Tian, Zhao, and Wei (2014)’s ANCOVA-type model which directly
relate the RMST to confounders can be applied to the sensitivity analysis
method proposed by Lin, Psaty, and Kronmal (1998). Here, we apply the sen-
sitivity analysis method of Lin, Psaty, and Kronmal (1998) only to ANCOVA-
type regression model to consider unmeasured confounding for evaluating the
estimate of the difference in adjusted RMST. Pseudo-observation method can
be also applied to sensitivity analysis method in Lin, Psaty, and Kronmal

(1998) in a similar way.
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We first assume that if we adjusted for a single unmeasured confounder
(which we denoted by U) along with measured confounders L, then all con-
founding is removed. Also, assume that the expected value of the restricted
survival time T’ is related to A, L, and U through the linear model (hereafter

referred to this linear model as the full linear model)
E(T: | A,L,U) = 5 + BA+ B TL +~yaU (C.1.1)

where 9 and 7; pertain to the effect of U for the exposed and unexposed
groups, respectively. Note that the parameterization 57 A 4+ v4U is equal to
By A+ U + (71 — 1)AU. If 9 # 71, then B7 is the main effect of A under
the model in which there is an interaction term between A and U, so that 8]
cannot be independently interpreted. For most practical purposes, it is suffices
to set 90 = 1.

Since U is unmeasured, one can be forced to fit the reduced linear model
E(T- | A,L) = po+ SrA+ B[ L (C.1.2)

where Sy, 51, and 3] are potentially different from 33, 8f, and 8,7 in equation
(C.1.1). Lin, Psaty, and Kronmal (1998) referred to 8j and i as the true
and apparent differences in RMST (i.e., true and apparent exposure effects),
respectively. Since 8] cannot estimated from the observed data but ; can be

directly estimated, it is of interest to identify the relation between S} and f;.

Binary confounder

Let F(u | A, L) be the distribution function of U given A and L. Then, by the

law of conditional expectation,

E(T, | A L) = /Oo E(T, | A, L,u) dF(u | A, L). (C.1.3)
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Under the full linear model (C.1.1), the conditional expectation (C.1.3) becomes
E(T; | A,L) =5+ B{A+ 5L +/ yau dF (u | A, L). (C.1.4)

— 00

Assume that the unmeasured confounder U is binary such that F(u | A, L)

is a Bernoulli distribution with success probability Py = P(U =1 | A, L).

Then, equation (C.1.4) becomes

E(T. | A,L) = 85+ BiA+ B8TL + yaPa

=B85+ B, "L+ (noPor + {8 + P —vwPor}A). (C.1.5)

If we assume that U is independent of L conditional on A (i.e., U 1L L | A, so

Py =P{U=1|A))andlet Py =P(U =1]A), then (C.1.5) is
E(T. | A,L) = 85 + B, "L + (voFPo + {87 + mP1 —nF}A4).  (C.1.6)
Considering both (C.1.2) and (C.1.6), the true difference in RMST is
B =B1— (mPr — ). (C.1.7)

When vy =1 =, (C.1.7) can be reduced by

B1 = B1 — (P — Fo).

Normal confounder

Suppose that conditional on A and L, the unmeasured confounder U is normally
distributed with mean p4 1 and variance one. In this case, the true difference
in RMST can be calculated similarly to the case of binary confounder. If U

is independent of L given A, then E(U | A,L) = pa = pa. Thus, the true
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difference in RMST is

Br = Br — (np1 — Yopo)- (C.1.8)

If v = 1 = 7, then (C.1.8) can be reduced by

Bi =B —v(m — ko). (C.1.9)

Note that (C.1.9) does not require the conditional independence of U and L
given A, but the effects of A and L on the mean of U have to be additive. For
example, pa r = pa + q(L) for normal unmeasured confounder U, where ¢ is

any arbitrary function of L.

C.2 Limitation of alternative method

Lin, Psaty, and Kronmal (1998)’s sensitivity analysis method has some limi-
tations. First, their method deals only with a single unmeasured confounder.
When there are multiple unmeasured confounders, one should substitute multi-
ple unmeasured confounders with a composite of them. Also, the unmeasured
confounder should follow either a Bernoulli distribution or a normal distribution.
Additionally, to apply their method to real applications, the true exposure effect
should be represented by a regression model.

However, our sensitivity analysis method requires only one sensitivity pa-
rameter A. Also, our method can be used regardless of the distribution of
unmeasured confounder and regardless of model for the exposure (i.e., regardless

of PS estimation method).
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