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Abstract

Recently, the backpropagation is applied in various fields and has achieved great
results. However, there are many limitations to do backpropagation in the actual brain.
One of the reasons why backpropagation is difficult in the brain is the weight trans-
port problem. In other words, The backpropagation constitutes a forward path and
a symmetric feedback path, which is biologically impossible in the real brain. In a
recent study, by constructing an asymmetric feedback path and learning similar to
forward path, the weight transport problem is solved and high performance close to
backpropagation is achieved. However, there is still a problem that biologically rare
bidirectional connections occur between forward neurons and feedback neurons in or-
der to train both forward and asymmetric feedback path. In this study, we propose a
new learning algorithm that does not occur bidirectional connections while solving
the weight transport problem. The proposed learning method also trains asymmetric
feedback paths, but removes bidirectional connections by sharing activation across
multiple layer during training both forward and asymmetric feedback path. In this al-
gorithm, performance was significantly improved when compared with other learning
algorithm that solved the weight transport problem. Furthermore, unlike the existing
learning algorithm, it suggested the possibility that learning could be possible without
accurate activation information. Consequently, it can reduce training memory because

there is no need to store all accurate activation.

keywords: Deep Learning, Biologically Plausible Learning, Weight Transport Prob-
lem, Bidirectional Connection, Activation Sharing with Asymmetric Paths
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Chapter 1. Introduction

Recently, deep learning has achieved performance comparable to or exceeding that
of the human brain in various fields. However, it requires lots of resource and power to
train deep and complex neural networks. For example, GPT-3 [1], which is state-of-art
model of natural language processing, demands costly GPU clusters and a mount of
GPUs consuming 1.1GW h. On the other hands, the human brain consumes just 201/
to train neural network consisting of 100 billon neurons and 100 trillion synapse [2].
For these reasons, research on an efficient biologically plausible learning rule that
mimics the brain is attracting attention from academia.

Backpropagation(BP) [3], which is essential learning rule of deep learning, can
train deep and complex neural networks successfully even outperforming human abil-
ity. However, it is hard to implemented in real biological neural systems for several
reasons [4—7]. The weight transport propblem is one of the important reasons why
backpropagation is biologically implausible [8]. In backpropagation, identical forward
and feedback paths with same synaptic weights are required. However, it is difficult
to be implemented in biological neural networks because vast amounts of information
about synaptic weights must be transmitted very quickly along the axon [9].

By propagating feedback paths with random fixed weights, the Feedback Align-
ment (FA) [10] overcomes the weight transport problem. In feedback alignment, the
feedback weights, which were initially different from forward weights, are aligned
with the forward weights by training. Therefore, FA trained the network similarly
to backpropagation where the forward weight and the feedback weight are identical.
Direct Feedback Alignment (DFA) algorithm [11] also uses random fixed feedback
weights, but the error from top layers is propagated directly to all layers including
non-adjacent ones. In Direct Random Target Projection [12], the errors are locally cre-

ated for each layer by propagating targets to random fixed weights. Although these



algorithms perform well on small networks, they degrade dramatically when used to
more complicated networks, particularly deep convolutional neural networks [13, 14].

The other research suggests that instead of employing random fixed weights in the
feedback path, the feedback weights could be trained like forward weights. Apply-
ing Reinforcement Learning [15] or Spiking Neural Network [16] to train feedback
weights improves classification accuracy over above methods. However, such meth-
ods have only been experimented on shallow networks, and it is unclear if they might
be used to train deeper neural networks. By transferring just the signs of the forward
weights to the feedback path during training, Xiao et al. [17] achieves high perfor-
mance close to backpropagation in deep neural networks. However, because some in-
formation of forward weight must still be transported, it is impossible to declare that
the weight transport problem has been perfectly solved.

Weight Mirrors and modified Kolen-Pollack algorithms have recently been suc-
cessful in training deep convolutional neural networks on big datasets with remarkable
performance near to backpropagation by transporting only neuronal information, not
explicit weight. These algorithms, however, need a bidirectional connection, which is
a pair of connections between forward and feedback neurons to exchange neuronal
information with each other bidirectionally. This connection could be found in some
biological organisms [18-21]. However, general biological neural networks are consist
of unidirectional connections between neurons and the opposite directional transfer of
neuronal information is only possible by pass through multiple layers indirectly [22].

The goal of our paper is to achieve high performance close to backpropagation
while solving the weight transport problem without bidrectional connection. There-
fore, we propose Activation Sharing, which updates the weight of current layer using
the input activation of preceding layer, while backpropagation uses input activation of
current layer for weight updates. By employing this learning strategy on both forward
and asymmetric feedback path, the weight transport problem can be solved without

requiring bidirectional paths, and deep convolutional networks like ResNet-34 can



be effectively trained. Furthermore, because shared activation is repeatedly used for
updating weights of several layers during training, the approach could considerably

minimize memory consumption and be implemented efficiently on hardware.



Chapter 2. Related work

2.1 Backpropagation and weight transport problem

weight transport problem

/—M

81+2

Fig. 2.1: Backpropagation

To understand the weight transport problem, we first explain backpropagation [3],
a general training algorithm in deep learning. In forward path, the input data are prop-

agated to multiple layers, resulting in output activations of layers:

hiyi = ¢(Wip1 by + biya) (2.1)

where h;, W;, ¢ and b; denotes the output activation, the weight matrix, nonlinear
function like ReLLU [23], and the bias vector of the hidden layer [ in the forward path,
respectively. When interpreted from a biological point of view, h could represent neu-
ral firing rates, W could be synaptic weights between neurons, b could be interpreted
as bias currents, and ¢ could represent nonlinearities in neurons [24].

Total output of the network with loss function is compared with target and the

errors are calculated in the direction of reducing total network loss. This errors are



propagated in backward path as follow:
81 = ¢ (h)) Wy 814 (2.2)

where & and ¢ represents the backpropagated error and the derivative of the nonlinear
function ¢, respectively.

Finally, the weights are updated by
AWy = —nbi1 hi (2.3)

where 7 is the learning rate. This backpropagation, which is based on mathematical
gradient descent [25], trained the network successfully on various tasks. However, the
weights of feedback path in equation (2.2) have to be equal to that of forward path in
equation (2.1). Therefore, the errors must be propagated in the opposite direction of
the forward path, which is not possible in biological systems with solely unidirectional
paths. It is also biologically impossible a completely identical backward path that is
separated from the forward path to exist like Fig. 2.1 because massive amounts of
weight transport must occur very quickly between neurons to realize this [9]. This
biological implausibility caused by the forward weight and the feedback weight being

the equal is defined as a weight transport problem.

2.2 Training with random fixed feedback weights

To overcome weight transport problem, Lillicrap et al. [10] developed Feedback
Alignment which propagates errors to random fixed weights, not synaptic weights
equal to forward weights like backpropagation. The error propagation in Feedback
Alignment is as follow:

8= ¢ (hy) Bl 611 (2.4)
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Fig. 2.2: Feedback Alignment

The B denotes random fixed weights in backward path. In this case, the weight trans-
port problem is solved because there is no need to transport information of synaptic
weights as shown in Fig.2.2. Lilicrap et al. explained that the synaptic weights in for-
ward path are aligned to feedback weights during training, and therefore the training
process of Feedback Alignment is close to that of backpropagation. They also proved
that the loss of simple network converges to minimum value in Feedback Alignment

by using Barbalat’s lemma [26].
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By extending this idea, Direct Feedback Alignment [11], which also uses random
fixed weights for backward propagation but propagates errors to lower layer directly is

proposed. As shown in Fig.2.3, the back-propagated error is depicted as follow:
& = ¢ (h)) Bi, op, (2.5)

where L is the total output of the network. The Direct Feedback Alignment not only
solves weight transport problem, but also relaxes the structural constraint of biological
neural networks that synaptic connections in feedback path should exist only between
adjacent layers.

By employing random fixed weights in the feedback path, the approaches above
completely address the weight transport problem and achieve high training accuracy in
simple linear networks. However, they cause severe performance degradation in deep

convolutional networks. [13,14,17,27].

2.3 Training with feedback weight update

bidirectional connection
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Fig. 2.4: Weight Mirror

Because employing random fixed weights in backward propagation results in poor



performance when training deep convolutional neural networks, many approaches for
training the feedback weights have recently been presented. [15, 16, 28]. For example,
Akrout et al. proposed the Weight Mirror (WM) and modified Kolen-Pollack (KP)
algorithms which train the feedback weights and achieve high performance even in
deep convolutional neural networks [24].

In Weight Mirror, the weight update in feedback path is as bellow:
ABiy 1 = —nhp b (2.6)

The output activations of layers [ and [ 4 1 is used for calculating weight update W;,
while the error propagation of Weihtg Mirror is equal to that of Feedback Alignment
according to equation (2.4). Akrout et al. proved that AB;_ is proportional to W; 1,
and therefore the feedback weights B is aligned with the forward weights W although

there is no weight transport.

bidirectional connection
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Fig. 2.5: Modified Kolen and Pollack

On the other hand, the modified Kolen and Pollack algorithm is depicted as follow:

AByjj1 =AW 1 = —ndi1 hzT (2.7)



The forward and feedback weights could be updated in the same direction using this
algorithm, and the feedback weight converges to forward weight during training.
Above methods perform close to backpropagation in deep convolutional neural
networks on ImageNet. The weight transport problem is also solved by not directly
transferring information about synaptic weights such as weight changes AW and
A B; instead, neuronal information in forward path (k) and that of feedback path (6)
are exchanged as shown in Fig.2.5. However, they require a bidirectional connection,
which is connection between forward and feedback neurons for transferring informa-

tion bidirectionally (the connection between h and § in Fig.2.5).

2.4 Biologically implausible bidirectional connection

The bidirectional connections incur strict dependency between two neurons; one-
to-one paring. This one-to-one paring would exist in some simple biological systems
like C-elegans [18-21]. However, most of biological neural networks do not have this
strict two-step dependencies, but have relaxed multi-step dependencies [29]. Further-
more, this strict two-step dependencies between two neurons would be a fatal structural
constraint in constructing biological neural networks. To solve these issues, the object

of our study is solving weight transport problem without bidirectional connections.



Chapter 3. Forward Alignment

we proposed Forward Alignment, which approximates forward path while prior
studies only focus on approximating feedback path by random weights. In prior stud-
ies, the accurate information of activation is required to update both forward and feed-
back path. Therefore, this information has to be transported to feedback path and it
causes bidirectional connection as shown in Fig. 2.5. By approximating forward path,
we could relax the necessity for accurate neuronal information for updating weights
and then remove bidirectional connection. In this section, we will first introduce the
Forward Alignment algorithm. Afterwards, the validity of the Forward Alignment al-

gorithm will be verified mathematically and experimentally.

3.1 Forward Alignment: Approximating Forward Path

For the convenience of explanation, suppose that a simple linear network is trained.
In this case, we neglect nonlinear function ¢ in equation (2.1-2.3). For example, the
equation (2.2) is transformed to h; 1 = Wj1 h;. To train this network, the error §
and the activation h is required for updating the weights as shown in equation (2.3).
In backpropagation, these values are calculated very accurately: the activations are
obtained by propagating the input to layers in forward path and the errors are calculated
by propagating the identical layers reversely as shown in Fig. (3.1a) and equations

below:

hi 1 =W h (3.1)
142 = W) 30113 (3.2)
AWiip = —ndiy2hiyy (3.3)

10



As explained in Chapter 2, the equation (3.1-3.3) represent forward path, feed-
back path, and weight update, respectively. To solve weight transport problem, recent
studies approximate feedback path (i.e. approximating equation (3.2)). For instance,
approximate errors 4 is calculated by using random fixed weight B in Feedback Align-

ment as below:

hit1 =W 1 h (3.4
10 =Bl 3813 # 0140 (3.5)
AWiio = —ndiiohi # 12 bl (3.6)

Although the forward path is accurately calculated by equation (3.4) like backprop-
agation, the feedback path is approximated by using random fixed weight B instead of
accurate value W as shown in equation (3.4) and Fig. (3.1b). Therefore, the weights
are updated by approximated errors 4 in equation (3.6).

Approximate feedback path using random fixed feedback weights B might be uti-
lized to train the network according to the Feedback Alignment. In the same way, we
assumed the network might be trained even though we approximate forward path by
using random fixed forward weight C' instead of actual forward weights W (i.e. ap-
proximating equation (3.1)). In other words, approximate activations h also could be
used for weight updates just as approximate approximate errors d are used for weight

updates in Feedback Alignment. We named this algorithm Forward Alignment.

hit1=W;1h (3.7

hi1 = Cip1hy # by (3.8)

142 =W/ 38,43 (3.9)

AWipo = =082 hi ) # b2 hfy (3.10)

11



Note that the input propagates through forward weights W to make output of the
network as equation (3.7). Simultaneously, approximate activations h are calculated
by using random fixed forward weights C' in equation (3.8). Afterwards, the errors are
calculated accurately (equation (3.9)) and the weights are updated by using approxi-
mate activations h and errors & in equation (3.10).

To justify the proposed Forward Alignment, we will prove that the loss of a simple
linear network converges to zero when learning through Forward Alignment in the next

section. After that, we will verify the validity of this algorithm through experiments.

Approximate Approximate
feedback path forward path
hio l_ ® 8, hio $ 17 . Rl 1_ ® 812
Wi Aivf” Wi," Wi, ﬁ*z Bi.," Ciy2 AWz Wi,"
hl+1 ° r * 6[+1 hl+1 ° - S[Jrl El+1 M r ® &y,
e Aj/fﬂ Wi Wiy | AWin ;e Ciia e W s”
h ® *5 h, * J * 3 h;, * ® 3

(a) Backpropagation (b) Feedback Alignment (c) Forward Alignment

Fig. 3.1: Overview of weight update process in different algorithms.

3.2 Mathematical proof of Forward Alignment

Lillicrap et al. used Barbalet’s lemma for mathematical proof of Feedback Align-
ment [26]. Similarly, we also utilize Barbalet’s lemma to prove our Foward Alignment
also can converge the loss of total network to zero in some conditions. First, consider
a simple linear network h = Wix, y = Wsh where the column vectors x, y, and h
denotes input, output, and output activation of hidden layer, respectively. In this case,
Nz, Ny, and ny, denote dimension of x, h, and y, respectively. W7 and W5 represent
the weight matrices. The desired target function of the network is 1" where ¢y = T'x.

We apply the Forward Alignment to train above network by approximating activations

12 =

[y

z- |



hto h = C @, where C is random fixed forward weights weight.

3.2.1 Mathematical proof that loss converges to zero in Forward Align-

ment

We newly define linear target function as follow.

E=T—-W,W; (3.11)

In this case, we can represent the error as § = E x. The weight changes AW, and
AW, are expressed as

AWy =ndh! =nExaz’ CT (3.12)

AW, =qgWlsaxl =nW]Ex T (3.13)

where 7) represents the learning rate. We can assume that weight changes AW, and
AW, could be expressed as expected value when weight change is converged to ex-

pected value after lots of training.
AWy =n[Exz’ CT|=nECT (3.14)

AW, =Wl Exaxl| =nWJ]E (3.15)

For sake of simplicity, we assume that the input  would be independent and iden-
tical distribution random variables whose mean and standard variation are 0 and 1,
respectively. In this case, [xz”] = I where I is the identity matrix. The discrete up-
date process could be approximated to continuous time dynamics when a learning rate

is very small as follow.

W,=ECT (3.16)

13



W, =WJSE (3.17)

where TV represents dW/dt. By merging equations (3.16) and (3.17),

w,.ct =w]lECT = w]w, (3.18)
: 1
WlCJ'T:/WQTWQ—!—'r: §W2TW2+1~ (3.19)

where r is a constant.

Theorem. Ifthe weight changes are calculated by
W, =ECT

W, =WJE
where r in equation (3.19) is zero and left pseudoinverse matrix of C exists (i.e.,
C*C = I), then a loss of the network converge to zero.

IimE =0
t—0

In above theorem, C means the Moore-Penrose pseudoinverse of matrix C'. Be-
cause the theorem assumed that the condition CTC = I is satisfied, the compo-
nents of C would be independent and C' and the number of rows should be larger
than that of columns (i.e., n;, > n;). In addition, the condition » = 0 means that
w,CcT = %Wg W, by equation (3.19). By using these conditions and Barbalet’s

lemma below, the theorem could be proved mathematically.

Lemma 1 (Barbalat’s Lemma). If the following conditions are satisfied:
1. M is lower bounded,
2. M satisfies negative semi-definite, and
3. Mis uniformly continuous,

then M — 0 when t — o.

14



To utilize this lemma, we represent the matrix M as
M = tr(ECTCE) (3.20)

Before proving the theorem, we would prove that M converges to zero by confirm-
ing whether M satisfies three conditions of Barbalat’s lemma. Afterwards, we prove

the theorem that loss of the network (|| E||) converges to zero.

Condition 1. M is lower bounded.

Proof. M = ||[EC|| because E and C are not imaginary, but real valued. Therefore,
M 1is lower bounded (M > 0). ]

Condition 2. )M satisfies negative semi-definite.

Proof.

M = %tr(ECTCET)
—  tr(ECTCE") + tr(ECTCET)
= 2r(ECTCETY)
= 24r((—-WaW, — WoW,)CTCE")
— — 2tr(WoW,CTCET) — 2tr(WoW,CTCET)

= —2r(ECTW,CTCET) — 2tr ( WoW] ECTCET)

by applying equation (3.16) and (3.17). Then, the first term 2tr(ECTW,CTCET") is

calculated as follows.

15



otr(ECTW,CTCET)
= tr(ECTW,CTCET) + tr(ECTCWICET)
1
= §(tr(ECTW2T WoCE™T) + tr(ECTW] W,CE™))

= tr(ECTW]/W,CE™)

by using the condition W,CT = %WQT W5 where r» = 0 in equation (3.18). Conse-

quently, we can achieve

d

%tr(ECTC'ET)
= —2tr(ECTW,CTCET) — 2tr(WoWS ECTCET)
= — tr(ECTWIW,CET) — 2tr (W] ECTCE™W5) (3.21)
= — [|[ECTWS || —2|W, ECT|? (3.22)
< 0

by applying the commutative law to second trace term. Therefore, M is negative semi-

definite. ]

Condition 3. ) is uniformly continuous.

If the derivative function f is bounded, the function f is uniformly continuous.
Therefore, we would prove the M is finite to prove that the Condition 3. is satisfied.
Before proving this, we first prove the condition W5 is bounded because this condition

is used to prove that M is finite.

Condition 3.1. V5 is bounded.

Proof. we define u as

u=tr(WoWg) >0

16



Then,

U= t?”(WzWQT) + tT(W2W2T)

2tr W2 WQT)

otr(ECTW)

(
(

2tr((T — WoWp)CTW)
(

2tr(TCTWT) — 2tr(Wo W, CTWY)

1
= 2tr(TCTWL) — 2tr(Wg(§W2TW2)W2T)

= 2tr(TCTWY) — tr(Wo WL Wo W)

In this case, Wy W2T i1s symmetric matrix which has an n, x n, dimension. Therefore.
we can do diagonalization of Wo WL, Therefore, if the dominant eigenvalue of this
matrix is A,

u=tr(Wo Wi) < noh
By applying this inequality to second term of w, we can attain

tr(WoaWy WoWy') = |[WLoWy||?

> \?

Therefore, 1 is expressed as below.

i =2tr(TCTWY) — tr(WoWI Wo W)

<otr(TCTWI) — (L)2

o

We can apply Caushy-Schwarz to first term of above inequality as follow.

17



tr(TCTWI)? < tr(TCTCTT) tr(WiL W) = u||TCT||?

Therefore, when u > ||TC7||2, the above inequality is transformed to

tr(TCTW])? < u|TCT|? < .

In other words, tr(TCTWQT ) < u. Therefore, we can achieve

. T T U |9 U2
u < 2tr(TC WQ)—(n—O) <2u—ﬁ

In this inequality, we can confirm that @« < 0 when u > 2n,. By merging above

u > |TCT||?, we can attain

u<TCT +2n,

at any time t. Therefore, 0 < u < TCT + 2n, which means W5 is bounded.

Condition 3.2. 1 is finite.

Proof. Using equation (3.21) in Lemma 3, we can calculate M as

M :%[—tr(ECTWQT WLCE") — 2tr(W] ECTCE™W,)]
= — 2r(ECTWIW,CET) — 2tr(ECTWIW,CE")
— 4tr (WL ECTCE"W,) — dtr(WI ECTCE™Wy)
= — 27 ((-WoW, — WoW1)CTWIWCET) — 2tr(ECTWIW,CE")
— 4tr(WIECTCE™W,) — dtr (W (-Wy W — WoW1)CTCETWy)
=2tr(WoW,] ECT"W] W,CE") + 2tr(ECTW,C" W] W,CE")
—2tr(ECTECTW,CE") — 4tr(ECTECTCE™W,)

+ 4tr(WIWoW] ECTCE™W,) + 4tr(W) ECTW,CTCE™W5)
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Here, M consists of W, C, E, and W,CT . If all components of M are bounded,
we can prove that M is bounded. First, W is bounded by Condition 3.1. Secondly,
random matrix C' is fixed in Forward Alignment during training. Third, E is also
bounded because M = tr(ECCTE) by equation (3.20) and M is bounded. The
reason why M is bounded is that M > 0 by Condition 1 while M <0 by Condition 2.
Finally, W1 C is bounded because W;C* = %WQT W5 by equation (3.19) and Ws

18 also bounded. Therefore, we can conclude that M is finite. O

The M satisfies all conditions of Barbalat’s lemma, and therefore M — 0 as

t — o0o. By using the equation (3.22) in proof of the Condition 2, we know that

M =~ |ECTW, |? - 2|W; ECT|]?

= 0

which means ECTW, = 0 and W] ECT = 0. The equation W] ECT = 0 can
be expressed as W2T E = 0 because we assumed that left pseudoinverse matrix of C
exists. Therefore, Wl = WQT E = 0, and therefore W} is constant. Consequently,
W W, is also zero by using W CT = %WTW in equation (3.19). Moreover,

WIECT = W] (T - WoWw,)CT =0 (3.23)

The equation (3.19) could be expressed as Wi TCT = W] W,o,W,C7. In this
case, the second term WQT W,oW,CT is constant because the components of second
term (WQT Ws, Wy, and CT) are constant. Therefore, the second terms would become

zero when differentiating this equation as below:

wlTcT =0 (3.24)

By substituting W = E C7 to above equation, we can get CETTCT = 0. If

we apply left pseudoinverse of C' to this equations, the equation is expressed as
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0=CE'TC” =C*CETTCT(C"T = E'T=T"E (3.25)

By applying above equation (3.25) and (3.11) to the loss || E||, we can conclude

|E|| =tr(E"E)
=tr(T" — W' W, )E)
=tr(TTE - W] W] E)

=0

because TTE = 0 and W E = 0. In conclusion, we successfully prove that the For-
ward Alignment can train the simple linear network in some conditions by converging

loss F of the network to zero.

3.3 Experiments for Forward Alignment

We proved in the previous section that the Forward Alignment algorithm can train
neural networks when some certain conditions are satisfied. In this section, we demon-
strate the algorithm’s ability to train neural network experimentally. We first confirm
whether we can get a similar precision to BP by Forward Alignment, and whether
the learning process of Forward Alignment is similar to that of backpropagation by
checking that the forward weights and random fixed weights are aligned. We utilize
two target networks with a structure of 10-10-10-10. First, we trained a linear network
which consists of only fully-connected layer without batch normalization [30] and the
nonlinear ReLLU function [23]. Afterwards, a nonlinear network with batch normaliza-
tion and ReLU is trained. We trained both networks for 200 epochs on the MNIST
dataset [31]. The learning late and the batch size is set to 1e-4 and 50, respectively.

The details about experiments like hyperparameters are provided in Appendix.
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Table 3.1: Test Accuracy in Linear and Non-Linear Network!

Network Linear Non-Linear
Learning Algorithm FoA BP FoA BP
Accuracy 90.93 92.39 93.03 95.01

The Forward Alignment achieves 90.93% and 93.03% when training linear net-
work and nonlinear network, respectively. This results are close to that of backprop-
agation which attained 92.39% on linear network and 95.01% on nonlinear network.
Furthermore, as shown in Fig. 3.2, the forward weights of the network are aligned
with random fixed weights during training with Forward Alignment even if the net-
work is nonlinear, just as Feedback Alignment aligns forward weights to random fixed
feedback weights. When comparing Fig. 3.2a and Fig. 3.2b, it is confirmed that the
alignment was worse in the nonlinear network than linear network. This observation
is consistent with the result that the performance of Forward Alignment is more close
to that of backpropagation in linear network than nonlinear network. In other words,
learning process of Forward Alignment is similar to that of backpropagation when the

forward weight is more aligned with a random fixed forward weight.

90° — layerl 90° ‘ — layerl
\ layer2 \ layer2
[t |
\
2 \ @ \m
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(a) linear network (b) nonlinear network

Fig. 3.2: Alignment Angle in Forward Alignment?

"FoA means Forward Alignment.
*Note that layer 1 and layer 2 represents the first 10 x 10 layer, and the second 10 x 10 layer,
respectively.



Chapter 4. Activation Sharing for biological
plausibility

In Chapter 3., we propose Forward Alignment which approximates forward path
using random fixed weights. This learning algorithm achieves good performance in
simple fully-connected networks. However, the Forward Alignment need additional
computation compared to backpropagation and there is large performance degradation
in deep convolutional neural networks like Feedback Alignment. In this section, we
first upgrade Forward Alignment by using identity matrix as random fixed forward
weights and dividing forward path into several blocks: Activation Sharing. Secondly,
we solve the weight transport problem without bidirectional connections by applying
Activation Sharing with Asymmetric Paths (ASAP). And then, we analysis the ASAP
in terms of biological plausibility. Finally, we propose Activation Sharing in Feedback

Paths (ASFP) which would be more biological plausible.

4.1 Activation Sharing: Extending Forward Alignment

In Forward Alignment, approximate forward path have to be calculated by equa-
tion (4.2) while it is unnecessary in backpropagation. To alleviate this problem, we
use the identity matrix I as random fixed forward weights C' as shown in Fig. 4.1b. In
other words, the equation (3.4), which describes approximate forward path, is trans-
formed to ile — h,. Therefore, additional computation for approximate forward
path would be removed. Furthermore, we dived approximate forward path into several
blocks as shown in Fig. 4.1c¢ to improve performance. We assumed the reason why a
performance is degraded in Forward Alignment is that the deviation between actual ac-
tivation and approximate forward activation increases when input propagates through

a lot of random fixed forward weights. In detail, the actual activation, which is used
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Fig. 4.1: Advancement of Forward Alignment

in backpropagation, is h; = Wih;_1 = --- = [[ W, hy while the approximate acti-
vation is le =C fNLl,l = ... = ][] Ck ho. Hence, the difference between h; and izl
increases when [ increase, and therefore the difference between learning direction of
Forward Alignment and that of backpropagation also increase. To solve this problem,
we constrained the input to propagate only a few layers within the block, rather than
propagating all layers in the approximate forward path. For example, if there is two
layer inside a block, the approximate activation is expressed as ﬁl = C,Ci_1h_9
while the actual activation is h; = W; W;_1 h;_5 in backpropagation. Consequently,
the deviation of activation between Forward Alignment and backpropagation would
decrease, and therefore the learning direction of Forward Alignment would be more
close to that of backpropagation. We propose Activation Sharing based on these two

intuitions as below:

hi1 = Ci by = hy (4.1)
’~l1+2 =Clyo ilz+1 =Cl12Ci41 h; = hy 4.2)
AWy 9 = —n82hiy = —ndohi (4.3)
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AW 3= —ndi43 ilﬁq =083 h] 4.4)

where there are two layers in a block as shown in Fig. 4.2. The weights Wi, and
W3 in a block are updated by activation h; as shown in equation (4.3) and equation
(4.4). We named the activation h;, which is used to update the weights in the block,
as shared activation. In other words, if shared activations are decided, it is repeatedly
used for updating weights in the blocks. The shared activation is determined as output
activation of previous block. In Activation Sharing, the number of layers in a block
could be changed. We named this number as block size k.

Activation Sharing can reduce computational cost and would train the network in a
direction more similar to backpropagation. However, just applying Activation Sharing
to forward path would incur weight transport problem as depicted in Fig. 4.2. In next

section, we will deal with this problem.

weight transport problem

hyy,

AW ez = —n8pysh] | Wiy —— > B3’

_’ ® € ® 01

AWz = —8pphi | Wiy = + By.,"

81+1
h p— . ® e ® 5,
AW = -84y Wi — + By
&
I ® 9§

Fig. 4.2: Activation Sharing (k=2)
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4.2 Activation Sharing with Asymmetric Paths: ASAP

4.2.1 ASAP can solve weight transport problem without bidirectional

connections

To solve weight transport problem in Fig. 4.2, we used the theorem about weight
changes proposed by Kolen and Pollack. They consider the network which has forward
and asymmetric feedback path. In this network, the initial value of forward weight W
is different from that of feedback weight B. Both paths are updated by gradient descent
with weight decay [32].

Theorem. If the weight changes of both forward path and feedback path except for

weight decay term are equal during training,
AW (t) = R(t) — AW (t)

AB(t) = R(t) — AB(t)
then the network converges to symmetric networks (i.e., W = B).

Proof.

W(t+1)—B(t+1)
= (W({t)+ AW (t)) — (B(t) + AB(t))
= (1=XNW()-B())

= (1-X"(W(0) - B(0))

Therefore, the W (¢t + 1) — B(t + 1) would converge to zero as the number of
training ¢ is increased. In other words, the asymmetric network converges to symmetric

network (W = B) even though initial values of both paths are different. U
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By using above theorem, the Activation Sharing in Fig. 4.2 with symmetric path
can be transformed the network which has asymmetric paths (W # B) with same

weight changes (AW = A B). The detail training process are as follow:
AWy =ABo=—nb 2 hf 4.5)

AWy 3=AB3=-nd3h] (4.6)

We named this algorithm as Activation Sharing with asymmetric paths (ASAP)
because the shared activation h; is shared to both forward path and asymmetric feed-
back path for updating weights as shown in Fig. 4.3. The ASAP not only takes the
advantages about computational cost and backpropagation-like learning as mentioned

in Section 4.1, but also solves weight transport problem without bidirectional connec-
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tions as shown in Fig. 4.3.

In this section, we proposed Activation Sharing with Asymmetric Paths which ap-
ply Activation Sharing to forward and feedback paths. This algorithm solves weight
transport problem without bidirectional connections successfully. However, some is-
sues remain to ensure biological plausibility of the algorithm. In next section, we will

discuss this issues.

4.2.2 Structural constraints relaxation by ASAP

The ASAP removes bidirectional connections while other algorithms like Weight
Mirror and Modified Kolen-Pollack algorithm [24] need them. As explained in Sec-
tion. 2.4, this bidirectional connections incur strict structural constraint of biological
neural networks [18,21]. Therefore, our ASAP can relax structural constraints of bio-
logical systems by removing bidirectional connections, and therefore support general
and diverse biological neural networks. Although the ASAP relaxes structural con-
straints in biological neural networks, some constraints for constructing ASAP exist:
the multi-step dependency between forward and feedback path like h; — 6.1 —
d0; — hy in Fig. 4.3. However, this multi-step dependencies through intra and inter
laminar routes are frequently found in biological systems while bidirectional connec-
tion is hardly found [29]. For example, the feedforward neurons of layer 4 neurons
are connected to layer 3A via layer 6 indirectly in the visual cortex; can’t directly be
connected with layer 3A directly [29].

The ASAP could form spatially asymmetric connections as depicted in Fig. 4.3
because strict structural constraint which require symmetric one-to-one paring is alle-
viated. Therefore, it can support the spatially asymmetric biological neural networks,
which are frequently found in biological organism. For instance, terminal arborization
of axon by feedforward connections is concentrated while that of axon by feedback
connections is diffused asymmetrically [29, 33, 34] in visual cortices. Furthermore,

neurons of areas 35 and 36 project to other cortical regions while they do not receive
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neuronal connections from these perirhinal regions [34, 35]. This asymmetry in bio-
logical systems can be supported by ASAP, whereas previous algorithms with bidirec-
tional connections cannot support this.

In summary, by eliminating the necessity for bidirectional connections, our ASAP
alleviates the structural limitations of stringent two-step interdependence between for-
ward and feedback neurons. Therefore, it can support biological neural networks rather
than other algorithms with bidirectional connections, by using one-way skip connec-

tions which appears frequently in biological organisms [36—39].

4.2.3 Neuron-specific signals in ASAP

In the general learning rules like Hebbian learning [40], neuron-specific signals,
which are signals of pre- or post-synaptic neurons, are used for training weights. How-
ever, ASAP do not uses these information. Instead, it utilize synapse-specific signals,
which are signals transferred to synapse not from pre- or post-synaptic neurons, but
from other neurons. In Fig. 4.3, for example, pre-synaptic neuron h;y; and post-
synaptic neurons h;, o are not used for updating weights W; 1, but h; and §;. 5 are
transferred to synapse W, and they are used for training the synapse. However, this
synapse-specific learning requires a mount of connections from other neurons in or-
der to learn just a one connection of synapse because, there is no spatial information
about synapse in the neurons which are not pre- or post-synaptic neurons. On the other
hands, just two neurons connected by a synapse are required to learn this synapse in
neuron-specific learning. Therefore, neuron-specific learning is more reasonable than
synapse-specific learning.

To deal with this issue, we apply mirror mode to our algorithm, which is proposed
by Akrout et al [24]. In Weight Mirror Algorithm, feedback weights B, 1 are updated
by using equation (2.6) with h; and h;1 as shown in Fig.2.4. In this case, it does not
utilize neuron-specific signals (pre-synaptic neuron 9; and post-synaptic neuron &; 1),

but utilizes synapse-specific signals (h; and h;.1). However, after learning forward
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weights Wi, 1 in engage mode as depicted in Fig.4.4a, pre- and post-synaptic neurons
of feedback weights B;; 1 mimic forward neurons (8; 11 — h;1,d; — h;) in mirror

mode as shown in Fig. 4.4b, and therefore neuron-specific learning is possible.

0112 .
s Mimic
hy, ® € h1+2‘)'} _> e h,
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AWy = =08 ki | Wiy Bl+1T AByyy = —nhy b
6, " Mimic
b, % - h, % ——p o i
(a) engaged mode (b) mirror mode

Fig. 4.4: WM implementation using neuron-specific signals.

Similarly, the neuron-specific learning is also possible in ASAP by mimicking
neurons. To update feedback weights (B3 and By s), pre-synaptic neurons (J;43
and d;,2) and received signals (h;) from forward path are used in Fig. 4.5a. In for-
ward path, mimicry occurs (i.e. h;; — h;, hj;2 — h;) and the forward weights are
updated by using pre- and post-synaptic neurons (h;) and received signals (d;2 and
d;.3)from feedback path.

While Weight Mirror algorithm have to update feedback weight in mirror mode
after weight update of feedback weight is finished in engaged mode, our ASAP can
do forward and feedback weights concurrently. In Weight Mirror, the feedback neuron
0741, which is used to update forward weights Wi, 1, mimics forward neuron h;; as
shown in Fig. 4.4b (i.e., &; — h;). Therefore, if forward weights and feedback path are
updated concurrently, the forward weight uses received signal h; which is mimicked,
and therefore the learning process is confused. On the other hands, when ASAP is

implemented, feedback updates do not require information of forward neurons (h;4 1

29 =



and h;. ) which mimic shared activation (h;) as shown in Fig. 4.5b. Therefore, there

is no confusion of neuronal information between forward and feedback path if forward

and feedback weights are learned simultaneously.

(a) Updating feedback path
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(b) Updating forward path with mimicry

Fig. 4.5: ASAP implementation using neuron-specific signals.

4.3 Activation Sharing in Feedback Path: ASFP

In above section, we show that our ASAP can do neuron-specific learning by

mimicry. However, this mimicry make our biological learning rule complex. There-

fore, we propose Activation Sharing in Feedback Path (ASFP) which adopt activation

sharing to only feedback path, not to forward path. The detail process of ASFP is as

follow:

AW 9 =

AW, 3 =

—1 0142 hzj;rl

—1 8143 i

ABiio = -8 h]
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ABj 3= —nd3hl (4.10)

While ASAP uses shared activation h; to update both forward weights (W 1o, W 3
and feedback weights (B2, B;4+3) and feedback as shown in equation (4.5-4.6),
ASFP does not uses shared activation h; to update (Wi o, Wy 3). Instead, it uses pre-
synaptic neurons (h;; 1, hi42) to update feedback path by equation (4.7-4.8) while the
shared activation (h;) is still used for forward weight updates by equation (4.9-4.10).
In this algorithm, both forward path and feedback path uses pre-synaptic neuronal in-

formation as shown in Fig. 4.6, and therefore additional mimicry is unnecessary.
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Chapter 5. Experiments

In this section, we verified the validity of the Activation Sharing by experiments.
We would describe the detail experimental setting in Section 5.1. Afterwards, the re-

sults of experiments are discussed in Section 5.2

5.1 Experimental Details

5.1.1 Contents of experiments

Matching dimension for sharing activation When activation sharing is performed,
shared activation replaces actual activation to update weights. It assumes that the di-
mensions of shared activation and actual activation are the same. However, the dimen-
sion of activation in neural networks changes sometimes; channel size would to be
increased and feature map size would be decreased as the layer deepens in general
deep convolutional networks. Therefore, we proposed three method to match dimen-
sion between shared activation and actual activation when it is different. First, multiple
copies of the shared activation are concatenated to fit the channel size and maxpool
function is adopted to fit the feature map size in method 1. Second, we match the
channel size with concatenation as same as method 1 but average pool is adopted for
matching the feature map size in method 2. Third, random fixed weights are applied to
shared activaitons just as Forward Alignment. These three methods are experimented

in AlexNet [41] on CIFAR-10 [42].

Experiments on ASAP We trained deep convolutional networks with backpropaga-
tion (BP), modified Kolen-Pollack (KP), Feedback Alignment (FA), Direct Feedback
Alignment (DFA), and proposed Activation Sharing with Asymmetric Paths (ASAP).

We also compared our ASAP to diverse local learning algorithms [13, 43, 44], which
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trained the network locally. The block size £ of ASAP is set to 2. In addition, we
increased block size k to 4 to confirm the effect of block size on ASAP algorithm.
All experiments using ASAP do not apply ASAP to first layer (i.e., do not train this
layer), because input of first layer has considerably smaller dimension than the subse-
quent layers, and therefore it can’t be shared activation. Therefore, we apply activation
sharing from second layer. Furthermore, we apply method 1 as mentioned above for
matching dimension of shared activation, because method 1 performed well than other

methods in above experiments (See Section 5.2.1)

Effect on weight decay on ASAP The theorem in Section 4.2.1 show that the net-
work with asymmetric paths converges to the network with symmetric paths when
weight changes of both forward and feedback paths are same except for weight decay
term. In this proof, we assume that the weight decay factor A would play a important
role because it controls how fast W (t +1) — B(t +1) = (1 — \)!TH(W(0) — B(0))
converges to zero. Therefore, we implement the experiments in diverse weight factors

to verify this assumption.

Experiments on ASFP To justify our Activation Sharing in Feedback Paths (ASFP),
we trained deep convolutional networks with ASFP. Furthermore, we also apply local
classifier to ASFP for improving performance. We compared this learning rules with

backpropagation, ASAP, and other local learning algorithms [13,43,44]

5.1.2 dataset

The MNIST [31] has 60,000 training sets and 10,000 test sets which are 28 x 28
gray images of digits. The SVHN [45] consists of colored digits images with 32 x 32
scale, which are divided to 73,257 training sets and 26,032 test sets. On the ohter
hands, the CIFAR-10 dataset [42] has 32 x 32 colored images about 10 objects. It has
50,000 training sets while the number of test sets is 10,000. Likewise, CIFAR-100 [42]

also consists of 50,000 colored images for training and 10,000 colored images for
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test with 32 x 32 scale, but the number of objects is 100. The Tiny ImageNet [46]
includes 100,000 training sets and 10,000 test sets which are 64 x 64 colored images
for classifying 200 objects. All datasets in experiments are normalized, and we also
adopt random crop and random horizontal flip to CIFAR-10, CIFAR-100, and Tiny

ImageNet as data argumentation.

5.1.3 Models

We do experiments on AlexNet [41] and ResNet [47]. The AlexNet in our experi-
ments is 64 Conv3 x 3 — 128 Conv3 x 3 — 256 Conv3 x 3 —1024 FC' — 1024 FC —
10 F'C, where 64 Conwv3 x 3 denotes convolutional layers with 64 of out channel size
and 3 x 3 of kernel size. The stride and padding of this convolutional layers is set to
1 and 2, respectively. The 1024 F'C' denotes fully-connected layers with 1024 of out-
put size. The output size of final fully-connected layer is determined by the number
of classes in dataset (i.e., F'C' 100 on CIFAR-100). We also trained ResNet-18 and
ResNet-34 described by He et al [47]. Furthermore, we also trained ResNet-18 with-
out shortcut, which is residual connection adding previous activation to current one, to

verify how this shortcut affect our ASAP learning rule.

5.1.4 Hyperparameters

In all experiments, the stochastic gradient descent with momentum [48] and the
weight decay [32] are adopted when updating weights. The learning rate is scheduled
by cosine annealing [49]. We initialize all weights in the networks by Kaming initial-
ization [50]. The batch size, momentum, weight decay factor, and training epoch are

set to 128, 0.9, and Se-4. The learning rates are chosen as follow:
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Table 5.1: Learning rates used in experiments.

Dataset Model BP KP FA DFA  ASAP
MNIST AlexNet 3e-2 3e-2 le-4 le-4 le-4
AlexNet 3e-2 3e-2 le-4 le-4 le-4
SVHN ResNet-18 (nsc*) | 3e-2 3e-2 3e-3 3e-3 3e-3
ResNet-18 3e-2 3e-2 3e-3 3e-3 3e-3
AlexNet 3e-2 3e-2 le-4 le-4 le-4
ResNet-18 (nsc*) 3e-2 3e-2 3e-3 3e-3 3e-3
CIFAR-10 ResNet-18 3e-2  3e2 | 3e-3  3e-3  3e-2
ResNet-34 3e-2 3e-2 3e-3 3e-3 3e-2
AlexNet 3e-2 3e-2 le-4 le-4 le-4
ResNet-18 (nsc*) | 3e-2 3e-2 3e-3 3e-3 3e-3
CIFAR-100 ResNet-18 3e-2 3e-2 3e-3 3e-3 3e-2
ResNet-34 3e-2 3e-2 3e-3 3e-3 3e-2
Tiny TmageNet ResNet-18 3e-2 3e-2 3e-3 3e-3 3e-2
ResNet-34 3e-2 3e-2 3e-3 3e-3 3e-2

*no shortcut

5.2 Results

5.2.1

Matching dimension for sharing activation

As shown in Fig. 5.1, method 1, which uses concatenating and maxpool function,

achieves the best accuracy in CIFAR-10 on AlexNet. We assumed that the reason why

method 1 do better is that the difference between actual activation and shared activa-

tion made by dimension matching methods is the smallest in method 1. Nevertheless,

the method 3, which uses random fixed weight to match dimension, would be more

reasonable than method 1 in terms of biological plausibility. We know that the activa-

tion sharing is advanced Forward Alignment by using identity matrix as random fixed

forward weights. Therefore, method 3 could be interpreted as Forward Alignment is

implemented when dimension of activation is changed.
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Fig. 5.1: Test accuracy comparisons of dimension matching methods.

5.2.2 Results of ASAP

Table 5.2: Test accuracy of BP, KP, FA, DFA, and ASAP (k=2) in classification task

Dataset Model BP KP FA DFA ASAP
MNIST AlexNet 99.59 99.55 99.14 99.28 99.32
AlexNet 94.64 93.3 82.21 87.42 88.04

SVHN ResNet-18 (nsc*) 96.14 95.84 84.91 85.64 93.17
ResNet-18 96.29 96.13 85.08 85.56 94.86

AlexNet 90.58 79.23 67.92 73.85 78.25

ResNet-18 (nsc*) 94.70 94.65 71.38 75.46 83.44

CIFAR-10 ResNet-18 94.93 94.76 72.47 76.0 92.19
ResNet-34 95.18 94.54 66.99 73.02 93.97

AlexNet 63.61 47.43 33.32 35.38 46.99

ResNet-18 (nsc*) 77.34 74.98 37.11 37.48 51.72

CIFAR-100 ResNet-18 77.74 74.51 38.15 38.51 68.86
ResNet-34 78.41 75.0 33.01 35.6 72.81

Tiny TmageNet ResNet-18 60.13 58.14 20.54 24.07 48.46
ResNet-34 62.63 59.45 16.86 21.1 52.25

*no shortcut

Good performance on deep convolutional networks The test accuracy of training
algorithms on various datasets and models is described in the Table 5.2. In all ex-
periments, ASAP consistently outperforms FA and DFA, wchich are the algorithms
solving weight transport problem. Although there is performance drop compared with

KP, the ASAP removes biologically implausible bidirectional connections while KP
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requires them. In other words, Our ASAP achieved the highest performance among
biologically plausible algorithms that solved the weight transport problem without
bidirectional connection.

The ASAP also achieves comparable performance to BP even in deep convolu-
tioanl networks even on complex datasets. While FA and DFA fail to train ResNet-
34 on CIFAR-100 and Tiny-ImageNet, our ASAP achieves 72.81% and 52.25% on
CIFAR-100 and Tiny-ImageNet, respectively, which are much more similar perfor-
mance to BP than FA and DFA. This is because ASAP can take advantage of the
benefits of deeper networks while FA and DFA cannot achieve this advantage. We
know that the deeper the network, the better the performance. However, FA and DFA
do not increase test accuracy when the network is deepen from AlexNet to ResNet-
34 as shown in Table 5.2. On the other hands, ASAP increase performance when the
network is deepen as BP do.

One interesting thing is that the performance of ASAP is sharply increased when
shortcut exist. He et al. [47] introduce shortcut of ResNet increases performance as
BP increases test accuracy by 0.23% and 0.5% on CIFAR-10 and CIFAR-100, re-
spectively. In ASAP, however, the performance are increased by 8.75% and 17.14%
on CIFAR-10 and CIFAR-100, respectively. We would explain this phenomenon as

below.

Effect of shortcut We describe the structure of ResNet block as Fig. 5.2a. When we

trained this residual block by backpropagation and ASAP, the equation is as follow:

hito = ¢(Wipahyy1 + biio) + hy 6.1
AW 3 = i13hi1o = 6143 6(Wigahyp1 + bio) + 6113k (5.2)
AWy 3 = 8143hy (5.3)
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where AW denotes weight updates by ASAP. However, when there is no shortcut, the

equation is modified as below:

hito = d(Wipohi 1 + biyo) (5.4)
AW, 3 = d113hi 12 = 6143 9(Wig2hi i1 + byyo) (5.5
AW i3 = §i13hy (5.6)

For sake of simplicity, we replace d;+3 ¢(Wiioh;11 + bjio) and 8,4 3h; to g1 and
go, respectively. When there is shortcut, the equations (5.2 and 5.3) are changed to
AWyi3 = g1 + g2 and AVVZH = go, respectively. In other words, the same term
g2 between AW;, 3 and AV~VZ+3 are made by adding shared activation h; through
shortcut in equation (5.1). We assumed that this same terms make the learning direction
of ASAP is similar to that of backpropagation as shown in Fig.4.3, and therefore the
high performance is achieved similar to backpropagation.

On the other hands, if there is no shortcut, the equations (5.5 and 5.6) are changed
to AWy, 3 = g1 and AVVH;), = g9, respectively. Therefore, there is no same term
between AW, 3 and Aﬁ/l_l_'g. Consequently, ASAP do not train the network in the

similar direction to backpropagation compared to when there is a shortcut as shown in

Fig.4.3.
q
® ® ° °
h, Wit Ry, Wi hi, Wi hys
e €141 €142 €143
(a) Shortcut in ResNet (b) Better alignment due to shortcut

Fig. 5.2: Overview of shortcut effect.

In summary, our ASAP has the strength to train the networks with residual connec-
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tion, which are state-of-art architecture on classification task. We intuitively assume
the reason is because shared activation, which is added to output activation through
shortcut, makes the learning direction of ASAP close to that of backpropagation. In

next study, we will prove this assumption more elaborately.

Effect of block size The block size itself has little bearing on biological plausibility
since the act of sharing activation through several layers itself destroys the bidirec-
tional connection as shown in Fig. 4.3. However, we can reduce memory overhead by
increasing block size k. If block size k is increased, the number of layers, which do
not store actual activation and just use shared activation for weight updates, increases.
For example, h1, h3, hs, and h; have to stored when block size k is 2 as shown in Fig.
5.3a while just h1 and hs are required when block size k is 4 in Fig. 5.3b (The detail

analysis of memory overhead is described in Section 6).

,,,,,,,,

input — | h,|—|h, —|h; | —|h,|— |hs| — |h;,| — | h, | — | hg | — | h
P W, 1 w, 7 w, 3 w, 4 w. 5 w, 6 w, 7 w, 8 w, 9

input — hl ——— hz — h3 g—_t h4_ f—
W, w, W, w, W, w, w, W, W,

(b) ASAP (k=4)

Fig. 5.3: Overview of ASAP algorithm.

Therefore, we trained ResNet-34 by ASAP with £ = 4 and compared this with
other algorithms as shown in Fig.5.4. Interestingly, the ASAP with k& = 4 achieves

high performance similar to ASAP with £ = 2. On CIFAR-10, the performance of

39 ] =



ASAP is 93.9% when k = 4, which is comparable to 93.97% when k = 2. There are
little performance drop between 72.81% of k£ = 2 and 71.93% of k = 4 on CIFAR-
100, however it still it still maintains much better performance than FA and DFA. In
other words, we can reduce memory overhead of ASAP while maintaining competitive
performance compared with other biologically plausible algorithm by reducing block

size.
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o
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40
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00 25 50 75 100 125 150 175 200 00 25 50 75 100 125 150 175 200
Epoch Epoch
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—— ASAP(k=2)
—— ASAP(k=4)
— FA
— DFA

(a) Test accuracy on CIFAR-10 (b) Test accuracy on CIFAR-100

Fig. 5.4: Training performance comparisons for ResNet-34

Compared with local learning In backpropagation, input propagates through for-
ward path by equation (2.1), and then global error, which is made by total output of
network, is backward-propagated by equation (2.2). Finally, the weights are updated by
using forward activations and backward errors by equation (2.3). On the other hands,
the local learning algorithms [13, 43, 44] train the network locally. In other words,
when the input propagates a layer, the output activation of the layer immediately gen-
erates local errors, and then weight of the layer is updated by this local errors. Mostafa
et al. [51] generates local errors by using local classifier, which uses random fixed
weights to make local outputs. The local errors are calculated by local outputs and
targets vector. Nokland and Eidnes [43] uses both fully-connected layer and convolu-
tional layer as local layer to make local error. Pogodin et al. [44] uses Hilbert-Schmidt

Independence Criterion (HSIC) [52] to make local error. These local learning algo-
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rithms are more biologically plausible than backpropagation because it is speculated

that biological neural networks train its synapse locally.

Table 5.3: Test accuracy of ASAP and local learning algorithms on CIFAR-10

Architecture BP [51] [43] [44] ASAP
ResNet-18 94.93 71.41 88.12 80.76 92.19
ResNet-34 95.18 69.8 87.57 77.2 93.97

We display the results of local learning algorithms mentioned above, and compared
with our ASAP in Table 5.3. Despite achieving high performance on architecture like
VGG, local learning algorithms degrade noticeably in ResNet, as was already reported
in [43] while our ASAP achieves comparable performance to backpropagation. We as-
sumed the reason is that the global errors can not back-propagated and just local errors
are generated in local learning algorithms. Therefore, they do not take a advantage of
residual connection proposed by He et al [50]. On the other hands, our ASAP not only
takes a advantage of residual connection because it uses global errors, but also occurs
effect of shortcut as described in Fig. 5.3b. Consequently, our ASAP can outperforms

other local learning algorithms in ResNet.

5.2.3 Effect of weight decay on ASAP

Table 5.4: Test accuracy of diverse weight decay factor (\) on CIFAR-10

Learning rules A=0 A =5e-6 A=5e-5 A =5e-4 A =5e-3
BP 93.56 93.76 93.82 95.18 95.12
ASAP 89.77 89.85 91.63 93.97 91.54

We trained ResNet-34 on various weight decay factor as depicted in Table 5.4.
The weight decay has an impact on performance in both BP and ASAP. However, this
impact is grater in ASAP resulting larger performance variation than backpropagation.
As explained in Section 4.2.1, large weight decay factor converges W (t+ 1) — B(t +

1) = (1-\)""{(W(0)—B(0)) to zero fast, and therefore the performance is increased
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when weight decay factor is increased in ASAP. However, this trend is broken when
weight decay factor is too large. When weight decay factor is Se-3, the test accuracy
1s 91.54% which is lower than performance 93.9% when weight decay factor is Se-4.
This is because too large decay factor interrupt appropriate training as backpropagation
do. Consequently, we have to choose appropriate weight decay factor to train network

successfully by ASAP.

5.2.4 Results of ASFP with local learning

Table 5.5: Test accuracy of ASFP with local classifier on CIFAR-10

Architecture BP ASAP ASFP ASFP + LC*
ResNet-18 94.93 92.19 61.45 88.46
ResNet-34 95.18 93.97 31.7 89.28

*Local Classifier

We trained ResNet-18 and ResNet-34 on CIFAR-10 by ASFP which is described
in Section 4.3. Table 5.5 shows that results of the experiments. We confirmed that
our ASFP do not train deep convolutional networks well occurring performance drop
by 33.48% and 64.48%, respectively. We assumed that this performance degradation
occurs because the weight update of forward path (AW) is different from that of
feedback path (A B) by equations (4.7-4.10).

To alleviate this issue, we adopt local classifier [S1] to ASFP. We placed a local
classifier at the end of the ASFP block. The local classifier consists of 2 x 2 average
pool layer and fully-connected layer, and this fully-connected layer is trained by Feed-
back Alignment. By adopting this method, the performance of ASFP is increased to
88.46 and 89.28 in ResNet-18 and ResNet-34, respectively. Although the performance
is decreased compared with BP and ASAP, ASFP with local classifier performed better
than FA, DFA, and local learning algorithms as described in Table 5.2 and Table 5.3.
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Chapter 6. Hardware implementation of ASAP

350

u BP
300 B ASAP (K=2)
ASAP (K=4)

250

200

150

100

Memory access volume (Mwords)

50

AlexNet ResNet-18 ResNet-34

Fig. 6.1: External memory access comparisons.

When training deep neural network in hardware, a mount of calculation and mem-
ory overhead are the bottlenecks sze2017efficient. To compute this memory cost, Mostafa
et al. [13] proposed the method to estimate external memory access when selected al-
gorithm is implemented on hardware. They assumed that on-chip memory is sufficient
for buffering input and output activations. When the forward path is implemented, the
parameters like weights would be read from memory, and the intermediate output acti-
vations are calculated by compute device. This intermediate output activations, which
are used in feedback path, would be written to the memory. The read and write accesses

in forward path are expressed as below:

(Nreads Nwrite) = (Param, Act) (6.1)

where Param and Act represents the number of parameters and intermediate
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output activations, respectively. When the backward path is implemented, the param-
eters and activations would be read from the external memory in order to calculate
back-propagated errors and update the weights. Afterwords, the computed weight up-
dates are written back to the external memory for next epoch of training. Therefore,

read and write accesses can be expressed as follow:

(Nyead, Murite) = (Param + Aaram, Param) (6.2)

By equations (6.1-6.2), the number of external memory accesses is computed when
deep convolutional networks are trained by backpropagation, ASAP with k = 2, and
ASAP with k£ = 4 as shown in Fig. 6.1. We can confirm that our ASAP can reduce the
number of external memory accesses compared to backpropagation. Furthermore, this
memory cost could be more reduced by increasing block size. This trend is pronounced
in deeper networks by reducing lots of memory accesses more than shallow networks.
By this results, we expect that our ASAP could be adopted for memory-efficient hard-

ware.
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Chapter 7. Conclusion

In this study, we proved that the learning is possible by mathematically proof and
experimental results even if approximate activations is used for weight updates instead
of exact activations. Furthermore, we proposed activation sharing that advanced on
idea above, and we solved weight transport problem without bidirectional connection
successfully by applying activation sharing with asymmetric paths. This ASAP algo-
rithm not only alleviated structural constraints on biological neural networks, but also
achieved high performance close to backpropagation even in deep convolutional neural
networks on complex datasets like Tiny-ImageNet. In addition, our algorithms sharply

reduced memory overhead when implemented in hardware.
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Chapter 8. Appendix

8.1 Gradient Free Approximation for biological plausibility

Gradient descent [25] is adopted to backpropagation for training deep neural net-
works in deep learning. As explained in Section 2.1, backpropagation based on gra-
dient descent causes weight transport problem. Furthermore, it incurs separated feed-
back pathway as shown in Fig. 2.1 while there is no certainty that this pathway exists
in biological neural networks. Moreover, it 1s still unknown whether gradients can be
calculated in the brain.

Gradient Free Approximation [53-55], which does not calculate gradient for learn-
ing networks, can be a good solution to alleviate above issues. It does not require sep-
arated feedback path, which generates gradients, because it can train networks without
gradients. Therefore, weight transport between two path is also not required. Further-
more, it is consistent with the observation that there is no evidence that gradients can
be computed in biological neural networks.

Although gradient free approximation has possibility to develop biologically plau-
sible algorithm, it suffer from two problems. First, it cannot be scaled to large-size
tasks [56]. For instance, COBYLA [57], which is gradient free optimization solver, is
only capable of handling problem with up to 2'6 variables, where it is smaller than a
single image of ImageNet. Second, gradient free optimization has a slow convergence
rate than gradient descent because it does not use exact information of derivative func-

tion [54-56]. We would solve this problem in next study.
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8.2 Pseudocode

Algorithm 1 Pseudocode of ASAP

1: procedure FORWARD PROPAGATION

> Determine shared activation

> Propagate error through feedback weights

2: iLl =h;

3: hi,0=¢(Wiohi + biy)

4: for m = 1to M do

5: for k =1to K do

6: Pone = 0(Wo kP -1 + b )
7: end for

8: Ryt = hy k-1

9: hpi10=hn i

10: end for

11: end procedure

12:

13: procedure BACKWARD PROPAGATION

14: yum,x = softmax(har i), Ok = Ymx — Y
15: form = M to 1 do

16: for k= K to1do

17: Omk—1=0 BL | 8k

18: end for

19: end for

20: end procedure

21:

22: procedure WEIGHT UPDATE
23: for m =1to M do

24: for k =1to K do

25: AW, i = O ichl — AW, ),
26: AB ;. = 01 hT — ABpi
27: end for

28: end for

29: end procedure

> Use shared activation for weight changes
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