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Abstract

Based on intuitive facts about a straight line, we define what a straight line is with
the help of R. Dedekind. And we introduce a proof assistant program Coq. After that,
adding two operations - addition and multiplication - to the reals, we show that the
reals is a Dedekind-complete ordered field by complementing natural language and

Coq.
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Chapter 1

Introduction

A straight line, along with a circle, is one of the longest studied objects by mathemati-
cians. And we can see these objects in nature; for example, a sea horizon line and the
Sun. And as civilization developed, mankind gradually became able to make things
that resemble straight lines and circles more precisely. These days, we are surrounded
by these things.

Coq is a proof assistant program. One can define axioms, definitions, properties,
or theorems in Coq, and can write a proof code for a theorem. Coq checks line-by-line
correctness of the human-writing proof codes, and if it meets inappropriate line then
Coq stops and show what the error is. If Coq proceeds and there is no more things to
prove, then Coq shows ‘no more goals’ in the screen. Then people can assert that this
proof is correct on the built-in logic of Coq.

Because the set of all rational numbers is not enough to fulfill a straight line,
we need a more sufficient condition to be a straight line. This condition is called
Dedekind-completeness, and there are many equivalent forms such as least-upper-
bound-properties.

We study again how a straight line transforms from a geometric object to an alge-

braic object. And we use Coq to define definitions and to prove theorems.



Chapter 2

Strengths for using Coq

If someone have to choose a method doing lots of calculations (for example, multi-
plication of two 100 digits numbers) by hand or by a computer, then almost everyone
choose a computer. Because it is faster and more accurate than human. The advantage
of using Coq is similar: for proof checking, (if codes are written,) it is extremely faster
and more accurate than human.

Thomas Hales’ paper [1] summarize well how computer influences to mathemati-
cians historically, and introduce proof assistants and possible weakness of proof assis-
tants. Computers help people in calculation and visualization. (Of course, it also helps
with networking.)

A proof assistant is a software program in which people can make a formal proof
and check the proof is correct. Proof assistant programs are based on the type theory
instead of ZFC set theory. In classical logic, the law of excluded middle (p V —p for
every property p) is accepted; however it is not accepted in constructive logic.

For example, try to prove a statement that ‘there is no rational number whose
squared is two.” Let us denote this property by p, which can be written in logic symbol
as follows : not (3¢ € Q, ¢> = 2). Then ‘not p’ is the statement (3¢ € Q, ¢> = 2).
We basically assumed that p or not p is true. (It is the law of excluded middle.) And

by proving that ‘not p’ is false, we conclude that p is true. In classical logic this proof



is accepted, however it is not accepted in constructive logic.

A proof assistant may be constructive or classical. In special, Coq is constructive.
And there are many useful proof tactics in Coq. They help people can write formal
proof more efficiently and easily. To learn Coq, this book [2] is useful. And the official

website of Coq provides lots of materials.



Chapter 3

Characterization of a straight line

3.1 Dense linearly ordered sets without endpoints

In this section, let X denote a set.

Definition 3.1.1. A binary relation R on X is a set whose elements are in X x X. If

(a,b) € R, then for convenience, we use the notation a Rb.

Example. Each of the sets {(n,n) | n € N}, {(n,m) |n €N, m € N, n <m}, and
{(n,m) | n € N, m € N, n < m} are binary relations on N, respectively. We denote

each binary relations by =y, <p, and <y in order.
Definition 3.1.2. Let R be a binary relation on X.
(a) Risreflexive if for all a € X, aRa.
(b) R is irreflexive if for all o € X, not aRa.
(c) R is symmetric if for all a,b € X, aRb implies bRa.
(d) R is asymmetric if for all a,b € X, a Rb implies not bRa.
(e) R isantisymmetric if for all a,b € X, aRb and bRa imply a = b.

(f) R is transitive if for all a, b, c € X, aRb and bRc imply aRc.



Reflexivity and irreflexivity are properties related to one element; symmetry, asym-
metry and antisymmetry are properties related to two elements; transitivity is a prop-
erty related to three elements.

We can check that a binary relation =y is reflexive, symmetric, and transitive; a
binary relation <y is irreflexive, asymmetric, and transitive; a binary relation <y is re-
flexive, antisymmetric, and transitive. By generalizing these, we define an equivalence

relation, a strict order, and a partial order.
Definition 3.1.3. Let R be a binary relation on X.

(a) R is called an equivalence relation on X if it is reflexive, symmetric, and tran-

sitive.
(b) R is called a strict order on X if it is irreflexive, asymmetric, and transitive.
(¢c) Riscalled a partial order on X if it is reflexive, antisymmetric, and transitive.

Remark. We can easily show that ‘irreflexivity and transitivity implies asymmetry’,
and ‘asymmetry implies irreflexivity’. Hence, to show that a binary relation R is a
strict order, it is enough to show that R is irreflexive and transitive, or R is asymmetric

and transitive.

For natural numbers a and b, we are accustomed the fact that ¢ < b if and only if
a < band a # b, and that a < b if and only if @ < b or a = b. This relation between
partial order and strict order can be generalized.

The following two theorems are well known theorems. (see [3])

Theorem 3.1.1. If T is a partial order on X, then we define a binary relation S on X
as follows : (a,b) € S <= (a,b) € T and a # b. Then this binary relation Sy is a
strict order on X.

Similarly, if U is a strict order on X, then we define a binary relation Py on X as
follows : (a,b) € Py <= (a,b) € U ora = b. Then this binary relation Py is a

partial order on X.



Theorem 3.1.2. If T is a partial order on X, then St is a strict order on X, and Ps,,
is a partial order on X. These two partial orders 7" and Pg,, are the same.
Similarly, from a strict order U on X, we can make a partial order Py on X, and

then we can make a strict order Sp,, on X. Then U = Sp,.

Thus we can interchange a partial order and a strict order. For example, when it is
easy to deal with strict order, then we use a strict order. And after that, if dealing with

partial order is easy, then we use the corresponding partial order.

Notation. For notational convenience, we shall use < x for a partial order on X, and
use < x for a strict order on X. When we use both <x and < x notation in the same

paragraph, then the two orders are assumed to be corresponding orders.

Definition 3.1.4. Let <x be a partial order on X. If a <x bor b <x a for some
a,b € X, then we say that a and b are comparable in the order <x. If every two
elements of X are comparable in the order <x, then we say that a pair (X, <x) is a

linearly ordered set.

Remark. By Theorem 3.1.1, it is easy to check that ‘a <x borb <x @’ and ‘a <x b
ora = borb <x a are equivalent. Thus the latter statement can be used as a definition
of comparable elements. And we can easily show thatif a <x bora =borb <x a,

then only one of the three statements is true.

There is no natural number between arbitrary two consecutive natural numbers. For
example, there is no natural number between 3 and 4. However, for any two distinct
rational numbers, there is another rational number between them. For example between

% and %, the rational number % exists.

Definition 3.1.5. Let (X, <x) be a linearly ordered set. It is dense, if for every two
distinct elements of X, there is another element of X between them, i.e., Va,b €

X(a<xb = Jce X, a<xc<xhb).



Remark. Let (X, <x) be a dense linearly ordered set and Y be a subset of X. If for
every a,bin X with a < b there exists corresponding c in Y such thata <x ¢ <x b,

then we say that Y is dense in X.

Definition 3.1.6. Let (X, <x) be a linearly ordered set. If for every element x of X,
there exist two elements y, z of X such that y <x x and x <x z, then X is said to be

without endpoints.

It is well-known that Q is a dense linearly ordered set without endpoints.

3.2 Dedekind-complete

Let L be a (horizontal) straight line without endpoints, or abusively, the set of points

of this straight line. The following argument for L depends on intuitive observation.

L

For two distinct points a and b of L, we define a <, b if a is on the left of b. Then

(L, <r) is a dense linearly ordered set without endpoints.

And as it is well known, we can make a correspondence from each point of Q to

some point of L.
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Let f : Q@ — L be such correspondence. We define f in this way: we assign some point
po in L to 0, and some other point p; (on the right of pg) to 1. And then we assign
the point py to 2 which satisfies that ;tTpl> = ]Tp%, i.e., have the same distance and
direction. In this way, we can define f(x) forall z € Z, and also we can expand f to Q.

Then f is an order-preserving map, i.e., Vq1,q2 € Q,¢1 < @2 = f(q1) <r f(q2).



And for every two distinct points a, b of L, there exists a rational number ¢ such

that f(q) is between a and b.

fO)=pot  “f(q)b

For example, let a, b be points of L such that 0 <7, a <p, b. Let pg denote f(0). If we
move a to pg and b to b’ such that ]?b’ = %. Then for natural number n, as n increases,
the corresponding point f(1/n) is close to po. Thus there exists n € N such that
f(1/n) <z b'.Itis a kind of Archimedean property. Thus the distance between two
points a and b are greater than f(1/n). Roughly speaking, then the distance between
two points n - a and n - b are greater than f(1), where n - @ means thata + -+ + a
for n times, or the endpoint of pg + n X m. Thus there exists m € N such that
n-a <p, f(m) < n-b,equivalently a <z, f(m/n) <p, b. This explains the necessity

of the condition that f(Q) is dense in L.

Notation. Assume that (X, <) is a dense linearly ordered set without endpoints and

x is an element of X . For convenience, we shall use the following notations.

(—oo,y)x ={reX|z<xy}, (—o00,ylx ={ze X |z <xuy},
(y,0)x ={reX|y<xaz}, [y,0)x ={reX|y<xaz}

We know that Q cannot fulfill L. For example v/2 is constructed from unit distance
1 with a ruler and a compass; v/2 is a distance of a diagonal of a unit square. However
we know that v/2 is not a rational number.

Dedekind [4] first consider what properties a straight line and Q commonly have.
A linear order is one of them. And he think that if we choose a point p in L, then this
point p divides L into two pieces; (—oo, p)r, and [p, 00)r, or (—oo, p|r, and (p, o0) .
In each partitions, each element of the first part is less than (or on the left of) each

element of the second part. And this property also holds in Q.

Definition 3.2.1. Let (X, <x) be a dense linearly ordered set (without endpoints). Let
{A, B} be a partition of X, i.e., AUB=X,ANB =0,A+# 0, and B # (. A pair



(A, B) is called a comparable partition of X if a <x b for every a € A and for every
be B.

In other words, a pair (A, B) is a comparable partition of X if { A, B} is a partition

of X and every element of A is less than every element of B.

Lemma 3.2.1. Assume that (A, B) is a comparable partition of X. If « € A and
a <x athend € A,andifb € Band b <x V' then ¥’ € B. And A is bounded above,
and B is bounded below.

Proof. Assume that @ € A and a’ <x a. Since {A, B} is a partition of X, if a’ ¢ A
then o’ € B. Because (A, B) is a comparable partition of X and a € A and o’ € B, it
follows that a <x a’. By asymmetry of <, we meet a contradiction. Thus if a € A
and a’ <x a, then a’ € A. And for arbitrary fixed element b of B, we see thata <x b
for every a € A. Hence A is bounded above. The rest part is proved by the same

way. O

If (A, B) is a comparable partition of a dense linearly ordered set X, then there

are four possibilities:
(a) A does not have the greatest element, and B has the least element.
(b) A has the greatest element, and B does not have the least element.
(c) A does not have the greatest element, and B does not have the least element.
(d) A has the greatest element, and B has the least element.

If A has the greatest element « and B has the least element 3, then it follows that
a <x f.Since X is dense, there exists ¢ € X suchthat o« <x ¢ <x B.Ifc € A,
then « is not the greatest element of A; if ¢ € B, then f3 is not the least element of B,

which leads a contradiction in each case. Hence the case (d) does not happen.

L



We can say that each point p of L make two comparable partitions of L: (—oo, p)r,
and [p, 00),, or (—oo, p|r, and (p, 00) 1. (These two comparable partitions corresponds
to p, thus we can identify them if we want.) It is Dedekind’s idea for completeness that
every comparable partition of L is made by some point p of L [4], or equivalently, for
every comparable partition (A, B) of L, A has the greatest element p or B has the least

element p, where p isin L.

Definition 3.2.2. Let X be a dense linearly ordered set (without endpoints). The set
X is Dedekind-complete if for each comparable partition (A, B) of X, the set A has

the greatest element or B has the least element in X .

Note that Q is not Dedekind-complete. For example, let A and B be two subsets
of Q defined by

A:{CIGQ3QS0}U{q6@:0<qandq2<2},

B={qeQ:0<qgand?2 < ¢*}.

Then (A, B) is a comparable partition of Q. However, we can easily show that A does
not have the greatest element and B does not have the least element. Thus Q is not
Dedekind-complete.

In summary, we characterize a straight line L as follows :
(a) L is adense linearly ordered set without endpoints.
(b) There is an order-preserving map f : Q — L such that f(Q) is dense in L.
(c) L is Dedekind-complete.

Nowadays, it is well known that there are several equivalent conditions for com-
pleteness of the reals. One of them is the least-upper-bound-property. We show that

Dedekind-completeness is equivalent to the least-upper-bound-property.

10



Theorem 3.2.2. Suppose that (S, <g) is a dense linearly ordered set without end-

points. The set S is Dedekind-complete if and only if S has the least upper bound

property.

Proof. Assume that S is Dedekind-complete, and that A is a nonempty subset of S
bounded above. Define subsets X, Y of S as follows:

X = {z € S| x is not an upper bound of A}
={x eS|z <gaforsomeac A},
Y = {y € S| yis an upper bound of A}

={yeS|a<gyforallac A}.

Then (X,Y") is a comparable partition of S. Since S is Dedekind complete, X has the
greatest element or Y has the least element. If X has the greatest element g, then since
g € X, g <g aforsomea € A. Because S is dense, there is z € S such that g <g 2
and z <g a. Since z <g a, we see that z € X. Then for z, the element g is not the
greatest element in X. Therefore Y has the least element. It is exactly the least upper
bound of A. Thus A has the least-upper-bound-property.

Assume that S has the least-upper-bound-property. Let (A, B) be a comparable
partition of S. Since A is bounded above (by every element of B), the set A has the
least upper bound in S, say it «. Because every element of B is an upper bound of
A and « is the least upper bound of A, we know that & <g b for every b € B. Thus
if « € B, then « is the least element of B. If &« € A, then since « is (the least)
upper bound of A, we obtain that « is the greatest element of A. Thus S is Dedekind-

complete. O

11



Chapter 4

Construction of the reals 1

4.1 Existence of the reals

In the previous section, we characterize a straight line. The corresponding algebraic
structure to a straight line is called the reals. In this section, we construct the reals.
Let R denote the set of all comparable partitions (A, B) of Q such that A does
not have the greatest element. Roughly speaking, (A, B) corresponds to a point in a
straight line between A and B, or a point not less than every points of A and not greater
than every points of B. We define equality and inequality in R. Two elements of R
equals in R if two elements are identical. And for two elements (A1, A2), (B, B2) in
R, we define a binary relation (A4, A2) <gr (Bi1, B2) if there is an element ¢ € Q such
that ¢ € Ao N B1. We shall show that this R is the reals. And we define ¢ : Q — R by

t(q) = ((—00,q)q, [g,00)q)- It is natural injection from Q into R.

Theorem 4.1.1. R is a dense linearly ordered set without endpoints. And ¢ : Q — R

is an order-preserving map such that +(Q) is dense in R.

Proof. If 1 < g for qi, ¢2 in Q, then g1 € [g1,00)g N (—00, ¢2)g- Thus t(q1) <gr
1(q2). If (A1, A2) <g (B1, B2), then there is x € Q such that z € A N By. Since By

does not have the greatest element, there exists y € QQ such that y € By and x < y.

12



Let z denote (z+y)/2, i.e., x < z < y. Hence z € Ay N (—00, z)g, which means that
(A1, A2) <g t(2). Similarly y € [z, 00)g N B1, which means that «(z) <g (B, Ba).
Thus ¢ is an order-preserving map such that +(Q) is dense in R.

Assume that (A1, A2) <gr (A1, Az) for some element in R. Then there exists
qg € Ay N A;. Since (Ag, Ay) is a comparable partition, we know that A; N Ay is
empty, which leads a contradiction. Thus <y, is irreflexive. Assume that (A, As) <pg
(B, By) and (B1, B2) <pr (C1,C3). Then there exists p € Ao N By and ¢ € BoNCY.
Since p € Bi, ¢ € Ba, and (Bj, By) is a comparable partition of QQ, we obtain that
p < q.And p € As and p < ¢ implies that ¢ € As. Because ¢ € Ay N (1, it follows
that (A1, Ag) <pr (C1,C3), i.e., <p is transitive. Thus <p is a strict order on R.

Assume that two elements (A1, As) and (B, Be) of R are not identical, i.e., A; #
Bj. Thus there exists ¢ € Q such that (¢ € Ay and ¢ ¢ By)or (¢ ¢ A; and ¢ € By).
If g € Aj and ¢ ¢ Bi, then ¢ € Bs. Hence ¢ € By N Ay, which implies that
(B1,B2) <g (A1,A2). If ¢ ¢ A; and ¢ € By, then by the same way, we know
that (A1, A2) <gr (B, B2). Hence every two elements of R are comparable. Thus
(R, <Rg) is a linearly ordered set.

Choose arbitrary element (A;, A2) of R. Because A; and A, are nonempty, there
exist x € Ay and y € Ay. Then z € [z,00)g N Aj, which means that ((z) <p
(A1, A2). And from y € Ay, we know thaty € Ay N (—o0, y + 1)@, which means that
(A1, A2) <g t(y + 1). Therefore t(z) <gr (A1, A2) <g t(y + 1). Thus R is without
endpoints. We already know that +(Q) is dense in R, which implies that R is dense

directly. O

Theorem 4.1.2. Let .S be a dense linearly ordered set without endpointsand ¢ : Q — S
be an order-preserving map such that +(Q) is dense in S. For a comparable partition

(S1,52) of S, we define two subsets Q; and Q3 of Q as follows :

Q1:={¢€QJuq) €51}, Q2:={g€Qf(q) € Sa2}.

Then (Q1,Q2) is a comparable partition of Q. Additionally, if for each comparable

13



partition (S7,.S2) of S there exists corresponding m in S such that t(¢1) <g m <g

t(q2) for all ¢; € Q; and g3 € Qy, then S is Dedekind-complete.

Proof. Since (S1,.S2) is a comparable partition of .S, we know that both S} and S are
nonempty, and s1 <g ss for every s; € Sy and so € S5, and S; U Sy = S.

Because S is nonempty, there is an element s; in S7. And because .S does not
have endpoints, there is an element s’ of S such that s’ <g s;. By Lemma 3.2.1, we
see that s’ € S;. Since ¢(Q) is dense in S, there is ¢; in Q such that s <g ¢(q1) <g $1.
By Lemma 3.2.1, we see that ¢(q1) € Sy, which implies that Q; is nonempty. In the
same way, we can prove that Q is nonempty.

Choose arbitrary ¢; in Q1 and g2 in Q2. Then ¢(q1) € S1 and ¢(g2) € Sa. Since
(S1,S2) is a comparable partition of .S, we know that ¢(q1) <g ¢(q2). For the order
between ¢; and g9, there are three possibilities : g1 < g2 or g1 = g2 or g2 < q;. Because
¢ is an order-preserving map, each cases implies that ¢(¢1) <g t(g2) or ¢(q1) =s
t(g2) or t(g2) <g t(q1), respectively. Since S is a linearly ordered set, the only non-
contradictable case is ¢; < ¢2. Hence we show that ¢g; < ¢o for every q1 € Qi and
g2 € Q2. And this shows that Q1 N Qy = 0.

We know that ¢(g) is in S for every ¢ € Q. Since S = S; U Sa, we obtain that
t(q) € Sy ori(q) € So forevery g € Q, which means that g € Q; or ¢ € Q4 for every
q € Q. Thus Q; U Q2 = Q. Therefore (Q;,Q2) is a comparable partition of Q.

Assume that for each comparable partition (S1, S2) of S, there exists correspond-
ing m in S such that 1(q1) <g m <g t(qz) for all ¢; € Q; and g2 € Qo. Since S
is a linearly ordered set, for each x in S such that = #g m, we obtain that z <g m
or m <g x. Suppose that x <g m. Because ¢(Q) is dense in S, there is ¢ € Q such
that z <g ¢(q) <g m. If ¢ € Qo, then m <g ¢(q) by assumption, which leads a
contradiction. Hence ¢ € Q1, and so ¢(g) is in S;. By Lemma 3.2.1 and = <g ¢(q),

we obtain that z is in S7. Thus if z <g m, then z is in S. In the similar way, we can

14



show that if m <g x then « is in .Sy. In summary,

r<gm = x €51,
r=gm —> x € Siorx €Sy,

m<gx = x € 5.

Thus, every element of Sy is less than or equal to m, and every element of Sy is
greater than or equal to m. So if m belongs to Sy, then m is the greatest element of Sy
and if m belongs to S2, then m is the least element of S5. Therefore S is Dedekind-

complete. O
Theorem 4.1.3. R is Dedekind-complete.

Proof. Recall that R is the set of all comparable partitions (A, B) of Q such that A
does not have the greatest element. Let (R, R2) be an arbitrary comparable partition

of R. We define two subsets (Q; and Q5 of QQ as follows :

Q:={¢€Qulg) € R}, Qr:={q€Qllq) € R}

Then by Theorem 4.1.2, (Q1,Q2) is a comparable partition of Q.

If Q1 has the greatest element, say it a, then since (Q1, Q2) is a comparable par-
tition of Q, it follows that g1 < a < ¢o for every g1 € Q1 and g2 € Qs. Because ¢
is order-preserving, we obtain that ¢(q1) <pr t(a) <gr t(g2) for every ¢g; € Q; and
q2 € Q.

If Q; does not have the greatest element, then since (Qq,Q2) is a comparable
partition of Q, we obtain that (Q1,Q2) € R. Let us denote (Q;, Q) by m. For each
q1 € Qq, there exists ¢; € Q; such that ¢; < ¢}. Then ¢| € [g1,00)p N Qy. Hence
t(q1) <r m.And forevery g2 € Qq, from Q2NQ; = 0, we know that [g2, 0)pNQ; =
(). It follows that (not ¢(g2) <g m) for every g € Qo. Hence m <p t(g2) for every
q € Qo. Thus t(q1) <r m <g t(g2) forevery ¢ € Q; and g2 € Qa.

Therefore R is Dedekind-complete by Theorem 4.1.2. O

15



4.2 Uniqueness of the reals

In the previous section, we show the existence of the reals R, or equivalently, an al-
gebraic structure corresponding to a straight line. In this section, we shall show the

uniqueness of the reals (up to isomorphism).

Theorem 4.2.1. Suppose that (S, <g) is a dense linearly ordered set without end-
points, and that there is an order-preserving map f : Q — S such that f(Q) is dense
in S, and that (S, <g) is Dedekind-complete. Then there exists a bijective order-
preserving map f : R — S which extends f, i.e., f(q) = f(u(q)) for all ¢ € Q.

Moreover, this extension f is unique.

Q
1N
R --——- > S

Proof. First, we show the uniqueness of this extension. Assume that f; and £, are two
distinct extensions. Then there exists r € R such that f(r) #g f5(r). Without loss
of generality, assume that f;(r) <g f5(r). Since f(Q) is dense in S, there is ¢ € Q
such that f,(r) <s f(q) <s fa(r). Thus f(r) <s f1(c(q)) and f5(c(q)) <s fa(r).
It implies that  <p ¢(¢q) and ¢(¢) <g r. This leads a contradiction. Thus if there is an
extension, it is unique.

We shall show that for every (A, B) € R, there is unique p € S such that f(a) <g
p <g f(b) foralla € Aand b € B, i.e., f(a) <gpforalla € Aand p <g f(b) for
all b € B. We define two subsets C', D of S as follows:

C={ceS|c<gs f(a)forsomea € A},

D={de S| f(b) <g dforsomebc B}.

If x € C, then there is @ € A such that z <g f(a). Because A does not have the

greatest element, there is ' € A such that a < . Since f is order preserving, we
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see that f(a) <g f(a'). Thus z <g f(a’). And by definition of C, we obtain that
f(a’) € C. Therefore C does not have the greatest element.

If y € D, then there is b € B such that f(b) <g y. Since S is dense, there is
y' € Ssuchthat f(b) <g v <gy.Hencey € D andy’ <g y. Thus D does not have
the least element.

If there is no p € S such that f(a) <g p <g f(b) foralla € Aand b € B,
then C U D = S. Thus we know that (C, D) is a comparable partition of S. Since
S is Dedekind complete, C' has the greatest element or D has the least element. It
contradicts to our previous argument. Thus there exists p € .S such that f(a) <g p <g
f(b) forall a € A and b € B. If such p is not unique, assume that there are two such
elements p1, p2 in S with p; <g p. Since f(Q) is dense in .S, there is ¢ € Q such that
p1 <s f(q) <s p2. Since (A, B) is a comparable partition of Q, we see that ¢ € A or
q € B.If g € A, then p; <g f(q) contradicts that f(a) <g p; foralla € A. If ¢ € B,
then f(q) <g p2 contradicts that po <g f(b) for all b € B. Thus such p is unique.

To define f, for each (A, B) € R, we assign p in S to (A, B) satisfying that
f(a) <s p <s f(b) foralla € A and b € B. By our previous argument, f is well
defined. For each ¢ € Q, we know that t(q) = ((—o0, ¢)g, [¢, 0)g)- Hence f(i(q)) is
equal to p satisfying that f(a) <g p <g f(b) forall a € (—00,q)g and b € [g, c0)g.
If p = f(q), then the condition is satisfied. By the uniqueness of p, we conclude that
fu@) = f(a).

For two distinct (A4, B1), (A2, B2) € R, assume that (A1, B1) <gr (Ag, B2).
Then there is ¢ € Q such that ¢ € By N As. Let p; be f((A;, B;)) fori = 1,2. Then
fla) <s p1 <g f(b) for all (a,b) € A} x By and f(a) <g p2 <g f(b) for all
(a,b) € Ay X Bs.

We derive the inequalities p; <g f(q) and f(q) <s po. Hence p; <g pa. Thus f
is an order preserving map. The fact that f is injective is also proved.

The only remaining goal is to show that f is surjective. For each p € S, define

Apand B,by A, = {q € Q| f(q) <s p}and B, = {qg € Q| p <g f(q)}. Then
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(Ap, Bp) is a comparable partition of Q. And if ¢ € A, i.e.,if f(q1) <g p, then since
f(Q) is dense in S, there is g2 € Q such that f(q1) <5 f(g2) <g p. Thus g2 € A,
and ¢ <g go2. Hence A, does not have the greatest element. Thus (A,, B,) belongs to
R. And by definition of A, and B, the condition f(a) <g p <g f(b) foralla € A,
and b € B, is satisfied, which implies that f((Ay, B,)) = p. Thus f is surjective.
Therefore f is a bijective order preserving map satisfying that f(:(q)) = f(q) for all

q € Q. O
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Chapter 5

Coq proof checking 1

In this chapter, we overview how we use Coq to construct the reals. In the following
Coq codes, Lemma and Theorem and Example are all things that we need to prove.
Due to a lake of space, we omit all proof codes in this paper, instead upload them in
the Internet. !

In Coq codes, we first put the excluded-middle property by axiom because there
are some occasions necessarily to use it. And then we make and prove some logical
lemmas. all_ssreflect is a library that contains some useful tactics. QArith is a library
that contains definitions and lemmas related to Q. And V and A are logical connectives

that imply ‘or’ and ‘and’, respectively.

From mathcomp Require Import all_ssreflect.
Require Import QArith.

Axiom excluded _middle :

VP:Prop, PV notP.

Lemma and_or_distr (A B C : Prop):

ANB)VC+=AVCONBVO).

Lemma or_and_distr (A B C : Prop) :

"https://github.com/DoyunNam/Coq_Reals/blob/main/Coq_Reals.v
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AVBYAC+ANC)V(BACQC).

Lemma and_comm (P Q : Prop) :

PANQ<+ QAP

Lemma or_trans (A : Prop) (B: Prop) (C: Prop):
(AVB)VC+ AV (BVO).

Lemma contrapositive (P Q : Prop) :

(P — Q) — (not Q — not P).

Lemma imply_not_or (P Q : Prop) :

(P— Q)+ (not PV Q).

Lemma not_not_equiv (P : Prop) :

P < (not (not P)).

Lemma all_prop (S: Set) (P:S — Prop):
Vx:S,(Px)) < not(3x:S,not (P x)).

Lemma not_all_prop (S: Set) (P:S — Prop):
not Wx:S,(Px)) <« dx:S, not (Px).

Lemma not_exists_prop (S : Set) (P:S — Prop):
not(Ax:S,(Px) < Vx:8, not (P x).

Lemma not_imply_equiv (P Q : Prop) :
not (P — Q) < not (not PV Q).

Lemma not_or (P Q : Prop) :

not (P V Q) < not P A not Q.

Lemma equiv_not_equivl (P Q : Prop):

(P < Q) — (not P < not Q).

Lemma equiv_not_equiv2 (P Q : Prop):
(not P <+ not Q) — (P < Q).

Lemma equiv_not_equiv (P Q : Prop) :
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(P < Q) < (not P < not Q).
Lemma not_and (P Q : Prop) :
not (P N\ Q) <+ not PV not Q.

Lemma all_or_pro_distr (S: Set) (PQ:S — Prop):
Vx:S5 PxVQ0Ox)—
VMx:S5,Px)v(@x:S,0x).

Like these logical lemmas, if necessary, we make lemmas and prove them; and use
them in the course of proving some theorems. Since Coq library does not contain every
logically true statement, in many times, we need to define lemmas and prove them. For

example,

Lemma Zlt_le 0 (n:Z):
O<n)%Z — (0 < n)%Z.
Lemma Qlt_le (ab: Q):
a<b—a<hb.

Lemma Qlt plus_transpose (ab c: Q) :

a-b<c<ra<b+ec.

These three lemmas are trivial in natural language. However, in Coq, we need to
prove them if we want to use them and they are not in the Coq library. For briefness,
we shall omit obvious lemmas.

And we define relation, reflexive, irreflexive, and so on. For general situations, we
define compatible_eq It : if w ~x x,y ~x z,and w <x y, then x <x z, where ~x

is an equivalence relation on X.

Definition relation (X : Set) :=

X —+X — Prop.

Definition reflexive {X : Set} (R : relation X) :=

Va:X, (Raa).

Definition irreflexive {X : Set} (R : relation X) :=
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Va:X, not(Raa).

Definition symmetric {X : Set} (R : relation X) :=

Yab:X,(Rab)— (Rba).
Definition antisymmetric {X : Set} (R : relation X) :=
YVab:X,(Rab)—> (Rba)—>a=hb.

Definition asymmetric {X : Set} (R : relation X) :=

Vab:X,(Rab)— not(Rba).

Definition transitive {X : Set} (R : relation X) :=
YVabc:X,(Rab)— (Rbc)— (Rac).

Definition strict_order {X : Set} (R : relation X) :=
(irreflexive R) A (asymmetric R) A (transitive R).

Definition equivalence {X : Set} (R : relation X) :=
(reflexive R) A (symmetric R) A (transitive R).

Definition compatible_eq It {X : Set} (Xt Xeq : relation X) :=
Vwxyz:X, Xegwx) — Xeqyz) — Xltwy) — (Xit x 2).
Definition total_order {X : Set} (XIt Xeq : relation X) :=
Vxy: X, Xltxy)V Xegxy)V (Xityx).

Definition without_endpoints {X : Set} (Xt : relation X) :=
Vx:X,3y, Xltyx) N3z Xt x 2).

Definition dense {X : Set} (Xit : relation X) :=

Vxy: X, Xltxy) —

dz: X, Xltx2) A (Xt zy).

Record dlos := mkdlos {
X : Set;
Xlt : relation X,

Xeq : relation X
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eq : equivalence Xegq;

st : strict_order XIt;

¢p : compatible_eq_It Xt Xeq;
to : total_order Xt Xeq;

den : dense Xlt;

we : without_endpoints Xlt;

And in the above, we make a Record structure dlos. The Record structure dlos
is similar to an ordered 9-tuples (X, X/t, ..., den, we). Each X, Xlt, Xeq, ...1is like a
coordinate function. If S is a dlos, then X S is a set, and X/t S is a relation defined on X
S, and so on.

If S is a dlos, then Xeq S is a relation on X S. And eq S implies that equivalence
Xeq S is true. Hence Xeq S is an equivalence relation on X S. Similarly, Xz S is a strict
order on X S.

In the below, we make an axiom whose name is function.

Axiom function :

VS :dlos,Vf:(XS)— bool,
Vpq:XS (XegS)pg—fp=fgq.
Lemma XIt not (S :dlos) (xy:XS):
XltSxy—not (Xlt SyxV Xeq Sy x).
Example Q_equivalence :
equivalence Qeq.

Example Q_strict_order :
strict_order QIt.

Example Q_compatible_eq_lt :

compatible_eq_ It Qlt Qeq.

Example Q_ftotal_order :

23



total_order Qlt Qeq.
Example Q_dense :
dense Qlt.

Example Q_without_endpoints :
without_endpoints QIt.

Definition Q_dlos :=

{l

X:=0;

Xit .= Qlt;

Xeq := Qegq;

eq := Q_equivalence;

st := Q_strict_order,

cp := Q_compatible_eq_lt;

to := Q_total_order,

den := Q_dense;

we = Q_without_endpoints
[}.

In the above, we proved that QQ is a dense linearly ordered set without endpoints.

And for a comparable partition (A, B) of some dense linearly ordered set X, there
is a corresponding function f : X — {0,1} such that f(z) = 0if x € A and
f(x) = 1if x € B. ( This function f is equal to the characteristic function xp).
Since both A and B are nonempty, the map f is not a constant function. And since
(A, B) is a comparable partition, it follows that f is monotonically increasing. Thus
each comparable partition corresponds to a non-constant, monotonically increasing
function from X into {0,1}. And we can easily prove that this correspondence is
bijective.

In Coq, bool is a set {false, true}. We define f(z) = false if x € A and f(z) =

true if x € B. Then we may understand the following three definitions.
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Definition mono_inc {S :dlos} (f : (X S) — bool) :

Vpq: XS, XlitS)pqg—

(f p=false N\ f q = false) V

(f p=false \ f q = true) Vv

(f p=true N\ f q = true).

Definition not_const {S : dlos} (f : (X S) — bool) :
3p: XS, (f p) =false) N\

3q:XS, (f q = true).

Definition comparable_partition {S : dlos} (f : (X S) — bool) :=

(mono_inc f) N\ (not_const f).

And not_havemax means that there is no greatest element of f~!(false), and have-
max means that there is a greatest element of f~!(false). Similarly, not_havemin im-
plies that there is no least element of f~!(true), and havemin implies that there is a

least element of f~1(true).

Definition not_havemax {S : dlos} (f : (X §) — bool) :=
Vp:XS, (f p)=false

—Jqg: XS, XltS)pqgA(f q) =false).

Definition havemax {S : dlos} (f : (X S) — bool) :=
Fx: XS,

fx=false N\(VNy: XS, (XltS)xy—fy=true)).

Definition not_havemin {S : dlos} (f : (X S) — bool) :=
Vqg:XS8, (f q) =true
—3p: XS, XltS)pqgA(fp)=true).

Definition havemin {S : dlos} (f : (X S) — bool) =
Fy: XS,
fy=trueNMx:XS, XltS)xy—f x =false)).

And as we know, Dedekind-completeness is defined as follows : for every compa-

-+
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rable partition (A, B), A has the greatest element or B has the least element. And to
construct R, we define CondR.

X Q_dlos is equal to Q as a set. Hence f: X Q_dlos — bool is equal to f: Q —
bool. And we defined comparable_partition f by (mono_inc f) N (not_const f) before.
Thus CondR f in Coq corresponds to a comparable partition (A, B) of Q such that A

does not have the greatest element.

Definition Dedekind_complete (S : dlos) :=

Y (f:(XS)— bool),

(comparable_partition f) — (havemax f) V (havemin f).
Definition CondR (f : (X Q_dlos) — bool) :=

mono_inc f A not_const f N\ not_havemax f.

Lemma havemax_total {S : dlos} (f : (X S) — bool) :

havemax f <> not (not_havemax f).

Lemma havemin_total {S : dlos} (f : (X §) — bool) :

havemin f < not (not_havemin f).

Lemma mono_inc’ {S : dlos} (f : (X S) — bool) :
(mono_inc f <

Vpq:XS,(fp=false > f q=true — (Xit S) p q)).
less_part and greater_part corresponds to Lemma 3.2.1.

Lemma less_part {S : dlos} (f : (X S) — bool) (pqg:XS):
mono_inc f — (XIt S) p g — f q =false — f p = false.
Lemma greater_part {S : dlos} (f : (X S) = bool) (pg:XS):
mono_inc f — (Xlt S) p g — f p = true — f q = true.

Lemma classify_comp_part {S : dlos} (f : (X S) — bool) :
(comparable_partition f) —

(havemax f N not_havemin f) V

(not_havemax f N\ havemin f) V
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(not_havemax f N\ not_havemin f).

And we make R as follows. And then we define Req and Rlt. Note that if we
corresponds f rl to (A1, A2) and f r2 to (B1, B2), then (f rl) q = true means that
q € Ao, and (f r2) q = false means that ¢ € B;. Hence ¢ € A5 N By, which implies
that (A1, A2) <g (Bj, B2). Thus Rit is well defined.

Record R := mkReal {

f (X Q_dlos) — bool,

Cond : CondR f;
}.
Definition Req (rl r2:R) =
Vq:0.(frl)g=(fr2)q.
DefinitionRIlt (rl r2:R) :=
dq: 0, rl)q=true \ (f r2) q = false.
Theorem R_equivalence :
equivalence Req.
Theorem R_strict_order :

strict_order RIt.

Theorem R_compatible_eq_lt :
compatible_eq_lt Rlt Req.
Theorem R_total_order :

total_order Rlt Req.

Qle_bool is a function of type Q — Q — bool defined by as follows : Qle_bool
p q = true if p < g, and Qle_bool p q = false if g < p. As defined above, CondR f is
a property corresponding that A does not have the greatest element for a comparable
partition (A, B) of Q. For each ¢ € Q, we see that Qle_bool q is a function from Q
into bool, and in the below, inject_Q is a structure corresponding ¢ : QQ — R in our

previous chapter.
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Lemma CondR_Q (q: Q) :
CondR (Qle_bool g).
Definitioninject_ Q(q:Q):R:=
{lf :==(Qle_bool q) ;

Cond = (CondR_Q q)
}.

Theoreminject_Q_eq (p q:Q):

p == q — Req (inject_Q p) (inject_Q q).
Theorem inject_Q_order_preserve (p q : Q) :
p < q — Rlt (inject_Q p) (inject_Q q).

Lemma inject_Q_order_reverse (p q : Q) :

RIt (inject_Q p) (inject_Q q) — p <q.
Theoremn inject_Q_dense (ab : R) :

(Rltab) —

dq: Q, (Rt a (inject_Q q)) N (RIt (inject_Q q) b).
Theorem R_dense :

dense RIt.

Theorem R_without_endpoints :

without_endpoints RIt.

And so far, we show that R is a dense linearly ordered set without endpoints. And

in the below, we define a dlos structure R_dlos which represents R.

Definition R_dlos :=

{l
X :=R;
Xlt := Rlt;
Xeq := Reg;

eq := R_equivalence;
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st := R_strict_order;

cp = R_compatible_eq_lt;
to := R_total_order;

den := R_dense;

we := R_without_endpoints

And then, we prove that R is Dedekind-complete. We construct a dlos (dense lin-
early ordered set without endpoints) structure R_dlos; and show that inject_Q is an
order-preserving map from Q to R such that inject_Q(Q) is dense in R; and prove that

R is Dedekind-complete. Therefore we prove the existence of the reals in Coq.

Theorem R_Dedekind_complete :

Dedekind_complete R_dlos.
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Chapter 6

Construction of the reals 2

In chapter 4 we show the existence and uniqueness of the reals by hand, and in chapter
5 we prove the existence of the reals by Coq. In this chapter, we construct the reals
in another way, and define addition and multiplication, and show that the reals is the

Dedekind-complete ordered field. Recall the definition of an ordered field.

Definition 6.0.1. If (S, <) is a linearly ordered set and if (.S, +, %) is a field, then S

is called an ordered field if it satisfies the following conditions:
(@) Forz,y € S,if0<zand0 <ythen0 < x Xy

(b) Forz,y,z € S,ifr <ythenz+ 2 < y+ 2.

6.1 Nested intervals

This section summarizes definitions, lemmas, and theorems. We prove every lemmas

and theorems by Coq in the next section.

Definition 6.1.1. Let (a,,) and (b,,) be rational sequences. If (a,,) and (b,,) satisfies

the following properties, then the pair ((ay,), (b,)) is called a nested interval.

(@ dImeN,VneN m<n = a, <b,.
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(b) Vm,ne N, dpe N, n <pand b, —a, < %

() ImeN, Vn,peN, m<n<p = a, <a,.

(d IJmeN, Vn,peN, m<n<p = b, <b,.
And we denote [ the set of all nested intervals.

As a comparable partition (A, B) of Q corresponds to a point in a straight line L
such that not less than every point of A and not greater than every point of B, We may
consider a nested interval ((ay,), (b, )) corresponds to a point p in a straight line L such
that p is not less than every a,, and not greater than every b,,. The condition (a), (c),
(d) of a nested interval contains common phrase 3m € N, because it helps to define

multiplication of two nested intervals.

Notation. For a nested interval A = ((ay,), (b,)), We can choose m1, mg, m3 of N in
the condition (a), (c), (d) of Definition 6.1.1. And let m be max{mj,ma, ms}. Then
after m-th term, the sequence (a,,) is increasing, (b,,) is decreasing, and a,, < by, for
each m < n. We shall use this m frequently. For convenience, we denote this m by

m 4 for a nested interval A.
Lemma 6.1.1. For a nested interval A = ((ay,), (b)), the following statement is true.
Vn,pe N, myg <n<p = a, < b,

Proof. If my < n < p, then we obtain that a,, < a,, and a,, < b,, which implies that

an < by. ]

Definition 6.1.2. For two nested intervals A = ((ay), (by)) and X = ((x,), (yn)),

we define a binary relation <; as follows :
A< X <= VmeN, IneN, m<nandb, < x,.

Theorem 6.1.2. A binary relation < is a strict order on [.
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Proof. Let A = ((an),(a,)), B = ((by),(),)), and C = ((cn),(c),)) be nested
intervals. Assume that A <; B and B <; C. Let m be max{mu, mp, mc}. Then
there exists n such that m < n and a), < b, and exists p such that n < p and b;, < ¢p.
Since m < n < p and mp < m, we obtain that b,, < b; by Lemma 6.1.1. Hence
a;, < ¢p. Since we know that after m-th term, sequence (al,) is decreasing, and (¢y,) is
increasing, we obtain that a} < ¢; for all p < ¢. Thus A <; C, i.e., <j is transitive.

If A <; A for a nested interval A = ((ay), (a},)), then there is n € N such that
ma < nand a, < a,. It contradicts to the definition of m 4. Thus <; is irreflexive.

Hence < is a strict order on 1. ]

Definition 6.1.3. For two nested intervals A and X, we define a binary relation =; as

follows: A =7 X <= (not A <; X)and (not X <; A).
Theorem 6.1.3. A binary relation =; is an equivalence relation on 1.

Proof. Reflexivity and symmetry is proved trivially. Assume that A =; B and B =
C'. We want to show that A =; C. For this, it is enough to prove that (not A <; B)
and (not B <; C) implies (not A <; C).

We set A = ((ay), (al,)), B = ((bn), (b)), and C = ((cn), (¢},)). (not A <; B)

implies that

dnieN, VneN, m <n = bnga;. 6.1
and (not B <; C) implies that

dme e N, VneN, mo <n = cngb;. (6.2)

Let m* be max{mp, my,ma}. If A <; C, then there is p € N such that m* < p and

a; < ¢p. Then from (6.1), (6.2), and the definition of m*, we obtain that
VneN, p<n = bngbpga;<cp§b;§b’n.

Since 0 < ¢, — a;, < b, — b, for all p < n, the nested interval B cannot satisfy the
condition (b) of Definition 6.1.1, which leads a contradiction. Hence (not A <; () is

true. O
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In this way, we can prove them by natural language. The remaining theorems and
lemmas are proved in the next chapter by using Coq. Thus we skip to prove them by

natural language, and only mention them.

Theorem 6.1.4. Let A, B,C, D be nested intervals. If A =y B and C =; D and
A<y C,then B <y D.

Theorem 6.1.5. For arbitrary two nested intervals A and X we obtain that A <; X

or A=; XorX <j A,i.e.,the strict order <; (with =;) is a total order on 1.

Remark. We can easily show that only one of A <; X or A =; X or X <; Aistrue.
By asymmetry of <j, both A <; X and X <; A cannot happen at the same time.
Assume that A <; X and A =; X. Then by Theorem 6.1.4, for A =; X, X =1 A,
and A <; X, we obtain X <; A. And asymmetry of <; leads a contradiction. Thus

our claim is proved.

Definition 6.1.4. For each rational number g, there is a constant sequence (q) (that is a
rational sequence such that every term is ¢). Then we can easily check that ((q), (q)) is
a nested interval for every ¢ € Q. Let ¢ : Q — I denote a map which assigns ((¢), (¢))

to q.
Theorem 6.1.6. For two rational numbers p and ¢, if p < g then ¢(p) <7 ¢(q).

Theorem 6.1.7. If A, B are two nested intervals and if A <; B, then there is ¢ € Q

such that A <7 «(q) <; B; in other words, ¢(Q) is dense in I.
Theorem 6.1.8. I is dense.

Definition 6.1.5 (Translation). For each nested interval ((a,,), (b,,)) and for every ra-
tional number ¢, we can easily show that ((a,, +t), (b, +t)) is also a nested interval.

Let ¢ : Q x I — I be a map that sends (¢, ((a), (bn))) to ((an + t), (b +1)).
Lemma 6.1.9. If ¢ is a positive rational number, then A <; ¢(t, A) for every A € I.

Lemma 6.1.10. If ¢ is a negative rational number, then ¢(¢, A) <; A forevery A € I.
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Theorem 6.1.11. For each nested interval A, there exist nested interval B and C such

that B <; A <; C.

In summary, The set of all nested intervals I (with <y and =) is a dense linearly
ordered set without endpoints. And ¢ : Q — [ is an order preserving map such that

1(Q) is dense in 1.
Theorem 6.1.12. I is Dedekind-complete.

Proof. Let (I3, I) be a comparable partition of I. Define two subsets Q1 and Q2 of Q

as follows:

Q={¢€Quqg) €}, Q={q€Q]uqg) € 2}

Then (Q1,Q2) is a comparable partition of Q by Theorem 4.1.2. For every n € N,
there exists unique ¢, € Z such that < € Q; and @ € Q. Let J,, be a closed

interval [<, ©2t1] (in Q). Since J,, = [£2, 222 and Jo,, = [, 625:1] and 2 €

Q4 and M € Q2, it follows that ca,, must be 2¢,, or 2¢,, 4 1. In any case, we obtain
that Jo,, C J, for all n € N. Let a,, be % and b, be CQ"H foralln € N, ie.,

[an,bn] = Jon. Since Jyn+1 C Jon, we obtain that [a,y1,bp41] C [an, by]. Hence
(ay) is an increasing sequence, and (by,) is a decreasing sequence. Moreover a,, < by,

and by, for all n € N. Let us denote ((ay,), (b,)) by m. Then m is a nested

2n
interval by the previous argument.

If Q; has the greatest element, let « denote it. Then g1 < a < g9 for all ¢; € Qg
and g2 € Q. Hence ¢(q1) <1 t(a) < t(g2) forall ¢; € Q; and g2 € Qq. If Q has the
least element, then we can progress in the same way. Assume that QQ; does not have the
greatest element and Q2 does not have the least element. For arbitrary gq; € Qq, there is
g} € Q such that ¢; < ¢{. And there is n € N such that 5 < ¢} — ¢1. Since ¢} € Q;
and b, € Q2, we know that ¢; < by,. Thus b, — a,, = 271 < ¢y —q1 < by, — q1, which
implies that ¢; < a,. Since (a,,) is increasing, we obtain that (q;) <; m. Similarly

we can show that m < ¢(gz) for every g2 € Q2. Hence I is Dedekind-complete by
Theorem 4.1.2. O
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6.2 Addition of nested intervals

Definition 6.2.1. For each two nested intervals A = ((ay,), (by)) and X = ((z,), (yn)),

we define a binary operation +; as follows:
A+1 X = ((an + xn), (b +yn))-

Theorem 6.2.1. If A and X are nested intervals, then so is A+ X; thus 47 is a binary

operation on I.
Theorem 6.2.2. For p, g € Q, we obtain that «(p + ¢q) =1 ¢(p) +1 ¢(q).

Theorem 6.2.3. Foreach A, B,C,D € I,if A=y Band C =; Dthen A +;C =
B+, D.

Theorem 6.2.4. (I, +;) is commutative, i.e., A+; B =; B+ Aforevery A,B € I.

Theorem 6.2.5. (I,+;) is associative, i.e., (A +; B) +1 C =1 A+ (B +1 C) for
every A, B,C € I.

Definition 6.2.2. Let 07 denote ¢(0).
Theorem 6.2.6. Foreach A e I, A+;0; =7 A.

Definition 6.2.3. If ((ay,), (b)) is a nested intervals, then so is ((—by), (—ay,)). Let
— : I — I be a map that assigns ((—by,), (—an)) to ((an), (by))-

Theorem 6.2.7. Foreach A € I, A+ (—A) =7 0;.

Theorem 6.2.8. Foreach A, B,C € I,if A<; Bthen A+;C < B+;C.

6.3 Multiplication of nested intervals

Because < is a total order on I, for each A € I we obtain that A <; O;or A =;

Oror0;7 <1 A.
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Definition 6.3.1. For each two nested intervals A = ((ay,), (by)) and X = ((zn), (yn)),

we define a binary operation X as follows :

((anxn), (bpyn)) if07 < Aand 07 < X,
((bpzy,), (anyn)) if0r < Aand X < 0y,
A X1 X =< ((anyn), (bpry)) if A <07and 07 < X,

((bnyn)a (an$n)) if A< 0O7rand X <0y,

{ 07 otherwise.

We may think thatif A <; 07 andif 0; <; B then Ax;B mustbe —((—A) x;B).

The above definition is made by this way.

Theorem 6.3.1. If A and X are nested intervals, then so is A x ; X ; thus x j is a binary

operation on I.
Theorem 6.3.2. For p, g € Q, we obtain that «(p x q) =1 ¢(p) X1 t(q).

Theorem 6.3.3. Foreach A, B,C,D € I,if A=y Band C =; Dthen A x; C =
B X7T D.

Theorem 6.3.4. (I, x 1) is commutative, i.e., A X1 B =1 B xj Aforevery A, B € I.

Theorem 6.3.5. (I, x[) is associative, i.e., (A x; B) x; C =5 A x1 (B x1 C) for
every A, B,C € 1.

Definition 6.3.2. Let 1; denote ¢(1).
Theorem 6.3.6. Foreach A c I, A x;1; =1 A.

Definition 6.3.3. For each nested interval A = ((a,,), (by,)) satisfying that not (A =;

07), we define a unary operation /; as follows :

/1A= ((1/bn), (1/an)),

where if a,, = 0 for some n then assign 1/a,, to 0; similarly to b,,.
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Theorem 6.3.7. If A is a nested interval, then so is /7 A; thus /7 is a unary operation

on [.

Theorem 6.3.8. If A € I and not (A =; 0;), then A x; (/;A4) =1 1;.

Theorem 6.3.9. Foreach A, B,C € [, Ax;(B+;C) =1 Ax;B+7Ax;C.
Theorem 6.3.10. Foreach A, B € I,if 0; <; Aand 0; <; Bthen0; <; A X1 B.

Therefore we conclude that [ is a Dedekind-complete ordered field.
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Chapter 7

Coq proof checking 2

In the below, we define each condition of a nested interval (Definition 6.1.1), and make
a structure for a nested interval. And then we define <; and =; on I named as /It and
leq, respectively. And we eventually show that I (with <j and =) is a dense linearly

ordered set without endpoints.

Definition compare (f g : positive — Q) :=

dm : positive, (¥ n : positive,

(m < n)%positive — f n < g n).

Definition get_closer (f g : positive — Q) :=

YV m n : positive, (3 p : positive,

(n < p)%positive Ngp-fp<1#m).
Definition increasing (f : positive — Q) =

dm : positive, (VY n p : positive,

(m < n)%positive — (n < p)%opositive — f n < f p).
Definition decreasing (g : positive — Q) =

dm : positive, (¥ n p : positive,

(m < n)%positive — (n < p)%opositive — g p < g n).

Record [l :=mkl {
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[ : positive — Q;

r : positive — Q;

comp : compare l r;

clo: get_closer L r;

inc : increasing [,

dec : decreasing r;
}.
Definitionllt(ab:1) =
YV m : positive, (3 n : positive,

(m < n)%positive \ (r a) n < (I b) n).

Definitionleq(ab:1I):=

compare (I b) (r a) \ compare (L a) (r b).

Lemma not_Ilt_equiv(ab:1):

not (Ilt a b) <> compare (I b) (r a).

Theorem I_strict_order :

strict_order Ilt.

Lemma leg_trans_half (abc:1):

not (Iit a b) — not (lit b ¢) — not (Ilt a c).

Theorem I_equivalence :

equivalence leq.

Theorem [ _total_order :

total_order it leq.

Theorem I _compatible_eq_lt :

compatible_eq_lIt It leq.

Definition const (q: Q) : positive — Q =

fun =gq.
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Lemma compare_const (q : Q) :

compare (const q) (const q).

Lemma get_closer_const (q : Q) :
get_closer (const q) (const q).
Lemma increasing_const (q : Q) :

increasing (const q).

Lemma decreasing_const (q : Q) :

decreasing (const q).

Definitionconst I(q:Q):1:=
{l

[ := const q;

r:=const q;

comp := compare_const q;

clo := get_closer_const q;

inc = increasing_const q;

dec := decreasing_const q;
[}.
Theorem const_I_order_preserve (p q : Q) :
p <q — 1t (const_I p) (const_I q).
Theorem const_I_order_reverse (p q : Q) :

1t (const_I p) (const_I q) — p <q.

Theorem const_I_dense (ab:1):

(Ilt a by —

dq:Q, It a(const_I q)) N\ (It (const_I q) b).
Theorem I dense :

dense Ilt.

Definition translation (t : Q) (f : positive — Q) :=
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fung=f(g) +1t.

Lemma compare_translation (t : Q) (a: 1) :

compare (translation t (I a)) (translation t (r a)).

Lemma get_closer_translation (t : Q) (a: I) :
get_closer (translation t (I a)) (translation t (r a)).
Lemma increasing_translation (t : Q) (a: 1) :

increasing (translation t (I a)).

Lemma decreasing_translation (t : Q) (a: I):

decreasing (translation t (r a)).

Definition translation_I (t: Q) (a:1):I:=
{l
[ := translation t (I a);
r := translation t (r a);
comp = compare_translation t a;
clo := get_closer_translation t a;
inc := increasing_translation t a;
dec = decreasing_translation t a;
[}.
Lemma translation_gt (t : Q) (a: 1) :
0 <t — Ilt a (translation_I t a).
Lemma translation_It (t : Q) (a : 1) :
t <0 — It (translation_I t a) a.
Theorem I_without_endpoints :
without_endpoints lt.
Definition I dlos =
{l
X =1
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Xlt =1t

Xeq = leq;

eq :=1_equivalence;

st :=1 _strict_order;

cp = 1_compatible_eq_lt;

to :=1 total_order;

den =1 _dense;

we = I_without_endpoints
[}.
Declare Scope I_scope.
Open Scope I_scope.
Notation "x<y":=(ltxy): I _scope.
Notation "x ==y":=(eq xy) : I_scope.
Notation "1":=(const_I 1) : 1 _scope.
Notation "0" :=(const_I 0) : I_scope.

And we define addition of two nested intervals below. And then we show that

(I,47) is an abelian group. Additionally, we prove that addition preserves order in /,

e, A<iB = A+;C<;B+;Cforall A,B,C € 1.
Definition seq_plus (f g : positive — Q) :=

fun n: positive = (f n) + (g n).

Lemma compare_plus (ab: 1) :

compare (seq_plus (I a) (I b)) (seq_plus (r a) (r b)).

Lemma get_closer_plus (ab:1I):

get_closer (seq_plus (I a) (I b)) (seq_plus (r a) (r b)).
Lemma increasing_plus (a b : 1) :

increasing (seq_plus (I a) (I b)).

Lemma decreasing_plus (a b : 1) :
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decreasing (seq_plus (r a) (r b)).
Definitionlplus(ab:1I):1:=
{l

[ :=seq_plus (L a) (I b);

r:=seq_plus (r a) (r b);

comp = compare_plus a b;

clo := get_closer_plus a b;

inc := increasing_plus a b;

dec = decreasing_plus a b;
[}.

Notation "x +y" :=(plus x y) : I_scope.

Theorem Iplus_leq_compatible :

YVabcd:I,a==b—c==d —>a+c==>b+d.

Theorem Iplus_comm :
Yab:l,a+b==>b+a.

Theorem Iplus_assoc :
Yabc:I,(a+b)+c==a+ (b+c).
Theorem Iplus_0_r :

Va:l,a+0==a.

Definition seq_opp (f : positive — Q) :=

fun n: positive = - (f n).

Lemma compare_opp (a : 1) :

compare (seq_opp (r a)) (seq_opp (1 a)).
Lemma get_closer_opp (a: 1) :

get_closer (seq_opp (r a)) (seq_opp (I a)).
Lemma increasing_opp (a: 1) :

increasing (seq_opp (r a)).
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Lemma decreasing_opp (a: 1) :

decreasing (seq_opp (I a)).

Definitionlopp(a:I):1I:=
{l
[ :=seq_opp (r a);
r:=seq_opp (I a);
comp := compare_opp a;
clo = get_closer_opp a;
inc := increasing_opp a;
dec := decreasing_opp a;
[}.

Notation "-x":= (lopp x) : I_scope.

Theorem Iplus_opp_r :
Va:l,a+ (-a)==0.
Theorem Iplus_order_compatible :
YVabc,a<b—a+c<b+ec.

We define multiplication of 1.

Previously, we already show that A <; Bor A =5 Bor B <; A for every A,
B in I. Tt implies that 0; <; Aor A <; Oy or A = Oy for each A € I. However,
if there is no constructive way, then we cannot determine whether 0; <; A or not in
Coq. We want to define multiplication of I by dividing into several cases. Hence, the

axiom /_dec below helps us to define multiplication.

Definition seq_mult (f g: positive — Q) :=

fun n: positive = (f n) x (g n).

Lemma pos_compare_mult (a b : 1) :

0<a— 0<b— compare (seq_mult (I a) (I b)) (seq_mult (r a) (r b)).

Lemma pos_get_closer_mult (a b : 1) :
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O0<a— 0<b— get_closer (seq_mult (I a) (I b)) (seq_mult (r a) (r b)).
Lemma pos_increasing_mult (a b : 1) :

0<a — 0<b — increasing (seq_mult (I a) (I b)).

Lemma pos_decreasing_mult (a b : 1) :

0<a— 0<b — decreasing (seq_mult (r a) (r b)).

Axiom I dec:

Va:I,{O<a}+{a<0})+ {a==0}.

I decatellsusthat 0 < aora < 0ora == 0. First, inleft (left H) is the
case that 0 < a. And inleft (right H) is the case that a < 0. Finally, inright H is
the case that a == 0. Using these, we define left and right rational sequences of a

multiplication of two nested intervals, respectively.
Definition I _seq mult I(ab:1):=

match (I_dec a) with
| inleft (left H) =
match (I_dec b) with
| inleft (Left H) = seq_mult (I a) (I b)
| inleft (right H) = seq_opp (seq_mult (r a) (r (- b)))
| inright H = const 0
end
| inleft (right H) =
match (I_dec b) with
| inleft (Left H) = seq_opp (seq_mult (r (- a)) (r b))
| inleft (right H) = seq_mult (I (- a)) (I (- b))
| inright H = const 0
end
| inright H = const 0

end.
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Definition I_seq mult_ r(ab:I):=
match (I_dec a) with
| inleft (left H) =
match (I_dec b) with
| inleft (Left H) = seq_mult (r a) (r b)
| inleft (right H) = seq_opp (seq_mult (I a) (I (- b)))
| inright H = const 0
end
| inleft (right H) =
match (I_dec b) with
| inleft (Left H) = seq_opp (seq_mult (I (- a)) (I b))
| inleft (right H) = seq_mult (r (- a)) (r (- b))
| inright H = const 0
end
| inright H = const 0

end.

Lemma I_compare_mult (a b : 1) :
compare (I_seq_mult_l a b) (I_seq_mult_r a b).
Lemma I_get _closer_mult (a b : 1) :
get_closer (I_seq_mult | a b) (I_seq_mult_r a b).
Lemma I_increasing_mult (a b : 1) :
increasing (I_seq_mult_l a b).
Lemma I_decreasing_mult (ab: 1) :
decreasing (I_seq_mult_r a b).
DefinitionlImult (ab:I):1:=
{l

[:=1_seq mult lab;

r:=1_seq_mult_rab;
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comp :=1_compare_mult a b ;
clo =1 _get_closer_multab ;
inc :=1_increasing_mult a b ;
dec :=I_decreasing_mult a b ;
1}.
Notation"x *_1y":=(mult xy) (at level 60, right associativity).

Theorem leq_mult_compatible :
Yabcd:LLa==b—c==d—ax Ic==bx_1Id.
Theorem Imult_comm :

Vab:L,ax Ib==bx_Ia.

Theorem Imult_assoc :
VYabc:I,(ax_Ib)yx_Ic=ax_Ib x_Ic).
Theorem Imult_1_r:

Va:l,ax I1==a.

Definition seq_inv (f : positive — Q) :=

fun n: positive = / (f n).

Lemma pos_compare_inv (a : I) :

0 < a — compare (seq_inv (r a)) (seq_inv (I a)).
Lemma pos_get_closer_inv (a : 1) :

0 <a — get_closer (seq_inv (r a)) (seq_inv (I a)).
Lemma pos_increasing_inv (a : I) :

0 < a — increasing (seq_inv (r a)).

Lemma pos_decreasing_inv (a : I) :

0 < a — decreasing (seq_inv (I a)).

Lemma neg_compare_inv (a : I) :

a <0 — compare (seq_inv (r a)) (seq_inv (I a)).

Lemma neg_get_closer_inv (a: 1) :
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a <0 — get_closer (seq_inv (r a)) (seq_inv (I a)).

Lemma neg_increasing_inv (a : I) :

a <0 — increasing (seq_inv (r a)).

Lemma neg_decreasing_inv (a : ) :

a <0 — decreasing (seq_inv (I a)).

Definitionlinv(a:I):1:=
match (I_dec a) with
| inleft (left H) =
{l
[ :=seq_inv (r a) ;
r:=seq_inv (la);
comp := (pos_compare_inv a H) ;
clo .= (pos_get_closer_inva H) ;
inc := (pos_increasing_inv a H) ;
dec := (pos_decreasing_inva H) ;
I}
| inleft (right H) =
{l
[ :=seq_inv (r a) ;
r:=seq_inv (la);
comp = (neg_compare_inv a H) ;
clo .= (neg_get_closer_inva H) ;
inc := (neg_increasing_inv a H) ;
dec := (neg_decreasing_inv a H) ;
I}
| inright H = const_I 0

end.
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Notation"/a":=(linv a).

Theorem Imult_inv_r:

Va:I,not(a==0)—ax_I({a)==1.

Theorem Imult_plus_distr_r :

Vabc:Lax_I(b+c)==(@a x_Ib)+(a x_Ic).

&) i
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Chapter 8

Conclusion

In this paper, we first characterize a straight line by an intuitive approach and formalize
what a straight line is. Especially, we define the Dedekind-completeness and show that
it is equivalent to the least-upper-bound-property. After that, we show the existence
of the reals, and prove the uniqueness of the reals. Then, we use Coq to prove the
existence of the reals. In this way, we study a straight line, or the reals in the order
sense.

Next, we define a nested interval. And we prove that the set of all nested intervals
is a Dedekind-complete ordered field. We omit proofs in natural language and prove
them by using Coq. We see again advantages of using proof assistant programs like
Coq: for example, time saving and accurate proof checking. And it also helps people

whether the proof one writes is really correct or not.
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