

저 시-비 리- 경 지 2.0 한민

는 아래 조건 르는 경 에 한하여 게

l 저 물 복제, 포, 전송, 전시, 공연 송할 수 습니다.

다 과 같 조건 라야 합니다:

l 하는, 저 물 나 포 경 , 저 물에 적 된 허락조건
 명확하게 나타내어야 합니다.

l 저 터 허가를 면 러한 조건들 적 되지 않습니다.

저 에 른 리는 내 에 하여 향 지 않습니다.

것 허락규약(Legal Code) 해하 쉽게 약한 것 니다.

Disclaimer

저 시. 하는 원저 를 시하여야 합니다.

비 리. 하는 저 물 리 목적 할 수 없습니다.

경 지. 하는 저 물 개 , 형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

이학석사학위논문

A Construction of the Reals from an
Intuitive and Formal Perspective

직관적관점과형식적관점에서의실수건설

2023년 2월

서울대학교대학원

수리과학 부

남도윤

이학석사학위논문

A Construction of the Reals from an
Intuitive and Formal Perspective

직관적관점과형식적관점에서의실수건설

2023년 2월

서울대학교대학원

수리과학 부

남도윤

A Construction of the Reals from an
Intuitive and Formal Perspective

직관적관점과형식적관점에서의실수건설

지도교수 Otto van Koert

이논문을이학석사학위논문으로제출함

2022년 12월

서울대학교대학원

수리과학부

남도윤

남도윤의이학석사학위논문을인준함

2023년 2월

위 원 장: 국 웅

부위원장: Otto van Koert

위 원: 서 인 석

Abstract

Based on intuitive facts about a straight line, we define what a straight line is with

the help of R. Dedekind. And we introduce a proof assistant program Coq. After that,

adding two operations - addition and multiplication - to the reals, we show that the

reals is a Dedekind-complete ordered field by complementing natural language and

Coq.

keywords: Real numbers, Dedekind-completeness, Proof assistant program, Coq

student number: 2018-24398

i

Contents

Abstract i

Contents ii

1 Introduction 1

2 Strengths for using Coq 2

3 Characterization of a straight line 4

3.1 Dense linearly ordered sets without endpoints 4

3.2 Dedekind-complete . 7

4 Construction of the reals 1 12

4.1 Existence of the reals . 12

4.2 Uniqueness of the reals . 16

5 Coq proof checking 1 19

6 Construction of the reals 2 30

6.1 Nested intervals . 30

6.2 Addition of nested intervals . 35

6.3 Multiplication of nested intervals . 35

7 Coq proof checking 2 38

ii

8 Conclusion 50

Abstract (In Korean) 52

감사의글 53

iii

Chapter 1

Introduction

A straight line, along with a circle, is one of the longest studied objects by mathemati-

cians. And we can see these objects in nature; for example, a sea horizon line and the

Sun. And as civilization developed, mankind gradually became able to make things

that resemble straight lines and circles more precisely. These days, we are surrounded

by these things.

Coq is a proof assistant program. One can define axioms, definitions, properties,

or theorems in Coq, and can write a proof code for a theorem. Coq checks line-by-line

correctness of the human-writing proof codes, and if it meets inappropriate line then

Coq stops and show what the error is. If Coq proceeds and there is no more things to

prove, then Coq shows ‘no more goals’ in the screen. Then people can assert that this

proof is correct on the built-in logic of Coq.

Because the set of all rational numbers is not enough to fulfill a straight line,

we need a more sufficient condition to be a straight line. This condition is called

Dedekind-completeness, and there are many equivalent forms such as least-upper-

bound-properties.

We study again how a straight line transforms from a geometric object to an alge-

braic object. And we use Coq to define definitions and to prove theorems.

1

Chapter 2

Strengths for using Coq

If someone have to choose a method doing lots of calculations (for example, multi-

plication of two 100 digits numbers) by hand or by a computer, then almost everyone

choose a computer. Because it is faster and more accurate than human. The advantage

of using Coq is similar: for proof checking, (if codes are written,) it is extremely faster

and more accurate than human.

Thomas Hales’ paper [1] summarize well how computer influences to mathemati-

cians historically, and introduce proof assistants and possible weakness of proof assis-

tants. Computers help people in calculation and visualization. (Of course, it also helps

with networking.)

A proof assistant is a software program in which people can make a formal proof

and check the proof is correct. Proof assistant programs are based on the type theory

instead of ZFC set theory. In classical logic, the law of excluded middle (p ∨ ¬p for

every property p) is accepted; however it is not accepted in constructive logic.

For example, try to prove a statement that ‘there is no rational number whose

squared is two.’ Let us denote this property by p, which can be written in logic symbol

as follows : not (∃q ∈ Q, q2 = 2). Then ‘not p’ is the statement (∃q ∈ Q, q2 = 2).

We basically assumed that p or not p is true. (It is the law of excluded middle.) And

by proving that ‘not p’ is false, we conclude that p is true. In classical logic this proof

2

is accepted, however it is not accepted in constructive logic.

A proof assistant may be constructive or classical. In special, Coq is constructive.

And there are many useful proof tactics in Coq. They help people can write formal

proof more efficiently and easily. To learn Coq, this book [2] is useful. And the official

website of Coq provides lots of materials.

3

Chapter 3

Characterization of a straight line

3.1 Dense linearly ordered sets without endpoints

In this section, let X denote a set.

Definition 3.1.1. A binary relation R on X is a set whose elements are in X ×X . If

(a, b) ∈ R, then for convenience, we use the notation aRb.

Example. Each of the sets {(n, n) | n ∈ N}, {(n,m) | n ∈ N, m ∈ N, n < m}, and

{(n,m) | n ∈ N, m ∈ N, n ≤ m} are binary relations on N, respectively. We denote

each binary relations by =N, <N, and ≤N in order.

Definition 3.1.2. Let R be a binary relation on X .

(a) R is reflexive if for all a ∈ X , aRa.

(b) R is irreflexive if for all a ∈ X , not aRa.

(c) R is symmetric if for all a, b ∈ X , aRb implies bRa.

(d) R is asymmetric if for all a, b ∈ X , aRb implies not bRa.

(e) R is antisymmetric if for all a, b ∈ X , aRb and bRa imply a = b.

(f) R is transitive if for all a, b, c ∈ X , aRb and bRc imply aRc.

4

Reflexivity and irreflexivity are properties related to one element; symmetry, asym-

metry and antisymmetry are properties related to two elements; transitivity is a prop-

erty related to three elements.

We can check that a binary relation =N is reflexive, symmetric, and transitive; a

binary relation <N is irreflexive, asymmetric, and transitive; a binary relation ≤N is re-

flexive, antisymmetric, and transitive. By generalizing these, we define an equivalence

relation, a strict order, and a partial order.

Definition 3.1.3. Let R be a binary relation on X .

(a) R is called an equivalence relation on X if it is reflexive, symmetric, and tran-

sitive.

(b) R is called a strict order on X if it is irreflexive, asymmetric, and transitive.

(c) R is called a partial order on X if it is reflexive, antisymmetric, and transitive.

Remark. We can easily show that ‘irreflexivity and transitivity implies asymmetry’,

and ‘asymmetry implies irreflexivity’. Hence, to show that a binary relation R is a

strict order, it is enough to show that R is irreflexive and transitive, or R is asymmetric

and transitive.

For natural numbers a and b, we are accustomed the fact that a < b if and only if

a ≤ b and a ̸= b, and that a ≤ b if and only if a < b or a = b. This relation between

partial order and strict order can be generalized.

The following two theorems are well known theorems. (see [3])

Theorem 3.1.1. If T is a partial order on X , then we define a binary relation ST on X

as follows : (a, b) ∈ ST ⇐⇒ (a, b) ∈ T and a ̸= b. Then this binary relation ST is a

strict order on X .

Similarly, if U is a strict order on X , then we define a binary relation PU on X as

follows : (a, b) ∈ PU ⇐⇒ (a, b) ∈ U or a = b. Then this binary relation PU is a

partial order on X .

5

Theorem 3.1.2. If T is a partial order on X , then ST is a strict order on X , and PST

is a partial order on X . These two partial orders T and PST
are the same.

Similarly, from a strict order U on X , we can make a partial order PU on X , and

then we can make a strict order SPU
on X . Then U = SPU

.

Thus we can interchange a partial order and a strict order. For example, when it is

easy to deal with strict order, then we use a strict order. And after that, if dealing with

partial order is easy, then we use the corresponding partial order.

Notation. For notational convenience, we shall use ≤X for a partial order on X , and

use <X for a strict order on X . When we use both ≤X and <X notation in the same

paragraph, then the two orders are assumed to be corresponding orders.

Definition 3.1.4. Let ≤X be a partial order on X . If a ≤X b or b ≤X a for some

a, b ∈ X , then we say that a and b are comparable in the order ≤X . If every two

elements of X are comparable in the order ≤X , then we say that a pair (X,≤X) is a

linearly ordered set.

Remark. By Theorem 3.1.1, it is easy to check that ‘a ≤X b or b ≤X a’ and ‘a <X b

or a = b or b <X a’ are equivalent. Thus the latter statement can be used as a definition

of comparable elements. And we can easily show that if a <X b or a = b or b <X a,

then only one of the three statements is true.

There is no natural number between arbitrary two consecutive natural numbers. For

example, there is no natural number between 3 and 4. However, for any two distinct

rational numbers, there is another rational number between them. For example between
1
5 and 4

7 , the rational number 1
3 exists.

Definition 3.1.5. Let (X,<X) be a linearly ordered set. It is dense, if for every two

distinct elements of X , there is another element of X between them, i.e., ∀a, b ∈

X (a <X b =⇒ ∃c ∈ X, a <X c <X b).

6

Remark. Let (X,<X) be a dense linearly ordered set and Y be a subset of X . If for

every a, b in X with a < b there exists corresponding c in Y such that a <X c <X b,

then we say that Y is dense in X .

Definition 3.1.6. Let (X,<X) be a linearly ordered set. If for every element x of X ,

there exist two elements y, z of X such that y <X x and x <X z, then X is said to be

without endpoints.

It is well-known that Q is a dense linearly ordered set without endpoints.

3.2 Dedekind-complete

Let L be a (horizontal) straight line without endpoints, or abusively, the set of points

of this straight line. The following argument for L depends on intuitive observation.

L

For two distinct points a and b of L, we define a <L b if a is on the left of b. Then

(L,<L) is a dense linearly ordered set without endpoints.

a b
L

And as it is well known, we can make a correspondence from each point of Q to

some point of L.

1
3

2
3

4
3

5
3

−2 2−1 10
L

Let f : Q → L be such correspondence. We define f in this way: we assign some point

p0 in L to 0, and some other point p1 (on the right of p0) to 1. And then we assign

the point p2 to 2 which satisfies that −−→p0p1 = −−→p1p2, i.e., have the same distance and

direction. In this way, we can define f(x) for all x ∈ Z, and also we can expand f to Q.

Then f is an order-preserving map, i.e., ∀q1, q2 ∈ Q, q1 < q2 =⇒ f(q1) <L f(q2).

7

And for every two distinct points a, b of L, there exists a rational number q such

that f(q) is between a and b.

f(0) = p0 b′ af(q) b
L

For example, let a, b be points of L such that 0 <L a <L b. Let p0 denote f(0). If we

move a to p0 and b to b′ such that
−−→
p0b

′ =
−→
ab. Then for natural number n, as n increases,

the corresponding point f(1/n) is close to p0. Thus there exists n ∈ N such that

f(1/n) <L b′. It is a kind of Archimedean property. Thus the distance between two

points a and b are greater than f(1/n). Roughly speaking, then the distance between

two points n · a and n · b are greater than f(1), where n · a means that a + · · · + a

for n times, or the endpoint of p0 + n × −→p0a. Thus there exists m ∈ N such that

n ·a <L f(m) <L n · b, equivalently a <L f(m/n) <L b. This explains the necessity

of the condition that f(Q) is dense in L.

Notation. Assume that (X,<X) is a dense linearly ordered set without endpoints and

x is an element of X . For convenience, we shall use the following notations.

(−∞, y)X := {x ∈ X | x <X y}, (−∞, y]X := {x ∈ X | x ≤X y},

(y,∞)X := {x ∈ X | y <X x}, [y,∞)X := {x ∈ X | y ≤X x}.

We know that Q cannot fulfill L. For example
√
2 is constructed from unit distance

1 with a ruler and a compass;
√
2 is a distance of a diagonal of a unit square. However

we know that
√
2 is not a rational number.

Dedekind [4] first consider what properties a straight line and Q commonly have.

A linear order is one of them. And he think that if we choose a point p in L, then this

point p divides L into two pieces; (−∞, p)L and [p,∞)L, or (−∞, p]L and (p,∞)L.

In each partitions, each element of the first part is less than (or on the left of) each

element of the second part. And this property also holds in Q.

Definition 3.2.1. Let (X,<X) be a dense linearly ordered set (without endpoints). Let

{A,B} be a partition of X , i.e., A ∪ B = X , A ∩ B = ∅ ,A ̸= ∅, and B ̸= ∅. A pair

8

(A,B) is called a comparable partition of X if a <X b for every a ∈ A and for every

b ∈ B.

In other words, a pair (A,B) is a comparable partition of X if {A,B} is a partition

of X and every element of A is less than every element of B.

Lemma 3.2.1. Assume that (A,B) is a comparable partition of X . If a ∈ A and

a′ <X a then a′ ∈ A, and if b ∈ B and b <X b′ then b′ ∈ B. And A is bounded above,

and B is bounded below.

Proof. Assume that a ∈ A and a′ <X a. Since {A,B} is a partition of X , if a′ /∈ A

then a′ ∈ B. Because (A,B) is a comparable partition of X and a ∈ A and a′ ∈ B, it

follows that a <X a′. By asymmetry of <X , we meet a contradiction. Thus if a ∈ A

and a′ <X a, then a′ ∈ A. And for arbitrary fixed element b of B, we see that a <X b

for every a ∈ A. Hence A is bounded above. The rest part is proved by the same

way.

If (A,B) is a comparable partition of a dense linearly ordered set X , then there

are four possibilities:

(a) A does not have the greatest element, and B has the least element.

(b) A has the greatest element, and B does not have the least element.

(c) A does not have the greatest element, and B does not have the least element.

(d) A has the greatest element, and B has the least element.

If A has the greatest element α and B has the least element β, then it follows that

α <X β. Since X is dense, there exists c ∈ X such that α <X c <X β. If c ∈ A,

then α is not the greatest element of A; if c ∈ B, then β is not the least element of B,

which leads a contradiction in each case. Hence the case (d) does not happen.

p L

9

p L

We can say that each point p of L make two comparable partitions of L: (−∞, p)L

and [p,∞)L, or (−∞, p]L and (p,∞)L. (These two comparable partitions corresponds

to p, thus we can identify them if we want.) It is Dedekind’s idea for completeness that

every comparable partition of L is made by some point p of L [4], or equivalently, for

every comparable partition (A,B) of L, A has the greatest element p or B has the least

element p, where p is in L.

Definition 3.2.2. Let X be a dense linearly ordered set (without endpoints). The set

X is Dedekind-complete if for each comparable partition (A,B) of X , the set A has

the greatest element or B has the least element in X .

Note that Q is not Dedekind-complete. For example, let A and B be two subsets

of Q defined by

A = {q ∈ Q : q ≤ 0} ∪ {q ∈ Q : 0 < q and q2 < 2},

B = {q ∈ Q : 0 < q and 2 < q2}.

Then (A,B) is a comparable partition of Q. However, we can easily show that A does

not have the greatest element and B does not have the least element. Thus Q is not

Dedekind-complete.

In summary, we characterize a straight line L as follows :

(a) L is a dense linearly ordered set without endpoints.

(b) There is an order-preserving map f : Q → L such that f(Q) is dense in L.

(c) L is Dedekind-complete.

Nowadays, it is well known that there are several equivalent conditions for com-

pleteness of the reals. One of them is the least-upper-bound-property. We show that

Dedekind-completeness is equivalent to the least-upper-bound-property.

10

Theorem 3.2.2. Suppose that (S,<S) is a dense linearly ordered set without end-

points. The set S is Dedekind-complete if and only if S has the least upper bound

property.

Proof. Assume that S is Dedekind-complete, and that A is a nonempty subset of S

bounded above. Define subsets X,Y of S as follows:

X = {x ∈ S | x is not an upper bound of A}

= {x ∈ S | x <S a for some a ∈ A},

Y = {y ∈ S | y is an upper bound of A}

= {y ∈ S | a ≤S y for all a ∈ A}.

Then (X,Y) is a comparable partition of S. Since S is Dedekind complete, X has the

greatest element or Y has the least element. If X has the greatest element g, then since

g ∈ X , g <S a for some a ∈ A. Because S is dense, there is z ∈ S such that g <S z

and z <S a. Since z <S a, we see that z ∈ X . Then for z, the element g is not the

greatest element in X . Therefore Y has the least element. It is exactly the least upper

bound of A. Thus A has the least-upper-bound-property.

Assume that S has the least-upper-bound-property. Let (A,B) be a comparable

partition of S. Since A is bounded above (by every element of B), the set A has the

least upper bound in S, say it α. Because every element of B is an upper bound of

A and α is the least upper bound of A, we know that α ≤S b for every b ∈ B. Thus

if α ∈ B, then α is the least element of B. If α ∈ A, then since α is (the least)

upper bound of A, we obtain that α is the greatest element of A. Thus S is Dedekind-

complete.

11

Chapter 4

Construction of the reals 1

4.1 Existence of the reals

In the previous section, we characterize a straight line. The corresponding algebraic

structure to a straight line is called the reals. In this section, we construct the reals.

Let R denote the set of all comparable partitions (A,B) of Q such that A does

not have the greatest element. Roughly speaking, (A,B) corresponds to a point in a

straight line between A and B, or a point not less than every points of A and not greater

than every points of B. We define equality and inequality in R. Two elements of R

equals in R if two elements are identical. And for two elements (A1, A2), (B1, B2) in

R, we define a binary relation (A1, A2) <R (B1, B2) if there is an element q ∈ Q such

that q ∈ A2 ∩B1. We shall show that this R is the reals. And we define ι : Q → R by

ι(q) = ((−∞, q)Q, [q,∞)Q). It is natural injection from Q into R.

Theorem 4.1.1. R is a dense linearly ordered set without endpoints. And ι : Q → R

is an order-preserving map such that ι(Q) is dense in R.

Proof. If q1 < q2 for q1, q2 in Q, then q1 ∈ [q1,∞)Q ∩ (−∞, q2)Q. Thus ι(q1) <R

ι(q2). If (A1, A2) <R (B1, B2), then there is x ∈ Q such that x ∈ A2 ∩B1. Since B1

does not have the greatest element, there exists y ∈ Q such that y ∈ B1 and x < y.

12

Let z denote (x+y)/2, i.e., x < z < y. Hence x ∈ A2∩ (−∞, z)Q, which means that

(A1, A2) <R ι(z). Similarly y ∈ [z,∞)Q ∩B1, which means that ι(z) <R (B1, B2).

Thus ι is an order-preserving map such that ι(Q) is dense in R.

Assume that (A1, A2) <R (A1, A2) for some element in R. Then there exists

q ∈ A2 ∩ A1. Since (A1, A2) is a comparable partition, we know that A1 ∩ A2 is

empty, which leads a contradiction. Thus <R is irreflexive. Assume that (A1, A2) <R

(B1, B2) and (B1, B2) <R (C1, C2). Then there exists p ∈ A2∩B1 and q ∈ B2∩C1.

Since p ∈ B1, q ∈ B2, and (B1, B2) is a comparable partition of Q, we obtain that

p < q. And p ∈ A2 and p < q implies that q ∈ A2. Because q ∈ A2 ∩ C1, it follows

that (A1, A2) <R (C1, C2), i.e., <R is transitive. Thus <R is a strict order on R.

Assume that two elements (A1, A2) and (B1, B2) of R are not identical, i.e., A1 ̸=

B1. Thus there exists q ∈ Q such that (q ∈ A1 and q /∈ B1) or (q /∈ A1 and q ∈ B1).

If q ∈ A1 and q /∈ B1, then q ∈ B2. Hence q ∈ B2 ∩ A1, which implies that

(B1, B2) <R (A1, A2). If q /∈ A1 and q ∈ B1, then by the same way, we know

that (A1, A2) <R (B1, B2). Hence every two elements of R are comparable. Thus

(R,<R) is a linearly ordered set.

Choose arbitrary element (A1, A2) of R. Because A1 and A2 are nonempty, there

exist x ∈ A1 and y ∈ A2. Then x ∈ [x,∞)Q ∩ A1, which means that ι(x) <R

(A1, A2). And from y ∈ A2, we know that y ∈ A2 ∩ (−∞, y+1)Q, which means that

(A1, A2) <R ι(y + 1). Therefore ι(x) <R (A1, A2) <R ι(y + 1). Thus R is without

endpoints. We already know that ι(Q) is dense in R, which implies that R is dense

directly.

Theorem 4.1.2. Let S be a dense linearly ordered set without endpoints and ι : Q → S

be an order-preserving map such that ι(Q) is dense in S. For a comparable partition

(S1, S2) of S, we define two subsets Q1 and Q2 of Q as follows :

Q1 := {q ∈ Q | ι(q) ∈ S1}, Q2 := {q ∈ Q | ι(q) ∈ S2}.

Then (Q1,Q2) is a comparable partition of Q. Additionally, if for each comparable

13

partition (S1, S2) of S there exists corresponding m in S such that ι(q1) ≤S m ≤S

ι(q2) for all q1 ∈ Q1 and q2 ∈ Q2, then S is Dedekind-complete.

Proof. Since (S1, S2) is a comparable partition of S, we know that both S1 and S2 are

nonempty, and s1 <S s2 for every s1 ∈ S1 and s2 ∈ S2, and S1 ∪ S2 = S.

Because S1 is nonempty, there is an element s1 in S1. And because S does not

have endpoints, there is an element s′ of S such that s′ <S s1. By Lemma 3.2.1, we

see that s′ ∈ S1. Since ι(Q) is dense in S, there is q1 in Q such that s′ <S ι(q1) <S s1.

By Lemma 3.2.1, we see that ι(q1) ∈ S1, which implies that Q1 is nonempty. In the

same way, we can prove that Q2 is nonempty.

Choose arbitrary q1 in Q1 and q2 in Q2. Then ι(q1) ∈ S1 and ι(q2) ∈ S2. Since

(S1, S2) is a comparable partition of S, we know that ι(q1) <S ι(q2). For the order

between q1 and q2, there are three possibilities : q1 < q2 or q1 = q2 or q2 < q1. Because

ι is an order-preserving map, each cases implies that ι(q1) <S ι(q2) or ι(q1) =S

ι(q2) or ι(q2) <S ι(q1), respectively. Since S is a linearly ordered set, the only non-

contradictable case is q1 < q2. Hence we show that q1 < q2 for every q1 ∈ Q1 and

q2 ∈ Q2. And this shows that Q1 ∩Q2 = ∅.

We know that ι(q) is in S for every q ∈ Q. Since S = S1 ∪ S2, we obtain that

ι(q) ∈ S1 or ι(q) ∈ S2 for every q ∈ Q, which means that q ∈ Q1 or q ∈ Q2 for every

q ∈ Q. Thus Q1 ∪Q2 = Q. Therefore (Q1,Q2) is a comparable partition of Q.

Assume that for each comparable partition (S1, S2) of S, there exists correspond-

ing m in S such that ι(q1) ≤S m ≤S ι(q2) for all q1 ∈ Q1 and q2 ∈ Q2. Since S

is a linearly ordered set, for each x in S such that x ̸=S m, we obtain that x <S m

or m <S x. Suppose that x <S m. Because ι(Q) is dense in S, there is q ∈ Q such

that x <S ι(q) <S m. If q ∈ Q2, then m ≤S ι(q) by assumption, which leads a

contradiction. Hence q ∈ Q1, and so ι(q) is in S1. By Lemma 3.2.1 and x <S ι(q),

we obtain that x is in S1. Thus if x <S m, then x is in S1. In the similar way, we can

14

show that if m <S x then x is in S2. In summary,
x <S m =⇒ x ∈ S1,

x =S m =⇒ x ∈ S1 or x ∈ S2,

m <S x =⇒ x ∈ S2.

Thus, every element of S1 is less than or equal to m, and every element of S2 is

greater than or equal to m. So if m belongs to S1, then m is the greatest element of S1;

and if m belongs to S2, then m is the least element of S2. Therefore S is Dedekind-

complete.

Theorem 4.1.3. R is Dedekind-complete.

Proof. Recall that R is the set of all comparable partitions (A,B) of Q such that A

does not have the greatest element. Let (R1, R2) be an arbitrary comparable partition

of R. We define two subsets Q1 and Q2 of Q as follows :

Q1 := {q ∈ Q | ι(q) ∈ R1}, Q2 := {q ∈ Q | ι(q) ∈ R2}.

Then by Theorem 4.1.2, (Q1,Q2) is a comparable partition of Q.

If Q1 has the greatest element, say it a, then since (Q1,Q2) is a comparable par-

tition of Q, it follows that q1 ≤ a < q2 for every q1 ∈ Q1 and q2 ∈ Q2. Because ι

is order-preserving, we obtain that ι(q1) ≤R ι(a) <R ι(q2) for every q1 ∈ Q1 and

q2 ∈ Q2.

If Q1 does not have the greatest element, then since (Q1,Q2) is a comparable

partition of Q, we obtain that (Q1,Q2) ∈ R. Let us denote (Q1,Q2) by m. For each

q1 ∈ Q1, there exists q′1 ∈ Q1 such that q1 < q′1. Then q′1 ∈ [q1,∞)Q ∩ Q1. Hence

ι(q1) <R m. And for every q2 ∈ Q2, from Q2∩Q1 = ∅, we know that [q2,∞)Q∩Q1 =

∅. It follows that (not ι(q2) <R m) for every q2 ∈ Q2. Hence m ≤R ι(q2) for every

q ∈ Q2. Thus ι(q1) <R m ≤R ι(q2) for every q1 ∈ Q1 and q2 ∈ Q2.

Therefore R is Dedekind-complete by Theorem 4.1.2.

15

4.2 Uniqueness of the reals

In the previous section, we show the existence of the reals R, or equivalently, an al-

gebraic structure corresponding to a straight line. In this section, we shall show the

uniqueness of the reals (up to isomorphism).

Theorem 4.2.1. Suppose that (S,<S) is a dense linearly ordered set without end-

points, and that there is an order-preserving map f : Q → S such that f(Q) is dense

in S, and that (S,<S) is Dedekind-complete. Then there exists a bijective order-

preserving map f : R → S which extends f , i.e., f(q) = f(ι(q)) for all q ∈ Q.

Moreover, this extension f is unique.

Q

R S

f
ι

f

Proof. First, we show the uniqueness of this extension. Assume that f1 and f2 are two

distinct extensions. Then there exists r ∈ R such that f1(r) ̸=S f2(r). Without loss

of generality, assume that f1(r) <S f2(r). Since f(Q) is dense in S, there is q ∈ Q

such that f1(r) <S f(q) <S f2(r). Thus f1(r) <S f1(ι(q)) and f2(ι(q)) <S f2(r).

It implies that r <R ι(q) and ι(q) <R r. This leads a contradiction. Thus if there is an

extension, it is unique.

We shall show that for every (A,B) ∈ R, there is unique p ∈ S such that f(a) <S

p ≤S f(b) for all a ∈ A and b ∈ B, i.e., f(a) <S p for all a ∈ A and p ≤S f(b) for

all b ∈ B. We define two subsets C,D of S as follows:

C = {c ∈ S | c ≤S f(a) for some a ∈ A},

D = {d ∈ S | f(b) <S d for some b ∈ B}.

If x ∈ C, then there is a ∈ A such that x ≤S f(a). Because A does not have the

greatest element, there is a′ ∈ A such that a < a′. Since f is order preserving, we

16

see that f(a) <S f(a′). Thus x <S f(a′). And by definition of C, we obtain that

f(a′) ∈ C. Therefore C does not have the greatest element.

If y ∈ D, then there is b ∈ B such that f(b) <S y. Since S is dense, there is

y′ ∈ S such that f(b) <S y′ <S y. Hence y′ ∈ D and y′ <S y. Thus D does not have

the least element.

If there is no p ∈ S such that f(a) <S p ≤S f(b) for all a ∈ A and b ∈ B,

then C ∪ D = S. Thus we know that (C,D) is a comparable partition of S. Since

S is Dedekind complete, C has the greatest element or D has the least element. It

contradicts to our previous argument. Thus there exists p ∈ S such that f(a) <S p ≤S

f(b) for all a ∈ A and b ∈ B. If such p is not unique, assume that there are two such

elements p1, p2 in S with p1 <S p2. Since f(Q) is dense in S, there is q ∈ Q such that

p1 <S f(q) <S p2. Since (A,B) is a comparable partition of Q, we see that q ∈ A or

q ∈ B. If q ∈ A, then p1 <S f(q) contradicts that f(a) <S p1 for all a ∈ A. If q ∈ B,

then f(q) <S p2 contradicts that p2 ≤S f(b) for all b ∈ B. Thus such p is unique.

To define f , for each (A,B) ∈ R, we assign p in S to (A,B) satisfying that

f(a) <S p ≤S f(b) for all a ∈ A and b ∈ B. By our previous argument, f is well

defined. For each q ∈ Q, we know that ι(q) = ((−∞, q)Q, [q,∞)Q). Hence f(ι(q)) is

equal to p satisfying that f(a) <S p ≤S f(b) for all a ∈ (−∞, q)Q and b ∈ [q,∞)Q.

If p = f(q), then the condition is satisfied. By the uniqueness of p, we conclude that

f(ι(q)) = f(q).

For two distinct (A1, B1), (A2, B2) ∈ R, assume that (A1, B1) <R (A2, B2).

Then there is q ∈ Q such that q ∈ B1 ∩ A2. Let pi be f((Ai, Bi)) for i = 1, 2. Then

f(a) <S p1 ≤S f(b) for all (a, b) ∈ A1 × B1 and f(a) <S p2 ≤S f(b) for all

(a, b) ∈ A2 ×B2.

We derive the inequalities p1 ≤S f(q) and f(q) <S p2. Hence p1 <S p2. Thus f

is an order preserving map. The fact that f is injective is also proved.

The only remaining goal is to show that f is surjective. For each p ∈ S, define

Ap and Bp by Ap = {q ∈ Q | f(q) <S p} and Bp = {q ∈ Q | p ≤S f(q)}. Then

17

(Ap, Bp) is a comparable partition of Q. And if q1 ∈ Ap, i.e., if f(q1) <S p, then since

f(Q) is dense in S, there is q2 ∈ Q such that f(q1) <S f(q2) <S p. Thus q2 ∈ Ap

and q1 <S q2. Hence Ap does not have the greatest element. Thus (Ap, Bp) belongs to

R. And by definition of Ap and Bp, the condition f(a) <S p ≤S f(b) for all a ∈ Ap

and b ∈ Bp is satisfied, which implies that f((Ap, Bp)) = p. Thus f is surjective.

Therefore f is a bijective order preserving map satisfying that f(ι(q)) = f(q) for all

q ∈ Q.

18

Chapter 5

Coq proof checking 1

In this chapter, we overview how we use Coq to construct the reals. In the following

Coq codes, Lemma and Theorem and Example are all things that we need to prove.

Due to a lake of space, we omit all proof codes in this paper, instead upload them in

the Internet. 1

In Coq codes, we first put the excluded-middle property by axiom because there

are some occasions necessarily to use it. And then we make and prove some logical

lemmas. all_ssreflect is a library that contains some useful tactics. QArith is a library

that contains definitions and lemmas related to Q. And ∨ and ∧ are logical connectives

that imply ‘or’ and ‘and’, respectively.

From mathcomp Require Import all_ssreflect.

Require Import QArith.

Axiom excluded_middle :

∀ P : Prop, P ∨ not P.

Lemma and_or_distr (A B C : Prop) :

(A ∧ B) ∨ C ↔ (A ∨ C) ∧ (B ∨ C).

Lemma or_and_distr (A B C : Prop) :
1https://github.com/DoyunNam/Coq_Reals/blob/main/Coq_Reals.v

19

(A ∨ B) ∧ C ↔ (A ∧ C) ∨ (B ∧ C).

Lemma and_comm (P Q : Prop) :

P ∧ Q ↔ Q ∧ P.

Lemma or_trans (A : Prop) (B : Prop) (C : Prop) :

(A ∨ B) ∨ C ↔ A ∨ (B ∨ C).

Lemma contrapositive (P Q : Prop) :

(P → Q) → (not Q → not P).

Lemma imply_not_or (P Q : Prop) :

(P → Q) ↔ (not P ∨ Q).

Lemma not_not_equiv (P : Prop) :

P ↔ (not (not P)).

Lemma all_prop (S : Set) (P : S → Prop) :

(∀ x : S, (P x)) ↔ not (∃ x : S, not (P x)).

Lemma not_all_prop (S : Set) (P : S → Prop) :

not (∀ x : S, (P x)) ↔ ∃ x : S, not (P x).

Lemma not_exists_prop (S : Set) (P : S → Prop) :

not (∃ x : S, (P x)) ↔ ∀ x : S, not (P x).

Lemma not_imply_equiv (P Q : Prop) :

not (P → Q) ↔ not (not P ∨ Q).

Lemma not_or (P Q : Prop) :

not (P ∨ Q) ↔ not P ∧ not Q.

Lemma equiv_not_equiv1 (P Q : Prop) :

(P ↔ Q) → (not P ↔ not Q).

Lemma equiv_not_equiv2 (P Q : Prop) :

(not P ↔ not Q) → (P ↔ Q).

Lemma equiv_not_equiv (P Q : Prop) :

20

(P ↔ Q) ↔ (not P ↔ not Q).

Lemma not_and (P Q : Prop) :

not (P ∧ Q) ↔ not P ∨ not Q.

Lemma all_or_pro_distr (S : Set) (P Q : S → Prop) :

(∀ x : S, (P x ∨ Q x)) →

(∀ x : S, P x) ∨ (∃ x : S, Q x).

Like these logical lemmas, if necessary, we make lemmas and prove them; and use

them in the course of proving some theorems. Since Coq library does not contain every

logically true statement, in many times, we need to define lemmas and prove them. For

example,

Lemma Zlt_le_0 (n : Z) :

(0 < n)%Z → (0 ≤ n)%Z.

Lemma Qlt_le (a b : Q) :

a < b → a ≤ b.

Lemma Qlt_plus_transpose (a b c : Q) :

a - b < c ↔ a < b + c.

These three lemmas are trivial in natural language. However, in Coq, we need to

prove them if we want to use them and they are not in the Coq library. For briefness,

we shall omit obvious lemmas.

And we define relation, reflexive, irreflexive, and so on. For general situations, we

define compatible_eq_lt : if w ∼X x, y ∼X z, and w <X y, then x <X z, where ∼X

is an equivalence relation on X .

Definition relation (X : Set) :=

X → X → Prop.

Definition reflexive {X : Set} (R : relation X) :=

∀ a : X, (R a a).

Definition irreflexive {X : Set} (R : relation X) :=

21

∀ a : X, not (R a a).

Definition symmetric {X : Set} (R : relation X) :=

∀ a b : X, (R a b) → (R b a).

Definition antisymmetric {X : Set} (R : relation X) :=

∀ a b : X, (R a b) → (R b a) → a = b.

Definition asymmetric {X : Set} (R : relation X) :=

∀ a b : X, (R a b) → not (R b a).

Definition transitive {X : Set} (R : relation X) :=

∀ a b c : X, (R a b) → (R b c) → (R a c).

Definition strict_order {X : Set} (R : relation X) :=

(irreflexive R) ∧ (asymmetric R) ∧ (transitive R).

Definition equivalence {X : Set} (R : relation X) :=

(reflexive R) ∧ (symmetric R) ∧ (transitive R).

Definition compatible_eq_lt {X : Set} (Xlt Xeq : relation X) :=

∀ w x y z : X, (Xeq w x) → (Xeq y z) → (Xlt w y) → (Xlt x z).

Definition total_order {X : Set} (Xlt Xeq : relation X) :=

∀ x y : X, (Xlt x y) ∨ (Xeq x y) ∨ (Xlt y x).

Definition without_endpoints {X : Set} (Xlt : relation X) :=

∀ x : X, (∃ y, Xlt y x) ∧ (∃ z, Xlt x z).

Definition dense {X : Set} (Xlt : relation X) :=

∀ x y : X, (Xlt x y) →

∃ z : X, (Xlt x z) ∧ (Xlt z y).

Record dlos := mkdlos {

X : Set;

Xlt : relation X;

Xeq : relation X;

22

eq : equivalence Xeq;

st : strict_order Xlt;

cp : compatible_eq_lt Xlt Xeq;

to : total_order Xlt Xeq;

den : dense Xlt;

we : without_endpoints Xlt;

}.

And in the above, we make a Record structure dlos. The Record structure dlos

is similar to an ordered 9-tuples (X, Xlt, . . . , den, we). Each X, Xlt, Xeq, . . . is like a

coordinate function. If S is a dlos, then X S is a set, and Xlt S is a relation defined on X

S, and so on.

If S is a dlos, then Xeq S is a relation on X S. And eq S implies that equivalence

Xeq S is true. Hence Xeq S is an equivalence relation on X S. Similarly, Xlt S is a strict

order on X S.

In the below, we make an axiom whose name is function.

Axiom function :

∀ S : dlos, ∀ f : (X S) → bool,

∀ p q : X S, (Xeq S) p q → f p = f q.

Lemma Xlt_not (S : dlos) (x y : X S) :

Xlt S x y → not (Xlt S y x ∨ Xeq S y x).

Example Q_equivalence :

equivalence Qeq.

Example Q_strict_order :

strict_order Qlt.

Example Q_compatible_eq_lt :

compatible_eq_lt Qlt Qeq.

Example Q_total_order :

23

total_order Qlt Qeq.

Example Q_dense :

dense Qlt.

Example Q_without_endpoints :

without_endpoints Qlt.

Definition Q_dlos :=

{|

X := Q;

Xlt := Qlt;

Xeq := Qeq;

eq := Q_equivalence;

st := Q_strict_order;

cp := Q_compatible_eq_lt;

to := Q_total_order;

den := Q_dense;

we := Q_without_endpoints

|}.

In the above, we proved that Q is a dense linearly ordered set without endpoints.

And for a comparable partition (A,B) of some dense linearly ordered set X , there

is a corresponding function f : X → {0, 1} such that f(x) = 0 if x ∈ A and

f(x) = 1 if x ∈ B. (This function f is equal to the characteristic function χB).

Since both A and B are nonempty, the map f is not a constant function. And since

(A,B) is a comparable partition, it follows that f is monotonically increasing. Thus

each comparable partition corresponds to a non-constant, monotonically increasing

function from X into {0, 1}. And we can easily prove that this correspondence is

bijective.

In Coq, bool is a set {false, true}. We define f(x) = false if x ∈ A and f(x) =

true if x ∈ B. Then we may understand the following three definitions.

24

Definition mono_inc {S : dlos} (f : (X S) → bool) :=

∀ p q : X S, (Xlt S) p q →

(f p = false ∧ f q = false) ∨

(f p = false ∧ f q = true) ∨

(f p = true ∧ f q = true).

Definition not_const {S : dlos} (f : (X S) → bool) :=

(∃ p : X S, (f p) = false) ∧

(∃ q : X S, (f q) = true).

Definition comparable_partition {S : dlos} (f : (X S) → bool) :=

(mono_inc f) ∧ (not_const f).

And not_havemax means that there is no greatest element of f−1(false), and have-

max means that there is a greatest element of f−1(false). Similarly, not_havemin im-

plies that there is no least element of f−1(true), and havemin implies that there is a

least element of f−1(true).

Definition not_havemax {S : dlos} (f : (X S) → bool) :=

∀ p : X S, (f p) = false

→ (∃ q : X S, (Xlt S) p q ∧ (f q) = false).

Definition havemax {S : dlos} (f : (X S) → bool) :=

(∃ x : X S,

f x = false ∧ (∀ y : X S, (Xlt S) x y → f y = true)).

Definition not_havemin {S : dlos} (f : (X S) → bool) :=

∀ q : X S, (f q) = true

→ (∃ p : X S, (Xlt S) p q ∧ (f p) = true).

Definition havemin {S : dlos} (f : (X S) → bool) :=

(∃ y : X S,

f y = true ∧ (∀ x : X S, (Xlt S) x y → f x = false)).

And as we know, Dedekind-completeness is defined as follows : for every compa-

25

rable partition (A,B), A has the greatest element or B has the least element. And to

construct R, we define CondR.

X Q_dlos is equal to Q as a set. Hence f : X Q_dlos → bool is equal to f : Q →

bool. And we defined comparable_partition f by (mono_inc f) ∧ (not_const f) before.

Thus CondR f in Coq corresponds to a comparable partition (A,B) of Q such that A

does not have the greatest element.

Definition Dedekind_complete (S : dlos) :=

∀ (f : (X S) → bool),

(comparable_partition f) → (havemax f) ∨ (havemin f).

Definition CondR (f : (X Q_dlos) → bool) :=

mono_inc f ∧ not_const f ∧ not_havemax f.

Lemma havemax_total {S : dlos} (f : (X S) → bool) :

havemax f ↔ not (not_havemax f).

Lemma havemin_total {S : dlos} (f : (X S) → bool) :

havemin f ↔ not (not_havemin f).

Lemma mono_inc’ {S : dlos} (f : (X S) → bool) :

(mono_inc f ↔

∀ p q : X S, (f p = false → f q = true → (Xlt S) p q)).

less_part and greater_part corresponds to Lemma 3.2.1.

Lemma less_part {S : dlos} (f : (X S) → bool) (p q : X S) :

mono_inc f → (Xlt S) p q → f q = false → f p = false.

Lemma greater_part {S : dlos} (f : (X S) → bool) (p q : X S) :

mono_inc f → (Xlt S) p q → f p = true → f q = true.

Lemma classify_comp_part {S : dlos} (f : (X S) → bool) :

(comparable_partition f) →

(havemax f ∧ not_havemin f) ∨

(not_havemax f ∧ havemin f) ∨

26

(not_havemax f ∧ not_havemin f).

And we make R as follows. And then we define Req and Rlt. Note that if we

corresponds f r1 to (A1, A2) and f r2 to (B1, B2), then (f r1) q = true means that

q ∈ A2, and (f r2) q = false means that q ∈ B1. Hence q ∈ A2 ∩ B1, which implies

that (A1, A2) <R (B1, B2). Thus Rlt is well defined.

Record R := mkReal {

f : (X Q_dlos) → bool;

Cond : CondR f ;

}.

Definition Req (r1 r2 : R) :=

∀ q : Q, (f r1) q = (f r2) q.

Definition Rlt (r1 r2 : R) :=

∃ q : Q, (f r1) q = true ∧ (f r2) q = false.

Theorem R_equivalence :

equivalence Req.

Theorem R_strict_order :

strict_order Rlt.

Theorem R_compatible_eq_lt :

compatible_eq_lt Rlt Req.

Theorem R_total_order :

total_order Rlt Req.

Qle_bool is a function of type Q → Q → bool defined by as follows : Qle_bool

p q = true if p ≤ q, and Qle_bool p q = false if q < p. As defined above, CondR f is

a property corresponding that A does not have the greatest element for a comparable

partition (A,B) of Q. For each q ∈ Q, we see that Qle_bool q is a function from Q

into bool, and in the below, inject_Q is a structure corresponding ι : Q → R in our

previous chapter.

27

Lemma CondR_Q (q : Q) :

CondR (Qle_bool q).

Definition inject_Q (q : Q) : R :=

{| f := (Qle_bool q) ;

Cond := (CondR_Q q)

|}.

Theorem inject_Q_eq (p q : Q) :

p == q → Req (inject_Q p) (inject_Q q).

Theorem inject_Q_order_preserve (p q : Q) :

p < q → Rlt (inject_Q p) (inject_Q q).

Lemma inject_Q_order_reverse (p q : Q) :

Rlt (inject_Q p) (inject_Q q) → p < q.

Theorem inject_Q_dense (a b : R) :

(Rlt a b) →

∃ q : Q, (Rlt a (inject_Q q)) ∧ (Rlt (inject_Q q) b).

Theorem R_dense :

dense Rlt.

Theorem R_without_endpoints :

without_endpoints Rlt.

And so far, we show that R is a dense linearly ordered set without endpoints. And

in the below, we define a dlos structure R_dlos which represents R.

Definition R_dlos :=

{|

X := R;

Xlt := Rlt;

Xeq := Req;

eq := R_equivalence;

28

st := R_strict_order;

cp := R_compatible_eq_lt;

to := R_total_order;

den := R_dense;

we := R_without_endpoints

|}.

And then, we prove that R is Dedekind-complete. We construct a dlos (dense lin-

early ordered set without endpoints) structure R_dlos; and show that inject_Q is an

order-preserving map from Q to R such that inject_Q(Q) is dense in R; and prove that

R is Dedekind-complete. Therefore we prove the existence of the reals in Coq.

Theorem R_Dedekind_complete :

Dedekind_complete R_dlos.

29

Chapter 6

Construction of the reals 2

In chapter 4 we show the existence and uniqueness of the reals by hand, and in chapter

5 we prove the existence of the reals by Coq. In this chapter, we construct the reals

in another way, and define addition and multiplication, and show that the reals is the

Dedekind-complete ordered field. Recall the definition of an ordered field.

Definition 6.0.1. If (S,<) is a linearly ordered set and if (S,+,×) is a field, then S

is called an ordered field if it satisfies the following conditions:

(a) For x, y ∈ S, if 0 < x and 0 < y then 0 < x× y

(b) For x, y, z ∈ S, if x < y then x+ z < y + z.

6.1 Nested intervals

This section summarizes definitions, lemmas, and theorems. We prove every lemmas

and theorems by Coq in the next section.

Definition 6.1.1. Let (an) and (bn) be rational sequences. If (an) and (bn) satisfies

the following properties, then the pair ((an), (bn)) is called a nested interval.

(a) ∃m ∈ N, ∀n ∈ N, m ≤ n =⇒ an ≤ bn.

30

(b) ∀m,n ∈ N, ∃p ∈ N, n ≤ p and bp − ap <
1
m .

(c) ∃m ∈ N, ∀n, p ∈ N, m ≤ n ≤ p =⇒ an ≤ ap.

(d) ∃m ∈ N, ∀n, p ∈ N, m ≤ n ≤ p =⇒ bp ≤ bn.

And we denote I the set of all nested intervals.

As a comparable partition (A,B) of Q corresponds to a point in a straight line L

such that not less than every point of A and not greater than every point of B, We may

consider a nested interval ((an), (bn)) corresponds to a point p in a straight line L such

that p is not less than every an and not greater than every bn. The condition (a), (c),

(d) of a nested interval contains common phrase ∃m ∈ N, because it helps to define

multiplication of two nested intervals.

Notation. For a nested interval A = ((an), (bn)), We can choose m1, m2, m3 of N in

the condition (a), (c), (d) of Definition 6.1.1. And let m be max{m1,m2,m3}. Then

after m-th term, the sequence (an) is increasing, (bn) is decreasing, and an ≤ bn for

each m ≤ n. We shall use this m frequently. For convenience, we denote this m by

mA for a nested interval A.

Lemma 6.1.1. For a nested interval A = ((an), (bn)), the following statement is true.

∀n, p ∈ N, mA ≤ n ≤ p =⇒ an ≤ bp.

Proof. If mA ≤ n ≤ p, then we obtain that an ≤ ap and ap ≤ bp, which implies that

an ≤ bp.

Definition 6.1.2. For two nested intervals A = ((an), (bn)) and X = ((xn), (yn)),

we define a binary relation <I as follows :

A <I X ⇐⇒ ∀m ∈ N, ∃n ∈ N, m ≤ n and bn < xn.

Theorem 6.1.2. A binary relation <I is a strict order on I .

31

Proof. Let A = ((an), (a
′
n)), B = ((bn), (b

′
n)), and C = ((cn), (c

′
n)) be nested

intervals. Assume that A <I B and B <I C. Let m be max{mA,mB,mC}. Then

there exists n such that m ≤ n and a′n < bn, and exists p such that n ≤ p and b′p < cp.

Since m ≤ n ≤ p and mB ≤ m, we obtain that bn ≤ b′p by Lemma 6.1.1. Hence

a′n < cp. Since we know that after m-th term, sequence (a′n) is decreasing, and (cn) is

increasing, we obtain that a′t < ct for all p ≤ t. Thus A <I C, i.e., <I is transitive.

If A <I A for a nested interval A = ((an), (a
′
n)), then there is n ∈ N such that

mA ≤ n and a′n < an. It contradicts to the definition of mA. Thus <I is irreflexive.

Hence <I is a strict order on I .

Definition 6.1.3. For two nested intervals A and X , we define a binary relation =I as

follows : A =I X ⇐⇒ (not A <I X) and (not X <I A).

Theorem 6.1.3. A binary relation =I is an equivalence relation on I .

Proof. Reflexivity and symmetry is proved trivially. Assume that A =I B and B =I

C. We want to show that A =I C. For this, it is enough to prove that (not A <I B)

and (not B <I C) implies (not A <I C).

We set A = ((an), (a
′
n)), B = ((bn), (b

′
n)), and C = ((cn), (c

′
n)). (not A <I B)

implies that

∃m1 ∈ N, ∀n ∈ N, m1 ≤ n =⇒ bn ≤ a′n. (6.1)

and (not B <I C) implies that

∃m2 ∈ N, ∀n ∈ N, m2 ≤ n =⇒ cn ≤ b′n. (6.2)

Let m∗ be max{mB,m1,m2}. If A <I C, then there is p ∈ N such that m∗ ≤ p and

a′p < cp. Then from (6.1), (6.2), and the definition of m∗, we obtain that

∀n ∈ N, p ≤ n =⇒ bn ≤ bp ≤ a′p < cp ≤ b′p ≤ b′n.

Since 0 < cp − a′p ≤ b′n − bn for all p ≤ n, the nested interval B cannot satisfy the

condition (b) of Definition 6.1.1, which leads a contradiction. Hence (not A <I C) is

true.

32

In this way, we can prove them by natural language. The remaining theorems and

lemmas are proved in the next chapter by using Coq. Thus we skip to prove them by

natural language, and only mention them.

Theorem 6.1.4. Let A,B,C,D be nested intervals. If A =I B and C =I D and

A <I C, then B <I D.

Theorem 6.1.5. For arbitrary two nested intervals A and X we obtain that A <I X

or A =I X or X <I A, i.e., the strict order <I (with =I) is a total order on I .

Remark. We can easily show that only one of A <I X or A =I X or X <I A is true.

By asymmetry of <I , both A <I X and X <I A cannot happen at the same time.

Assume that A <I X and A =I X . Then by Theorem 6.1.4, for A =I X , X =I A,

and A <I X , we obtain X <I A. And asymmetry of <I leads a contradiction. Thus

our claim is proved.

Definition 6.1.4. For each rational number q, there is a constant sequence (q) (that is a

rational sequence such that every term is q). Then we can easily check that ((q), (q)) is

a nested interval for every q ∈ Q. Let ι : Q → I denote a map which assigns ((q), (q))

to q.

Theorem 6.1.6. For two rational numbers p and q, if p < q then ι(p) <I ι(q).

Theorem 6.1.7. If A,B are two nested intervals and if A <I B, then there is q ∈ Q

such that A <I ι(q) <I B; in other words, ι(Q) is dense in I .

Theorem 6.1.8. I is dense.

Definition 6.1.5 (Translation). For each nested interval ((an), (bn)) and for every ra-

tional number t, we can easily show that ((an + t), (bn + t)) is also a nested interval.

Let ϕ : Q× I → I be a map that sends (t, ((an), (bn))) to ((an + t), (bn + t)).

Lemma 6.1.9. If t is a positive rational number, then A <I ϕ(t, A) for every A ∈ I .

Lemma 6.1.10. If t is a negative rational number, then ϕ(t, A) <I A for every A ∈ I .

33

Theorem 6.1.11. For each nested interval A, there exist nested interval B and C such

that B <I A <I C.

In summary, The set of all nested intervals I (with <I and =I) is a dense linearly

ordered set without endpoints. And ι : Q → I is an order preserving map such that

ι(Q) is dense in I .

Theorem 6.1.12. I is Dedekind-complete.

Proof. Let (I1, I2) be a comparable partition of I . Define two subsets Q1 and Q2 of Q

as follows:

Q1 = {q ∈ Q | ι(q) ∈ I1}, Q2 = {q ∈ Q | ι(q) ∈ I2}.

Then (Q1,Q2) is a comparable partition of Q by Theorem 4.1.2. For every n ∈ N,

there exists unique cn ∈ Z such that cn
n ∈ Q1 and cn+1

n ∈ Q2. Let Jn be a closed

interval [cnn , cn+1
n] (in Q). Since Jn = [2cn2n , 2cn+2

2n] and J2n = [c2n2n , c2n+1
2n] and c2n

2n ∈

Q1 and c2n+1
2n ∈ Q2, it follows that c2n must be 2cn or 2cn +1. In any case, we obtain

that J2n ⊂ Jn for all n ∈ N. Let an be c2n
2n and bn be c2n+1

2n for all n ∈ N, i.e.,

[an, bn] = J2n . Since J2n+1 ⊂ J2n , we obtain that [an+1, bn+1] ⊂ [an, bn]. Hence

(an) is an increasing sequence, and (bn) is a decreasing sequence. Moreover an < bn

and bn − an = 1
2n for all n ∈ N. Let us denote ((an), (bn)) by m. Then m is a nested

interval by the previous argument.

If Q1 has the greatest element, let α denote it. Then q1 ≤ α < q2 for all q1 ∈ Q1

and q2 ∈ Q2. Hence ι(q1) ≤I ι(α) < ι(q2) for all q1 ∈ Q1 and q2 ∈ Q2. If Q2 has the

least element, then we can progress in the same way. Assume that Q1 does not have the

greatest element and Q2 does not have the least element. For arbitrary q1 ∈ Q1, there is

q′1 ∈ Q1 such that q1 < q′1. And there is n ∈ N such that 1
2n < q′1 − q1. Since q′1 ∈ Q1

and bn ∈ Q2, we know that q′1 < bn. Thus bn − an = 1
2n < q′1 − q1 < bn − q1, which

implies that q1 < an. Since (an) is increasing, we obtain that ι(q1) <I m. Similarly

we can show that m < ι(q2) for every q2 ∈ Q2. Hence I is Dedekind-complete by

Theorem 4.1.2.

34

6.2 Addition of nested intervals

Definition 6.2.1. For each two nested intervals A = ((an), (bn)) and X = ((xn), (yn)),

we define a binary operation +I as follows:

A+I X := ((an + xn), (bn + yn)).

Theorem 6.2.1. If A and X are nested intervals, then so is A+IX; thus +I is a binary

operation on I .

Theorem 6.2.2. For p, q ∈ Q, we obtain that ι(p+ q) =I ι(p) +I ι(q).

Theorem 6.2.3. For each A,B,C,D ∈ I , if A =I B and C =I D then A +I C =I

B +I D.

Theorem 6.2.4. (I,+I) is commutative, i.e., A+I B =I B+I A for every A,B ∈ I .

Theorem 6.2.5. (I,+I) is associative, i.e., (A +I B) +I C =I A +I (B +I C) for

every A,B,C ∈ I .

Definition 6.2.2. Let 0I denote ι(0).

Theorem 6.2.6. For each A ∈ I , A+I 0I =I A.

Definition 6.2.3. If ((an), (bn)) is a nested intervals, then so is ((−bn), (−an)). Let

− : I → I be a map that assigns ((−bn), (−an)) to ((an), (bn)).

Theorem 6.2.7. For each A ∈ I , A+I (−A) =I 0I .

Theorem 6.2.8. For each A,B,C ∈ I , if A <I B then A+I C < B +I C.

6.3 Multiplication of nested intervals

Because <I is a total order on I , for each A ∈ I we obtain that A <I 0I or A =I

0I or 0I <I A.

35

Definition 6.3.1. For each two nested intervals A = ((an), (bn)) and X = ((xn), (yn)),

we define a binary operation ×I as follows :

A×I X :=

((anxn), (bnyn)) if 0I < A and 0I < X,

((bnxn), (anyn)) if 0I < A and X < 0I ,

((anyn), (bnxn)) if A < 0I and 0I < X,

((bnyn), (anxn)) if A < 0I and X < 0I ,

0I otherwise.

We may think that if A <I 0I and if 0I <I B then A×IB must be −((−A)×IB).

The above definition is made by this way.

Theorem 6.3.1. If A and X are nested intervals, then so is A×IX; thus ×I is a binary

operation on I .

Theorem 6.3.2. For p, q ∈ Q, we obtain that ι(p× q) =I ι(p)×I ι(q).

Theorem 6.3.3. For each A,B,C,D ∈ I , if A =I B and C =I D then A ×I C =I

B ×I D.

Theorem 6.3.4. (I,×I) is commutative, i.e., A×I B =I B×I A for every A,B ∈ I .

Theorem 6.3.5. (I,×I) is associative, i.e., (A ×I B) ×I C =I A ×I (B ×I C) for

every A,B,C ∈ I .

Definition 6.3.2. Let 1I denote ι(1).

Theorem 6.3.6. For each A ∈ I , A×I 1I =I A.

Definition 6.3.3. For each nested interval A = ((an), (bn)) satisfying that not (A =I

0I), we define a unary operation /I as follows :

/IA := ((1/bn), (1/an)),

where if an = 0 for some n then assign 1/an to 0; similarly to bn.

36

Theorem 6.3.7. If A is a nested interval, then so is /IA; thus /I is a unary operation

on I .

Theorem 6.3.8. If A ∈ I and not (A =I 0I), then A×I (/IA) =I 1I .

Theorem 6.3.9. For each A,B,C ∈ I , A×I (B +I C) =I A×I B +I A×I C.

Theorem 6.3.10. For each A,B ∈ I , if 0I <I A and 0I <I B then 0I <I A×I B.

Therefore we conclude that I is a Dedekind-complete ordered field.

37

Chapter 7

Coq proof checking 2

In the below, we define each condition of a nested interval (Definition 6.1.1), and make

a structure for a nested interval. And then we define <I and =I on I named as Ilt and

Ieq, respectively. And we eventually show that I (with <I and =I) is a dense linearly

ordered set without endpoints.

Definition compare (f g : positive → Q) :=

∃ m : positive, (∀ n : positive,

(m ≤ n)%positive → f n ≤ g n).

Definition get_closer (f g : positive → Q) :=

∀ m n : positive, (∃ p : positive,

(n ≤ p)%positive ∧ g p - f p < 1 # m).

Definition increasing (f : positive → Q) :=

∃ m : positive, (∀ n p : positive,

(m ≤ n)%positive → (n ≤ p)%positive → f n ≤ f p).

Definition decreasing (g : positive → Q) :=

∃ m : positive, (∀ n p : positive,

(m ≤ n)%positive → (n ≤ p)%positive → g p ≤ g n).

Record I := mkI {

38

l : positive → Q;

r : positive → Q;

comp : compare l r;

clo : get_closer l r;

inc : increasing l;

dec : decreasing r;

}.

Definition Ilt (a b : I) :=

∀ m : positive, (∃ n : positive,

(m ≤ n)%positive ∧ (r a) n < (l b) n).

Definition Ieq (a b : I) :=

compare (l b) (r a) ∧ compare (l a) (r b).

Lemma not_Ilt_equiv (a b : I) :

not (Ilt a b) ↔ compare (l b) (r a).

Theorem I_strict_order :

strict_order Ilt.

Lemma Ieq_trans_half (a b c : I) :

not (Ilt a b) → not (Ilt b c) → not (Ilt a c).

Theorem I_equivalence :

equivalence Ieq.

Theorem I_total_order :

total_order Ilt Ieq.

Theorem I_compatible_eq_lt :

compatible_eq_lt Ilt Ieq.

Definition const (q : Q) : positive → Q :=

fun⇒ q.

39

Lemma compare_const (q : Q) :

compare (const q) (const q).

Lemma get_closer_const (q : Q) :

get_closer (const q) (const q).

Lemma increasing_const (q : Q) :

increasing (const q).

Lemma decreasing_const (q : Q) :

decreasing (const q).

Definition const_I (q : Q) : I :=

{|

l := const q;

r := const q;

comp := compare_const q;

clo := get_closer_const q;

inc := increasing_const q;

dec := decreasing_const q;

|}.

Theorem const_I_order_preserve (p q : Q) :

p < q → Ilt (const_I p) (const_I q).

Theorem const_I_order_reverse (p q : Q) :

Ilt (const_I p) (const_I q) → p < q.

Theorem const_I_dense (a b : I) :

(Ilt a b) →

∃ q : Q, (Ilt a (const_I q)) ∧ (Ilt (const_I q) b).

Theorem I_dense :

dense Ilt.

Definition translation (t : Q) (f : positive → Q) :=

40

fun q ⇒ f (q) + t.

Lemma compare_translation (t : Q) (a : I) :

compare (translation t (l a)) (translation t (r a)).

Lemma get_closer_translation (t : Q) (a : I) :

get_closer (translation t (l a)) (translation t (r a)).

Lemma increasing_translation (t : Q) (a : I) :

increasing (translation t (l a)).

Lemma decreasing_translation (t : Q) (a : I) :

decreasing (translation t (r a)).

Definition translation_I (t : Q) (a : I) : I:=

{|

l := translation t (l a);

r := translation t (r a);

comp := compare_translation t a;

clo := get_closer_translation t a;

inc := increasing_translation t a;

dec := decreasing_translation t a;

|}.

Lemma translation_gt (t : Q) (a : I) :

0 < t → Ilt a (translation_I t a).

Lemma translation_lt (t : Q) (a : I) :

t < 0 → Ilt (translation_I t a) a.

Theorem I_without_endpoints :

without_endpoints Ilt.

Definition I_dlos :=

{|

X := I;

41

Xlt := Ilt;

Xeq := Ieq;

eq := I_equivalence;

st := I_strict_order;

cp := I_compatible_eq_lt;

to := I_total_order;

den := I_dense;

we := I_without_endpoints

|}.

Declare Scope I_scope.

Open Scope I_scope.

Notation "x < y" := (Ilt x y) : I_scope.

Notation "x == y" := (Ieq x y) : I_scope.

Notation "1" := (const_I 1) : I_scope.

Notation "0" := (const_I 0) : I_scope.

And we define addition of two nested intervals below. And then we show that

(I,+I) is an abelian group. Additionally, we prove that addition preserves order in I ,

i.e., A <I B =⇒ A+I C <I B +I C for all A,B,C ∈ I .

Definition seq_plus (f g : positive → Q) :=

fun n : positive ⇒ (f n) + (g n).

Lemma compare_plus (a b : I) :

compare (seq_plus (l a) (l b)) (seq_plus (r a) (r b)).

Lemma get_closer_plus (a b : I) :

get_closer (seq_plus (l a) (l b)) (seq_plus (r a) (r b)).

Lemma increasing_plus (a b : I) :

increasing (seq_plus (l a) (l b)).

Lemma decreasing_plus (a b : I) :

42

decreasing (seq_plus (r a) (r b)).

Definition Iplus (a b : I) : I :=

{|

l := seq_plus (l a) (l b);

r := seq_plus (r a) (r b);

comp := compare_plus a b;

clo := get_closer_plus a b;

inc := increasing_plus a b;

dec := decreasing_plus a b;

|}.

Notation "x + y" := (Iplus x y) : I_scope.

Theorem Iplus_Ieq_compatible :

∀ a b c d : I, a == b → c == d → a + c == b + d.

Theorem Iplus_comm :

∀ a b : I, a + b == b + a.

Theorem Iplus_assoc :

∀ a b c : I, (a + b) + c == a + (b + c).

Theorem Iplus_0_r :

∀ a : I, a + 0 == a.

Definition seq_opp (f : positive → Q) :=

fun n : positive ⇒ - (f n).

Lemma compare_opp (a : I) :

compare (seq_opp (r a)) (seq_opp (l a)).

Lemma get_closer_opp (a : I) :

get_closer (seq_opp (r a)) (seq_opp (l a)).

Lemma increasing_opp (a : I) :

increasing (seq_opp (r a)).

43

Lemma decreasing_opp (a : I) :

decreasing (seq_opp (l a)).

Definition Iopp (a : I) : I :=

{|

l := seq_opp (r a);

r := seq_opp (l a);

comp := compare_opp a;

clo := get_closer_opp a;

inc := increasing_opp a;

dec := decreasing_opp a;

|}.

Notation "- x" := (Iopp x) : I_scope.

Theorem Iplus_opp_r :

∀ a : I, a + (- a) == 0.

Theorem Iplus_order_compatible :

∀ a b c, a < b → a + c < b + c.

We define multiplication of I .

Previously, we already show that A <I B or A =I B or B <I A for every A,

B in I . It implies that 0I <I A or A <I 0I or A =I 0I for each A ∈ I . However,

if there is no constructive way, then we cannot determine whether 0I <I A or not in

Coq. We want to define multiplication of I by dividing into several cases. Hence, the

axiom I_dec below helps us to define multiplication.

Definition seq_mult (f g : positive → Q) :=

fun n : positive ⇒ (f n) × (g n).

Lemma pos_compare_mult (a b : I) :

0 < a → 0 < b → compare (seq_mult (l a) (l b)) (seq_mult (r a) (r b)).

Lemma pos_get_closer_mult (a b : I) :

44

0 < a → 0 < b → get_closer (seq_mult (l a) (l b)) (seq_mult (r a) (r b)).

Lemma pos_increasing_mult (a b : I) :

0 < a → 0 < b → increasing (seq_mult (l a) (l b)).

Lemma pos_decreasing_mult (a b : I) :

0 < a → 0 < b → decreasing (seq_mult (r a) (r b)).

Axiom I_dec :

∀ a : I, ({0 < a} + {a < 0}) + {a == 0}.

I_dec a tells us that 0 < a or a < 0 or a == 0. First, inleft (left H) is the

case that 0 < a. And inleft (right H) is the case that a < 0. Finally, inright H is

the case that a == 0. Using these, we define left and right rational sequences of a

multiplication of two nested intervals, respectively.

Definition I_seq_mult_l (a b : I) :=

match (I_dec a) with

| inleft (left H) ⇒

match (I_dec b) with

| inleft (left H) ⇒ seq_mult (l a) (l b)

| inleft (right H) ⇒ seq_opp (seq_mult (r a) (r (- b)))

| inright H ⇒ const 0

end

| inleft (right H) ⇒

match (I_dec b) with

| inleft (left H) ⇒ seq_opp (seq_mult (r (- a)) (r b))

| inleft (right H) ⇒ seq_mult (l (- a)) (l (- b))

| inright H ⇒ const 0

end

| inright H ⇒ const 0

end.

45

Definition I_seq_mult_r (a b : I) :=

match (I_dec a) with

| inleft (left H) ⇒

match (I_dec b) with

| inleft (left H) ⇒ seq_mult (r a) (r b)

| inleft (right H) ⇒ seq_opp (seq_mult (l a) (l (- b)))

| inright H ⇒ const 0

end

| inleft (right H) ⇒

match (I_dec b) with

| inleft (left H) ⇒ seq_opp (seq_mult (l (- a)) (l b))

| inleft (right H) ⇒ seq_mult (r (- a)) (r (- b))

| inright H ⇒ const 0

end

| inright H ⇒ const 0

end.

Lemma I_compare_mult (a b : I) :

compare (I_seq_mult_l a b) (I_seq_mult_r a b).

Lemma I_get_closer_mult (a b : I) :

get_closer (I_seq_mult_l a b) (I_seq_mult_r a b).

Lemma I_increasing_mult (a b : I) :

increasing (I_seq_mult_l a b).

Lemma I_decreasing_mult (a b : I) :

decreasing (I_seq_mult_r a b).

Definition Imult (a b : I) : I :=

{|

l := I_seq_mult_l a b ;

r := I_seq_mult_r a b ;

46

comp := I_compare_mult a b ;

clo := I_get_closer_mult a b ;

inc := I_increasing_mult a b ;

dec := I_decreasing_mult a b ;

|}.

Notation "x *_I y " := (Imult x y) (at level 60, right associativity).

Theorem Ieq_mult_compatible :

∀ a b c d : I, a == b → c == d → a ×_I c == b ×_I d.

Theorem Imult_comm :

∀ a b : I, a ×_I b == b ×_I a.

Theorem Imult_assoc :

∀ a b c : I, (a ×_I b) ×_I c == a ×_I (b ×_I c).

Theorem Imult_1_r :

∀ a : I, a ×_I 1 == a.

Definition seq_inv (f : positive → Q) :=

fun n : positive ⇒ / (f n).

Lemma pos_compare_inv (a : I) :

0 < a → compare (seq_inv (r a)) (seq_inv (l a)).

Lemma pos_get_closer_inv (a : I) :

0 < a → get_closer (seq_inv (r a)) (seq_inv (l a)).

Lemma pos_increasing_inv (a : I) :

0 < a → increasing (seq_inv (r a)).

Lemma pos_decreasing_inv (a : I) :

0 < a → decreasing (seq_inv (l a)).

Lemma neg_compare_inv (a : I) :

a < 0 → compare (seq_inv (r a)) (seq_inv (l a)).

Lemma neg_get_closer_inv (a : I) :

47

a < 0 → get_closer (seq_inv (r a)) (seq_inv (l a)).

Lemma neg_increasing_inv (a : I) :

a < 0 → increasing (seq_inv (r a)).

Lemma neg_decreasing_inv (a : I) :

a < 0 → decreasing (seq_inv (l a)).

Definition Iinv (a : I) : I :=

match (I_dec a) with

| inleft (left H) ⇒

{|

l := seq_inv (r a) ;

r := seq_inv (l a) ;

comp := (pos_compare_inv a H) ;

clo := (pos_get_closer_inv a H) ;

inc := (pos_increasing_inv a H) ;

dec := (pos_decreasing_inv a H) ;

|}

| inleft (right H) ⇒

{|

l := seq_inv (r a) ;

r := seq_inv (l a) ;

comp := (neg_compare_inv a H) ;

clo := (neg_get_closer_inv a H) ;

inc := (neg_increasing_inv a H) ;

dec := (neg_decreasing_inv a H) ;

|}

| inright H ⇒ const_I 0

end.

48

Notation " / a" := (Iinv a).

Theorem Imult_inv_r :

∀ a : I, not (a == 0) → a ×_I (/ a) == 1.

Theorem Imult_plus_distr_r :

∀ a b c : I, a ×_I (b + c) == (a ×_I b) + (a ×_I c).

49

Chapter 8

Conclusion

In this paper, we first characterize a straight line by an intuitive approach and formalize

what a straight line is. Especially, we define the Dedekind-completeness and show that

it is equivalent to the least-upper-bound-property. After that, we show the existence

of the reals, and prove the uniqueness of the reals. Then, we use Coq to prove the

existence of the reals. In this way, we study a straight line, or the reals in the order

sense.

Next, we define a nested interval. And we prove that the set of all nested intervals

is a Dedekind-complete ordered field. We omit proofs in natural language and prove

them by using Coq. We see again advantages of using proof assistant programs like

Coq: for example, time saving and accurate proof checking. And it also helps people

whether the proof one writes is really correct or not.

50

Bibliography

[1] Thomas Hales. Mathematics in the Age of the Turing Machine. 2013. URL: https:

//arxiv.org/abs/1302.2898.

[2] Benjamin C. Pierce et al. Logical Foundations. Vol. 1. Software Foundations.

Electronic textbook, 2022. URL: https://softwarefoundations.cis.

upenn.edu.

[3] Karel Hrbacek; Thomas Jech. Introduction to set theory. CRC Press, 1999.

[4] Richard Dedekind. Essays on the theory of numbers : I. Continuity and irrational

numbers. II. The nature and meaning of number. Dover Publications, 1963.

51

초록

이논문에서는리하르트데데킨트의업적을바탕으로직선에대한직관적인사

실에 근거하여 직선이 무엇인지 정의한다. 그리고 증명보조기의 한 예인 Coq를 소

개한다. 더불어 직선과 대응하는 대수적 구조인 실수에 두 연산, 덧셈과 곱셈을 정

의한다. 마지막으로 이렇게 정의한 실수 구조가 완비순서체임을 Coq를 이용해서

보인다.

주요어:실수,데데킨드완비성,증명보조기, Coq

학번: 2018-24398

52

감사의글

Otto van Koert 교수님과 국웅 교수님, 서인석 교수님, 수리과학부 행정실 선생

님, 수리과학부 대학원 행정조교님, 연구실 동료들, 함께 공부한 2018년 전기 대학

원생친구들,석사수업을담당해주신교수님들덕분에이논문을쓸수있었습니다.

그리고 부모님, 동생, 친척, 정순모 교수님, 박신 선생님, 친구들, 하동우 선생

님,박정민선생님,할머니와외할머니,그외함께해주시고도움을주신많은분들

덕분에오늘날까지수학을공부하면서잘살아올수있었습니다.

이분들과이논문을읽어주신분들께감사의말씀을드립니다.

53

	1. Introduction
	2. Strengths for using Coq
	3. Characterization of a straight line
	3.1 Dense linearly ordered sets without endpoints
	3.2 Dedekind-complete

	4. Construction of the reals 1
	4.1 Existence of the reals
	4.2 Uniqueness of the reals

	5. Coq proof checking 1
	6. Construction of the reals 2
	6.1 Nested intervals
	6.2 Addition of nested intervals
	6.3 Multiplication of nested intervals

	7. Coq proof checking 2
	8. Conclusion

<startpage>8
1. Introduction 1
2. Strengths for using Coq 2
3. Characterization of a straight line 4
 3.1 Dense linearly ordered sets without endpoints 4
 3.2 Dedekind-complete 7
4. Construction of the reals 1 12
 4.1 Existence of the reals 12
 4.2 Uniqueness of the reals 16
5. Coq proof checking 1 19
6. Construction of the reals 2 30
 6.1 Nested intervals 30
 6.2 Addition of nested intervals 35
 6.3 Multiplication of nested intervals 35
7. Coq proof checking 2 38
8. Conclusion 50
</body>

