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ABSTRACT

Evaluation and prediction of
drug transporter—mediated
drug—drug interactions of
methotrexate using physiologically
based pharmacokinetic modeling

Sejung Hwang
Interdisciplinary Program of Clinical Pharmacology Major
Graduate School of Department of Medicine

Seoul National University

Introduction: Methotrexate is an antifolate agent widely used in
the treatment of various diseases, such as rheumatoid arthritis
and cancer. As a substrate of various transporters, methotrexate
should be monitored carefully when coadministered with other
drugs. This study aimed to quantitatively interpret drug—drug
interactions (DDIs) of methotrexate mediated by drug
transporters using physiologically based pharmacokinetic
(PBPK) modeling. According to this study, a mechanistic
evaluation and prediction system about drug transporter-—
mediated DDIs of methotrexate was developed and applied for
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personalized pharmacotherapy of methotrexate.

Methods: A randomized, open—label, 4 —treatment, 6 —sequence,
4—period crossover study (NCT05575297) was conducted to
evaluate the effect of rifampicin and febuxostat on methotrexate
pharmacokinetics (PK) in healthy volunteers. Subjects received
each treatment according to the assigned sequence, and 4-—
treatments included the administration of a single dose of
methotrexate 2.5 mg alone, coadministration of methotrexate
with a single dose of rifampicin 600 mg, with febuxostat 80 mg,
or both. Blood samples for PK analysis were collected up to 24
hours post—dose. The PBPK model of methotrexate, rifampicin
and febuxostat was developed based on the in vitro and in vivo
data, and the performance of the final PBPK model was validated
using the clinical study. The final PBPK model was used to
quantitatively interpret the methotrexate DDIs and simulated the
high—dose methotrexate with administered with febuxostat in

cancer patients.

Results: In the clinical study, when methotrexate was
coadministered with rifampicin or febuxostat, the systemic
exposure of methotrexate increased by 33% and 17%,

respectively, compared to those administered alone. When

i1 ] O 1-li =]
£ g == ’ 1
| =



methotrexate was coadministered with both rifampicin and
febuxostat, the systemic exposure increased by 52% compared
to those administered alone. The final PBPK model showed a
good prediction performance of the observed clinical data. The
impact of drug transporter about DDIs on the methotrexate PK
was quantitively evaluated based on the sensitivity analysis and
simulation using the PBPK model. The PBPK model showed that
the presence of febuxostat resulted in increase of AUCp-24n by

30% in virtual cancer patients.

Conclusion: This study investigated the clinical potential activity
of febuxostat with rifampicin for the breast cancer resistance
protein (BCRP) inhibition. Furthermore, the PBPK model of
methotrexate was well developed in this study and can be used
as the mechanistic model to predict and evaluate the drug—
transporter mediated DDIs of methotrexate with other drugs and

contributed to personalized pharmacotherapy.

Keyword: drug—drug interactions, drug transporter,
physiologically based pharmacokinetic (PBPK) modeling,
methotrexate, pharmacokinetics, personalized pharmacotherapy

Student Number: 2019-28140
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Chapter 1. Introduction

1.1. Study Background

Methotrexate is an antifolate agent widely used in the treatment
of autoimmune diseases such as rheumatoid arthritis (RA),
psoriasis, and Crohn’s disease, and various types of cancer such
as acute lymphoblastic leukemia [1, 2]. The pharmacokinetics
(PK) of methotrexate has been well researched. Methotrexate
has a bioavailability of 64—90% [3]. A total of 60—90% of
methotrexate is eliminated by kidney, 10—30% i1s eliminated vis
bile and 1-9% is metabolized to 7—hydroxy methotrexate by
aldehyde oxidase after intravenous (IV) dosing [2]. Drug
transporters are contributed to the methotrexate PK and
methotrexate has been investigated as a substrate of various
drug transporters — organic anion transporting polypeptides
(OATP1B1 and OATP1B3), organic anion transporters (OATI1
and OAT3), multidrug resistance—related protein (MRP2 and
MRP4), and breast cancer resistance protein (BCRP) [4, 5]. As
methotrexate is a substrate of various transporters, it should be
monitored carefully when coadministered with other drugs such
as nonsteroidal anti—inflammatory drugs (NSAIDs). Although

methotrexate is not highly bound to albumin (46%) and has a low
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hepatic extraction ratio, the drug—drug interactions (DDIs) of
methotrexate with other drugs such as NSAIDs, antibacterial
agents, and proton pump inhibitors are thought to be clinically
significant [6]. The one of the known possible mechanisms for
these methotrexate DDIs was the inhibition of OAT1/3, MRP2/4,

and BCRP [6].

Although methotrexate DDIs with OAT1/3 inhibitors has
been investigated, few clinical studies have evaluated the DDIs
between methotrexate and OATP1B1/1B3 or BCRP inhibitors [6,
7]. In this study, a DDIs clinical study was conducted to
investigate the methotrexate DDIs with OATP1B1/1B3
inhibitors, and a single dose of rifampin was used as an inhibitor
of OATP1B1 and 1B3 [8, 9]. This study was the first clinical
DDIs study to evaluate the DDIs between methotrexate and

rifampicin.

Febuxostat was used as an inhibitor of BCRP to
investigate the methotrexate DDIs in this study. Febuxostat was
recently found to strongly inhibit BCRP—mediated transport of
urate /n vitro. In addition, febuxostat increased the exposure of
sulfasalazine known as a substrate of BCRP in mice, and

rosuvastatin in human [10, 11]. Furthermore, febuxostat and its
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acyl glucuronide metabolite showed the potent inhibition activity
for OAT3 [12]. The overall disposition of drug transporters
associated with absorption, distribution, and elimination of
methotrexate and inhibition activity of rifampicin and febuxostat

1s presented in Figure 1.

The DDIs in clinical settings are difficult to extrapolate
from those evaluated based on in vitro experiments.
Furthermore, a discrepancy exists between the results of in vitro
experiments and the clinical impact attributed to various factors
including physiological factors [13]. Therefore, several
approaches to predict and evaluate DDIs using previous in vitro
and 7n vivo data have been developed [14]. Physiologically based
pharmacokinetic (PBPK) model was developed in this study to
quantitatively interpret the methotrexate DDIs mediated by drug
transporters including OATP1B1/1B3 and BCRP [14]. The PBPK
modeling is defined as a mathematical model that simulates drug
concentration in tissues and blood considering the rate of the
drug’s absorption into the body, distribution in tissues,
metabolism and excretion (ADME) based on physiological,
physicochemical and biochemical characteristics of drug [15,

16]. In addition, PBPK modeling is used to quantitatively describe



and predict the PK of drugs, to evaluate DDIs potential and to
support clinical study design, dose selection and labeling during

drug development [14, 15].

Furthermore, the developed mechanistic model of
methotrexate could be used to predict and simulate the drug
transporter—mediated DDIs with other drugs and that in special
populations such as cancer patients. The results of non—clinical
studies for drug transporter—mediated DDIs are not directly
related to the clinical response and are difficult to predict in
clinical setting due to the complex interactions of various factors
[17]. By conjugating the results of the DDIs clinical study with
the model, the PBPK model of this study was used to predict drug

transporter—mediated DDIs.

1.2. Purpose of Research

The aim of this study is to develop the mechanistic DDIs model
of methotrexate reflecting the features of drug transporters,
such as OATP1B1/1B3 and BCRP. Based on the PBPK modeling,
the effect of drug transporters on the DDIs of methotrexate was
evaluated and predicted. In addition, this study investigated the

clinical potential of febuxostat as a BCRP inhibitor.
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According to this study, a mechanistic evaluation and
prediction system for drug transporter—mediated DDIs of
methotrexate was developed and applied for the personalized

pharmacotherapy of methotrexate.
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Figure 1. Disposition of drug transporters and inhibition activity of rifampicin and febuxostat associated with the

pharmacokinetics of methotrexate.

BCRP, breast cancer resistance protein; MRP, multidrug resistance —associated protein; OAT, organic anion transporter; OATP,
organic anion transporting polypeptide
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Chapter 2. Methods
Part 1. Clinical Study

2.1.1. Study design and population

The clinical study was approved by the Institutional Review
Board (IRB) of Seoul Bundang University Hospital (IRB number:
B-2110-715-001, NCT number: NCT05575297). This work
was supported by the National Research Foundation of Korea
(NRF) grant funded by the Korea government (MSIT) (No.
2021R1F1A1058889). This clinical study was conducted in
accordance with the Declaration of Helsinki and Korean Good
Clinical Practice (KGCP). Written informed consent was obtained

from all subjects before performing any study procedures.

A randomized, open—label, 4—treatment, 6—sequence,
4—period crossover study was conducted. Subjects were
randomized in each sequence comprising two subjects, and a total
of 12 subjects were planned to complete. In the first period, a
single dose of methotrexate 2.5 mg (Methotrexate tab® 2.5 mg,
Korean United Pharm. Inc., Korea) was orally administered to all
randomized subjects. After the washout period for four days, all

subjects received the assigned treatment in the second, third,



and fourth periods according to the sequence. There was a
washout period for at least 7 days between the second, third, and
fourth periods. One of the following treatments was administered
in the second, third, and fourth period according to the assigned
sequence: coadministration of a single dose of methotrexate 2.5
mg and a single dose of rifampicin 600 mg (Rifampin tab® 600mg,
Yuhan Corporation, Korea), coadministration of a single dose of
methotrexate 2.5 mg and a single dose of febuxostat 80 mg
(Feburic tab® 80 mg, SK Chemical Co., Ltd., Korea) 12 hours
after a single dose of febuxostat 80 mg, and coadministration of
methotrexate 2.5 mg, rifampicin 600 mg and febuxostat 80 mg
12 hours after a single dose of febuxostat 80 mg. All subjects
received a single dose of folic acid 5 mg 24 hours after the
administration of methotrexate to prevent the adverse events
(AEs) associated with methotrexate. Blood samples were
collected for PK analysis at O (before dosing), 0.5, 1, 1.5, 2, 3,
4,6, 9, 12 and 24 hours after dosing, and urine samples were
collected in the time intervals of 0—4, 4—12, 12—24 hours after
the methotrexate administration. At each timepoint, the samples
were collected using K2—ethylenediaminetetraacetic (EDTA)
tubes. The blood samples were centrifuged (approximately 1100

g, 4°C for 10 min), and the separated plasma samples were
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stored at —70°C until further analysis. The urine samples were
stored at 4 °C after collection, and more than 1 mL sample
aliquots were transferred to four Eppendorf tubes for storage at
— 70 °C until further analysis. The diagram of methotrexate DDIs
assoclated with drug transporters is presented in Figure 2. The

overview of clinical study design is presented in Figure 3.

Healthy Korean male subjects aged 19—45 years, and
body weight ranging 50.0—90.0 kg with a body mass index (BMI)
ranging 18.0—30.0 kg/m? were eligible to participate in this
study. Subjects who have taken the following drugs or foods
were excluded: drugs inducing or inhibiting drug metabolism
enzyme/drug transporter such as barbiturates/statin drugs;
digoxin within three months before the treatment administration;
food containing St. John’s Wort and grapefruit within 14 days
before the treatment administration; fluid containing caffeine
within seven days before the treatment administration. Subjects
whose clinical results met the following criteria were excluded:
aspartate transaminase, alanine transaminase or total bilirubin
was higher than 1.5 times the upper normal limit; white blood cell
count was lower than 3,500 /uL; estimated glomerular filtration

rate (eGFR) was lower than 60 mL/min/1.73 m?.
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Liver
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Figure 2. Schematic overview of methotrexate drug—drug

interactions associated with drug transporters
OATP, organic anion transporting polypeptide; MRP, multidrug

resistance—associated protein; BCRP, breast cancer resistance protein;
OAT, organic anion transporter
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2.1.2. PK evaluation

The plasma concentrations of methotrexate and 7—hydroxy
methotrexate and urine concentrations of methotrexate were
analyzed by the liquid chromatography—-tandem mass

spectrometry (LC—MS/MS) system with a valid method.

The PK parameters were estimated by non—
compartmental methods using Phoenix WinNonlin software
version 8.3 (Pharsight Co, Mountain View, CA). Maximum
concentration (Cmax) and time to reach Cmax (Tmax) Were obtained
from observed concentrations and time. The area under the
concentration—time curve (AUC) from zero to the last
measurable time point (AUCjs) was calculated using the linear
up/log down trapezoidal method. The AUC from zero to infinite
time (AUCin) was calculated as AUCjast + Crast/A, (Crasi, the last
measurable concentration; A,, terminal elimination rate constant).
The half-life (ti2) was calculated as In2/A,, and apparent
clearance (CL/F) and apparent volume of distribution (V,/F) was
calculated as dose/AUC;,; and CL/F/A,, respectively. The fraction
excreted unchanged in urine (f.) and renal clearance (CLr) were
also calculated as total amount excreted unchanged/dose and fe

x CL/F.
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2.1.3. Statistical Analysis

Statistical analysis was conducted using SAS software version
9.4 (SAS Institute Inc., Cary, NC). Geometric mean ratio (GMR)
and 90% confidence intervals (90% CI) were calculated to
compare the PK parameters of methotrexate when methotrexate
was administered alone and when methotrexate was

coadministered with rifampicin, febuxostat, or both.

Part 2. Development of PBPK Model

The workflow for the development and simulation of the PBPK
model is presented in Figure 4 and described as follows: PBPK
modeling and simulation were conducted using Simcyp simulator
Version 21.0 release 1 (Certara, Sheffield, UK). Modelling for
the solubility with /n vitro data was performed using Simcyp In
Vitro data Analysis (SIVA) toolkit version 4.0 release 1 (Certara,

Sheffield, UK).
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Figure 4. Workflow of physiologically based pharmacokinetic (PBPK) modeling and simulation.
LogP, octanol—water partition coefficient; pKa, acid dissociation constant; ADAM, advanced dissolution absorption metabolism;

CLint, intrinsic clearance; Kn, Michaelis—Menten constant; Vmax, maximum velocity; BCRP, breast cancer resistance protein;
OATP, organic anion transporting polypeptide; MRP, multidrug resistance—associated protein; OAT, organic anion transporter.
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2.2.1. PBPK Model of Methotrexate

A full PBPK model for methotrexate was developed based on the
literature research including the physiochemical properties and
absorption, distribution, metabolism, and excretion properties
[18—20]. To develop the absorption model, the Advanced
Dissolution, Absorption and Metabolism (ADAM) model was
used for the mechanistic absorption modeling along with the
diffusion layer model (DLM) [21]. The solubility factor was
estimated by SIVA toolkit using the in vitro solubility data of
methotrexate [22]. The calculated parameters were compared
to the experimental solubilities under various pH conditions in
SIVA. The bile salt micelle to water partition coefficient for
unionized/ionized species (Km:w.unionized/ionized) Was predicted. The
unbound fraction of the drug in enterocytes (fuzu) and the human
jejunum effective permeability (Pettman) Were predicted using in
vitro permeability data of methotrexate [23]. The value of MRP2
and BCRP transporter in the transporter was included in the
PBPK model because methotrexate is the substrate of MRPZ and
BCRP. Methotrexate is also a substrate of other drug
transporters — reduced folate carrier (RFC) and proton—coupled

folate transporter (PCFT) [24]. Various in vitro and in vivo
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studies have demonstrated that RFC and PCFT is contributed to
the intestinal absorption of methotrexate [24—26]. Therefore,
the apical uptake of intestine by RFC and PCFT was estimated

and reflected in the PBPK model.

For developing the distribution model, a full PBPK model
was used, and the steady—state volume of distribution (Vss) was
predicted using method 2 suggested by Rodgers and Rowland
based on the values of compound characteristics, such as

partition coefficient and drug ionization [27, 28].

For the elimination kinetics, a permeability —limited liver
model was used to describe the drug transporter—mediated
distribution. Transporter Kkinetics were selected for the
application of the elimination to the bile [2]. Previous in vitro and
in vivo studies have investigated that OATP1B1/1B3 contributed
to the distribution of methotrexate to the liver [6]. In addition,
other in vitro studies have shown that methotrexate is the
substrate of MRP2/4 and BCRP [29, 30]. Therefore, the values
of these transporters were included in the PBPK model of
methotrexate [29—31]. Since the primary route of elimination is
renal excretion, a mechanistic kidney model (Mech—Kim) was

used [2]. Transport across the basolateral membrane of kidney
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approximal tubule cells mediated by OAT1/3 is well established,
and transport mediated by MRP2/4 located at the apical
membrane of kidney proximal tubule cells have been reported to
contribute to the renal clearance of methotrexate [32, 33]. The
transport mediated by OAT1/3, BCRP, and MRP2/4 in the renal
tubule cells was reflected in the PBPK model [29, 34]. Additional
intrinsic clearance (CLin) in human liver microsomes (HLM) was
included to the model based on the model in the Simcyp library
estimated by the clinical data [3]. The final PBPK model input

parameters for methotrexate are presented in Table 1.

2.2.2. PBPK model of Rifampicin

The PBPK model for rifampicin was used based on the pre—
validated Simcyp compound library. The inhibition of OAT1/3
located in the basolateral membrane and BCRP located in the
apical membrane of kidney approximal tubule cells was
additionally included [35]. Regarding the inhibition, competitive
inhibition of transporter and intrinsic clearance was described by

the following Michaelis—Menten equation [36, 37].
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I
Km,i = Km <1 + E) (1)

Vmax

Km-(1+é—7;)+s (2)

CLint,inh =

Kmi 1s the Michaelis—Menten constant in the presence of
inhibitor, I is the concentration of inhibitor, and K; is the
dissociation constant of the inhibitor—transporter complex.
CLintinn 1s the drug transporter —mediated intrinsic clearance, Vmax
1s the maximum velocity of reaction in the absence of an inhibitor,
I, is the unbound concentration at the binding site of drug
transporter, Ky 1s the unbound concentration of inhibitor
supporting half maximal inhibition. The K; value for OAT1/3 and
BCRP was calculated from measured inhibitory concentration
producing 50% inhibition (ICso) value using the following

equation which assumed the Michaelis—Menten kinetics [10, 36].

ICs

S (3)
1+

Ki=

The final PBPK model input parameters for rifampin are

presented in Table 2.
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2.2.3. PBPK model of Febuxostat

A minimal PBPK model for febuxostat was constructed based on
the literature research [38]. For the absorption, the first—order
absorption model was used, and the parameters were included
based on the literature [38, 39]. A minimal PBPK model with a
single adjusted compartment (SAC) was used to describe the
distribution kinetics, and the value of Vss was derived from the
previous literature [40]. The values of apparent volume of SAC
(Vsae) and blood flow between the central compartment and SAC
(Q) were included to reflect the biphasic distribution of
febuxostat and estimated based on the clinical data
(Supplementary Table 2) [41]. The oral in vivo clearance (CLpo)
of febuxostat was used from the results in clinical data

(Supplementary Table 2) [39].

The value for the BCRP inhibition was included from the
recent /n vitro and clinical study, which investigated the activity
of BCRP inhibition by febuxostat [10, 11]. Competitive inhibition
of febuxostat was assumed because the mechanism of action for
the BCRP inhibition has not been established. In addition, the
inhibition activity of febuxostat for OAT3 has been recently

reported [12]. The OAT3 inhibition of febuxostat was also
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reflected in the PBPK model of febuxostat in this study [12]. The
K; value of febuxostat was calculated from measured ICso value

using equation (3) which assumed the Michaelis—Menten

kinetics [10, 36].

In this study, it was assumed that rifampicin and
febuxostat inhibit BCRP with the same mechanism. Therefore,
the comprehensive effect of p multiple inhibitors with same

mechanism was modelled using the following equation [42].

Vmax

L
Km-(1+zj.’ﬁ{j>+s 4)

CLintinn =

I.; is the unbound concentration of /" inhibitor at the enzyme site
and K is the dissociation constant of /" inhibitor associated with
the inhibitor—transporter complex [42]. The final PBPK model

input parameters for febuxostat are presented in Table 3.
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Table 1.

pharmacokinetic model of methotrexate.

Input parameters for the physiologically based

Parameter Value References/Comments
Physiological chemistry
Molecular weight (g/mol) 454.44
LogP —-1.85
Compound type Dltl’(?plC
acid
Mioduszewska et al.,
pKal 2.9 2017 [19]
Mioduszewska et al.,
pKa2 4.8 2017 [19]
Herman et al., 1989
B/P 0.68 [20]
Herman et al., 1989
fu 0.5 [20]
Absorption
ADAM model
fucut 1 Predicted
Petfman (x 107* cm/sec) 0.06 Predicted
MDCKII (x 107% cm/sec) 0.09 FHFUbayaS[l’;;it al., 2020
Diffusion Layer Model
(DLM)
Intrinsic solubility 0.01 Fort et al., 1990 [43]
(mg/mL)
Solubility factor (SF) 5098 Estimated in SIVA [22]

Intrinsic solubility scalar
(So,scalar)

logKmiw

Absorption rate scalar
Transporter
Apical uptake
CLint,t (uL/min/cm?)

32 Yousefi et al., 2010 [22]

0.921, - .
1.079 Predicted
1 Assumed
844.28 Estimated
21



RAF/REF 1
MRP2 / apical efflux

Jmax, MRP2
(pmol/min/10° cells) 24
Kmn (uM) 480
RAF/REF 2.12
BCRP / apical efflux
Jmax,BCRP
(pmol/min/10° cells) 206.1
Kmn (uM) 1340
RAF/REF 1.19
Distribution
Full PBPK Model
Vss (L/kg) 0.39
K, scalar 1
Elimination

(uL/min/mg protein)
Permeability limited liver model

OATPI1B1 / sinusoidal uptake

CLintT, 0ATP1B1
(uL/min/10° cells) 175.38

RAF/REF 1.4
OATPI1B3 / sinusoidal uptake

CLint,T, 0ATP1B3

(uL/min/10° cells) 150.02

RAF/REF 1.11
MRP4 / sinusoidal efflux

Jmax, MRP4

(pmol/min/10° cells) 84

Km (HM) 220

RAF/REF 1

22

Assumed

El—Sheikh et al., 2007
[29]
El—-Sheikh et al., 2007
[29]
Harwood et al., 2013
[44]

Chen et al., 2003 [30]

Chen et al., 2003 [30]

Harwood et al., 2013
[44]

Predicted using method
2 [28]

Assumed

Simcyp database

Estimated

Badee et al., 2015 [45]

Estimated

Badee et al., 2015 [45]

El—Sheikh et al., 2007
[29]
El—Sheikh et al., 2007
[29]

Assumed

3 D +11 &=
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MRP2 / canicular efflux

Jmax, MRP2
(pmol/min/10° cells)

Km (P—M)

RAF/REF

BCRP / canicular efflux

Jmax, BCRP ‘
(pmol/min/10° cells)

Km (P—M)

RAF/REF

Mechanistic kidney model

OAT1 / basal uptake

CLint T, 0AT1
(uL/min/10° cells)

RAF/REF
OAT3 / basal uptake

Jmax, OAT3
(pmol/min/10° cells)

Km (MM)
RAF/REF
MRP2 / apical efflux

Jmax, MRP2
(pmol/min/10° cells)

RAF/REF
MRP4 / apical efflux

Jmax, MRP4
(pmol/min/10° cells)

RAF/REF
BCRP / apical efflux

24

480

206.1

1340

10

0.64

80

76.6

4.1

24

480

384

220

23

El—Sheikh et al., 2007
[29]
El—Sheikh et al., 2007
[29]

Assumed

Chen et al., 2003 [30]
Chen et al., 2003 [30]

Assumed

Mathialagan et al., 2017
[46]
Mathialagan et al., 2017
[46]

Kurata et al., 2014 [34]

Kurata et al., 2014 [34]

Mathialagan et al., 2017
[46]

El—-Sheikh et al., 2007
[29]
El—Sheikh et al., 2007
[29]

Assumed

Transporter / function

El—Sheikh et al., 2007
[29]
El—Sheikh et al., 2007
[29]

Assumed



Jmax, BCRP
(omol/min/10° cells) 206.1 Chen et al., 2003 [30]

Kmn (uM) 1340 Chen et al., 2003 [30]

RAF/REF 1 Assumed

Log P, octanol—water partition coefficient; pK, acid dissociation
constant; B/P, blood to plasma partition ratio; f,, fraction unbound in
plasma; ADAM, advanced dissolution absorption metabolism; fucut,
unbound fraction of drug in enterocytes; Pefrman, human jejunum
effective permeability; Kunw, bile salt micelle to water partition
coefficient; Jmax, maximal efflux rate; K., Michaelis—Menten constant;
RAF/REF, relative activity/expression factors; MRP, multidrug
resistance —associated protein; BCRP, breast cancer resistance protein;
Vss, volume of distribution at steady state; K, tissue to plasma partition
coefficient; CLinT, Intrinsic clearance of transporter; OATP, organic

anion transporting polypeptide; OAT, organic anion transporter
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Table 2. Input parameters for the physiologically based
pharmacokinetic model of rifampicin.

Parameter Value RCe(ffrfrir;iletz/
Physiological chemistry
Molecular weight (g/mol) 823 Simcyp Library v21
LogP 4.01 Simcyp Library v21
Compound type Ampholyte  Simcyp Library v21
pKal 1.7 Simcyp Library v21
pKa2 7.9 Simcyp Library v21
B/P 0.9 Simcyp Library v21
fu 0.116 Simcyp Library v21
Absorption
ADAM Model
fuGut 1 Simcyp Library v21
Pettman (x 107* cm/sec) 2.15 Simcyp Library v21
Caco—2 (x 10—-6 cm/sec) 15 Simcyp Library v21
Absorption rate scalars 1 Simcyp Library v21
Distribution
Full PBPK Model
Vs (L/kg) 0.42 Simcyp Library v21
K, scalar 0.0976 Simcyp Library v21
Elimination
?3E;m§51r;1;43rotein) 2.84 Simcyp Library v21
?Aljf;m(lljlllgg cells) 0.288 Simcyp Library v21
CLr (IL/h) 1.26 Simcyp Library v21
Inhibition
CYP
Ki, cypacs (M) 24.5 Simcyp Library v21
Ki, cypzas (uM) 24.5 Simcyp Library v21
Transporters (Intestine)
Ki, p—gp (apican (uM) 4.3 Simcyp Library v21
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Ki, BCrP (apican (uM) 12.54 Simcyp Library v21

Transporters (Liver)

Ki. NTCP (sinusoidal) (uM) 187.65 Simcyp Library v21
Ki, 0ATP1B1 (sinusoida) (uM) 0.162 Simcyp Library v21
Ki, 0ATP1B3 (sinusoidal) (M) 0.088 Simcyp Library v21
Ki, 0ATP2B1 (sinusoidal) (uM) 0.023 Simcyp Library v21
Ki. MRP4 (sinusoidan (uM) 87.42 Simcyp Library v21
Ki, p—gp (canicular) (uM) 4.3 Simcyp Library v21
Ki, Bere (canicutar) (M) 12.54 Simcyp Library v21

Transporters (Kidney)

Estimated using in
Ki, 0AT1 (basan (M) 24.05 vitro data (Parvez et
al., 2016 [35])
Estimated using in

Ki, 0AT3 (basan (M) 15.1 vitro data (Parvez et
al., 2016 [35])
Ki, BcrP (apican (uM) 12.54 Simcyp Library v21

Log P, octanol—water partition coefficient; pKa, acid dissociation
constant; B/P, blood/plasma partition ratio; f,, unbound fraction in
plasma; ADAM, advanced dissolution absorption metabolism; fucut,
unbound fraction of drug in enterocytes; Pefiman, human jejunum
effective permeability; Vss, volume of distribution at steady state; Ko,
tissue to plasma partition coefficient; CLiy, in vitro clearance; HLM,
human liver microsome; CLg, renal clearance; CYP, cytochrome P450;
K, concentration of inhibitor that supports half maximal inhibition; P—
gp, p—glycoprotein; BCRP, breast cancer resistance protein; NTCP,
sodium (Na+) taurocholate co—transporting polypeptide; OATP,
organic anion transporting polypeptide; MRP, multidrug resistance —

associated protein; OAT, organic anion transporter
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Table 3. Input parameters for the physiologically based

pharmacokinetic model of febuxostat.

Parameter Value References/Comments
Physiological
chemistry
Molecular weight 316.4 Kamel et al., 2017 [38]
(g/mol)
LogP 3.52 Kamel et al., 2017 [38]
Monotropic
Compound type acid Kamel et al., 2017 [38]
pKa 3.3 Kamel et al., 2017 [38]
B/P 0.645 Xu et al., 2022 [47]
fy 0.992 Xu et al., 2022 [47]

Absorption

First order absorption model

fa 0.85

ka (h™1) 3.62

fucue

Petfman (107* cm/s) 1.64
Distribution

Minimal PBPK model

Q (L/h) 6.68
Vsac (L/kg) 0.58
Vss (L/kg) 0.7
Elimination
CLpo (L/0) 7.2
Transport inhibition
Intestine
Ki, BCRP (apica) (uM) 0.0135

27

Kamel et al., 2017 [38]
Kamel et al., 2022 [39]

Xu et al., 2022 [47]

Estimated

Estimated

Khosravan et al., 2006
[40]

Xu et al., 2022 [47]

Estimated using in vitro
data (Miyata et al., 2016
[10])



{Uine 0.022 Miyata et al., 2016 [10]

Liver
Estimated using in vitro
K, BCrP (canicular) (uM) 0.0135 data (Miyata et al., 2016
[10])
fUine 0.022 Miyata et al., 2016 [10]
Kidney
Estimated using in vitro
Ki, BCrP (apican (uM) 0.0135 data (Miyata et al., 2016
[10])
fUine 1 Assumed
Ki, 0AT3 (basan (uM) 0.55 Tang et al., 2022 [12]
fUine 1 Assumed

Log P, octanol—water partition coefficient; pKa, acid dissociation
constant; B/P, blood/plasma partition ratio; f,, fraction unbound in
plasma; f,, fraction available from dosage form; k., first order
absorption rate constant; Q, blood flow; Vsac, volume of the single
adjusted compartment; Vs, volume of distribution at steady state; CLyo,
oral clearance; Kj, concentration of inhibitor that supports half maximal
inhibition; BCRP, breast cancer resistance protein; fuin, fraction of

unbound drug in the in vitro incubation
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2.2.4. Validation and Evaluation of PBPK Model

The PBPK model of methotrexate, rifampicin and febuxostat was
validated using the clinical data conducted in this study and the
previous clinical data, respectively (Supplementary Material)
[41, 48]. The simulation for validation was conducted for 10
trials of 10 subjects using Sim—Healthy Volunteer population
built in the Simcyp simulator. The performance of developed
PBPK model was evaluated by comparison of the predicted
plasma concentration—time profiles to the observed data in the
clinical study. In addition, the ratio of predicted to the observed
value (Rpredfops) for Cmax, AUC, and CLr was calculated and
assessed within two—fold range for the evaluation of the

performance.

The predicted and observed ratio of Cmax and AUC were
calculated and evaluated using Guest limits following equations
to validate the DDIs performance of PBPK model [49]. These
limits are used to avoid bias with high prediction accuracy at

lower interaction levels.

L. 0+ 2(Rpps — 1)
Guest limit = — . (5)

obs
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Upper limit = R,,; X Guest limit (6)

Lower limit = R,,,/Guest limit (7
o 1s a parameter that accounts for variability, and the value is
1.25 in this study corresponded to the conventional PK variability
of 20%. Robs 1s the observed ratio of PK parameters when drugs
are coadministered to those when victim drug is administered

alone.

Global  sensitivity analysis was performed to
quantitatively evaluate the effect of each transporter on DDIs of

methotrexate.

2.2.5. Simulation of PBPK Model in Cancer Patients

The systemic exposure associated with high—dose of
methotrexate (higher than 500 mg/m? (HDMX) was also
investigated in cancer patients using Sim—Cancer population built
in the Simcyp simulator. HDMTX higher than 1 g/m® is widely
used for the treatment of various malignancies, and tumor lysis
syndrome (TLS) commonly occurs in hematological malignancy
patients [50]. The PK of methotrexate was simulated using Sim—

Cancer population when methotrexate 3.5 g/m? IV as weekly and
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febuxostat 120 mg orally once daily for 10 cycles was
coadministered with the dosage regimens based on the reported

clinical study [50-52].
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Chapter 3. Results
Part 1. Clinical Study

3.1.1. Clinical Study population

A total of 13 healthy Korean male subjects were enrolled, and 11
subjects completed the study. One subject withdrew his consent
before the administration of investigational product (IP). One
subject withdrew his consent after period two and dropped out
after period two. The mean + standard deviation of age, height,
weight, and body mass index (BMI) of 12 enrolled subjects who
had received any treatment at least once was 29.5 £ 7.48 years,
173.92 + 6.41 cm, 68.98 £ 12.20 kg and 22.73 %= 3.20 kg/m?,

respectively. All enrolled subjects were non—smokers.

3.1.2. PK evaluation

The PK analysis was conducted in 12 subjects who received
methotrexate alone and received methotrexate with febuxostat
and 11 subjects who received methotrexate with rifampicin and
received methotrexate with rifampicin and febuxostat. These

subjects completed the scheduled procedures for each

32



treatment.

When methotrexate was administered alone,
methotrexate reached the maximum concentration at a median
time of 1.0 hour with a range of 0.5 — 2.0 hours (Figure 5, Table
4). When methotrexate was coadministered with rifampicin,
methotrexate reached the maximum concentration at a median
time of 1.5 hours with a range of 0.5 — 3.0 hours (Figure 5, Table
4). The Cmax, AUCnst and AUCiys of methotrexate increased by
41%, 33%, and 32% respectively compared to those when
methotrexate was administered alone (Figure 6, Table 4). The
mean half—life and mean CL/F of methotrexate was 2.67 hours
and 5.58 L/h, respectively, and slightly decreased compared to

those when methotrexate was administered alone (Table 4).

The Cmax was similar between when methotrexate was
administered alone and coadministered with febuxostat (Figure
6, Table 4). The AUCrs and AUCiy of methotrexate after co—
administration of methotrexate and febuxostat increased by 16
and 17%, respectively, compared to those when methotrexate
was administered alone (Figure 6, Table 4). The mean half—life
and mean CL/F of methotrexate was 3.10 hours and 6.34 L/h,

respectively (Table 4).
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When methotrexate was coadministered with both rifampicin and
febuxostat, the Cunax, AUCphst and AUCi¢ of methotrexate
increased by 42%, 52%, and 52%, respectively, compared to
those when methotrexate was administered alone (Figure 6,
Table 4). The mean half—life and mean CL/F of methotrexate
was 2.63 hours and 4.85 L/h, respectively, which decreased
compared to those when methotrexate was administered alone
(Table 4). The mean f. and CLr of methotrexate decreased
compared to those when methotrexate was administered alone

(Table 4).

The PK evaluation of 7—hydroxy methotrexate was

described in the Supplementary material.
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Figure 5. Mean plasma concentration—time profiles of
methotrexate after oral administration of methotrexate alone and

coadministration with rifampin, febuxostat or both.

Upper panel linear scale, lower panel log scale. The open black circles
(O) and black lines (—) represent the concentrations following oral
administration of methotrexate alone. The open red triangles (A) and
red lines (—), open green inverted triangles (V) and green lines (—),
and open blue squares (o), and blue lines (—) represent the
concentrations following coadministration with rifampicin, febuxostat,
or both. The error bars represent standard deviations.
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Figure 6. Comparison of (a) Cmax, (b) AUCpust and (¢) AUCin of
methotrexate after administration of methotrexate alone and

coadministration with rifampin, febuxostat, or both.

The boxes represent the interquartile range (25" to 75" percentile,
IQR), horizontal lines represent the median, and the whiskers expand
to the minimum and maximum values between the range of 1.5 times of
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Table 4. Pharmacokinetic parameters of methotrexate and geometric mean ratio after the administration of methotrexate alone

and coadministration of methotrexate with rifampicin, febuxostat, or both.

Methotrexate + Methotrexate Methotrexate +
Rifampicin + GMR + GMR Rifampicin GMR Methotrexate
Febuxostat (90% CI)*  Febuxostat (90% CD°© (90% CD¢
(N=11) (N=12) (N=11) (N=12)
?hm) 1.0 (0.5-2.0) - 1.0 (0.5-3.0) - 1.5 (0.5-3.0) - 1.0 (0.5-2.0)
Crax 1.42 1.02 1.40
+ + + +
(ng/mL) 162.72 £ 25.87 (1.24-1.61) 117.45 £ 25.93 (0.90-1.15) 162.20 34.74 (1.29—1.60) 114.47 &£ 20.67
AUCus N 1.52 N 1.17 N 1.33 N
(h#ng/mL) 509.26 £ 94.13 (1.44—-1.61) 390.72 £ 68.91 (1.11-1.23) 444,23 £ 70.14 (1.26-1.41) 331.29 £ 30.49
AUCiqs . 1.52 . 1.16 4 1.32 N
(h#ng/mL) 529.49 £ 103.84 (1.43-1.61) 404.65 £ 70.42 (1.10-1.23) 458.2 £ 73.65 (1.24—1.40) 345.8 £ 32.14
Hﬁ 2.63 £ 0.28 - 3.10 £ 1.00 - 2.67 £ 0.46 - 3.25 £ 1.07
CL/F
4.85 £ 0.77 - 6.34 £ 1.02 - 5.58 £ 0.89 - 7.29 £ 0.70
(L/h)
V./F
L) 18.24 £ 2.22 - 28.15 £ 9.09 - 21.35 £ 3.71 - 34.07 £ 11.73
fo 0.94 £ 0.25 - 0.98 £ 0.16 - 1.10 = 0.09 - 0.87 £ 0.16
CLr + + + +
(L/h) 4.61 £ 1.52 - 6.18 = 1.34 - 6.13 = 0.95 - 6.34 = 1.21
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Values are presented as mean * standard deviation.

?Values are presented as median (minimum—maximum).

b GMR is calculated as a ratio of geometric mean of methotrexate coadministered with rifampin and febuxostat to that of methotrexate
administered alone.

° GMR is calculated as a ratio of geometric mean of methotrexate coadministered with febuxostat to that of methotrexate administered
alone.

4 GMR is calculated as a ratio of geometric mean of methotrexate coadministered with rifampicin to that of methotrexate administered
alone.

GMR, geometric mean ratio; Cl, confidence interval, Tmax, time to reach to maximum plasma concentration; Cmax, maximum plasma
concentration; AUCus, area under the concentration—time curve (AUC) from zero to last measurable time point; AUCiy, AUC from zero
to infinity; ti/2, half—life; CL/F, apparent clearance; V,/F, apparent volume of distribution; fe, fraction excreted unchanged in urine; CLg,

renal clearance
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Part 2. PBPK Modeling

3.2.1. Validation and evaluation of PBPK Model

The developed PBPK model well described the population
predicted plasma concentration—time profiles compared to the
observed data (Figure 7). The Rpredq/obs 0f Cmax and AUC for
methotrexate was within the two—1fold range, indicating the good
predictive performance of the PBPK model (Figure 9, Table 5).
However, the predicted amount excreted unchanged in urine of
methotrexate and CLgr was slightly underpredicted compared to
the observed data (Figure 8, Table 5). Meanwhile, the predicted
ratio of DDIs using PBPK model were within the Guest limits,
presenting the good performance of the DDIs prediction (Figure

10).

According to the PBPK model, the clearance and
transporter kinetics of methotrexate in liver and kidney were
simulated after the coadministration of methotrexate with
rifampicin, febuxostat, or both (Figure 11, Figure 12,
Supplementary  Figure 1). When  methotrexate  was
coadministered with rifampicin or febuxostat, the transport of

methotrexate by OAT1B1/1B3 or BCRP was reduced in the liver
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(Figure 11, Supplementary Figure 1). The effect of rifampicin on
methotrexate CL in liver was extensive. Furthermore, the effect
of febuxostat on methotrexate CL in kidney was more extensive
than rifampicin (Figure 11, Figure 12). In addition, the additive
effect of rifampicin and febuxostat on kidney was also observed

(Figure 11, Figure 12).

The impact of drug transporters on the methotrexate PK
associated with DDIs was quantitively evaluated based on the
sensitivity analysis using the PBPK model (Figure 13). The
OATP1B1 and 1B3 had the most influential transporters on the

Cmax and AUC of methotrexate (Figure 13).

3.2.2. Simulation of PBPK model in cancer patients

The verified PBPK models were applied to evaluate the potential
risk of DDIs in cancer patients. The plasma and total liver
concentration—time profiles of methotrexate were simulated in
virtual cancer patients (Figure 14). The Cmax and AUCg-24n of
methotrexate were similar between cycle 1 and cycle 10,
representing no accumulation (Figure 15, Table 6). The

simulation was conducted in a virtual healthy population with the
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same dose regimens of cancer patients to investigate the
differences in systemic exposure. When HDMTX was
administered alone, simulated AUCgo-24n of methotrexate in
virtual cancer patients (963.34 h*ug/mL) was higher than that in
virtual healthy population (786.25 h*pg/mL) with a 1.23—fold
increase. When HDMTX was coadministered with febuxostat,
simulated Cmax (Cmax.ss) and AUCo-24n of methotrexate were also
higher than those in the virtual healthy population with a 1.05—
and 1.26—fold increase. However, the degree of increase for Cnax
(Cmax.ss) and AUCop-24n after administration of methotrexate alone
and coadminitration with febuxostat was similar between virtual
cancer patients and healthy population. In virtual cancer patients,
the presence of febuxostat resulted in increase of Cmax (Cmax.ss)
and AUCop-24n by 1.09 and 1.30, respectively (Figure 15, Table
6). In the virtual healthy population, the ratio of Cmax (Cmax.ss) and
AUCop-24n  when methotrexate was coadministered with
febuxostat to those when methotrexate was administered alone

were simulated as 1.10 and 1.27, respectively.
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Figure 7. Predicted mean plasma concentration—time profiles of

methotrexate after the administration of (a) methotrexate alone

, (¢)

and coadministration of methotrexate with (b) rifampicin
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febuxostat or (d) both compared to observed data.

Left panel linear scale, right panel log scale. The solid black line (—)
and dashed grey lines () represent the predicted mean
concentration—time profiles and 5% and 95% percentile of simulation,
respectively. The open circles () represent the observed mean
concentrations in the clinical study, and the error bars represent
standard deviations.
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Figure 8. Predicted mean amount excreted unchanged in urine
after the administration of (a) methotrexate alone and
coadministration of methotrexate with (b) rifampicin, (b)

febuxostat, or (c) both compared to observed data.

The solid black line (—) and dashed grey lines () represent the
predicted mean concentration—time profiles and 5% and 95% percentile
of simulation, respectively. The open circles (0) represent the
observed mean concentrations in the clinical study, and the error bars
represent standard deviations.
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Figure 9. Comparison of mean predicted and observed data for

(a) Cmax and (b) AUC after the administration of methotrexate
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febuxostat, or both.

The black circle (@) and open circle () represent mean observed
value and mean predicted value, respectively. The error bars represent

standard deviations.

Cmax, maximum concentration; AUC, area under the concentration—time

curve
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Table 5. Predicted and observed pharmacokinetic parameters of methotrexate after the administration of methotrexate

alone and coadministration of methotrexate with rifampicin, febuxostat, or both.

Cmax (ng/mL) AUC,st or AUCo-24n (h*ng/mL) CLr (L/h)

Predicted Observed Rpreaobs Predicted  Observed — Rpredq/ons Predicted Observed Rpred/obs

Methotrexate 106.13 114.47 0.93 352.94 331.29 1.07 4.82 6.34 0.76

Methotrexate +

. .. 130.66 162.20 0.81 44476 444.20 1.00 4.79 6.13 0.78
Rifampicin
Methotrexate +
112.96 117.45 0.96 380.45 390.72 0.97 4.56 6.18 0.74
Febuxostat
Methotrexate +
Rifampicin + 135.68 162.72 0.83 473.04 509.26 0.93 4.55 461 0.99

Febuxostat

Cmax, maximum plasma concentration; AUCns, area under the concentration—time curve (AUC) from time zero to the last
observation; AUCo-24n, AUC from zero to 24 hours after administration; CLg, renal clearance; Rpred/obs, the ratio of predicted to the

observed value.
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Figure 10. The performance of methotrexate DDI PBPK model.
The predicted and observed (a) Cmax and (b) AUC ratio of

methotrexate using Guest limits [49].

DDI, drug—drug interactions; PBPK, physiologically based
pharmacokinetic; Cmax, maximum concentration; AUC, area under the
concentration—time curve
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Figure 11. Hepatic clearance of methotrexate by (a) sinusoidal

and (b) canicular membrane after administration of methotrexate

alone and coadministration of methotrexate with rifampicin,

febuxostat, or both.

The black solid line (—), red solid line (—), green solid lines (

blue dotted lines (

) and

) represent the clearance of methotrexate in liver

after administration of methotrexate alone and coadministration of

rifampicin, respectively.

CL, clearance.
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blue botted lines (-+--- ) represent the clearance of methotrexate in
kidney proximal tubule after administration of methotrexate alone and
coadministration with rifampicin, respectively.

CL, clearance.
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Figure 13. Global sensitivity analysis for methotrexate PK after

coadministration of methotrexate with rifampicin and febuxostat.

AUC,

area under the concentration—time curve;

Fq, the fraction

escaping intestinal metabolism; CLg, renal clearance; BCRP, breast
cancer resistance protein; OAT, organic anion transporter; OATP,
organic anion transporting polypeptide; MRP, multidrug resistance—
associated protein
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Table 6. Simulated PK parameters of methotrexate in the absence and presence of febuxostat in cancer patients.

Cmax or Cmax,ss (Hg/mL) AUCO—24h (h*ug/mL)
Treatment

Simulated Ratio Simulated Ratio
Methotrexate 3.5 g/m? IV as weekly 296.97 - 963.34 —
Methotrexate 3.5 g/m? IV as weekly +
Febuxostat 120 mg PO once daily 322.41 1.09 1246.33 1.30
(Cycle 1)
Methotrexate 3.5 g/m? IV as weekly +
Febuxostat 120 mg PO once daily 322.44 1.09 1247.50 1.30

(Cycle 10)

Ratio i1s calculated as a ratio of PK parameters when methotrexate was coadministered with febuxostat to those when
methotrexate was administered alone.

Cmax, maximum concentration; Cmax.ss, maximum concentration at steady—state; AUCo-24n, area under the concentration—time
curve from zero to 24 hours after administration; IV, intravenous
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Chapter 4. Discussion

The clinical study in this study aimed to investigate the effect of
rifampicin and febuxostat on methotrexate PK. A single dose of
rifampicin is an inhibitor of various metabolizing enzymes and
drug transporters [53]. As previously studies reported,
methotrexate is a substrate of various drug transporters [4, b].
Few clinical studies have evaluated the DDIs of methotrexate and
rifampicin despite the potential DDIs associated with drug
transporters. In this study, when methotrexate was
coadministered with rifampicin, Cnax and AUC.st of methotrexate
increased by 40% and 33%, respectively. Considering that
methotrexate is a substrate of OATP1B1/1B3, BCRP, MRP4 and
OAT1/3, and rifampicin is an inhibitor of these drug transporters,
the results of this study were in line with expectations. Because
rifampicin and methotrexate were administered orally, the
absorption of methotrexate was affected by the BCRP inhibition
activity of rifampicin. However, the degree of increase in Cmax
and AUCus of methotrexate in this study was not high compared
to that of other substrates of OATP1B1/1B3 and BCRP,
rosuvastatin [54]. In that previous study, coadministration of

rosuvastatin with rifampicin resulted in an increase of Cnax and
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AUCo-24n by 1025% and 248%, respectively. A comparison of
these results showed that the contribution of OATP1B1/1B3 and
BCRP to the DDIs of methotrexate and rifampicin was lower than
that with rosuvastatin and rifampicin. Rosuvastatin is primarily
eliminated in the feces approximately 90%, whereas
methotrexate extensively eliminated by kidney almost 90% [2,
55]. In addition, the sinusoidal uptake and efflux and canicular
efflux clearance of methotrexate were simulated by the PBPK
model, and it was found that the BCRP inhibition by rifampicin
was not extensive. Considering the CLgr of methotrexate was
similar regardless of the rifampicin coadministration, the
OATP1B1/1B3 inhibition of rifampicin in liver was the most

influential factors mediating an increase of systemic exposure.

Febuxostat, which has been recently provided as a
clinical inhibitor of BCRP by U.S. Food and Drug Administration,
increased the systemic exposure of rosuvastatin by 93% when
rosuvastatin and febuxostat was coadministered [11, 56].
However, the systemic exposure of methotrexate was increased
by 17% in the current study. The concentration of febuxostat in
the intestinal lumen may not have been sufficient to inhibit the

BCRP in this study. Considering the plasma concentration of
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febuxostat and the K; value of febuxostat required to inhibit the
BCRP was 0.0135 uM, it was expected that the concentration of
febuxostat was sufficient to inhibit the BCRP. Meanwhile, the ti/2
and CLgr of methotrexate were not significantly affected by the

coadministration of febuxostat [11].

When methotrexate was coadministered with rifampicin
and febuxostat, the Cpnax and AUCus: of methotrexate were
increased by 42% and 52%, respectively. The BCRP inhibition by
febuxostat contributed to the increase in the systemic exposure
of methotrexate as the degree of increase was higher compared
to that when methotrexate was coadministered with rifampicin.
According to the simulation results of canicular efflux clearance
in liver by PBPK model, the BCRP inhibition by rifampicin in liver
was not extensive when febuxostat was coadministered. In
addition, the CLr of methotrexate extensively decreased when
methotrexate was coadministered with rifampicin and febuxostat
compared to those with the other interventions. Consequently,
the increase in systemic exposure of methotrexate by rifampicin
was mediated by the inhibition of OATP1B1/1B3 in liver.
Furthermore, the additive effect on the inhibition of drug

transporters in kidney mediated by rifampicin and febuxostat
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was observed (Figure 16).

Although IV dosing of methotrexate was extensively
eliminated by kidney (60—90%), 1—-9% of methotrexate was
metabolized to 7—hydroxy methotrexate by aldehyde oxidase in
liver [2, 57]. The monitoring of 7—hydroxy methotrexate is
considered important because it contributes to the safety and
methotrexate transport in the cancer patients [58, 59]. In
addition, the in vwvitro study suggested that 7-—hydroxy
methotrexate was transported by BCRP, and the /7 vivo study
showed that the systemic exposure increased in MRP2/4 knock—
out mouse [60, 61]. In the current clinical study, the PK of 7—
hydroxy methotrexate was evaluated to investigate the effect of
drug transporter inhibitors. The systemic exposure of 7—
hydroxy methotrexate was similar when methotrexate was
administered alone and coadministered with febuxostat. In
contrast, when methotrexate was coadministered with rifampicin,
7—hydroxy methotrexate was not detected at all time points in
12 subjects. This result suggested that the MRP4 inhibition of
sinusoidal efflux by rifampicin was observed in humans, and 7—
hydroxy methotrexate is the substrate of MRP4 in human

hepatocyte sinusoidal membrane. However, the clinical effect of
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the changes in 7—hydroxy methotrexate should be discussed
because the dose of methotrexate and the amount of 7—hydroxy
methotrexate was low in this clinical study. Febuxostat seemed
to be slightly inhibit the biliary excretion of 7-—hydroxy
methotrexate mediated by BCRP, not extensive degree. To
confirm the changes in elimination phase of 7-—hydroxy
methotrexate, the evaluation of PK profile after 24 hours should
be conducted. Therefore, further study about the effect of
rifampicin on the systemic exposure and clinical significance of

7—hydroxy methotrexate should be conducted.

In this study, the PBPK model of methotrexate,
rifampicin, and febuxostat was developed based on the literature
search and the built—in information in the case of rifampicin. The
PBPK model of methotrexate has been developed in other studies
using Simcyp or MATLAB [2, 62]. However, the PBPK model of
methotrexate developed in this study is the first PBPK model
reflecting the contribution of drug transporters to the absorption,
disposition, and elimination of methotrexate. The PBPK model of
methotrexate developed in this study included the intestinal
apical uptake describing the transport by RFC and PCFT because

the clinical importance of these transporters was emerged and
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methotrexate is the substrate of RFC and PCFT [26, 63]. In
Simcyp program, since no input parameters are available for
MRP2 of the apical efflux in the kidney, the corresponding
parameters were inputted as p—glycoprotein (P—gp) instead
[64]. In the case of BCRP, the BCRP input parameter were not
available for the apical efflux of the kidney in the Simcyp
program. Therefore, the input parameters and K; value for BCRP
in the PBPK model was reflected in multidrug and toxic
compound extrusion (MATE) parameters because the abundance
in virtual population is identical [64]. The PBPK model developed
in this study for predicting drug transporters mediated DDI of
methotrexate well described the PK profiles and PK parameters
except CLg. The underprediction of CLg by the PBPK model when
methotrexate was administered alone and coadministered with
rifampicin or febuxostat might be resulted partly from the
measurement errors for the volume of urine and/or methotrexate
concentration. Some subjects in this clinical study showed the
fraction excreted unchanged in urine greater than 1, and the
amount excreted of methotrexate in urine was more than the
administered dose (2.5 mg). The PBPK model would not have

reflected the amount excreted of methotrexate in urine and
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active secretion. Nevertheless, the developed PBPK model well
predicted the methotrexate PK, and showed good performance

for the DDI prediction by evaluating Guest limits.

Methotrexate is eliminated to the bile (10—30%), and
several studies suggested that methotrexate occurred the
enterohepatic recirculation (EHC) [2, 5, 65—67]. According to
the PBPK model, when methotrexate was coadministered with
rifampicin, febuxostat, and both, the amount of bile excretion of
methotrexate was decreased by 57%, 73%, and 87%,
respectively, compared to that when methotrexate was
administered alone. This result suggested that the inhibition of
canicular BCRP by rifampicin and febuxostat was successfully
reflected in the PBPK model. However, it was simulated that 68%
of methotrexate was eliminated to the bile when methotrexate
was administered alone. This was a large portion compared to
that of previous reported results (8.7—26.0%) [65]. Although
the PBPK model simulated the higher portion for the bile
excretion, it well described the decrease profiles of bile

excretion.

The systemic exposure of methotrexate in virtual cancer

patients was simulated using the developed PBPK model in this
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study. Tumor lysis syndrome (TLS) is the common treatment—
related AEs in patients with hematologic cancers [b1].
Febuxostat showed the significant efficacy to control the uric
acid levels contributed to the prevention of TLS [51]. The
simulation when HDMTX is co—administered with febuxostat
was performed based on the dosage regimen reported in the
previous clinical studies [50, 51, 68]. One study showed that the
concomitant febuxostat could induce hepatotoxicity compared to
that without febuxostat [50]. The simulated systemic exposure
of methotrexate using the PBPK model increased by 1.30—fold
HMTX was coadministered with febuxostat. Additionally, the
systemic exposure of HDMTX was also simulated in the virtual
healthy population with the same dose regimens in cancer
patients. The systemic exposure of methotrexate in the virtual
cancer patients was 1.23— to 1.25—fold higher than that in the
virtual healthy population. In virtual cancer patients, many
physiological factors such as cardiac output and abundance of
drug transporters were different from those in the virtual healthy
population. For example, the amount of BCRP which contributed
to the bile excretion was much lower in the virtual cancer

patients, and mechanistic GFR and blood flow in kidney were
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lower than that in the virtual healthy population. In liver, the
simulated total liver concentrations in the virtual cancer patients
were also higher than those in the virtual healthy population. The
abundance of BCRP and MRP2 was lower in the virtual cancer
population, which contributed to high liver concentrations.
According to the results, the increase in systemic exposure of
methotrexate by concomitant febuxostat leads to the increase in
the incidence of hepatotoxicity. However, the expressions of
drug transporters especially ATP-—binding cassette (ABC)
transporters (P—gp, MRP2/4, BCRP) and the effect of
expression on clinical outcomes differ between various cancer
types [69, 70]. Therefore, the virtual cancer population built in
Simcyp program should be modified if the PBPK model is used
for simulation about specific cancer. On the other hand, an
increase in the systemic exposure of methotrexate mediated by
DDIs could affect the efficacy and dose regimen of methotrexate.
As few studies have been discussed the efficacy when the
systemic exposure of methotrexate increased by DDIs, the
clinical outcome such as dose reduction and prognosis should be

further studied.

There are some further considerations of this study.
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First, no data corresponding to the genetic polymorphism of drug
transporters such as OATP1B1/1B3 are available. Several single
nucleotide polymorphisms (SNPs) of solute carrier organic anion
transporter /B1/1B3 (SLCO1B1/1B3) encoding OATP1B1/1B3
alter the methotrexate PK and PD [71—73]. The analysis of
genetic polymorphism in this study can contribute to the
interpretation of the results. Second, the PBPK model was
validated by the clinical study data conducted in healthy
volunteers. Further studies should be performed to verify the
results of the PBPK modeling for the cancer patients and RA
patients. Third, in the context of other drug transporters, RFC
and PCFT, the PBPK model of methotrexate should be further
evaluated and validated. Fourth, because the biliary excretion of
methotrexate was higher than previous reported data, the DDIs
predicted by the developed PBPK model with drugs influenced in
the biliary excretion can be overpredicted. Fifth, as methotrexate
is used in various diseases, the doses of methotrexate used in
the clinical settings has a wide range more than 100 times with
diverse administration routes [52]. The increase in the degree
of PK in other doses and clinical impact of the PK changes in the

wide range of methotrexate doses should be investigated. Last,
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the concentrations of methotrexate glutamates (MTX—-PGs)
formed in cells by folylpolyglutamate synthetase were not
measured and considered in the PBPK modeling. The
polyglutamylation of methotrexate leads to intracellular retention
and results in altered efficacy along with changes in the activity
of autoimmune diseases, such as RA [74—76]. Further research
associated with MTX—PGs could be conducted and converged in

the results of this study.

Despite these considerations, this study was the first
clinical DDIs study to investigate the effect of rifampicin on
methotrexate PK. It was also the first study to develop the
methotrexate PBPK model that reflected the contributions of
drug transporters to the methotrexate PK. In addition, this
mechanistic system reflecting the drug transporter—mediated
DDIs of methotrexate can be applied to predict the DDIs potential

of new drugs and methotrexate.

64 [ Q. ) [
-':rxﬁ-: . '1_.l| s



Methotrexatet

Liver

Kidney

Rifampicin Febuxostat

Figure 16. Overview of the effect of rifampicin and febuxostat
on methotrexate pharmacokinetics
BCRP, breast cancer resistance protein; OAT, organic anion

transporter; OATP, organic anion transporting polypeptide; MRP,
multidrug resistance—associated protein
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Chapter 5. Conclusion

This study investigated the clinical potential activity of rifampicin
and febuxostat for the BCRP inhibition. The OATP1B1/1B3
inhibition by rifampicin in liver resulted in the increase of
systemic exposure for methotrexate. The coadministration of
methotrexate with rifampicin and febuxostat increased the
systemic exposure of methotrexate by the additive inhibition

activity of BCRP and OATS3 in the renal tubular cells.

The PBPK model for the prediction of the methotrexate
DDIs was well developed and validated in this study. Using the
developed the PBPK model, the effect of drug transporters was
quantitively evaluated. It was the first study to develop the
methotrexate PBPK model reflecting the characteristics of drug
transporters. Furthermore, the PBPK model of methotrexate
could simulate the methotrexate PK in cancer patients. In
conclusion, the DDIs PBPK model developed in this study can be
the mechanistic model to predict and evaluate the drug
transporter —mediated DDIs of methotrexate with other drugs
and contribute to the personalized pharmacotherapy of

methotrexate.
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Supplementary Figure 1. Transporter Kkinetics in liver after
coadministration of methotrexate with (a) rifampicin, (b)

febuxostat or (c) both.

The solid lines and the dashed lines represent the flux kinetics of
methotrexate with interaction and without interaction, respectively.
The pink and the sky—blue lines represent OATP1B1 and 1B3 kinetics
of methotrexate, respectively. The black and orange lines represent the
passive influx and efflux kinetics of methotrexate, respectively. The
green and pink lines represent MRP4 and 2 kinetics of methotrexate,
respectively. The purple lines represent BCRP efflux kinetics of
methotrexate, and the blue lines represent the net flux of sinusoidal
side.

Sin, sinusoidal side; Can, canicular; OATP, organic anion transporting
polypeptide; MRP, multidrug resistance—associated protein; BCRP,
breast cancer resistance protein
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1. PK evaluation of 7—hydroxy methotrexate

When methotrexate was administered alone, 7—hydroxy
methotrexate reached the maximum concentration at a median
time of 6.0 hours with a range of 4.0 — 6.0 hours (Supplementary

Figure 2, Supplementary Table 1).

When methotrexate was coadministered with rifampicin,
the plasma concentrations of 7—hydroxy methotrexate were not
detected at all time points. When methotrexate was
coadministered with febuxostat, the Cmax, AUCns and AUCqt
were similar compared to those when methotrexate was
administered alone (Supplementary Figure 2, Supplementary
Table 1). The metabolic ratio of 7—hydroxy methotrexate was
similar with the mean value of 0.14 when methotrexate was
administered alone and coadministered with febuxostat
(Supplementary Figure 2, Supplementary Table 1). When
methotrexate was coadministered with both rifampicin and
febuxostat, only 2 subjects showed detectable concentrations of
7—hydroxy methotrexate (Supplementary Table 1). The mean
ti/2 of 7—hydroxy methotrexate was 15.73 and 12.94 hours when
methotrexate was administered alone and coadministered with

febuxostat, respectively (Supplementary Table 1).
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Supplementary Figure 2. Mean plasma concentration—time
profiles of 7—hydroxy methotrexate after oral administration of

methotrexate alone and coadministration with rifampin,

febuxostat, or both. ((a) linear scale, (b) semi—log scale)

The black circles (@) represent the concentrations following oral
administration of methotrexate alone, open circles () represent the
concentrations following coadministration with rifampicin, open
triangles (A) represent the concentrations following coadministration
with febuxostat, and open inverted triangles (V) represent the
concentrations following coadministration with rifampicin and
febuxostat. The error bars represent standard deviations.
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Supplementary Table 1. Pharmacokinetic parameters of 7—hydroxy methotrexate and geometric mean ratio after the

administration of methotrexate alone and coadministration of methotrexate with rifampicin, febuxostat, or both.

Methotrexate +

Methotrexate +

Methotrexate +

Rifampin + GMR Febuxostat GMR Rifampin Methotrexate
Febuxostat (90% CI)¢ (90% CI)'
(N=11)" (N=12) (N=11)¢ (N=12)
Tomax (h)? - 6.0 (4.0-6.0) - 6.0 (4.0-6.0)
Crnax 0.27 1.00
+ + +
(ng/mL) 0.19 = 0.42 (0.20—0.36) 3.27 = 1.46 (0.88—1.12) 3.23 = 1.24
AUC N 0.06 N 0.96 N
(h*ng/mL) 3.33 = 0.97 (0.03-0.16) 424 = 29.84 (0.75-1.23) d2.1 = 27.37
AUCinf c _ + e 090 -+
(h#ng/mL) 82.09 + 38.1 (0.78-1.03) 84.73 + 57.22
t12 (h) - 12.94 + 3.4 - 15.73 = 7.39
Metabolic - 0.14 = 0.1 - 0.14 * 0.09
ratio

Values are presented as mean £ standard deviation.

4Values are presented as median (minimum—maximum).

PN=2; There are 2 subjects who have the concentrations of 7—hydroxy methotrexate.
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¢ Terminal elimination constants of two subjects who have the concentrations of 7—hydroxy methotrexate were not estimated.

¢ GMR is calculated as a ratio of geometric mean of 7—hydroxy methotrexate coadministered with rifampin and febuxostat to
that of methotrexate administered alone.

©N=11; Terminal elimination constant of one subject was not estimated.

"GMR is calculated as a ratio of geometric mean of 7—hydroxy methotrexate coadministered with febuxostat to that of
methotrexate administered alone.

¢ N=0; No concentrations of 7—hydroxy methotrexate were detected in all subjects.

GMR, geometric mean ratio; CI, confidence interval; Tmax, time to reach to maximum plasma concentration; Cmax, maximum plasma
concentration; AUCus;, area under the concentration—time curve (AUC) from zero to last measurable time point; AUCiy, AUC

from zero to infinity; ti/2, half—life.
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2. Validation of Rifampicin PBPK Model
Methods

The PBPK model of rifampicin in this study was developed based
on the built—in model in Simcyp. The previous clinical data was
used to validate the inhibition activity of OATP1B1/1B3 in the
PBPK model [8, 48]. Because atorvastatin is a substrate of
OATP1B1/1B3, the DDI of rifampicin with atorvastatin was
evaluated [77]. The clinical data information used for the

validation is represented in Supplementary Table 2 [8, 48].

The PBPK model for atorvastatin was developed based
on the built—in model in Simcyp. The values of drug transporters
that contributed to the absorption of atorvastatin were estimated
using the previous clinical data (Supplementary Table 2) [8, 48].
The predicted plasma concentration—time profiles of atorvastatin
were compared to the observed data. The simulation for
verification was conducted according to the condition of clinical
studies. The final PBPK model input parameters for atorvastatin

are presented in Supplementary Table 3.
Results

The developed PBPK models of atorvastatin and rifampicin well
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predicted the plasma concentration—time profiles of atorvastatin

(Supplementary Figure 3).

According to the validation results, the PBPK model of
rifampicin developed in this study was the appropriate model

reflecting the inhibition activity of OATP1B1/1B3.
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Supplementary Table 2. Summary of clinical studies used in PBPK modeling and validation.

No. Study design Treatment Subjects Analysis Reference
Grab ki
. A single 80 mg oral dose of ['C] 6 ) ) rabowsk
1 Single dose study L . . Estimation et al.,
febuxostat, as a liquid solution (Healthy subjects)
2011 [41]
) ) ) . . . L Hwang et
9 Multiple doses, replicate Oral daily administration of atorvastatin 28 Estimation L 2021
al.,
crossover study 40 mg for 7 days (Healthy subjects) and validation [43]
A singl 1d f at tatin 40
Randomized, open—label, smg.e ora. os.e ot c')rvas 'a i mg / 12 Estimation Lau et al.,
3 30—min IV infusion of rifampin 600 mg +

crossover DDI study . . (Healthy subjects) and validation 2007 [8]
a single oral dose of atorvastatin 40 mg
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Supplementary Table 3. Input parameters for the physiologically

based pharmacokinetic model of atorvastatin.

Parameter Value References/Comments
Physiological chemistry
Molecular weight 558.6 Simcyp Library v21
(g/mol)
LogP 4.15 Simcyp Library v21
Compound type Monotropic Simcyp Library v21
pKal 4.46 Simcyp Library v21
B/P 0.61 Simcyp Library v21
fu 0.023 Simcyp Library v21
Absorption
ADAM Model
fuGut 1 Simcyp Library v21
Pettman (x 1071 cm/sec) 2.05 Simcyp Library v21
Caco—2 (x 107% cm/sec) 8.6 Simcyp Library v21
Absorption rate 1 Simcyp Library v21
scalars
Transporter
P—gp / apical efflux
Jmax. P—gp ” El-Sheikh et al., 2007
(pmol/min/10° cells) [29]
El-Sheikh et al., 2007
Km (uM) 115 [29]
RAF/REF 0.99 Harwood et al., 2013
[44]
Distribution
Full PBPK Model
Vs (L/kg) 5.06 Simcyp Library v21
K, scalar 2.15 Simcyp Library v21
Elimination
CLine (HLM) (uL/min/mg Simeyp Library v21
protein)
CYP3A4 Pathway 1
75



Vimax (uL/min/pmol)
Kn (uMD)

fumic

CYP3A4

Vmax (uL/min/pmol)
Kn (uMD)

fumic

CYP2C8

Vimax (uL/min/pmol)
Kmn (uM)

fumic

UGT1A1

Vmax (uL/min/pmol)
Km (uM)

fumic

UGTI1A3

Vmax (uL/min/pmol)
Km (uM)

fumic

UGTZ2B7

Vmax (uL/min/pmol)
Km (uM)

fumic

CLint (Blle)
(uL/min/10° cells)

43.95
28.6
1
Pathway 2
44.7
24.6
1

0.12
34.5

1.67

38
3.34

3.7
16.72
1

0.93

Permeability limited liver model

Transporter

NTCP / sinusoidal uptake

Jmax, OATP1B1

(pmol/min/10° cells)

Km (}LM)

11759

185

76

Simcyp Library v21
Simcyp Library v21
Simcyp Library v21

Simcyp Library v21
Simcyp Library v21
Simcyp Library v21

Simcyp Library v21
Simcyp Library v21
Simcyp Library v21

Simcyp Library v21
Simcyp Library v21
Simcyp Library v21

Simcyp Library v21
Simcyp Library v21
Simcyp Library v21

Simcyp Library v21
Simcyp Library v21
Simcyp Library v21

Simcyp Library v21

Simcyp Library v21

Estimated
(Hwang et al., 2021
[48],

Lau et al., 2007 [8])

Simcyp Library v21



RAF/REF 1 Simcyp Library v21

OATPI1BI1 / sinusoidal uptake

Estimated
Jmax, OATP1B1 (Hwang et al., 2021
(pmol/min/10° cells) 294.57 (48],
Lau et al., 2007 [8])
Km (uM) 0.77 Simcyp Library v21
RAF/REF 1 Simcyp Library v21
OATP1B3 / sinusoidal uptake
Estimated
Jmax, OATP1B3 (Hwang et al., 2021
(pmol/min/108 cells) 217.7 (48],
Lau et al., 2007 [8])
Km (uM) 0.73 Simcyp Library v21
RAF/REF 1 Simcyp Library v21
OATP2B1 / sinusoidal uptake
Estimated
Jmax, OATP2B1 (Hwang et al., 2021
(pmol/min/10° cells) 569.19 (48],
Lau et al., 2007 [8])
Kn (uM) 2.84 Simcyp Library v21
RAF/REF 1 Simcyp Library v21

Log P, octanol—water partition coefficient; pK,, acid dissociation
constant; B/P, blood to plasma partition ratio; f,, fraction unbound in
plasma; ADAM, advanced dissolution absorption metabolism; fucut,
unbound fraction of drug in enterocytes; Pegman, human jejunum
effective permeability; P—gp, p—glycoprotein; Jmax, maximal efflux rate;
Kum, Michaelis—Menten constant; RAF/REF, relative activity/expression
factors; Vgs, volume of distribution at steady state; Kp, tissue to plasma
partition coefficient; CLiy, intrinsic clearance; CYP, cytochrome P450;
Vmax, maximum rate of metabolism; fumic, fraction of unbound drug in

the in vitro microsomal incubation; UGT, Uridine 5'—diphospho—
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glucuronosyltransferase; NTCP, NTCP, sodium (Na+) taurocholate
co—transporting polypeptide; OATP, organic anion transporting

polypeptide.
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Plagma concentration of atorvastatin (ugiL)

Time (h) Time (h)

(c)
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Supplementary Figure 3. Predicted and observed mean plasma
concentration—time profiles of atorvastatin after (a) single and

(b) multiple administration of atorvastatin alone for 7 days

The solid black line (—) and dashed grey lines () represent the
predicted mean concentration—time profiles and 5% and 95% percentile
of simulation. The open circles () represent the observed mean
concentrations in the clinical study, and the error bars represent
standard deviations.
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Supplementary Table 4. Predicted and observed pharmacokinetic parameters of atorvastatin after the administration

of atorvastatin alone and coadministration with rifampicin.

Crmax OF Cmax,ss (ng/mL)

AUCo-24n (h*ng/mL)

Reference
Predicted Observed Ropred/obs Predicted Observed Ropred/obs
Atorvastatin Lau et al.,
(Single dose) 23.87 17.4 1.37 131.66 89.0 1.48 2007 [8]
Atorvastatin Hwang et
) 25.04 37.29 0.67 147.40 124.93 1.18 al., 2021
(Multiple doses) [43]
Atorvastatin + Lau et al.,
Rifampicin 117.14 182.0 1.56 692.46 716.0 1.03 2007 [8]

Cmax, maximum plasma concentration; AUCo-24n, area under the concentration—time curve from zero to 24 hours
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