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Abstract

First-Principles Study of Electronic and Magnetic Properties of

Perovskite-Type Metal-Organic Framework

[C(NH2)3]M(HCOO)3 (M = Cr, Cu)

Kunihiro Yananose

Department of Physics and Astronomy

The Graduate School

Seoul National University

Hybrid materials are composed of both inorganic and organic constituents, thus

exhibiting the properties of both, or sometimes interplay of them. Therefore,

one can expect a distinct property from conventional inorganic materials.

For example, hybrid organic-inorganic perovskites have an ABX3 perovskite

structure with molecular ions at A- or X-sites. They are known as promising

solar cell materials. On the other hand, metal-organic frameworks (MOFs) are

crystals where organic linkers interconnect the metal ions. MOFs can adopt

various types of structures, such as porous, layered, or perovskite structures.

In this thesis, we are focusing on multiferroic perovskite-type MOFs metal

guanidinium formates [C(NH2)3]M(HCOO)3 (M = Cr, Cu). By means of

the first-principles calculation based on the density functional theory, we

investigated the multiferroic properties of [C(NH2)3]M(HCOO)3, i.e., electronic

and magnetic properties and their coupling to the structural properties. In

particular, a group theoretical method is used to analyze the structural deforma-

tion. It is known that the [C(NH2)3]M(HCOO)3 exhibits the hybrid improper

ferroelectricity, where the polar mode is induced by the combination of two non-



polar modes (hybrid mode). However, we found that the hybrid mode induces

a dominant purely electronic polarization in the [C(NH2)3]M(HCOO)3. As

opposed to an intuitive picture, the polar mode rather compensates for this

purely electronic polarization. We provide microscopic origin and macroscopic

analysis for this property. In addition, we found that the orbital magnetic

moment is the dominant contribution to the total magnetic moment in the

[C(NH2)3]Cu(HCOO)3. We established the model for the orbital magnetic

moment based on the perturbation theory combined with the Jahn-Teller

effective Hamiltonian, thus revealing the key role of the Jahn-Teller effect.

Keywords: Density functional theory, Metal-organic framework, Electric polar-

ization, Magnetism, Jahn-Teller effect, hybrid improper ferroelectricity, orbital

magnetism

Student number: 2016-20299
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1 Introduction

Beyond the traditional classification of organic and inorganic materials, a large

number of hybrid materials, which are composed of both inorganic and organic

constituents, have been studied in both fields of the fundamental sciences and

functional applications. Hybrid materials exhibit both inorganic and organic

properties, or sometimes interplay of them. Therefore, one can expect a distinct

property from conventional inorganic materials.

For example, hybrid organic-inorganic perovskites (HOIPs), such as methy-

lammonium lead iodide (MAPbI3), have an ABX3 perovskite structure with

molecular ions at A- or X-sites. They are known as promising solar cell

materials [1, 2]. The inclusion of a polar molecule leads to studies on their

effects, for example, macroscopic polarization [3], entropy effect [4], Rashba-

Dresselhaus effect [5, 6], etc.

On the other hand, metal-organic frameworks (MOFs) are materials in

which the metal ions are connected with each other by organic molecules. The

choice of organic linkers allows not only the variety in their crystal structure

types, such as porous, layered, or perovskite structures, but also control of

their length scales. One of its classes, the porous MOFs, hold a large portion

of cavities in them. Their tunable porosity enables applications in gas storage,

catalysis, etc., thus widely studied [7, 8]. On the other hand, dense MOFs hold

much smaller cavities in comparison to porous MOFs. Instead, their cations
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are closer together and can play a significant role in the emergence of their

functional properties [9–11]. The combination of organic-inorganic features

can induce both magnetism and ferroelectricity simultaneously, i.e., multifer-

roicity, which is of importance in both fundamental physics and application.

In particular, a possibility of cross-control of magnetic and electric properties

has been extensively studied in inorganic multiferroics [12–16]. Thus, both the

magnetic and electric ferroic orders, their coupling, and the role of the structural

deformation are important interests of dense MOFs [17, 24–31, 18–23].

There is an advantage of MOFs as multiferroics over inorganic materials.

For the inorganic materials, there are several well-known obstructions to the

realization of the cross-control, such as the incompatible origins of the mag-

netism (partially filled d-shell) and ferroelectricity (d0) and weak coupling

due to the distinct origins (e.g., BiMnO3) [14]. Improper ferroelectricity is a

bypass mechanism around these obstructions, where the ferroelectric order is

not a primary order parameter, but instead, it appears by coupling to a non-

polar primary order parameter [32, 33]. A strong magneto-electric coupling

can arise when this primary order parameter is the magnetic ordering or

accompanies it. In some cases, the ferroelectric order can couple with more

than one primary order parameter, which is referred to as hybrid improper

ferroelectricity (HIFE) [34]. However, the deformations and rotations of an

octahedron in the inorganic perovskite are closely correlated with those of

neighboring octahedra. Thus, the symmetry lowering by a complex structural

coupling, which is necessary for the HIFE, is incompatible with the original

perovskite structure. This is why most of the inorganic HIFE materials are

found in layered structures, such as Ruddlesden–Popper An+1BnO3n+1 [34–36].

However, it turned out that the MOFs can exhibit HIFE in its full 3-dimensional
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ABX3 structure [26, 37], thus emphasizing the ability of MOFs to exhibit

functionality not possible in their direct perovskite analogs.

Among the MOFs, the perovskite-type (ABX3 structure) metal guanidinium

formates [C(NH2)3]M(HCOO)3 (M = Cr, Mn, Fe, Co, Ni, Cu, and Zn) series [38,

26] consist of the A-site guanidinium (Gua) cation [C(NH2)3]+, B-site 3d

transition metal ions M2+, and X-site formate HCOO− anion. These materials

show the magnetic ordering by M2+ ions. When the transition metal ion

M is a Jahn-Teller (JT) active ion Cr2+ (d4) or Cu2+ (d9), the HIFE was

theoretically predicted for the first time in ABX3 perovskite structures [26].

In these materials, electronic polarization1 is coupled with the JT distortion

and A-site molecule rotation. We will denote them as Cr-MOF and Cu-MOF,

respectively, as used in previous studies [17, 26].

On the other hand, weak ferromagnetism (WFM), the canting of antiferro-

magnetically ordered spins leaving a finite uncompensated magnetic moment,

is reported for the Cu-MOF theoretically [17, 29] and experimentally [38, 29]

and for the Cr-MOF theoretically [26]. Since the spin canting in Cr-/Cu-MOFs

originates from the JT-distortion-induced orbital ordering, the WFM moment

is coupled with JT distortion, which is also coupled with the polarization.

Therefore, Cr-/Cu-MOFs are magneto-electric coupled multiferroics, which is

confirmed in the Cu-MOF case by the experiment [29].

In this thesis, we focus on the yet unexplored electronic and magnetic

properties of the Cr-MOF and Cu-MOF, which arise from the coupling to the

1For briefness, we will often refer to the electric polarization moment or its density as
‘polarization’ in the rest of this paper, whereas we will not refer to the magnetic moment as
the polarization to avoid confusion.
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structural properties, such as JT distortion. For this purpose, we performed

the first-principles calculations based on the density functional theory, as well

as the structure analysis based on the group theoretical methods. In particular,

we will show a counter-intuitive characteristic of the HIFE in Cr-/Cu-MOFs. In

an intuitive sense, the polarization is nearly proportional to the polar distortion

mode. However, in Cr-/Cu-MOFs, the purely electronic polarization is induced

by the hybrid mode, which is coexisting two non-polar modes. It is rather a

dominant contribution to the total polarization, and the polar mode actually

compensates for it. It leads to a counter-intuitive result that the reversal of

the polar mode does not invert the total polarization but rather enhances it.

We identified its microscopic origin associated with the molecular cation and

suggested a macroscopic analysis based on the Landau free energy model.

On the other hand, we also found that the orbital magnetic moment is

a dominant contributor to the total magnetic moment of the Cu-MOF. In

a transition metal compound with an octahedral environment, the orbital

magnetic moment is usually quenched, thus often neglected as the previous

theoretical studies of Cr-/Cu-MOFs [17, 26]. Even if the orbital magnetic

moment is quenched, however, spin-orbit coupling (SOC) can induce a small

orbital magnetic moment. In the Cu-MOF, this orbital moment is also small

but larger than the WFM spin magnetic moment. We constructed a model

to explain the orbital magnetic moment in the Cr-/Cu-MOF based on the

second-order perturbation theory and the JT effective Hamiltonian.

The thesis is organized as follows. In Chapter 2, theoretical backgrounds

for these works – the density functional theory and the theories related to fer-

roelectrics – are briefly introduced. Chapter 3 first briefs the known structural,

electronic, and magnetic properties of the Cr-/Cu-MOFs. Next, it introduces

4



structural interpolations. Then, it shows the parameter settings and basic

results of the DFT calculations along the structural paths. The main concerns

of this thesis will be presented in this chapter. In Chapter 4, we will analyze

the unusual ferroelectric properties of the Cr-/Cu-MOFs. Microscopic origin

will be identified, and the macroscopic description model will be suggested.

A comparison to an inorganic case will also be shown. In Chapter 5, we will

first revise the analysis of the magnetism of the Cr-MOF done in the previous

work [26]. Then we will develop the model to explain the orbital magnetic

moment in the Cr-/Cu-MOFs. We will summarize this thesis and discuss the

possible directions of further studies in Chapter 6.
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2 Theoretical Backgrounds

This chapter introduces the theoretical backgrounds on which the calculations

and analysis performed for this thesis are based. First, we will review the fun-

damentals of the density functional theory (DFT). Second, various theoretical

methods of ferroelectricity will be briefly reviewed.

2.1 Density Functional Theory

Over the last half-century, DFT has been a solid ground for explaining and

predicting the properties of condensed matters at the quantum mechanics level.

Nowadays, DFT is widely used not only in the fundamental sciences but also

in the applied sciences.

2.1.1 Hohenberg-Kohn theorem

DFT provides an efficient way of reducing the fundamental many-body quan-

tum mechanical problem, which is practically unsolvable as it is for most of

the interesting systems, into a relatively feasible problem. In particular, the

ground state property of a many-electron system can be obtained by the DFT.

This mapping is guaranteed by Hohenberg-Kohn (HK) theorem, which states

that the ground state electronic density uniquely determines the ground state

energy and electronic wavefunction, even for the interacting many-electron

systems [39, 40]. Let us start with the following theorem.
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The external potential is univocally determined by the electronic

density, besides a trivial additive constant.

This can be shown by reduction to absurdity, i.e., firstly assume the opposite

of the proposition, then show it leads to a contradiction. Assume that there

exist two inequivalent potentials v and v′ such that their ground state density

ρ is the same. The Hamiltonians are given as Ĥ = T̂ + V̂ext + Ûee, where T̂ is

kinetic energy operator, V̂ext is external potential operator given by v, and Ûee is

electron-electron Coulomb interaction operator, and Ĥ ′ given by v′. The ground

state wavefunction Φ (Φ′) and energy E0 = ⟨Φ|Ĥ|Φ⟩ (E′
0 =

〈
Φ′∣∣Ĥ ′∣∣Φ′〉) will

be given accordingly. When we consider the ground state energy E0, variational

principle dictates for the ‘non-ground state’ wavefunction Φ′ ̸= Φ that

E0 <
〈
Φ′∣∣Ĥ∣∣Φ′〉 = 〈

Φ′∣∣Ĥ ′∣∣Φ′〉+ 〈
Φ′∣∣Ĥ − Ĥ ′∣∣Φ′〉

= E′
0 +

∫
drρ(r)

[
vext(r)− v′ext(r)

]
.

(2.1)

On the other hand, the following is also true.

E′
0 < ⟨Φ|Ĥ ′|Φ⟩ = ⟨Φ|Ĥ|Φ⟩+ ⟨Φ|Ĥ ′ − Ĥ|Φ⟩

= E0 +

∫
drρ(r)

[
v′ext(r)− vext(r)

]
.

(2.2)

By adding above Eq. (2.1) and Eq. (2.2), we obtain E0 +E′
0 < E′

0 +E0, which

is definitely a contradiction. Therefore, the initial assumption is disproved, i.e.,

for a given ground state electron density ρ, the external potential vext(r) that

generates the ρ is uniquely determined besides an additive constant.

As a corollary, the ground state wavefunction Φ is also univocally de-

termined from the ground state density ρ. This is straightforward from a

consecutive determination ρ → v → Ĥ → Φ. Note that the ρ can also be

determined from Φ, thus implying a self-consistency of this formulation.
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HK theorem leads to a definition of an energy functional that maps a

density ρ̃ to the variational energy Ev:

Ev[ρ̃] = F [ρ̃] +

∫
drρ̃(r)vext(r) (2.3)

with the universal functional, which is independent of vext,

F [ρ̃] =
〈
Φ[ρ̃]

∣∣T̂ + Ûee
∣∣Φ[ρ̃]〉 , (2.4)

where Φ[ρ̃] is the ground state wavefunction of a potential given by ρ̃ as its

ground state density.

2.1.2 Kohn-Sham equation

HK theorem provided a justification of the DFT but not a practical way of

it. Kohn-Sham (KS) approach based on an effective single-particle problem

is the very practical methodology of the DFT [41, 40]. In the KS approach,

we assume a non-interacting system whose ground state density is the same

as that of the interacting system. This ‘reference’ system is described by the

Hamiltonian

Ĥr =
N∑
i=1

[
− ℏ2

2m
∇2

i + vr(ri)

]
, (2.5)

where N is the number of electrons. Our goal becomes to find the correct

formulation of the reference potential vr(r).

Let us consider the spinless case for convenience. The wavefunction of Eq.

(2.5) is a Slater determinant of N single-particle wavefunctions,

Φ(r) =
1√
N !

SD[ϕ1(r1)ϕ2(r2)...ϕN (rN )]. (2.6)
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KS Hamiltonian is the one-electron Hamiltonian which has the single particle

‘KS orbitals’ {ϕi} as its eigenstates, i.e.,

ĤKSϕi = εiϕi, where ĤKS = − ℏ2

2m
∇2 + vr(r). (2.7)

It follows that the density is written as

ρ(r) =
N∑
i=1

∣∣ϕi(r)∣∣2 (2.8)

and that the kinetic energy is

Tr[ρ] = − ℏ2

2m
⟨ϕi|∇2|ϕi⟩ . (2.9)

Then the universal functional Eq. (2.4) is rewritten in the KS context,

F [ρ] = Tr[ρ] +
1

2

∫ ∫
drdr′

ρ(r)ρ(r′)

|r− r′|
+ EXC[ρ], (2.10)

where EXC[ρ] is the exchange-correlation (XC) energy functional, which comes

from the antisymmetric nature of the wavefunction and the electron-electron

interactions. The KS total energy functional can be defined as

EKS[ρ] = F [ρ] +

∫
drρ(r)vext(r). (2.11)

Since we have to find a ground state density ρ, the variational principle

with respect to ρ will lead to the information of vr. In this case, there must

be a constraint on ρ that its integral should be the number of electrons,

i.e.,
∫
drρ(r) = N . Including this constraint with a Lagrange multiplier µ,

a functional derivative of Eq. (2.11) with respect to ρ is given as

δ

δρ(r)

(
EKS[ρ]− µ

∫
drρ(r)

)
= 0. (2.12)

9



After some of the functional analysis and physical consideration [40], the

reference potential is obtained as

vr(r) = vext(r) +

∫
dr′

ρ(r)

|r− r′|
+ µXC[ρ](r), (2.13)

where

µXC[ρ](r) =
δEXC[ρ]

δρ(r)
(2.14)

is the XC potential.

A practical DFT calculation is an iterative solving of the KS equation.

From an initial density guess ρ0, KS equation Eq. (2.7) is constructed via Eq.

(2.13). By solving the initial KS equation, one can obtain a set of eigenstates

{ϕ1i }. A new density ρ1 is then obtained from {ϕ1i }, which, however, can differ

from ρ0. The new density ρ1 defines a new KS equation, new eigenstates, and a

new density ρ2 again. Repeating this procedure, one can obtain the converged

ρ as a ground state density. This iterative way is called the self-consistent field

(SCF) method.

However, the explicit form of the XC functional Eq. (2.14) is unknown.

Thus, various approximations on µXC[ρ] have been suggested. The simplest

one is the local-density approximation (LDA) [42], which assumes that an

infinitesimal volume of the electron density contributes to XC energy as much

as that of the uniform electron gas of the same density contributes. Next, the

generalized gradient approximation (GGA) [43], which takes the gradient of

the electron density into account, was suggested. Furthermore, methodologies

that include the correction of the on-site Coulomb repulsion energies by hand

(DFT+U methods [44, 45]) or that adopt the exact exchange energy from

the Hartree-Fock method in part (hybrid functional [46]) have been suggested.
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An appropriate choice of the XC functional is also an important part of the

practical DFT.

2.2 Ferroelectricity

Ferroelectricity is a property in which a reversible electric polarization spon-

taneously appears in the material even without an external electric field.

Reversibility is an essential feature that distinguishes ferroelectricity from

pyroelectricity. It is straightforward that there must be a non-polar intermedi-

ate state in the middle of the polarization reversal path. The crystal structure

of this non-polar state would have a higher symmetry than the ferroelectric

structure. Therefore, this structure might be preferred at a high temperature,

where the entropy effect becomes more significant. The ferroelectric phase

transition is a transition from this high-symmetric structure, or paraelectric

structure, into the ferroelectric structure below the critical temperature Tc.

Landau established a simple but powerful theory to describe the ferroelectric

phase transition [47].

2.2.1 Landau free energy theory

Landau theory assumes that around the critical temperature Tc, the free energy

of a system can be written as a Taylor expansion of an order parameter, in

this case, macroscopic polarization P . This particular case of ferroelectricity

is also known as Landau-Devonshire theory [47, 48]. For example, free energy

can be written as

F = 1
2a(T − Tc)P

2 + 1
4bP

4 + 1
6cP

6 − EP, (2.15)
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where a and c are positive, T is temperature, and E is an external electric field.

In the absence of E, F is an even function of P , which is consistent with a

switchability of the ferroelectricity. By definition, the spontaneous polarization

P ∗ is the P that makes the free energy F minimum. In the case of T ≫ Tc,

it is straightforward that P ∗ = 0, i.e., the spontaneous polarization vanishes,

which corresponds to the paraelectric phase. In the case of T ≪ Tc, the two

minima of the symmetric double well type F located at P ̸= 0 corresponds to

P ∗. They can be obtained from the derivative of F [Eq. (2.15)] with respect

to P (E = 0 case is considered),

∂F

∂P
= a(T − Tc)P + bP 3 + cP 5 = 0. (2.16)

By truncating the P 5 term and assuming b > 0, one can obtain the spontaneous

polarization,

P ∗ = ±
√

a
b (Tc − T ). (2.17)

This corresponds to the second-order phase transition. On the other hand,

when we assume b < 0, the free energy can describe the first-order phase

transition.

Although the Landau free energy theory is initially introduced to describe

the phase transition, it is also useful as a descriptor of the couplings between

the order parameters, energy, and external fields. Hereafter, we will omit the

temperature dependence of the free energy and only focus on the couplings

between other physical parameters. For example, the minimal descriptor version

of Eq. (2.15) in the ferroelectric phase is

F = αP 2 + 1
2βP

4 (α < 0 and β > 0) (2.18)

12



Figure 2.1 Schematic free energy profiles of the (a) proper ferroelectricity
and (b) improper ferroelectricity cases. In (b), whether the minimum position
is on the positive side or the negative side depends on Q.

as schematically depicted in Fig. 2.1 (a), with the spontaneous polarization

P ∗ = ±
√

−α
β
. (2.19)

In this case, polarization P is the only order parameter. In other words, P

drives the phase transition as a primary order parameter. This is the definition

of proper ferroelectricity.

Interestingly, ferroelectric order can appear by coupling to another order

parameter [32, 33]. Let us assume a non-polar primary order parameter Q,

which is also described by free energy analogous to Eq. (2.15) or Eq. (2.18), f .

Then the minimal description of the free energy is

F = f(Q2, Q4) + αP 2 + γQP (α > 0) (2.20)

with the spontaneous polarization

P ∗ = − γ

2α
Q. (2.21)

The free energy profile is a single well shape with respect to P , as depicted in

Fig. 2.1 (b). This case is referred to as improper ferroelectricity. In the absence
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of Q, P does not appear. The ferroelectric switching is not a sole switching of

the P but induced by the switching of the primary order parameter Q.

Furthermore, P can couple with more than one order parameter. Let

us consider the case that P couples with two order parameters, QX1 and

QX2 , where X1 and X2 are the irreducible representations that each mode

corresponds to. The free energy can be written as

F = f({Q2n
Xi
}) + αP 2 + γQX1QX2P (α > 0) (2.22)

with the spontaneous polarization

P ∗ = − γ

2α
QX1QX2 . (2.23)

It defines the hybrid improper ferroelectricity (HIFE) [34]. Similarly to the

previous case, the presence of QX1 and QX2 is necessary for the appearance of

P . It exhibits an interesting switching rule: P is inverted when either of QX1

or QX2 is inverted, but not both.

2.2.2 Structure analysis: A group theoretical method

As mentioned before, a ferroelectric phase transition occurs between the high-

symmetric non-polar and low-symmetric polar systems. The non-polar system

is also called pseudosymmetric as the structure is hypothetical. When the

space group of the polar phase (low symmetry) is H, there exist supergroups

G > H that have higher symmetry than H. In this case, the following coset

decomposition is possible.

G = H + g2H + g3H + ...+ gnH, (2.24)
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where gi ∈ G are coset representatives which gi ̸∈ H, and n is the index of

H in G. For the H of a given polar system, with the consideration of the

Wyckoff position splittings, the candidates of the pseudosymmetry can be

specified among the supergroup G’s [49, 50]. For a set of atomic positions S1

corresponding to H, n− 1 hypothetical structures Si = giS1 can be obtained

from the coset representatives {gi ∈ G|i = 2, ..., n}. When the hypothetical

high-symmetric structure invariant under G is S0, we can write Si = S0 + Ui,

where Ui is a small distortion relating two phases. Then we can define ∆Ui =

Si − S1 = giU1 − U1. If all ∆Ui are sufficiently small, for example, under a

specific criterion, we can say that S0 is a pseudosymmetric structure of the

system.

The displacement vector u can be defined as the difference vector from the

pseudosymmetric structure to the polar structure. This is also considered the

‘soft’ phonon mode of the pseudosymmetric structure. One can label the u

with an irreducible representation (irrep) of the point group defined in G at

a specific k-point or decompose it into several orthogonal modes according to

irreps [51]. Note that the modulation through the lattice is determined by the

Bloch phase factor eik·r.

In general, the basis function(s) of an irrep Γ of a group G can be extracted

from an arbitrary function F by the projector

P̂Γ =
l

h

∑
g∈G

χΓ∗
g g, (2.25)

where χΓ
g is the character of symmetry operator g ∈ G in the irrep Γ, h is the

number of symmetry operators in G, and l is the dimensionality of irrep Γ [51].

Then, P̂ΓF =
∑

k f
Γ
k |Γk⟩, where |Γk⟩ is the k-th basis (k = 1, ..., l) of Γ. In

this way, u can also be labeled with or decomposed according to the irreps.
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Figure 2.2 The ambiguity of the dipole moment per unit cell is schematically
shown. In both (a) and (b), charged ions are placed identically with a
lattice constant a. However, the dipole moments pcell depend on the unit cell
conventions, which are marked by oblique lines.

2.2.3 First-principles approach: Berry phase method

Contrary to the simple and intuitive concept of electric polarization, an actual

formulation of it in an extended system, such as a periodic crystal, suffers from

ambiguities. For example, imagine a one-dimensional array of a unit cell with

lattice constant a containing two ±C charged ions at ±d. Depending on the

definition of the unit cell, the dipole moment per unit cell can be either 2Cd

or C(2d− a), as shown in Fig. 2.2. This implies that a direct extension of the

definition of the electric dipole to the electric polarization density of a periodic

crystal,

P =
−e
Ωcell

∫
cell

dr rρ(r) (2.26)

is an ill-defined quantity.

The key to resolving this ambiguity is to redefine the macroscopic polariza-

tion as a change of the polarization from a non-polar reference system to a polar

system [52, 53], which is rather compatible with experimental measurement
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of it. During this change, a current density j(t) = dP(t)/dt will adiabatically

flow. From this context, macroscopic polarization is written as

∆P = P(∆t)−P(0) =

∫ ∆t

0
dt j(t) =

∫ 1

0
dλ
dP

dλ
, (2.27)

where λ = 0 is the non-polar reference system and λ = 1 is the polar system.

In terms of quantum mechanics, an adiabatic change is recorded in a Bloch

wavefunction ψnk(r) = eik·runk(r) as

|δψnk⟩ = −iℏλ̇
∑
m̸=n

⟨ψmk|∂λψnk⟩
Enk − Emk

|ψmk⟩ (2.28)

in the first-order correction, where n is a band index, k is a crystal momentum,

and λ̇ = dλ/dt. Note that H |ψnk⟩ = Enk |ψnk⟩ and Hk |unk⟩ = Enk |unk⟩,

where Hk = e−ik·rHeik·r. The corresponding current density is

jn =
dPn

dt
=

iℏeλ̇
(2π)3me

∑
m ̸=n

∫
dk

⟨ψnk|p|ψmk⟩ ⟨ψmk|∂λψnk⟩
Enk − Emk

+ c.c. (2.29)

From a perturbation theory, this can be modified to

dPn

dλ
=

ie

(2π)3

∫
dk ⟨∇kunk|∂λunk⟩+ c.c. (2.30)

Inserting Eq. (2.30) to Eq. (2.27), the electronic contribution of the polarization

is given as

Pele. =
e

(2π)3
Im
∑
n

∫
dk ⟨unk|∇k|unk⟩ . (2.31)

Finally, the total polarization is P = Pele. +Pcore with the core contribution

from the nuclei charges (in practice, including core electrons)

Pcore =
e

Ωcell

∑
s

Zcore
s rs. (2.32)

Since the mathematical form of Pele. is that of the Berry phase in k-space,

this formalism is referred to as the Berry phase method [52]. However, in a
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strict sense, this corresponds to the Zak phase [54], not a Berry phase, because

a path defined in Eq. (2.31) is not a closed loop. Hence, the value of Pele.

depends on the origin of the coordinate system. However, this dependency

is canceled with the opposite dependence of the Pcore, thus leaving the total

polarization P invariant under the origin shift, i.e., the P is unambiguously

determined.

Moreover, since the phase is defined modulo 2π, Eq. (2.31) is also determined

with the corresponding modulation, or polarization quantum e/A, where A is

the projected unit cell area on the normal plane to a specific polarization

direction. Nevertheless, when we construct a gradual structural path from a

reference non-polar structure and calculate Eq. (2.31) along the path, the final

polarization can be determined unambiguously.

The Berry phase method is also naturally connected with the point charge

picture by the Wannier function [53]. The Wannier function is obtained from

a Bloch wavefunction by the following transformation.

|wnR⟩ =
Ωcell

(2π)3

∫
dkeik·R |ψnk⟩ (2.33)

Since the Wannier function is localized around the cell R, the position ex-

pectation value of the Wannier function, i.e., the Wannier center, naturally

represents the localized point charge.

rnR = ⟨wnR|r|wnR⟩ =
Ωcell

e
Pn +R, (2.34)

where the Pn is the polarization corresponding to |wnR⟩. The modulation of

the polarization is also naturally given by R.

Interestingly, the Berry phase method can recover the correct formula of the

isolated electric dipole case. Let us assume that there is a polar molecule in a
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very large periodic cell (lattice constant L), so that we can still define the crystal

momentum k, but there is no interaction between the neighboring molecules.

In this case, k-dependence in the Bloch wavefunction ψ vanishes. However, by

definition, the periodic part uk(x) = e−ikxψ(x) still has a k-dependence (for

simplicity, we assume a 1D single-band case). The electronic polarization is

given as

Pele. =
e

2π
Im

∫
dk
〈
uk(x)

∣∣∂k∣∣uk(x)〉
=

e

2π
Im

2π

L

〈
ψ(x)

∣∣−ix∣∣ψ(x)〉 = −e
L

∫
dx xρ(x).

(2.35)

The polarization density written with the usual dipole formula is restored. This

justifies the use of the Berry phase method for the polarization along a non-

periodic direction in a periodic cell with a vacuum, which is common in practical

DFT calculations, such as the out-of-plane direction of 2D materials [55].
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3 Cr- and Cu-MOFs: Basics and DFT Results

In this chapter, we will briefly review the known properties of the metal

guanidinium formates [C(NH2)3]M(HCOO)3 (M = Cr, Cu; Cr-MOF and Cu-

MOF) from the previous studies [38, 17, 26, 29]. Then we will introduce the

definition of the structural interpolations. After the detailed computational

parameters used in this thesis are described, finally, we will show the basic

DFT results, which we will analyze in the later chapters.

3.1 Known Electronic and Magnetic Properties

Cr-/Cu-MOFs have a perovskite-type ABX3 structure, as shown in Fig. 3.1 for

the Cu case. A B-site cation Cr2+/Cu2+ is surrounded by six oxygen atoms

from six surrounding X-site molecular anions HCOO− (formate), thus forming

MO6 octahedron. In addition, guanidinium (Gua) ions [C(NH2)3]+ occupy the

A-site positions [38].

In the O6 octahedron cage, d-orbitals are energetically separated into lower

energy t2g orbitals (dyz, dzx, dxy) and higher energy eg orbitals (dx2−y2 , dz2) by

the crystal field splitting. Since the Cr2+ and Cu2+ have d4 (high spin) and

d9 electron configurations, respectively, two eg orbitals are degenerated unless

the symmetry is further reduced. When the octahedron is deformed so that

the symmetry is reduced, the degeneracy is split, which gives rise to the energy
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Figure 3.1 (a-c) Pna21 structure Cu-MOF (λ = 1). The reference Cu1 is
labeled. In (c), elongated directions are drawn by double-arrows. (d) Imam
structure Cu-MOF. JT modes (e) Q2 and (f) Q3 of the reference Cu1 and Cr1
and their (g) JT phase are shown with respect to λ.
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lowering because only the lower level among the two split levels is occupied.

In other words, the octahedron spontaneously deforms itself to stabilize the

energy when there exists degeneracy, which is referred to as the Jahn-Teller

(JT) effect [56, 57].

The basic octahedral tilting in [C(NH2)3]M(HCOO)3 series is a−a−c−

in the Glazer notation. In addition, JT distortion induces the octahedral

elongations of which the elongation axes are alternating in ab-plane in Cr-

/Cu-MOFs [38, 26]. This antiferro-distortive (AFD) ordering of O6 octahedra

induces the orbital ordering [17, 26]: The lobe of the eg orbital heads for the

perpendicular direction of the lobes of the neighboring eg orbitals. In other

words, a cooperative JT effect determines the orbital structure. In this case, the

Goodenough-Kanamori-Anderson rule [58, 57] predicts the ferromagnetic (FM)

interaction between the in-plane neighboring ions and antiferromagnetic (AFM)

interaction between the out-of-plane neighboring ions. It results in the A-type

AFM. The theoretically predicted AFM alignment axis is crystallographic

c-axis for Cu-MOF and a-axis for Cr-MOF [17, 26].

On the other hand, antiferromagnetically ordered spins exhibit additional

canting toward a specific direction, called weak ferromagnetism (WFM). In

Cr-MOF, spins are canted toward c-direction [26], whereas in Cu-MOF, a-

direction [17]. Usually, the spin canting is attributed to two origins, Dzyaloshinskii-

Moriya interaction (DMI) [59, 60] and magnetic single-ion anisotropy (MSIA),

both of which are in fact the results of the spin-orbit coupling (SOC). However,

the previous work excluded the possibility of DMI according to the symmetry

analysis. It was shown that the MSIA can induce the spin canting on the basis

of the perturbation theory on the SOC considering the JT orbital ordering.

The WFM in Cu-MOF is also experimentally confirmed [38, 29].
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This AFD JT distortion also results in that the Cr-/Cu-MOFs have a

polar space group Pna21 (No. 33), whereas the other non-JT-active members

of the series have a non-polar space group Pnan (No. 52, Pnna in standard

settings) [38]. Therefore, if we restore the JT distortion in Cr-/Cu-MOFs,

we can obtain the Pnan structure, which is a pseudosymmetric structure of

Cr-/Cu-MOFs. The ferroelectric switching path can be constructed between

the Pna21 and Pnan. Along the reversal of this path, the previous theoretical

works [17, 26] show the double well type total energy profile and the ferroelectric

polarization switching. Moreover, reversal of the WFM moment is observed

along with the ferroelectric switching, i.e., Cr-/Cu-MOFs are electromagnetic

coupled multiferroics. The electromagnetic coupling was experimentally real-

ized for the Cu-MOF [29].

Furthermore, it was shown that the ferroelectricity of the Cr-/Cu-MOFs

can be classified as the hybrid improper ferroelectricity (HIFE) [26]. This can

be shown from another pseudosymmetric structure Imam (No. 74, Imma),

which has a higher symmetry than Pnan. In this structure, all Gua ions

are aligned parallel to each other in comparison to the Pnan structure. The

displacements from Imam structure to Pna21 structure can be decomposed

into three orthogonal modes labeled after the irreducible representations Γ−
4 ,

X−
1 , and X+

4 . Γ−
4 mode is a polar mode. If only the Γ−

4 mode is present, the

structure has a Ima2 space group (No. 46). X−
1 mode corresponds to the

rotation of Gua ions, resulting in the Pnan space group. X+
4 mode mainly

corresponds to the distortion of MO6 octahedra (JT distortion) and includes

a small distortion of the Gua ion, resulting in Pnam space group (No. 62,

Pnma). If only one non-polar mode solely exists, either X−
1 or X+

4 , the total

energy decreases, i.e., X−
1 and X+

4 are unstable modes. On the other hand, if
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only the polar mode Γ−
4 exists, the total energy increases, i.e., stable mode.

The presence of two non-polar modes is necessary for the polar mode to appear.

This defines the HIFE.

Based on the knowledge described so far, we will explore further interesting

electronic and magnetic properties of the Cr-/Cu-MOFs in this thesis: A

counterintuitive ferroelectric property from a purely electronic polarization

and a robust orbital weak ferromagnetism. As a preliminary, we will show the

basic computational results in the rest of this chapter.

3.2 Structure Interpolations

In this chapter, we will define the structural interpolation starting from the

pseudosymmetric structures, which is also used in the previous works [17, 26].

First, we will consider the case that the pseudosymmetry is Pnan. Let us

write the atomic displacements from the Pnan structure to the original Pna21

structure by the vector u. When we write the atomic positions at Pnan as

rPnan, the Pna21 structure is rPnan+u. By introducing the linear interpolation

parameter λ, we can define a structure interpolation r1(λ) = rPnan+λu (λ = 0

for the Pnan and λ = 1 for the original Pna21 structure). This displacement

is labeled by single mode Γ−
4 . We will denote these interpolated structures as

Pnan-path in this thesis. The previous studies [17, 26] showed the ferroelectric

and WFM switching along the path from λ = 1 to λ = −1.

Secondly, let us consider the case that the pseudosymmetry is Imam, which

we will call Imam-path. The atomic displacement from the Imam to Pna21

can be decomposed into three orthogonal modes, i.e., u2 = uΓ−
4
+ uX−

1
+ uX+

4
,

where the subscript at each mode is the irrep label. The structure interpolation
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can be defined in terms of three linear interpolation parameters for each

modes, r2(λΓ−
4
, λX−

1
, λX+

4
) = rImam + λΓ−

4
uΓ−

4
+ λX−

1
uX−

1
+ λX+

4
uX+

4
. From

r2(λΓ−
4
, λX−

1
, λX+

4
), we can construct hypothetical structures, which can be

used to investigate the effects of each mode. For example, the combination of

X−
1 and X+

4 modes without Γ−
4 mode is r2(0, 1, 1). Interestingly, this structure

is already Pna21, even though neither of X−
1 and X+

4 modes is a polar mode.

We denote this combined mode uX−
1
+ uX+

4
as X−

1 ⊕X+
4 hybrid mode.

3.3 Computational Details

We performed the first-principles DFT calculation to obtain the total energy

and electric and magnetic properties at a structure given by the structure

interpolation defined in the previous section. In particular, we used the Vienna

Ab initio Simulation Package (VASP) [61]. To include SOC, we performed a non-

collinear spin DFT calculations. We adopted the generalized gradient approxi-

mation of Perdew-Burke-Ernzerhof (GGA-PBE) for the exchange-correlation

functional [43]. The projector augmented wave pseudo-potentials [62] were

used. The plane wave energy cut-off was chosen to be 500 eV. 4 × 4 × 4

regular k-space grid was used. It is noteworthy that the orbital magnetic

moment was calculated within the atom-centered approximation [63]: The

Bloch wavefunction is projected on the atomic orbitals, and the orbital angular

momentum is calculated via the atomic angular momentum operators with

the projected wavefunction. The atom-centered approximation is sufficient

for the Cr-/Cu-MOF because the Cr/Cu preserves its atomic characters in

these materials, i.e., no need for the ‘modern theory’ of the orbital angular

momentum [64]. When we examined the spin model, we included the cases
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where we performed the DFT+U + J calculations, which consider the on-site

Coulomb energy correction, whereas we did not consider it for other cases. To

obtain the electric polarization moment in the periodic crystal, we used the

Berry phase method [52].

For the lattice constants, experimental values of Cu-MOF a = 8.5212 Å,

b = 9.0321 Å, and c = 11.3497 Å from Ref. [38] were used for both Cr- and Cu-

MOF for consistency with the previous theoretical works [17, 26]. For a given

ferroelectric structure, the corresponding paraelectric pseudosymmetric struc-

tures were obtained by the group-theoretic method implemented in PSEUDO of

the Bilbao Crystallography server [50]. Atomic displacements from the higher

symmetry structure to the lower symmetry structure were decomposed into

orthogonal modes labeled after the irreps by using AMPLIMODE of Bilbao

Crystallography server [65].

3.4 DFT Results

This section shows the change of total energy, polarization, and magnetization

calculated from the DFT along the structure interpolation paths, Pnan-path

and Imam-path. Their analysis based on the physical models will be in follow-

ing chapters.

3.4.1 Pnan-path

The results on the Pnan-path, from λ = −1 to λ = +1 of r1(λ), are shown in

Fig. 3.2. Overall behaviors shown in the previous studies [17, 26] are reproduced.

In both Cr-/Cu-MOFs, the energy profiles are double well-type [Fig. 3.2 (a)],

and the polarizations along the c-axis are inverted [Fig. 3.2 (b)], i.e., ferroelectric
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Figure 3.2 (a) Change of the energy and (b) electric polarization of the
Cu-/Cr-MOF with respect to the structure parameter λ. Spin, orbital, and
total (spin+orbital; S+L) magnetic moment of (c) Cu-MOF and (d) Cr-MOF
with respect to λ of Pnan-path.

transition. The polarization densities are 0.21 µC/cm2 for Cu-MOF and 0.23

µC/cm2 for Cr-MOF.

For the magnetic property, WFM moments appear along the c-axis for

Cr-MOF (0.172 µB per unit cell) and a-axis for Cu-MOF (0.043 µB) and are

also inverted along the path [Fig. 3.2 (c) and (d)]. However, we found that the

calculated total spin magnetic moment in the Cr-MOF (0.04 µB per each Cr

corresponding to the canting angle 0.63◦) is significantly smaller than that of

the previous work (1 µB, 14.5◦) [26]. We guess that the previous calculations

were trapped near the initial conditioning due to very weak spin anisotropy
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energy. This is rather consistent with the recently reported experimental

observation [66].

We also calculated the orbital magnetic moment, which was overlooked

in the previous studies [17, 26]. Interestingly, in the Cu-MOF, the orbital

magnetic moment is comparable to the spin magnetic moment in the same

direction. In the large |λ| range, the orbital contribution is larger than the

spin contribution. On the other hand, for the Cr-MOF, the orbital moment is

much smaller in comparison with the spin moment in the opposite direction

to it. This is consistent with the fact that the spin and orbital moments are

opposed to each other when the d-orbitals are less than half-filled but aligned

when the d-orbitals are more than half-filled. The experimentally observed

effective magnetic moment of the Cu-MOF is notably higher than its spin-only

moment [38]. We will analyze this orbital magnetic moment later.

3.4.2 Imam-path

Now we will consider the DFT results along the various structure paths defined

in the Imam-path, r2(λΓ−
4
, λX−

1
, λX+

4
). First of all, the cases in which only

a single mode exists are considered, i.e.,r2(λ, 0, 0), r2(0, λ, 0), and r2(0, 0, λ)

with λ from −1 to +1. In Fig. 3.3, the changes of the energy, polarization,

and magnetic moments of Cu-MOF with respect to each distortion mode are

shown. The first row of Fig. 3.3 shows changes in energy. X−
1 andX+

4 modes are

unstable modes which means that the mode reduces the energy of the system,

i.e., the system is stabilized. But the Γ−
4 mode is a stable mode that raises the

energy. The second row shows the electric polarization. Polar mode Γ−
4 induces

the electric polarization linear to the mode as shown in Fig. 3.3 (d). However,

its sign is opposite to the polarization of the final Pna21 structure [Fig. 3.2
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Figure 3.3 (a-c) Change of energy, (d-f) electric polarization, and (g-i)
magnetic moments of Cu-MOF when only one of distortion mode among Γ−

4 ,
X−

1 , andX+
4 exists. Each of the columns is the quantities changing with respect

to the distortion mode labeled by the irrep on top of the column. In (a-d),
quantities obtained from the free energy model are shown in the grey dashed
lines. Inset in (d) is the C-N bond length difference of the Gua ion ∆(C-N)
= lC-N

lower − lC-N
upper.

(b)]. This discrepancy led us to further investigations. On the other hand, non-

polar mode X−
1 and X+

4 do not induce polarization. The last row shows the

magnetic moments. Only the X+
4 mode representing the JT distortion induces

a non-zero total magnetic moment [Fig. 3.3 (i)]. It means that the spin canting

is coupled with the JT phase.

Motivated by the discrepancy in polarization, in the following step, we

examined the paths defined by more than one mode. In particular, the structure
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path from (λΓ−
4
, λX−

1
, λX+

4
) = (0,−1,−1) to (0, 1, 1) and from (0, 1, 1) to

(±1, 1, 1) are examined. The former represents the hybrid mode X−
1 ⊕ X+

4 .

The latter represents the addition of the polar mode Γ−
4 in the proper direction

(+1) and the inverted direction (−1). The results are shown in Fig. 3.4 with

the parameter λ1 for X−
1 ⊕X+

4 mode and ±λ2 for ±Γ−
4 mode. The energy of

the system decreases by the combination of two unstable modes, X−
1 ⊕X+

4 , as

shown in Fig. 3.4 (a). The change in energy is symmetric between the positive

and negative sides of λ1. In the presence of the X−
1 ⊕X+

4 modes, Γ−
4 mode,

which was a stable mode in the absence of it, now reduces the energy [Fig. 3.4

(b)]. It defines the HIFE, i.e., polar Γ−
4 mode appears via the coupling with

the X−
1 ⊕ X+

4 hybrid mode [26]. On the other hand, the inverted Γ−
4 mode

increases the energy. It implies that r2(1, 1, 1) and r2(−1, 1, 1) structures are

neither energetically equivalent nor related by symmetry. In fact, r2(λ, 1, λ)

structure in the Imam-path corresponds to r1(λ) structure of Pnan-path, i.e.,

in addition to the Γ−
4 , X+

4 mode also has to be inverted to obtain r1(−λ). This

is an important feature of the HIFE mechanism [34].

Interestingly, the X−
1 ⊕X+

4 hybrid mode, which consists of two non-polar

modes, induces electric polarization even without the polar Γ−
4 mode as shown

in Fig. 3.4 (c). At first glance, this seems to be a contradiction. However, since

the symmetry of the system becomes the polar space group Pna21 by the

X−
1 ⊕X+

4 hybrid mode, this does not violate the symmetry. The polarization is

also symmetric between the positive and negative sides of λ1. It means that the

polarization is not switched when we switch both of the X−
1 and X+

4 modes,

as HIFE mechanism argues [34]. As shown in Fig. 3.4 (d), linear behavior and

the sign of the additional polarization by ±Γ−
4 mode is consistent with the Γ−

4

mode only case [Fig. 3.3 (d)]. Γ−
4 mode induces the polarization opposite to
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Figure 3.4 (a,b) Change of energy, (c,d) electric polarization, and (e,f)
magnetic moments of Cu-MOF along the parameter path (λΓ−

4
, λX−

1
, λX+

4
) =

(0, λ1, λ1) and (λΓ−
4
, λX−

1
, λX+

4
) = (±λ2, 1, 1). Be aware of the difference in the

axis scale between (a) and (b). Inset in (c) is the C-N bond length difference
of the Gua ion ∆(C-N). Gray lines which show the free energy model derived
values are perfectly overlapped with the DFT value in (b) and (d).

the total polarization, i.e., the main contribution of the electric polarization is

X−
1 ⊕X+

4 hybrid mode and polar Γ−
4 mode rather reduces it, thus resolving

the discrepancy. It leads to an interesting result, the inversion of the polar

Γ−
4 mode does not invert the electric polarization but rather enhances it. We

confirmed the same properties in the Cr-MOF.
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Magnetic moments by the X−
1 ⊕X+

4 mode shown in Fig. 3.4 (e) exhibit a

similar tendency with the X+
4 mode only case. The spin magnetic moment is

slightly reduced in the presence of X−
1 mode. Γ−

4 mode has no effect on the

magnetic moment [Fig. 3.4 (f)].
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4 Electronic Properties

In this chapter, we analyze the counterintuitive ferroelectric properties shown

in the previous chapter and propose a model that is consistent with the DFT

results.

4.1 Origin of Counterintuitive Polarization

As we saw from the DFT results, a combination of the two non-polar modes

(hybrid mode) induces polarization. In this section, we will characterize it

and explore its origin. Since the hybrid mode consists of the two non-polar

modes X−
1 and X+

4 , there is no core contribution to the polarization, i.e., the

polarization is purely electronic. The core contribution comes from a change

in the dipole moment of the nuclei, which is written as Eq. (2.32), with respect

to the reference structure. By definition, an atomic displacement in each non-

polar mode has a counterpart, or counterparts, which cancels out each other

so that their summation becomes non-polar. This is still true even when two

non-polar modes coexist. As a result, only the electronic contribution remains

in the sole presence of the hybrid mode. By contrast, polar Γ−
4 mode has both

core and electronic contributions.

In fact, purely electronic polarization has been known from an early study

on HIFE. The perovskite LaGaO3/YGaO3 superlattice is an inorganic HIFE
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material. It was reported that a small polarization is induced even without the

polar distortion but in the presence of the two non-polar modes, i.e., a purely

electronic polarization [35]. Including this case and the Cr-/Cu-MOF cases,

in HIFE materials, the space group is already polar when the two non-polar

modes coexist [34, 35]. Therefore, the purely electronic polarization arising

from the structural asymmetry can be thought of as a general property of the

HIFE.

Next, let us examine the microscopic origin of the purely electronic polariza-

tion in Cr-/Cu-MOFs. Tian, et al., showed how the Gua ions induce polarization

in the viewpoint of the Lewis formalism [29]. A Gua+ ion has one double bond

out of three carbon-nitrogen (C-N) bonds as a resonance structure. A localized

positive charge is considered at the N connected by the double bond. In this

picture, the shorter bond takes the higher probability that the double bond is

placed at it. As a result, the C-N bond length difference of the Gua ion induces

polarization. The microscopic origin of the purely electronic polarization is also

attributed to this mechanism. The bond length difference between the Gua’s

lower and upper C-N bonds with respect to c-axis, ∆(C-N) = lC-N
lower − lC-N

upper, is

consistent with the polarization. The ∆(C-N) is shown in the inset of Fig. 3.4

(c). Two bonds are equivalent in the Imam phase, so the system is non-polar. In

the presence of the distortion, the ∆(C-N) is nearly quadratic and symmetric

to λ1 and linear to λ2. It is exactly the characteristic of the corresponding

polarization. Moreover, the same is also true for the Γ−
4 mode-only case, in

which the ∆(C-N) is shown in the inset of Fig. 3.3 (d). It is natural that the Γ−
4

mode is stable when it increases and, to the contrary unstable when it reduces,

∆(C-N) because too large ∆(C-N) must be energetically unfavored.
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On the other hand, in the Γ−
4 mode-only case in which λX−

1
= 0, we have to

carefully consider the unnaturally short bonds of Gua ion. Since the symmetry

operation-based method searching for the pseudo symmetry structure is weak

at capturing the rotation of molecules, the bond lengths of Gua are significantly

shortened in the Imam structure. This must have affected the polarization

involved with ∆(C-N). We examined the cases in which the bond lengths of

Gua are stretched to reasonable values. Such Gua structure was adopted from

the Supporting Information of the Ref. [26]. Gua stretching in the Imam

structure corresponds to Γ+
1 mode, which leaves the symmetry of the system

unchanged. It decreases the energy by about 71.17 eV per unit cell with respect
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to the unstretched case, which is almost half the energy change by the Gua

rotating X−
1 mode. The Γ−

4 mode with the stretched Gua bond length results

in smaller energy change and larger polarization as shown by the red lines in

Fig. 4.1 (a) and (b), but does not alter the tendencies. This is consistent with

the fact that the polarization is closely related to the Gua ions: The larger the

distance, the larger the dipole moment.

In either X−
1 or X+

4 mode-only cases, ∆(C-N) remains zero. Each of

these modes contains the alternating rotation of Gua ions, rotation around

b-axis by X−
1 mode and around c-axis by X+

4 . Note that they are not ideal

rotations, so the bond lengths change. By single non-polar mode, N atoms

move symmetrically with respect to the C atom, so the ∆(C-N) is unchanged.

However, if two modes coexist, the combined displacement of N is no longer

symmetric to the C atom as depicted in Fig. 4.2 (a). As a result, ∆(C-N)

becomes finite. In this way, the combination of the two non-polar modes can

give rise to a polar space group.

We further analyze the purely electronic polarization by the X−
1 ⊕ X+

4

mode. The HIFE mechanism states that the switching of either X−
1 or X+

4

mode, but not both, inverts polarization. Ref. [34] exhibits that the presence of

the hybrid mode softens the polar mode. But they also suggested the possibility

of the ferroelectric state by the hybrid mode only. We calculate the polarization

without the polar Γ−
4 mode in the (λΓ−

4
, λX−

1
, λX+

4
) = (0, λ, 1) and (0, 1, λ) paths

as shown in Fig. 4.2 (b) and (c), respectively. In both cases, the polarization is

inverted by switching one of the non-polar modes. Again, ∆(C-N) is consistent

with the polarization in these cases. On the other hand, Fig. 3.4 (c) already

showed that the switching of both modes does not invert the polarization. These

observations imply that the purely electronic polarization without the polar Γ−
4
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Figure 4.2 (a) Schematic picture of the displacements of N atoms relative
to the C atom in Gua of the Cu-MOF by the X−

1 and X+
4 modes. Polarization

without Γ−
4 mode in the (b) (λΓ−

4
, λX−

1
, λX+

4
) = (0, λ, 1) path and (c)

(λΓ−
4
, λX−

1
, λX+

4
) = (0, 1, λ) path. In (b) and (c), upper insets are energy

changes, and lower insets are the C-N bond length difference of the Gua ion
∆(C-N).

mode is attributed to the HIFE mechanism. The same argument is also applied

to the freezing of the Γ−
4 mode, i.e., the structures energetically equivalent to

r2(1, 1, 1) are r2(−1,−1, 1), r2(−1, 1,−1), and r2(1,−1,−1). Then we can say

that two distinct physical quantities, the purely electronic polarization and

the polar distortion Γ−
4 mode, are simultaneously coupled with two non-polar

modes X−
1 or X+

4 .

4.2 Free Energy Model

The coupling between the polarization and the distortion mode can be rep-

resented by Landau theory [47]. As discussed in Sec. 2.2.1, for the HIFE

mechanism in Cr-/Cu-MOFs, polarization P dependent part of the free energy

is written as F (P ) = αP 2 + γQX−
1
QX+

4
P . However, the spontaneous polariza-

tion written as P = −γQX−
1
QX+

4
/2α does not fully explain the DFT results.

Usually, the way of showing HIFE is to show that the polar mode amplitude
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corresponding to the total energy minimum gradually increases as the hybrid

mode amplitude increases [34]. In fact, this can only prove the appearance

of the polar mode by the hybrid mode. The spontaneous polarization above

is consistent with this way only when we assume an intuitive picture where

the polarization is proportional to the polar mode. However, our DFT results

violate this intuitive picture.

To resolve this situation, we construct the free energy for Cr-/Cu-MOFs in

which the polarization P and the polar Γ−
4 mode are described separately.

Because the polarization and the polar distortion mode respect the same

symmetry, both of them can have terms of the same order. In addition, a

linear coupling of them PQΓ−
4

can be included, which actually has the same

symmetry as P 2. The P and QΓ−
4

dependent part of the free energy is

F (P,QΓ−
4
) = αP 2 + α′Q2

Γ−
4
+ βPQΓ−

4

+ γQX−
1
QX+

4
P + γ′QX−

1
QX+

4
QΓ−

4

(4.1)

where α > 0 and α′ > 0 are assumed. In addition to the P dependent terms,

the free energy also includes the elastic energies of the non-polar modes, which

we will consider in the later section. The spontaneous polarization is

P ∗ = − β

2α
QΓ−

4
− γ

2α
QX−

1
QX+

4
. (4.2)

The first term newly appears compared to the usual formula. If β > 0, γ < 0,

and β/α < −γ/α, the DFT results in Fig. 3.3 (d) and Fig. 3.4 (c,d) can be

explained, i.e., P ∗ is linear to QΓ−
4
∼ λ(2) and quadratic to λ1 (QX−

1
QX+

4
∼ λ21).

If we replace the P in Eq. (4.1) with the Eq. (4.2), we can check the polar
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mode dependence of the free energy,

F (QΓ−
4
) = − γ2

4α
(QX−

1
QX+

4
)2

+ (γ′ − βγ

2α
)QX−

1
QX+

4
QΓ−

4
+ (α′ − β2

4α
)Q2

Γ−
4
.

(4.3)

When (γ′ − βγ/2α) < 0 and (α′ − β2/4α) > 0, freezing of the Γ−
4 mode shown

in Fig. 3.4 (b) is also reproduced. Finally, the total energies and polarization

derived from the model with fitted parameters obtained at the later sections

4.3 and 4.4 are shown together in Fig. 3.3 and 3.4 by gray dashed lines, which

are well consistent with the DFT result.

This model would provide a hint for manipulating the order parameters of

Cr-/Cu-MOFs. For example, since what directly couples with the electric field

is P , the coupling between the polar mode and the field might be renormalized.

In contrast, manipulation of a non-polar mode, for example, by strain, may

directly affect polarization, not via the polar mode.

As a summary, let us construct a detailed argument on the HIFE and

magneto-electric coupling in the Cr-/Cu-MOF. The polarization can be de-

composed into two parts, the hybrid mode (X−
1 ⊕ X+

4 ) part and the polar

mode (Γ−
4 ) part. From the Imam structure, X−

1 ⊕X+
4 mode first appears and

induces both the WFM and electric polarization. Next, the Γ−
4 mode appears

to compensate for the polarization partially and further stabilize the energy.

This is why reversing the polar mode rather enhances the polarization. ∆(C-

N) is a key parameter in this mechanism. The X+
4 mode clearly explains the

magneto-electric coupling observed by experiments [29] because both electric

and magnetic properties vary with X+
4 mode. We will show in the later chapter

that the orbital angular momentum is explicitly coupled with the JT distortion

represented by X+
4 mode.
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4.3 Determination of Model Parameters

This section shows the determination of the coefficients of the free energy

model defined in the previous section, Eq. (4.1), for the Cu-MOF. To determine

the values of the parameters in free energy, let us set rules for the units. (1)

The free energy is measured in eV per unit cell. For simplicity, we use the

DFT total energy values as free energy. (2) Polarization is written as the

polarization density in the µC/cm2 unit. (3) Distortion mode amplitudes are

replaced with the dimensionless ratio normalized to their values in equilibrium

in Pna21 structure, i.e.,QX becomes equivalent to λX . For the Γ−
4 mode related

parameters, two different data can be used to determine the same parameters,

from (λΓ−
4
, λX−

1
, λX+

4
) = (λ, 0, 0) path and from (λΓ−

4
, λX−

1
, λX+

4
) = (λ, 1, 1)

path. However, the resulting parameters from the two data are incompatible.

In such cases, we choose the data from the structure which is closer to the

equilibrium Pna21 structure, i.e., (λ, 1, 1) path. Instead, this choice brings

about a relatively large error in (λ, 0, 0) path shown in Fig. 3.3 (a) and (d),

which must be the effect of the higher order terms in the free energy neglected

from the model.

From the polarization values, we get

− γ

2α
= 0.99 µC/cm2 (4.4)

with (λΓ−
4
, λX−

1
, λX+

4
) = (0, λ, λ) path of Fig. 3.4 (c) and

− β

2α
= −0.79 µC/cm2 (4.5)
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with (λΓ−
4
, λX−

1
, λX+

4
) = (λ, 1, 1) path of Fig. 3.4 (d). From the energy change

in (λΓ−
4
, λX−

1
, λX+

4
) = (λ, 1, 1) path of Fig. 3.4 (b), we get

(γ′ − βγ

2α
) + (α′ − β2

4α
) = −0.493470 eV

− (γ′ − βγ

2α
) + (α′ − β2

4α
) = 1.49337 eV.

(4.6)

However, we have four equations for five parameters. It is impossible to deter-

mine the parameters from the given data.

Instead, we estimate the α value from the separate calculations. The α

represents the energy from the polarization, and it is highly attributed to Gua

ions. Therefore, we estimate α by applying external electric field E to isolated

symmetric Gua+ ions and calculating the energy and induced dipole moment

p. In the calculation by using VASP, an external electric field is added by

sawtooth-type potential, and the +1 oxidation number is realized by reducing

one electron with the NELECT option. The energy of such system depending

on p and E is written as E(p, E) = ap2−pE . By fitting to the calculated values

shown in Fig. 4.3, we obtain a = 1.175 eV/(eÅ)2. Because Cr-/Cu-MOF has

four Gua+ ions in a unit cell, the relation between a and α can be given as

α(p/v)2 = 4ap2 where v = 873.522 Å3 is the volume of the unit cell. As a

result, we get

α = 1.40 (eV/[µC/cm2]2)

α′ = 1.37 (eV)

β = 2.20 (eV/[µC/cm2])

γ = −2.76 (eV/[µC/cm2])

γ′ = −3.17 (eV).

(4.7)
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Figure 4.3 (a) Induced dipole moment in isolated Gua+ ion by external
electric field E . (b) Total energy change and dipole-field interaction energy.

4.4 Estimation of Ferroelectric Switching Field

In the presence of the external field h, free energy for a second order phase

transition as a function of order parameter x can be written as f(x) = αx2 +

βx4 − xh, where α < 0 and β > 0. When this free energy has minima −y0

at ±x0, α = −2y0/x
2
0, β = y0/x

4
0, and the switching field strength is |hc| =

4|α|3/2/(3
√
6β) = 8y0/(3

√
3x0). In this way, we will estimate the field strength

needed to switch the polarization of Cu-MOF. However, note that this approach

is very simplified, neglecting the possible complex deformations of Gua ions. It

also assumes ordered Gua ions rather than thermally disordered configuration.

The free energy of the Cu-MOF including external electric field E is

F (P,QΓ−
4
, E ′) = αP 2+α′Q2

Γ−
4
+βPQΓ−

4
+γQX−

1
QX+

4
P+γ′QX−

1
QX+

4
QΓ−

4
−PE ′,

(4.8)

where E ′ = vE . Note that only P couples directly with E . The resultant

polarization is

P ∗ = − β

2α
QΓ−

4
− γ

2α
QX−

1
QX+

4
+

1

2α
E ′. (4.9)
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When it is substituted to Eq. (4.8),

F (P ∗, QΓ−
4
, E ′) = − γ2

4α
(QX−

1
QX+

4
)2 + (γ′ − βγ

2α
)QX−

1
QX+

4
QΓ−

4

+ (α′ − β2

4α
)Q2

Γ−
4
+

γ

2α
QX−

1
QX+

4
E ′ +

β

2α
QΓ−

4
E ′ − 1

4α
E ′2.

(4.10)

Let us assume that QΓ−
4

is determined by the given QX−
1

and QX+
4
,

Q∗
Γ−
4
= −

(γ′ − βγ
2α )

2(α′ − β2

4α)
QX−

1
QX+

4
− β

4α(α′ − β2

4α)
E ′ ≡ E1

2E2
QX−

1
QX+

4
− P2

2E2
E ′,

(4.11)

where P1 ≡ − γ
2α , P2 ≡ β

2α , E1 ≡ −(γ′ − βγ
2α ), and E2 ≡ (α′ − β2

4α). It is then

inserted into Eq. (4.10).

F (P ∗, Q∗
Γ−
4
, E ′) ≡ A(QX−

1
QX+

4
)2 + BQX−

1
QX+

4
E ′ + CE ′2, (4.12)

where

A = −αP 2
1 − E2

1

4E2
= −1.86 eV

B = −P1 +
E1P2

2E2
= −0.21 µC/cm2

C = − P 2
2

4E2
− 1

4α
= −0.49 [µC/cm2]2/eV.

(4.13)

It implies that non-polar modes QX−
1

and QX+
4

are also indirectly coupled with

the external field and each other by the HIFE mechanism.

In order to determine the switching field strength, elastic energy contribu-

tions from the non-polar modes are considered.

Fnon-polar(QX−
1
, QX+

4
) = ηQ2

X−
1
+ η′Q2

X+
4
+ λQ4

X−
1
+ λ′Q4

X+
4
+ ξQ2

X−
1
Q2

X+
4
,

(4.14)
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where η, η′ < 0 and λ, λ′ > 0. The ξ represents an elastic coupling between

QX−
1

and QX+
4
. When P ∗ and Q∗

Γ−
4

are determined by QX−
1

and QX+
4
, total

free energy is

F (QX−
1
, QX+

4
, E ′) = ηQ2

X−
1
+ η′Q2

X+
4
+ λQ4

X−
1
+ λ′Q4

X+
4

+ (ξ +A)Q2
X−

1
Q2

X+
4
+ BQX−

1
QX+

4
E ′ + CE ′2.

(4.15)

Let us denote the total energy of the system with the structure given by

(QΓ−
4
, QX−

1
, QX+

4
) as E(QΓ−

4
, QX−

1
, QX+

4
).

η + ξ +A = −2E3

λ = E3,

(4.16)

where E3 ≡ E(0, 0, 1)− E(1, 1, 1) = 119.943874 eV . Note that when QX−
1
= 0

or QX+
4
= 0, Q∗

Γ−
4

= 0.

η′ + ξ +A = −2E4

λ′ = E4,

(4.17)

where E4 ≡ E(0, 1, 0)− E(1, 1, 1) = 0.362790eV .

η + η′ + λ+ λ′ + ξ +A = −E5 ≡ −(E(0, 0, 0)−E(1, 1, 1)) = −121.125702eV

(4.18)

As a result,

λ = 120 eV

λ′ = 0.36 eV

η = −241 eV

η′ = −1.54 eV

ξ = 2.68 eV

(4.19)
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One can see that the coefficients for X−
1 mode (η and λ) are much larger

than others. Therefore, it would be desirable to consider the FE switching of

QX+
4

mode, whereas we can assume the fixed value of QX−
1

= 1 during the

FE switching. Furthermore, it switches both the polarization and magnetic

moment. Free energy as a function of QX+
4

is

F (QX+
4
) = (η′ + ξ +A)Q2

X+
4
+ λ′Q4

X+
4
+ BE ′QX+

4
(4.20)

The switching field strength can be obtained by the following.

|B|v|Ec| =
4

3
|η′ + ξ +A|

3
2

1√
6λ

=
8

3
√
3
E4

|Ec| =
8E4

3
√
3v|B|

= 4.95 V/Å
(4.21)

We can compare this with the value from a much simpler approach, which

considers the polarization P as a primary order parameter. In this case, we

can use the parameters from the Pnan-path. The free energy gain at the

equilibrium value of the polarization P0 = 0.21 µC/cm2 is EPnan = 0.363556

eV.

|Esimple
c | = 8EPnan

3
√
3vP0

= 4.95 V/Å (4.22)

It is the same as |Ec| within the digits we are showing. In the ideal case, when

both two non-polar modes QX+
4

and QX−
1

are 1, the equilibrium value of the

Q∗
Γ−
4

without an external field should be 1. Eq. (4.11) implies that E1 = 2E2

is the condition for the ideal case. This leads to B = −P1 + P2 = −P0 since

both P1 −P2 and P0 are the polarization of stable structure r1(1) = r2(1, 1, 1).

Moreover, EPnan ≈ E4 since r1(0) ≈ r2(0, 1, 0). Thus, two expressions are

equivalent in these assumptions. Note that when η and λ are comparable to

η′ and λ′, which means releasing the assumption QX−
1

= 1, switching field

estimation can differ from that of the simple approach. On the other hand,
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Figure 4.4 The case of Ca3Mn2O7. (a-c) Change of energy and (d-f) electric
polarization when only one distortion mode among Γ−

5 , X+
2 , and X−

3 exists.

the above field strengths are too large to be realized. Therefore, polarization

switching by an external electric field will be impossible in practice.

4.5 Revisit of Inorganic Perovskite Ca3Mn2O7

We can examine how the HIFE in MOFs and that in inorganics differ. For

this purpose, we revisited the prototypical inorganic perovskite HIFE material,

Ruddlesden-Popper Ca3Mn2O7 [34], in the viewpoint of the free energy model

we constructed in Sec. 4.2. For the DFT calculations of Ca3Mn2O7, we adopt

PBEsol+U functional and 4×4×4 k-space grid within the primitive cell. Since

we focus on the electric property, SOC is neglected. Other DFT parameters

are the same as ref. [34]. The polar structure and the corresponding non-

polar structure have A21am and I4/mmm space groups, respectively. These
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Figure 4.5 The case of Ca3Mn2O7. (a,b) Change of energy and (c,d) electric
polarization along the parameter path (λΓ−
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) = (0, λ1, λ1) and
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, λX+
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, λX−
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) = (±λ2, 1, 1). Be aware of the difference in the axis scale

between (c) and (d).

structures are connected by three distortion modes labeled by irreps Γ−
5 , X+

2 ,

and X−
3 . Γ−

5 mode is an alternating displacements of A-site Ca2+ cations

along the a-direction, thus inducing a polarization in the a-direction. X+
2

and X−
3 modes are related to the rotation and tilt of the oxygen octahedra,

respectively. For the A21am structure, experimental conventional cell lattice

constants a = 5.2347 Å, b = 5.2421 Å, and c = 19.4177 Å are adopted [67].

For the I4/mmm structure, DFT optimized lattice constant a = b = 5.2320

Å and the same c as A21am structure are adopted. We assumed the linear

interpolation of a (b) with respect to the Γ−
5 (X−

3 ) mode.
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In Fig. 4.4 and 4.5, the total energy and polarization of Ca3Mn2O7 with

respect to the distortion modes are shown. In Fig. 4.4, each single-mode-only

case shows the same behavior as the Cu-MOF case shown in Fig. 3.3. The polar

mode Γ−
5 is stable and induces polarization. Two non-polar modes, X+

2 and

X−
3 , are unstable and induce no polarization. Fig. 4.5, which shows the effect

of the hybrid mode X+
2 ⊕ X−

3 , reveals the differences from Cu-MOF shown

in Fig. 3.4. The behavior of the total energy is similar. However, the hybrid

mode induces only a small portion of the total polarization, which is smaller

by two orders in comparison to the polar mode. In addition, the direction

of the polarization by the hybrid mode and polar mode are the same. Thus,

the switching of the polar mode inverts the sign of total polarization. One

can say that the polarization of the Ca3Mn2O7 behaves in an ‘intuitive’ way.

On the other hand, a large purely electronic polarization can be thought of a

unique feature of the HIFE in MOFs. These differences can be attributed to

the difference between organic and inorganic natures, or covalence and ionic

natures.

The viewpoint of the Landau theory provides a systematic comparison.

The parameters of the free energy described in the form of Eq. (4.1) for the

Ca3Mn2O7 are determined in the same way except for α. The α is determined

by applying the external electric field to the crystal up to ±0.001 V/Å via

the method of Nunes and Gonze [68]. Note that this method could not be

applied for Cu-MOF due to a convergence issue. The obtained parameters are
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as follows.

α = 1.62× 10−3 (eV/[µC/cm2]2)

α′ = 2.88× 10−1 (eV)

β = 1.43× 10−2 (eV/[µC/cm2])

γ = 1.80× 10−4 (eV/[µC/cm2])

γ′ = −5.52× 10−1 (eV).

(4.23)

The β and γ represent the scales of the polarization induced by the polar mode

and hybrid mode, respectively. In the Cu-MOF case, βγ < 0 and |β|/|γ| ≈

0.8 < 1, whereas in the Ca3Mn2O7, βγ > 0 and |β|/|γ| ≈ 80 ≫ 1. When the

sign of βγ is positive (negative), the polarization directions by the hybrid mode

and the polar mode are the same (opposite). The ratio |β|/|γ| tells us which

mode contributes to the polarization larger. If this ratio is larger (smaller) than

1, the polar (hybrid) mode contribution is larger. Hence, the case of |β|/|γ| ≫ 1

corresponds to the case where the intuitive picture works well.
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5 Magnetic Properties

This chapter shows the theoretical advances in the magnetism of Cr-/Cu-MOFs.

5.1 Revisit of Magnetism of Cr-MOF

5.1.1 Symmetries and spin model

As shown in Sec. 3.4, the new calculations in this thesis obtained a much

smaller net magnetic moment of the Cr-MOF in comparison to the previous

work [26]. Therefore, this section shows the justification of our new calculations

and updates the spin-model analysis shown in Ref. [26].

First of all, let us have a look at the magnetic space group symmetry of

the system. The Cr-/Cu-MOFs have four magnetic ions in a unit cell. The

paramagnetic space group of the Cr-/Cu-MOFs, which has no local magnetic

moment, is Pna211′. In the presence of a local magnetic moment at each Cr/Cu,

four magnetic order parameters can be defined. M is a FM order parameter

where all magnetic moments are aligned in the same direction. There are three

AFM order parameters. The A-type AFM order parameter is A, where the

neighboring moments in ab-plane are parallel (in the same direction), whereas

the c-direction neighboring moments are antiparallel (the opposite direction).

On the other hand, C-type AFM order (C) has the moments parallel to their
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out-of-plane (c-axis) neighbors but antiparallel to the ab-plane neighbors. In

G-type AFM order (G), a moment is antiparallel to all its neighbors.

Assuming that the primary order parameter is A, the following three cases

are compatible with the symmetry properties [26, 66].

Pna21 : {Ab;Ga, Cc}

Pn′a′21 : {Aa;Gb,Mc}

Pna′2′1 : {Ac;Cb,Ma}

(5.1)

The Pn′a′21 and Pna′2′1 are compatible with WFM components (parallel

to c and a axes), where the prime means that the symmetry operation is

accompanied by the time-reversal operation. The previous studies found that

the symmetries of the ground states are Pn′a′21 for the Cr-MOF [26] and

Pna′2′1 for the Cu-MOF [17], with the A-type AFM primary order for both.

These are confirmed again by our DFT calculations. However, the previous

work on the Cr-MOF [26] considered only Aa and Mc. Thus, we will include

the previously ignored order parameter Gb into our consideration.

Now, let us briefly review the spin model approach, which includes the

MSIA that induces the spin canting [26, 66]. The primary effect that leads to

the AFM-A ground state is the exchange interaction described via an isotropic

3D Heisenberg model for classical spins (with S = 2):

Hiso =
1

2

∑
ij

Jij Si · Sj (5.2)

The bond-anisotropic exchange interactions are given by Jc > 0 (AFM inter-

action) for the c-direction exchange coupling and Jab < 0 (FM interaction)

within ab-planes. The MSIA, which originates from the JT orbital ordering,
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can be described by the following term in a local reference frame.

Hsia = E
∑
i

[
(Si · esi )2 − (Si · eli)2

]
+D

∑
i

(Si · emi )2, (5.3)

where E and D denoting the principal values of the MSIA tensor and eli, e
m
i ,

and esi denoting the long, medium and short M -O bonds of the JT-distorted

MO6 octahedra. In practice, Hsia should be properly rotated at each tilted

octahedra in order to be consistent with the global spin of Hiso [26]. In addition,

the AFD orbital ordering results in alternating sign changes of E in Eq. (5.3).

From the total spin Hamiltonian Hiso + Hsia, the mean-field energy is

obtained as follows [66].

E(δ, ϵ) = −Jc cos 2ϵ− 2|Jab|
[
1 + cos2 ϵ(cos 2δ − 1)

]
+D cos2 θt sin

2 ϵ

+
D

2
sin2 θt cos

2 ϵ(1− cos 2δ)− 2E cos θt cos
2 ϵ sin 2δ

+ sin θt sin 2ϵ (D cos θt sin δ + E cos δ) ,

(5.4)

where δ and ϵ are the spin canting angle of the secondary G-type (Gb) and

ferromagnetic (Mc) order deviated from AFM-A configuration (Aa) of Cr-MOF,

respectively. The canting angles can be determined by minimizing Eq. (5.4)

with respect to both δ and ϵ. Simple analytical formulas are obtained assuming

δ = 0 or ϵ = 0, giving respectively (Note a corrected sign for ϵ to Ref. [26]):

tan 2ϵ = − 2E sin θt
2Jc +D cos2 θt

(5.5)

tan 2δ =
2E cos θt

2|Jab|+D sin2 θt
, (5.6)

where θt is a tilting angle of MO6 octahedra from the c-axis. Since we usually

expect the spin anisotropy energy to be smaller than the exchange coupling

energy, a small canting angle is expected.
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Before proceeding to the computational results, let us check the possibility of

the Dzyaloshinskii-Moriya interaction (DMI) with the complete consideration

of the magnetic order parameters. In the previous work [26], it was shown that

the DMI is incompatible with {Aa;Mc} or {Ac;Ma} spin orderings. When we

consider two Cr ions neighboring along c-direction with either of those two

spin orderings, the octahedra tilting implies that the DM vector is parallel to

a-axis (D ∥ â). On the other hand, the cross-product of two spins is parallel

to the b-axis (S1 × S2 ∥ b̂). Since the DMI term in the Hamiltonian is usually

described in the form of D · (S1 ×S2), which vanishes in the above two cases,

it can not affect the spin canting.

However, this is not the case in the presence of the Gb or Cb orders. Let

us first consider the {Aa;Gb,Mc} case (Pn′a′21). As a first-order expansion,

we can write S1 = S(1, δ, ϵ) and S2 = S(−1,−δ, ϵ), which give S1 × S2 =

S2(2δϵ,−2ϵ, 0). When we write D = (D, 0, 0), the DMI energy is D·(S1×S2) =

2DS2δϵ, which is no longer zero. Hence, we can not strictly rule out the DMI

as an origin of the spin canting. Nevertheless, we can ignore the DMI in

practice because the DMI energy 2DS2δϵ is quadratic to the small canting

angles. On the other hand, in the case of {Ac;Cb,Ma} (Pna′2′1), we can write

S1 = S(ϵ, δ, 1) and S2 = S(ϵ, δ,−1) (in this case, ϵ for Ma and δ for Cb). It

leads to S1 × S2 = S2(−2δ, 2ϵ, 0) and D · (S1 × S2) = −2DS2δ. The DMI is

linear to δ, which does not induce a net WFM moment. Therefore, the original

argument of dismissing the DMI is still valid for Pna′2′1, which corresponds to

the Cu-MOF.

53



0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
canting angle ǫ ( ◦ )

−0.05

−0.04

−0.03

−0.02

−0.01

0.00

0.01

0.02

0.03

E
(ǫ
)
−
E
(ǫ
=
0)

 (m
eV

 p
er

 u
ni

t c
el

l) no U
set 1 (U=2.5 J=0.5)
set 2 (U=3.0 J=1.0)

Figure 5.1 DFT total energies of Cr-MOF depending on the canting angle
ϵ in ac-plane. Without the U and J corrections (no U), the total energy is
minimum at ϵ = 0.63◦. With the DFT+U + J correction, the minima are
at ϵ = 1.19◦ and ϵ = 1.86◦ for the parameter set 1 (2.5,0.5) and set 2 (3,1),
respectively.

5.1.2 Computation results

An ideal DFT calculation will converge to the ground state where the spin

directions minimize the mean-field energy Eq. (5.4) when we give a reasonable

initial guess, which will be the pure AFM-A spin configuration or that with a

guess of small canting. The Cu-MOF is nearly such a case. However, we note

that the Cr-MOF suffers from the convergence problem at the last stage of the

SCF when the SOC is included. The spin canting direction is easily trapped

near the initial guess, and the magnetic symmetry is slightly broken. Hence,

we performed constrained spin calculations for the Cr-MOF in order to find a

correct ground state. First, the total energies of the Cr-MOF with respect to

increasing ϵ and fixed δ = 0 ({Aa;Mc}) were calculated, as shown in Fig. 5.1

(“no U” data). The total energy is minimum at ϵ = 0.63◦, which is a much
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smaller angle than the previous work [26]. In a similar way, we also examined

the {Aa;Gb} case, in which the total moment vanishes, by varying δ and fixing

ϵ = 0. We found that δ = 2.01◦ minimizes the total energy, which gives the

alternating b-axis local moments of 0.127 µB per each Cr. The initial guesses

for the DFT calculations of the Pnan-path in Fig. 3.2 were interpolated from

the obtained ϵ and δ.

In fact, this small canting angle ϵ = 0.63◦ is very hard to detect experi-

mentally. This is consistent with the recent experiment for the powder sample

of Cr-MOF [66], which actually could not observe the WFM. On the other

hand, the experiment observed that the critical temperature of the magnetic

ordering is Tc ≈ 8 K [66], which is much smaller than the previous theoretical

estimation T th
c ≈ 40 K [26]. Therefore, we also revised the T th

c estimation of

the Cr-MOF.

The T th
c can be predicted by Monte Carlo (MC) simulation adopting a

standard Metropolis algorithm for the spin Hamiltonian given by Eq. (5.2)

and Eq. (5.3). Model parameters of the spin Hamiltonian can be estimated by

total energy mapping of DFT computations. The Jab and Jc can be obtained

from the total energies with each pure Mc, Ac, Cc, and Gc spin configurations.

Let us take the Mc as an example. A spin of each Cr atom interacts with

two c-axis neighbors by Jc and four ab-plane neighbors by Jab. Since there

are four Cr atoms per unit-cell, and the parallel spins give Si · Sj = S2, the

total energy contribution per unit-cell given by Hiso [Eq. (5.2)] is EM |iso =

(1/2) × 4 × (2Jc + 4Jab)S
2. Similarly, EA|iso = (1/2) × 4 × (−2Jc + 4Jab)S

2,

EC |iso = (1/2)× 4× (2Jc − 4Jab)S
2, and EG|iso = (1/2)× 4× (−2Jc − 4Jab)S

2.
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From these, the followings are derived with |S| = 2.

Jc =
1

64
(EM + EC − EG − EA)

Jab =
1

128
(EM + EA − EG − EC).

(5.7)

Let us consider the octahedral tilting of Cr-MOF to construct the DFT total

energy mapping to the spin anisotropy energy. Starting from an octahedron

with (x, y, z) as local coordinates, which coincides with the crystal axes (a, b, c).

First, rotate the octahedron by −45◦ around the c-axis. Then, rotate it by

−θt around the a-axis. In this case, the spin components (Sx, Sy, Sz) in the

octahedral coordinates (x, y, z) of the spin S parallel to each crystallographic

direction are written as follows.

S ∥ â : (Sx, Sy, Sz) = S(1/
√
2, 1/

√
2, 0)

S ∥ b̂ : (Sx, Sy, Sz) = S(− cos θt/
√
2, cos θt/

√
2, sin θt)

S ∥ ĉ : (Sx, Sy, Sz) = S(sin θt/
√
2,− sin θt/

√
2, cos θt)

(5.8)

From the above, in the cases of the AFM-A spin configurations along each

crystal axes, the total energy contributions per unit-cell from the Hsia [Eq.

(5.3)] are E(Aa)|sia = 0,E(Ab)|sia = 4DS2 sin2 θt, and E(Ac)|sia = 4DS2 cos2 θt.

Therefore, D = [E(Ab)+E(Ac)−2E(Aa)]/16. For the θt, we have two possibil-

ities. One is to use the value measured from the structure as it is. Another is

to use the value compatible with the DFT total energy mapping to the model.

Namely, θt = arctan
(√

E(Ab)− E(Aa)/
√
E(Ac)− E(Aa)

)
, which is adopted

in the previous work [26]. Then the E can be obtained from Jc, θt and D via

Eq. (5.5).

First, we computed the spin model parameters from the DFT total energy

with the constrained spin conditions. As shown in the first row of Table 5.1 for
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the parameters obtained in the previous work [26] and the second row for the

present calculations, the new calculations obtained the results compatible with

the previous work, except for the spin anisotropy parameter E. This deviation

must have originated from the erroneously large canting angle ϵ in the previous

work via Eq. (5.5). However, this correction could not drastically improve the

T th
c estimation.

Next, we took the on-site Coulomb interaction correction into account by

the DFT+U + J method [45]. Specifically, we assumed two sets of parameters

with fixed U − J = 2 eV, (U, J) = (2.5, 0.5) or (U, J) = (3, 1), which we denote

set 1 and set 2, respectively. As shown in Fig. 5.1, these two parameter sets

result in larger canting angles than the previous calculations without the U

and J corrections, ϵ = 1.19◦ and ϵ = 1.86◦ for the set 1 and set 2, respectively.

The parameters extracted from the DFT calculations with these parameter

sets are listed in the third and fourth row of Table 5.1. Interestingly, the U

(U, J) Jc Jab D E θt
no U (Ref. [26]) (0, 0) 0.824 -0.453 0.113 0.745 30.8
no U (this work) (0, 0) 0.837 -0.459 0.092 0.035

(0.036)
33.6

(31.9)
set 1 (2.5, 0.5) 0.475 -0.111 0.115 0.038

(0.041)
33.8

(31.9)
set 2 (3.0, 1.0) 0.453 -0.042 0.149 0.059

(0.062)
33.8

(31.9)

Table 5.1 Model parameters (all couplings in meV, tilting angle in degrees)
used in the Monte Carlo simulations for the Cr-MOF, with and without the
+U + J corrections. The parameters in the previous work [26] are also shown
for comparison. The angle θt has been estimated from magnetic anisotropy
energies. The two sets give the same angles, which is a non-trivial result. Such
estimations are also in good agreement with the structural tilting angle (given
in brackets). The values in brackets for the parameter E were obtained by
using the structural tilting angle, showing small deviations that are found not
to affect the results significantly.
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(U, J) (eV) spin
moment

orbital
moment

|Morb|

Cr-MOF (0, 0) 0.172 -0.024 0.031
Cr-MOF (2.5, 0.5) 0.327 -0.031 0.035
Cr-MOF (3.0, 1.0) 0.514 -0.032 0.035
Cu-MOF (0, 0) 0.043 0.070 0.055
Cu-MOF (4.5, 0.5) 0.054 0.096 0.077
Cu-MOF (5.0, 1.0) 0.041 0.092 0.075

Table 5.2 DFT parameter dependence of the calculated magnetic moments.
Units are Bohr magneton µB. |Morb| is the magnitude of orbital magnetic
moment of single Cr/Cu ion.

and J corrections reduce the exchange coupling strength (Jc and Jab) and

increase the spin anisotropy energies (D and E). The T th
c estimated from these

parameters via MC simulations [66] are about 14.5 K for set1 and 9.5 K for

set 2, which are in good agreement with the experimental value Tc ≈ 8 K [66].

This result implies that the on-site coulomb energy correction U and J are

necessary to estimate the Tc of Cr-MOF.

We close this section with the U and J dependence of the calculated

magnetic moments of Cr-/Cu-MOFs. Table 5.2 shows the net spin and orbital

magnetic moments per unit cell (4 f.u.) and the magnitude of the orbital

magnetic moment of a single Cr/Cu ion. One can see that the orbital magnetic

moments are enhanced by the inclusion of the +U + J correction.

5.2 Robust Orbital Weak Ferromagnetism in Cu-MOF

In general, magnetic moment originates from spin and orbital angular momenta.

Usually for the transition metals, the orbital magnetic moment is small in

comparison with the spin magnetic moment. For a transition metal ion in

an octahedral environment, the orbital magnetic moment is quenched when

the t2g d-orbitals are fully- or half-filled. This is why it is often neglected,
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including in the previous theoretical studies of Cr-/Cu-MOF [17, 26]. Even if

the orbital magnetic moment is quenched, however, spin-orbit coupling (SOC)

can induce a small orbital magnetic moment. In the case of the Cu-MOF,

the spin contribution is also small as it is WFM. Therefore, the small orbital

contribution may not be negligible, as shown in Sec. 3.4. This section will

show our analysis and a model study on the orbital magnetic moments of the

Cr-/Cu-MOFs.

5.2.1 Spin-Orbit coupling and Jahn-Teller distortion

In order to explain the orbital magnetic moment in Cr-/Cu-MOF, we focused

on the SOC and the orbital ordering by the Jahn-Teller (JT) distortion. In

particular, we established the model in which the perturbation method on

the SOC is combined with the JT effective Hamiltonian within a single ion

description. The perturbation approach for the SOC to consider the orbital

angular momentum and MSIA in a solid is basically Bruno theory [69, 70],

but we ignore the k-space dispersion for simplicity. The SOC Hamiltonian

is written as HSOC = ζS · L, where S and L are spin and orbital angular

momentum operator, respectively. We will consider only d-orbitals here [71].

Let us first review the JT effective Hamiltonian. As introduced in Sec. 3.1,

an MO6 octahedron is distorted in the d4 and d9 cases by the JT effect. This

deformation is represented by two distortion modes Q2 = (1/
√
2)(lx − ly) and

Q3 = (1/
√
6)(2lz − lx − ly), where the li means the distance from the center

to the oxygen on the i-axis. Then the JT distorted structure is expressed with

the JT phase θJT as |θJT⟩ = cos θJT |Q3⟩+ sin θJT |Q2⟩ and tan θJT = Q2/Q3.

The JT effective Hamiltonian taking the eg orbitals (dx2−y2 , dz2) as a basis is
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given by

HJT = γ

q1 q2

q2 −q1

+
1

2
Cq2I2 (5.9)

where q1 = q cos θJT, q2 = q sin θJT, and I2 is 2 × 2 identity matrix [72]. The

energy eigenvalues are E± = ±γq + 1
2Cq

2 and eigenstates are

∣∣d−(θJT)
〉
= − sin

(
θJT/2

) ∣∣∣dx2−y2

〉
+ cos

(
θJT/2

)
|dz2⟩∣∣d+(θJT)

〉
= cos

(
θJT/2

) ∣∣∣dx2−y2

〉
+ sin

(
θJT/2

)
|dz2⟩ .

(5.10)

It represents the orbital-JT phase locking.

These unitary rotated, or the JT-transformed eg-orbitals define the unitary

matrix

U0 =

− sin
(
θJT
2

)
cos
(
θJT
2

)
cos
(
θJT
2

)
sin
(
θJT
2

)
 and U =

I3 0

0 U0

 , (5.11)

where U is the unitary matrix for the whole d-orbitals basis in {dyz, dzx, dxy,

dx2−y2 , dz2} order. This redefines the orbital angular momentum operator L,

i.e., (Ld
i )

new = U †(Ld
i )

oldU . Therefore, the SOC in the JT distorted system can

be described via (Ld
i )

new.

In order to express the SOC Hamiltonian HSOC = ζS · L, let us denote

the local coordinate unit vectors for spin operator as (x′,y′, z′), and those

for orbital angular momentum as (x,y, z). HSOC is parametrized by polar

angle θ and azimuthal angle ϕ which describes the relative rotation of the

spin coordinates, or simply the spin direction, with respect to the orbital

coordinates, i.e., sx = sin θ cosϕ, sy = sin θ sinϕ, and sz = cos θ. We rotate

the primed coordinates with respect to the unprimed coordinates. Then the

primed coordinate unit vectors are x′ = cos θ cosϕx + cos θ sinϕy − sin θz,
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y′ = − sinϕx+ cosϕy, and z′ = sin θ cosϕx+ sin θ sinϕy + cos θz. The SOC

Hamiltonian is written as [71]

HSOC = ζS · L =
ζ

2

 sin θ cosϕ cos θ cosϕ+ i sinϕ

cos θ cosϕ− i sinϕ − sin θ cosϕ

Lx

+
ζ

2

 sin θ sinϕ cos θ sinϕ− i cosϕ

cos θ sinϕ+ i cosϕ − sin θ sinϕ

Ly

+
ζ

2

 cos θ − sin θ

− sin θ − cos θ

Lz.

(5.12)

The matrix representation for the orbital angular momentum operator is

determined by the quantum mechanical relations for the angular momentum

states Lz |l,m⟩ = m |l,m⟩ and L± |l,m⟩ =
√
(l ∓m)(l ±m+ 1) |l,m± 1⟩.

We take d-orbitals (l = 2) in the real spherical harmonics form as a basis:

|yz⟩ = (i/
√
2)(|2,−1⟩ + |2,+1⟩), |zx⟩ = (1/

√
2)(|2,−1⟩ − |2,+1⟩), |xy⟩ =

(i/
√
2)(|2,−2⟩−|2, 2⟩),

∣∣x2 − y2
〉
= (1/

√
2)(|2,−2⟩+ |2,+2⟩), and

∣∣z2〉 = |2, 0⟩.

The matrix representations of Li’s for d-orbitals are as follows in atomic units

(ℏ = 1).

Ld
x =



0 0 0 −i −i
√
3

0 0 i 0 0

0 −i 0 0 0

i 0 0 0 0

i
√
3 0 0 0 0


(5.13)
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Ld
y =



0 0 −i 0 0

0 0 0 −i i
√
3

i 0 0 0 0

0 i 0 0 0

0 −i
√
3 0 0 0


(5.14)

Ld
z =



0 i 0 0 0

−i 0 0 0 0

0 0 0 2i 0

0 0 −2i 0 0

0 0 0 0 0


(5.15)

By transforming these matrices via (Ld
i )

new = U †(Ld
i )

oldU with Eq. (5.11), we

can obtain the JT-transformed orbital angular momentum operator.

(Ld
x)

new =

0 0 0 i sin
(
θJT
2

)
− i

√
3 cos

(
θJT
2

)
−i cos

(
θJT
2

)
− i

√
3 sin

(
θJT
2

)
0 i 0 0

0 0 0

0 0

h.c. 0


(5.16)
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(Ld
y)

new =

0 0 −i 0 0

0 0 i sin
(
θJT
2

)
+ i

√
3 cos

(
θJT
2

)
−i cos

(
θJT
2

)
+ i

√
3 sin

(
θJT
2

)
0 0 0

0 0

h.c. 0


(5.17)

(Ld
z)

new =



0 i 0 0 0

0 0 0 0

0 −2i sin
(
θJT
2

)
2i cos

(
θJT
2

)
0 0

h.c. 0


(5.18)

The SOC in the JT distorted system can be expressed by using these operators.

Hereafter, we omit the superscripts ‘d’ and ‘new’ of Li for simplicity.

5.2.2 Perturbation theory

The perturbation theory is applied to obtain the orbital angular momentum

by the SOC. The d-orbitals with the ‘JT transformed’ eg-orbitals [Eq. (5.10)]

are taken as the unperturbed basis
∣∣d0nσ〉 where n = {yz, zx, xy,−,+} and

σ =↑ or ↓ spins. The first order corrected d-orbitals are

|dα⟩ =
∣∣∣d0α〉+

∑
β ̸=α

〈
d0β

∣∣∣HSOC

∣∣∣d0α〉
E0

α − E0
β

∣∣∣d0β〉 (5.19)

where the α and β are combined indices of orbital species and spin. We can

obtain the orbital angular momentum of transition metal ion in the JT distorted

O6 cage by calculating ⟨Li⟩ =
∑

α∈occ ⟨dα|Li|dα⟩ up to first order in ζ, where
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the summation is over the occupied orbitals and Li is the JT-transformed

operators (Ld
i )

new. The orbital angular momentum expectation value for a

perturbed d-orbital dn↑ is

〈
dn↑
∣∣Li

∣∣dn↑〉 = 〈
d0n↑

∣∣∣Li

∣∣∣d0n↑〉
+
∑
m ̸=n

[〈d0m↑

∣∣∣HSOC

∣∣∣d0n↑

〉
E0

n↑−E0
m↑

〈
d0n↑

∣∣∣Li

∣∣∣d0m↑

〉
+ c.c.

]
+
∑
all m

[〈d0m↓

∣∣∣HSOC

∣∣∣d0n↑

〉
E0

n↑−E0
m↓

〈
d0n↑

∣∣∣Li

∣∣∣d0m↓

〉
+ c.c.

]
+O(ζ2).

(5.20)

Because
〈
d0n↑

∣∣∣Li

∣∣∣d0n↑〉 =
〈
d0n↑

∣∣∣Li

∣∣∣d0m↓

〉
= 0, only the second term remains up

to the first order in ζ.

For calculating the summation over the expectations values corresponding

to Eq. (5.20) of occupied orbitals, the following property can be exploited. If we

sum up all the orbital angular momentum expectation values of the perturbed

d-orbitals with up-spin,

∑
n

〈
dn↑
∣∣Li

∣∣dn↑〉 =∑
n

∑
m ̸=n

[〈d0m↑

∣∣∣HSOC

∣∣∣d0n↑

〉
E0

n↑−E0
m↑

〈
d0n↑

∣∣∣Li

∣∣∣d0m↑

〉
+ c.c.

]
= 0 (5.21)

because each of the terms is canceled with the term whose n and m are

exchanged. The same holds for down spin. It makes it easy to calculate the

orbital angular momentum for d4 and d9. For the spin-up high spin config-

uration of the Cr2+ ion (d4), occupied d-orbitals are {dyz↑, dzx↑, dxy↑, d−↑}.

Therefore, ⟨Li⟩d4 = −
〈
d+↑
∣∣Li

∣∣d+↑
〉

for d4. For the Cu2+ ion (d9), only d+↓

is unoccupied. For d9, by using
〈
d0n↑

∣∣∣Li

∣∣∣d0m↓

〉
= 0 and

〈
d0m↑

∣∣∣HSOC

∣∣∣d0n↑〉 =

−
〈
d0m↓

∣∣∣HSOC

∣∣∣d0n↓〉 derived from Eq. (5.12), ⟨Li⟩d9 = −
〈
d+↓
∣∣Li

∣∣d+↓
〉
= −⟨Li⟩d4 .
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The perturbed |d+⟩ is

|d+⟩ =
∣∣∣d0+〉+

(
ζ

2

) sin θ cosϕ

(
−i cos

(
θJT
2

)
− i

√
3 sin

(
θJT
2

))
E0

+ − E0
yz

∣∣∣d0yz〉

+

(
ζ

2

) sin θ sinϕ

(
−i cos

(
θJT
2

)
+ i

√
3 sin

(
θJT
2

))
E0

+ − E0
zx

∣∣∣d0zx〉

+

(
ζ

2

) 2i cos θ cos
(
θJT
2

)
E0

+ − E0
xy

∣∣∣d0xy〉 .
(5.22)

The t2g orbital components are included in this expression. This is why the

orbital angular momentum can appear. In the d4 configuration,

⟨Li⟩d4 = −⟨d+|Li|d+⟩

= −
〈
d0+

∣∣∣Li

∣∣∣d0+〉

−
(
ζ

2

) sin θ cosϕ

(
−i cos

(
θJT
2

)
− i

√
3 sin

(
θJT
2

))
E0

+ − E0
yz

〈
d0+

∣∣∣Li

∣∣∣d0yz〉+ c.c.

−
(
ζ

2

) sin θ sinϕ

(
−i cos

(
θJT
2

)
+ i

√
3 sin

(
θJT
2

))
E0

+ − E0
zx

〈
d0+

∣∣∣Li

∣∣∣d0zx〉+ c.c.

−
(
ζ

2

) 2i cos θ cos
(
θJT
2

)
E0

+ − E0
xy

〈
d0+

∣∣∣Li

∣∣∣d0xy〉+ c.c.

(5.23)
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Matrix elements
〈
d0n
∣∣Li

∣∣d0m〉 are given by Eq. (5.16)-(5.18). As a result, the

orbital angular momenta of the d4 configuration are

⟨Lx⟩d4 =− ζ

(
cos
(
θJT
2

)
+

√
3 sin

(
θJT
2

))2

E0
+ − E0

yz

sx

〈
Ly

〉
d4

=− ζ

(
cos
(
θJT
2

)
−

√
3 sin

(
θJT
2

))2

E0
+ − E0

zx

sy

⟨Lz⟩d4 =− ζ

(
2 cos

(
θJT
2

))2

E0
+ − E0

xy

sz

(5.24)

for each x, y, z component, where ŝ = (sx, sy, sz) is the local spin direction

defined by (θ,ϕ) with respect to the local orbital coordinates, not the spin

operators. Note that we adopt the atomic units in which ℏ = 1. For d9

configuration, ⟨Li⟩d9 = −⟨Li⟩d4 . It is noteworthy that the resultant local

orbital moment is not parallel to ŝ. The deviation is explicitly determined by

θJT.

5.2.3 Model analysis for Cr-/Cu-MOF

The results of the previous section are applied to the orbital magnetic moment

in the Cr-/Cu-MOF. The angular momentum in Eq. (5.24) is simply replaced

with the magnetic moment in Bohr magneton µB unit for both the spin and

orbital. As discussed in Sec. 5.1.1, the magnetic space group Pna′2′1 (Ac and

Ma) and Pn′a′21 (Aa and Mc) that are compatible with the AFM-A order will

be considered. The formulation will be shown in both magnetic group cases

for both Cr- and Cu-MOFs. For simplicity, we will ignore the spin canting in

the following analysis, i.e., a perfect AFM-A spin configuration.

In order to apply Eq. (5.24) to the Cr-/Cu-MOF, we take one out of four

Cr/Cu ions in a unit cell of MOF, say Cr/Cu1, as a reference to describe

66



the system [Cu1 is labeled in Fig. 3.1 (a-c)]. If we know the local MO6

structure and the local moment of the Cr/Cu ion at one site, those of other

sites are determined by the space group and magnetic group symmetry. The

transformation rules of the magnetic moment and the corresponding Cr/Cu

site numbers with respect to Cr/Cu1 by each symmetry operation are listed

in Table. 5.3.

Let us consider the O6 octahedron of the reference Cr/Cu1 ion. The local

coordinate (x,y, z) of the orbital magnetic moment is aligned to its O-M bond

directions. The local coordinate system is determined by the following steps.

First, put the octahedron in the way that the local coordinates (x,y, z) are

aligned with crystallographic (â, b̂, ĉ) direction. Next, rotate the octahedron

by −π/4 around the c axis, then by octahedral tilting angle −θt around the a

axis consecutively. As a result, (x,y, z) can be written as follows.

x = 1√
2
â− 1√

2
cos θtb̂+ 1√

2
sin θtĉ

y = 1√
2
â+ 1√

2
cos θtb̂− 1√

2
sin θtĉ

z = sin θtb̂+ cos θtĉ

(5.25)

The direction of the local spin magnetic moment of Cr/Cu1 is expressed in

terms of the spherical coordinates θspin and ϕspin with respect to the local

Cr/Cu Pna′2′1 Pn′a′21

op. L op. L

1 1 (La, Lb, Lc) 1 (La, Lb, Lc)
2 n (La,−Lb,−Lc) n′ (−La, Lb, Lc)
3 a′ (La,−Lb, Lc) a′ (La,−Lb, Lc)
4 2′1 (La, Lb,−Lc) 21 (−La,−Lb, Lc)

Table 5.3 Labels of Cr/Cu ions, corresponding symmetry operations, and
the transformation rules of the magnetic moment by them in the magnetic
space group Pna′2′1 and Pn′a′21. 1 means the identity operation.
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coordinate. If we ignore a small spin canting, the direction of spin is exactly

c-direction in Pna′2′1. It correspond to θspin = θt and ϕspin = −π
4 . For Pn′a′21,

spin direction is a and corresponding angles are θspin = π
2 and ϕspin = π

4 .

For the Pna′2′1 symmetry, the total moment is four times the a-component

of the moment of the reference Cr/Cu1. By using the above relations,

⟨L⟩Pna′2′1
total = 4 ⟨L⟩a = 4( 1√

2
⟨Lx⟩+ 1√

2

〈
Ly

〉
) (5.26)

Likewise, for the Pn′a′21 symmetry, the total moment is four times the c-

component of the moment of the reference Cr/Cu1.

⟨L⟩Pn′a′21
total = 4 ⟨L⟩c = 4( 1√

2
sin θt ⟨Lx⟩ − 1√

2
sin θt

〈
Ly

〉
+ cos θt ⟨Lz⟩) (5.27)

Now we can obtain the net orbital magnetic moment per unit cell from

the local orbital magnetic moments Eq. (5.24) for each symmetry. For the d4

configuration (Cr2+) with Pna′2′1 symmetry, the total orbital moment is

⟨L⟩Pna′2′1
total =− 2

(
ζ

E0
+−E0

yz
− ζ

E0
+−E0

zx

)
sin θt(2− cos θJT)

− 2
√
3

(
ζ

E0
+−E0

yz
+ ζ

E0
+−E0

zx

)
sin θt sin θJT

(5.28)

along the a-axis. Since the difference between E0
yz and E0

zx is small, the first

term is small compared to the second term. Moreover, ⟨L⟩total vanishes when

θJT = π, since lx ≈ ly leads to E0
yz ≈ E0

zx. This situation corresponds to r1(0) in

the Pnan-path or λX+
4
= 0 in the Imam-path, where the net magnetic moment

actually vanishes in the DFT results. By introducing the approximation E0
yz =

E0
zx = E0

xy ≡ E0
t2g , the orbital magnetic moment can be simplified as

⟨L⟩Pna′2′1
total = −4

√
3

(
ζ

E0
+−E0

t2g

)
sin θt sin θJT. (5.29)
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Figure 5.2 The direction of the local orbital magnetic moment of reference
ions of (a) Cu-MOF and (b) Cr-MOF in their local spherical coordinates (θ:
polar/ ϕ: azimuthal) obtained from DFT and the model. The total orbital
magnetic moment per unit cell of (c) Cu-MOF and (d) Cr-MOF obtained from
DFT and model. Model values in (c) and (d) are fitted to the DFT results
(gray dotted line) and evaluated from reasonable physical parameters (black
solid line).

For the d4 with Pn′a′21 symmetry, interestingly, the same total orbital magnetic

moment formula is obtained, ⟨L⟩Pn′a′21
total = ⟨L⟩Pna′2′1

total , except that the direction

is along the c-axis. Therefore, the same arguments are also valid leading to the

same simplified form of Eq. (5.29). For the d9 configuration (Cu2+), the sign

of the orbital magnetic moment is inverted in both magnetic groups.

69



As a preliminary for the comparison between the DFT results and the

predictions from the model, we parametrize the JT phase θJT of the reference

Cr/Cu1 ion as a function of λ of the Pnan-path. In the Cu-MOF, as the λ

increases from 0 to 1, JT mode Q2 changes linearly from 0 to 0.288, as shown in

Fig. 3.1 (e). Meanwhile, Q3 changes very little, so it can be considered a constant

[Fig. 3.1 (f)]. λ = 0 and λ = 1 correspond to θJT = π and θJT = 1.934 ≈ 0.616π,

respectively [Fig. 3.1 (g)]. This situation can be said that tan(π − θJT) is

proportional to Q2. This leads to tan(π − θJT)/tan
(
π − θJT,λ=1

)
= λ, where

θJT,λ=1 is the JT phase at λ = 1. For simplicity, let us assume θJT,λ=1 = 2π/3

instead of the actual value, which corresponds to
∣∣d0−〉 = −

∣∣x2〉 and
∣∣d0+〉 =

−
∣∣y2 − z2

〉
. The JT phase becomes θJT = π − tan−1(

√
3λ). As a result, the

simplified orbital magnetic moment Eq. (5.29) can be written in terms of the

λ,

⟨Ltotal⟩d4/d9 = ∓4
√
3

(
ζ

E0
+ − E0

t2g

)
sin θt

√
3λ√

3λ2 + 1
. (5.30)

Ignoring the JT phase dependency of E0
i ’s, we define the λ independent

factor of this expression as A = ∓4
√
3(ζ/(E0

+ − E0
t2g)) sin θt. To check the

validity of the model, we compare the model with the DFT values by fitting

the single parameter A. Fitted A values are 0.090 for Cu-MOF and -0.033 for

Cr-MOF.

In addition, the A values can be estimated from reasonable physical param-

eters. We adopted the SOC parameter ζ = 56.54 meV for Cu and ζ = 27.52

meV for Cr [73], ∆E = E0
+ − E0

t2g = 2.5 eV for both of the Cu-MOF and

Cr-MOF. ∆E is roughly chosen from the projected density of states obtained

from the DFT calculation. The tilting angles of MO6 octahedron extracted

from the structures are θt = 31.61◦ for Cu-MOF and θt = 31.88◦ for Cr-MOF.
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The obtained A values are 0.082 for Cu-MOF and -0.040 for Cr-MOF, which

are in good agreement with the fitted values. As shown in Fig. 5.2 (c) and (d),

the model with these A values well explains the DFT results.

In addition, let us consider the direction of the local orbital magnetic

moment of a reference Cu and Cr ions expected from Eq. (5.24) with the

approximation E0
yz = E0

zx = E0
xy, as shown in Fig. 5.2 (a) and (b) in their

local spherical coordinates, respectively. The directions from the DFT are

shown together for comparison. Except for the deviation in the polar angle θ

of Cu-MOF, the model predicts the orbital magnetic moment direction well.

Interestingly, the model predicts the finite orbital magnetic moment even

though we assumed the uncanted spin configuration in which the total spin

moment vanishes. The orbital magnetic moment rotates depending on the JT

phase in spite of the fixed spin direction. The inclusion of the small spin canting

(ϵ < 1◦) would not significantly alter the predicted orbital magnetic moment.

For example, the canting of 1◦ changes only about a factor of 0.0175 (1◦ in

radians) of the results. Moreover, the orbital magnetic moment is linear to the

SOC strength ζ, whereas the MSIA is second order. These properties provide

a robust justification of WFM in terms of the total magnetic moment (spin +

orbital) for Cu-MOF and also emphasize the role of the JT effect on it. Finally,

we remark that the orbital magnetic moment can be measured by means of

x-ray magnetic circular dichroism [74].

5.2.4 Second order energy corrections

In this section, we will calculate the energy correction by the SOC in the

perturbation approach, which gives rise to the MSIA. In the previous study [26],

only the fixed JT phase and the same-spin contribution are considered for the
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MSIA. We improve the formulation by including the general JT phase and the

opposite spin contribution. The first order energy correction
〈
d0nσ
∣∣HSOC

∣∣d0nσ〉
vanishes because the diagonal components of Ld

i are 0. The lowest order energy

correction is the second order correction term,

∆E2
α =

∑
β ̸=α

∣∣∣ 〈d0β∣∣∣HSOC

∣∣∣d0α〉 ∣∣∣2
E0

α − E0
β

. (5.31)

It is convenient to separate the HSOC [Eq. (5.12)] into the same-spin block

and opposite-spin block.

HSOC,↑↑ =
ζ

2
(sin θ cosϕLx + sin θ sinϕLy + cos θLx) = −HSOC,↓↓ (5.32)

and

HSOC,↑↓ =
ζ

2

[
(cos θ cosϕ+ i sinϕ)Lx + (cos θ sinϕ− i cosϕ)Ly + (− sin θ)Lz

]
(5.33)

Similar to the orbital angular momentum case, the summation of the second-

order correction to the energy with the non-degenerate assumption in the

half-filling case with only up-spins provides a shortcut for the calculation.

∑
α∈↑

∆E2
α =

∑
α∈↑

∑
β ̸=α

∣∣∣ 〈d0β∣∣∣HSOC

∣∣∣d0α〉 ∣∣∣2
E0

α − E0
β

=
∑
n

∑
m̸=n

∣∣∣ 〈d0m↑

∣∣∣HSOC,↑↑

∣∣∣d0n↑〉 ∣∣∣2
E0

n↑ − E0
m↑

+
∑
n

∑
m

∣∣∣ 〈d0m↓

∣∣∣HSOC,↓↑

∣∣∣d0n↑〉 ∣∣∣2
E0

n↑ − E0
m↓

(5.34)

The first term of the last line is the summation of the same-spin contribution

to energy correction which vanishes. On the other hand, the second term is the

summation of the opposite-spin contribution and is non-vanishing in general.
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It makes the difference between the expression of the energy correction of the

d4 spin configuration and that of the d9.

The opposite-spin contributions from each orbital of the d4 configuration

are as follows.

(∆E2
yz↑)↓↑ =

(
ζ
2

)2 [ sin2 θ

E0
yz↑ − E0

zx↓
+

cos2 θ sin2 ϕ+ cos2 ϕ

E0
yz↑ − E0

xy↓

+

(
− sin

(
θJT/2

)
+
√
3 cos

(
θJT/2

))2
(cos2 θ cos2 ϕ+ sin2 ϕ)

E0
yz↑ − E0

−↓

+

(
cos
(
θJT/2

)
+

√
3 sin

(
θJT/2

))2
(cos2 θ cos2 ϕ+ sin2 ϕ)

E0
yz↑ − E0

+↓

]
(5.35)

(∆E2
zx↑)↓↑ =

(
ζ
2

)2 [ sin2 θ

E0
zx↑ − E0

yz↓
+

cos2 θ cos2 ϕ+ sin2 ϕ

E0
zx↑ − E0

xy↓

+

(
sin
(
θJT/2

)
+
√
3 cos

(
θJT/2

))2
(cos2 θ sin2 ϕ+ cos2 ϕ)

E0
zx↑ − E0

−↓

+

(
cos
(
θJT/2

)
−
√
3 sin

(
θJT/2

))2
(cos2 θ sin2 ϕ+ cos2 ϕ)

E0
zx↑ − E0

+↓

]
(5.36)

(∆E2
xy↑)↓↑ =

(
ζ
2

)2 [cos2 θ sin2 ϕ+ cos2 ϕ

E0
xy↑ − E0

yz↓
+

cos2 θ cos2 ϕ+ sin2 ϕ

E0
xy↑ − E0

zx↓

+
4 sin2(θJT/2) sin

2 θ

E0
xy↑ − E0

−↓
+

4 cos2(θJT/2) sin
2 θ

E0
xy↑ − E0

+↓

] (5.37)

(∆E2
−↑)↓↑ =

(
ζ
2

)2 [(− sin
(
θJT/2

)
+
√
3 cos

(
θJT/2

))2
(cos2 θ cos2 ϕ+ sin2 ϕ)

E0
−↑ − E0

yz↓

+

(
sin
(
θJT/2

)
+
√
3 cos

(
θJT/2

))2
(cos2 θ sin2 ϕ+ cos2 ϕ)

E0
−↑ − E0

zx↓

+
4 sin2(θJT/2) sin

2 θ

E0
−↑ − E0

xy↓

]
(5.38)
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The spin direction-dependent terms including θ and ϕ can be rewritten in

physically intuitive expressions,

cos2 θ cos2 ϕ+ sin2 ϕ = 1− sin2 θ cos2 ϕ = 1− (ŝ · x)2

cos2 θ sin2 ϕ+ cos2 ϕ = 1− sin2 θ sin2 ϕ = 1− (ŝ · y)2

sin2 θ = 1− cos2 θ = 1− (ŝ · z)2,

(5.39)

where ŝ = s/|s| is the unit vector indicating the spin direction. Meanwhile,

it implies the existence of the spin direction independent contribution to the

energy correction.

The same-spin contribution to the energy correction is simply (∆E2
d4)↑↑ =

−(∆E2
+↑)↑↑ because the first term of the Eq. (5.34) vanishes.

(∆E2
d4)↑↑ = −

(
ζ
2

)2 [(cos(θJT/2
)
+
√
3 sin

(
θJT/2

))2
(sin2 θ cos2 ϕ)

E0
+↑ − E0

yz↑

+

(
cos
(
θJT/2

)
−
√
3 sin

(
θJT/2

))2
(sin2 θ sin2 ϕ)

E0
+↑ − E0

zx↑

+
4 cos2(θJT/2) cos

2 θ

E0
+↑ − E0

xy↑

]
(5.40)
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By summing up these terms, the spin direction-dependent part of the second-

order correction to the energy in d4 configuration is

∆E2
d4(S)

=
(
ζ
2

)2
(ŝ · x)2

[( −1

E0
+↑ − E0

yz↑
+

1

E0
+↓ − E0

yz↑

)(
cos
(
θJT/2

)
+
√
3 sin

(
θJT/2

))2
+
( 1

E0
−↓ − E0

yz↑
+

1

E0
yz↓ − E0

−↑

)(
sin
(
θJT/2

)
−
√
3 cos

(
θJT/2

))2
+

1

E0
xy↓ − E0

zx↑
+

1

E0
zx↓ − E0

xy↑

]
+
(
ζ
2

)2
(ŝ · y)2

[( −1

E0
+↑ − E0

zx↑
+

1

E0
+↓ − E0

zx↑

)(
cos
(
θJT/2

)
−
√
3 sin

(
θJT/2

))2
+
( 1

E0
−↓ − E0

zx↑
+

1

E0
zx↓ − E0

−↑

)(
sin
(
θJT/2

)
+
√
3 cos

(
θJT/2

))2
+

1

E0
xy↓ − E0

yz↑
+

1

E0
yz↓ − E0

xy↑

]
+
(
ζ
2

)2
(ŝ · z)2

[( −1

E0
+↑ − E0

xy↑
+

1

E0
+↓ − E0

xy↑

)
4 cos2(θJT/2)

+
( 1

E0
−↓ − E0

xy↑
+

1

E0
xy↓ − E0

−↑

)
4 sin2(θJT/2) +

1

E0
zx↓ − E0

yz↑
+

1

E0
yz↓ − E0

zx↑

]
(5.41)
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For the d9 spin configuration, the second-order correction to the energy can

be obtained simply.

∆E2
d9 =

∑
n=occupied

∆E2
n = −∆E2

+↓

= −
(
ζ
2

)2 [(cos(θJT/2
)
+
√
3 sin

(
θJT/2

))2
(cos2 θ cos2 ϕ+ sin2 ϕ)

E0
+↓ − E0

yz↑

+

(
cos
(
θJT/2

)
−
√
3 sin

(
θJT/2

))2
(cos2 θ sin2 ϕ+ cos2 ϕ)

E0
+↓ − E0

zx↑

+
4 cos2(θJT/2) sin

2 θ

E0
+↓ − E0

xy↑

+

(
cos
(
θJT/2

)
+
√
3 sin

(
θJT/2

))2
(sin2 θ cos2 ϕ)

E0
+↓ − E0

yz↓

+

(
cos
(
θJT/2

)
−
√
3 sin

(
θJT/2

))2
(sin2 θ sin2 ϕ)

E0
+↓ − E0

zx↓
+

4 cos2(θJT/2) cos
2 θ

E0
+↓ − E0

xy↓

]
(5.42)

The spin direction-dependent part is

∆E2
d9(S)

=
(
ζ
2

)2
(ŝ · x)2

[( −1

E0
+↓ − E0

yz↓
+

1

E0
+↓ − E0

yz↑

)(
cos
(
θJT/2

)
+
√
3 sin

(
θJT/2

))2 ]
+
(
ζ
2

)2
(ŝ · y)2

[( −1

E0
+↓ − E0

zx↓
+

1

E0
+↓ − E0

zx↑

)(
cos
(
θJT/2

)
−
√
3 sin

(
θJT/2

))2 ]
+
(
ζ
2

)2
(ŝ · z)2

[( −1

E0
+↓ − E0

xy↓
+

1

E0
+↓ − E0

xy↑

)
4 cos2(θJT/2)

]
(5.43)

The terms in the spin direction-dependent part of the second-order energy

corrections are divided into three parts corresponding to the local coordinate

components, (x, y, z). Each directional part is again divided according to the

dependency on the JT phase. Orbital ordering following the JT distortion
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∆E < 0 ∆E > 0

(ŝ · x)2 (cos
(
θJT/2

)
+
√
3 sin

(
θJT/2

)
)2 (sin

(
θJT/2

)
−
√
3 cos

(
θJT/2

)
)2

(ŝ · y)2 (cos
(
θJT/2

)
−
√
3 sin

(
θJT/2

)
)2 (sin

(
θJT/2

)
+
√
3 cos

(
θJT/2

)
)2

(ŝ · z)2 4 cos2(θJT/2) 4 sin2(θJT/2)

Table 5.4 Classification of the JT phase dependence according to the energy
lowering and raising. ∆E < (>) 0 means that the factor in energies multiplied
by the listed JT phase-dependent factor is negative (positive).

affects the energy correction in two ways. One is the JT transformation of

the eg orbitals, which is explicitly expressed by the JT phase in Eq. (5.41)

and Eq. (5.43). The other is the changes in the SOC-unperturbed orbital

energies E0
i which is implicit in the expressions Eq. (5.41) and Eq. (5.43).

Because the crystal field splitting is larger than the changes by the JT effect,

we can consider that the factors in the trigonometric functions of the JT phase

in the Eq. (5.41) and Eq. (5.43) are leading factors to determine the MSIA

direction. We can ignore the JT dependency of E0
i ’s for simplicity. Note that

the difference between the d4 [Eq. (5.41)] and d9 [Eq. (5.43)] cases rationalizes

the difference in the favored AFM axis between Cr- (a) and Cu-MOF (c),

although a comparison by evaluating all those terms is too complicated.

In ∆E2
d4(S), each directional part is composed of three sub-parts. Two of

them are JT phase dependent and one is JT phase independent. Because we

assumed E0
eg↑ − E0

t2g↑ < E0
eg↓ − E0

t2g↑ and E0
eg↓ − E0

t2g↑ > E0
t2g↓ − E0

eg↑ > 0,

we can determine whether each of the JT phase dependent sub-part is the

energy-lowering or -raising term according to the sign of these energy-related

factors. They are classified in Table. 5.4. JT phase independent terms are

always energy-raising terms. Due to the phase difference by π of the JT phase

dependent factors, the energy-lowering and -raising terms result in the same
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tendencies of the favored spin direction at a given θJT. On the other hand,

∆E2
d9(S) has only the energy-lowering terms.

5.3 Spin and Orbital Textures

The spin texture in the k-space of the Cr-/Cu-MOF shows interesting features.

The spin texture is defined as sk = ⟨ψkn|S|ψkn⟩ for a specific band n. In this

work, the spin expectation values are extracted from the projected values to

each atomic state, which are stored in the output file PROCAR of VASP. The

spin texture of the highest occupied band of each MOF at kz = 0 and kz = π/c

planes are shown in Fig. 5.3. In the Cu-MOF, a ‘curly’ in-plane texture appears

around the center at kz = 0 plane. On the other hand, an irregular texture

mostly aligned to z-direction can be seen at kz = π/c plane. In the Cr-MOF,

persistent type spin textures [75] appear over the considered region for both

the kz = 0 and kz = π/c planes.

Since we observed that the orbital magnetic moment is a dominant contri-

bution to the magnetic moment of the Cu-MOF and a local orbital magnetic

moment is not parallel to the local spin moment in both Cr-/Cu-MOFs, it is

interesting to investigate the orbital texture. In our context, the orbital texture

is the orbital angular momentum texture defined as lkn = ⟨ψkn|L|ψkn⟩. For this

purpose, we adopted another first-principles calculation package OpenMX [76],

which adopts the linear combination of the pseudo atomic orbital (LCPAO)

method. Therefore, orbital angular momentum can be calculated at an atomic

orbital angular momentum operator level. As a LCPAO basis, we adopted H6.0-

s2p2, C6.0-s2p2, N6.0-s2p2, O6.0-s2p2d1, Cu6.0H-s2p2d2f1, and Cr6.0-

s2p2d2f1, which indicate the number of the set of each s, p, d, and f orbital
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Figure 5.3 The spin textures of (a) Cu-MOF and (b) Cr-MOF, at the kz = 0

(upper panels) and kz = π/c (lower panels) planes. The in-plane x and y

components are represented by arrows, of which the length is the in-plane
magnitude with respect to the reference spin 1/2 above the figure. The z

components are represented by a colormap of dots. The inner boundary of each
figure coincides with the Brillouin zone boundary.

sets for each atomic species. Other computational settings are compatible with

the setting for the VASP package.

As a preliminary step, we calculated the spin texture using OpenMX [77] to

check if the two software packages give compatible results. As shown in Fig. 5.4,

the main features of the spin textures are consistent: In the Cu-MOF, the curly

in-plane texture at kz = 0 and the alignment to z-direction at kz = π/c [Fig. 5.4
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Figure 5.4 The spin textures calculated by using OpenMX. (a) Cu-MOF
and (b) Cr-MOF, at the kz = 0 (upper panels) and kz = π/c (lower panels)
planes. The in-plane x and y components are represented by arrows of which
the length is the in-plane magnitude with respect to the reference spin 1/2
above the figure. The z components are represented by colormap of dots. The
inner boundary of each figure coincides with the Brillouin zone boundary.

(a)]; In the Cr-MOF, the persistent type spin textures [Fig. 5.4 (b)]. On the

other hand, there are some differences in the case of Cu-MOF. The magnitude

of the spins are larger in the OpenMX data at kz = 0, and the signs of the z

components at kz = π/c show a different pattern. Nevertheless, we can expect

that primary features will be shared in the OpenMX results.
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Figure 5.5 The orbital angular momentum textures calculated by using
OpenMX. (a) Cu-MOF and (b) Cr-MOF, at the kz = 0 (upper panels) and kz =

π/c (lower panels) planes. The in-plane x and y components are represented
by arrows of which the length is the in-plane magnitude with respect to the
reference orbital angular momentum 1 above the figure. The z components are
represented by colormap of dots. The inner boundary of each figure coincides
with the Brillouin zone boundary.

The orbital textures calculated by OpenMX are shown in Fig. 5.5. The

orbital angular momenta are calculated using an in-house post-processing

program for OpenMX. Interestingly, the orbital textures are not parallel to

the spin textures at all k-points. In the Cu-MOF [Fig. 5.5 (a)], there are no

out-of-plane components at kz = 0 plane, and their in-plane components show
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a different pattern from the spin texture. At kz = π/c, the out-of-plane orbital

texture shows a similar texture with the spin besides their magnitude. However,

there are also in-plane components in the orbital texture. In the Cr-MOF

[Fig. 5.5 (b)], interestingly, the in-plane orbital texture shows a Dresselhaus-

type texture [78] at both kz = 0 and kz = π/c planes, i.e., the coexistence of

the persistent spin texture and the Dresselhaus orbital texture. Also, there are

small out-of-plane components in the orbital texture.
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6 Summary and Perspectives

In this thesis, we discussed the theoretical approaches for the multiferroics

based on the density functional theory (DFT) and investigated the multiferroic

properties of the perovskite-type metal-organic frameworks (MOFs) metal

guanidinium formates [C(NH2)3]M(HCOO)3 (M = Cr, Cu; Cr-MOF and Cu-

MOF) via the DFT and various physical models.

In the Cr-/Cu-MOFs, the cooperative Jahn-Teller (JT) effect deforms the

MO6 octahedra so that the antiferro-distortive orbital ordering arises. This

give rises to weak ferromagnetism in addition to the A-type antiferromagnetism.

On the other hand, it has been known that spontaneous electric polarization

appears via the hybrid improper ferroelectricity (HIFE) mechanism in the Cr-

/Cu-MOFs. In this thesis, we further revealed the unexplored electronic and

magnetic properties of the Cr-/Cu-MOFs by the first-principles calculation.

First, we found a counterintuitive electronic property. In the HIFE mecha-

nism, the polar distortion mode is induced by two non-polar modes, of which the

combined mode is referred to as the hybrid mode. In an intuitive picture, only

the polar mode can induce polarization. However, in Cr-/Cu-MOFs, the hybrid

mode induces a dominant purely electronic polarization even without the polar

mode. This is a distinctive feature that can not be seen in inorganic HIFE

materials. On the microscopic scale, this originates from the asymmetry in the

A-site guanidinium ions. Contrary to common sense, the polar mode rather
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compensates for the polarization stabilizing the structure. We constructed a

macroscopic model via the Landau free energy theory, where the polarization

and polar distortion mode order parameters are treated separately. As a result,

the model could deal with these unusual properties.

Even though the comparison to the inorganic HIFE material Ca3Mn2O7

implies that the large purely electronic polarization in HIFE is a distinct

feature in MOFs, there is still room for different interpretations. For example,

one can classify these two cases as the polarization from covalence bonds

for Cr-/Cu-MOF and ionic bonds for Ca3Mn2O7. Therefore, it is desirable

to investigate if the inorganic HIFE material with a strong covalence bond

character induces a large purely electronic polarization. On the other hand,

since the Gua ion is non-polar when there is no bond-length asymmetry, it is

interesting to investigate the HIFE MOF in which the polarization originates

from the polar molecules.

Second, we provided revised descriptions of the magnetic properties of

the Cr-/Cu-MOFs. For the Cr-MOF, we found the more reasonable ground

state and enhanced the accuracy of the critical temperature prediction of

the magnetic ordering by including the on-site Coulomb energy corrections

in DFT. For the Cu-MOF, we found that the orbital magnetic moment is a

more significant contribution to the total magnetic moment than the spin

contribution. We revealed that the orbital magnetic moment is explicitly

coupled with the JT distortion via the model study based on the JT effective

Hamiltonian, thus showing the robustness of the orbital magnetic moment in

the Cu-MOF.

Since the model for the orbital magnetic moment established in this thesis

is based on the single ion picture, a similar analysis is possible for the inorganic
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analog of the MOFs. For example, KCuF3 [79] is an inorganic analog of the

Cu-MOF. Therefore, it will be interesting to check whether these two show the

same magnetic properties or not. It may reveal a specific role of the organic

constituents in magnetism. On the other hand, how the organic linkers affect

the exchange interactions in MOFs can also be worth examining. For this

purpose, the magnetic force theorem can be a useful theoretical framework.

Although our study focused on [C(NH2)3]M(HCOO)3 series, it will be

interesting to apply the viewpoint demonstrated in this thesis to other families

of the perovskite-type multiferroic MOFs. Recently, not only three-dimensional

MOFs but also two-dimensional MOFs [80–82] have been drawing attention

from the condensed matter physics and material science communities. Likewise

our study on the Cr-MOF and Cu-MOF, we anticipate that more and more

novel properties that cannot be found in purely inorganic materials appear in

the three- and two-dimensional MOFs.
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초 록

하이브리드 물질은 무기물과 유기물을 모두 구성 요소로 가지고 있기 때문

에 이들 양쪽의 성질을 모두 보이며, 때로는 그 둘의 협력적인 작용을 보인다.

그렇기에 하이브리드 물질에서는 통상적인 무기물과는 구분되는 성질을 기대할

수 있다. 예를 들어, 하이브리드 유기-무기 페로브스카이트는 ABX3 페로브스

카이트 구조에서 A- 또는 X-이온이 분자 이온으로 되어있는 물질이다. 이 물

질들은 태양전지 소재로 주목받고 있다. 한편, 금속-유기 골격체(Metal-Organic

Framework; MOF)는 유기 링커가 금속 이온들을 서로 연결하여 이루어진 결정

이다. MOF는다공성,층상,페로브스카이트등다양한종류의구조를가질수있

다. 본 학위논문은 다강성 페로브스카이트형 MOF인 금속 구아니디늄 포메이트

[C(NH2)3]M(HCOO)3(M = Cr, Cu)를주로살피고있다.우리는밀도범함수이

론에기반을둔제일원리계산으로 [C(NH2)3]M(HCOO)3의다강성특성즉,전기

및 자기적 성질과 이들의 구조적 성질과의 상호작용을 탐구하였다. 특히, 구조적

변형을 분석하기 위해서는 군론적 방법을 이용하였다. [C(NH2)3]M(HCOO)3는

극성 모드가 두 비극성 모드의 결합(하이브리드 모드)에 의해 유도되는 하이브

리드 부적절(improper) 강유전성을 보이는 것으로 알려져 있다. 그러나 우리는

[C(NH2)3]M(HCOO)3에서 하이브리드 모드가 순수 전자 분극을 크게 유도함을

확인하였다. 직관적인 생각과는 다르게, 극성 모드는 오히려 이런 순수 전자 분

극을 상쇄한다. 우리는 이 성질에 대한 미시적인 원인과 거시적인 분석을 보인다.

한편, 우리는 [C(NH2)3]Cu(HCOO)3의 자성에서 궤도 자기 모멘트가 주된 기여
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임을 발견하였다. 우리는 섭동 이론과 얀-텔러 유효 해밀토니안을 결합하여 궤도

자기 모멘트를 설명하는 모델을 세웠으며, 이는 얀-텔러 효과의 역할을 보여준다.

주요어: 밀도범함수이론, 금속-유기 골격체, 전기분극, 자성,

얀-텔러 효과, 하이브리드 부적절 강유전성, 궤도 자성

학 번: 2016-20299
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