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Abstract

Cluster Structure in Schubert variety

Hyeonjae Choi
Department of Mathematical Sciences
The Graduate School

Seoul National University

In this survey paper, we review the paper [18] which showed how the coor-
dinate ring of (open) Schubert variety in the Grassmannian can be identified
with a cluster algebra by using Postnikov’s plabic graph. This generalizes a
theorem of Scott [17] and proves a conjecture for Schubert varieties which is
stated explicitly in [14]. To prove the conjecture, we use a result of Leclerc
[10] that coordinate rings of many Richardson varieties in the complete flag
variety can be identified with cluster algebra. We also use a construction of
Karpman [7] to construct a plabic graph associated with reduced expressions.
We generalize the result to skew Schubert varieties using a generalized plabic

graph.
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1 Introduction

Fomin and Zelevinsky introduced the Cluster algebras to understand the
dual canonical bases for quantum group and total positivity [4]. They are
connected to many fields of mathematics such as representation theory of
quivers, discrete integrable systems, combinatorics, Riemann surfaces, and
Teichmiiller theory [12]. They satisfy some properties, including Laurent phe-
nomenon [4] and positivity theorem [6, 11].

In [17], Scott used plabic graph (or an equivalent object, namely alter-
nating strand diagram) to prove that the coordinate ring of the affine cone
over the Grassmannian can be identified with cluster algebra. Some experts
expected that there is a natural generalization of plabic graph that gives
a cluster structure for (open) Schubert varieties (or more generally, open
positroid varieties). In [14], this construction was stated explicitly as a con-

jecture.

Conjecture 1.1. Let G be a reduced plabic graph corresponding to an (open)
Schubert (or more generally, open positroid) variety. Then the target labeling
of the faces of G (which we identify with a collection of Pliicker coordinates)
together with the dual quiver of G gives rise to a seed for a cluster structure

on the coordinate ring of the open Schubert (or positroid) variety.

Meanwhile, Leclerc [10] shows that when w has a factorization of the form
w = xv with {(w) = {(z) + {(v), the coordinate ring of open Richardson va-
riety R, is cluster algebra. Since open Schubert varieties are isomorphic to
open Richardson varieties with above property, Leclerc’s result implies that
their coordinate rings admit cluster algebra. Since Leclerc’s cluster quiver is
defined in terms of morphisms of modules of the preprojective algebra, his
description is far from plabic graph.

In this survey paper, we review that the coordinate ring of a Schubert
variety is cluster algebra by relating Leclerc’s cluster structure to the plabic
graph. We also generalize the result to construct cluster structures in skew
Schubert varieties. We use a generalized plabic graph (with boundary ver-

tices which are not cyclically labeled) for skew Schubert variety.



The paper is organized as follows. In Section 2, we give background on
cluster algebra, Schubert variety, plabic graph, and reduced expression. In
Section 3, we use a particular equivalence class of plabic graph called rectan-
gles seed. We describe the rectangles seed and its dual quiver associated with
Schubert variety, bridge graph, and Leclerc’s cluster structure. In Section 4,
we introduce Theorem 4.1 and Theorem 4.2. We first prove Theorem 4.2 and

deduce Theorem 4.1 from Theorem 4.2. This paper is mainly referred to [18].



2 Preliminaries

2.1 Quiver and Cluster Structure

We introduce the definitions of quivers and cluster algebra. The definitions
are followed from [3] and [18].

Definition 2.1. A quiver is a finite oriented graph, consisting of vertices
and directed edges (called arrows). We allow multiple edges, but we disallow

loops and oriented 2-cycles.

Some vertices in a quiver are called frozen and the remaining vertices are
called mutable. We always assume that there are no arrows between pairs of

frozen vertices. We often express frozen vertices in rectangular boxes.

Definition 2.2. Let k be a mutable vertex in a quiver (). The quiver muta-

tion py transforms @ into a new quiver ' via a sequence of three steps:
1. For each oriented two-arrow path ¢« — k — j , add a new arrow ¢ — j.
2. Reverse the direction of all arrows incident to the vertex k.
3. Repeatedly remove oriented 2-cycles until unable to do so.

Example 1. Given a quiver @, Figure 1 shows @' = 1 (Q) which is obtained
from @) by mutating at the vertex k.

[4] k [4] k

Figure 1: A quiver mutation uyg, the vertices in square box are frozen.

Remark 2.3. Mutation is an involution, i.e. ux(ux(Q)) = Q.



Definition 2.4. Two quivers Q and Q' are called mutation equivalent if )
can be transformed into a quiver isomorphic to )’ by a sequence of mutations.
The mutation equivalence class [Q] of a quiver @ is the set of all quivers (up

to isomorphism) which are mutation equivalent to Q.

Definition 2.5. Two quivers ) and @' are said to have the same type if
their mutable parts are mutation equivalent. Here the mutable part of the
quiver refers to the mutable vertices together with all arrows which connect

two mutable vertices.

Choose m > n positive integers. Let F be an ambient field of rational

functions in n independent variables over C(x, 1, ..., Zpy).

Definition 2.6. A labeled seed in F is a pair (X,Q) where

e X = (z1,...,oy) is an m-tuple of elements of F forming a free gener-
ating set.

e () is a quiver on vertices 1,...,n,n+1,...,m , whose vertices 1,...,n
are mutable, and whose vertices n + 1,...,m are frozen.

We use the following terminology:
e x is the (labeled) eztended cluster of the labeled seed (x,Q).
e the n-tuple x = (z1,...,x,) is the (labeled) cluster of this seed.
e the elements z4,...,x, are its cluster variables.

e the remaining elements x,1,..., 2, of X are the frozen variables (or

coefficient variables).

Definition 2.7. Let (X, Q) be a labeled seed in F. The seed mutation py, in

direction k transforms (X, () into the new labeled seed ux(X,Q) = (X', Q")

defined as follows:

o Q' = (Q).



e the extended cluster X' = (z,...,2},) is given by 2, = z; for j # &,

whereas x} € F is determined by the ezchange relation

/
wy = ][+ ] o

k—r s—k

where the first product is over all arrows & — r in () which start at k£, and

the second product is over all arrows s — k£ which end at k.
Remark 2.8. Seed mutation is an involution.

Definition 2.9. Let T,, denote the n-reqular tree whose edges are labeled
by the number 1,...,n, so that the n edges incident to each vertex receive
different label (see Figure 2).

Figure 2: The 3-regular tree Tj.

We write t-£-¢' to indicate that vertices t,t' € T,, are joined by an edge
labeled by k.

Definition 2.10. A cluster pattern is defined by assigning a labeled seed
Y = (X, Q) to every vertex t € T,, so that the seeds assigned to the
endpoints of any edge t-£-#' are obtained from each other by the seed mutation

in direction k. The components of X; are written as X; = (Z14,. .., Tn:t)-

Cluster pattern is uniquely determined by an arbitrary seed.



Definition 2.11. Let X; be a cluster pattern, and let

X=|J%={zi:teTp1<i<n}

teTy

the union of clusters of all the seed in the pattern. The elements z;, € X are
called cluster variables. The cluster algebra A associated with a given pattern
is Clzitl,, ..., zE!]-subalgebra of the ambient field F generated by all cluster
variables: A = C[c*!][X]. We denote A = A(X,Q), where (X, Q) is any seed
in the underlying cluster pattern. In this generality, A is called a cluster
algebra from a quiver, or a skew-symmetric cluster algebra of geometric type.

We say that A has rank n because each cluster contains n cluster variables.

Remark 2.12. A common alternative definition is to take A = C[¢]|[X] in-
stead of A = C[c*!][X]. With this definition, Scott proved that the coordinate

ring of Grassmannian is cluster algebra [17].



2.2 Notation on Schubert Variety

We will give notation about Schubert variety in the Grassmannians [9].

Let GL, be the general linear group, B the Borel subgroup of lower
triangular matrices, Bt the opposite Borel subgroup of upper triangular
matrices, and W = S,, the Weyl group (in this case the symmetric group on
n letters). It contains the longest element wy with £(wo) = (3). The complete
flag variety Fl, is the homogeneous space B\ GL,. Precisely, element g of
GL, gives rise to a flag of subspace { V; C V5, C -+ C V,}, where the span
of the top i rows of g is V; and V,, = C". Since the left action of B preserve
the flag, we can identify Fl, with the set of flags { Vi C Vo, C --- C V,,}
where dim V; = 1.

Let m : GL, — Fl, denote the natural projection 7(g) := Bg. Let w be
the matrix representative for w in GL,,. The Bruhat decomposition

GL,= || BuwB
weWw

projects to the Schubert decomposition

Fl,= |] C.

weW

where C, = m(BwB) is the Schubert cell associated to w, isomorphic to
C™) We also have the Birkhoff decomposition
GL,= || BwB™*
weW
which projects to the opposite Schubert decomposition
Fl,= ] C*
weW
where C* = w(BwB™) is the opposite Schubert cell associated to w, isomor-
phic to CHwo)—(w),
The intersection R, , := C” N C,, is called an open Richardson variety
because its closure is a Richardson variety. R, ,, is nonempty only if v < w
in the Bruhat order of W. So we also have

Fl, = || Ry

v<w

7



Fix 1 < k < n. The parabolic subgroup Wi = (s1,...,Sk_1) X (Sk+1, Sk12
ooy Sp1) < W gives rise to parabolic subgroup Pg in GL,, i.e. Py =

|_|W BwB. W contains the longest element wx with ¢(wg) = (g) + (”;k)
weWg
The Grassmannian Gry, is the homogeneous space Py \ GL,. We can

think Gry,, as the set of all k-planes in n-dimensional vector space C". An
element of Gry, can be viewed as a full rank k& X n matrix modulo left mul-
tiplication by invertible k£ X k matrices.

For integers a, b, let [a,b] denote {a,a+1,...,b— 1,b} if a < b and the
empty set otherwise. Let [n] := [1,n] and ([Z]) be the set of all k-element
subsets of [n].

Given V € Gry, represented by k x n matrix A, let A;(V) be the
k x k minor of A determined by the column set I € ([Z]). The A[(V)
are called Plicker coordinates of V. The Pliicker coordinates give an em-
bedding p : Gry, — P(A"C"). Choose basis ui,...,u;r in V, we define
p(V) := [ug A -+ A ug]. We also have Pliicker relation associated to Pliicker
embedding. Let I = {iy,...,ix_1} € (k[ﬁ]l) and J = {j1,...,Jk+1} € (k[i]l)
The following quadratic relations for Gry,, are called Plicker relations

k+1

Z—Zl (_1)£Ai1,---7ik—17jeAjl,...,j},...7jk+1 =0

Let WE = WK and WX  denote the set of minimal- and maximal-

min max
length coset representatives for Wy \ W. Also let KW (or E. W) denote
the set of minimal-length coset representatives for W/Wy. Let o € S, be
Grassmannian permutation if it has at most one descent, and when present,
the descent must be in position k, i.e. o(k) > o(k + 1).

We have the 7y : Fl,, — Gry,, where m(Bg) = Vi. Ry and m(Ry ) are

isomorphic when v € WE (or when w € WK ). We obtain a stratification

max min
Grk,n = |_| Tk (Rv,w)

where (v, w) range over all v € WK

max?

w € W, such that v < w. The strata
Tk(Ryw) are sometimes called open positroid varieties and their closures are
called positroid varieties. Positroid varieties include Schubert and opposite

Schubert varieties in the Grassmannians [8].

8



Definition 2.13. Let I denote a k-element subset of [n]. The Schubert cell 2y
is defined to be Q;={V € Gry,, : the lexicographically minimal nonvanishing
Pliicker coordinate of V' is Ay(V)}. The Schubert variety X is defined to be
the closure Q; of Q;. Meanwhile, the opposite Schubert cell Q! is defined to
be Qf = {V € Gry,, : the lexicographically maximal nonvanishing Pliicker
coordinate of V' is A;(V)}. The opposite Schubert variety X' is defined to
be the closure QF of Q.

(resp. w € WK

There is bijection between v € WX ma

in ) and k-element sub-
sets of [n], which we denote by I(v) (resp. I(w)). When w € WE | 71(Re.) is
isomorphic to the opposite Schubert variety X', which has dimension £(w).
Therefore we refer to mp(Re.w) as an open opposite Schubert variety. Simi-

larly, when v € WX

max)’

Te(Ro,w,) is isomorphic to the Schubert variety Xy,
which has dimension ¢(wg) — ¢(w). Therefore we refer to (R ., ) as an open

Schubert variety. More generally, if v € WX and w € W has a factorization

of the form w = zv which is length-additive, i.e. where ((w) = {(x) + £(v),
then we refer to m,(Ryw) (resp. mr(Row)) as a skew Schubert variety (resp.
open skew Schubert variety).

Let A be a Young diagram contained in a k x (n — k) rectangle. We
can identify A with the lattice path Ll/ in the rectangle taking steps west
and south from the northeast corner of the rectangle to the southeast cor-
ner (“Going southwest”). If we label the steps of the lattice path from 1 to
n, then the labels of the south steps give a k-element subset of [n] that we
denote by V<"()). Conversely we can identify each k-element subset I of [n]
with a Young diagram in a k x (n — k) rectangle, which we denote by A< (I).
Hence we can index Schubert and opposite Schubert cells and varieties by
Young diagrams, denoting them €, Q*, X, and X*, respectively. The open
Schubert and opposite Schubert varieties are denoted by X3, and (X*)°. The
dimension of 2y, X, and X? is ||, the number of boxes of A, while the codi-
mension of Q*, X*, and (X*)° is |)|.

We also associate with a Young diagram A the Grassmannian permuta-
tion 7r/\/ of type (n — k,n): in list notation, this permutation is obtained by
first reading the labels of the horizontal steps of LA/, and then read the la-
bels of the vertical steps of L/\/. Any fixed points in position 1,...,n — k are



“black” and any fixed points in positions n —k, ..., n are “white”. Note that

Uy = |A.

Remark 2.14. Similarly we can define L)\/ (“Going northeast”) by taking
steps east and north from the southeast corner of the rectangle to northeast
corner. If we label the path with 1 to n, the labels of north steps give the
k-element subset V/()\). Similarly we can define \”"(I).

10



2.3 Notion on plabic graphs

We review Postnikov’s notion of plabic graph [16] which we will use to

define cluster structure in Schubert varieties.

Definition 2.15. A plabic (or planar bicolored) graph is an undirected graph
G drawn inside a disk (considered modulo homotopy) with n boundary ver-
tices on the boundary of the disk, labeled 1,...,n in clockwise order, as well
as some colored internal vertices. These internal vertices are strictly inside
the disk and are colored in black and white. An internal vertex of degree one
adjacent to a boundary vertex is a lollipop. We will always assume that no
vertices of the same color are adjacent and that each boundary vertex i is

adjacent to a single internal vertex.

Figure 3 is an example of a plabic graph.

Figure 3: A plabic graph.

Definition 2.16. A generalized plabic graph is a plabic graph with boundary

vertices are labeled by 1,...,n in some order, not necessarily clockwise.

Though the all of following definitions are for plabic graph, we can equally
make definitions for generalized plabic graph. Note that we will always as-
sume that a plabic graph G has no isolated components (i.e. every connected
components contains at least one boundary vertex). We will also assume that
G is leafiess, i.e. if G has an internal vertex of degree 1, then that vertex must

be adjacent to a boundary vertex.

Definition 2.17. There is a natural set of local transformations (moves and

reduction) of plabic graphs.

11



(M1) SQUARE MOVE (Urban renewal). If a plabic graph has a square
formed by for trivalent vertices whose colors alternate, then we can
switch the colors of these four vertices (and add some degree 2 vertices

to preserve the bipartiteness of graph).

(M2) CONTRACTING/EXPANDING A VERTEX. Any degree 2 internal
vertex not adjacent to the boundary can be deleted, and the two adja-

cent vertices merged. This operation can also be reverse.

(M3) MIDDLE VERTEX INSERTION/REMOVAL. We can remove or add
degree 2 vertices at will, subject to the condition that the graph remains

bipartite.

Figure 4: Local transformations of plabic graphs.

(R1) PARALLEL EDGE REDUCTION. If a plabic graph contains two triva-
lent vertices of different colors connected by a pair of parallel edges, the
we can remove these vertices and edges, and glue the remaining pair of

edges together.
—— o e— —

Figure 5: Parallel edge reduction.

Figure 4 and Figure 5 are description of local transformations.

Definition 2.18. Two plabic graphs are called move-equivalent if they can
be obtained from each other by moves (M1)-(M3). The move-equivalence
class of a given plabic graph G is the set of all plabic graph which are move-
equivalent to G. A leafless plabic graph without isolated components is called

reduced if there is no graph in its move-equivalence class to which we can
apply (R1).
Definition 2.19. A decorated permutation 7 is a permutation w € S, to-

gether with a coloring i : m(i) = i — {black, white}.

12



Definition 2.20. Given a reduced plabic graph G, a trip T is a directed
path which starts at some boundary vertex i, and follows the “rules of the
road”: it turns (maximally) right at a black vertex, and (maximally) left at
a white vertex. Note that 7" will also end at a boundary vertex j; we then
refer to this trip as T;_,;. Setting 7 (i) = j for each such trip, we associate
a (decorated) trip permutation mg = (w(1),...,m(n)) to each reduced plabic
graph G, where a fixed point 7(i) = i is colored white (black) if there is a
white (black) lollipop at boundary vertex i. We say that G has type 7.

Example 2. The trip permutation associated to the reduced plabic graph
in Figure 6 is (3,4,5,1,2).

Remark 2.21. The trip permutation of a plabic is preserved by the (M1)-
(M3), but not by (R1). For reduced plabic graph, any two graphs with the

same trip permutation are move-equivalent.

We use the notion of trips to label each face of G by a Pliicker coordinate.
Note that every trip will partition the faces of a plabic graph into two parts:
those on the left of the trip, and those of the right of the trip.

Definition 2.22. Let GG be a reduced plabic graph with b boundary vertices.
For each one-way trip 7;_,; with ¢ # j, we place label i (resp. j) in every
face which is to the left of 7;_,,. If ¢ = j (that is, 4 is adjacent to a lollipop),
we place the label ¢ in all faces if the lollipop is white and in no faces if the
lollipop is black. We then obtain a labeling Fyource(G) (resp. Fiarget(G)) of
faces of G by subset of [n] which we call the source (resp. target) labeling of
(. We identify each k-element subset of [n] with the corresponding Pliicker

coordinate.
Remark 2.23. All faces of G will be labeled by subset of the same size [16].

We will associate a quiver to each plabic graph and relate quiver mutation

to moves on plabic graphs.

Definition 2.24. Let G be a reduced plabic graph. We associate a quiver
Q(G) as follows. The vertices of Q(G) are labeled by the faces of G. We say

that a vertex of Q(G) is frozen if the corresponding face is incident to the

13



Figure 6: A plabic graph G together with Q(G) and its face labeling
fsource(G>‘ TG = (3,4,5, 1, 2)

boundary of the disk and is mutable otherwise. For each edge e in G which
separates two faces, at least one of which is mutable, we introduce an arrow
connecting the faces; this arrow is oriented so that it “sees the white endpoint
of e to the left and the black endpoint to the right” as it crosses over e. We

then remove oriented 2-cycles from the resulting quiver, one by one, to get

Q(G).

Example 3. The left-hand side of Figure 6 shows Q(G) and the right-hand
side of Figure 6 shows Fipuree(G).

Definition 2.25. Given a reduced plabic graph G, we let ¥ (resp.
Ygouree) be the labeled seed consisting of the quiver Q(G) with vertices la-
beled by the Pliicker coordinates Figrget(G) (resp. Fsource(G)). Given a plabic
graph G on n vertices and a permutation v € .S,,, we will sometimes use rela-
beled plabic graph v~!(G) (where the boundary vertices have been modified
by applying v~! to them). We will refer to the corresponding seed with the

induced target labeling by e.g. EZ‘Z‘C’(%).

In [17], we can obtain the following lemma.

Lemma 2.26. If G and G’ are related via a square move at a face, then
e and S5 are related via mutation at the corresponding vertex. Sim-

larly for X" and X5M".

We will refer to “mutating” at a nonboundary face of G, meaning that

we mutate at the corresponding vertex of quiver Q(G). Note that in general

14



1 4 6 S3 Sy Ss

2 5 7 Sy S3 Sy

3 S1

Figure 7: The columnar reading order and the filling with simple transposi-
tions.

the quiver Q(G) admits mutations at vertices which do not correspond to

moves of plabic graphs.

Remark 2.27. The trip permutation of 7 (F,.) is Ty := v w with all
white fixed points lying in v~*([£]). One can recover the pair (v, w) from 7, ,,

since v € WX

max-*

n m n redu Xpression r permutations in n
We need some facts on reduced expressions for pe tations in KW and
WK,

Lemma 2.28. [19] Let x €X W and let X := X\ (x([k])). Choose a “reading
order” for the boxes of \ such that each box is read before the box immedi-
ately below it and the box immediately to is right (that is, choose a standard
tableauz of shape X). Fill each box with a simple transposition; the box in row
r and column c is filled with Si_..,.. Then reading the fillings of the boxes
according to the reading order gives a reduced expression for x (written from

right to left).

Since the elements of WX are just the inverse of the elements of XV,
one can also obtain reduced expression for y € W using Lemma 2.28 with
A (y~1([k])). The only difference is the reduced expression for y is written
down from left to right.

Remark 2.29. For simplicity, we will use the columnar reading order, which
reads the columns of A from top to bottom, moving left to right. We will call

the resulting reduced expressions columnar expressions.

Example 4. Figure 7 is an example for z = (2,5,6,1,3,4) € KW, and
M (z([k])) = (3,3,1). The left side is the columnar reading order for the

15



boxes A\(z([k])) and the right side is the filling of A" (z([k])) with sim-
ple transpositions. This reading order produces the reduced expression x =
S5545354515953 for € KW, and the reduced expression s3545154535554 for
zle WK,

We will be particularly concerned with pairs (v, w) where v € WX and
w has a length-additive factorization w = zv, i.e. {(w) = {(z) + {(v). We will
often use reduced expressions for such w that reflect their length-additive

factorizations.

Definition 2.30. Let v < w, with v € WK

max

and w = xv length-additive.
Let v = wgv' be length-additive, where v is necessarily in WX, . Then
a standard reduced expression for w is a reduced expression w = XWgV’,
where x and v’ are the columnar expressions for x and v, respectively, and

W is an arbitrary reduced expression for wg-.

16



3 The rectangles seed for cluster structure

3.1 The rectangles seed associated to a skew Schubert

variety

We will introduce how to associate a pair of permutations with a quiver

whose vertices are labeled by Pliicker coordinates.

Definition 3.1. (The rectangles seed %,,,,). Let v < w where v € WX and
w = xv is a length-additive factorization. Let A := A\ (z([k])). If b is a box
of A, let Rect(b) be the largest rectangle contained in A whose lower right
corner is b.

We obtain quiver @), ., as follows: place one vertex in each box of A. A
vertex is mutable if it lies in a box b of the Young diagram and the box
immediately southeast of b is also in A. We add arrows between vertices in
adjacent boxes, with all arrows pointing either up or to the left. Finally, in
every 2 x 2 rectangle in A, we add an arrow from the upper left box to the
lower right box. Equivalently, we add an arrow from the vertex in box a to

the vertex in box b if
e Rect(b) is obtained from Rect(a) by removing a row or column.

e Rect(b) is obtained from Rect(a) by adding a hook shape.

We then remove all arrows between two frozen vertices.

To obtain the rectangle seed %, .,, we label each vertex of @), ,, with a
Pliicker coordinate. For b a box of A, let J(b) := V" (Rect(b)). The label
of the vertex in b is A,-1(;()). This labeled quiver X, ,, gives a labeled seed,

where the Pliicker coordinates labeling the vertices give the extended cluster.

Definition 3.2. Let A be a partition and let b be a box of \. We say the
Rect(b) is frozen for A or A-frozen if b touches the south or east boundary of

A (either along an edge or at the southeast corner).

Note that the A-frozen rectangles correspond to the frozen vertices of
Y-

17
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Figure 8: an example of %, ,, for k = 3,n = 7,v = wg and z = wv~! =
(3,5,7,1,2,4,6).

Example 5. On the left side of Figure 8, A-frozen rectangles are (0111, (117,
0B B @, H On the right side of Figure 8, vertices are replaced by the

3-element subsets v~!(J(b)) of [7], which should be interpreted as Pliicker

coordinates.
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3.2 The rectangles seed associated to a bridge graph

We will discuss the generalized plabic graph whose dual quiver (with the
target labeling) coincides with ¥, ,,. For this, we introduce a special kind of
plabic graph -bridge graph- from a pair of permutations [7], and describe how
to use this construction to produce the rectangle seed. We first review the
notion of (bounded) affine permutations. An affine permutation of order n is
a bijection f :Z — Z such that f(i+n) = f(i) +n for all i € Z.

Definition 3.3. (The bounded affine permutation associated to a decorated
permutation). If o is a decorated permutation of [n], we define the bounded

affine permutation & on [n] as

o(7) if o(i) > i or 7 is a black fixed point

o(i)+n if o(i) <ioriis a white fixed point
and extend periodically to Z.

Definition 3.4. An (a b)-bridge is a collection of two vertices and three

edges inserted at the boundary vertices a and b.

Definition 3.5. Let G be a plabic graph with (bounded affine) trip permu-
tation &¢. For a pair of boundary vertices a < b, we say that the (a b)-bridge
is called walid if 64(a) > &4(b), all boundary vertices ¢ between a and b are

lollipops, and if a (resp. b) is a lollipop, it is white (resp. black).

To add a bridge to G, choose boundary vertices a,b such that the (a b)-
bridge is valid. Place a white (resp. black) vertex in the middle of the edge
adjacent to a (resp. b) and put an edge between two vertices; if a (resp. b) is
a lollipop, we use the boundary leaf as the white (resp. black) vertex of the
bridge. We then add degree two vertices as necessary to make the resulting

graph bipartite.

Definition 3.6. A plabic graph obtained by successively adding valid bridges
to a lollipop graph is called bridge graph.

19



Lemma 3.7. [7] Suppose G is a reduced plabic graph with (bounded affine)
trip permutation 6. Let 1 < a < b < n be vertices such that the (a b)-bridge
is valid and let G' be the plabic graph obtained by adding an (a b)-bridge to

G. Then G’ is reduced and has trip permutation 6 o (a b).

If G’ is obtained from G by adding a valid bridge, all faces of G’ correspond
to faces in G, except for the face bounded by the bridge.

Lemma 3.8. Suppose G is a reduced plabic graph, 1 < a < b < n wvertices
such that the (a b)-bridge is valid, and G’ the plabic graph obtained from
adding an (a b)-bridge to G. Then, using the target labeling, the labels of

faces in G coincide with the labels of corresponding faces in G'.

Definition 3.9. Let o be a decorated permutation of [n]. The Grassmann
necklace of o is a sequence J = (Ji,...,J,) of subsets of [n] where J; :=

{i € [n] : 07(4) > i or i is a white fixed point} and

I\ {DH U o)) ifie

Ji else.

Jiv1 =

From [15], we obtain if o is the trip permutation of G’, the boundary
face of G’ are labeled with the Grassmann necklace of og/. So the label of the
face bounded by the (a b)-bridge is (a + 1)** entry of Grassmann necklace of
oqr.

We will introduce an algorithm for producing a bridge graph with trip
permutation vw™! from a pair (v, w), where v™* € WX and w is a reduced

expression for some permutation w > v.

Definition 3.10. Let w € W with a length-additive factorization w = rwg,
where 2 € KW. Let x = 5, ... s;; be the columnar expression for x and let
w be a standard reduced expression for w. We define B, w to be the bridge
graph obtained from the lollipop graph with white lollipops [k] and black
[k + 1,n] with the bridge sequence s;,, Sy, ..., Si,.

By, w is a reduced plabic graph [7]. By Lemma 3.7 B, w has a (deco-

1

rated) trip permutation z~" with fixed points in [k] colored white.
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Example 6. Let k =2,n=5,2 = (3,5,1,2,4) and w = zwg. The partition
M (z(]2])) corresponding to x([2]) = {z(1),z(2)} is (3,5), and the colum-
nar expression for x is X = s452535152. So the bridge sequence for By, w
is (2 3),(12),(34),(23),(45). To build B, w, we start with the lollipop
graph

1 2 3 4 5
then add the bridge (2 3),
1 2 3 4 5

the bridge (1 2),

and the bridges (3 4), (2 3), (4 5) to obtain the following graph.

Note that the (target) face labels of B, w correspond to rectangle that fit
inside of A" (z([2])).

The structure of B, w follows from the structure of its Grassmann neck-

lace.
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Lemma 3.11. Let x € KW.
1. The fized points of x are [p] U [q,n] for some 0 <p<k<qg<n+1.
2. Fori e [k], x(i) > i.

Proof. Note that z(1) < z(2) < -+ < z(k) and z(k + 1) < --- < z(n). 2
is clear by increasing condition. For 1, suppose z(j) = j for some j € [k].
Since for i < j, z(i) < x(j), we must have that x([j]) = [j]. The increasing
condition implies that x(i) = ¢ for ¢ < j. Similarly if z(j) = j for some
j € [k+1,n], then z(¢) = ¢ for all £ > j. O

Proposition 3.12. Let y € WL, with fized points [p] U [q,n], and let \ :=
M (y~Y([k])). We color the fized points of y in [k] white and all others black.
Let J = (Ji,...,J,) be the Grassmann necklace of y. Then N (J;) = 0 for
i € [p+1]U|[q,n]. For other i, M (J;) is a rectangle which is frozen for X,
and N\ (Ji41) can be obtained from N (J;) by adding a column to N (J;) if
the resulting rectangle fits inside of X (that is, if y(i) > k) or removing a row
from N\ (J;) if it does not (that is, if y(i) < k). In particular, every \-frozen

rectangle occurs as one of the " (J;).

Proof. We will proceed with induction of the length of y. If y = e, the white
fixed points of y are [k], so J; = [k] for all 4, corresponding to the empty set.

Now consider y # e. By Lemma 3.11, if ¢ € [k] is not fixed point of v,
then y~1(i) > 4. This together with our choice of decoration implies y(i) < i
for all i € [k].

Suppose the columnar expression for y ends in s;. Then z := ys; is an
element of W* corresponding to the partition X' = A" (271([k])), which is A
with the bottom box of the rightmost column removed. Again, we color the
fixed points of z in [k] white and the fixed points in [k + 1, n] black, and let
Z=(1ly,...,1,) be the Grassmann necklace of z.

Note that J, = I, for r < j since y(i) < 4,2(i) < ¢ for i € [k] and
y(r) = z(r) for r # j,7 4+ 1. Since £(y) > €(z),y(j) > y(j + 1). Note that
y(7) > k > y(j +1). We can conclude neither j nor j + 1 are fixed by y by
Lemma 3.11. So Jjo =L\ HULy()} and Jyer = (Jye\G+1IULyG+D}).

Note that z(j + 1) > k > z(j). By induction, A" () is a rectangle, so
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I; =[a]U[b,c] for 0 < a < b,c < n. The case is divided by whether j or j+1
is fixed by z. If at least one of j and j 4 1 are fixed, it is straightforward, so
we prove neither j nor j + 1 are fixed by z.

Suppose neither j nor j + 1 are fixed by z, so A’ is obtained from \ by
removing a box that is not in the left column or top row. Suppose I; =
[a] U [b, c]. Since 2(j) < k, M"(I;41) is obtained from \*(I;) by removing a
row, and we have I;,; = [a+1]U[b+1,¢]. So j = band 2(j) = a+1. M (I;11)
is obtained from A\"(I;41) by adding a column, so I; 1 = [a+1]U[b+2.c+1].
Hence 2(j+1) = c+1 and Jj;1 = [a]U[b+1, c+1], which means that A" (J;41)
is rectangles obtained from A"(J;) by adding a column. This rectangle fits
inside of A because of where we added a box and is also A-frozen since its
lower right corner touches the southeastern boundary of A\. J;;o = I;42 and
s0 A(Jj42) is obtained from A"(J;11) by removing a row. Since I, = J,. for
r # j+ 1, and all of the rectangles \"(I,) are A-frozen for r # j + 1, the

proof is done. O

As a corollary, we obtain the structure of the face labels of the plabic

graphs.

Corollary 3.13. Let w € W with a length-additive factorization w = rwg,
where ©v € KW. Let x = s; ...s;, be the columnar expression for x and
w be a standard expression for w. Let X\ = N (x([k])). Then the set of
face labels of Buy w with respect to the target labeling is {V /" (Rect(b)) :
b a box of \}U{V7"(0)}. The boundary face labels correspond to the A-frozen

rectangles and the empty set.

Proof. The bridge sequence of B, w is si,,...,S; in the columnar expres-
sion of 7. After placing the j** bridge, we obtain a plabic graph with trip
permutation s;, ... s;, with white fixed points in [k]. Since s;, ...s;, € Wk, |
its Grassmann necklace consists of rectangles that are frozen for the partition
corresponding s;, ... s;;. The face labels of the boundary faces are the Grass-
mann necklace of the trip permutation, with /; labeling the face immediately
to the left of j. When we add (j + 1) bridge, we introduce a new boundary
face and the labels of all other faces stay the same. An old boundary face

may be pushed off the boundary by the new face. This occurs when its label
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is not frozen for the new partition. Further every rectangle that fits into A is

frozen for a partition corresponding to some prefix of s;, ...s;.. O
J

Now we describe the dual quiver of By, w-.

Proposition 3.14. Let w, x, and w be as in Corollary 3.13, and let A :=
N (x([k])). Let p,v be rectangles contained in \ which are not the empty
partition. In the dual quiver of By, w, there is an arrow from the face labeled
V7 (u) to the face labeled V7 (v) if

e v is obtained from p by removing a row or column
e v is obtained from p by adding a hook shape

unless both faces are on the boundary, in which case there is no arrow between
them. There is also an arrow from the face labeled V7 (11), where p is a single
boz, to the face labeled [k].

Proof. We will proceed with induction on the number of bridges. We color all
boundary vertices of By, w adjacent to white (black) internal vertices black
(white) and add arrows appropriately in the dual quiver. Let x = s;, ... s;,
be the columnar expression for x, so that s;,,...,s;. is the bridge sequence
for By, w. Note that s;, = s;.

If there is only one single bridge, then B,,, w has two faces, one face f
labeled with [k] = V() and the other face f’ labeled with V/"(u), where
1 is a single box. From the coloring of vertices in a bridge, the dual quiver
has one arrow from f’ to f.

Now let f’ be the new face created by the final bridge s;, = (5 j+1). Note
that 7 and 7 + 1 cannot both be lollipops. Note also that s; is preceded by
either s; _jor s; 41 in the bridge sequence. If j or j 41 is a lollipop, then the
face f’ shares 2 edges with f, the face labeled with [k]. This means there are
no edges between these faces in the dual quiver, since 2 shared edges results
in an oriented 2-cycle.

We do not have to add additional vertices of degree 2 after placing the
bridge to make the graph bipartite. If neither 5 nor j+1 are lollipops, from the
columnar reading order, there is a s;_; and a s;;; between each occurrence of

s; in the sequence s;,,...,s;., so j is adjacent to a black internal vertex and
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j + 1 is adjacent to white internal vertex. This means that there is an arrow
in the qual quiver between f’ and all adjacent faces that are not labeled with

f" is labeled by (the vertical steps of) Rect(b), where b is the last box of A
in the columnar reading order. From the proof of Corollary 3.13, its right is
the face labeled by (the vertical steps of) a partition v obtained from Rect(b)
by removing a row (since the partition obtained from Rect(b) by adding a
column does not fit in A). Similarly, its left is the face labeled by (the vertical
steps of) a partition v’ obtained from Rect(b) by removing a column. Below
[’ is the face labeled by the partition obtained from Rect(b) by removing a
hook shape. Together with the color of vertices in bridges, we complete the

proof. O]

We will verify the following Lemma 3.15 which will be used in a fur-
ther section to deduce Theorem 4.2 to Theorem 4.1. When we say “reflect a
(generalized) plabic graph in the mirror”, we mean the operation shown in

Figure 9.

Lemma 3.15. Let v < w where v € WX

e and w = xv 1s length-additive

and let w' be a standard reduced expression for xwy. Consider the following

generalized plabic graphs, with the indicated face labeling.

o Gy, obtained by applying v=! to the boundary vertices of Buy w', with
target labels.

° Gmf, obtained by applying v to the boundary vertices of By, w and

reflecting in the mirror, with source labels.

e H,,, obtained by applying w=' to the boundary vertices of By, w', with

source labels.

o H™" obtained by applying w=! to the boundary vertices of By w and

v,w !

reflecting in the mirror, with target labels.

The labeled dual quiver of each of these graphs, with the vertex labeled v='([k])

deleted, is ¥, (up to reversing all arrows).
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Proof. Since reflecting in the mirror reverses all arrows in the dual quiver,
Gyw and H,,, have the same (unlabeled) dual quiver as By, w . By Propo-
sition 3.14, the dual quiver of all of these graphs is ), ., up to the reversal
of all arrows.

Since the face labels of G, ,, are obtained from those of B, w by apply-
ing v™!, the labeled dual quiver of G, ,, is 3, . It suffices to show that the
face labels of G, ,, agree with the face labels of the 3 other graphs.

The trip permutation of B, w is 2. This implies that applying v~ to

1

a target face label of B, w/ gives the same set as applying v~z = w™" to

a source face label of B, . Thus the face labels of H,,, are the same as
the face labels of G, ,,.

Reflecting a generalized plabic graph in the mirror reverses all trips and
exchanges left and right. As a result, the target labels of G, (resp. H"\)

are the same as the source labels of G}t (resp. Hy ). [

Figure 9: Let k =2,n =5,z = (3,5,1,2,4) and w = zwg as in Example 6.
On the left, we have applied wf}l to the boundary vertices of B, w to obtain

Gy w- On the right, we have “reflected Gy, » in the mirror” to obtain G .

Remark 3.16. We actually interested in the affine cone over m(R, ), we
always assume that A1), the lexicographically minimal nonvanishing
Pliicker coordinate is equal to 1. So we delete the vertex labeled by v~ ([£])

in Lemma 3.15.
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Remark 3.17. Note that if v = wg, Gmf is a “usual” plabic graph(that is,
its boundary vertices are 1, ..., n going clockwise). Similarly if w = wy, Hﬂf

is a usual plabic graph.

Remark 3.18. Applying v=! or w™! to the boundary vertices of By w’
is a mysterious operation. This relabeling takes a plabic graph associated
t0 T (Rug wra—1) to one associated to m;(Ry4y). Therefore these positroid

varieties are isomorphic.
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3.3 The rectangles seed associated to Leclerc’s cluster

structure

We review the categorical cluster structure on the coordinate of Richard-
son variety R, ,, in [10]. We are interested in the case of Grassmannians, we
restrict our discussion to the construction in type A. In [1], there are more
details involving the representation theory of finite-dimensional algebras.

Let A be the preprojective algebra over C of type A and rank n — 1.

a1 g s An—1
of o oy g

It is the finite-dimensional path algebra of the double quiver on the vertex

set I ={1,...,n— 1}, subject to the relations generated by
Yozl —afa; = 0.

The elements of A are linear combinations of paths in the quiver modulo the
relations, and multiplication is given by concatenation of paths. Let N be
finite-dimensional module N. N is a collection {N;};c; of finite-dimensional
vector spaces over C for each vertex ¢ € I, together with a collection of linear
maps ¢g : N; = N; for every arrow 3 : ¢ — j in the quiver. The compositions
of these linear maps must satisfy relations induced by the relations on the
corresponding.

Let modA be the category of finite-dimensional A-modules. For any N €
modA let |N| be the number of pairwise non-isomorphic indecomposable
direct summands of N. We denote addN to be the additive closure of N, i.e.
the full subcategory of modA whose objects are the A-modules isomorphic to
a direct sum of direct summands of N Let ind N be the set of indecomposable
direct summands of N. For given vertex i, let .S; denote the corresponding
simple module and @);. The simple module S; is obtained by placing C at
vertex ¢ and 0’s at the remaining vertices of the quiver. In this case ¢g = 0

for all arrows . The injective A-module (); also has a distinct structure, and
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we can represent (); by its composition factors as follows

n—i+1 n—i—1

Example 7. When n=6 we obtain the following composition diagrams for

the injective modules

4 5 2
Q1 = 32 Q2 = 21 Q3 =5 21
1 2
321 21
Q4—5432 s = 40
4 5

These numbers can be interpreted as basis vectors or as composition fac-
tors. For this example, the module ()5 is an 8-dimensional A-module with
dimensional vector (dy,ds,ds, dy,ds) = (1,2,2,2,1).

In general, for every occurrence of j € I above we obtain the correspond-

ing one-dimensional vector space V; & C at vertex j of the quiver. Moreover,
i+l ;or 771 then the linear map between
the corresponding spaces V1 — V; or V;_; — Vj is the identity. The top

whenever we see a configuration

(resp. socle) of N is a direct sum of simple modules S; such that the corre-
sponding entry ¢ in the associated composition factor diagram lies at the top
(resp. bottom). In the other words, there are no i — 1 and no i + 1 appearing
directly above (resp. below) i.

For every ¢ € I and s; € W (where W is the symmetric group on n
letters) we define & = &,, and & = &I on the category modA. Given N €
modA let &(N) be the kernel of a surjection N — S where a is the mul-
tiplicity of S; in the top of N. Similarly, let £/(N) be the cokernel of an
injection S? < N where b is the multiplicity of S; in the socle of N. The
diagram for &(N) (resp. £ (N)) is obtained from that of N by removing all
entries ¢ appearing in the top (resp. bottom). Moreover, for every w € W we

can extend the definition to &,, ! by composing the functors associated to
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the simple reflections in a reduced expression for w. Given w € W, consider
Cw = Ep-14,(modA) and C* = El,lwo(mod/\), two subcategories of modA

associated to w. Now we summarize the main theorem of [10].

Theorem 3.19. [10] For every v,w € W with v < w, the subcategory C, ,, =
C’' NCy has a cluster structure. Moreover, C,,, induces a cluster subalgebra
in the coordinate ring C[R, .|, where the cardinality of the extended cluster

s equal to dimR, .

The following definitions are from [10]. Let B be a subcategory of modA
closed under extensions, direct sums, and direct summands. We say T is

B-cluster-tilting if
(X € B and Ext} (T, X) =0) < (X € addT)

We say that T' is basic if its indecomposable direct summands are pairwise
non-isomorphic. Note that the every B-cluster-tilting module T is rigid, i.e.
Ext}(T,T) = 0. T is B-cluster-tilting if and only if it is a maximal rigid mod-
ule in B, i.e. the number of pairwise nonisomorphic indecomposable direct
summands of 7" is maximal among rigid modules in B. Theorem 3.19 says
that C,,, is a Frobenius category that admits a cluster-tilting object. Let a
basic cluster-tilting module T" be given. Then we associate the endomorphism
quiver I'p as follows. The vertices of I'r are in bijection with indecomposable
direct summands 7; of T". The number of arrows 7; — T in I'r corresponds
to the dimension of the space of irreducible morphism 7; — 7; in addT’, that
is, morphisms that cannot be factored nontrivially in addT'.

Given a basic cluster-tilting module 7" € C, ,,, there is a notion of muta-
tion of T at an indecomposable summand T; of 7', provided that 7; is not
projective-injective in C,,, The mutation of T" at T; is a new cluster-tilting
module pr, (T) := T/T; & T/, obtained by replacing T; by a unique differ-
ent indecomposable module 7} € C, ,,. T} is defined by the two short exact

SequenCeS
0T -BLT, -0 O—>Tii>B’—>Ti’—>0

where g and f are minimal right and left add(7"/T;)-approximations of ;.
Thus, B is a direct sum of 7 € ind7'". Thus, B is a direct sum of T € indT’
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for every arrow T; — T; in I'r, and B’ is a direct sum of Tj € indT" for every
arrow T; — T} in I'p.

There is a cluster character ¢ : objC,.,, = C[R,,] that maps module
N € C,,, to functions pn € C[R, ). ¢ satisfies several properties. For every
N,N'"eC,,,, we have

PNON' = PNPN!

Moreover, for every mutation g, of cluster-tilting module 7', we obtain an

exchange relation in C[R, |

eror = PB + @B

where B and B’ come from the short exact sequences above. In this way,
the cluster character ¢ induces a cluster algebra structure in C[R, | from a
categorical cluster structure in C, ,,. We now give a more explicit description
of Theorem 3.19.

Definition 3.20. Given v < w in W and a reduced expression w = s;, - - - 5;,
for w, we construct a set of modules {U,} which will give rise to a cluster in
C[Ry.w)- Let v be the reduced subexpression for v in v that is “rightmost”
in w, called the positive distinguished subexpression for v in w. Set w;) =
Si; v Sipsi, for 1 < j <t and let w(_ﬁ = (w(j))~'. Let v be the product
of all simple reflections in wy;) that are part of v. Define J C {1,...,t} to
be the collection of indices j such that the corresponding reflection s;, in the
expression w is not a part of v.

For every j € J we construct a module U; from the injective module
Qi;- For N € modA let Soc,,(N) be the direct sum of all submodules of N
isomorphic to the simple module S;. Given a reduced word z = s;_--- 5,5,

in W there is a unique sequence
0=NyCNC---CN,CN

of submodules of N such that N,/N,_1 = Soc,, (N/N,_1). Define Soc,(N) =
N,. For every j € J, let V; = Socw—;(Qij) and U; = ST_J/}.
YG)

G
Example & gives a construction of a module U;.
The following theorem describes the cluster algebra structure in the co-

ordinate ring of R, ,, and its additive categorification provided by C, ..
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Theorem 3.21. [10] Each pair (v,w) as in Definition 3.20 gives a cluster-
tilting module U, w = € U; in C, ., that corresponds via the cluster charac-
jed
ter ¢ to a seed in C[R,.,] as follows.
1. The cluster variables in C[R,.,] are the irreducible factors of Yy, =
o= ([ = ([3)) for g € J; they correspond to the indecomposable sum-
(@) W)y L
mands of Uj.
2. The frozen variables are irreducible factors of [ [.c; A1) w—1(i)); they
correspond to the indecomposable summands of @, gz_lgw—le(Qi)

(which are the projective-injective objects).

3. The extend cluster is the set of cluster and frozen variables, which has
cardinality dimR, , = L(w) — (v) = |Uywl.

4. The quiver associated to the seed is the endomorphism quiver I'y, , of
the cluster-tilting module. Moreover, the quiver has no loops and no 2-

cycles, and the mutation of U, w induces mutation on the quiver I'y, .

5. The cluster algebra 7~Qv,w generated by all cluster variables is a sub-
algebra of C[R,|; when w can be factored as w = xv with {(w) =
((z) + £(v), the cluster algebra R, is equal to C[R,.).

Example 8. Let n = 7 and consider a pair (v, w) corresponding to a cell in

G737, where v = wgss and w is given by the reduced expression
W = 5556545552535451525351525154555456555483 = Sjyy * * * SigSiy -

The positive distinguished subexpression for v in w is indicated in bold, and
corresponds to the last ten transpositions at the end of w. The remaining
transpositions determine the index set J = {11,12,...,20}, and for each
J € J we obtain a summand U; of the cluster-tilting module U, v,. We have

vy = v for all j € J. First compute Uy4. Recall that

3
2

Qu=¢%,3,"
5 3

NN
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We build up the composition diagram of Vi, = Socw@b(@l) by adding com-
position factors from the diagram of )4, working from the bottom up. We
will illustrate below. We add composition factors in the order specified by

the reduced expression w(li) = $354S555654555451 525153525184 (reading right to

left). The underline s;’s indicate when an 7 is added.

2
4 4 4 4 4
4 2t 6 4 2 6°4 2 624 9"

5 3 - 5,3 - 5,3 - 5,3 = Vi

We remove composition factors from the diagram of Vi4 to get the compo-
sition diagram of Uy = 52_1‘/14. We remove these factors from the bottom
up, in the order specified by reduced expression v=! = 53545556545554515251

right to left. The underlined s;’s indicate when an ¢ is removed.

5 3 1
5 3 1 5 3 1 5 3 1
Via=06.4,2 —56°47°2 6 42 — 42 — 5 3 1_[
14 543 573 3 3 4 2 14

Similarly, we can obtain the following set of modules:

Uy="1%5 3 1 Up="5 3 Ui = 05 U 6047
11 — 1”9 12 — 1479 13 — 4 15 — 54321
6°4° 3 1 129 1 2
Ui = 5 3 U17:4 2 Uig = 5 371 U19:2 U2O:4321
4 2 4 2

The projective-injective objects in C,,, are Ui, Uis, Uig, Uis, Urg, Usg. The

endomorphism quiver I'y;, , is given below.

6 654 9 32\ ’2
5,3, s 1~ 5 3 1~ ;3,1
\ 4 2 2
6 5
5 %6
A 5 3

In general, it is difficult to construct the endomorphism quiver I'y, , because

it is difficult to determine whether a given morphism is irreducible in addU, .
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For example, there is a nonzero morphism f : Ujs — Uy; with image ° 3,

but it factors through U;p. Thus f does not induce an arrow in I'y, .

We want to find an explicit description of the seed associated to a pair

(v,w), where v € WX

s W = xv is a length-additive factorization, and

w = xv is a standard expression for w. First, we will determine how to
interpret the cluster variables coming from Theorem 3.21 as functions on the
Grassmannian. Since each generalized minor from Theorem 3.19 is a minor
of a unipotent matrix, we can restrict that matrix to rows v~![k] and then

identify the minor with a Pliicker coordinate of the resulting k£ x n matrix.

Remark 3.22. Let J C [n] with |J| = ¢. If we project an n x n unipo-
tent matrix g to the Grassmannian element represented by the span of rows
v[0] of g, the generalized minor A,-1j ; of g equals the following Pliicker

coordinate of Gry,,:
o If ¢ <k and |JUv ' ([k]\ [€])] =k then Ay-1jq.7 = Ajio—1()\ )
o If { =Fk then A1 ;=Ay
o 160>k and [J\ o (16 \ [K]] = & then Ay = Agsiyi-

We use Remark 3.22 to show that Leclerc’s cluster variables in the seed

corresponding (v, w) coincide with those obtained from the rectangle seed

defined before.

1 5 8 11 14 Sk |Ske1 |Skaz | o Ss Se sy |8
2 6 9 12 | 15 Sk—1 | Sk |Sks1 | Sy S5 se |7
3 7 10 | 13 Sk—2 3] s3 S4
4 2
1
Figure 10:

Lemma 3.23. Choose a Young diagram contained in a k x (n— k) rectangle,

and label its boxes by simple reflections as in the right of Figure 10. Choose
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a reading order for the boxes as in the left of the Figure 10. Choose any
box b and let sy be its label. Let wy be the word obtained by reading boxes in
order up through b and recording the corresponding simple reflections. For
example if b is the box indicated by the bold sg in the right of Figure 10, then
wy = (855453582)(565554)(5786). Also let J(b) := V7" (Rect(b)). In the right of
Figure 10 J(b) = {1,2,3,7,8}. Then for any b and ¢ as above, let J = wy[(]
then

o Ifl <k, then JOb)=JU(K]\[{]) =JU{l+1,0+4+2,...k}
o Ifl =k, then J(b) =J
o Ifl{ >k, then J(b)=J\ ([K]\[¢(]) = JU{k+1,k+2,...,(}.

Proof. Since the proofs of the three cases are analogous, we prove the first
one when ¢ < k. Let box b be in row r and column ¢ so that its label is
St = Sk_ric- We know that r > ¢. Then J(b) = {1,2,...,k—r}U{k—r+c+
Lk—r+c+2,....,k+c},and J(O)\{¢+1,0+2,....k} = J(b)\{k—r+c+
Lk—r+c+2,... .k} ={1,2,...;k—r}U{k+1,k+2,... k+c}. We need to
show that wp{1,2,...,k—r+c} = JO)\{k—r+c+1,k—r+c+2,...  k} =
{1,2,...,k—=r}U{k+1,k+2,....k+c}.

Let the labels of the simple generators in the bottom boxes of columns
1,2,...,c—1beiy,19,...,1.1, respectively. We write i, = k — r + ¢. Then

we have that

Wy = (SkSk—1- " 8iy)(Sk41Sk =+~ Sin) =+ (Skre—2 ** Sip_1 ) (Skte—1 -+ * Siv)-

Note that 1 <1 < ig-++ < ip_q < 1. =k —1r—+cso that i, < k—r+ s for all
1 < s < ¢. Note that for a < b the product ss_1 - - - 54 is equal to the cycle
(b+1,b,b—1,...,a+ 1,a) (in cycle notation). Then we see that:

o for 1 <iy —1,wy(j)=7€{1,2,....k—r}

o for j € {iy,ig,... i}, wp(j) €{k+1,k+2,....k+c}
o fori; < j<ig,wp(j)=j—-1

o for iy < j <iz,wp(j)=7j—2
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o
o fori. 1 <j<i,wy(j)=7—(c—1).

So for is_1 < j < is, we have that wy(j) = j—(s—1) <is—(s—1) <
k—r+s—(s—1)=k—r+1, and so w,(j) < k—r. This shows that for each
je{,2,....k—r+chw(j) e {1,2,....;k—r}U{k+1,k+2,....k+c}
and so wp{1,2,....,k—r+c} ={1,2,.. . k—r}U{k+1,k+2,...,k+c}. O

Corollary 3.24. Consider a skew Schubert variety 7,(Ryw) C Grin, where
v < w,ve WK

s and with w = xv length-additive. Consider the seed for

Row given by Theorem 3.21 which is associated to a standard (columnar) re-
duced ezxpression w = xv. When we project the cluster variables to m(Ryw),
we obtain the set of Plicker coordinates from the rectangles seed. In other
words, they are indexed by boxes b in M (x([k])), and are equal to the Plicker

coordinates Ay-1(5w)) in the Grassmannian.

Proof. Let x be the columnar expression for z and w be a standard re-
duced expression for w. Let b be a box in A" (x([k])), and let s, w,, and
J(b) be as defined in Lemma 3.23. w, = xa)l for some 1 < ¢ < /(x), so
v lw, = w(’; for some j. Applying v~! to Lemma 3.23 implies that the
generalized minor Av—l([é])w;l([z]) equals the Pliicker coordinate A,-1(;@)) in
the Grassmannian (Remark 3.22). Each of those Pliicker coordinates is irre-

ducible in C [W@)] : O

Lemma 3.25. Let z be a Grassmannian permutation of type (k,n). Let b
be a A-frozen box of N = N\ (z([k])), and let s; and wy be as defined in
Lemma 3.23. Then wy([0]) = a7 ([€]). Thus Ay-1(y@)) is frozen in the rect-

angles seed.

Proof. The boxes in columns to the right of the column of b are filled with s;
such that i > £. So x7! = wyu, where u is a permutations that fixes [¢] point-
wise, s0 wy([(]) = 271 ([{]). Ay-1(s@)) is the projection of A,-1 () v-1-1(g]) tO

the Grassmannian, which is frozen by Theorem 3.21. O

We will describe the endomorphism quiver I'y, ,. We need to analyze

morphism between indecomposable summand of U, . Let R(x) be a Young
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diagram filled with simple reflections which gives a reduced expression for
xz. For b; € R(x), U; denotes the associated summand of U, . Recall that

Rect(b;)is the maximal rectangle in D whose southeast corner is b;.

Theorem 3.26. Consider (v, w) where v € WK

e and w = zv is length-

additive. Let w = xv = xwy v’ be a standard reduced expression for w. For
any pair of modules U;,U; € indU,+, there exists an irreducible morphism
U; = U; in addU, w if and only if one of the following conditions holds:

1. Rect(b;) is obtained from Rect(b;) by removing a row
2. Rect(b;) is obtained from Rect(b;) by removing a column
3. Rect(b;) is obtained from Rect(b;) by adding a hook shape.
Moreover, There exists at most one irreducible morphism between U; and Uj.
By Theorem 3.26, we have the following observation.

Remark 3.27. Let f : U; — U; be a homomorphism and suppose that
N is an indecomposable direct summand of imf. Since imf is a submodule
of U; and is isomorphic to a quotient of U;, the composition diagram for
N embeds into those for U;, U;. Moreover N is closed under predecessors in
U;: for all vertices x and y € I in the composition diagrams for N and U,
respectively, such that y lies immediately above x in U; (i.e. ¥, or ,¥) we
have that y is also in the composition diagram for N. Similarly N is closed
under successors in Uj: for all vertices x,y € I in the diagrams for N, U;
such that y lies immediately below z in U;: for all vertices z,y € I in the
diagrams N, U; such that y lies immediately below x in U; (ie. *y or ,7),
we have that Y is also in the diagram for N.

Conversely, for any N that is closed under predecessors in U; and closed

under successors in U; we get a morphism f : U; — U; with image V.

We will prove Theorem 3.26 in two steps. First, we will prove the case

v =¢e, le. v =wg.

Proposition 3.28. Theorem 5.26 is true when v' = e, i.e. v = wg.
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Figure 11: An indecomposable module Us;.

Proof. Note that all indecomposable summands of U = U, , are of the form
given in Figure 11. Moreover, we have S, = SocU; = SocU; and either
¢i+r, = kora +r;, =n—k for any U; € indU. We can rephrase the
statement of the theorem in terms of a;, ¢;, ; that define a given summand
of U. (1a) and (1b) correspond to case (1) of the theorem depending on
if b; is above or below the main diagonal. Similarly, we have the following

correspondence.

(la) m,=r;+1,a;=aj,and ¢; +r;=c;+r; =k
(Ib) r;=rj,c;=c;—1l,and a;+r,=a;+r;=n—k
(2a) ri=rj,a;, =a; —l,and ¢; + 1, =c¢;+1; =k
(2b) ri=r;j+1l,c;=cj,and a;+r;=a;+r;=n—k
(Ba) m,=r;—l,a;,=a;+1l,and ¢;+ 1, =c¢;+r; =k

<3b) Ti:Tj—l,CiZCj—l,andai—k?"i:aj—krj:n_k,
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Figure 12: Morphism f : U; — U; with image N.

Given U; € addU defined by a;, r;, ¢;, a module U, defined by a,,r,, c, is also
in addu if r, < a, and either a, = a;,c, > b; or ¢, = ¢;,a. > a;. Every
module in addU corresponds to a unique box in R(z). Given a box b; € R(x)
associated to the module U;, all the boxes b, € D above and the left of b; are
also in R(x). The module U, with the above properties is precisely the one
coming from such a box b, € R(x). Thus, U, € addU.

Let f : U; — U; be a nonzero nonidentity morphism in modA. Since Uj
has a one-dimensional socle it follows that im f, which is a submodule of Uj.
Let N =imf. It is closed under predecessors in U; and closed under successors
in U;. The socle of N is also S, so we obtain the configuration described in
Figure 12. Here r, < r;,r;,r,+c, <rj+c;, and r,+a, < r;+a;. Conversely,
for every such IV as in the Figure 12 we obtain a nonzero morphism U; — Uj.

First, we consider the case r; +¢; = k and r; +c¢; = k. Note that N is not
necessarily in addU. We construct a module U, € indA defined by a.,c.,r.
satisfying a, = a; and ¢, + r, = k. Since r, < r; and ¢, > ¢; it follows that
U, € indU. We obtain maps g : U; = U, and h : U, — U; such that f = hg.
This implies that f is reducible in addU unless g =1 or h = 1.

Since we are interested in irreducible morphisms f, suppose that h = 1.
Thus U, = U; and f = g. If r, = r;, then U; = U, and g = f = 1 contrary

to the assumption that f is not identity morphism. For r, < r;, consider a
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module U, defined by a; = a;,7; = r, + 1 and ¢; such that ¢, +r, = k. In
particular ¢; = ¢, — 1. Since r; < r; and ¢; > ¢;, it follows that U; € addU.

In this case, f factors through U;. That is, there exist maps p, 7 as below

such that f = wp. m # 1 implies that ¢; # c,. Since we are interested in
irreducible morphisms f, we consider the case p =1l and f ==n. If f =«
then we have U; = U; and U; = U,. Then a; = a;,7; = r; +1 and ¢; +1; =
¢; + rj = k, which agrees with case (1a). By construction of U; and U; such
f is indeed irreducible in addU.

Now, we consider the case g = 1. Thus, h = f and U, = U;. Let U, be the
module defined by a, = a,+1, r, = ., ¢, = c;, provided that a,+r, < n—k.
Since rq = 1, and ¢; > a,, U, € addU. If ay, +r, < a; +1;, f factors through

U,. There exist morphism o, as below

f=h

RN

Uq

U.

Uj

Where f = do. Since we are interested in irreducible morphisms, we consider
the case 0 = 1. Note that o # ¢ as a, < a4. In the case § = 1 we have
f = o is injective, and U, = U;, U, = U;. Therefore, r; = r;,a; = a; — 1, and
r; +¢; = r; + ¢; = k, which agrees with case (2a). Since f is injective, it is
irreducible in addU.

Now, we consider the case f = h and a, + r, = a; + r;. We observe that
r, # rj; otherwise U; = U, = U; and f are the identity maps. Let U, be the
module defined by r, =r, +1,a, = a, —1,¢, = ¢, — 1, provided that a.,c,
are both nonzero. Since r, < r; and a, > a;, U, € addU. Thus we see that
f = h factors through U,
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where f = fe. Note that € # ¢ by construction, therefore we consider the
case 0 = 1. Thus, f =eand U, = U;,U; = U, where r; =r; —1,a; = a; + 1,
and ¢; +1; = ¢; + r; = k. This agrees with case (3a). Since f is injective, it
is irreducible in addU.

Suppose that f = h and a, + 7. = a; +r; as above, but a, =0 or ¢, = 0.
If a, = 0 then 7, = a; + r;. Since f maps U, to U; injectively, r, < r;
which implies that a; = 0. We obtain U, = U; = U; and f is the identity
morphism which is contradiction. On the other hand if ¢, = 0 then r, = k.
Since r, < r; < k, we obtain r; = k. Since a; +r; < k, a; = 0 which implies
a contradiction.

This completes the proof when ¢; + r; = ¢; + r; = k. Similarly, we can
prove when a; + 1, = a; +1; = n — k. Therefore, it remains to consider
the situation when r; +¢; = kand a; +7;, = n—kr+a; <n—k and
¢; +r; < k and vice versa. We will show that every morphism in this case is
reducible. Suppose f : U; — U; where r; + ¢; = k and a; +r; = n — k while
ri+a; <n—=Fkandc; +r; <k. Let U, € addU be the module defined bu
Ty = T4, 0y + 17, =n—k and ¢, +r, = k. U, is different from both U; and U;.
Since r, = r; and a, > a;, U, € addU. We obtained that f factors through
U,. Therefore, f is reducible in addU. This shows that such f does not yield

any new irreducible module. Similarly, we can prove the other case. O

Second we will relate morphism between summands of U, ,, and mor-

phisms between summands of Uy, xwy Where w = zv and v € WK

mazx*

Lemma 3.29. Let w = zv, where v € WE

and ((w) = ((z) + £(v). Denote
the cluster-tilting modules coming from standard reduced expressions for the
pairs (W, xwr) and (v,w) by U,U" respectively. Let U;,U; € indU and let
U;,U; € indU" be the corresponding summands of U'. Then there exists a
bijection between irreducible morphisms U; — U; in addU and irreducible

morphisms U] — U} in addU".

Proof. There are equivalences of categories C, —» Cvw and C, = G
[2]. In particular, the category C, ., and Cy, +uwj are equivalent. By [10], this
equivalence identifies the two cluster-tilting modules U and U’. This implies
that there is a bijection between irreducible morphisms U; — U; in addU

and irreducible morphisms U; — U’ in addU". O
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Together Proposition 3.28 and Lemma 3.29 prove Theorem 3.26. With

Lemma 3.23 we have the following theorem.

Theorem 3.30. Let w = xv be a length-additive factorization and v € WX

max -’

For a standard reduced expression w of w, the labeled quiver I'y, , coincides

with Q-

Proof. By Definition 3.1 and Theorem 3.26, the quivers coincide. By the
construction of A,-1(s(,)) and Lemma 3.23, the labels of the vertices coincide

as well. ]
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4 Main Theorem

4.1 Main Theorem

In this section, there are two main theorems. Theorem 4.2 is general-
ized one, so we first prove Theorem 4.2 and then deduce Theorem 4.1 from
Theorem 4.2.

Theorem 4.1. [18] Consider the open Schubert variety X5 of Gry.. Let G
be a reduced plabic graph (with boundary vertices labeled clockwise from 1 to
n) with the trip permutation 7'('/\’/. Construct the dual quiver of G and label
its vertices by the Plicker coordinates given by the target labeling of G, to
obtain a labeled seed X579, Then the coordinate ring C[XA}] of the (affine

cone over) X5 coincides with the cluster algebra A(X5").

Theorem 4.2. [18] Consider the skew Schubert variety mi(Ry.w), where
w e WK

max

and w has a length-additive factorization w = xv. Let G be a
reduced plabic graph (with boundary vertices labeled clockwise from 1 to n)

V= 271 and such that boundary lollipops are white

with trip permutation vw™
if and only if they are in [k]. Applying v™! to the boundary vertices of G, ob-
taining the labeled graph v=(G), and apply the target labeling to obtain the
labeled seed EZaflg(eé). Then the coordinate ring C[ﬂ'@u)] of the (affine cone
over) the skew Schubert variety mp(Ry,) coincides with the cluster algebra

At ).
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4.2 The proof of Theorem 4.2

Let v < w be permutations where v € WX —and w = v is a length-
additive factorization. Let w’ be a standard reduced expression for w' := rwg
and let G, ,, be the graph obtained from the bridge graph B, w by applying
v~! to the boundary vertices. We label the faces of G,,, using the target
labeling and let @, ., be the labeled dual quiver of G,, with the vertex
labeled v~!([k]) removed. We have shown that @, ,, is the rectangle seed and
that @, agrees with I'y, w.

Let G be a plabic graph obtained from G,, by a sequence of moves
(M1)-(M3). The boundary faces of G have the same labels as the boundary
faces of G, . Let @ be the dual quiver of G, with the vertex labeled v~ ([£])
removed. A square move at a face of a plabic graph changes the dual quiver
via mutation at the corresponding vertex. We can obtain ) from @, . by
a sequence of mutations. On the other hand, let U and I' be the one such
that the same sequence of mutations performed to the corresponding cluster-
tilting module U,  and its labeled quiver I'y, . Now, labeling () with target
labels, we claim that () = ['y. Since two quivers are equal if we ignore the
labels, we suffice to show that the labeling coincides. We first show that the
face labels of G have the following property.

Definition 4.3. Let I, J € ([Z]). We say I and J are weakly separated if for
all a,b € I\ J and ¢,d € J\ I with a < b and ¢ < d, we never have that
a<c<b<dorc<a<d<hb.

Proposition 4.4. Let v < w be permutations where v € WX —and w = zv is
a length-additive factorization. Let G be a reduced graph that can be obtained
from G, by a sequence of moves (M1)-(M3). If I,J € Fiarget(G), then I

and J are weakly separated.

Proof. Since Hﬂf is the graph obtained from B, w by reflecting in the
mirror and applying w~! to the boundary vertices, there is one-to-one cor-
respondence between faces of G, ,, and faces of Hﬁﬂ, and the target labels

of corresponding faces in each graph agree. Performing a sequence of moves
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to corresponding faces of G, ,, and Hﬂf will result in two graphs with the
same target face labels. So instead of considering the plabic graph G, we will
consider the plabic graph H obtained by performing an analogous sequence
of moves to HJ".

First, we consider the case when w = wy. Then ng is a normal plabic
graph with boundary vertices labeled 1, ..., n going clockwise. It follows from
[15] that Fiarget(H) consists of pairwise weakly separated sets.

Now, suppose w < wy. Note that H;")" can be obtained from H;%r . H]"

is a subgraph of H™"  whose boundary labels are inherited from the trips

v, wo?

of H;’% Therefore, we can perform a sequence of moves to this subgraph to

obtain H as a subgraph of a reduced plabic graph. The weak separation of
target labels H follows from [15]. O

This property is important because of following lemma, which will ensure

that square moves on G, ,, correspond to valid 3-term Pliicker relations.

Tiau

Rad Tj-b

ARad
Rab Apca +— Apac Apap

ARln:

Figure 13: Plabic graph G’ and G respectively, and the labeled quiver Q(G).

Lemma 4.5. Let G be a generalized plabic graph such that the element of
Fiarget(G) are pairwise weakly separated, and let f be a square face of G whose
vertices are all of degree 3. Suppose the trips coming into the vertices of f
are Tia, Tjsp, Thse, Tia reading clockwise around f (see Figure 13). Then

a,b,c,d are cyclically ordered.

Proof. The target labels of faces around f are Rab, Rbc, Red, Rad, where R
is some (k — 2)-element subset of [n] and Rab := R U {a,b}. Since Rad and
Rbc are weakly separated, either a,b,c,d or a,c,b,d is cyclically ordered.
Similarly, since Rab and Recd are weakly separated, a,b,c,d are cyclically
ordered. ]
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We now show that if GG is a generalized plabic graph move-equivalent to
Gy, square moves on GG agree with the categorical mutation of modules in

Cy,w- Together with Theorem 3.30, we complete the proof of Theorem 4.2.

Lemma 4.6. Let G be a reduced plabic graph that is move-equivalent to G ,,.
Suppose that the (target) labeled quiver Q(G) = 'y, for some cluster-tilting
module U € Cy,,. If G' is obtained from G by performing a square move at
some face F' of G, then

Q(G) =Ty

as labeled quivers, where U’ denotes the mutation of U at the corresponding

indecomposable summand Urp of U.

Proof. The label of the square face F' and its surrounding faces are given
in Figure 13. R is a (k — 2)-element subset of [n] and Rac = RU {a,c}. F
has label Rac in G and after the mutation it has label Rbd. The target face
labels of G' are pairwise weakly separated by Proposition 4.4, and so a, b, ¢, d
are cyclically ordered by Lemma 4.5. Now, consider the local configuration
in I'y around the vertex Ag,. corresponding to the summand Ur of U. Then
U' = U/Ur & U}, where U}, is defined by the two short exact sequences as

follows.
0= Up = Uge®Ugua = Up =0 0—=Up — Upap @ Ugea = Up — 0
Where we identify summand of U with the labels of the corresponding faces
in GG. Then cluster-character map ¢ yields the relation
PUR LU, = PUrePUrwa T PUrw PUrca

Note that if one of the faces adjacent to F has label v~!([k]) then the asso-
N = Av—l(m) =1 by

Remark 3.16. Hence, in this case, the above relation still holds. Since the two

ciated module U,-1(j)y is the zero module and U, 1

labeled quiver Q(G) and I'yy coincide, each function ¢, € C[Ry, ], where
FE is a face in G, is a Pliicker coordinate coming from the label of the face.

Therefore we have the following.

PUr = PUrae — ARac PUgar — ARa,b PUrpe — ARbc

PURea — ARed PURed — ARqd
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Therefore the relation above will be

ARacory, = ArbeARad + ArapARed

which is a 3-term Pliicker relation in the corresponding skew Schubert variety.

Thus we conclude that ¢ = Agpe. This shows that Q(G") and I'yr agree. [

Remark 4.7. Note that all graphs in Lemma 3.15 give rise to the same
labeled seed (up to reversing all arrows in the quiver, which does not affect
mutation). And a sequence of moves on any one can be translated to a se-
quence of moves on any other that effects the dual quiver in the same way.
Hence any reduced plabic graph move-equivalent to a graph in lemma give

rise to a seed for m;(Ry.u)-
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4.3 Deduce Theorem 4.1 from Theorem 4.2

We will show how to deduce Theorem 4.1 from Theorem 4.2.

Proof. Recall that for v € WX

max?

Tk (Roaw) = X5, where V< () = v1([K]).
The decorated permutation corresponding to (R, ) is v wy.

Recall also that we can obtain v~!

in list notation from A\ by labeling
the southeast border of A with 1,...,n going southwest and first reading
the labels of vertical steps and then reading the labels of vertical steps going
northeast and then reading the labels of the horizontal steps going northeast.
For v~ 1wy, we reverse order in which we read the border of A, first reading
the labels of horizontal steps going southwest and then reading the labels
of the vertical steps going southwest. So v—1wy is equal to the permutation
e

Let 2 := wov~! and then factorization wy = zv is length-additive. Let w’
be a standard reduced expression for v’ := zwg. If we take By, w’, apply wq 1
to the boundary vertices, and “reflect in the mirror”, we obtain a graph Hg”;}’;
which has trip permutation 7r/\/ and whose boundary vertices are labeled with
1,...,n clockwise. Therefore, by Theorem 3.30 and Lemma 3.15, we obtain a
seed for the coordinate ring of (the affine cone over) X3. If G is any reduced
plabic graph move-equivalent to H™"  then the (target) labeled dual quiver

v,wo?

Q(G) gives a seed. O
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4.4 Application related to the coordinate rings

Combining main theorem with some known property [13] and [14], we

obtain the following corollary.

Corollary 4.8. Let v < w, where v € WX and w = zv is length-additive.
Then the cluster algebra Clmi(Ryw)] is locally acyclic, and thus is finitely
generated, integrally closed, locally a complete intersection, and equal to its

own upper cluster algebra.

Combining with [5], we can find that the quiver giving rise to the clus-
ter structures for Schubert and skew Schubert varieties admit green-to-red
sequences which implies that the cluster algebra have Enough Global Mono-

mials [6]. Therefore, we obtain the following corollary.

Corollary 4.9. Let v < w, where v € WX and w = zv is length-additive.
Then the cluster algebra Clmp(Ry.w)] has a canonical basis of theta functions,

parametrized by the lattice of g-vectors.
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