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Abstract

Plasma metabolomic signatures of
nonalcoholic fatty liver disease and
weight loss interventions in pediatric

population with obesity

Woori Chae

Major in Biomedical Sciences
Department of Biomedical Sciences

Seoul National University Graduate School

INTRODUCTION: The prevalence of pediatric obesity in Korea is
increasing rapidly from 8.4% in 2008 to 25% in 2018, as it is worldwide.
Pediatric obesity is closely related to various metabolic diseases, such
as insulin resistance and diabetes, cardiovascular diseases, and
hepatic diseases. Nonalcoholic fatty liver disease (NAFLD) is one of the
most common liver diseases in the pediatric population. The most
effective prevention and treatment methods for obesity and related
diseases in children are weight loss interventions, including regular

physical activity and dietary interventions. In this study, metabolic



differences according to the occurrence of NAFLD and weight loss
interventions were investigated in plasma samples using a
metabolomics approach by leveraging the pediatric NAFLD and the
obesity intervention cohorts.

METHODS: 165 children and adolescents from a pediatric NAFLD
cohort were classified into four groups based on steatosis grade and
body mass index z-score to discover the NAFLD-specific metabolic
biomarkers in plasma. In addition, plasma samples of selected 40
children and adolescents in the obesity intervention cohort were
compared at baseline, 6 months post-intervention, and 18 months
post-intervention to explore significant changes in plasma
metabolites according to the weight loss intervention.

RESULTS: I discovered 18 NAFLD-specific metabolic biomarkers by
investigating the pediatric NAFLD cohort. These metabolites were
related to glutathione-related metabolism, lipid metabolism, and
branched-chain amino acid metabolism. This study also
demonstrated that the metabolites can be used as ancillary
biomarkers for the diagnosis of NAFLD in the pediatric population. In
the obesity intervention cohort, a time-series change in plasma
metabolites was observed according to the intervention period
regardless of the intervention response. More metabolites were

changed as the intervention period increased, of which changes in the

ii



TCA cycle, urea cycle, and amino acid metabolism were particularly
prominent.

CONCLUSION: By using two pediatric cohorts and metabolomics
methodology, I suggested the clinical implications of metabolic
changes by NAFLD and a weight loss intervention in the pediatric
population with obesity. This study proposes the pathophysiology of
NAFLD and conceptualizes metabolically healthy obesity. The results
help establish appropriate treatment for childhood and adolescent
obesity and related diseases.

* Part of this work has been published as two original articles in
Metabolites (Chae W, Lee KJ, et al. Association of Metabolic Signatures
with Nonalcoholic Fatty Liver Disease in Pediatric Population.
Metabolites. 2022;12(9); Sohn M]J, Chae W, et al. Metabolomic
Signatures for the Effects of Weight Loss Interventions on Severe

Obesity in Children and Adolescents. Metabolites. 2022;12(1)).

KEYWORDS: pediatric obesity, metabolomics, nonalcoholic fatty liver
disease, weight loss intervention, plasma metabolome

STUDENT NUMBER: 2017-39919
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Introduction

Child and adolescent obesity rates have rapidly escalated worldwide
(1). The World Health Organization reported that in just 40 years, the
pediatric population with obesity has risen more than 10-fold. This
translates to a surge from 11 million to 124 million (2016 estimates) (2).
Within one decade, from 2008 to 2018, Korean childhood obesity rates
burgeoned from 8.4% to 25% (3). In addition, COIVD-19 pandemic
resulted in heightened stress, weight gain, and fewer physical activity
opportunities. As a consequence, childhood obesity risk has
multiplied, nearly doubling the average body mass index (BMI)
between January and November 2020 (4). Childhood obesity
prevention and early treatment methods are vital as as obesity
correlates with various medical complications, including endocrine,
cardiovascular, musculoskeletal, and gastrointestinal diseases and
metabolic syndromes, such as dyslipidemia, hypertension, and
insulin resistance (5).

Since first reporting pediatric nonalcoholic fatty liver disease
(NAFLD) in 1983, it has become one of the most prevalent hepatic
disorders in children and adolescents with obesity (6). The prevalence
of fatty liver is also increasing in proportion to the increase in
childhood and adolescent obesity (7). The risk factors for NAFLD

include dietary, environmental, and genetic factors, which show



complex interactions resulting in insulin resistance and obesity (8).
These factors cause hepatic triglyceride (TG) accumulation,
lipotoxicity due to the high levels of free fatty acids, and oxidative
stress, which are involved in hepatic inflammation. Despite the
increasing prevalence of NAFLD worldwide over the last few decades,
no licensed drugs have been approved for its treatment. Developing a
single effective drug may be complicated by the complex
pathophysiology of NAFLD.

Current first-line treatments for controlling obesity and related
diseases are physical activity, dietary regulation and other weight-
management lifestyle modifications (9). However, unmet medical
needs remain due to complex pathophysiology, inadequate
medications, and insufficient obesity and NAFLD studies of the
pediatric population. Thus, thoroughly  understanding
pathophysiological characteristics and identifying efficient pediatric
obesity and obesity-related surrogate biomarkers, particularly for
NAFLD, is necessary to establish appropriate treatment strategies.

Metabolomics is a technical tool that aims to detect and measure
minute changes in molecular (< 1,500 Da) cell, tissue, organ, or whole
organism levels due to genetic variation or physiological or
pathological conditions (10). Metabolomics also assesses metabolic
changes from obesity and obesity-related diseases at cellular and body
fluid levels (11). Plasma metabolomics is advantageous in determining
disease-related biomarkers because it is easy to collect iteratively, less

2



invasive, inexpensive, and reflective of systemic changes. Some
research has reported metabolic signatures based on elements such
as branched-chain amino acids (BCAAs), aromatic amino acids, and
other lipidomic profiles associated with NAFLD. However, most of
these studies were conducted on adults and individuals with obesity
(12-14). In addition, increasing studies have revealed the metabolomic
signatures and pathophysiological changes associated with obesity
such as inflammation or oxidative stress (11). However, few studies
have investigated childhood obesity, especially involving weight loss
interventions (15-19). In this regard, a metabolomics approach may
address many unmet medical needs.

In this study, I aimed to identify NAFLD-specific or obesity
intervention-related metabolic biomarkers and associated pathways
to elucidate metabolic changes induced by obesity-related diseases
and interventions. The study involved leveraging two study cohorts,
the pediatric NAFLD cohort and the obesity intervention cohort, and
investigating the plasma metabolome signatures in pediatric patients

with obesity and NAFLD.



Methods”

1. Study population

1.1. Pediatric NAFLD cohort®

This study was approved by the Institutional Review Board (IRB) of
each hospital (IRB No. 2018-10-015 by the Hallym University Sacred
Heart Hospital and 1811-149-98 by Seoul National University
Children’s Hospital) and conducted per the Declaration of Helsinki.
Children and adolescent participants who visited the pediatric
departments of the Hallym University Sacred Heart Hospital and Seoul
National University Children’s Hospital from January 2019 to May 2020
were recruited, after obtaining informed consent from the subjects
and their parents.

The presence and grade of the participants’ fatty livers were
evaluated by ultrasonography. The steatosis grade was assessed by
comparing hepatic echogenicity to kidney parenchyma and graded as
normal, 0; mild, 1; moderate, 2; and severe, 3 (20, 21). The participants

were categorized into four groups according to the steatosis grade as

4 Study design and analysis workflows of the pediatric cohort and the obesity
intervention cohort are abridged in Figures 1 and 2.
B Patient recruitment, sample collection, and anthropometric and laboratory
assessment were conducted by Prof. Kyung Jae Lee and Prof. Jae Sung Ko.
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determined by abdominal ultrasonography and BMI z-score based on
the 2017 Korean National Growth Chart for children and adolescents
(22): healthy control (HC), steatosis grade = 0 and BMI z-score < 1; lean
NAFLD (LN), steatosis grade = 1 and BMI z-score < 1; overweight
control (OC), steatosis grade = 0 and BMI z-score > 1; and overweight
NAFLD (ON), steatosis grade = 1 and BMI z-score > 1. Participants who
were taking alcohol or medications known to affect the results of liver
function test results. Participants with viral hepatitis, such as hepatitis
A, B, or C, or with Epstein-Barr virus, Wilson’s disease, autoimmune
hepatitis, or muscular disease were also excluded. Thus, 165 subjects
were included in this study.

Anthropometric characteristics such as height, weight, and BMI z-
score were evaluated. After overnight fasting, 4 mL peripheral blood
samples were collected to assess the insulin, hemoglobin Alc (HbAlc),
and platelet count levels. Serum samples were also collected by
clotting blood for 30 min, followed by centrifugation at 4 °C.
Laboratory assessments, including the measurement of the serum
levels for fasting glucose, TGs, and cholesterol, and liver function tests,
including serum aspartate transaminase (AST), alanine transaminase
(ALT), gamma-glutamyl transferase (GGT), and alkaline phosphatase
(ALP) activity measurements were performed. The homeostatic model
assessment for insulin resistance (HOMA-IR) was calculated as fasting
glucose (mg/dL) multiplied by fasting insulin (mU/L) divided by 405.
For clinical variables with missing data, such as GGT, fasting glucose,

S



insulin, HbAlc, and HOMA-IR, I chose appropriate statistical methods
according to the number of data points for each variable following the

exclusion of missing values.

1.2. Obesity intervention cohort®

The study was conducted according to the guidelines of the
Declaration of Helsinki and approved by the Institutional Review
Board of Hallym University Sacred Heart Hospital (IRB No.: 2015-1134
and 2016-1135) and Seoul National University Hospital (IRB No.: 1907-
195-1054 and 1102-099-357). Subjects with obesity (BMI > 97th
percentile for age and sex) were selected from 242 patients in the
Intervention for Children and Adolescent Obesity via Activity and
Nutrition (ICAAN) cohort, a 24-month post-intervention follow-up
study, which was designed as a multidisciplinary intervention test to
prevent excessive weight gain and improve several health indices in
children and adolescents (aged 6-17 years) with obesity in Korea (23-
25).

Participants without obesity-related heredity or other underlying
diseases were randomly divided into three groups. They received a 24-
month intervention varying by group: usual care, extensive exercise,

or nutrition feedback. Each group was similar in size (usual care group

¢ Patient recruitment, intervention, sample collection, and anthropometric and

laboratory assessment were conducted by Prof. Kyung-Hee Park.
6



= 10, 25%; extensive exercise group = 15, 37.5%; nutrition feedback
group = 15, 37.5%), and all groups experienced five categories of
intervention: nutrition, physical activity, group activity, parental
education, and self-monitoring. The exercise group incorporated the
usual care group components with weekly exercise classes and activity
feedback. The nutrition feedback group received individual nutrition
feedback and the usual care group components.

Their intervention response was evaluated based on changes in
BMI z-scores at 18 months post-intervention, compared to those at
baseline (AZgwi). Responders were defined by AZgw < —0.45 and non-
responders were defined by AZpw > -0.1. As no patients gained
weight because of the intervention, patients with the least weight
change were selected as the non-responder group. Random sampling
was not possible owing to the limited sample size. Therefore, the
portion and number of samples in each intervention group were
considered.

Blood samples were collected at baseline, 6 months, and 18
months post-intervention in both groups, resulting in a total of 120
collected samples for anthropometric data such as age, sex, and BMI
z-score, and laboratory assessment data such as AST, ALT, TGs, high-
density lipoprotein cholesterol (HDL-C), and low-density lipoprotein

cholesterol (LDL-C) levels.



2. Mass spectrometry-based analyses in plasma

2.1. Pediatric NAFLD cohort

4 mL of blood was collected from each participant after overnight
fasting and centrifuged at 4 °C for metabolomic analysis. Separated
plasma samples were collected and stored until use at —80 °C. Plasma
metabolites, including 21 amino acids, 21 biogenic amines, 55
acylcarnitines (ACs), 18 diglycerides (DGs), 42 TGs, 172
phosphatidylcholines (PCs), 24 lysophosphatidylcholines (LPCs), 31
sphingomyelins (SMs), 9 ceramides (Cers), and 14 cholesteryl esters
(CEs) and hexoses were analyzed using the AbsoluteIDQ™ p400 HR kit
(Biocrates Life Sciences AG, Innsbruck, Austria). Samples and
reagents were prepared according to the manufacturer’s instructions.
Additionally, three pooled plasma samples per plate were added for
quality control and prepared in the same way as the analytical samples
to normalize the batch-to-batch effect.

Briefly, frozen plasma samples were thawed on ice and vortexed,
followed by centrifugation at 2750X g, 4 °C for 5 min before the
samples were loaded onto a 96-well plate with a filter. After 10 uL of
analytical and pooled plasma samples and calibration standards were
added to each well, the plates were dried with a nitrogen evaporator
and derivatized with phenyl isothiocyanate. Then, dried samples were

extracted with an ammonium acetate solution in methanol and



aliquoted into two deep-well plates for liquid chromatography mode
and flow injection analysis (FIA) mode (described in the manual),
followed by dilution with water and an FIA solvent, respectively. Both
deep-well plates were placed in an autosampler of Ultimate 3000 ultra-
performance liquid chromatography coupled with a Q Exactive Plus
hybrid quadrupole-orbitrap mass spectrometer (Thermo Fisher
Scientific, Waltham, MA, USA) and analyzed using the validated

method.

2.2. Obesity intervention cohort

The 120 plasma samples were transported to Human Metabolome
Technologies Inc. (HMT) to measure the metabolome. The samples
were stored in a deep freezer below —80°C until analysis. 200 uL of
methanol containing internal standards (L-methionine sulfone and D-
camphor-10-sulfonic acid, 20 uM) was added to each 50 plL of sample,
diluted with 150 pL of distilled water, and mixed thoroughly. Each
mixture (300 pL) was filtered through a 5-kDa cut-off filter (Ultrafree-
MC-PHCC, HMT, Yamagata, Japan) to remove macromolecules.

The filtrate was centrifugally concentrated and resuspended in 50
uL of distilled water immediately before analysis. The compounds
were measured in the cation and anion modes using a capillary
electrophoresis-time-of-flight mass spectrometer system (Agilent

Technologies Inc., Santa Clara, CA, USA) and a fused silica capillary



(50 um i.d. X 80 cm total length) with the mass range from m/z 50-
1000. Cationic metabolites were analyzed with Cation Buffer Solution
(Human Metabolome Technologies, solution ID: H3301-1001) as the
electrolyte. The sample was injected at a pressure of 50 mbar for 5 sec
with an applied voltage set at 30 kV. The capillary voltage of the
electrospray ionization source was set at 4000 V. Anionic metabolites
were analyzed with Anion Buffer Solution (Human Metabolome
Technologies, solution ID: 13302-1023) as the electrolyte. The sample
was injected at a pressure of 50 mbar for 10 sec with the applied
voltage set at 30 kV. The capillary voltage was set at 3500 V. The relative
standard deviation of internal standards added to the sample was

monitored (less than 10%) to guarantee analytical reproducibility.
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3. Raw data process and metabolite quantitation

3.1. Pediatric NAFLD cohort

Raw data were processed using the Xcalibur Software (Thermo Fisher
Scientific, Waltham, MA, USA) and MetIDQ Oxygen (Biocrates Life
Sciences AG, Innsbruck, Austria) to calculate the metabolite
concentrations in each sample per the manufacturer’s instruction.
The final quantitative results were exported micromolar values with
pooled quality control normalization by the median. Subsequently,
values under the lower limit of detection were imputed by one-fifth of
the minimum positive values of their corresponding variables. Finally,
342 metabolites were reliably detected and selected for further

analysis.

3.2. Obesity intervention cohort

Detected peaks were extracted using an automatic integration
software (MasterHands ver. 2.17.4.19, Keio University; Tokyo, Japan)
to obtain peak information, including m/z values, migration time, and
peak area. The peak area was then converted and normalized to a
relative peak area by dividing it by the sample amount and internal
standard peak area. The peak detection limit was determined based
on a signal-to-noise ratio of 3. Relative peak areas under the peak
detection limit were imputed by the K-nearest neighbor method.

11



Putative metabolites were then assigned from HMT’s standard library
and the Known-Unknown peak library based on m/z and migration
time with tolerances of 10 ppm and 0.5 min, respectively. A candidate

was assigned a branch number if several peaks were assigned to it.
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4. Statistical analyses

4.1. Pediatric NAFLD cohort

A Kruskal-Wallis test, followed by a post-hoc Dunn’s multiple
comparisons test with Prism 7 (GraphPad Software, San Diego, CA,
USA) was used to compare the anthropometric and laboratory data
between study groups. MetaboAnalyst 5.0 (26) was used to perform
principal component analysis with Pareto-scaled metabolome data to
visualize the metabolite profile distribution of each group. Wilcoxon
rank-sum test was used to determine significant plasma metabolites
between HC and LN, LN and ON, HC and OC, or OC and ON.
Significance was defined as a false discovery rate (FDR)-adjusted p-
value < 0.05 and fold change > 1.1. The obesity markers that were
statistically significant between the normal weight (defined as BMI z-
score =< 1) and overweight (defined as BMI z-score > 1) groups or the
NAFLD markers that were statistically significant between the control
(defined as steatosis grade = 0) and NAFLD (defined as steatosis grade
= 1) groups were determined by student t-test. Significance was
defined as FDR-adjusted p-value < 0.05 and fold change > 1.2. The
markers were clustered by hierarchical cluster analysis with the Ward
algorithm and visualized by heatmaps with MetaboAnalyst 5.0. The

distance of markers was calculated by Euclidean distance method.
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NAFLD-specific metabolic biomarkers (significant metabolites
between OC and ON) were illustrated by a volcano plot. Significance
was defined as FDR-adjusted p-value < 0.05 and fold change > 1.1.
Concentrations of significant metabolites between OC and ON were
standardized by autoscaling the features, followed by hierarchical
metabolite clustering using the Ward method and Euclidean distance.
The Kruskal-Wallis test was used to calculate the significance of
NAFLD-specific metabolic biomarkers in the four groups, followed by
the two-stage step-up method proposed by Benjamini, Krieger, and
Yekutieli to correct multiple comparisons by controlling FDR (27), in
which the number of multiple comparisons per metabolites was four
(HC vs. OC, HC vs. LN, OC vs. ON, and LN vs. ON). Multiple linear
regression analysis (metabolites ~ BMI z-score + group (OC or ON)) was
used to determine the significance (raw p-value) of NAFLD-specific
metabolic biomarkers after BMI adjustment. Raw p-values were
adjusted by controlling FDR using the Benjamini-Hochberg method.
Spearman correlation analyses were used to determine correlation
coefficients and two-tailed p-values of the NAFLD-specific metabolic
biomarkers and HOMA-IR.

Enriched metabolite sets between the OC and ON groups were
identified by querying significant metabolites in an SMPDB-based
database provided by MetaboAnalyst 5.0. I excluded significant
metabolites without a Human Metabolite Database (HMDB) ID or
PubChem CID in this analysis. Chemical and biochemical

14



relationships of significant metabolites were mapped onto MetaMapp

(28) and visualized with Cytoscape 3.8.2 (29).

4.2. Obesity intervention cohort

Longitudinal changes (from baseline to 6 months to 18 months post-
intervention) in participants’ clinical characteristics were analyzed
through One-Way Repeated Measures ANOVA with the Greenhouse-
Geisser correction (p-value < 0.05), followed by FDR-adjusted multiple
comparisons proposed by Benjamini, Krieger, and Yekutieli (FDR-
adjusted p-value < 0.05). Two-Way Repeated Measures ANOVA with
Sidak’s multiple comparisons test were used to determine a significant
interaction effect between clinical characteristic changes (from
baseline to 18 months post-intervention) and intervention
responsiveness (p-value < 0.05, 95% confidence interval).

To explore the metabolome distribution by time series, interactive
principal component analysis with Pareto-scaled data was performed
using MetaboAnalyst 5.0. Metabolites were then hierarchically
clustered by the Ward method with Euclidean distance, following
autoscale feature standardization. Significant metabolic changes
according to the intervention duration were analyzed by repeated
measures one-way ANOVA (FDR-adjusted p-value < 0.05). Differences

in longitudinal metabolic changes between responders and non-
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responders were determined by repeated measures two-way ANOVA
(FDR-adjusted p-value < 0.05).

Significant metabolites between baseline and 6 months post-
intervention or baseline and 18 months post-intervention were
determined by paired t-test (FDR-adjusted p-value < 0.05 and fold
change > 1.2). For the significant metabolites, I identified enriched
metabolite sets based on KEGG supported by MetaboAnalyst 5.0 and
mapped the metabolites according to chemical and biochemical
relationships by MetaMapp. Cytoscape 3.8.2 was used to visualize the

metabolite networks.
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5. Development of diagnostic models for NAFLDP

Diagnostic models for NAFLD were developed and validated using
machine learning techniques. The total dataset was split into
training/validation and test datasets at a ratio of 4:1 and repeated 100
times (nested cross-validation). Additionally, each step was repeated
three times for recurrent cross-validation. Variables were separated
into NAFLD-specific metabolic biomarkers and clinical and genetic
variables® including age, sex, BMI z-score, AST, ALT, GGT, ALP, and
three significant genetic variants (PNPLA3 1rs738409, SAMMOS50
rs2073080, and rs3761472). The diagnostic models using NAFLD-
specific metabolic biomarkers were not adjusted for clinical factors
during their development, as I wanted to create models that do not
require clinical factor inputs and could be compared with models
using clinical and genetic variables.

The following four machine learning models, which were
previously used in the diagnosis of NAFLD, were evaluated (30):
logistic regression, the generalized linear model with an elastic net

penalty (ElasticNet) (31), random forest (32), and extreme gradient

D Establishing and validating models for diagnosis of NAFLD were performed by Ki

Young Huh.

E Genotyping of NAFLD-related genetic variants had been performed by Prof. Kyung

Jae Lee and Prof. Jae Sung Ko and previously reported by Woori Chae and Prof.

Kyung Jae Lee (Chae W, Lee K], et al. Association of Metabolic Signatures with

Nonalcoholic Fatty Liver Disease in Pediatric Population. Metabolites. 2022;12(9)).
17



boosting (XGBoost) (33). The model hyperparameters, except the
logistic regression model, were tuned using grid searching. The model
performance for each repeated test set was evaluated by measuring
the area under the receiver operating characteristic curve (AUROC),
accuracy, sensitivity, specificity, and F1 score on the test. For the
logistic regression model with a median AUROC, the regression
coefficient, standard error, and z- and p-values of the selected
variables were obtained. The variable importance scores of 18 NAFLD-
specific metabolic biomarkers were calculated for ElasticNet, random
forest, and XGBoost models with a median AUROC. Model building
and validation were conducted using R version 4.1.0 (34) and R

package caret (35).
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Results

1. Clinical characteristics of the pediatric NAFLD

cohort

I performed plasma metabolomics on a pediatric cohort with NAFLD
to clarify the characteristics of pediatric NAFLD. In this study, 165
Korean children and adolescent participants aged 6 to 19 years were
selected from the cohort. Their demographic features, including age,
sex, BMI z-score, steatosis grade, liver function test results, and
insulin resistance-related parameters, are summarized in Table 1 and
Figure 3. As described in the Methods section, steatosis grade and BMI
z-score were used to classify the participants into four groups. The AST,
ALT, and GGT levels were abnormally elevated in the NAFLD group,
whereas those in the control group were in the normal range (36). In
contrast, the between-group difference in the ALP level was not
significant. While insulin and HOMA-IR levels were significantly
increased in the ON group compared to the OC group, no differences
in HbAlc levels were observed between the HC, LN, OC, and ON

groups.
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Table 1. Clinical characteristics of the study population according to the occurrence of obesity and NAFLD

22

Healthy Lean Overweight Overweight L X
Significance
Control (HC) NAFLD (LN) Control (OC) NAFLD (ON)
The number of subjects 39 9 22 95 -
14.3 10.6 14.3 12.5
Age (year) 0.3546
(8.7-18.6) (9.6-17.4) (6.6-17.6) (6.4-18.9)
Sex (male/female) 27/12 9/0 12/10 74/21 -
—0.45 0.88 1.63 2.42
BMI z-score <0.0001
(—2.37-0.96) (0.74-1.00) (1.11-3.04) (1.08-5.94)
Steatosis grade 0 (0) 2 (1.5-2.5) 0 (0) 2 (1-3) -
AST (IU/L) 21 [17-25] 51 [30-57] 20 [16-25] 46 [29-76] <0.0001
ALT (IU/L) 12 [10-17] 73 [52-91] 18 [14-25] 84 [40-144] <0.0001
GGT (IU/L) 11 [9-13] 28 [19-42] 16 [13-19] 34 [22-57] * <0.0001
ALP (IU/L) 202 [141-290] 267 [227-370] 137 [90-305] 256 [128-371] 0.05



Fasting glucose (mg/dL) 97 [91-102] 96 [94-105] 101 [99-104] 100 [95-108] * 0.0175

Insulin (mU/L) $ 7.3 [4.5-16] 10.9 [8.1-48] 9.0 [6.3-12] 17.5 [12-23] 0.0012
HOMA-IR § 1.74 [1.16-4.89]  2.48[1.96-12.2]  2.35[1.55-2.89]  4.27 [3.01-5.66] 0.0028
HbAlc (%) 5.3 [4.8-5.9] 5.3 [5.0-5.8] 5.2 [5.0-5.4] 5.4 [5.1-5.7] 0.2264

* Significance by the Kruskal-Wallis test; " n=93; * n=94; S HC (n=4), LN (n=5), OC (n = 12), ON (n=67); 1 HC (n =4), LN (n = 3),

OC (n =15), and ON (n = 77). Continuous variables are given as the median (min-max) or median [25th-75th percentile].
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(a)-(b) Median bar charts with error bars indicating the range. (c)-(j) Median bar charts with error bars indicating the interquartile
range. P-values: < 0.0332(*), < 0.0021 (**), < 0.0002 (***), < 0.0001 (****) by post-hoc Dunn’s multiple comparison test following Kruskal-
Wallis test.
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2. Establishment of a strategy to find NAFLD-specific

metabolic biomarkers

I sought to establish a strategy to find NAFLD-specific metabolic
biomarkers by performing exploratory metabolomic analyses, such as
multivariate and univariate analyses (Figure 4A). The metabolic
distribution of the study population showed that the NAFLD groups
(LN and ON) had relatively high intra-group variability compared to
the control groups (HC and OC) (Figure 4B). Figure 4C shows the
number of significant metabolites (FDR-adjusted p-value < 0.05, fold
change > 1.1) between HC and LN, HC and OC, LN and ON, or OC and
ON by Wilcoxon’s rank-sum test. These findings imply that more
metabolites were changed by NAFLD than by obesity, as none of the
metabolites were even significantly changed in HC vs. OC.

I compared the metabolic profiles of the subgroups, control
versus NAFLD group, or normal-weight versus overweight group
(Figure 5A). A greater number of significant metabolites (FDR-
adjusted p-value < 0.05, fold change > 1.2) were observed in the
comparison between the control and NAFLD groups (84 metabolites)
than in the comparison between the normal-weight and overweight
groups (48 metabolites), as illustrated by Venn diagram (Figure 5B). In
addition, most of the plasma TG, DG, and PC levels were significantly

elevated in the overweight group, irrespective of NAFLD presence, but
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they were also simultaneously selected as NAFLD markers (Figures 5C
and 5D) which may act as concomitant variables.

Considering these findings, this study focused on a subpopulation
with BMI z-scores > 1 (OC and ON groups) to identify promising
candidates (Figure 4C, black arrow), then verified these by comparing
the normal-weight group and adjusting the BMI and performing a

correlation analysis with insulin resistance.
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Figure 4. Exploratory metabolomic analyses using multivariate and univariate analysis of the pediatric NAFLD cohort

(A) Multivariate and univariate analyses of the exploratory comparison metabolic profiles by grouping. (B) Participant metabolic
distribution through a principal component analysis (PCA) score plot that portrays relatively high intra-group variability in the NAFLD
groups (LN and ON) compared to the control groups (HC and OC). (C) Significant metabolite quantities (without parentheses, FDR-
adjusted p-value < 0.05, fold change > 1.1; in parentheses, raw p-value < 0.05, fold change > 1.1) between HC and LN, HC and OC, LN

and ON, or OC and ON by Wilcoxon’s rank-sum test.
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Figure 5. Differences in metabolic profiles of the pediatric NAFLD

cohort subgroups

(A) Metabolic profile comparisons of normal-weight versus overweight
groups and control versus NAFLD groups. (B) A Venn diagram illustrating
significant metabolite quantities (FDR-adjusted p-value < 0.05, fold change >
1.2) observed between the control and NAFLD comparison and the normal-
weight and overweight comparison, simultaneously selected as obesity and
NAFLD biomarkers (38 metabolites). (C) Obesity and (D) NAFLD biomarker

heatmaps.
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3. Finding NAFLD-specific metabolic biomarkers

3.1. Significant metabolites between OC and ON groups

As previously mentioned in the Results section, 18 metabolites were
significantly different (FDR-adjusted p-value < 0.05, fold change > 1.1,
14 up and 4 down) between the OC and ON groups (Figure 6A). The
levels of multiple amino acids, including BCAAs (valine, leucine, and
isoleucine), lysine, tyrosine, and glutamic acid, were significantly
higher in the ON group than in the OC group, whereas the glycine level
was lower in the ON group (Figure 6B). The levels of glycerolipids,
phospholipids, and sphingolipids, including TG (50:1), TG (54:3), DG
(34:1), PC (46:2), PC (44:1), SM (36:0), and SM (38:3), were also elevated
in the ON group, while TG (52:7), LPC (18:2), and PC-O (30:0) levels
were reduced. The valerylcarnitine (AC (5:0)) level was higher in the

ON than in the OC group.
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(A) Volcano plot and (B) heat map of significant plasma metabolites (NAFLD-specific metabolic biomarkers, FDR adjusted p-value <
0.05 by Wilcoxon rank-sum test, fold change > 1.1) between OC and ON groups. In the volcano plot, significant metabolites are labeled

with coral red. Each metabolite’s concentration was standardized in the heat map by feature autoscaling, followed by metabolite

clustering using the Ward method with Euclidean distance.
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3.2. Verification of the significant metabolites: are they
really “NAFLD-specific”?

The 18 significant metabolites were evaluated in the normal-weight
group to determine if they were NAFLD-specific. In total, 11 of these
18 metabolites showed statistically significant differences, with the
same direction of change as observed in the overweight population
(Figure 7, metabolites marked with an asterisk). The other 7
metabolites (Figure 7, metabolites without an asterisk) also showed
the same direction of change, although changes were not significant
between the HC and LN groups due to the small number of
participants.

I compared the metabolic features to the clinical characteristics to
demonstrate if these significant metabolites were specifically
correlated to NAFLD and performed multiple linear regression
analyses for each of the 18 metabolites, with the BMI z-score as a
confounding factor, to investigate the effect of BMI. I found that 16 of
the metabolites, excluding AC (5:0) and glutamate, were significantly
different between the OC and ON groups, even after controlling for the
FDR (Benjamini-Hochberg method) (Table 2).

I also performed a correlation analysis to investigate the potential
effect of insulin resistance on the significant metabolites and found

that 13 of the 18 significant metabolites were weakly correlated with
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insulin resistance (Figure 8, Spearman r > 0.35, p < 0.05), except Tyr,
Lys, Gly, LPC (18:2), and PC-O (30:0). However, no difference in HOMA-
IR level was observed between the HC and the LN groups in the
normal-weight population, whereas a higher HOMA-IR level was
observed in the ON group than in the OC group (p=0.0035 by post-hoc
Dunn’s multiple comparison test following the Kruskal-Wallis test).
Hence, these 18 metabolites were regarded as “NAFLD-specific”

metabolic biomarkers.
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Figure 7. Concentrations of NAFLD-specific metabolic biomarkers in four pediatric NAFLD cohort groups
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The box-and-whiskers plots indicate the median with the 10" and 90t percentile whiskers, whereas the X-axis distinguishes the study
group. Significance (g-value) was calculated from the Kruskal-Wallis test, followed by the two-stage step-up method of Benjamini,
Krieger, and Yekutieli for multiple comparison correction by controlling FDR. Multiple comparison per metabolite: HC vs. OC, HC vs.
LN, OCvs. ON, and LN vs. ON. g-values < 0.05 were denoted on the panels. Metabolites ordered according to structural classes: BCAAs
(Val, xLeu, and Ile), other amino acids (Lys, Tyr, Glu, and Gly), acylcarnitines and glycerolipids (AC (5:0), DG (34:1), TG (50:1), TG (52:7),
and TG (54:3)), phosphatidylcholines (LPC (18:2), PC (44:1), PC (46:2), and PC-O (30:0)), and sphingomyelins (SM (36:0) and SM (38:3)).
Metabolites marked with an asterisk (*) showed statistically significant differences in HC vs. LN, with the same direction of change

as observed in the overweight population.

38 . H kl 1_'_” ';ﬂ]r



Table 2. Significant differences in 18 NAFLD-specific metabolic

biomarkers after BMI z-score adjustment

FDR"-adjusted

Metabolite Raw p-value”

p-value

AC (5:0) 0.12682 0.1268
Glu 0.10228 0.1083
Gly 0.00115 0.0036

Ile 0.00159 0.0036

Lys 0.01402 0.0168
Tyr 0.00157 0.0036
Val 0.00145 0.0036
xLeu 0.00058 0.0035
(34:1) 0.01595 0.0179
TG (50:1) 0.01134 0.0146
TG (52:7) 0.00119 0.0036
TG (54:3) 0.00810 0.0121
LPC (18:2) 0.00910 0.0126
PC (44:1) 0.00724 0.0118
PC (46:2) 0.00309 0.0056
PC-0 (30:0) 0.00057 0.0035
SM (36:0) 0.00007 0.0013
SM (38:3) 0.00179 0.0036

* Raw p-values were calculated from multiple linear regression analyses
(metabolite ~ BMI z-score + Phenotype (OC or ON)). ™ False discovery rate

(FDR) was controlled for using the Benjamini-Hochberg method.
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4. Longitudinal changes in the obesity intervention

cohort

4.1. Changes in clinical characteristics by weight loss

intervention

From the ICAAN cohort, I selected 40 patients with obesity. In detail,
131 subjects among 242 participants dropped out during the
intervention due to busy schedules, no response, lack of willingness,
or their parents; busy schedules. 163 and 111 participants were
followed up at 6 and 18 months after the intervention, respectively.
The clinical characteristics of the study population are presented in
Table 3 and Figure 9. BMI z-score was significantly decreased by
weight loss intervention compared to baseline (repeated measures
ANOVA p =0.0401; post-hoc FDR-adjusted p=0.0162 (baseline-6M and
baseline-18M)), whereas no longitudinal differences were observed in
other clinical characteristics including AST, ALT, TG, HDL-C, and LDL-

C.
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Table 3. Demographic characteristics of the obesity intervention cohort

Baseline 6M post-intervention 18M post-intervention
The number of datapoints 40 30 40
Type of intervention (U/E/N) 10/15/15 - -
Intervention response (R/NR) 20/20 - -
Sex (female/male) 19/21 - -
Age at baseline (year) 10.8 [9.91-12.2] - -

BMI z-score
Weight (kg)
AST (IU/L)
ALT (IU/L)
TGs (mg/dL)
HDL-C (mg/dL)
LDL-C (mg/dL)

2.935 [2.397-3.585]
64.0 [50.1-79.3]
21.0 [18.3-26.0]
18.5[13.3-30.0]
90.5 [61.0-133]

50 [41-58]
113 [101-130]

2.595 [2.124-3.423]

71.7 [52.4-86.1]
19.5[17.0-24.3]
21.0 [14.8-26.0]
108 [77.5-141]
47 [40-57]
113 [95.8-128]

2.514 [2.026-3.539]
68.25 [60.0-86.8]
19.0 [14.3-24.8]
19.0 [13.0-26.8]
96.5 [67.5-122]

53 [43-59]
112 [97.0-124]

Continuous variables are given as the median [25th-75th percentile]. Abbreviations: U, usual care group; E, extensive exercise group;

N, nutrition feedback group; R, responder; NR, non-responder.

42



BMI Z-score (n=40) AST (n=30)

100+
10+ 0.0162
1
8 0.0162 __ 80 ©
7 =l
e} =
° 2
o 6 = 60 e
5 g 8 :
@ ° 2 404 o o)
N 47 =
: Z ‘ 7
1 o
o
¢ ' ' =" 6M 18M
Baseline 6M aseling
ALT (n=30) TGs (n=30)
150 400+
fe)
(o] -
fe)
-y o < 300+ e
5 100- 8 £
= "y .
g 2 200- o
k] 8 <
= 504 e 8
-1 >
2 i s 4 3 100-
5 =
=1 -
0 T T T o T T T
Baseline 6M 18M Baseline 6M 18M
HDL-C (n=30) LDL-C (n=30)
100 200+
o
804 § . 8 _1s0{ 2 o
2 o e =
5 601 6 ) ' — =
£ g £ 100- : =
- 40- -
? " . & 50 °
20- '
0 T T T o T T T
Baseline 6M 18M Baseline 6M 18M

Figure 9. Longitudinal changes of the individual study population’s

clinical characteristics by weight loss intervention

Longitudinal change significance calculated through One-Way Repeated
Measures ANOVA with Greenhouse-Geisser correction, followed by the FDR-
adjusted multiple comparisons (baseline-6M and baseline-18M, denoted in

the panels) proposed by Benjamini, Krieger, and Yekutieli.
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4.2. Changes in plasma metabolites by weight loss

intervention

A total of 194 plasma metabolites were successfully identified from
capillary  electrophoresis  time-of-flight mass spectrometry
measurements based on HMT’s standard library and Known-
Unknown peak library. I selected 185 metabolites for further analyses
after filtering and observed the distinct metabolomic distribution of
18 months post-intervention (green crosses) compared to baseline
(red circles) or 6 months post-intervention (yellow triangles) data on
the score plots by interactive principal component analysis (Figure
10A). These remarkable changes were also revealed by hierarchical
clusters of metabolites on the heatmap (Figure 10B) and by repeated
measures of one-way ANOVA (Figure 10C, 77 metabolites labeled with

blue circles, FDR-adjusted p-value < 0.05).
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(A) Interactive principal component analysis score plot with Pareto-scaled metabolite data and (B) hierarchically clustered heat map
through Ward method with Euclidean distance showing longitudinal metabolic changes after weight loss interventions (red = baseline;

yellow = 6 months post-intervention; green = 18 months post-intervention). (C) Significantly changed metabolites calculated through

One-Way Repeated Measures ANOVA (blue = FDR-adjusted p-value < 0.05)
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4.3. The effects of intervention responsiveness on
clinical and metabolic changes following a weight

loss intervention

Clinical and metabolic change comparisons between responder and
non-responder groups determined weight loss intervention effects
(Figure 11). Significant interaction effects between longitudinal
change in HDL-C or LDL-C levels and intervention responsiveness
were observed (interaction, p = 0.0152 for HDL-C; p = 0.0055 for LDL-
Clevels). However, simple main effects, such as baseline to 18 months
post-intervention (intervention duration) longitudinal changes and
intervention responsiveness at baseline or 18 months post-
intervention (intervention response), were not statistically significant
(Table 4). Other clinical characteristics include AST, ALT, and TGs
levels, and TG/HDL-C ratio did not show any significant interaction
effects or simple main effects.

In addition, the principal component analysis revealed that no
significant plasma metabolites differ between responder and non-
responder groups at baseline, 6 months post-intervention, and 18
months post-intervention, respectively, whereas plasma samples at 18
months post-intervention were separated from those at baseline or 6
months post-intervention (Figure 12A). Repeated measures two-way

ANOVA analysis also showed that plasma metabolites were
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longitudinally changed (time, 77 metabolites), irrespective of the
intervention effect (response, none of the metabolites) (Figure 12B).
These results suggest that a long-term weight loss intervention may
induce metabolic changes regardless of the intervention response in

children and adolescents.
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Table 4. Significant interaction effects between clinical characteristic changes and intervention responsiveness

P-values’ AST ALT TGs HDL-C LDL-C TG/HDL-C
Interaction 0.1002 0.1303 0.075 0.0152 0.0055 0.106
Intervention duration 0.2728 0.7182 0.8751 0.3218 0.7879 0.1158
Intervention response 0.8504 0.6689 0.174 0.4797 0.1972 0.9057

* P-values were calculated by the repeated measures two-way ANOVA. Significance was defined as p-value < 0.05.
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(A) Principal component analysis score plot showing longitudinal metabolic changes without differences between intervention
responders (R) and non-responders (NR) at each timepoints (BL = baseline; M06 = 6 months post-intervention; M18 = 18 months post-
intervention). (B) Two-Way Repeated Measures ANOVA analysis displaying longitudinally changed metabolites (Time, 77 metabolites),

irrespective of intervention effect (Response and Interaction, none of the metabolites).
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5. Biological and clinical implications of NAFLD-

specific and intervention-related biomarkers

5.1. Relevance of NAFLD-specific metabolic biomarkers

in metabolic pathways

I performed metabolite set enrichment analysis based on SMPDB with
the metabolic features to identify the metabolic pathways
dysregulated by NAFLD. Several metabolite sets, including valine,
leucine, and isoleucine degradation, alanine metabolism, glutathione
metabolism, and carnitine synthesis were altered (enrichment ratio >
4, raw p < 0.05) in the ON group in comparison with the OC group
(Figure 13A and Table 5).

Next, I mapped NAFLD-specific metabolic biomarkers and other
selected metabolites based on MetaMapp and visualized the network
to explore the features’ biochemical and chemical relationships
(Figure 13B). In this network, nodes with gradient color by FDR-
adjusted p-value are NAFLD-specific metabolic biomarkers. Gray
nodes indicate other selected metabolites with a raw p-value <0.05 but
no significance after FDR adjustment. The network can be divided
into three main clusters: (i) lipids, (ii) glutathione metabolism-related
metabolites, and (iii) BCAA-related metabolites. Most of the metabolic
lipid biomarkers, including PCs, SMs, TGs, and DGs, were upregulated
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in the plasma of ON patients. Interestingly, I observed upregulation of
glutamic acid and tyrosine and downregulation of glycine in ON
patients, which are key metabolites in glutathione metabolism.
Moreover, plasma BCAAs, which are reportedly altered in adult

NAFLD, were also upregulated in pediatric NAFLD.
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glutathione (GSH)-related, and lipid metabolism. In the network, gray nodes represent metabolites with raw p-values < 0.05 that were

not significant after FDR adjustment.
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Table 5. Enriched significant metabolite sets in the overweight control and overweight NAFLD groups based on SMPDB

by metabolite set enrichment analysis

Expected Observed Enrichment

Metabolite sets Total ¥ Rawp Holmp FDR
hits hits ratio

Valine, Leucine, and Isoleucine Degradation 60 0.820 4 4.88 6.86E-03  0.672  0.672
Alanine Metabolism 17 0.232 2 8.62 2.10E-02 1 0.841
Glutathione Metabolism 21 0.287 2 6.97 3.14E-02 1 0.841
Carnitine Synthesis 22 0.301 2 6.64 3.43E-02 1 0.841
Phenylalanine and Tyrosine Metabolism 28 0.383 2 5.22 5.36E-02 1 0.954
Lysine Degradation 30 0.410 2 4.88 6.07E-02 1 0.954
Ammonia Recycling 32 0.438 2 4.57 6.81E-02 1 0.954
Biotin Metabolism 8 0.109 1 9.17 1.05E-01 1 1
Propanoate Metabolism 42 0.574 2 3.48 1.09E-01 1
Malate-Aspartate Shuttle 10 0.137 1 7.30 1.29E-01 1 1
Glutamate Metabolism 49 0.670 2 2.99 1.42E-01 1 1
Arginine and Proline Metabolism 53 0.725 2 2.76 1.61E-01 1 1
Glucose-Alanine Cycle 13 0.178 1 5.62 1.65E-01 1 1
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Thyroid Hormone Synthesis
Glycine and Serine Metabolism
Catecholamine Biosynthesis
Tyrosine Metabolism

Purine Metabolism

Cysteine Metabolism

Folate Metabolism

Urea Cycle

Amino Sugar Metabolism
Beta-Alanine Metabolism
Aspartate Metabolism
Nicotinate and Nicotinamide Metabolism
Porphyrin Metabolism
Methionine Metabolism
Histidine Metabolism

Warburg Effect

Tryptophan Metabolism

13
59
20
72
74
26
29
29
33
34
35
37
40
43
43
58
60

0.178
0.807
0.273
0.984
1.010
0.355
0.396
0.396
0.451
0.465
0.479
0.506
0.547
0.588
0.588
0.793
0.820
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2.53
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1.22

1.65E-01
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Bile Acid Biosynthesis 65 0.889 1 1.12 6.03E-01 1
Arachidonic Acid Metabolism 69 0.943 1 1.06 6.26E-01 1
T The number of metabolites in a metabolite set
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5.2. Application of the NAFLD-specific metabolic

biomarkers to the diagnosis of pediatric NAFLD

Diagnostic models were established based on machine learning
approaches using the 18 NAFLD-specific metabolic biomarkers found
in this study to suggest a pathophysiology-based complementary
method for biopsy-proven diagnosis (Table 6). Based on coefficients
of the logistic regression model and variable importance scores in
other models, I identified the following metabolites as significant
features: valine, tyrosine, glutamic acid, glycine, and SM (38:3) (Tables
7 and 8). All four diagnostic models using NAFLD-specific metabolic
biomarkers demonstrated excellent predictive performances, with
median AUROC values of 0.95 (ElasticNet and random forest) and 0.94
(logistic regression and XGBoost) without significant differences
between the models (Figure 14, colored line).

A logistic regression model using clinical and genetic variables
was also developed. As the number of risk alleles of rs738409 (PNPLA3),
rs2073080 (SAMMS50), and rs3761472 (SAMMO50) was positively
associated with the presence of NAFLD, and the proportions of
homozygous risk alleles were significantly higher in the NAFLD group
than in the control group (37), I chose these three variants as the
genetic variables. The model also showed comparable performance

(Figure 12, black dashed line) to the metabolic feature-based models,
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with the BMI z-score and ALT levels having a critical influence on the
model. Among the diagnostic models using NAFLD-specific metabolic
biomarkers, the ElasticNet model outperformed the other models
with the highest median AUROC, yielding a sensitivity of 0.75 and

specificity of 0.95.
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Table 6. Performance metrics summary from 100 repeated runs of the diagnostic model using four machine learning

methods

NAFLD-specific metabolic biomarkers

Clinical and genetic variables

Logistic . Random Logistic . Random
) ElasticNet XGBoost ) ElasticNet XGBoost
regression forest regression forest
0.94 0.95 0.95 0.94 0.95 0.95 0.96 0.95
AUROC
(0.76-1.00)  (0.85-1.00) (0.80-1.00) (0.78-1.00) (0.80-1.00)  (0.86-1.00) (0.88-1.00) (0.84-1.00)
0.88 0.88 0.88 0.84 0.88 0.88 0.88 0.88
Accuracy
(0.69-0.97) (0.75-1.00) (0.72-0.97) (0.72-0.94) (0.72-0.97)  (0.81-1.00) (0.75-1.00) (0.75-0.97)
. 0.83 0.75 0.83 0.75 0.83 0.83 0.83 0.83
Sensitivity
(0.50-1.00)  (0.58-1.00) (0.50-1.00) (0.42-1.00) (0.58-1.00)  (0.50-1.00) (0.50-1.00) (0.50-1.00)
. 0.90 0.95 0.90 0.90 0.90 0.95 0.90 0.90
Specificity
(0.70-1.00)  (0.75-1.00) (0.65-1.00) (0.70-1.00) (0.70-1.00)  (0.75-1.00) (0.75-1.00) (0.75-1.00)
0.81 0.82 0.82 0.78 0.86 0.86 0.84 0.82
F1 score
(0.55-0.96) (0.67-1.00) (0.63-0.96)  (0.53-0.92) (0.67-0.96)  (0.67-1.00) (0.63-1.00) (0.60-0.96)

Values are given as the median (minimum-maximum).
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Table 7. Multiple logistic regression model using NAFLD-specific

metabolic biomarkers and clinical and genetic variables

Variables Coefficient SE z-value p-value

NAFLD-specific metabolic biomarkers

(Intercept) 4.395 1.180 3.725 0.0002
Val 5.131 2.252 2.278 0.0227
Ile -3.652 2.460 -1.485 0.1376
Lys 3.081 2.065 1.492 0.1356
Tyr 7.123 2.104 3.385 0.0007
Glu 28.869 9.109 3.169 0.0015
Gly -4.840 1.896 -2.552 0.0107
TG (52:7) -2.081 1.248 -1.668 0.0954
PC-0O (30:0) -2.910 1.527 -1.906 0.0566
SM (38:3) 5.852 2.637 2.220 0.0264
Clinical and genetic variables
(Intercept) 3.374 0.975 3.460 0.0005
BMI z-score 7.379 1.833 4.027 <0.0001
Sex (female) -2.433 0.951 -2.560 0.0105
ALT 15.717 4.413 3.561 0.0004
PNPLA3 rs738409 2.585 1.105 2.339 0.0193
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Table 8. Variable importance of three diagnostic models using

NAFLD-specific metabolic biomarkers

ElasticNet Random forest XGBoost
(glmnet) (ranger) (xgbTree)
Metabolite Score  Metabolite Score  Metabolite Score

Tyr 100 SM(38:3) 100 Tyr 100
SM(38:3) 85.872 Tyr 85.905 SM(38:3) 71.746
Glu 78.406 xLeu 73.956 Gly 53.489
Gly 73.254 Val 73.506 Glu 44.524
PC:0(30:0) 63.572 SM(36:0)  63.616 Val 26.3
Val 54.924 Gly 48.47 PC:0(30:0) 21.545
AC(5:0) 53.196 Ile 43.735 xLeu 21.016
LPC(18:2) 52.006 LPC(18:2) 40.95 TG(52:7) 20.137
TG(50:1)  41.624 TG(50:1)  37.987 PC(46:2)  18.839
SM(36:0) 35.029 Glu 32.414 Lys 16.355
PC(46:2) 34.573 PC(46:2) 28.593 LPC(18:2) 13.294
PC(44:1) 34.356  PC:0(30:0) 23.944 SM(36:0)  10.795
DG(34:1) 31.008 DG(34:1) 23.745 TG(50:1) 7.421
Ile 30.839 TG(54:3) 16.24 Ile 6.543
xLeu 23.012 PC(44:1) 15.903 PC(44:1) 4.163
TG(52:7) 15.234 AC(5:0) 10.108 DG(34:1) 1.194
TG(54:3) 7.187 Lys 6.875 TG(54:3) 1.164

Lys 0 TG(52:7) 0 AC(5:0) 0
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Figure 14. The receiver operating characteristic (ROC) curves of the

NAFLD diagnostic models developed by machine learning approaches

The solid black line represents the line of unity. The area under ROC curve
(AUROC) values present median values obtained from 100 repeated runs. All
four diagnostic models using NAFLD-specific metabolic biomarkers
demonstrated excellent predictive performances, comparable to the clinical

data model.
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5.3. Relevance of intervention-related metabolites in

Metabolic Pathways

I performed metabolite set enrichment analysis with the significant
metabolites between baseline and 18 months post-intervention to
clarify which metabolic pathways are altered by long-term
interventions (Figure 15 and Table 9). D-glutamine and D-glutamate
metabolism and arginine biosynthesis were significantly modified
(enrichment ratio > 9.0, FDR-adjusted p < 0.05), and other metabolite
sets, including alanine, aspartate, and glutamate metabolism,
tricarboxylic acid (TCA) cycle, and valine, leucine, and isoleucine
biosynthesis, were also enriched (enrichment ratio > 4.5, raw p < 0.05).
I also constructed chemical and biochemical networks using these
significant metabolites (Figure 16).

Compared to metabolic changes at 6 months post-intervention
(Figure 16A), carnitines and many organic acids, including o-acetyl
carnitine, octanoylcarnitine, azelaic acid, hydroxyoctanoic acid, and
alpha-ketooctanoic acid were upregulated whereas galactaric acid,
threonic acid, caproic acid, and alpha-ketoisovaleric acid levels, were
downregulated at 18 months post-intervention (Figure 16B). TCA
cycle intermediates, such as succinic acid, oxoglutaric acid, isocitric
acid, malic acid, and phosphocholines, were also significantly
downregulated at 18 months post-intervention. Levels of metabolites

related to the methionine-cysteine pathway (cystine, methionine, S-
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methylcysteine, and methionine sulfoxide), urea-cycle-related
metabolites, and amino acids (arginine, ornithine, N-acetylornithine,
lysine, N-acetyllysine, 5-oxoproline, glutamine, and glutamic acid)

were also significantly changed.

D-Glutamine and D-glutamate metabolism

Arginine biosynthesis

Alanine, aspartate, and glutamate metabolism
Citrate cycle (TCA cycle)

Valine, leucine, and isoleucine biosynthesis

Purine metabolism

Butanoate metabolism P value

Propanoate metabolism 6x10"
Phosphonate and phosphinate metabolism
Nitrogen metabolism
Aminoacyl-tRNA biosynthesis
Taurine and hypotaurine metabolism

Glyoxylate and dicarboxylate metabolism 4%x10"
Glycine, serine, and threonine metabolism
Cysteine and methionine metabolism
Glycerophospholipid metabolism
Arginine and proline metabolism

Valine, leucine, and isoleucine degradation L 7x10 1

Pantothenate and CoA biosynthesis
Ether lipid metabolism

beta-Alanine metabolism
Glycolysis/Gluconeogenesis
Glutathione metabolism

Amino sugar and nucleotide sugar metabolism
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Pyrimidine metabolism
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Enrichment Ratio

Figure 15. Enriched metabolite sets of significant metabolites
between baseline and 18 months post-intervention based on the KEGG

database
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Table 9. Metabolite set enrichment analysis of significantly changed

metabolites by intervention after 18 months based on the SMPDB

(hits = 2)

Metabolite set total expected hits Raw p FDR
Aspartate Metabolism 35 1.64 5 0.0205 1
Urea Cycle 29 1.36 4 0.0425 1
Ammonia Recycling 32 1.5 4 0.0581 1
Phenylacetate Metabolism 9 0.422 2 0.0628 1
Glutamate Metabolism 49 2.3 5 0.0737 1
Malate-Aspartate Shuttle 10 0.469 2 0.0762 1
Carnitine Synthesis 22 1.03 3 0.079 1
Oxidation of Branched Chain

26 1.22 3 0118 1

Fatty Acids
Mitochondrial Beta-Oxidation of
Short Chain Saturated Fatty Acids

27 1.27 3 0129 1

Warburg Effect 58 2.72 5 0129 1
Glycine and Serine Metabolism 59 2.77 5 0136 1
Citric Acid Cycle 32 1.5 3 018 1
Beta Oxidation of Very Long

Chain Fatty Acids 17 0.797 2 0187 1
Alanine Metabolism 17 0.797 2 0187 1
Butyrate Metabolism 19 0.891 2 0222 1
Gluconeogenesis 35 1.64 3 0223 1
Arginine and Proline Metabolism 53 2.48 4 0233 1
Purine Metabolism 74 3.47 5 0262 1

Valine, Leucine and Isoleucine
60 2.81 4 0308 1

Degradation
Propanoate Metabolism 42 1.97 3 0314 1
Methionine Metabolism 43 2.02 3 0327 1
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Cysteine Metabolism
Phytanic Acid Peroxisomal
Oxidation

Phenylalanine and Tyrosine
Metabolism

Lysine Degradation

Amino Sugar Metabolism
Nicotinate and Nicotinamide

Metabolism

26

26

28

30
33

37

1.22

1.22

1.31

1.41
1.55

1.73

0.347

0.347

0.382

0.416
0.465

0.527
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(continued)
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Figure 16. Relevance of the weight loss intervention-related metabolites in the metabolic pathways
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Network mapping of significantly changed metabolic pathways from (A) 6 months and (B) 18 months post-intervention compared to
baseline. Node color indicates the direction of change (red = up; blue = down) or non-significance (gray). Node size indicates each

metabolite’s fold change.
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Discussion

1. Metabolic pathway alterations reflecting NAFLD

pathophysiology or weight loss interventions

In the pediatric NAFLD cohort study, plasma metabolomic data
revealed that circulating metabolite levels related to glutathione-
related amino acid metabolism, lipid metabolism, and BCAA
metabolism were remarkably altered in the diseased state. Based on
these results, the potential effects of altered metabolism on NAFLD in
pediatric patients are proposed in Figure 17.

Glutathione metabolism-related metabolite levels, including
those of glutamate and glycine, were significantly changed in the
blood and may be important therapeutic targets, as excessive ROS-
induced oxidative stress affects the progression of NAFLD. Increased
circulating glutamic acid and decreased glycine levels in NAFLD have
been consistently reported in both pediatric (38) and adult
populations (12, 39-41). However, the causes for their changes remain
unclear. Interestingly, Oren et al. suggested that impaired glycine
metabolism might play a causative role in NAFLD (42). Several clinical
studies have evaluated the effect of glycine supplementation (43-45),
as glycine is a limiting substrate in the de novo synthesis of

endogenous glutathione (41), which may have therapeutic potential.
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White et al. observed that the impairment of BCAA metabolism in
obesity can also affect the decreased level of circulating glycine (46).

The elevated blood levels of DG and TG in patients with NAFLD
shown in this study may also be associated with increased oxidative
stress and lipid peroxidation in hepatocytes. Once circulating DGs and
TGs are transferred by hepatic uptake, they can accumulate as lipid
droplets or convert into free fatty acids in the liver. Mitochondrial
oxidation of excessive hepatic free fatty acids induced oxidative stress
and lipid peroxidation, resulting in hepatocellular apoptosis (47, 48),
which was reflected in the markedly increased serum AST and ALT
levels of the NAFLD groups in this study. Lipid accumulation and
excessive oxidative stress are directly associated with hepatic cell
damage and prohibit hepatic uptake or lipid accumulation, including
TGs and DGs in hepatocytes which are crucial therapeutic targets.

Similarly, modifications in sphingolipid and phospholipid
metabolism are also associated with metabolic disease and NAFLD
(49-52). In young adults with obesity, serum SMs with saturated acyl
chains are reportedly associated with obesity, insulin resistance, and
decreased liver function (53). Some lipidomic studies have suggested
that the plasma PC/PE ratio is associated with obesity (54). However,
the mechanisms linking SMs, PCs, and LPCs with liver steatosis and
NAFLD are unclear (51) and there are inconsistencies in the level and
pattern of the reported sphingolipids and phospholipids in both
pediatric and adult NAFLD patients.
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The concentration of systemic BCAAs is altered in various
metabolic diseases such as diabetes, insulin resistance, and obesity,
which are well-known etiologic factors in NAFLD (55-57). This study
observed elevated circulating BCAAs levels in the pediatric population
with overweight NAFLD, which has been reported by several in vitro
and in vivo studies in pediatric (39) and adult populations (58-61). In
addition to serving as substrates for protein synthesis and energy
production, BCAAs also stimulate protein synthesis, inhibit
proteolysis, and affect glucose metabolism and oxidative stress (55, 62),
indicating that the homeostatic regulation of BCAA levels is crucial to
maintaining physiological status. Excessive systemic levels of BCAAs
can increase abnormal adipocyte lipolysis and suppress hepatic
lipogenesis, resulting in hyperlipidemia and hepatic lipotoxicity (59),
which is also supported by increased blood DGs and TGs in the
overweight NAFLD group in this study. BCAA-based metabolic
signatures may predict liver steatosis and NAFLD in children and
adolescents with obesity (13, 63).

In the obesity intervention cohort study, significant metabolic
pathway changes by the time in weight loss intervention in childhood
obesity were identified, regardless of the intervention type or
response (Figure 18). The metabolic pathways are included in the urea
and TCA cycles and several amino acid metabolic pathways (i.e.,
glutamine, glutamate, arginine, cysteine, and methionine). Several
studies have shown that glutamate is increased in children with
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obesity and glutamine is decreased in patients with obesity not
undergoing weight loss interventions (16, 64). These previous results
are consistent with this study’s results that plasma glutamine was
increased after a weight loss intervention, whereas glutamate was
decreased. In particular, glutamate was the metabolite with the
highest bivariate correlation with body fat and insulin sensitivity in an
American-Indian adolescent with obesity (65).

Obesity is due to an inflammation mechanism that impacts
various immune cells. In patients with obesity and diabetes, changes
in macrophage polarization can induce decreased ketoglutarate
production and increased succinate in the TCA cycle. Glutamine
metabolism is essential for this process (66). Succinate, an
intermediate product of the TCA cycle, is released from adipose tissue
in obesity and helps induce inflammation by macrophage activation
(67). Consequently, macrophage polarization involving glutamine
metabolism and the TCA cycle in patients with obesity and diabetes
might play a key role in obesity pathology. This study showed that
levels of TCA intermediates, including isocitrate, malate, oxoglutarate
(ketoglutarate), and succinate were decreased by the weight loss
intervention. This implies the interventions’ anti-inflammatory
effects by minimizing macrophage polarizations.

Arginine, aspartate, and ornithine are associated with urea cycle
metabolism and play an important role in ammonia detoxification.
This study showed decreased urea cycle intermediates, including
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aspartate, ornithine, and arginine, in the plasma, which implies
downregulated production of ammonia by the weight loss
intervention. Aspartate, like pyruvic acid, is an amino acid associated
with the TCA cycle. The metabolic shift in pyruvic acid decreased after
weight control intervention in overweight pre-adolescents and women
with obesity (68, 69). From the POUND LOST and DIRECT trials, Zheng
et al. confirmed that a two-year diet-based weight loss intervention
induced amino acid profile changes in adult patients with obesity (70).
These studies showed correlation between weight loss intervention
and simultaneous reduction of BCAAs, aromatic amino acids (tyrosine
and phenylalanine), and other amino acids (alanine, sarcosine,
hydroxyproline, and methionine) (70). Glutamine and glutamate were
positively correlated with a HOMA-IR in a study of overweight-to-

obese adult with dyslipidemia (71).
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2. Clinical implications of two cohort studies

First, this pediatric NAFLD cohort study investigated the metabolomic
distributions of the HC, LN, OC, and ON groups and found that both
the LN and ON groups showed metabolic heterogeneity, which may be
closely related to the complex pathophysiology of NAFLD. Metabolic
changes were also identified to elucidate the characteristics and
mechanisms of pediatric NAFLD and NAFLD-specific metabolic
biomarkers by comparing the metabolomic signatures of the
overweight and normal-weight groups. Additionally, I revealed that
these metabolic changes, which can be observed in the adult
population, emerged during the adolescent period. It is difficult to
evaluate whether the significant metabolites are NAFLD-specific, as
most of the significant metabolites between the OC and ON groups,
including BCAAs, are related to insulin resistance and obesity. Despite
partially missing data, such as fasting insulin and HOMA-IR levels,
these metabolites are NAFLD-specific, regardless of insulin resistance
and obesity.

Using the NAFLD-specific metabolic biomarkers, this study
successfully suggested cross-validated diagnostic models based on
pathophysiology that might be easily applied in clinical practice.
These models performed better than other diagnostic models based
on metabolomics (72-74). These encouraging results demonstrate that
a NAFLD diagnosis with only a small volume of plasma may
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ameliorate the limitations of a liver biopsy and allow for the high-
throughput pediatric NAFLD screening, even in schools.

This study also found that clinical features, such as the BMI z-
score and liver function test results (especially ALT), and metabolic
features were directly associated with NAFLD development in
pediatric patients, which is reflected in the outstanding machine
learning model performance using clinical and genetic variables. The
fact that the increased level of liver function tests in adults resulted
from complex interactions between the disease pathophysiology and
external factors, such as smoking, alcohol, and stress, whereas those
in children mainly resulted from hepatic inflammation itself, can be
one of the explanations why the models using clinical and genetic
variables developed in this pediatric population study show excellent
performance, comparing with other diagnostic models that were
previously reported in the adult population (74-76).

Metabolic changes from weight loss intervention might become
metabolically healthy (MHO) and metabolically unhealthy obesity
(MUO) phenotypic characteristics. Though the World Health
Organization defines obesity as “abnormal or excessive fat
accumulation that may impair health” (77), some patients, often
young and physically active with a good nutritional status, show a
healthier phenotype than others (78). There is no universally accepted
MHO concept yet; however, MHO can reinforce the existing BMI-
based single definition by reflecting obesity characteristics in various
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aspects. Many clinical and behavioral MHO characteristics, such as
anthropometric and clinical parameters, lifestyle factors, and
comorbidities, have been suggested: fasted serum TGs and HDL-C
levels, fasting blood glucose, blood pressure, no drug treatment for
dyslipidemia, diabetes, or hypertension (79, 80). In contrast, only a
few studies have focused on the metabolomic signatures between
MHO and MUO (81). Dihe Cheng et al.’s review explains that BCAAs,
aromatic amino acids, long-chain fatty acids, and propionyl carnitine
levels might be reduced in MHO (81). Metabolic changes observed in
this study, including TCA cycle, urea cycle, and amino acid and
organic acid alteration, suggest that weight loss intervention can
ameliorate pediatric patients toward a metabolically healthy status.
These changes can be additional MHO signatures.

Regardless of clinical changes, metabolic change from weight loss
intervention might become an efficient monitoring biomarker for
participants’ compliance of future obesity intervention studies.
Although participants’ compliance is an essential factor affecting
intervention effects, ways to monitor and evaluate their compliance
are limited. The intervention-related biomarkers presented in this
study are more sensitive to weight loss interventions than clinical
parameters such as BMI; therefore, they can be utilized as more
effective biomarkers for evaluating and selecting participants with

poor compliance.

83



3. Study limitations

The pediatric NAFLD study has some limitations. Although liver
biopsies are deemed the gold standard for diagnosing liver steatosis
and fibrosis, obtaining them in this study cohort was challenging. Due
to the invasiveness and effectiveness of biopsies and the ethical
considerations related to performing biopsies in pediatric patients,
this study examined steatosis grades using hepatic ultrasonography
instead of liver biopsies. The targeted metabolomics used in this study
excluded exogenous compounds and unwanted analytical noise.
However, this may only partially explain the issue in comparison with
untargeted approaches, which implies there may be unrevealed
metabolic signatures.

In addition, the diagnostic models based on machine learning
approaches in this study showed excellent performance. Further
evaluation of the models using external validation cohorts is required.
Although the changes in the levels of circulating plasma metabolites
directly reflect metabolic changes in the liver, the lack of observed
metabolic changes in the hepatocytes may have influenced the
interpretation of the results. For example, the antioxidant effects of
significant metabolic markers, or free fatty acid accumulation in the
liver, could not be confirmed in this study. Lastly, NAFLD was already
progressing in these subjects, making it difficult to assess whether the

differences in the metabolite levels were a reflection of their etiologic
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roles, or if these were a consequence of the disease, as this causality
problem is a common limitation of observational studies. Although
the associations between NAFLD and plasma metabolites were
observable in this study, further research including in vitro/in vivo
studies using cell lines or model organisms is required to confirm the
disease mechanism-related functions of selected metabolites and the
direction of causality.

The obesity intervention study was limited by the availability of
subjects for longitudinal studies owing to many dropouts from the
childhood obesity intervention cohort. In addition, there was a
possibility of selection bias in the results. Lower family functioning,
exercise group, lower initial attendance rate, and non-self-referral
pathways were significantly associated with early dropouts, and lower
family functioning and lower initial attendance rates were associated
with late dropouts in our cohort study (82). These factors are key to
reducing the dropout rate in further intervention-based cohort
research. Poor family function was associated with high levels of
depressive symptoms in the childhood obesity cohort (83). Further
research is needed to determine how these factors affect the
intervention outcomes in children.

Also, this study did not analyze the factors related to adolescent
age in the long-term follow-up during the intervention. In the heatmap,
metabolic changes were most pronounced after 18 months, but the
probability that hormonal changes and other factors affected the
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metabolites was not considered. Another limitation is that the patients’
hospital visit times and participation levels were not considered in the
study. Factors such as diet could not be limited to homogeneity, which
may have influenced the metabolite results. In particular, metabolites
are affected by sampling time or what is consumed at the time of
sampling. It is important to control these factors and follow the

metabolite trends.
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Conclusion

I explored the metabolic profiles of pediatric subjects with NAFLD and
found NAFLD-specific metabolic biomarkers. These biomarkers
demonstrated that dysregulated glutathione, lipid, and BCAA
metabolism were linked to the pathophysiological conditions
underlying NAFLD. Despite the restricted sample accessibility, these
findings provide evidence for the pathophysiology of pediatric NAFLD
that may guide potential therapeutic targets for new drug
development and as ancillary diagnostic biomarkers to help alleviate
NAFLD in pediatric patients.

In addition, regardless of intervention response, this study
determined weight loss intervention-related metabolic biomarkers for
pediatric obesity and the intervention-induced serial changes in
metabolic pathways. This includes the urea cycle, TCA cycle, and
specific amino acid metabolism, which may influence other obesity
mechanisms. These findings can redefine obesity from a metabolic
perspective (i.e., metabolically healthy-unhealthy obesity), to manage
pediatric obesity based on its pathophysiology. This also highlights the
importance of regularly visiting a clinic for obesity treatment and how
tracking metabolite changes guides disease monitoring.

There are unmet medical needs for the pediatric population with

obesity and other medical complications, including NAFLD and
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weight loss intervention treatments. This dissertation demonstrates
that plasma metabolomics succeeds as a powerful biomarker
discovery tool for fulfilling current unmet medical needs and can be
efficiently used to identify pathophysiology, improve diagnosis, and
establish a new understanding of obesity and obesity-related

mechanism (Figure 19).
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