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Abstract

Nonlocal elliptic equations with Orlicz growth

Hyojin Kim

Department of Mathematical Sciences
The Graduate School

Seoul National University

This thesis involves various regularity results of nonlocal elliptic equations
with Orlicz growth.

First, we prove the existence and uniqueness of a weak solution to a
nonlocal Dirichlet problem with Orlicz growth by using variational methods.

Next, we show local Hölder continuity of a weak solution to such a nonlo-
cal elliptic equation by obtaining a suitable Sobolev-Poincaré type inequality
and a logarithmic estimate.

Finally, we derive Harnack inequality by finding a precise tail estimate.

Key words: Nonlocal operator, Orlicz growth, N-function, Local bounded-
ness, Hölder continuity, Harnack inequality
Student Number: 2015-22566
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Chapter 1

Introduction

This thesis is concerned with various regularity results for the following non-
local equation

Lu = 0 in Ω, (1.1)

defined on a bounded domain Ω in Rn, n ≥ 2, by

Lv(x) := p.v.

∫
Rn
g

(
|v(x)− v(y)|
|x− y|s

)
v(x)− v(y)

|v(x)− v(y)|
K(x, y)

dy

|x− y|s
, (1.2)

where 0 < s < 1 and g : [0,∞) → [0,∞) is a strictly increasing, continuous
function that satisfies g(0) = 0, lim

t→∞
g(t) =∞ and

1 < p ≤ tg(t)

G(t)
≤ q <∞ for some 1 < p ≤ q, where G(t) :=

∫ t

0

g(s) ds.

(1.3)

Note that this inequality means that the growth of the function G varies
between p and q, which is a natural outgrowth of the p-th power func-
tion. This condition covers the power case g(t) = tp−1, the borderline case
g(t) = tp−1 log (e+ t), the mixed case g(t) = tp−1 + tq−1, and so on. For more
examples of g and applications of problems with such growth, we refer to
[4, 36, 56].

K : Rn × Rn → (0,∞] is a symmetric, i.e., K(x, y) = K(y, x), and
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CHAPTER 1. INTRODUCTION

measurable kernel that satisfies

λ

|x− y|n
≤ K(x, y) ≤ Λ

|x− y|n
, x, y ∈ Rn, (1.4)

for some constants 0 < λ ≤ Λ. Note that the symmetry condition of K is
not necessary. However, by considering the kernel K̃(x, y) = K(x,y)+K(y,x)

2
, we

shall always assume this symmetry, see [44, Section 1.5] for more details.
A main point in this thesis is that the function G is an N-function satis-

fying the ∆2 and ∇2 conditions (see Chapter 2) and that a simple example of
the kernel K(x, y) is a(x, y)|x− y|−n with λ ≤ a(x, y) ≤ Λ. In particular, we
point out that in the case when K(x, y) = |x−y|−n, L becomes the so-called
(s-)fractional G-Laplace operator and we denote it by L = (−∆)sG.

The goal of this thesis is to establish local Hölder continuity and Harnack
inequality for the nonlocal problem (1.1). In addition, we will discuss the
existence and uniqueness of weak solutions to (1.1) with Dirichlet boundary
condition.

An obvious example is a particular situation that g(t) = t and K(x, y) =
|x−y|−n in which case it reduces to the s-fractional Laplace operator (−∆)s.
There have been many developments in the regularity theory for nonlocal
elliptic and parabolic equations of fractional Laplace type. We refer to [11,
12, 13, 39, 40, 45, 49, 57] for various regularity results including Hölder
continuity, Harnack inequality, self improving property, Lp-regularity and so
on. On the other hand, for the fractional p-Laplacian type equations, i.e.,
g(t) = tp−1 with 1 < p < ∞, Di Castro, Kuusi and Palatucci in [21, 22]
established nonlocal De Giorgi-Nash-Moser theory. They proved local Hölder
regularity along with Harnack inequality by employing the so-called tail(see
Chapter 2). We also mention that Cozzi [17] proved similar regularity results
by using a notion of fractional De Giorgi class. We further refer to [5, 6,
17, 19, 21, 27, 32, 33, 34, 41, 42, 43, 44, 47, 51, 52] and references therein
for further discussions on the nonlocal nonlinear equations of the fractional
p-Laplacian type.

A general non-autonomous fractional nonlocal operator can be written as

Lv(x) := p.v.

∫
Rn
h

(
x, y,

|v(x)− v(y)|
|x− y|s

)
v(x)− v(y)

|v(x)− v(y)|
K(x, y)

dy

|x− y|s
.

If h(x, y, t) = tp−1, then we say that the operator or equation satisfies the
p-growth condition. On the other hand, if h(x, y, t) has a more general struc-
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CHAPTER 1. INTRODUCTION

ture, then we say that the operator or equation satisfies a non-standard
growth condition. Typical examples of non-standard growth conditions in-
clude the variable growth condition: h(x, y, t) = tp(x,y)−1, the double phase
condition: h(x, y, t) = tp−1 + a(x, y)tq−1, and the general growth condition:
h(x, y, t) = g(t). There has been a great deal of studies concerning frac-
tional nonlocal equations with nonstandard growth conditions, in particular,
for Hölder regularity in [55, 14] with the variable growth condition and in
[10, 20, 28] with the double phase condition, respectively.

We are mainly focusing on the general growth condition. The local one
corresponding to the nonlocal equation (1.1) is the so called G-Laplace equa-
tion:

div

(
g(|Du|) Du

|Du|

)
= 0 in Ω, where g(t) = G′(t),

for which Lieberman [46] proved Hölder regularity and Harnack inequality of
weak solutions under the condition (1.3). We also refer to [3, 7, 18, 26, 37, 38,
48, 53, 58] and references therein for the regularity results for equations of
the G-Laplacian type. In particular, the papers [18, 48] deal with problems
modeled by the G-Laplace equation with G not necessarily satisfying the ∆2

and ∇2-conditions.
According to the local regularity results for the G-Laplace equation, ob-

taining analogous regularity results to the corresponding nonlocal equation
(1.1) has been a naturally interesting issue. Especially, Hölder regularity
alongside Harnack inequality has been studied in [15, 30, 31] and [16, 28],
respectively. However, Hölder regularity results in [15, 30, 31] are established
with a strong Dirichlet boundary condition or the boundedness of a weak so-
lution or a restrictive condition on g like q < p∗ in (1.3). Meanwhile, in [28],
Harnack inequality for (1.1) has been proved under additional assumptions
to (1.3), which are

G(t1t2) ≤ cG(t1)G(t2), t1, t2 ≥ 0 (1.5)

and
min{tp, tq} ≤ G(t) ≤ cmax{tp, tq}, t ≥ 0 (1.6)

for some constant c independent of t1 and t2.
In this thesis, on the other hand, we prove local Hölder regularity and

Harnack inequality for the equation (1.1) with the assumption (1.3) only

3



CHAPTER 1. INTRODUCTION

and without boundary data. We do not require the a priori assumption of
the boundedness of a solution. In particular, we need neither (1.5) nor (1.6).
Therefore, we first obtain local boundedness of a weak solution with a suitable
estimate (1.7). To this end, we focus on finding inequalities and embeddings
on fractional Orlicz-Sobolev spaces W s,G (see Champer 2). Especially, we
proved an integral version of a fractional Sobolev-Poincaré inequality in W s,G

which plays a major role in the proof of the main results in this thesis. We also
give a more simplified proof to obtain a natural form of Harnack inequality. It
is worthwhile to mention that Chaker, Kim and Weidner [16] proved Harnack
inequality for (1.1) by using a different approach.

With the definition of a weak solution, the related function spaces and
the tail to be introduced in details in the next chapter, we now state our
main results.

Theorem 1.0.1 (Hölder continuity). Let 0 < s < 1. Suppose that u ∈
Ws,G(Ω) ∩ Lgs(Rn) is a weak solution to (1.1) with (1.2), (1.3) and (1.4).
Then u ∈ C0,α

loc (Ω) for some α ≡ α(n, s, p, q, λ,Λ) ∈ (0, 1). Moreover, there
exist positive constants cb and ch depending on n, s, p, q, λ and Λ such that
for any Br(x0) b Ω,

‖u‖L∞(Br/2(x0)) ≤ cbr
sG−1

(
−
∫
Br(x0)

G

(
|u|
rs

)
dx

)
+ rsg−1(rsTail(u;x0, r/2))

(1.7)

and

[u]C0,α(Br/2(x0)) ≤
ch
rα

[
rsG−1

(
−
∫
Br(x0)

G

(
|u|
rs

)
dx

)
+ rsg−1(rsTail(u;x0, r/2))

]
.

(1.8)

Theorem 1.0.2 (Harnack inequality). Let 0 < s < 1. Under assumptions
(1.2), (1.3) and (1.4), let u ∈ Ws,G(Ω) ∩ Lgs(Rn) be a weak solution to (1.1)
such that u ≥ 0 in a ball BR ≡ BR(x0) ⊂ Ω. Then the inequality

sup
Br

u ≤ c inf
Br
u+ crsg−1(rs Tail(u−;x0, R))

holds for any concentric ball Br(x0) ⊂ BR/2(x0), where c ≡ c(n, s, p, q, λ,Λ).

4



CHAPTER 1. INTRODUCTION

Remark 1.0.3. We can get the same results in Theorem 1.0.1 and Theorem
1.0.2 under weaker conditions on g that g(0) = 0, lim

t→∞
g(t) =∞, and

g(s)

sp−1
≤ L

g(t)

tp−1
and

g(t)

tq−1
≤ L

g(s)

sq−1
for all 0 < s ≤ t,

for some 1 < p ≤ q and L ≥ 1. Note that the above inequality implies ∆2 and
∇2-conditions of the function t 7→ tg(t). Under this condition, there exists an
increasing continuous function g̃ with g̃(0) = 0 and lim

t→∞
g̃(t) = ∞ such that

g̃ satisfies (1.3) and g̃ ≈ g (i.e., there exists a positive constant c ≥ 1 such
that c−1g ≤ g̃ ≤ cg). See [36, Chapter 2] for details. Then we get the results
in Theorem 1.0.1 and Theorem 1.0.2 with respect to g̃. Therefore, by this
equivalence, we can obtain the same estimates for g. Nevertheless, we adopt
the condition (1.3) instead of the above one, as the proof of the equivalence
is rather technical and the condition (1.3) is simpler and widely used.

Our approach here is based on the De Giorgi approach established in
[21, 22], in particular, for the fractional p-Laplacian type equations in the
setting of fractional Sobolev spaces W s,p. On the other hand, to the fractional
G-Laplacian type equations, this approach can not be directly applied, as
G(st) 6≈ G(s)G(t) (this equivalence is true when G(t) = tp). Indeed, we are
forced to face a more complicated and delicate situation under which we need
to make a very careful systematic analysis to overcome the complexity and
difficulty coming from such a G-Laplacian type nonlocal problem. Moreover,
an integral version of Sobolev-Poincaré type inequality plays an essential role
in the process of De Giorgi iteration, which is not known in the fractional
Orlicz-Sobolev space as of today, as far as we are concerned.

This thesis is organized as follows. In Chapter 2 we introduce notations,
function spaces, weak solutions and fundamental inequalities that will be used
throughout this thesis. In Chapter 3 we prove the existence and uniqueness of
weak solutions to (1.1) with Dirichlet boundary conditions. In Chapter 4 we
first derive two essential estimates for weak solutions to (1.1) in Section 4.1.
One is a Caccioppoli type inequality and the other is a logarithmic estimate.
Then we prove local boundedness and Hölder continuity of a weak solution.
Chapter 5 is devoted to the proof of Harnack inequality. We notice that
Chapter 3 and Chapter 4 are based on the joint work with Sun-Sig Byun
and Jihoon Ok [8]. Chapter 5 is based on the paper [9] jointed with Sun-Sig
Byun and Kyeong Song.
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Chapter 2

Preliminaries

In this chapter we introduce notations and preliminaries, which will be used
throughout this thesis. Br(x0) denotes the ball in Rn with radius r > 0
centered at x0 ∈ Rn. When the center is clear in the context, we write it by
Br for the sake of simplicity. The average of an integrable function f on Br

is defined as

(f)Br = −
∫
Br

f dx =
1

|Br|

∫
Br

f dx.

We denote by c to mean a universal constant that can be computed by
given quantities such as n, s, p, q, λ,Λ. This generic constant can vary from
line to line. We write A ≈ B if there exists some constant c ≥ 1 such that
1
c
A ≤ B ≤ cA.

2.1 Properties for function G

Throughout this thesis we always assume that G ∈ C1([0,∞)) satisfies (1.3).
Then G : [0,∞) → [0,∞) is an N-function(nice Young function), i.e., it

is increasing and convex, and satisfies lim
t→0+

G(t)
t

= 0 and lim
t→∞

G(t)
t

= ∞. We

always assume G(1) = 1.
The conjugate function G∗ : [0,∞)→ [0,∞) is defined by

G∗(t) := sup
s≥0

(st−G(s)), t ≥ 0.

6



CHAPTER 2. PRELIMINARIES

Then we have from (1.3) that for every t ∈ [0,∞),{
aqG(t) ≤ G(at) ≤ apG(t) if 0 < a < 1

apG(t) ≤ G(at) ≤ aqG(t) if a > 1,
(2.1)

and that {
ap
′
G∗(t) ≤ G∗(at) ≤ aq

′
G∗(t) if 0 < a < 1

aq
′
G∗(t) ≤ G∗(at) ≤ ap

′
G∗(t) if a > 1.

(2.2)

where p′ and q′ are the Hölder conjugates of p and q, respectively. Also we
see that G satisfies the following ∆2- and ∇2-conditions (see [50, Proposition
2.3]):

(∆2) there exists a constant κ > 1 such that

G(2t) ≤ κG(t) for all t ≥ 0; (2.3)

(∇2) there exists a constant l > 1 such that

G(t) ≤ 1

2l
G(lt) for all t ≥ 0, (2.4)

where the constants κ and l are to be determined by q and p. Note that G
satisfies the∇2-condition if and only if G∗ does the ∆2-condition. In addition,
from the definition of the conjugate function, we have

ts ≤ G(t) +G∗(s), t, s ≥ 0. (2.5)

From (2.1), we deduce that for every ε ∈ (0, 1)

ts ≤ ε1−qG(t) + εG∗(s), t, s ≥ 0, (2.6)

which is Young’s inequality with ε. We further have from (1.3) that

G∗(g(t)) = tg(t)−G(t) ≤ (q − 1)G(t), t ≥ 0. (2.7)

Also the convexity and (2.1) imply

2−1(G(t) +G(s)) ≤ G(t+ s) ≤ 2q−1(G(t) +G(s)),

7



CHAPTER 2. PRELIMINARIES

which will be used often later.

2.2 Fractional Orlicz-Sobolev spaces

For an open subset U in Rn, we denote by M(U) to mean the class of all
real-valued measurable functions on U . For an N-function G satisfying the
∆2 and ∇2 conditions, we define the Orlicz space LG(U) as

LG(U) :=

{
v ∈M(U)

∣∣∣ ∫
U

G(|v(x)|) dx <∞
}
,

which is a Banach space with the Luxemburg norm defined as

‖v‖LG(U) := inf

{
λ > 0

∣∣∣ ∫
U

G

(
|v(x)|
λ

)
dx ≤ 1

}
.

Then note that

‖v‖LG(U) ≤
∫
U

G (|v|) dx+ 1. (2.8)

We next let 0 < s < 1 and define the fractional Orlicz-Sobolev space W s,G(U)
as

W s,G(U) :=

{
v ∈ LG(U)

∣∣∣ ∫
U

∫
U

G

(
|v(x)− v(y)|
|x− y|s

)
dxdy

|x− y|n
<∞

}
,

which is also a Banach space with the norm

‖v‖W s,G(U) := ‖v‖LG(U) + [v]s,G,U ,

where [v]s,G,U is the Gagliardo semi-norm defined by

[v]s,G,U := inf

{
λ > 0

∣∣∣ ∫
U

∫
U

G

(
|v(x)− v(y)|
λ|x− y|s

)
dxdy

|x− y|n
≤ 1

}
.

Thus we have

[v]s,G,U ≤
∫
U

∫
U

G

(
|v(x)− v(y)|
|x− y|s

)
dxdy

|x− y|n
+ 1. (2.9)

8



CHAPTER 2. PRELIMINARIES

We introduce the function space to which weak solutions of (1.2) belong, see
the next subsection for the concept of a weak solution. We write

CΩ := (Ω× Rn) ∪ (Rn × Ω). (2.10)

Then the space Ws,G(Ω) consists of all functions v ∈ M(Rn) with v|Ω ∈
LG(Ω) and ∫∫

CΩ

G

(
|v(x)− v(y)|
|x− y|s

)
dxdy

|x− y|n
<∞.

Note that if v ∈Ws,G(Ω), then v|Ω ∈ W s,G(Ω).

2.3 Weak solution and tail

We first recall g with (1.3) and K with (1.4) to define a weak solution to
(1.1).

Definition 2.3.1. u ∈ Ws,G(Ω) is a weak solution (resp. subsolution or
supersolution) to (1.1) if∫∫

CΩ

g

(
|u(x)− u(y)|
|x− y|s

)
u(x)− u(y)

|u(x)− u(y)|
(η(x)− η(y))K(x, y) dxdy = 0

(resp. ≤ 0 or ≥ 0)

for any η ∈ Ws,G(Ω) (resp. nonnegative η ∈ Ws,G(Ω)) such that η = 0 in
Rn \ Ω.

We next write

Lgs(Rn) :=

{
u ∈M(Rn) :

∫
Rn
g

(
|u(x)|

(1 + |x|)s

)
dx

(1 + |x|)n+s
<∞

}
,

and the tail of u ∈ Lgs(Rn) for the ball BR(x0) is denoted by

Tail(u;x0, R) :=

∫
Rn\BR(x0)

g

(
|u(x)|
|x− x0|s

)
dx

|x− x0|n+s
. (2.11)

We notice that u ∈ Lgs(Rn) if and only if Tail(u;x0, R) < ∞ for all x0 ∈ Rn

9



CHAPTER 2. PRELIMINARIES

and R > 0. Indeed, for x ∈ Rn \BR(x0), a direct computation leads to

1 + |x|
|x− x0|

≤ 1 +
1 + |x0|
R

.

Then it follows from (2.1) that

Tail(u;x0, R)

=

∫
Rn\BR(x0)

g

(
|u(x)|

(1 + |x|)s

(
1 + |x|
|x− x0|

)s)(
1 + |x|
|x− x0|

)n+s
dx

(1 + |x|)n+s

≤
(

1 +
1 + |x0|
R

)n+sq ∫
Rn\BR(x0)

g

(
|u(x)|

(1 + |x|)s

)
dx

(1 + |x|)n+s
<∞.

To show the converse relation, choose two different points x1, x2 with |x1| > 1,

|x2| > 1, and let 0 < R ≤ |x1−x2|
4

. Then we find that for x ∈ Rn

|x− xi|
1 + |x|

≤ 1 +
|xi| − 1

1 + |x|
≤ |xi|, i = 1, 2.

Therefore we can estimate as above that∫
Rn
g

(
|u(x)|

(1 + |x|)s

)
dx

(1 + |x|)n+s

≤
∫
Rn\BR(x1)

g

(
|u(x)|

(1 + |x|)s

)
dx

(1 + |x|)n+s

+

∫
Rn\BR(x2)

g

(
|u(x)|

(1 + |x|)s

)
dx

(1 + |x|)n+s

≤ |x1|n+sq

∫
Rn\BR(x1)

g

(
|u(x)|
|x− x1|s

)
dx

|x− x1|n+s

+ |x2|n+sq

∫
Rn\BR(x2)

g

(
|u(x)|
|x− x2|s

)
dx

|x− x2|n+s
<∞.

Remark 2.3.2. Observe that

Rsg−1 (RsTail(u;x0, R))

= Rsg−1

(
Rs

∫
Rn\BR(x0)

g

(
|u(x)|
|x− x0|s

)
dx

|x− x0|n+s

)
.

(2.12)

10



CHAPTER 2. PRELIMINARIES

In particular, if g(t) = tp−1, (2.12) is reduced to[
Rsp

∫
Rn\BR(x0)

|u(x)|p−1

|x− x0|n+sp
dx

] 1
p−1

,

which is the tail used in [22]. In this thesis we use (2.11) instead of (2.12) for
simplicity.

Remark 2.3.3.

1. Note that W s,G(Rn) ⊂Ws,G(Ω) ∩ Lgs(Rn).

2. Let ψ be an N-function satisfying g(t) ≤ cψ(t) for t ≥ t0, where c and
t0 are some positive constants. If u ∈ Lψ(Rn) or u ∈ Lψ(BR)∩L∞(Rn \
BR), then u ∈ Lgs(Rn).
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Chapter 3

Existence and uniqueness

In this chapter we prove the existence and uniqueness of a weak solution
to (1.1) with Dirichlet boundary conditions. The proof is based on a direct
method in the calculus of variations. We refer the reader to [2, 22, 29, 35] for
the details. Before introducing the compact embedding in W s,G(Ω), we need
the following definition.

Definition 3.0.1. Let A and B be two Young functions. We say B grows
essentially more slowly near infinity than A if

lim
t→∞

B(λt)

A(t)
= 0 (3.1)

for every λ > 0.

Note that the condition (3.1) is equivalent to

lim
t→∞

A−1(t)

B−1(t)
= 0.

Let s ∈ (0, 1) and let A be a Young function such that∫ 1

0

(
t

A(t)

) s
n−s

dt <∞ and

∫ ∞
1

(
t

A(t)

) s
n−s

dt =∞. (3.2)

Then An
s

is given by

An
s
(t) := A(H−1(t)) for t ≥ 0, (3.3)

12



CHAPTER 3. EXISTENCE AND UNIQUENESS

where the function H : [0,∞)→ [0,∞) obeys

H(t) :=

(∫ t

0

(
τ

A(τ)

) s
n−s

dτ

)n−s
n

for t ≥ 0. (3.4)

The following lemma is related to compact embedding of W s,G.

Lemma 3.0.2. [1, Theorem 3.5] Let s ∈ (0, 1) and let A be a Young function
fulfilling (3.2). Let An

s
be the Young function defined as in (3.3). Assume that

B is a Young function. Then the following properties are equivalent.

1. B grows essentially more slowly near infinity than An
s
.

2. The embedding

W s,A(U)→ LB(U)

is compact for every bounded domain U ⊂ Rn with Lipschitz boundary.

From the above lemma, we see the following compact embedding result.

Lemma 3.0.3. Suppose an N-function G satisfies (1.3) and 0 < s < 1. The
embedding

W s,G(U)→ LG(U)

is compact for any bounded domain U ⊂ Rn with Lipschitz boundary.

Proof. We first consider the case 0 < s < n
q
. Note that the condition (1.3)

implies

G(t) ≥ tq for 0 < t < 1 and G(t) ≤ tq for t ≥ 1.

Then recalling the assumption (q−1)s
n−s < 1, we get∫ 1

0

(
t

G(t)

) s
n−s

dt ≤ c

∫ 1

0

t−
(q−1)s
n−s dt <∞ (3.5)

and ∫ ∞
1

(
t

G(t)

) s
n−s

dt ≥ c

∫ ∞
1

t−
(q−1)s
n−s dt =∞.

13



CHAPTER 3. EXISTENCE AND UNIQUENESS

Thus G satisfies (3.2) with A = G.
Next, we will check that G grows essentially more slowly near infinity

than Gn
s
. For t > G(1) = 1, we recall the definition of Gn

s
to see

G−1
n
s

(t)

G−1(t)
=
H(G−1(t))

G−1(t)

=
1

G−1(t)

(∫ 1

0

(
τ

G(τ)

) s
n−s

dτ

)n−s
n

+
1

G−1(t)

(∫ G−1(t)

1

(
τ

G(τ)

) s
n−s

dτ

)n−s
n

,

(3.6)

where H is as in (3.4) with A = G. Let us consider the second term in the
right-hand side. Since τ

G(τ)
is non-increasing,

1

G−1(t)

(∫ G−1(t)

1

(
τ

G(τ)

) s
n−s

dτ

)n−s
n

≤ 1

G−1(t)

(
1

G(1)

) s
n

(G−1(t)− 1)
n−s
n

≤ (G−1(t))
n−s
n

G−1(t)
= (G−1(t))−

s
n .

(3.7)

Gathering together (3.5), (3.6) and (3.7) gives

G−1
n
s

(t)

G−1(t)
≤ c

G−1(t)
+ (G−1(t))−

s
n ,

hence lim
t→∞

G−1
n
s

(t)

G−1(t)
= 0. Therefore, Lemma 3.0.2 directly implies the compact

embedding from W s,G(U) to LG(U) when s < n
q
.

On the other hand, for the case s ≥ n
q
, a simple modification to [23,

Proposition 2.1] shows that the embedding W s,G(U)→ W s̃,G(U) is continu-
ous, i.e., ‖u‖W s̃,G(U) ≤ c‖u‖W s,G(U), for every s̃ ∈ (0, s). Now take any number
s̃ ∈ (0, n

q
). Since W s,G(U) ⊂ W s̃,G(U) and W s̃,G(U) → LG(U) is compact,

the embedding W s,G(U)→ LG(U) is also compact when s ≥ n
q
.

We next recall the following Poincaré type inequality.

14



CHAPTER 3. EXISTENCE AND UNIQUENESS

Lemma 3.0.4. [29, Corollary 6.2] Let U ⊂ Rn be a bounded open set with
Lipschitz boundary. Suppose G is an N-function satisfying (1.3). Then there
exists a constant c > 0 depending on n, s, p, q and U such that∫

U

G(|u|)dx ≤ c

∫
Rn

∫
Rn
G

(
|u(x)− u(y)|
|x− y|s

)
dxdy

|x− y|n

for every s ∈ (0, 1) and u ∈ W s,G(U).

To prove the existence and uniqueness of weak solutions to (1.1), we
consider the following energy functional

I[v] :=

∫∫
CΩ

G

(
|v(x)− v(y)|
|x− y|s

)
K(x, y) dxdy, (3.8)

where CΩ is from (2.10) and

v ∈ Af (Ω) := {v ∈Ws,G(Ω) : v = f in Rn \ Ω}.

We say u ∈ Af (Ω) is a minimizer of I over Af (Ω) if I[u] ≤ I[v] for all
v ∈ Af (Ω).

Theorem 3.0.5. Let Ω ⊂ Rn be a bounded domain, the operator L and an
N-function G be given as in Chapter 1, and f ∈Ws,G(Ω). Then there exists
a unique minimizer u of I over Af (Ω). Moreover, a function u ∈ Af (Ω) is
the minimizer of I over Af (Ω) if and only if it is the weak solution to{

Lu = 0 in Ω,

u = f in Rn \ Ω.
(3.9)

Proof. Step 1. We first prove the existence and uniqueness of minimizer
of I. Since f ∈ Af (Ω), Af (Ω) is nonempty. We now choose a minimizing
sequence {um}m≥1 inAf (Ω) so that I[um] is non-increasing and lim

m→∞
I[um] =

inf
w∈Af (Ω)

I[w]. Set vm := um − f . Then {vm}m≥1 ⊂ Ws,G(Ω) and vm = 0 in

Rn \ Ω. Choose a ball B ≡ BR(0) such that B ⊃ Ω. In order to use the
compactness argument, we need to show that ‖vm‖W s,G(B) is bounded for m.
Using (2.8), (2.9) and Lemma 3.0.4, and the fact that vm = 0 in Rn \ Ω, we

15



CHAPTER 3. EXISTENCE AND UNIQUENESS

find

‖vm‖W s,G(B) ≤
∫
B

G (|vm|) dx+

∫
B

∫
B

G

(
|vm(x)− vm(y)|
|x− y|s

)
dxdy

|x− y|n
+ 2

≤ c

[∫∫
CΩ

G

(
|vm(x)− vm(y)|
|x− y|s

)
K(x, y) dxdy + 2

]
≤ c(I[um] + I[f ] + 2) ≤ c.

Since I[um] is bounded, so is ‖vm‖W s,G(B). By the compactness result in
Lemma 3.0.3, there exist a subsequence {vmj}j≥1 and v ∈ W s,G(B) such that

vmj ⇀ v weakly in W s,G(B),

vmj → v in LG(B),

vmj → v a.e. in B,

as j →∞.

Now extend v by zero outside B and set u = v + f . Then we see that
u ∈ Af (Ω) and lim

j→∞
umj = u a.e. in Rn. Therefore v ∈ Ws,G(Ω) such that

v = 0 in Rn \ Ω and so v + f ∈ Af (Ω). Then Fatou’s lemma implies

I[u] ≤ lim inf
j→∞

I[umj ] = inf
w∈Af
I[w].

The uniqueness directly follows from the convexity of G. Indeed, to prove
this, we first suppose that u, v ∈ Af (Ω) are two different minimizers of I.
Then I[u] = I[v]. Since G is strictly convex, we have

I[u] ≤ I
[
u+ v

2

]
<
I[u] + I[v]

2
= I[u],

which is a contradiction.

Step 2. We next show the equivalence between the minimizer of (3.8) and
a weak solution to (3.9). Suppose u is the minimizer of (3.8). Then for any
η ∈ Ws,G(Ω) with η = 0 in Rn \ Ω, I[u + τη] has a critical point at τ = 0.

16



CHAPTER 3. EXISTENCE AND UNIQUENESS

Thus

0 =
d

dτ
I[u+ τη]

∣∣∣
τ=0

=

∫∫
CΩ

d

dτ
G

(
|u(x)− u(y) + τ(η(x)− η(y))|

|x− y|s

) ∣∣∣
τ=0

K(x, y) dxdy

=

∫∫
CΩ

g

(
|u(x)− u(y)|
|x− y|s

)
u(x)− u(y)

|u(x)− u(y)|
(η(x)− η(y))K(x, y)

dxdy

|x− y|s
.

Therefore u is a weak solution to (3.9).
On the other hand, suppose u is a weak solution to (3.9). Then for any

v ∈ Af (Ω), we see that u − v ∈ Ws,G(Ω) and that u − v = 0 in Rn \ Ω. We
then test η := u− v in the weak formulation of (3.9) to discover

0 =

∫∫
CΩ

g

(
|u(x)− u(y)|
|x− y|s

)
|u(x)− u(y)|K(x, y)

dxdy

|x− y|s

−
∫∫

CΩ

g

(
|u(x)− u(y)|
|x− y|s

)
u(x)− u(y)

|u(x)− u(y)|
(v(x)− v(y))K(x, y)

dxdy

|x− y|s
.

(3.10)

Let us look at the integrand of the second term with respect to the measure
K(x, y) dxdy on the right-hand side. From (2.5) and (2.7), we see

g

(
|u(x)− u(y)|
|x− y|s

)
u(x)− u(y)

|u(x)− u(y)|
v(x)− v(y)

|x− y|s

≤ g

(
|u(x)− u(y)|
|x− y|s

)
|v(x)− v(y)|
|x− y|s

≤ G∗
(
g

(
|u(x)− u(y)|
|x− y|s

))
+G

(
|v(x)− v(y)|
|x− y|s

)
=
|u(x)− u(y)|
|x− y|s

g

(
|u(x)− u(y)|
|x− y|s

)
−G

(
|u(x)− u(y)|
|x− y|s

)
+G

(
|v(x)− v(y)|
|x− y|s

)
.

(3.11)

We combine (3.10) and (3.11) to conclude that I[v] ≥ I[u]. Therefore u is
the minimizer of I.
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Chapter 4

Hölder regularity

4.1 Auxiliary estimates

In this section we derive two estimates for the weak solutions to (1.1) that
play essential roles in the proof of the main theorems. The first one is a
Caccioppoli type estimate. A similar Caccioppoli type estimate in the Orlicz
setting can be also found in [15].

Proposition 4.1.1 (Caccioppoli type estimate). Let u ∈Ws,G(Ω) ∩ Lgs(Rn)
be a weak solution to (1.1). Then for any k ≥ 0, Br ≡ Br(x0) b Ω and
φ ∈ C∞0 (Br) with 0 ≤ φ ≤ 1, we have∫

Br

∫
Br

G

(
|w±(x)− w±(y)|
|x− y|s

)
min {φq(x), φq(y)} dxdy

|x− y|n

≤ c

∫
Br

∫
Br

G

(
|φ(x)− φ(y)|
|x− y|s

max{w±(x), w±(y)}
)

dxdy

|x− y|n

+ c

∫
Br

w±(x)φq(x) dx

(
sup

y ∈ suppφ

∫
Rn\Br

g

(
w±(x)

|x− y|s

)
dx

|x− y|n+s

)
,

(4.1)

where w± := (u− k)± = max{±(u− k), 0} and c > 0 depends on n, s, p, q, λ
and Λ.

Proof. We only consider w+, as the same argument can apply to w−. Take

18



CHAPTER 4. HÖLDER REGULARITY

η := w+φ
q ∈Ws,p(Ω) as a test function to find

0 =

∫
Rn

∫
Rn
g

(
|u(x)− u(y)|
|x− y|s

)
u(x)− u(y)

|u(x)− u(y)|
(η(x)− η(y))K(x, y)

dxdy

|x− y|s

=

∫
Br

∫
Br

g

(
|u(x)− u(y)|
|x− y|s

)
u(x)− u(y)

|u(x)− u(y)|
(η(x)− η(y))K(x, y)

dxdy

|x− y|s

+ 2

∫
Rn\Br

∫
Br

g

(
|u(x)− u(y)|
|x− y|s

)
u(x)− u(y)

|u(x)− u(y)|
η(x)K(x, y)

dxdy

|x− y|s

=: I + II.

(4.2)

Note that η(x) = 0 for x ∈ Br ∩{u(x) < k}. We divide the latter part of the
proof into two steps.

Step 1. In this step we derive an estimate in terms of w+ from (4.2). We
first consider the integrand of I with respect to the measure, K(x, y) dxdy

|x−y|s .

In the case when u(x) ≥ u(y) for x, y ∈ Br, we have

g

(
|u(x)− u(y)|
|x− y|s

)
u(x)− u(y)

|u(x)− u(y)|
(η(x)− η(y))

= g

(
u(x)− u(y)

|x− y|s

)
(η(x)− η(y))

=


g

(
w+(x)− w+(y)

|x− y|s

)
(η(x)− η(y)) if u(x) ≥ u(y) ≥ k,

g

(
u(x)− u(y)

|x− y|s

)
η(x) if u(x) ≥ k > u(y),

0 if k > u(x) ≥ u(y)

≥ g

(
w+(x)− w+(y)

|x− y|s

)
(η(x)− η(y))

= g

(
|w+(x)− w+(y)|
|x− y|s

)
w+(x)− w+(y)

|w+(x)− w+(y)|
(η(x)− η(y)).

(4.3)

On the other hand, in the case when u(x) < u(y) for x, y ∈ Br, we exchange
the roles of x and y in (4.3) to obtain the same result. Then we recall the
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assumption (1.4) to get

I ≥ λ

∫
Br

∫
Br

g

(
|w+(x)− w+(y)|
|x− y|s

)
w+(x)− w+(y)

|w+(x)− w+(y)|
(η(x)− η(y))

dxdy

|x− y|n+s
.

(4.4)

Next, let us consider II. Note that

g

(
|u(x)− u(y)|
|x− y|s

)
u(x)− u(y)

|u(x)− u(y)|
η(x)

≥

{
−g
(
w+(y)
|x−y|s

)
η(x) if u(y) > u(x) ≥ k,

0 otherwise.

Inserting this inequality into II, we deduce

II ≥ −2Λ

∫
Rn\Br

∫
Br

g

(
w+(y)

|x− y|s

)
η(x)

dxdy

|x− y|n+s
. (4.5)

We then combine (4.2), (4.4), and (4.5) to discover∫
Br

∫
Br

g

(
|w+(x)− w+(y)|
|x− y|s

)
w+(x)− w+(y)

|w+(x)− w+(y)|
(η(x)− η(y))

dxdy

|x− y|n+s

≤ 2Λ

λ

∫
Rn\Br

∫
Br

g

(
w+(y)

|x− y|s

)
η(x)

dxdy

|x− y|n+s
.

(4.6)

Step 2. Set

III :=

∫
Br

∫
Br

g

(
|w+(x)− w+(y)|
|x− y|s

)
w+(x)− w+(y)

|w+(x)− w+(y)|
(η(x)− η(y))

dxdy

|x− y|n+s

and

IV :=

∫
Rn\Br

∫
Br

g

(
w+(y)

|x− y|s

)
η(x)

dxdy

|x− y|n+s
.

Then we see from (4.6) that III ≤ 2Λ
λ
IV .

To estimate III, we first look at the integrand of III with respect to the
measure dxdy

|x−y|n . Consider the following three cases:
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(1) w+(x) > w+(y) and φ(x) ≤ φ(y),

(2) w+(x) > w+(y) and φ(x) > φ(y),

(3) w+(x) ≤ w+(y).

In the case (1), we have

g

(
|w+(x)− w+(y)|
|x− y|s

)
w+(x)− w+(y)

|w+(x)− w+(y)|
w+(x)φq(x)− w+(y)φq(y)

|x− y|s

= g

(
w+(x)− w+(y)

|x− y|s

)
w+(x)− w+(y)

|x− y|s
φq(y)

− g
(
w+(x)− w+(y)

|x− y|s

)
φq(y)− φq(x)

|x− y|s
w+(x)

≥ pG

(
w+(x)− w+(y)

|x− y|s

)
φq(y)

− qg
(
w+(x)− w+(y)

|x− y|s

)
φq−1(y)

φ(y)− φ(x)

|x− y|s
w+(x),

(4.7)

where we have used (1.3) and the following elementary inequality

φq(y)− φq(x) ≤ qφq−1(y)(φ(y)− φ(x)).

We further estimate the second term on the right-hand side of (4.7). By using
(2.6) and (2.7), we have that for ε ∈ (0, 1),

g

(
w+(x)− w+(y)

|x− y|s

)
φq−1(y)

φ(y)− φ(x)

|x− y|s
w+(x)

≤ εG∗
(
g

(
w+(x)− w+(y)

|x− y|s

)
φq−1(y)

)
+ c(ε)G

(
φ(y)− φ(x)

|x− y|s
w+(x)

)
≤ ε(q − 1)G

(
w+(x)− w+(y)

|x− y|s

)
φq(y) + c(ε)G

(
φ(y)− φ(x)

|x− y|s
w+(x)

)
.

(4.8)

For the last inequality, we have used (2.2) with a = φq−1(y) ≤ 1. Choosing
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ε = min
{

p
2(q−1)

, 1
2

}
and plugging (4.8) into (4.7), we discover

g

(
|w+(x)− w+(y)|
|x− y|s

)
w+(x)− w+(y)

|w+(x)− w+(y)|
w+(x)φq(x)− w+(y)φq(y)

|x− y|s

≥ p

2
G

(
|w+(x)− w+(y)|
|x− y|s

)
min{φq(x), φq(y)}

− cG
(
|φ(x)− φ(y)|
|x− y|s

max{w+(x), w+(y)}
)
.

(4.9)

In the case (2), we use (1.3) to have

g

(
|w+(x)− w+(y)|
|x− y|s

)
w+(x)− w+(y)

|w+(x)− w+(y)|
w+(x)φq(x)− w+(y)φq(y)

|x− y|s

≥ g

(
w+(x)− w+(y)

|x− y|s

)
w+(x)− w+(y)

|x− y|s
φq(x)

≥ pG

(
|w+(x)− w+(y)|
|x− y|s

)
min{φq(x), φq(y)}.

Therefore, we also obtain the estimate (4.9) in this case. Moreover, since the
integrand is invariant with the exchanging of x and y, we again have the
estimate (4.9) in the case (3). Consequently, we obtain

III ≥ c

∫
Br

∫
Br

G

(
|w+(x)− w+(y)|
|x− y|s

)
min {φq(x), φq(y)} dxdy

|x− y|n

− c
∫
Br

∫
Br

G

(
|φ(x)− φ(y)|
|x− y|s

max{w+(x), w+(y)}
)

dxdy

|x− y|n
.

To estimate IV , we first use Fubini’s theorem to find

IV =

∫
Rn\Br

∫
Br

g

(
w+(y)

|x− y|s

)
η(x)

dxdy

|x− y|n+s

≤
∫
Br

w+(x)φq(x) dx

(
sup

x∈ suppφ

∫
Rn\Br

g

(
w+(y)

|x− y|s

)
dy

|x− y|n+s

)
.

Hence we obtain (4.1), as III ≤ cIV .

Remark 4.1.2. In Proposition 4.1.1, the estimate (4.1) for w+ (resp. w−)
still holds true when u is a weak subsolution (resp. supersolution) to (1.1).
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CHAPTER 4. HÖLDER REGULARITY

The second one to be derived is a logarithmic estimate. This will be
used in the proof of the decay estimate for the oscillation of weak solutions,
Lemma 4.4.1. We need the following elementary inequality.

Lemma 4.1.3. [22, Lemma 3.1] Let q ≥ 1 and ε ∈ (0, 1]. Then

|a|q ≤ (1 + cqε)|b|q + (1 + cqε)ε
1−q|a− b|q

for every a, b ∈ Rn. Here cq > 0 depends on n and q.

Proposition 4.1.4 (Logarithmic estimate). Let u ∈Ws,G(Ω) ∩ Lgs(Rn) be a
weak supersolution to (1.1) with u ≥ 0 in BR ≡ BR(x0) ⊂ Ω. Then for any
d > 0 and 0 < r < R

2
, we have∫

Br

∫
Br

| log (u(x) + d)− log (u(y) + d)| dxdy
|x− y|n

≤ crn + c
rn+s

g(d/rs)
Tail(u−;x0, R)

(4.10)

for some c = c(n, s, p, q, λ,Λ) > 0. In addition, we have the estimate∫
Br

|h− (h)Br | dx ≤ crn
[
1 +

rs

g(d/rs)
Tail(u−;x0, R)

]
, (4.11)

where

h := min {(log(a+ d)− log(u+ d))+, log b} , a > 0 and b > 1.

Proof. Write v(x) := u(x) + d and fix a cut-off function φ ∈ C∞0 (B3r/2) such
that 0 ≤ φ ≤ 1, |Dφ| ≤ 4/r and φ ≡ 1 in Br. Since v

G(v/rs)
is nonnegative

in BR and belongs to Ws,G(Ω), we can take η = vφq

G(v/rs)
as a test function to

find

0 ≤
∫
B2r

∫
B2r

g

(
|v(x)− v(y)|
|x− y|s

)
v(x)− v(y)

|v(x)− v(y)|
(η(x)− η(y))K(x, y)

dxdy

|x− y|s

+ 2

∫
Rn\B2r

∫
B2r

g

(
|u(x)− u(y)|
|x− y|s

)
u(x)− u(y)

|u(x)− u(y)|
η(x)K(x, y)

dxdy

|x− y|s

=: I + II.

(4.12)
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We define

F = F (x, y) := g

(
|v(x)− v(y)|
|x− y|s

)
v(x)− v(y)

|v(x)− v(y)|
η(x)− η(y)

|x− y|s
, x, y ∈ B2r.

Note that F (x, y) = F (y, x). We divide the remaining proof into five steps.

Step 1. We first assume that v(y) ≤ v(x) ≤ 2v(y) for x, y ∈ B2r to assert
that

F (x, y) ≤ −c̃(log v(x)− log v(y))φ(x)q + c

(
|x− y|
r

)s
+ c

(
|x− y|
r

)(1−s)p

(4.13)

for some small constant c̃ > 0 and large constant c > 0 depending on n, p
and q. To prove this, let us suppose φ(x) ≥ φ(y). By the definition of η, we
get

F (x, y) = g

(
v(x)− v(y)

|x− y|s

)(
v(x)

G(v(x)/rs)
− v(y)

G(v(y)/rs)

)
φq(x)

|x− y|s

+ g

(
v(x)− v(y)

|x− y|s

)
v(y)

G(v(y)/rs)

φq(x)− φq(y)

|x− y|s

=: F1(x, y) + F2(x, y).

(4.14)

Before estimating F1 and F2, we apply Mean Value Theorem to the mapping
t 7→ t

G(t/rs)
for v(y) ≤ t ≤ v(x) and use the inequality(
t

G(t/rs)

)′
=
G(t/rs)− (t/rs)g(t/rs)

G2(t/rs)
≤ − p− 1

G(t/rs)
(by (1.3)),

to find

v(x)

G(v(x)/rs)
− v(y)

G(v(y)/rs)
≤ −(p− 1)

v(x)− v(y)

G(v(x)/rs).
(4.15)

We again apply Mean value theorem to the mapping t 7→ tq for φ(y) ≤ t ≤
φ(x) to have

φq(x)− φq(y) ≤ qφq−1(x)(φ(x)− φ(y)). (4.16)
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Putting (4.15) into F1 and using (1.3) and the fact that v(x) ≤ 2v(y), we
have

F1 ≤ −(p− 1)g

(
v(x)− v(y)

|x− y|s

)
v(x)− v(y)

|x− y|s
φq(x)

G(v(x)/rs)

≤ −c1G

(
v(x)− v(y)

|x− y|s

)
φq(x)

G(v(y)/rs)

(4.17)

for some small constant c1 = c1(p, q) > 0.

We use (4.16) and recall (2.6) with ε = min
{

c1
2q(q−1)

, 1
2

}
and (2.7), to

discover

F2 ≤ qg

(
v(x)− v(y)

|x− y|s

)
φq−1(x)

φ(x)− φ(y)

|x− y|s
v(y)

G(v(y)/rs)

≤ q

[
ε(q − 1)G

(
v(x)− v(y)

|x− y|s

)
φq(x)

+ ε1−qG

(
φ(x)− φ(y)

|x− y|s
v(y)

)]
1

G(v(y)/rs)

≤
[
c1

2
G

(
v(x)− v(y)

|x− y|s

)
φq(x) + cG

(
φ(x)− φ(y)

|x− y|s
v(y)

)]
1

G(v(y)/rs)
.

(4.18)

We then combine (4.14), (4.17), and (4.18) and use the fact that |Dφ| ≤ 4/r
and |x− y| ≤ 4r for x, y ∈ B2r, to obtain (4.13).

We next suppose φ(x) < φ(y). Using (4.15) and (1.3), we have

F (x, y) = g

(
v(x)− v(y)

|x− y|s

)(
φq(x)v(x)

G(v(x)/rs)
− φq(y)v(y)

G(v(y)/rs)

)
1

|x− y|s

≤ g

(
v(x)− v(y)

|x− y|s

)(
v(x)

G(v(x)/rs)
− v(y)

G(v(y)/rs)

)
φq(y)

|x− y|s

≤ −cg
(
v(x)− v(y)

|x− y|s

)
v(x)− v(y)

|x− y|s
φq(y)

G(v(x)/rs)

≤ −cG
(
v(x)− v(y)

|x− y|s

)
φq(x)

G(v(y)/rs)
.
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Therefore we also have

F (x, y) ≤ −cG
(
v(x)− v(y)

|x− y|s

)
φq(x)

G(v(y)/rs)
+ c

(
|x− y|
r

)(1−s)p

. (4.19)

In addition, by Mean Value Theorem,

log v(x)− log v(y) ≤ v(x)− v(y)

v(y)
=

(v(x)− v(y))/|x− y|s

v(y)/rs
|x− y|s

rs

≤
{
G

(
v(x)− v(y)

|x− y|s

)
1

G(v(y)/rs)
+ 1

}
|x− y|s

rs

≤ cG

(
v(x)− v(y)

|x− y|s

)
1

G(v(y)/rs)
+
|x− y|s

rs
.

For the second inequality we have used the fact that G(t)
t

is increasing for t.
This estimate and (4.19) imply finally (4.13).

Step 2. We now assume that v(x) > 2v(y) for x, y ∈ B2r to claim that

F (x, y) ≤ −c̃(log v(x)− log v(y))φq(y)

+ c

(
|x− y|
r

)s(p−1)

+ c

(
|x− y|
r

)(1−s)q (4.20)

for some small constant c̃ > 0 and large constant c > 0 depending on n, p
and q. To this end, we recall the definition of η to see that

F (x, y) = g

(
v(x)− v(y)

|x− y|s

)(
v(x)

G(v(x)/rs)
− v(y)

G(v(y)/rs)

)
φq(y)

|x− y|s

+ g

(
v(x)− v(y)

|x− y|s

)
v(x)

G(v(x)/rs)

φq(x)− φq(y)

|x− y|s

=: F3(x, y) + F4(x, y).
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Since t
G(t)

is decreasing for t, we have

F3 ≤ g

(
v(x)− v(y)

|x− y|s

)(
2v(y)

G(2v(y)/rs)
− v(y)

G(v(y)/rs)

)
φq(y)

|x− y|s

= g

(
v(x)− v(y)

|x− y|s

)
v(y)

G(v(y)/rs)

(
2
G(v(y)/rs)

G(2v(y)/rs)
− 1

)
φq(y)

|x− y|s

≤ −
(

1− 1

2p−1

)
g

(
v(x)− v(y)

|x− y|s

)
v(y)

G(v(y)/rs)

φq(y)

|x− y|s
.

On the other hand, in light of Lemma 4.1.3, we find that for ε ∈ (0, 1),

F4 ≤ cqεg

(
v(x)− v(y)

|x− y|s

)
v(x)

G(v(x)/rs)

φq(y)

|x− y|s

+ cε1−qg

(
v(x)− v(y)

|x− y|s

)
v(x)

G(v(x)/rs)

|φ(x)− φ(y)|q

|x− y|s
.

In addition, using the fact that t
G(t)

is decreasing for t, 2v(y) < v(x), |Dφ| ≤
c/r, |x− y| ≤ 4r for x, y ∈ B2r and tg(t) ≤ qG(t), we discover

F4 ≤ cqεg

(
v(x)− v(y)

|x− y|s

)
v(y)

G(v(y)/rs)

φq(y)

|x− y|s

+ cε1−qrs
(
v(x)− v(y)

v(x)

)p−1(
r

|x− y|

)s(q−1) |φ(x)− φ(y)|q

|x− y|s

≤ cqεg

(
v(x)− v(y)

|x− y|s

)
v(y)

G(v(y)/rs)

φq(y)

|x− y|s
+ cε1−q

(
|x− y|
r

)(1−s)q

.

We then choose ε = min

{
1

2cq

(
1− 1

2p−1

)
,
1

2

}
, and combine the above es-

timates to discover

F ≤ −cg
(
v(x)− v(y)

|x− y|s

)
v(y)

G(v(y)/rs)

φq(y)

|x− y|s
+ c

(
|x− y|
r

)(1−s)q

.

Note that

v(y)

G(v(y)/rs)

1

|x− y|s
≥ 1

4s
v(y)/rs

G(v(y)/rs)
≥ p

4s
1

g(v(y)/rs)
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to have

F (x, y) ≤ −cg
(
v(x)− v(y)

|x− y|s

)
φq(y)

g(v(y)/rs)
+ c

(
|x− y|
r

)(1−s)q

. (4.21)

Moreover, since v(x) > 2v(y),

log v(x)− log v(y) ≤ log 2(v(x)− v(y))− log v(y) ≤ c

(
2(v(x)− v(y))

v(y)

)p−1

,

where we have used the fact that log t < tp−1

p−1
. Note that

g(s)

sp−1
≤ q

G(s)

sp
≤ q

G(t)

tp
≤ q

p

g(t)

tp−1
for any t ≥ s > 0,

to discover

log v(x)− log v(y) ≤ c

(
(v(x)− v(y))/|x− y|s

v(y)/rs
|x− y|s

rs

)p−1

≤ cg

(
v(x)− v(y)

|x− y|s

)
1

g(v(y)/rs)
+ c

(
|x− y|
r

)s(p−1)

.

This and (4.21) imply the estimate (4.20).

Step 3. We next estimate I in (4.12). We recall (4.13) when v(y) ≤ v(x) ≤
2v(y), and (4.20) when v(x) > 2v(y), and use the fact F (x, y) = F (y, x), to
discover that for every x, y ∈ B2r,

F (x, y) ≤ −c̃ | log v(x)− log v(y)|min{φ(x), φ(y)}q

+ c

(
|x− y|
r

)s
+ c

(
|x− y|
r

)(1−s)p

+ c

(
|x− y|
r

)s(p−1)

.
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Then since φ ≡ 1 in Br and K(x, y) satisfies (1.4), we have

I ≤ − c̃
λ

∫
Br

∫
Br

| log v(x)− log v(y)| dxdy
|x− y|n

+ c

∫
B2r

∫
B2r

[(
|x− y|
r

)s
+

(
|x− y|
r

)(1−s)p

+

(
|x− y|
r

)s(p−1)
]

dxdy

|x− y|n

≤ − c̃
λ

∫
Br

∫
Br

| log v(x)− log v(y)| dxdy
|x− y|n

+ crn.

(4.22)

Step 4. We next estimate II. Observe that for x ∈ BR and y ∈ Rn,

g

(
|u(x)− u(y)|
|x− y|s

)
u(x)− u(y)

|u(x)− u(y)|
≤ g

(
(u(x)− u(y))+

|x− y|s

)
≤ c

[
g

(
u(x)

|x− y|s

)
+ g

(
u(y)−
|x− y|s

)]
.

Recalling suppφ ⊂ B3r/2, we have

II ≤ c

∫
Rn\B2r

∫
B3r/2

g

(
(u(x)− u(y))+

|x− y|s

)
rs

g(v(x)/rs)

dxdy

|x− y|n+s

≤ c

∫
BR\B2r

∫
B3r/2

g

(
(u(x)− u(y))+

|x− y|s

)
rs

g(v(x)/rs)

dxdy

|x− y|n+s

+ c

∫
Rn\BR

∫
B3r/2

g

(
u(x)

|x− y|s

)
rs

g(v(x)/rs)

dxdy

|x− y|n+s

+ c

∫
Rn\BR

∫
B3r/2

g

(
u(y)−
|x− y|s

)
rs

g(v(x)/rs)

dxdy

|x− y|n+s

=: II1 + II2 + II3.

Since u ≥ 0 in BR and v = u+ d, we see that

(u(x)− u(y))+ ≤ v(x) and u(x) ≤ v(x), x, y ∈ BR.
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Thus

II1 ≤ c

∫
BR\B2r

∫
B3r/2

g

(
(u(x)− u(y))+

rs

)
rs

g(v(x)/rs)

dxdy

|x− y|n+s

≤ crs
∫
BR\B2r

∫
B3r/2

dxdy

|x− y|n+s

≤ crs
∫
B3r/2

∫
Rn\Br/2(x)

dydx

|x− y|n+s
≤ crn

and

II2 ≤ c

∫
Rn\BR

∫
B3r/2

g

(
u(x)

rs

)
rs

g(v(x)/rs)

dxdy

|x− y|n+s

≤ crs
∫
Rn\B2r

∫
B3r/2

dxdy

|x− y|n+s
≤ crn.

Observing that for any x ∈ B3r/2 and y ∈ Rn \B2r

|y − x0|
|x− y|

≤ 1 +
|x− x0|
|x− y|

≤ 1 +
3r/2

2r − (3r/2)
= 4,

we find

II3 ≤ c

∫
Rn\BR

∫
B3r/2

g

(
u(y)−
|y − x0|s

)
rs

g(d/rs)

dxdy

|y − x0|n+s

≤ c
rn+s

g(d/rs)
Tail(u−;x0, R).

Consequently, we have

II ≤ crn + c
rn+s

g(d/rs)
Tail(u−;x0, R).

Inserting this estimate and (4.22) into (4.12), we get (4.10).
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Step 5. Now we are ready to prove the estimate (4.11). Observe that∫
Br

|h− (h)Br |dx ≤ c

∫
Br

∫
Br

|h(x)− h(y)| dxdy
|x− y|n

.

Since h(x) is a truncation of log v(x),∫
Br

∫
Br

|h(x)− h(y)| dxdy
|x− y|n

≤ c

∫
Br

∫
Br

| log v(x)− log v(y)| dxdy
|x− y|n

.

Combining (4.10) and the above inequalities, we finally obtain (4.11).

4.2 Sobolev-Poincaré inequality

We notice that the Sobolev inequality and the Sobolev-Poincaré inequality
for the fractional Orlicz-Sobolev space W s,G(Br) are well known in terms of
the Luxemburg norms. However, it does not directly imply a certain integral
version of the Sobolev-Poincaré inequality. For the sake of completeness,
we need to prove the following Sobolev-Poincaré inequality for functions in
W s,G(Br).

Lemma 4.2.1 (Sobolev-Poincaré inequality). Let s ∈ (0, 1). Then there
exists θ = θ(n, s) > 1 such that if G is an N-function satisfying the ∆2

condition (2.3) and the ∇2 condition (2.4) with constants κ and l, and f ∈
W s,G(Br), then(

−
∫
Br

G

(
|f − (f)Br |

rs

)θ
dx

) 1
θ

≤ c−
∫
Br

∫
Br

G

(
|f(x)− f(y)|
|x− y|s

)
dy dx

|x− y|n
,

(4.23)

where c = c(n, s, κ, l) > 0.

Proof. We first show that

|f(x)− (f)Br | ≤ c

∫
Br

[∫
Br

|f(y)− f(z)|
|y − z|n+s

dz

]
dy

|x− y|n−s
, a.e. x ∈ Br,

(4.24)
by using a standard chain argument (see for instance [25] and references
therein). Fix any Lebesgue’s point x ∈ Br for f . For each i ∈ N0, set ri =
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2−ir. Then there exists a sequence {Bi}∞i=0 of balls in Br such that x ∈ Bi,
Bi ⊂ B2ri(x) ∩ Br, B

i+1 ⊂ Bi, ri ≤ (the radius of Bi) ≤ 2ri. In particular,
we can choose B0 = Br and Bi = Bri(x) for large i with ri ≤ dist(x, ∂Br).
Then,

|f(x)− (f)Br | ≤
∞∑
i=0

|(f)Bi+1 − (f)Bi| ≤
∞∑
i=0

−
∫
Bi+1

|f(y)− (f)Bi | dy

≤ c

∞∑
i=0

r−ni

∫
Bi
|f(y)− (f)Bi | dy

≤ c
∞∑
i=0

r−n+s
i

∫
Bi

∫
Bi

|f(y)− f(z)|
|y − z|n+s

dz dy.

Set

h(y) :=

∫
Br

|f(y)− f(z)|
|y − z|n+s

dz, y ∈ Br.

Then

|f(x)− (f)Br | ≤ c
∞∑
i=0

r−n+s
i

∫
B2ri

(x)∩Br
h(y) dy

≤ c
∞∑
i=0

∞∑
j=i

2(n−s)ir−n+s

∫
(B2rj

(x)\B2rj+1
(x))∩Br

h(y) dy

= c
∞∑
j=0

(
j∑
i=0

2(n−s)(i−j)

)∫
(B2rj

(x)\B2rj+1
(x))∩Br

r−n+sh(y) dy

≤ c

∞∑
j=0

∫
(B2rj

(x)\B2rj+1
(x))∩Br

h(y)

|x− y|n−s
dy

= c

∫
Br

h(y)

|x− y|n−s
dy,

and this is (4.24).
We next prove the desired estimate following the argument in [24, Theo-
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rem 7]. To do this, note that for s > 0 there exists c(n, s) ≥ 1 such that

1

c(n, s)
≤ r−s

∫
Br

1

|x− y|n−s
dy ≤ c(n, s), for every x ∈ Br. (4.25)

Using (4.24) with s replaced by s
2

and Jensen’s inequality, we have

−
∫
Br

G

(
|f(x)− (f)Br |

rs

)θ
dx

≤ c−
∫
Br

G

(
r−s
∫
Br

[∫
Br

|f(y)− f(z)|
|y − z|n+s/2

dz

]
dy

|x− y|n−s/2

)θ
dx

= c−
∫
Br

G

(
r−s
∫
Br

[∫
Br

|f(y)− f(z)|
|y − z|s

dz

|y − z|n−s/2

]
dy

|x− y|n−s/2

)θ
dx

≤ c−
∫
Br

[
r−s
∫
Br

∫
Br

G

(
|f(y)− f(z)|
|y − z|s

)
dz

|y − z|n−s/2
dy

|x− y|n−s/2

]θ
dx.

Denote

L :=

∫
Br

∫
Br

G

(
|f(y)− f(z)|
|y − z|s

)
dz dy

|y − z|n
.

Then recall the fact that |y−z| ≤ 2r and use Jensen’s inequality and Fubini’s
theorem, to discover

−
∫
Br

G

(
|f(x)− (f)Br |

rs

)θ
dx

≤ cLθ−
∫
Br

[
L−1

∫
Br

r−s/2

|x− y|n−s/2

(∫
Br

G

(
|f(y)− f(z)|
|y − z|s

)
dz

|y − z|n

)
dy

]θ
dx

≤ cLθ−1−
∫
Br

∫
Br

(
r−s/2

|x− y|n−s/2

)θ (∫
Br

G

(
|f(y)− f(z)|
|y − z|s

)
dz

|y − z|n

)
dy dx

= cLθ−1−
∫
Br

∫
Br

[∫
Br

(
r−s/2

|x− y|n−s/2

)θ
dx

]
G

(
|f(y)− f(z)|
|y − z|s

)
dz dy

|y − z|n
.

We now choose θ = θ(n, s) such that

1 < θ <
n

n− s/2
.
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From this choice and (4.25) with s replaced by sθ/2− n(θ − 1), we discover

1

c
≤ rn(θ−1)−sθ/2

∫
Br

1

|x− y|(n−s/2)θ
dx ≤ c for every x ∈ Br.

Consequently,

−
∫
Br

G

(
|f(x)− (f)Br |

rs

)θ
dx

≤ c(|Br|−1L)θ−1−
∫
Br

∫
Br

G

(
|f(y)− f(z)|
|y − z|s

)
dz dy

|y − z|n

≤ c

(
−
∫
Br

∫
Br

G

(
|f(y)− f(z)|
|y − z|s

)
dz dy

|y − z|n

)θ
.

This finishes the proof.

Remark 4.2.2. In Lemma 4.2.1, we selected θ > 1 such that θ ∈ (1, n
n−s/2).

This selection is not optimal and it is possible to consider a larger value θ.
However the condition θ > 1 is enough in the proof of Theorem 4.3.2 below.

4.3 Local boundedness

This section is devoted to the proof of the local boundedness of weak solutions
to (1.1) with the estimate (1.7) in Theorem 1.0.1. Key ingredients of the
proof are the Caccioppoli type estimate, Proposition 4.1.1, and the Sobolev-
Poincaré type inequality in Lemma 4.2.1.

The following lemma will be used in the De Giorgi iteration.

Lemma 4.3.1. [35, Lemma 7.1] Let β > 0 and Ai be a sequence of real
positive numbers such that

Ai+1 ≤ CBiA1+β
i

with C > 0 and B > 1. If A0 ≤ C−
1
βB
− 1
β2 , then we have

Ai ≤ B−
i
βA0 hence, in particular, lim

i→∞
Ai = 0.
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Now, we are ready to prove the local boundedness of weak solutions to
(1.1).

Theorem 4.3.2. Let u ∈ Ws,G(Ω) ∩ Lgs(Rn) be a weak subsolution to (1.1)
and Br b Ω. Then we have

sup
Br/2

u+ ≤ cbr
sG−1

(
−
∫
Br

G
(u+

rs

)
dx

)
+ rsg−1(rsTail(u+;x0, r/2)), (4.26)

where cb = cb(n, s, p, q, λ,Λ) > 0. Moreover, if u is a weak solution to (1.1),
then u ∈ L∞loc(Ω) and we have the estimate (1.7).

Proof. Suppose that u is a weak subsolution. Fix Br = Br(x0) b Ω. For any
j ∈ N0, write

rj = (1 + 2−j)
r

2
, r̃j =

rj + rj+1

2
, Bj = Brj(x0), B̃j = Br̃j(x0),

kj = (1− 2−j)k, k̃j =
kj + kj+1

2
, wj = (u− kj)+ and w̃j = (u− k̃j)+.

Note from the above setting that

Bj+1 ⊂ B̃j ⊂ Bj, kj ≤ k̃j ≤ kj+1 and wj+1 ≤ w̃j ≤ wj. (4.27)

We take any cut-off functions φj ∈ C∞0 (B̃j) such that 0 ≤ φj ≤ 1, φj ≡ 1
in Bj+1 and |Dφj| ≤ 2j+4/r. Putting φj into the Caccioppoli inequality (4.1)
with w+ = w̃j (see Remark 4.1.2) and dividing the inequality by |Bj+1|, we
get

−
∫
Bj+1

∫
Bj+1

G

(
|w̃j(x)− w̃j(y)|
|x− y|s

)
dxdy

|x− y|n

≤ c−
∫
Bj

∫
Bj

G

(
|φj(x)− φj(y)|
|x− y|s

max{w̃j(x), w̃j(y)}
)

dxdy

|x− y|n

+ c−
∫
Bj

w̃j(x)φqj(x)dx

(
sup

y ∈ suppφj

∫
Rn\Bj

g

(
w̃j(x)

|x− y|s

)
dx

|x− y|n+s

)
=: I + II.

(4.28)

We first look at the first term I in the right-hand side of the above inequality.

35
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Since |φj(x)− φj(y)| ≤ ‖Dφj‖L∞|x− y| ≤ c2j|x− y|/r, we find

I ≤ c−
∫
Bj

∫
Bj

G
(
2jr−1|x− y|1−s max{w̃j(x), w̃j(y)}

) dxdy

|x− y|n

≤ c2qj−
∫
Bj

∫
Bj

G

(
max{w̃j(x), w̃j(y)}

rs

)(
|x− y|
r

)(1−s)p
dxdy

|x− y|n

≤ c2qjr−(1−s)p−
∫
Bj

G

(
w̃j(x)

rs

)(∫
Bj

dy

|x− y|n−(1−s)p

)
dx

≤ c2qj−
∫
Bj

G

(
wj(x)

rs

)
dx.

(4.29)

To estimate II, we write

II1 = −
∫
Bj

w̃j(x)φqj(x)dx and II2 = sup
y ∈ suppφj

∫
Rn\Bj

g

(
w̃j(x)

|x− y|s

)
dx

|x− y|n+s
.

Since g is increasing and wj ≥ k̃j − kj in {uj ≥ k̃j}, we have

G
(wj
rs

)
≥ 1

q

wj
rs
g
(wj
rs

)
≥ 1

q

w̃j
rs
g

(
k̃j − kj
rs

)
≥ c2−(q−1)j w̃j

rs
g

(
k

rs

)
.

Thus

II1 ≤ c2(q−1)j rs

g (k/rs)
−
∫
Bj

G
(wj
rs

)
dx. (4.30)

In order to estimate II2, we notice that for x ∈ Rn \Bj and y ∈ B̃j,

|x− x0|
|x− y|

≤ |x− y|+ |y − x0|
|x− y|

≤ 1 +
r̃j

rj − r̃j
≤ 2j+4.
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This and (4.27) imply

II2 ≤ sup
y∈B̃j

∫
Rn\Br/2

g

(
w0

|x− y|s

)
dx

|x− y|n+s

≤ c2(n+sq)j

∫
Rn\Br/2

g

(
u+

|x− x0|s

)
dx

|x− x0|n+s

= c2(n+sq)jTail(u+;x0, r/2).

(4.31)

In light of (4.30) and (4.31), we deduce

II ≤ c2(n+sq+q)j rs

g (k/rs)

(
−
∫
Bj

G
(wj
rs

)
dx

)
Tail(u+;x0, r/2). (4.32)

Combining (4.28), (4.29), and (4.32), and applying the Sobolev-Poincaré in-
equality (4.23) to the left-hand side of (4.28), we have(

−
∫
Bj+1

Gθ

( |w̃j − (w̃)Bj+1
|

rsj+1

)
dx

) 1
θ

≤ c2(n+sq+q)j

×

[
−
∫
Bj

G
(wj
rs

)
dx+

rs

g (k/rs)

(
−
∫
Bj

G
(wj
rs

)
dx

)
Tail(u+;x0, r/2)

]
(4.33)

for some θ = θ(n, s) > 1. On the other hand, recalling the definition of rj+1

and using Jensen’s inequality and (4.27), we discover(
−
∫
Bj+1

Gθ

(
w̃j
rs

)
dx

) 1
θ

≤ c

(
−
∫
Bj+1

Gθ

( |w̃j − (w̃j)Bj+1
|

rs

)
dx

) 1
θ

+ cG

(
(w̃j)Bj+1

rs

)

≤ c

(
−
∫
Bj+1

Gθ

( |w̃j − (w̃j)Bj+1
|

rsj+1

)
dx

) 1
θ

+ c−
∫
Bj

G
(wj
rs

)
dx.

(4.34)
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Let us estimate the left-hand side of (4.34). Notice that the relations in
(4.27) yield

Gθ

(
w̃j
rs

)
≥ Gθ−1

(
w̃j
rs

)
G
(wj+1

rs

)
≥ Gθ−1

(
kj+1 − k̃j

rs

)
G
(wj+1

rs

)
.

Therefore it follows that

G
θ−1
θ

(
k

rs

)(
−
∫
Bj+1

G
(wj+1

rs

)
dx

) 1
θ

≤ c2qjG
θ−1
θ

(
kj+1 − k̃j

rs

)(
−
∫
Bj+1

G
(wj+1

rs

)
dx

) 1
θ

≤ c2qj

(
−
∫
Bj+1

Gθ

(
w̃j
rs

)
dx

) 1
θ

.

(4.35)

Taking into account (4.33), (4.34) and (4.35), we deduce that

G
θ−1
θ

(
k

rs

)(
−
∫
Bj+1

G
(wj+1

rs

)
dx

) 1
θ

≤ c2(n+sq+2q)j

[
1 +

rs

g (k/rs)
Tail(u+;x0, r/2)

](
−
∫
Bj

G
(wj
rs

)
dx

)
.

(4.36)

Denote

aj :=
1

G(k/rs)
−
∫
Bj

G
(wj
rs

)
dx. (4.37)

Then (4.36) is identical to

aj+1 ≤ c22(n+sq+2q)θj

[
1 +

rs

g (k/rs)
Tail(u+;x0, r/2)

]θ
aθj
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for some c2 > 0 depending on n, s, p, q, λ and Λ. At this stage, choose

k = rsG−1

(
c3−
∫
Br

G
(u+

rs

)
dx

)
+ rsg−1(rsTail(u+;x0, r/2)),

where c3 = (c22θ)
1
θ−1 2

(n+sq+2q)θ

(θ−1)2 . Then we see that

aj+1 ≤ (c22θ)2(n+sq+2q)θjaθj and a0 ≤ c−1
3 = (c22θ)−

1
θ−1 2

− (n+sq+2q)θ

(θ−1)2 .

Set cb = max
{
c

1/p
3 , c

1/q
3

}
. Since Lemma 4.3.1 implies aj → 0 as j → ∞, we

discover

sup
Br/2

u+ ≤ k ≤ cbr
sG−1

(
−
∫
Br

G
(u+

rs

)
dx

)
+ rsg−1(rsTail(u+;x0, r/2)),

and this is (4.26).
If u is a weak solution, then −u is a weak subsolution. Then we have

the estimate (4.26) with u+ replaced by (−u)+ = u−. This completes the
proof.

4.4 The proof of Theorem 1.0.1

We complete the proof of Theorem 1.0.1 by obtaining (1.8). Let u ∈Ws,G(Ω)∩
Lgs(Rn) be a weak solution to (1.1). Let Br ≡ Br(x0) b Ω. For α ∈ (0, 1),
σ ∈ (0, 1) and i ∈ N0, we write

ri := σi
r

2
and Bi = Bri(x0) (4.38)

and define

νi :=

(
ri
r0

)α
ν0 = σαiν0 (4.39)

with

ν0 := 2

(
cbr

sG−1

(
−
∫
Br

G

(
|u|
rs

)
dx

)
+ rsg−1(rsTail(u;x0, r/2))

)
, (4.40)
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where cb is as in (1.7).
For the proof of (1.8), it is enough to show the following oscillation decay

estimate.

Lemma 4.4.1. Under the above setting, there exist small α, σ ∈ (0, 1) de-
pending on n, s, p, q, λ and Λ such that for every i ∈ N0,

osc
Bi
u := sup

Bi

u− inf
Bi
u ≤ νi. (4.41)

Proof. First of all, we assume that

α ≤ sp

2(p− 1)
and σ <

1

4
. (4.42)

We prove this lemma by induction. Obviously, (4.41) holds true for i = 0
from (1.7) and the definition of ν0. Suppose that for some j ≥ 0,

osc
Bi
u ≤ νi for all i ∈ {0, 1, 2, · · · , j}, (4.43)

and then we will prove (4.41) for i = j + 1. We define uj by

uj :=

u− inf
Bj
u, if |2Bj+1 ∩ {u ≥ inf

Bj
u+ νj/2}| ≥ 1

2
|2Bj+1|,

νj − (u− inf
Bj
u), if |2Bj+1 ∩ {u ≤ inf

Bj
u+ νj/2}| ≥ 1

2
|2Bj+1|,

where 2Bj+1 := B2rj+1
(x0). Then uj ≥ 0 in Bj and

|2Bj+1 ∩ {uj ≥ νj/2}|
|2Bj+1|

≥ 1

2
. (4.44)

We divide the remaining part of the proof into three steps.

Step 1. We first estimate Tail(uj;x0, rj). Define T1 and T2 as follows:

Tail(uj;x0, rj) =

j∑
i=1

∫
Bi−1\Bi

g

(
|uj(x)|
|x− x0|s

)
dx

|x− x0|n+s

+

∫
Rn\B0

g

(
|uj(x)|
|x− x0|s

)
dx

|x− x0|n+s

=: T1 + T2.

(4.45)
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Before estimating T1 and T2, observe that the definition of uj and the induc-
tion hypothesis (4.43) imply

sup
Bi

|uj| ≤ 2νi for all i ≤ j. (4.46)

Moreover, the local boundedness of u implies

|uj| ≤ |u|+ νj + sup
Bj

|u| ≤ |u|+ 2ν0. (4.47)

We now estimate T1. Recall (4.46) to find

T1 ≤
j∑
i=1

∫
Bi−1\Bi

g

(
supBi−1

|uj|
|x− x0|s

)
dx

|x− x0|n+s

≤ c

j∑
i=1

∫
Bi−1\Bi

g

(
νi−1

rsi

)(
rsi

|x− x0|s

)p−1
dx

|x− x0|n+s

= c

j∑
i=1

r
s(p−1)
i g

(
νi−1

rsi

)∫
Bi−1\Bi

dx

|x− x0|n+sp
≤ c

j∑
i=1

1

rsi
g

(
νi−1

rsi

)
.

(4.48)

In order to estimate T2, we write g̃(t) := G(t)/t. Note that (1.3) implies
pg̃(t) ≤ g(t) ≤ qg̃(t) and

(p− 1)
G(t)

t2
≤ g̃′(t) =

tg(t)−G(t)

t2
≤ (q − 1)

G(t)

t2
. (4.49)

Now set h(t) := g̃(t1/(q−1)). Using (4.49), we get

0 ≤ p− 1

q − 1

G
(
t

1
q−1

)
t

1
q−1

+1
≤ h′(t) =

1

q − 1
g̃′
(
t

1
q−1

)
t

1
q−1
−1 ≤

G
(
t

1
q−1

)
t

1
q−1

+1
=
h(t)

t

and so (
h(t)

t

)′
=
th′(t)− h(t)

t2
≤ 0.

Therefore h(t) is non-decreasing and h(t)/t is non-increasing. We then set ψ
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be the concave envelope of h to conclude that ψ
2
≤ h ≤ ψ, see [54, Lemma

2.2] for details. Additionally, considering (4.47) and the inequalities pg̃(t) ≤
g(t) ≤ qg̃(t), we find

T2 ≤ c

∫
Rn\B0

g̃

(
ν0

|x− x0|s

)
dx

|x− x0|n+s
+ c

∫
Rn\B0

g

(
|u(x)|
|x− x0|s

)
dx

|x− x0|n+s

= c

∫
Rn\B0

h

((
ν0

|x− x0|s

)q−1
)

dx

|x− x0|n+s
+ cTail(u;x0, r0)

≤ c

∫
Rn\B0

ψ

((
ν0

|x− x0|s

)q−1
)

dx

|x− x0|n+s
+ cTail(u;x0, r0).

Now we use Jensen’s inequality with respect to the measure dx
|x−x0|n+s . Then

T2 ≤
c

rs0
ψ

(
rs0

∫
Rn\B0

(
ν0

|x− x0|s

)q−1
dx

|x− x0|n+s

)
+ cTail(u;x0, r0)

≤ c

rs0
h

((
ν0

rs0

)q−1
)

+ cTail(u;x0, r0)

≤ c

rs0
g̃

(
ν0

rs0

)
+ cTail(u;x0, r0) ≤ c

rs0
g

(
ν0

rs0

)
+ cTail(u;x0, r0).

We recall (4.40) to discover

T2 ≤
c

rs0
g

(
ν0

rs0

)
≤ c

rs1
g

(
ν0

rs1

)
. (4.50)
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We combine (4.45), (4.48), and (4.50), and recall (4.38) and (4.39) to have

Tail(uj;x0, rj) ≤
j∑
i=1

c

rsi
g

(
νi−1

rsi

)
=

j∑
i=1

c

rsi
g

(
νj
rsj+1

σ(s−α)(j−i+1)

)

≤ c

rsj+1

g

(
νj
rsj+1

) j∑
i=1

σ(sp−α(p−1))(j−i+1)

≤ c

rsj+1

g

(
νj
rsj+1

)
σsp−α(p−1)

1− σsp−α(p−1)

≤ c

rsj+1

g

(
νj
rsj+1

)
σsp−α(p−1),

(4.51)

by taking σ > 0 sufficiently small so that

σsp−α(p−1) ≤ σ
sp
2 ≤ 1

2
. (4.52)

Step 2. In this step, we look at

|2Bj+1 ∩ {uj ≤ 2ενj}|
|2Bj+1|

, where ε := σ
sp−α(p−1)

q−1 ≤ σ
sp

2(q−1) < 1. (4.53)

For k > 0 to be determined later, we write

v := min

{[
log

(
νj/2 + ενj
uj + ενj

)]
+

, k

}
.

Applying Proposition 4.1.4 with u = uj, r = 2rj+1, R = rj, a ≡ νj/2,
b ≡ exp (k) and d = ενj and using (4.51), we find

−
∫

2Bj+1

|v − (v)2Bj+1
| dx ≤ c

[
1 +

g(νj/r
s
j+1)

g(ενj/rsj+1)
σsp−α(p−1)

]
≤ c(1 + ε1−qσsp−α(p−1)) ≤ c.

(4.54)
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On the other hand, using the fact {v = 0} = {uj ≥ νj/2} and (4.44), we see

k =
1

|2Bj+1 ∩ {uj ≥ νj/2}|

∫
2Bj+1∩{v=0}

k dx

≤ 2

|2Bj+1|

∫
2Bj+1

(k − v) dx = 2[k − (v)2Bj+1
].

Integrating the above inequality over 2Bj+1 ∩ {v = k} and using (4.54), we
get

|2Bj+1 ∩ {v = k}|
|2Bj+1|

k ≤ 2

|2Bj+1|

∫
2Bj+1∩{v=k}

(k − (v)2Bj+1
) dx

≤ 2

|2Bj+1|

∫
2Bj+1

|v − (v)2Bj+1
| dx ≤ c.

Here we assume σ > 0 is sufficiently small so that

√
ε = σ

sp−α(p−1)
2(q−1) ≤ σ

sp
4(q−1) ≤ 1

6
, (4.55)

and take

k = log

(
νj/2 + ενj

3ενj

)
≥ log

(
1

6ε

)
≥ 1

2
log

(
1

ε

)
,

from which, together with (4.53), we discover

|2Bj+1 ∩ {uj ≤ 2ενj}|
|2Bj+1|

≤ c

k
≤ c4

log (1/σ)

for some c4 > 0 depending on n, p, q, λ and Λ.

Step 3. Finally, we prove (4.41) for i = j + 1. For any m ∈ N0, we write

ρm = (1 + 2−m)rj+1, ρ̃m =
ρm + ρm+1

2
, Bm = Bρm , B̃m = Bρ̃m ,

km = (1 + 2−m)ενj and wm = (km − uj)+ = (uj − km)−.

Note that rj+1 < ρm ≤ 2rj+1 and ενj < km ≤ 2ενj. Take cut-off functions
φm ∈ C∞0 (B̃m) such that 0 ≤ φm ≤ 1, φm ≡ 1 in Bm+1 and |Dφm| <
2m+4/rj+1. Applying the Caccioppoli inequality (4.1) to w− = wm, φ = φm

44
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and Br = Bm, we have∫
Bm+1

∫
Bm+1

G

(
|wm(x)− wm(y)|
|x− y|s

)
dxdy

|x− y|n

≤ c

∫
Bm

∫
Bm

G

(
|φm(x)− φm(y)|
|x− y|s

max{wm(x), wm(y)}
)

dxdy

|x− y|n

+ c

∫
Bm

wm(x)φqm(x)dx

(
sup
y∈B̃m

∫
Rn\Bm

g

(
wm(x)

|x− y|s

)
dx

|x− y|n+s

)
.

(4.56)

As in the proof of the local boundedness, we use the Sobolev-Poincaré in-
equality (4.23), Jensen’s inequality and (4.56), to find

I :=

(
−
∫
Bm+1

Gθ

(
wm
ρsm+1

)
dx

) 1
θ

≤ c

(
−
∫
Bm+1

Gθ

(
wm − (wm)Bm+1

ρsm+1

)
dx

) 1
θ

+ c

(
−
∫
Bm+1

Gθ

(
(wm)Bm+1

ρsm+1

)
dx

) 1
θ

≤ c−
∫
Bm+1

∫
Bm+1

G

(
|wm(x)− wm(y)|
|x− y|s

)
dxdy

|x− y|n
+ cG

(
(wm)Bm+1

ρsm+1

)
≤ c−
∫
Bm

∫
Bm

G

(
|φm(x)− φm(y)|
|x− y|s

max{wm(x), wm(y)}
)

dxdy

|x− y|n

+ c−
∫
Bm

wm(x)φqm(x) dx

(
sup
y∈B̃m

∫
Rn\Bm

g

(
wm(x)

|x− y|s

)
dx

|x− y|n+s

)

+ c−
∫
Bm+1

G

(
wm
ρsm+1

)
dx =: II + III + IV.

(4.57)

We write

Am :=
|Bm ∩ {uj ≤ km}|

|Bm|
.
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From the definition of uj, km and Am, we estimate I as follows:

I ≥ 1

|Bm+1| 1θ

(∫
Bm+1∩{uj≤km+1}

Gθ

(
km − km+1

ρsm+1

)
dx

) 1
θ

= A
1
θ
m+1G

(
km − km+1

ρsm+1

)
≥ c2−qmA

1
θ
m+1G

(
ενj
rsj+1

)
.

(4.58)

Since |φm(x)− φm(y)| ≤ c2m |x−y|
rj+1

, we find

II ≤ c2qm

|Bm|

∫
Bm

∫
Bm

G

(
max{wm(x), wm(y)}

rsj+1

)(
|x− y|
rj+1

)(1−s)p
dxdy

|x− y|n

≤ c2qm

|Bm|
r
−(1−s)p
j+1

∫
Bm∩{uj≤km}

∫
Bm

G

(
km
rsj+1

)
dydx

|x− y|n−(1−s)p

≤ c2qm

|Bm|
G

(
km
rsj+1

)
|Bm ∩ {uj ≤ km}| ≤ c2qmG

(
ενj
rsj+1

)
Am.

(4.59)

As for III, set

III1 = −
∫
Bm

wm(x)φq(x) dx

and

III2 = sup
y∈B̃m

∫
Rn\Bm

g

(
wm(x)

|x− y|s

)
dx

|x− y|n+s
.

Then we have

III1 ≤ |Bm|−1

∫
Bm∩{uj≤km}

kmdx ≤ cενjAm.

Using the fact that |x−x0|
|x−y| ≤ 1 + |y−x0|

|x−y| ≤ 1 + ρ̃m
ρm−ρ̃m ≤ c2m for x ∈ Rn \ Bm
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and y ∈ B̃m, we have

III2 ≤ c

∫
Rn\Bj+1

g

(
wm(x)

|x− x0|s
2sm
)

2(n+s)m dx

|x− x0|n+s

≤ c2(n+sq)mTail(wm;x0, rj+1).

Moreover, since uj ≥ 0 in Bj, we have wm ≤ km ≤ 2ενj in Bj and wm ≤
km + |uj| ≤ 2ενj + |uj| in Rn \Bj. Then from (4.51), we see

Tail(wm;x0, rj+1) ≤ c

∫
Bj\Bj+1

g

(
ενj

|x− x0|s

)
dx

|x− x0|n+s
+ cTail(uj;x0, rj)

≤ c

∫
Rn\Bj+1

g

(
ενj
rsj+1

)(
rj+1

|x− x0|

)(p−1)s
dx

|x− x0|n+s

+
c

rsj+1

g

(
νj
rsj+1

)
σsp−α(p−1)

≤ c

rsj+1

g

(
ενj
rsj+1

)
.

Therefore we obtain

III ≤ c2(n+sq)m ενj
rsj+1

g

(
ενj
rsj+1

)
Am ≤ c2(n+sq)mG

(
ενj
rsj+1

)
Am. (4.60)

We recall the notation for IV to find

IV ≤ cG

(
ενj
rsj+1

)
Am. (4.61)

We finally combine (4.57), (4.58), (4.59), (4.60), and (4.61), to discover

Am+1 ≤ c2(n+sq+2q)θmA1+β
m , where β = θ − 1.

Recall that

A0 =
|2Bj+1 ∩ {uj ≤ 2ενj}|

|2Bj+1|
≤ c4

log(1/σ)
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and choose σ > 0 sufficiently small such that

c4

log(1/σ)
≤ c−1/β2−[n+sq+2q]θ/β2

. (4.62)

Here, we notice that the constant σ is determined from (4.42), (4.52), and
(4.62), hence depends only on n, s, p, q, λ and Λ. Then we apply Lemma 4.3.1
to see that lim

m→∞
Am = 0, which implies

uj > ενj in Bj+1. (4.63)

If uj = u− inf
Bj
u, then (4.63) implies inf

Bj+1

u ≥ ενj + inf
Bj
u and therefore

osc
Bj+1

u ≤ sup
Bj

u− inf
Bj+1

u ≤ sup
Bj

u− (ενj + inf
Bj
u) = osc

Bj
u− ενj ≤ (1− ε)νj.

On the other hand, if uj = νj − (u− inf
Bj
u), then we have sup

Bj+1

u ≤ (1− ε)νj +

inf
Bj
u from (4.63). Thus

osc
Bj+1

u ≤ sup
Bj+1

u− inf
Bj
u ≤ (1− ε)νj.

Considering both cases, we obtain

osc
Bj+1

u ≤ (1− ε)νj =
1− σ

sp−α(p−1)
q−1

σα
νj+1 ≤

1− σ
sp
q−1

σα
νj+1 ≤ νj+1,

by taking α = α(n, s, p, q, λ,Λ) > 0 sufficiently small so that

σα ≥ 1− σ
sp
q−1 .

This completes the proof.
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Harnack inequality

5.1 Density lemma

In this section, we prove a density lemma and weak Harnack inequality which
will play a crucial role in the proof of Harnack inequality. The proof is based
on [21, Section 3]. We first state a modified version of Theorem 4.3.2 as
follows.

Lemma 5.1.1. Let u ∈Ws,G(Ω)∩Lgs(Rn) be a weak subsolution to (1.1) and

Br b Ω. Set γ = θ(q−1)
(θ−1)p

. Then for any ball Br ≡ Br(x0) b Ω and δ ∈ (0, 1),
we have

sup
Br/2

u+ ≤ cδ−γrsG−1

(
−
∫
Br

G
(u+

rs

)
dx

)
+ δrsg−1(rs Tail(u+;x0, r/2)) (5.1)

for some c ≡ c(n, s, p, q, λ,Λ) > 0.

Proof. Let k > 0 be a number to de determined later. In the proof of Theorem
4.3.2, for each i ∈ N0, we have

ai+1 ≤ c12(n+sq+2q)θi

[
1 +

rs

g (k/rs)
Tail(u+;x0, r/2)

]θ
aθi

for some c1 ≡ c1(n, s, p, q, λ,Λ) > 0. Here ai is as in (4.37) and θ ≡ θ(n, s) > 1
is the constant in Lemma 4.2.1. Now we set

k = rsG−1

(
c2δ

θ
θ−1

(1−q)−
∫
Br

G
(u+

rs

)
dx

)
+ δrsg−1(rs Tail(u+;x0, r/2)),
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where c2 = (c12θ)
1
θ−1 2

(n+sq+2q)θ

(θ−1)2 , in order to have

ai+1 ≤ (c12θ)2(n+sq+2q)θiaθi and a0 ≤ c−1
2 = (c12θ)−

1
θ−1 2

− (n+sq+2q)θ

(θ−1)2 .

Hence Lemma 4.3.1 implies lim
i→∞

ai = 0, which in turn gives sup
Br/2

u+ ≤ k. Then

(5.1) follows.

Lemma 5.1.2. Let u ∈ Ws,G(Ω) ∩ Lgs(Rn) be a weak supersolution to (1.1)
such that u ≥ 0 in BR ≡ BR(x0) b Ω. Let k ≥ 0. Suppose that there exists
σ ∈ (0, 1] such that

|Br ∩ {u ≥ k}| ≥ σ|Br|, (5.2)

for some 0 < r < R/16. Then there exists a constant δ ≡ δ(n, s, p, q, λ,Λ, σ) ∈
(0, 1/4) such that

inf
B4r

u ≥ δk − rsg−1(rs Tail(u−;x0, R)). (5.3)

Proof. Step 1: A preliminary estimate. We first show that∣∣∣∣B6r ∩
{
u ≤ 2δk − 1

2
rsg−1(rs Tail(u−;x0, R))

}∣∣∣∣ ≤ c̄

σ log 1
2δ

|B6r|. (5.4)

for every δ ∈ (0, 1/4), where c̄ depends only on n, s, p, q, λ and Λ.
Using Lemma 4.1.4 in B6r with

h = min

{
(log(k + d)− log(u+ d))+, log

1

2δ

}
for

d :=
1

2
rsg−1(rs Tail(u−;x0, R)),

we have

−
∫
B6r

|h− (h)B6r | dx ≤ c. (5.5)

Since {h = 0} = {u ≥ k}, the assumption (5.2) implies

|B6r ∩ {h = 0}| ≥ |Br ∩ {h = 0}| ≥ σ|Br| =
σ

6n
|B6r|.
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Thus we have

log
1

2δ
= −
∫
B6r∩{h=0}

(
log

1

2δ
− h
)
dx

≤ c

σ
−
∫
B6r

(
log

1

2δ
− h
)
dx =

c

σ

(
log

1

2δ
− (h)B6r

)
.

Integrating the above inequality over B6r ∩
{
h = log 1

2δ

}
and using (5.5), we

get ∣∣∣∣B6r ∩
{
h = log

1

2δ

}∣∣∣∣ log
1

2δ
≤ c

σ

∫
B6r∩{h=log 1

2δ}
|h− (h)B6r | dx

≤ c

σ

∫
B6r

|h− (h)B6r | dx ≤
c̄

σ
|B6r|

for some c̄ ≡ c̄(n, s, p, q, λ,Λ). Then, using the relation{
h = log

1

2δ

}
= {u ≤ 2δ(k + d)− d} ⊃ {u ≤ 2δk − d} ,

we obtain (5.4):

|B6r ∩ {u ≤ 2δk − d}| ≤ |B6r ∩ {u ≤ 2δ(k + d)− d}| ≤ c̄

σ log 1
2δ

|B6r|.

Step 2: Expansion of positivity. We now determine the constant δ to
prove (5.3). Here we may assume 2d ≤ δk, otherwise there is nothing to
prove. For each i ∈ N ∪ {0}, we set

ρi =

(
4 +

1

2i−1

)
r, ρ̃i =

ρi + ρi+1

2
, Bi = Bρi , B̃i = Bρ̃i ,

li =

(
1 +

1

2i+1

)
δk and wi = (li − u)+.

We notice that the above settings give 4r ≤ ρi ≤ 6r and Bi+1 ⊂ B̃i ⊂ Bi.
Take cut-off functions φi ∈ C∞0 (B̃i) satisfying φi ≡ 1 in Bi+1, 0 ≤ φi ≤ 1 and
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|Dφi| ≤ 2i+3/r. Applying Lemma 4.1.1 with wi, B̃i and φi, we obtain

−
∫
Bi+1

∫
Bi+1

G

(
|wi(x)− wi(y)|
|x− y|s

)
dxdy

|x− y|n

≤ c−
∫
Bi

∫
Bi

G

(
|φi(x)− φi(y)|
|x− y|s

max{wi(x), wi(y)}
)

dxdy

|x− y|n

+ c−
∫
Bi

wi(x)φqi (x) dx

(
sup
y∈B̃i

∫
Rn\Bi

g

(
wi(x)

|x− y|s

)
dx

|x− y|n+s

)
. (5.6)

On the other hand, applying Lemma 4.2.1 and Jensen’s inequality, we have(
−
∫
Bi+1

Gθ
(wi
rs

)
dx

) 1
θ

≤ c

(
−
∫
Bi+1

Gθ

(
|wi − (wi)Bi+1

|
ρsi+1

)
dx

) 1
θ

+ c−
∫
Bi+1

G
(wi
rs

)
dx

≤ c−
∫
Bi+1

∫
Bi+1

G

(
|wi(x)− wi(y)|
|x− y|s

)
dxdy

|x− y|n

+ c−
∫
Bi

G
(wi
rs

)
dx.

(5.7)

where we have also used the fact ρi ≈ r. Combining (5.6) and (5.7), we
deduce that

I :=

(
−
∫
Bi+1

Gθ
(wi
rs

)
dx

) 1
θ

≤ c−
∫
Bi

∫
Bi

G

(
|φi(x)− φi(y)|
|x− y|s

max{wi(x), wi(y)}
)

dxdy

|x− y|n

+ c−
∫
Bi

wi(x)φqi (x) dx

(
sup
y∈B̃i

∫
Rn\Bi

g

(
wi(x)

|x− y|s

)
dx

|x− y|n+s

)
+ c−
∫
Bi

G
(wi
rs

)
dx

=: II + III + IV.

(5.8)

52



CHAPTER 5. HARNACK INEQUALITY

We first estimate I from below. We denote

Ai =
|Bi ∩ {u < li}|

|Bi|
.

Since wi ≥ li − li+1 in {u < li+1}, we get

A
1
θ
i+1G

(
li − li+1

rs

)
=

(
1

|Bi+1|

∫
Bi+1∩{u<li+1}

Gθ

(
li − li+1

rs

)
dx

) 1
θ

≤ I.

In order to estimate II, we use |φi(x) − φi(y)| ≤ c2i|x − y|/r and Fubini’s
theorem as follows:

II ≤ c−
∫
Bi

∫
Bi

G

(
|φi(x)− φi(y)|
|x− y|s

wi(x)

)
dxdy

|x− y|n

≤ c−
∫
Bi

∫
Bi∩{u<li}

G

(
|φi(x)− φi(y)|
|x− y|s

li

)
dxdy

|x− y|n

≤ c2qi

ρ
(1−s)p
i |Bi|

∫
Bi∩{u<li}

∫
Bi

G

(
li
ρsi

)
dydx

|x− y|n−(1−s)p ≤ c2qiG

(
li
rs

)
Ai.

We next estimate III. we note that for any x ∈ Rn \Bi and y ∈ B̃i,

|x− x0|
|x− y|

≤ 1 +
|y − x0|
|x− y|

≤ 1 +
ρ̃i

ρi − ρ̃i
≤ 2i+4.

Then

III ≤ c

|Bi|

∫
Bi∩{u<li}

lidx× 2(n+sq)i

∫
Rn\Bi

g

(
wi(x)

|x− x0|s

)
dx

|x− x0|n+s

≤ cliAi × 2(n+sq)i Tail(wi;x0, ρi)

≤ cliAi × 2(n+sq)i(Tail(li;x0, ρi) + Tail(u−;x0, ρi)). (5.9)

We further estimate the right-hand side. A direct calculation gives

Tail(li;x0, ρi) ≤ cρ
s(q−1)
i

∫
Rn\Bi

g

(
li
ρsi

)
dx

|x− x0|n+sq
≤ c

rs
g

(
li
rs

)
(5.10)

We recall the assumptions u ≥ 0 inBR and 2d ≤ δk to estimate Tail(u−;x0, ρi)
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as

Tail(u−;x0, ρi) = Tail(u−;x0, R) ≤ 1

rs
g

(
δk

rs

)
≤ 1

rs
g

(
li
rs

)
. (5.11)

Plugging (5.10) and (5.11) into (5.9), we have

III ≤ c2(n+sq)iG

(
li
rs

)
Ai.

Finally, It is straightforward to check that

IV ≤ c

|Bi|

∫
Bi∩{u<li}

G

(
li
rs

)
dx = cG

(
li
rs

)
Ai.

Connecting the estimates found for I, II, III and IV to (5.8), and then using
the fact that

G(li/r
s)

G((li − li+1)/rs)
≤
(

li
li − li+1

)q
≤ 2q(i+3),

we have

Ai+1 ≤ c02(n+sq+q)θiA1+β
i ,

where β = θ − 1. Now it remains to choose a proper δ ∈ (0, 1/4) in order to
get lim

i→∞
Ai = 0. From (5.4), there exists c̄ > 0 such that

A0 =
|B6r ∩ {u < 3

2
δk}|

|B6r|
≤ |B6r ∩ {u < 2δk − d}|

|B6r|
≤ c̄

σ log 1
2δ

.

Let ν := c
−1/β
0 2−(n+sq+q)θ/β2

and choose δ := 1
4

exp
(
− c̄
σν

)
< 1

4
. Then

A0 ≤
c̄

σ log 1
2δ

≤ c
−1/β
0 2−(n+sq+q)θ/β2

.

Therefore Lemma 4.3.1 gives lim
i→∞

Ai = 0, which implies inf
B4r

u ≥ δk. This

finishes the proof.

Once we have proved the above lemma, we can proceed with exactly the
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same arguments as in [21, Lemma 4.1] to obtain the following lemma.

Lemma 5.1.3 (Weak Harnack Inequality). Let u ∈ Ws,G(Ω) ∩ Lgs(Rn) be a
weak supersolution to (1.1) such that u ≥ 0 in BR ≡ BR(x0) b Ω. Then there
exist constants t ∈ (0, 1) and c ≥ 1, both depending only on n, s, p, q, λ, and
Λ, such that for Br ⊂ BR,(

−
∫
Br

utdx

) 1
t

≤ c inf
Br
u+ crsg−1(rs Tail(u−;x0, R)).

5.2 The proof of Theorem 1.0.2

We first prove the following lemma, which gives the control of tail contribu-
tion for the Harnack inequality.

Lemma 5.2.1. Let u ∈ Ws,G(Ω) ∩ Lgs(Rn) be a weak solution to (1.1) such
that u ≥ 0 in BR ≡ BR(x0) b Ω. Then, for any 0 < r < R,

Tail(u+;x0, r) ≤ c

[
r−sg

(
r−s sup

Br

u

)
+ Tail(u−;x0, R)

]
holds for some c ≡ c(n, s, p, q, λ,Λ).

Proof. Let k := supBr u. We may assume k > 0 because if k = 0, then u ≡ 0
in Br so u satisfies Harnack inequality. Take a cut-off function φ ∈ C∞0 (B3r/4)
satisfying φ ≡ 1 in Br/2, 0 ≤ φ ≤ 1 and |Dφ| ≤ 8/r. We test (1.1) with
η ≡ (u− 2k)φq to have

0 =

∫
Br

∫
Br

g

(
|u(x)− u(y)|
|x− y|s

)
u(x)− u(y)

|u(x)− u(y)|
(η(x)− η(y))K(x, y)

dxdy

|x− y|s

+ 2

∫
Rn\Br

∫
Br

g

(
|u(x)− u(y)|
|x− y|s

)
u(x)− u(y)

|u(x)− u(y)|
η(x)K(x, y)

dxdy

|x− y|s

=: I + II. (5.12)

Step 1: Estimate of I. We first assume φ(x) ≥ φ(y). We observe the
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following inequalities:

g

(
|u(x)− u(y)|
|x− y|s

)
u(x)− u(y)

|u(x)− u(y)|
u(x)− u(y)

|x− y|s
≥ pG

(
(u(x)− u(y))+

|x− y|s

)
,

g

(
|u(x)− u(y)|
|x− y|s

)
u(x)− u(y)

|u(x)− u(y)|
≤ g

(
(u(x)− u(y))+

|x− y|s

)
.

Using the fact −2k ≤ u− 2k ≤ −k in Br and putting the above inequalities
into I, we discover

I =

∫
Br

∫
Br

g

(
|u(x)− u(y)|
|x− y|s

)
u(x)− u(y)

|u(x)− u(y)|
u(x)− u(y)

|x− y|s
φq(x)K(x, y) dxdy

+

∫
Br

∫
Br

g

(
|u(x)− u(y)|
|x− y|s

)
u(x)− u(y)

|u(x)− u(y)|
(5.13)

× φq(x)− φq(y)

|x− y|s
(u(y)− 2k)K(x, y) dxdy

≥ p

∫
Br

∫
Br

G

(
(u(x)− u(y))+

|x− y|s

)
φq(x)K(x, y) dxdy

− 2k

∫
Br

∫
Br

g

(
(u(x)− u(y))+

|x− y|s

)
φq(x)− φq(y)

|x− y|s
K(x, y) dxdy. (5.14)

We further estimate the last term in the above display. Using the inequality
φq(x)−φq(y) ≤ qφq−1(x)(φ(x)−φ(y)) and applying Young’s inequality with
ε = min{p

4
, 1

2
}, we get

2k

∫
Br

∫
Br

g

(
(u(x)− u(y))+

|x− y|s

)
φq(x)− φq(y)

|x− y|s
K(x, y) dxdy

≤ p

2

∫
Br

∫
Br

G

(
(u(x)− u(y))+

|x− y|s

)
φq(x)K(x, y) dxdy

+ c

∫
Br

∫
Br

G

(
φ(x)− φ(y)

|x− y|s
k

)
K(x, y) dxdy (5.15)
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Then we combine (5.13) and (5.15), and then use (1.4) to get

I ≥ p

2

∫
Br

∫
Br

G

(
(u(x)− u(y))+

|x− y|s

)
φq(x)K(x, y) dxdy

− c
∫
Br

∫
Br

G

(
φ(x)− φ(y)

|x− y|s
k

)
K(x, y) dxdy

≥ − c

r(1−s)p

∫
Br

∫
Br

G

(
k

rs

)
dxdy

|x− y|n−(1−s)p ≥ −cr
nG

(
k

rs

)
.

(5.16)

We note that, by interchanging the roles of x and y, we can also obtain (5.16)
when φ(x) < φ(y).

Step 2: Estimate of II. We start by estimating

II ≥
∫
Rn\Br

∫
Br

g

(
(u(y)− k)+

|x− y|s

)
kφq(x)K(x, y)

dxdy

|x− y|s

−
∫
Rn\Br

∫
Br

g

(
(u(x)− u(y))+

|x− y|s

)
2kφq(x)K(x, y)

dxdy

|x− y|s

=: II1 − II2. (5.17)

We observe that

r

4
≤ 1

4
|y − x0| ≤ |x− y| ≤

7

4
|y − x0| for x ∈ suppφ ⊆ B3r/4, y ∈ Rn \Br,

(5.18)
in order to estimate II1 as

II1 ≥
k

c

∫
Rn\Br

∫
Br/2

g

(
u+(y)

|y − x0|s

)
dxdy

|y − x0|n+s

− ck
∫
Br

∫
Rn\Br/4(x)

g

(
k

rs

)
dydx

|x− y|n+s

≥ krn

c
Tail(u+;x0, r)− ckrn−sg

(
k

rs

)
.

(5.19)

Next, using the inequality (u(x) − u(y))+ ≤ u(x) + u−(y) for x ∈ Br and
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y ∈ Rn, along with (1.4) and (5.18), we estimate II2 as

II2 ≤
∫
Rn\Br

∫
Br

g

(
k + u−(y)

|x− y|s

)
2kφq(x)K(x, y)

dxdy

|x− y|s

≤ ck

∫
Br

∫
Rn\Br/4(x)

g

(
k

rs

)
dydx

|x− y|n+s

+ ck

∫
Rn\BR

∫
Br

g

(
u−(y)

|y − x0|s

)
dxdy

|y − x0|n+s

≤ ckrn−sg

(
k

rs

)
+ ckrn Tail(u−;x0, R).

(5.20)

Combining (5.17), (5.19) and (5.20), we have

II ≥ krn

c
Tail(u+;x0, r)− ckrn−sg

(
k

rs

)
− ckrn Tail(u−;x0, R)). (5.21)

In turn, connecting (5.16) and (5.21) to (5.12) and then dividing both sides
by krn, the desired estimate follows.

Before proving Theorem 1.0.2, we introduce the following technical lemma.

Lemma 5.2.2. [35, Lemma 6.1] Let F (t) be a nonnegative bounded function
defined for 0 ≤ T0 ≤ t ≤ T1. Suppose that for T0 ≤ σ < τ ≤ T1,

F (σ) ≤ c1(τ − σ)−γ + c2 + ζF (τ),

where c1, c2, γ ≥ 0 and ζ ∈ (0, 1) are constants. Then there exists a constant
c ≡ c(γ, ζ) such that for every T0 ≤ ρ < R ≤ T1, we have

F (ρ) ≤ c[c1(R− ρ)−γ + c2].

We are now ready to prove our main result.

Proof of Theorem 1.0.1. Let us fix a ball BR ≡ BR(x0) as in the statement.
By Lemma 5.1.1 and Lemma 5.2.1, we have for any ball Bρ ≡ Bρ(x0) b Ω

sup
Bρ/2

u ≤ cδ−γρsG−1

(
−
∫
Bρ

G

(
u

ρs

)
dx

)
+ cδ sup

Bρ

u+ cδρsg−1(ρs Tail(u−;x0, R)).
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By using [54, Lemma 2.2], we can find a concave function G̃(t) such that
G̃(t) ≈ G(t1/q). Then applying Jensen’s inequality with G̃−1(t) ≈ (G−1(t))q

implies

sup
Bρ/2

u ≤ cδ−γ

(
−
∫
Bρ

uq dx

) 1
q

+ cδ sup
Bρ

u+ cδρsg−1(ρs Tail(u−;x0, R)).

We now choose ρ = (τ − σ)r with 1
2
≤ σ ≤ τ ≤ 1. A standard covering

argument gives

sup
Bσr

u ≤ cδ−γ

(τ − σ)
n
q

(
−
∫
Bτr

uq dx

) 1
q

+ cδ sup
Bτr

u+ cδrsg−1(rs Tail(u−;x0, R)).

Choosing δ = 1
4c

and using Young’s inequality, we have

sup
Bσr

u ≤ c

(τ − σ)
n
q

(
sup
Bτr

u

) q−t
q
(
−
∫
Bτr

ut dx

) 1
q

+
1

4
sup
Bτr

u

+ crsg−1(rs Tail(u−;x0, R))

≤ 1

2
sup
Bτr

u+
c

(τ − σ)
n
t

(
−
∫
Br

ut dx

) 1
t

+ crsg−1(rs Tail(u−;x0, R)),

where t ≡ t(n, s, p, q, λ,Λ) ∈ (0, 1) is the constant chosen in Lemma 5.1.3.
Then Lemma 5.2.2 implies

sup
Br

u ≤ c

(
−
∫
Br

ut dx

) 1
t

+ crsg−1(rs Tail(u−;x0, R)).

Finally, combining this estimate with Lemma 5.1.3, we finish the proof.
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of ω-minimizers of functionals with generalized Orlicz growth, Ann. Sc.
Norm. Super. Pisa Cl. Sci. (5) 22 (2021), no. 2, 549–582.
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국문초록

이 학위논문에서는 오리츠 성장조건을 가진 비국소 타원형 편미분방정식의

다양한 정칙성 결과들을 다룬다. 우선 변분법을 이용하여 오리츠 성장조건을
가진 비국소 디리클레 문제의 약해의 존재성과 유일성을 증명한다. 그 다음,
주어진 비국소 타원형 방정식에 적합한 형태의 소볼레프 - 푸앵카레 부등식과
로그가늠을 유도한 뒤 이를 통해 약해의 국소적 횔더 연속성을 보인다. 마지
막으로, 정밀한 꼬리가늠을 통해 하르나크 부등식을 유도한다.

주요어휘:비국소작용소,오리츠성장조건, N-함수,국소적유계,횔더연속성,
하르나크 부등식

학번: 2015-22566
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