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Abstract

Nonlocal elliptic equations with Orlicz growth
Hyojin Kim

Department of Mathematical Sciences
The Graduate School

Seoul National University

This thesis involves various regularity results of nonlocal elliptic equations
with Orlicz growth.

First, we prove the existence and uniqueness of a weak solution to a
nonlocal Dirichlet problem with Orlicz growth by using variational methods.

Next, we show local Holder continuity of a weak solution to such a nonlo-
cal elliptic equation by obtaining a suitable Sobolev-Poincaré type inequality
and a logarithmic estimate.

Finally, we derive Harnack inequality by finding a precise tail estimate.

Key words: Nonlocal operator, Orlicz growth, N-function, Local bounded-
ness, Holder continuity, Harnack inequality
Student Number: 2015-22566
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Chapter 1

Introduction

This thesis is concerned with various regularity results for the following non-
local equation

Lu=0 1in €, (1.1)

defined on a bounded domain 2 in R", n > 2, by
(@) —v(y)|) viz)—v(y) dy
Lou(x) = p.V./ g( K(x,y)——, (1.2)
" [z —yl* ) [v(z) —v(y)| |z —yl*

where 0 < s < 1 and g : [0,00) — [0,00) is a strictly increasing, continuous
function that satisfies g(0) = 0, tlim g(t) = oo and
—00

tg(t !
1<p§i>§q<oo for some 1 <p<gq, where G(t) ::/ g(s)ds.
0

G(t)
(1.3)

Note that this inequality means that the growth of the function G varies
between p and ¢, which is a natural outgrowth of the p-th power func-
tion. This condition covers the power case g(t) = P!, the borderline case
g(t) = t*~tlog (e + t), the mixed case g(t) = =1 +¢77! and so on. For more
examples of g and applications of problems with such growth, we refer to
[4, 36, 56].

K : R" x R* — (0,00] is a symmetric, i.e., K(z,y) = K(y,x), and
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measurable kernel that satisfies

A
< K(z,y) < ,
|z —y[ |z —y|

z,y € R", (1.4)

for some constants 0 < A < A. Note that the symmetry condition of K is
not necessary. However, by considering the kernel K (z,y) = w, we
shall always assume this symmetry, see [44, Section 1.5] for more details.

A main point in this thesis is that the function G is an N-function satis-
fying the Ay and V5 conditions (see Chapter 2) and that a simple example of
the kernel K (x,y) is a(z,y)|x —y|™™ with A < a(z,y) < A. In particular, we
point out that in the case when K (z,y) = |x —y|™", £ becomes the so-called
(s-)fractional G-Laplace operator and we denote it by £ = (—A).

The goal of this thesis is to establish local Holder continuity and Harnack
inequality for the nonlocal problem (1.1). In addition, we will discuss the
existence and uniqueness of weak solutions to (1.1) with Dirichlet boundary
condition.

An obvious example is a particular situation that g(t) = ¢t and K(z,y) =
|z —y|™™ in which case it reduces to the s-fractional Laplace operator (—A)®.
There have been many developments in the regularity theory for nonlocal
elliptic and parabolic equations of fractional Laplace type. We refer to [11,
12, 13, 39, 40, 45, 49, 57] for various regularity results including Holder
continuity, Harnack inequality, self improving property, LP-regularity and so
on. On the other hand, for the fractional p-Laplacian type equations, i.e.,
g(t) = 7! with 1 < p < oo, Di Castro, Kuusi and Palatucci in [21, 22]
established nonlocal De Giorgi-Nash-Moser theory. They proved local Holder
regularity along with Harnack inequality by employing the so-called tail(see
Chapter 2). We also mention that Cozzi [17] proved similar regularity results
by using a notion of fractional De Giorgi class. We further refer to [5, 6,
17, 19, 21, 27, 32, 33, 34, 41, 42, 43, 44, 47, 51, 52] and references therein
for further discussions on the nonlocal nonlinear equations of the fractional
p-Laplacian type.

A general non-autonomous fractional nonlocal operator can be written as

Lo(x) = p.v. /n h (:v,y, lv() = U(w’) v(z) : z(y) K(x,y)L

lz—yl* ) Ju(z) —v(y)] |z —y|*

If h(z,y,t) = tP~1, then we say that the operator or equation satisfies the
p-growth condition. On the other hand, if h(x,y,t) has a more general struc-
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ture, then we say that the operator or equation satisfies a non-standard
growth condition. Typical examples of non-standard growth conditions in-
clude the variable growth condition: h(z,y,t) = t?@¥~1 the double phase
condition: h(z,y,t) = P! + a(x,y)t?"!, and the general growth condition:
h(z,y,t) = g(t). There has been a great deal of studies concerning frac-
tional nonlocal equations with nonstandard growth conditions, in particular,
for Holder regularity in [55, 14] with the variable growth condition and in
[10, 20, 28] with the double phase condition, respectively.

We are mainly focusing on the general growth condition. The local one
corresponding to the nonlocal equation (1.1) is the so called G-Laplace equa-
tion:

Du

div <g(|Du|)m> =0 in Q, where g(t) =G'(t),

for which Lieberman [46] proved Holder regularity and Harnack inequality of
weak solutions under the condition (1.3). We also refer to [3, 7, 18, 26, 37, 38,
48, 53, 58] and references therein for the regularity results for equations of
the G-Laplacian type. In particular, the papers [18, 48| deal with problems
modeled by the G-Laplace equation with GG not necessarily satisfying the A,
and Vs-conditions.

According to the local regularity results for the GG-Laplace equation, ob-
taining analogous regularity results to the corresponding nonlocal equation
(1.1) has been a naturally interesting issue. Especially, Holder regularity
alongside Harnack inequality has been studied in [15, 30, 31] and [16, 28],
respectively. However, Hélder regularity results in [15, 30, 31] are established
with a strong Dirichlet boundary condition or the boundedness of a weak so-
lution or a restrictive condition on g like ¢ < p* in (1.3). Meanwhile, in [28],
Harnack inequality for (1.1) has been proved under additional assumptions
to (1.3), which are

G(tltg) S CG(tl)G(tz), tl,tg Z 0 (15)

and
min{t?, 17} < G(t) < emax{t?, 7}, t>0 (1.6)

for some constant ¢ independent of ¢; and t,.
In this thesis, on the other hand, we prove local Holder regularity and
Harnack inequality for the equation (1.1) with the assumption (1.3) only
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and without boundary data. We do not require the a priori assumption of
the boundedness of a solution. In particular, we need neither (1.5) nor (1.6).
Therefore, we first obtain local boundedness of a weak solution with a suitable
estimate (1.7). To this end, we focus on finding inequalities and embeddings
on fractional Orlicz-Sobolev spaces W% (see Champer 2). Especially, we
proved an integral version of a fractional Sobolev-Poincaré inequality in W*¢
which plays a major role in the proof of the main results in this thesis. We also
give a more simplified proof to obtain a natural form of Harnack inequality. It
is worthwhile to mention that Chaker, Kim and Weidner [16] proved Harnack
inequality for (1.1) by using a different approach.

With the definition of a weak solution, the related function spaces and
the tail to be introduced in details in the next chapter, we now state our
main results.

Theorem 1.0.1 (Holder continuity). Let 0 < s < 1. Suppose that u €
WG (Q) N LI(R™) is a weak solution to (1.1) with (1.2), (1.3) and (1.4).
Then u € C2%(Q) for some o = a(n, s,p,q,\,A) € (0,1). Moreover, there
exist positive constants ¢, and ¢, depending on n,s,p,q, A and A such that
for any B,(xq) € €2,

[ull oo (B, a(x0)) < G (][

B

G (M) dx) + 19~ (r*Tail(u; 2, 7/2))
r(z0) "
(1.7)

and

o o < — |G 7[ Gl—)d
[U]CO (Br/2(wo)) re |:T ( B (x0) (rs ) x)

(1.8)
+ g~ (r* Tail(u; o, 7/ 2))} :

Theorem 1.0.2 (Harnack inequality). Let 0 < s < 1. Under assumptions
(1.2), (1.3) and (1.4), let u € WE(Q) N LI(R™) be a weak solution to (1.1)
such that uw >0 in a ball Bg = Bgr(x¢) C Q. Then the inequality

supu < cigfu + er®g~(r® Tail(u_; 2o, R))
By »

holds for any concentric ball B,(xo) C Brjo(z0), where ¢ = c(n,s,p,q, A\, A).
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Remark 1.0.3. We can get the same results in Theorem 1.0.1 and Theorem
1.0.2 under weaker conditions on g that ¢(0) = 0, tlirn g(t) = oo, and
—00

96) 90 g 9D 19 0<s <t
sp—1 tp—1 ta—1 ga—1

for some 1 < p < gand L > 1. Note that the above inequality implies Ay and
V-conditions of the function ¢ — tg(t). Under this condition, there exists an
increasing continuous function § with §(0) = 0 and tlgglo g(t) = oo such that
g satisfies (1.3) and § ~ ¢ (i.e., there exists a positive constant ¢ > 1 such
that c71g < g < cg). See [36, Chapter 2] for details. Then we get the results
in Theorem 1.0.1 and Theorem 1.0.2 with respect to g. Therefore, by this
equivalence, we can obtain the same estimates for g. Nevertheless, we adopt
the condition (1.3) instead of the above one, as the proof of the equivalence
is rather technical and the condition (1.3) is simpler and widely used.

Our approach here is based on the De Giorgi approach established in
21, 22], in particular, for the fractional p-Laplacian type equations in the
setting of fractional Sobolev spaces W*P. On the other hand, to the fractional
G-Laplacian type equations, this approach can not be directly applied, as
G(st) % G(s)G(t) (this equivalence is true when G(t) = 7). Indeed, we are
forced to face a more complicated and delicate situation under which we need
to make a very careful systematic analysis to overcome the complexity and
difficulty coming from such a G-Laplacian type nonlocal problem. Moreover,
an integral version of Sobolev-Poincaré type inequality plays an essential role
in the process of De Giorgi iteration, which is not known in the fractional
Orlicz-Sobolev space as of today, as far as we are concerned.

This thesis is organized as follows. In Chapter 2 we introduce notations,
function spaces, weak solutions and fundamental inequalities that will be used
throughout this thesis. In Chapter 3 we prove the existence and uniqueness of
weak solutions to (1.1) with Dirichlet boundary conditions. In Chapter 4 we
first derive two essential estimates for weak solutions to (1.1) in Section 4.1.
One is a Caccioppoli type inequality and the other is a logarithmic estimate.
Then we prove local boundedness and Holder continuity of a weak solution.
Chapter 5 is devoted to the proof of Harnack inequality. We notice that
Chapter 3 and Chapter 4 are based on the joint work with Sun-Sig Byun
and Jihoon Ok [8]. Chapter 5 is based on the paper [9] jointed with Sun-Sig
Byun and Kyeong Song.



Chapter 2

Preliminaries

In this chapter we introduce notations and preliminaries, which will be used
throughout this thesis. B,(xy) denotes the ball in R" with radius r > 0
centered at o € R™. When the center is clear in the context, we write it by
B, for the sake of simplicity. The average of an integrable function f on B,
is defined as

1
(f)p, = Brfdl":m Brfdf-

We denote by ¢ to mean a universal constant that can be computed by
given quantities such as n, s,p, g, A\, A. This generic constant can vary from
line to line. We write A =~ B if there exists some constant ¢ > 1 such that
1A<B<cA

2.1 Properties for function G

Throughout this thesis we always assume that G € C'([0, 00)) satisfies (1.3).

Then G : [0,00) — [0,00) is an N-function(nice Young function), i.e., it
is increasing and convex, and satisfies lim @ = 0 and lim@ = 00. We
t—0+ t—o0

always assume G(1) = 1.
The conjugate function G* : [0,00) — [0, 00) is defined by

G*(t) =sup (st — G(s)), t>0.

s>0
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Then we have from (1.3) that for every ¢ € [0, 00),

alG(t) < G(at) < aPG(t) f0<a<1 2.1)
aPG(t) < G(at) < alG(t) ifa>1, '
and that
a?’ G*(t) < G*(at) < a?G*(t) f0<a<1 (2.9)
a? G*(t) < G*(at) < a?’ G*(t) ifa> 1. '

where p’ and ¢’ are the Holder conjugates of p and ¢, respectively. Also we
see that G satisfies the following Ay- and Vy-conditions (see [50, Proposition
2.3]):

(Ay) there exists a constant x > 1 such that

G(2t) < kG(t) forall t>0; (2.3)
(V3) there exists a constant [ > 1 such that

G(t) < %G(lt) forall ¢>0, (2.4)

where the constants x and [ are to be determined by ¢ and p. Note that GG
satisfies the Vy-condition if and only if G* does the As-condition. In addition,
from the definition of the conjugate function, we have

ts < G(t) + G*(s), t,s > 0. (2.5)
From (2.1), we deduce that for every € € (0,1)
ts < € TIG(t) + eGF(s), t,s >0, (2.6)
which is Young’s inequality with e. We further have from (1.3) that
G*(g(1) =1g(t) = G(1) < (¢ = 1)G(@), t=0. (2.7)
Also the convexity and (2.1) imply
27HG(t) + G(s)) < G(t+5) <271 G () + G(s)),

7
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which will be used often later.

2.2 Fractional Orlicz-Sobolev spaces

For an open subset U in R™, we denote by M(U) to mean the class of all
real-valued measurable functions on U. For an N-function G satisfying the
A, and V, conditions, we define the Orlicz space L(U) as

LE(U) = {v e M(U) | /[]G(|v(x)|)dx < oo} ,

which is a Banach space with the Luxemburg norm defined as

o]l e @) 1nf{>\>0’/ ( )d <1}

Then note that
lollzow) < / G (jo]) dz + 1. (2.8)
U

We next let 0 < s < 1 and define the fractional Orlicz-Sobolev space W (U)

weew)={oeriw | [ [ e (MR ) g <o)

which is also a Banach space with the norm

||U||stG(U) = ||U||LG(U) + [U]S,G,U,

where [v]; ¢ is the Gagliardo semi-norm defined by

v]s.cu —mf{)‘>0 ‘ // ( A\x—y\y)’) \l’did;j\” = 1}.

Thus we have
dzxd
SGU<// ( y)’) S Y (2.9)
m—m |z —yl
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We introduce the function space to which weak solutions of (1.2) belong, see
the next subsection for the concept of a weak solution. We write

Co = (2 x R") U (R" x Q). (2.10)

Then the space W% (Q) consists of all functions v € M(R") with v|g €

LE(Q) and .
//c (W |x—y|(y)’> ooy <

Note that if v € W% (Q), then v|q € W% (Q).

2.3 Weak solution and tail
We first recall g with (1.3) and K with (1.4) to define a weak solution to
(1.1).

Definition 2.3.1. v € W*%(Q) is a weak solution (resp. subsolution or
supersolution) to (1.1) if

//CQ (!u - y|( )\) u(x) — u(y) (1(2) — () K () dody — 0

ju(z) = u(y)|

(resp. <0 or > 0)

for any n € WC(Q) (resp. nonnegative n € W(Q)) such that n = 0 in
R"™ \ Q.

We next write

@) = {we M@ [ (G0 ) e <)

and the tail of u € LI(R") for the ball Br(xg) is denoted by

Mz”) dv (2.11)

|z — xo|7ts

Tail(u; zo, R) = /

(1
R™\ Br(zo) |z — 20|

We notice that v € LI(R™) if and only if Tail(u; zo, R) < oo for all g € R”
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and R > 0. Indeed, for x € R™\ Bg(xy), a direct computation leads to

Then it follows from (2.1) that

Tail(u; xg, R)

_/ g( |u(x)| <1+|x|)s) (1—1—]:1:\)"JrS dz
R\ Br(zo)  \(1+]2])* \ |z — ] |z — 0| (1 + [x])nts
1+ |$0\)n+sq/ ( lu(x)| ) dz
<1+ g < 00
( R R\ Br(zo)  \(1+]z])*/) (1 + |z])"+s

To show the converse relation, choose two different points 1, o with |z1] > 1,
ol > 1, and let 0 < R < lZ1=22] Then we find that for z € R”
4

— |1 |
it S e
1+ |z 1+ |z

Therefore we can estimate as above that

/ ; < lu(x)| ) dx
N z]) ) (T |z])te
< / g < |u()] )
= JrmBre)” \(1+ |l’|) (1+ !$|)”+S
o (@507
R™\Bg(z2) 1 + |.']J| 1 + |x| s
< |x1|"+5q/ ( u(z) > dx
N R"\Bgr(z1) |'Z‘ - 371' |£U - m1|n+8

d
+ |x2|n+sq/ g < ”LL( )| s) - — < 00.
R”\Bg(x2) |z — 3] |z — x|

Remark 2.3.2. Observe that

Rég~ " (R*Tail(u; zo, R))
R\ Br(zo)  \|T — ol ) v — x0|"*

10
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In particular, if g(t) = t*~', (2.12) is reduced to

1
-1 1
|:RSP/ |u<x)|p+ d:L‘ P 17
R\ Br(z0) |1T — To|" TP

which is the tail used in [22]. In this thesis we use (2.11) instead of (2.12) for
simplicity.

Remark 2.3.3.
1. Note that W% (R") Cc W% (Q) N LY(R"™).

2. Let ¢ be an N-function satisfying g(t) < c(t) for t > ty, where ¢ and
to are some positive constants. If u € LY(R") or u € L¥(Bg) N L>®(R™\
Bgr), then u € LI(R").

11



Chapter 3

Existence and uniqueness

In this chapter we prove the existence and uniqueness of a weak solution
to (1.1) with Dirichlet boundary conditions. The proof is based on a direct
method in the calculus of variations. We refer the reader to [2, 22, 29, 35] for
the details. Before introducing the compact embedding in W% (), we need

the following definition.

Definition 3.0.1. Let A and B be two Young functions. We say B grows

essentially more slowly near infinity than A if

B(\t) B
o Y

for every A > 0.
Note that the condition (3.1) is equivalent to

A—l
lim (*)

=0.
t—o0 Bil(t)

Let s € (0,1) and let A be a Young function such that

/Ol(ﬁ)*dm and [“(ﬁ)*dt:o@.

Then A= is given by

As(t) = A(H'(t)) for t >0,

12

(3.1)

(3.3)
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where the function H : [0, 00) — [0, 00) obeys

n—s

H(t) = ( /0 t ( A(TT))”SSdT) e 30, (3.4)

The following lemma is related to compact embedding of W*¢.

Lemma 3.0.2. [1, Theorem 3.5] Let s € (0,1) and let A be a Young function
fulfilling (3.2). Let An be the Young function defined as in (3.3). Assume that
B is a Young function. Then the following properties are equivalent.

1. B grows essentially more slowly near infinity than Ax.
2. The embedding
wsAU) — LB(U)

is compact for every bounded domain U C R™ with Lipschitz boundary.
From the above lemma, we see the following compact embedding result.

Lemma 3.0.3. Suppose an N-function G satisfies (1.3) and 0 < s < 1. The
embedding

W¢(U) — LE(U)

is compact for any bounded domain U C R™ with Lipschitz boundary.

Proof. We first consider the case 0 < s < ¢. Note that the condition (1.3)
implies

Gt)>1t? for 0<t<1l and G(t) <t? for t>1.

(g=1)s

/1( t )nisdt< /1t‘("1)sdt (3.5)
—_— <c n—s < 00 .
o \G(t) 0
o t s (¢-Ds
—_— dtZC/ t” n=s dt = o0.
[ () e

13

Then recalling the assumption < 1, we get

and
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Thus G satisfies (3.2) with A = G.
Next, we will check that G grows essentially more slowly near infinity
than G=. For t > G(1) = 1, we recall the definition of G to see

G;l(t)

20 HGEw)
G0 G
( Sdr) n (3.6)

o ([ l(”(e%)*df) B

where H is as in (3.4) with A = G. Let us consider the second term in the
right-hand side. Since is non-increasing,

m

n—s

G(7)

ca( () ) < %)”

Ga'(1)
=i = 0. Therefore, Lemma 3.0.2 directly implies the compact
embedding from W*%(U) to L¢(U) when s < 2.

On the other hand, for the case s > §> a simple modification to [23,

Proposition 2.1] shows that the embedding W*¢(U) — W% (U) is continu-
ous, i.e., |[ullwscw) < cllullwscw), for every 5 € (0, s). Now take any number
5€(0,2) Smce WSG(U) C WG(U) and W34 (U) — LY(U) is compact,
the embeddmg W% (U) — LY(U) is also compact when s > . O

hence lim
t—o0

We next recall the following Poincaré type inequality.

14
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Lemma 3.0.4. [29, Corollary 6.2] Let U C R™ be a bounded open set with
Lipschitz boundary. Suppose G is an N-function satisfying (1.3). Then there
exists a constant ¢ > 0 depending on n,s,p,q and U such that

Jetwese [ [ 6 (’u |x—y|(y)|> o

for every s € (0,1) and u € W=%(U).

To prove the existence and uniqueness of weak solutions to (1.1), we
consider the following energy functional

//C (|v |$_y|( )|) K (2, y) dudy, (3.8)

where Cj, is from (2.10) and
vEA(Q) = {veW Q) v=f in R"\Q}.

We say u € Ay(Q) is a minimizer of Z over A¢(Q) if Z[u] < Z[v] for all
(VRS .Af(Q)

Theorem 3.0.5. Let 2 C R™ be a bounded domain, the operator L and an
N-function G be given as in Chapter 1, and f € W*%(Q). Then there erists
a unique minimizer w of T over As(Q2). Moreover, a function u € A¢(Q2) is
the minimizer of I over As(Q) if and only if it is the weak solution to
{Eu =0 m Q, (3.9)

u=f in R™\Q.

Proof. Step 1. We first prove the existence and uniqueness of minimizer
of Z. Since f € Ap(2), Af(2) is nonempty. We now choose a minimizing
sequence {uy, m>1 in Af(Q) so that Z[u,,] is non-increasing and lim Z{u,,] =
- m—00
ijllf(Q)I[w]. Set vy = Uy, — f. Then {vy,}ms1 € WHY(Q) and v, = 0 in
WEAf
R"™ \ Q. Choose a ball B = Bg(0) such that B D Q. In order to use the
compactness argument, we need to show that ||vy, ||y=.c(g) is bounded for m.
Using (2.8), (2.9) and Lemma 3.0.4, and the fact that v,, = 0 in R™ \ €, we

15



CHAPTER 3. EXISTENCE AND UNIQUENESS

find

fonlivcio < [ Gllomar [ [ (Lol tolill) Sy
[//CQ <‘vm E __y|m( )’) K(fay)dxdy%—Q}

Tlum] + Z[f]1+2) <

Since Z[u,,] is bounded, so is ||y ||wsc(p). By the compactness result in
Lemma 3.0.3, there exist a subsequence {v,,, };>1 and v € W#(B) such that

U, — v weakly in W*¢(B),

U, — v in LY(B), as j — oo.

Um; = 0 ae in B,
Now extend v by zero outside B and set u = v + f. Then we see that
u € Af(Q2) and ]liglo Up, = u a.e. in R™. Therefore v € W54 (Q) such that
v=0in R"\ Q and so v+ f € A;(2). Then Fatou’s lemma implies

T[u] < liminf Z[u,,,] = inf T[w].

J—00 weAf

The uniqueness directly follows from the convexity of G. Indeed, to prove
this, we first suppose that u,v € A;(€2) are two different minimizers of 7.
Then Z[u| = Z[v]. Since G is strictly convex, we have

= 10

Th < T [U;Lv} _ T[u] —;—I[U]

which is a contradiction.

Step 2. We next show the equivalence between the minimizer of (3.8) and
a weak solution to (3.9). Suppose u is the minimizer of (3.8). Then for any
n € W% (Q) with n = 0 in R™ \ Q, Z[u + 7n] has a critical point at 7 = 0.

16

___;rx_-l! E CI.'II

1_'_] |

el



CHAPTER 3. EXISTENCE AND UNIQUENESS

Thus
Oz%_I[quTn] .
-l dgTG<|u<x>—u<y|>$+_r§|7s<x>—n<y>>|) K
u() —u(y)]\ ulx)—uly) | dady
//c ( P )|u<x>—u<y>|<”<f”) 1K) gy

Therefore u is a weak solution to (3.9).

On the other hand, suppose u is a weak solution to (3.9). Then for any
v € Ap(Q), we see that u — v € WY(Q) and that u —v =0 in R"\ Q. We
then test 7 := u — v in the weak formulation of (3.9) to discover

o= [[ s (M= o) — o) 22
[ o (M) i o) = el K )

|u(z) — u(y)| |z —y|
(3.10)

Let us look at the integrand of the second term with respect to the measure
K (z,y) dzdy on the right-hand side. From (2.5) and (2.7), we see

lu(z) — u(y)]\ u(z) - uly) v(z) - v(y)
g( ) [u(
|

lz —yl|* r) —u(y)| |v—yl*
lu(z) —u(y)|\ Jv(z) —v(y)
Sg( =y ) P

<o (o ("R )) dC=
_ ) =ty (1)~

M—yl ) (31D

|z —yl®

_GCM;—%>O ((a_ﬁ)o.

We combine (3.10) and (3.11) to conclude that Z[v] > Z[u|. Therefore u is
the minimizer of Z. ]

17



Chapter 4

Holder regularity

4.1 Auxiliary estimates

In this section we derive two estimates for the weak solutions to (1.1) that
play essential roles in the proof of the main theorems. The first one is a
Caccioppoli type estimate. A similar Caccioppoli type estimate in the Orlicz
setting can be also found in [15].

Proposition 4.1.1 (Caccioppoli type estimate). Let u € W*%(Q) N LI(R")
be a weak solution to (1.1). Then for any k > 0, B, = B,(z9) € Q and
¢ € C3°(B,) with 0 < ¢ <1, we have

[ [ o (Pl i g, o) 2

—yl* y|"

< c/r/rG (% max{wi(x)awi(y)}) |xdfd5|n

d
+c/ w4 (x)o!(z) d:r;( sup / g ( we(2) ) a T )7
B, y €supp ¢ JR™\ B, |13 - y|s |l’ - y|n s

(4.1)

where wy = (u — k)+ = max{£(u — k),0} and ¢ > 0 depends on n, s, p,q, A
and A.

Proof. We only consider w,, as the same argument can apply to w_. Take

18



CHAPTER 4. HOLDER REGULARITY

n = w,¢? € WP(Q) as a test function to find
O—/ / <|u )|) u(z) —u
n Jrn \:c - y\ lu(z) —u
ulz _
[ [ o) o
. JB, |* lu(z) —u

)
)
)
)
Iu u(y)]\ u(x) —u(y) dxdy
+24ﬂ&/1 ( = )mww—wwﬁ“”“%”u—yv
=T +1I.

(4.2)

Note that n(z) = 0 for z € B, N{u(x) < k}. We divide the latter part of the
proof into two steps.

Step 1. In this step we derive an estimate in terms of wy from (4.2). We

first consider the integrand of I with respect to the measure, K(z,vy) giﬁs.

In the case when u(z) > u(y) for z,y € B,, we have

g <|u(:1c) - U(y)l) u(z) — u(y)

eyl ) Tu(r) —uly)
=9 u(|x)_ y|(y) (n(z) = n(y))
e =0 (1) ) ) 2 ) >
G =L u(e) > k> u(y)
0 if k> u(zr) > u(y)
29 (w+ = y| ) (n(x) = n(y))

_g(!w+( ) - w+(y)\) w(r) —wy(y)

|z —yl* [wy (7) —wi(y)|

On the other hand, in the case when u(z) < u(y) for z,y € B,, we exchange
the roles of x and y in (4.3) to obtain the same result. Then we recall the

19



CHAPTER 4. HOLDER REGULARITY

assumption (1.4) to get

I>A/T/T (IUJ+ o ()I) w () —wi(y) (n(x)—n(y))%-

|wi(z) —wy(y)|

Next, let us consider /1. Note that
u(@) —u(@ w@) —uly)
G = lreermie
{—g (B2 (@) i uly) > u(@) = k,
0

otherwise.

>

Inserting this inequality into /7, we deduce

dxdy

xS e

We then combine (4.2), (4.4), and (4.5) to discover
lwi(z) —wi(y)|| wilz) —wi(y) _ dxdy
J, / (R ) wite) —wr (] T

<5 Lo Lo () o
ma, Jp,~ \|z—yl* |z — y[rts

Step 2. Set

71 _// <|w+ o ()I) w(2) —wy(y) (n(x)—n(y))%

wi () —wi(y)|

dxdy
= f o (s
s, I o=yl ) "=y

Then we see from (4.6) that 111 < %IV.

To estimate 11, we first look at the integrand of 111 with respect to the

measure |dxdy . Con81der the following three cases:

and
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CHAPTER 4. HOLDER REGULARITY

(1) wi(z) > wi(y) and é(z) < é(y),
(2) wy(z) > wy(y) and ¢(x) > ¢(y),
(3) wy(z) <wy(y).

In the case (1), we have

g (\w+($) - w+(y)|) wi(z) —wi(y) wi(w)g!(z) —wi(y)9(y)

|z —yl* jwi(z) — wi(y)| |z —yl*
_, (wgg_—ﬁw)) w+(’3;)_—yu’1:(y) o)
_y (w+(‘xx)_—y’a‘1§(y)> ¢Q(\yg;? _—j‘i(l’)w(m) (4.7)
- (m(ﬁ)_—;’)j(y)) ()
g0 (‘”“fjj_‘yf‘{ﬁ”) o) M= v o),

where we have used (1.3) and the following elementary inequality

¢(y) — ¢'(x) < qo"(y)(8(y) — d(x)).

We further estimate the second term on the right-hand side of (4.7). By using
(2.6) and (2.7), we have that for € € (0, 1),

w+(x)—w+(y) g—1 ¢<y)_¢(x)w T
() et e

< (o () gy ) g (P00, )

|z —yl® |z —yl*

< -6 (1) g+ o (M= w).
(4.8)

For the last inequality, we have used (2.2) with a = ¢?~!(y) < 1. Choosing
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€ = min {ﬁ, %} and plugging (4.8) into (4.7), we discover

g (‘er(l’) - w+(y)|) wy(r) —wy(y) wi(w)g!(z) —wy(y)9?(y)

|z —yl® lwi(z) —wy(y)] |z —yl*
D \w+(x) _w+(y)| . q T q
250( DO wingor(o),61(0) (19)
o) o)
<_T_ET_ fuws (@), AMO-

In the case (2), we use (1.3) to have

g(hudﬁ)—lwdyﬂ) wi(r) = wy(y) wy(2)¢(x) — wyi(y)¢*(y)

2 —yl* [y (7) —wi(y)| lz —yl*
wy (z) —wi(y)\ wy(r) —w(y) a9
29( =P ) FETTA

> pG (ler(Q?) - er(y)‘) min{gbq(x),gbq(y)}.

lz —yl*

Therefore, we also obtain the estimate (4.9) in this case. Moreover, since the
integrand is invariant with the exchanging of x and y, we again have the
estimate (4.9) in the case (3). Consequently, we obtain

lwo (2 ()I) : dzdy
u1>c/‘/ ( min {¢?(z), ¢*(y)}
. /B, Iw—l [z —y|"
[¢(z) — ¢(y)l ) dzdy
c G| ————— max{ws(z),w,(y _—
[ [ o (PR st o)) 7
To estimate IV, we first use Fubini’s theorem to find
dxdy
1V = / / ( ) n(z
ma, Jo,” \|z—yl* (Nx—mws
< [ w@owar( s [ () )
. x € supp ¢ JR"\ B, ‘x - y‘s |$ - y’n+s

Hence we obtain (4.1), as I[1I < clV. O

Remark 4.1.2. In Proposition 4.1.1, the estimate (4.1) for wy (resp. w_)
still holds true when u is a weak subsolution (resp. supersolution) to (1.1).
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The second one to be derived is a logarithmic estimate. This will be
used in the proof of the decay estimate for the oscillation of weak solutions,
Lemma 4.4.1. We need the following elementary inequality.

Lemma 4.1.3. [22, Lemma 3.1] Let ¢ > 1 and € € (0,1]. Then
alf < (14 bl + (1 + cge)e~la — B[
for every a,b € R". Here ¢, > 0 depends on n and q.

Proposition 4.1.4 (Logarithmic estimate). Let u € W%(Q) N LI(R") be a
weak supersolution to (1.1) with w > 0 in Br = Bgr(x¢) C Q. Then for any
d>0and0<r< , we have

dxd
[ ] o uta) + d) o (uty) + ) 20

o nts (4.10)

<er"+ec Tail(u_; x9, R

gy i )

for some ¢ = ¢(n, s,p,q,\, A) > 0. In addition, we have the estimate
TS

h — dr < 1 Tail(u_; 4.11
/ ] h)p,|dx < cr” [ +g(d/r5) ail(u_; zo, R) |, (4.11)

where
h = min {(log(a + d) — log(u + d))4,logb}, a>0 and b> 1.

Proof. Write v(z) = u(z) 4+ d and fix a cut-off function ¢ € C5°(Bj,/2) such
that 0 < ¢ < 1, |[D¢| < 4/r and ¢ = 1 in B,. Since W is nonnegative

in BR and belongs to W% (Q), we can take n = qu as a test function to
dxdy

(/)
0< [B2T /B% ('U |x_y|< ”) \Zgg :Z x) —n(y))K(x,y)’x EEWE

o) — u(y)]\ ule) - uly) drdy
w2 . /B < " ) (@) —u)] " VTR
=1+

y)

— |
—
3
Yoy

(4.12)
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CHAPTER 4. HOLDER REGULARITY

We define

9 .CIZ',yE BQ?’"

F:F@w%:g<W@%—va v(@) = v(y) n(z) —n(y)

[z =yl ) Jo(@) o) |z -yl

Note that F(x,y) = F(y,z). We divide the remaining proof into five steps.

Step 1. We first assume that v(y) < v(z) < 2u(y) for z,y € B, to assert
that

_ s . (1-s)p
F(z,y) < —&llogv(z) — logv(y))é(x)? + ¢ (lfffr_?ﬂ) e <Ix : y|)
(4.13)
for some small constant ¢ > 0 and large constant ¢ > 0 depending on n,p

and ¢g. To prove this, let us suppose ¢(z) > ¢(y). By the definition of 7, we
get

_(vlz) —v(y) vz oy ¢9(z)
.m@w—g( M—ms><G@@VW) (Mwﬁﬂ)w—ms
+g(vu»—ww> (vw) ¢(x) — ¢(y) (4.14)

|z —yl* o(y)/re) e =yl
= Fy(z,y) + Fy(z,y).

Before estimating F) and Fy, we apply Mean Value Theorem to the mapping
L (t/rs for v(y) <t <wv(x) and use the inequality

tY Gy~ (tfrglt/r) - p—1
(G(t/ﬂ)) - G2(t/r*) = G(t/r?) (by (1.3)),
to find
ne) - ) <—@—1%E11ﬂ@ (4.15)

Gu(x)/re)  Gloy)/r®) — G(v(x)/r).

We again apply Mean value theorem to the mapping ¢ +— t? for ¢(y) <t <
¢(x) to have

¢"(x) — ¢"(y) < q¢" ' (2)(¢(x) — B(y))- (4.16)
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Putting (4.15) into F} and using (1.3) and the fact that v(z) < 2v(y), we
have

ooy (V@) = v@) vle) —oly)  ¢(x)
Fs-b 1”( o — g ) e =yl Glo(@)/r) (4.17)

(v )| o)
. 1G(|x—w )G@@Mﬂ

for some small constant ¢; = ¢1(p, q) > 0.
We use (4.16) and recall (2.6) with ¢ = min{ < %} and (2.7), to

2q(q—1)’

discover

v(w) —v(y)\ 1, 0@ —oy) v(y)
o= g<| - )¢ ) =yl Cloly)/r)

cofo o (1022

=
*éqG<MR—m()<O} T

<30 (") @ v e (CR=5 )| g
(4.18)

We then combine (4.14), (4.17), and (4.18) and use the fact that |D¢| < 4/r
and |z — y| < 4r for x,y € By, to obtain (4.13).
We next suppose ¢(x) < ¢(y). Using (4.15) and (1.3), we have

rie =0 (055 (Gt )>§f3> i) =

) e i)

W—y\ G z)/r°)

ﬂﬂ( u—mS> et
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Therefore we also have
mm—vwv ) (m—ygusm
F(z,y S—CG( +c . 4.19
0) ool ) Cluly/r) : (&19)
In addition, by Mean Value Theorem,

(0) = vly) _ (@) = v())/le — gl Jo -yl
v(y) v(y)/rs rs
v(r) —v(y) 1 |z —y|°
S{G<\x—m8)<%wwﬁﬂ+1} ”
. v(r) —v(y) 1 lz —y|°
. G(Ix—MS)C%MwWﬂ+ .
G(t)

For the second inequality we have used the fact that =~ is increasing for .
This estimate and (4.19) imply finally (4.13).

logv(z) —logv(y) < Y

Step 2. We now assume that v(z) > 2v(y) for z,y € Bs, to claim that

F(z,y) < —¢(logv(x) —logu(y))d?(y)
s(p—1) (1-s)q
+C(!x;y!) +C(!fc;y!> (4.20)

for some small constant ¢ > 0 and large constant ¢ > 0 depending on n,p
and ¢. To this end, we recall the definition of 1 to see that

(@) =) or)  oly) $1(y)
Fla.y) g( EETE )(G@@Vw) Gw@VWJIw—ms
(@) —o(y))  ol@)  $(x) — (y)
+9(1x—mS)cxmmﬁﬂ [z — g

= F3(x,y) + Fy(z,y).
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Since G( 3 is decreasing for t, we have
v(z) —v(y) 20y) () P(y)
= 9( PR ) (G@v@)/r&) G<v<y>/rs>> o= yf

g(%@—v@» (v@) (%;w@ww>_l>¢ﬂw

lz —yls ) Go(y)/r*) 20(y)/r*) |z —yl®
(1 v(z) —v(y) vly)  (y)
: (1 %1)9( |z —yl|* )G@@V”Hx—M’

On the other hand, in light of Lemma 4.1.3, we find that for e € (0, 1),

(@) - o)\ v@) )
F4§Cq€g< EEYE ) Glo(@)/r) |« — yJ*
mlqg(() <>) (v(x) 6(z) = 6(y)I"

[z =yl ) Glo@)/r*)  |o—yl*

In addition, using the fact that & ) is decreasing for t, 2v(y) < v(x), |D¢| <
c/r, |z —y| < 4r for x,y € By, and tg(t) < qG(t), we discover

=3 <vU:yy>j/rs> . q(?gi -
ooy () (Y et ot

v(w) |z — | |z —y|*

<o ("T57) G o (ﬂ)()

1 1 1
We then choose € = minq — | 1 — ,— ¢, and combine the above es-
2¢, 2r=1 /)72

timates to discover

v(x) — v(?/)) v(y) #9(y) .. (M) (1-

lz—yl* ) Go(y)/r*) |z —yl|* r

Fg—cg(

Note that
v(y) L 1 v/ p 1

Gu(y)/re) v =yl — 4 Glu(y)/r) — 42 g(v(y)/r*)

27
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to have

g (PE) @) () o — y\ =
F(z,y) < —cg ( = —gl° ) 00/ +c (—T ) . (4.21)

Moreover, since v(x) > 2v(y),

)

2(v(z) = v(y)))p_1

log v(z) — log v(y) < log 2(v(x) — v(y)) — logv(y) < ¢ ( =

where we have used the fact that logt < Ztll . Note that

os) _ Gls) _ G _alt)
< <498

sp~1 o =1

for any t > s > 0,

to discover

logv(z) —logu(y) < c ((v(:):) _UQE%)/)T/S':B —yllz ;y|s> -

= (U(g—_ ;|£y)) g<v<yl>/rs> e <|I ; y|)5(p_1) |

This and (4.21) imply the estimate (4.20).

Step 3. We next estimate [ in (4.12). We recall (4.13) when v(y) < v(z) <
2v(y), and (4.20) when v(z) > 2v(y), and use the fact F(z,y) = F(y,z), to
discover that for every x,y € By,

F(x,y) < —¢|logv(z) —logv(y)| min{é(z), ¢(y)}*

_ S _ (1-s)p - s(p—1)
+c<|:r y|) +C<|x y|) +C(|:v y|) .
T T T
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Then since ¢ = 1 in B, and K (z,y) satisfies (1.4), we have

¢ dxd
1<__/ logv(z) ~ log(y) —gln

o L () e ()

dxdy
/ llog v(z) — log v(y)|
' BT

+ cr”.

S_
|z —y|

> o

(4.22)

Step 4. We next estimate /. Observe that for x € Bg and y € R",

g (|u(m) - U(y)|> |U(w) - U(y)| <4 ((U(x) - U(y))+>

lz —yl* u(r) — u(y) |z —yl*

<o (55) o (725) ]

Recalling supp ¢ C Bs,/2, we have
dxdy

/Rn\BQT/BW (5 |x—y| ) s IRl
iy
Br\Bar J By, s ’37_3/’ g(v(x)/re) |z — y|m*s
+c/ / ( ) ré dxdy
"B J By s |$—y| g((z)/r®) |z — y|***

N / / ( u(y)_ ) ré dxdy
¢ g

mBr JBy, s \|T—yl*) glo(@)/re) |z —y|+s
= Ill +]]2+Ifg

Since u > 0 in Bg and v = u + d, we see that

(u(z) —u(y))y <v(z) and wu(z) <wv(zr), z,y € Bg.
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Thus

dxdy

meef f o ()

s/ / dxdy
s er o — gl
Br\Bar J By, /s |x - y|

s dydx "
<ecr T s <ecr
Bar o JRMB, p(@) [ Y

and

— y[nts

)/r°) | = y[rte

11, < c/ / J (u(az)) r dxdy
"B J By /) glv(x

dxd
<er / / ?iz-i-s < er™.
n\BQT B3,r/2 |I - |

Observing that for any « € Bs, /5 and y € R™ \ By,

|y—x0|<1+|x—x0|< 37"/2

L |
le—yl = Jz—yl T 2r—(3r/2)

we find

Y

_ s dxd
II3§c/ / g(u(y) > r I?/+
"\Bg v Bs, /2 ly —xol* ) g(d/r®) [y — w0

7,,nJrs

= “ga/r)

Consequently, we have

Tail(u_; zo, R).

g(d/r?)

Inserting this estimate and (4.22) into (4.12), we get (4.10).

IT<c"+c Tail(u_; zo, R).
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Step 5. Now we are ready to prove the estimate (4.11). Observe that

dxdy
|z — vyl

|h—mmmMSc/ [ Ihte) = nte)

B
Since h(z) is a truncation of logv(x),

dxdy / dxdy
h(z) — h(y)|—— < c¢ logv(z) — logv(y)|————.
/TBJ() i <e [ ] oge) ~ oot 2

Combining (4.10) and the above inequalities, we finally obtain (4.11). O

4.2 Sobolev-Poincaré inequality

We notice that the Sobolev inequality and the Sobolev-Poincaré inequality
for the fractional Orlicz-Sobolev space W*%(B,) are well known in terms of
the Luxemburg norms. However, it does not directly imply a certain integral
version of the Sobolev-Poincaré inequality. For the sake of completeness,
we need to prove the following Sobolev-Poincaré inequality for functions in
W=<(B,).

Lemma 4.2.1 (Sobolev-Poincaré inequality). Let s € (0,1). Then there
exists 0 = O(n,s) > 1 such that if G is an N-function satisfying the Ao
condition (2.3) and the Vo condition (2.4) with constants k and [, and f €
W% (B,), then

(fo(=mly o) wof [ o)

(4.23)

where ¢ = ¢(n, s, k,1) > 0.

Proof. We first show that

|f(z) = (f)B,] < C/T [/ 1) = /(=) dz] 4y , a.e. r€ B,

‘y_z|n+s ‘x_y‘nfs
(4.24)

by using a standard chain argument (see for instance [25] and references
therein). Fix any Lebesgue’s point x € B, for f. For each ¢ € Ny, set r; =
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27%r. Then there exists a sequence {B*}2, of balls in B, such that z € B,
B’ C By,,(z) N B, B C B, r; < (the radius of B?) < 2r;. In particular,
we can choose B® = B, and B’ = B, (z) for large i with r; < dist(z,0B,).
Then,

[f(x) = (f)B,| < Z ((f) g1 = () B

dy

< Z][m f)pi

<SS HOESCI.
; Bt J Bi |?;/_Z|nJrs

> ) — ()
hy::/ —dz y € B,.
) .|y =zl
Then
|f(@) = (fp,| <ec) r™™ / dy
Z BQT (;13 ﬂBT
S c 2(n8)irn+s/ h(y) dy
izz(; 32:; (BQTJ‘ (x)\B2Tj+1 ($))mB’f

oo J
—c o (n—s)(i~) / r~"h(y) dy
Z <ZZ (Bar; (2)\Bar;  (#))NBr
h
< CZ/ i dy

(Bar, (0)\Bar, ,, (@), 1T — Y[

h
_ C/ () dy.
B, | =yl

and this is (4.24).
We next prove the desired estimate following the argument in [24, Theo-
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CHAPTER 4. HOLDER REGULARITY

rem 7|. To do this, note that for s > 0 there exists ¢(n,s) > 1 such that

1 1
—— < rs/ ———dy < c(n,s), forevery x € B,. (4.25)
c(n, s) B, |z =yl

Using (4.24) with s replaced by 5 and Jensen’s inequality, we have

f o (M)
sof e [ [ W] Y

z 0
:C][ G<T_ / [/ |f(|y)—2|( : |y_CZl|n_s/2] x—cgjynsﬂ)e dz
<f, [ [, Lo U)ot )

Pt f) ~ fEI) dzd
_ y) =z zdy
L"/T/TG< ly =P >|y—z|"'

Then recall the fact that |y —z| < 2r and use Jensen’s inequality and Fubini’s
theorem, to discover

[ o=y,

<cif |1 [ ﬁ(/a( ) ) dyrd‘”
_— 0 .

< el 1][T/T(’JI— |- s/2) </5G(f(y>zg |) ‘yd ’,n) dy dz

ol [ () (=

ly—=2* /) ly—="
We now choose 6 = 0(n, s) such that

1<0<

n
n—s/2
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From this choice and (4.25) with s replaced by s6/2 — n(f — 1), we discover
1 n(6—1)—s6/2 1
- <r ——————dx <c¢ forevery x € B,.
c b, T[T

Consequently,

][G M s
v ( o ) @)~ FE) dedy
< el Bl L)’ ][/G( y—2F )|y—z|"

“o(f, () %)

This finishes the proof. O

Remark 4.2.2. In Lemma 4.2.1, we selected 6 > 1 such that 6 € (1, n—Ls/Q)
This selection is not optimal and it is possible to consider a larger value 6.
However the condition € > 1 is enough in the proof of Theorem 4.3.2 below.

4.3 Local boundedness

This section is devoted to the proof of the local boundedness of weak solutions
to (1.1) with the estimate (1.7) in Theorem 1.0.1. Key ingredients of the
proof are the Caccioppoli type estimate, Proposition 4.1.1, and the Sobolev-
Poincaré type inequality in Lemma 4.2.1.

The following lemma will be used in the De Giorgi iteration.

Lemma 4.3.1. [35, Lemma 7.1] Let § > 0 and A; be a sequence of real
positive numbers such that

Ay <CBIATP
with C' >0 and B > 1. If Ay < Cﬁ%B_B%, then we have

A; < B_%AO hence, in particular, lim A; = 0.
1— 00
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Now, we are ready to prove the local boundedness of weak solutions to
(1.1).

Theorem 4.3.2. Let u € W5¢(Q) N LI(R™) be a weak subsolution to (1.1)
and B, @ Q. Then we have

supuy < pr*GT! <][ G (u_+> dx) + 759 (r Tail(uy ; 20,7/2)),  (4.26)
B;./2 B re

where ¢, = cp(n, $,p,q, A, A) > 0. Moreover, if u is a weak solution to (1.1),
then u € L. () and we have the estimate (1.7).

Proof. Suppose that u is a weak subsolution. Fix B, = B,.(zg) € 2. For any
7 € Ny, write

i+ T4l ~
M By = By, ()

SR = (k) and = (u— k)

- (1+2*J’)g, 7 =
k’j = (1 - 27j)]€, I;'j -

Note from the above setting that

BjJr]_ - Bj C Bj, kj S kj S kj+1 and Wj+1 S ?IJ]‘ S wy. (427)
We take any cut-off functions ¢; € C’go(f?j) such that 0 < ¢; <1, ¢, =1

in Bjy; and |D¢;| < 277 /r. Putting ¢; into the Caccioppoli inequality (4.1)
With wy = W, (see Remark 4.1.2) and dividing the inequality by |Bj4|, we

][ e o ("= \x— )
<c]l / (=S g o), ) ) .

_ w;(x) dx
+cf wi(z)pl(x)dx sup / g( J )
f, 2w <¢ e, \fz— o) o=y

J

=1+11I.

We first look at the first term I in the right-hand side of the above inequality.
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CHAPTER 4. HOLDER REGULARITY

Since |6 (z) — ¢;(y)| < D6l u~la — y| < 2|z — yl/r, we find

I< c][ | / | G (2r z — y|'* max{w;(z), w;(y)}) |xdid5|n

< CQqJ][ / (max{w] ) ﬁg(y)}) <|!B - y|)(1_s)p d$dy
) r |z —yl"
< chjr(ls)p][ G (@) / dy dx
B; s B, |t — y|n— (=)

J

< chj]é G (wjr—(x)> dz.

J

To estimate I, we write

(4.29)

dx

N w;(x)
I :][ w;(x)¢%(x)dx and Il = sup / g( I ) .
! B, i) ]< ) ’ y €supp ¢; JR™\B; lz —yl*) |z —y|*ts

J

Since g is increasing and w; > Iij — k; in {u; > /5]-}, we have

G(ﬂ)zlﬂg(ﬂ)zl%g —kj_kj > (- )wﬂg E
TS q /rAS TS q /rs TS TS 715

Thus

1, < eataDi__"” ][G Y da.
L= g (k)] 5, (7“) T

In order to estimate /5, we notice that for x € R"\ B, and y € Bj,

|z =yl |z =yl Tj—TJ

36
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This and (4.27) imply

d
11, < sup/ g( o 5> I,m

‘ d )
camr [ (m)
R™\B, 5 |z — o |z — 20|

= 20D Tail(uy; 29, 7/2).

In light of (4.30) and (4.31), we deduce

< 9ntsat+a)j r Wi i : ) .
IT < ¢2 ) (ﬂj G (7“5 > dz | Tail(ug; o,7/2) (4.32)

Combining (4.28), (4.29), and (4.32), and applying the Sobolev-Poincaré in-
equality (4.23) to the left-hand side of (4.28), we have

][ Ge (|7“DJ - Ew>Bj+1|) dr ’
Bjt1 T

< 9(ntsata)j

£ 6 () i) i)

x []é G (%) du+ o (]:;TS) (
(4.33)

for some 6 = 6(n, s) > 1. On the other hand, recalling the definition of 7,4,
and using Jensen’s inequality and (4.27), we discover

(ﬁ IGQ (?) dm)é
= (J{B G* <\le - (:Sj)BﬁJ) dx)é e (@#) (4.34)
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Let us estimate the left-hand side of (4.34). Notice that the relations in
(4.27) yield

a° @ > o1 ﬂ G (wj+1> > 01 kjt1 — ffj G <wj+1>
rs — rs rs — s rs :
Therefore it follows that

o (9) (o) w)
T8 Bii1 (-

5
e (m) (][ G (M) dw) (4.35)
rs By rs

1

~ 0
< (1 <][ G (%> da:) .
Bjt+1 T

Taking into account (4.33), (4.34) and (4.35), we deduce that

G (ﬁ) <][ G (%) da:>é
rs Bji1 s

(4.36)
< ot (14— " i,z /2 ][ G (%) q
~C +g(k/7m9) al (u+,$0,7’/) B, <7,,S> x
Denote
1 W,
=——d G () da. 4.37
= gt O () o
Then (4.36) is identical to
r® o
< eoontsat20)65 |1 L T Tgi] . 9 0
Ajt1 < Co +g(/€/7‘5) al (u+,x0,7“/) a;
38

x;rx_'! _C:I i 1_]|



CHAPTER 4. HOLDER REGULARITY

for some ¢y, > 0 depending on n, s,p, g, A and A. At this stage, choose

r

k=nrGt (03][ G <u_;r> dx) +rg (r* Tail (uy ; 20, 7/2)),
B

0 1 (n+sq+2q)0
where ¢3 = (¢927)7-12 ©-D% _ Then we see that

s 4
< 90\9(n+sq+24)05 0 d < ool = 20 *rilg_(nzre—q:r;w
ajr1 < (c227) a; and ag<c3t = (€22%)

Set ¢, = max {c;)/p,c?l)/q}. Since Lemma 4.3.1 implies a; — 0 as j — oo, we

discover

supuy <k < cpr°G! (][ G (tﬁ—:) d;v) + g~ (r*Tail(uy ; 7o, 7/2)),

B'r/2 r

and this is (4.26).

If u is a weak solution, then —u is a weak subsolution. Then we have
the estimate (4.26) with u, replaced by (—u); = u_. This completes the
proof. O]

4.4 The proof of Theorem 1.0.1

We complete the proof of Theorem 1.0.1 by obtaining (1.8). Let u € W*%(Q)N
LI(R™) be a weak solution to (1.1). Let B, = B,.(z9) € Q. For o € (0,1),
o € (0,1) and 7 € Ny, we write

ry = aig and B, = B, (x0) (4.38)
and define
v, = (Q) vy = 0%, (4.39)
To
with
vy =2 (cbrsG_l (][ G ('r—lﬂ) da:) + rsg_l(rsTail(u;xo,r/Q))) . (4.40)
39
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where ¢, is as in (1.7).
For the proof of (1.8), it is enough to show the following oscillation decay
estimate.

Lemma 4.4.1. Under the above setting, there exist small a,0 € (0,1) de-
pending on n,s,p,q, A and A such that for every i € Ny,

oscu = supu — infu < ;. (4.41)
B; B; B;

Proof. First of all, we assume that

Sp 1
< — d —. 4.42
a< 2 —1) and o < (4.42)

We prove this lemma by induction. Obviously, (4.41) holds true for i = 0
from (1.7) and the definition of 4. Suppose that for some j > 0,

oscu <y; forall i€{0,1,2,--,j}, (4.43)

7

and then we will prove (4.41) for ¢ = j + 1. We define u; by

u—igfu7 if |ZBj+lﬂ{uzigfu+Vj/2}| > 12Bj44],
i i
i

J

U; ‘=

where 2B, = By, (20). Then u; > 0 in B; and

2B N {u; > v5/2} 1 (4.44)
|QB]'+1| B 2. |

We divide the remaining part of the proof into three steps.
Step 1. We first estimate Tail(u;; o, 7;). Define T} and 75 as follows:

|uj ()] dx
Tail(
al u]7I077“J Z/Z \B; <|JZ—:L’0| |JZ—:E0|”+S

s () dz (4.45)
+ 9 s n—+s
R"\ By |z —x0|* ) |z — 0]
= Tl -+ Tg.
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CHAPTER 4. HOLDER REGULARITY

Before estimating 77 and 75, observe that the definition of u; and the induc-
tion hypothesis (4.43) imply

sup |uj| <2y forall i <j. (4.46)
B

k3

Moreover, the local boundedness of u implies

lu;| < |ul +v; + Sup lu| < |u| + 2vyp. (4.47)
J

We now estimate 7. Recall (4.46) to find

J supg. . |uy] dx
T1§Z/ g( _2_1 SJ)  nts
; Bi_1\B; |z — 20| |z — o

=1
<Ci/ g(yi_l) ( . )p_l &
- = s T |z — wol* |z — 2|7t
zj: s(p—1) (%’1) / dx < zj: 1 (%’1)
=cY iy — <Y —g .
— ri ) Je B |T — @o|" TP — i

(4.48)

In order to estimate Ty, we write g(t) := G(t)/t. Note that (1.3) implies
pg(t) < g(t) < qg(t) and

G(t)

-1 < = 10

t2

G(t)
2

<(g—1) (4.49)

Now set h(t) := §(t'/(@=1). Using (4.49), we get

1
_1G<tq*1) 1
0<? L <) = g () S =
q—1 et q—1 T ¢

and so

(@)’ _ th’(t)t— M) o

t 2 -

Therefore h(t) is non-decreasing and h(t)/t is non-increasing. We then set ¢
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be the concave envelope of h to conclude that % < h <1, see [54, Lemma
2.2] for details. Additionally, considering (4.47) and the inequalities pg(t) <
g(t) < qg(t), we find

d d
ngc/ é( & ) x++c/ g(lu(x”) L
r\By  \|T —xol* ) v — wo["Fe R\By  \|T — 2o|* ) ¥ — wo["T
q—1
Y d
= c/ h <—Os) —er + cTail(u; zg, 19)
R"\By |z — o |z — o[+
qg—1
1% d
< c/ Y (—Os> —er + cTail(u; zg, 79).
R"\ By |z — x| |z — o[+
Now we use Jensen’s inequality with respect to the measure ‘x_g%. Then
g—1 d
Ty < %10 7’8/ ( 7o ) ’ — | + cTail(u; 2o, 7o)
re R\ Bo |z — ol* |z — xo|nts

qg—1
< %h ((V—2> ) + cTail(u; zg, 70)
7o 7o

< =g £g (%) + cTail(u; zg, 10)-
0

) + cTail(u; 2o, 70) < —
7o

s to(B)<So(2). (4.50)
7o o 1 T
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We combine (4.45), (4.48), and (4.50), and recall (4.38) and (4.39) to have

J J
. C Vi—1 c Vs _ -
Tail(uj; zg,7;) < E Fg( e ) = E —9 <TS_JU(S @)(j +1))
i=1 1 '

7 i=1 7 Jj+1

J
< Sy (L) DAY
3+1 i=1 (451)

osp—a(p—1)
S g( )1_0-Sp a(p 1)

S g( ) sp—a(p— 1),

by taking ¢ > 0 sufficiently small so that

o) < 5% < % (4.52)
Step 2. In this step, we look at
QB y < 2 : sp—a(p— sp
2B, N {u; < EV]H; where €= oot <02 < 1. (4.53)

2841

For k£ > 0 to be determined later, we write

/9 ,
v = min{[log (M>] ,k}.
u; + €v; n

Applying Proposition 4.1.4 with v = u;, r = 2r;41, R = rj, a = v;/2,
b= exp (k) and d = er; and using (4.51), we find

vi/rs
][ v — (v)om,, | dz < [1 N Masp—a@—n}
2Bj11

(EV]/TJ+1)

< (1 4 eTgrarh) < ¢

(4.54)

43



CHAPTER 4. HOLDER REGULARITY

On the other hand, using the fact {v =0} = {u; > v;/2} and (4.44), we see

1
k= k dx
|23j+1 N{u; > vi/2}] Jap,,nfo=0y

+1\ / B v)dr = 2[k — (v)2p,, ]

Integrating the above inequality over 2B,,; N {v = k} and using (4.54), we
get

2B, {v = k}|
J+’2B' | k S ‘ (/{ — (’U)QBjJrl) dz
Jj+1 +1| 2Bj1N{v=k}

dx <
|2BJ+1|/]+1 QBJJrl’ = C.

Here we assume o > 0 is sufficiently small so that

sp—a(p—1)

sp
Ve=o0 10 < gfa-D <

v;/2 + ev; 1 1 1
k=1 2 ) > i BN | -
() 2w () 22 (7).

from which, together with (4.53), we discover

(4.55)

and take

12Bj11 N {u; < 2ev;}| < ¢ 4
2Bj41] ~ k7 log(1/0)
for some ¢4 > 0 depending on n,p, g, A and A.
Step 3. Finally, we prove (4.41) for i = j + 1. For any m € Ny, we write

—m ~ pm+pm 1
pm:(1+2 )7"]-+1, pm:T—F,

km = 1+2")ev; and wy, = (ky, — uj)+ = (u; — k) —.

B™" =B B™ = B;

Pm Pm)

Note that rj11 < pp < 2rj41 and ev; < ky, < 2ev;. Take cut-off functions
bm € C°(B™) such that 0 < ¢,, < 1, ¢, = 1 in B™™ and |D¢,,| <
2m+4 /. 1. Applying the Caccioppoli inequality (4.1) to w_ = wy,, ¢ = ¢,

44



CHAPTER 4. HOLDER REGULARITY

and B, = B™, we have

/Bm“ /Bm+1G (’wm<ﬁ;):;?(y)’) yxdid;/,n
< C/m /m o (Icﬁm(ﬁ) — Su(y)] max{wm(x%wm(y)}) dady

_y’s |x_y|n

Wy () ) dx
m K d :
+ C/m Wi ()P, () dx (;‘;% /Rn\Bm g (\x ) o= y|n+s>

(4.56)

As in the proof of the local boundedness, we use the Sobolev-Poincaré in-
equality (4.23), Jensen’s inequality and (4.56), to find

7
Ii= (][ G9<2"’" > dx)
Bmt1 Pm+1
< c(][ e (wm_ (:Um)Bm“) dg;>9
Bm+1 Pm+1
o] (e )
Bm+l Prn+1

<oy S () o (M)
cof [ 01 e )

-yl |z —y|"

Wy () > dx
m ()05, () d
+ c][m win ()¢5, (2) da (yseuélzn /Rn\Bm g <|x —F) T y|n+s>

—i—c][ G( Wm > de = IT+ 11T+ IV,
Bmt1

s
perl

(4.57)

We write

_ BTN {uy < kBl

A
| B™|
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From the definition of u;, k,, and A,,, we estimate I as follows:

1
> 1 / (ﬁ(ﬁiﬁ@ﬂ>dxe
- |Bm+1’% Bm+1ﬂ{uj§k’m+1} pfn+1

(4.58)
= A;%@HG (km_s—km“> > CQ—quiHG (il) '
m1 Ti+1
Since |om(x) — dm(y)] < ch%, we find
c2qm/ / (max{wm( ), Wi (y )}) (|az—y|>(1s)p dxdy
|B™| Jgm Jgm T Tjt1 |z —y["
o e T-_(i_S)p/ / o ( km ) dydx
~|Bm| 7 B {uj<km} J B o) | =yl
c29m K " ————
< oG |IB™ N{u; < kp}| <c2G Ap,.
|B | ]+l rj+1
(4.59)
As for I11, set
1L :][ W () () d
and
m d
np=swp [ ( = (x)s> e
yem Jrmpm” \|z —y|*) |z —y|
Then we have
111, < |Bm|_1/ kmdr < cev;Ay,.
Bmﬂ{ujgkm}
Using the fact that |ﬁc_—?|l <1+ ||yx__xy°‘| <1+ fme < 2™ for v € R*\ B™
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and y € B™, we have
m d
I <c / g (—w (x)s?m) 2
R™\Bj 11 |z — 20| |z — o
< 2D il (w0, 741)-

Moreover, since u; > 0 in B;, we have w,, < k,, < 2ev; in B; and w,, <
km + |u;] < 2ev; + |u;| in R™\ B;. Then from (4.51), we see

€v; dx
Tail : 1) < J Tail (1. :
atl(um; 20, 7j11) < /\ ! (\x - |) o= gopre + Tl 70 75)

(p—1)s
<C/ g(El/j)(Tj_H ) d!L’
- S
R"\Bj+1 Tj—‘rl |:L‘ - x0| |x - x0|n+s
4 -C Yi | gsp-alp-1)
T g re
Jj+1 Jj+1

C EVj
< g .
- rs rs

j+1 j+1

Therefore we obtain

111 < cptsam Vg (_) A, < @G (_> A (460)
Tiv1 \Tjn1 Ti+1

We recall the notation for IV to find

IV < ¢G (ﬁ) Ap. (4.61)

Tit1

We finally combine (4.57), (4.58), (4.59), (4.60), and (4.61), to discover
Ay < 2Fsat2afm A4S - where g =6 — 1.

Recall that

_ 2Bja n{uy < 2e53|

A
’ 2B; 1) = log(1/0)
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and choose ¢ > 0 sufficiently small such that

C4 —1/Bo—[n+sq+2q]0/8>
log(1/0) = ¢ 462

Here, we notice that the constant o is determined from (4.42), (4.52), and
(4.62), hence depends only on n, s, p, ¢, A and A. Then we apply Lemma 4.3.1

to see that lim A,, = 0, which implies
m—00

U, > €V in Bj+1. (463)

If u; = u — inf u, then (4.63) implies inf w > ev; + inf u and therefore
B Bj+1 B

osc u <supu — inf u <supu — (ev; +infu) = oscu — ev; < (1 — €)y;.
Bijt1 B; Bj+1 B, B B;

On the other hand, if u; = v; — (u — i]glf u), then we have sup u < (1 —€)v; +
J Bjt1
inf u from (4.63). Thus

J

osc u < sup u — infu < (1 — €)y;.
Bjt1 Bji1 B;

Considering both cases, we obtain

sp—a(p—1) sp
1l—0 a1 1—o0a1
Vit < Tl/jJrl < Vit

oscu < (l—¢);, =
B <( 6)] oo

by taking oo = a(n, s, p, q, A\, A) > 0 sufficiently small so that

_Sp_
c*>1—ocgaT,

This completes the proof. n
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Chapter 5

Harnack inequality

5.1 Density lemma

In this section, we prove a density lemma and weak Harnack inequality which
will play a crucial role in the proof of Harnack inequality. The proof is based
on [21, Section 3]. We first state a modified version of Theorem 4.3.2 as

follows.

Lemma 5.1.1. Let u € W*¢(Q) N LI(R") be a weak subsolution to (1.1) and

B, € Q. Set vy = ?é(fl)l;. Then for any ball B, = B,(x¢) € Q and 6 € (0,1),

we have
—,.81—1 U+ s . —1/..s :
supuy < cd G (][ G <—> dx) + 0rfg (r® Tail(uy; g, 7/2)) (5.1)
BT/Z B, e

for some ¢ = ¢(n, s,p,q,\,A) > 0.

Proof. Let k > 0 be a number to de determined later. In the proof of Theorem
4.3.2, for each ¢ € Ny, we have

s 0
Tail(uy; z9,7/2)| af

7

g (k/r*)

for some ¢; = ¢1(n, s,p,q, A\, A) > 0. Here q; is as in (4.37) and 6 = 0(n, s) > 1
is the constant in Lemma 4.2.1. Now we set

(i1 < 2T [1 +

;,aS

k=nrGt (025&(1_‘1)][ G <u_+> dx) + 6r°g~ 1 (r® Tail (uy ; 20, 7/2)),
B
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0 1 (n+sq+2q)0 .
where ¢y = (¢127)7-12 ©@-D? " in order to have

< 20 2(n+sq+2q)9i 0 d < ool 29 —ﬁ2_m;rgsi17;22m
aip1 < (¢127) a; and ag < ¢y = (12")

Hence Lemma 4.3.1 implies lim a; = 0, which in turn gives sup uy < k. Then
1—00 B'r/2

5.1) follows. O
(5.1)

Lemma 5.1.2. Let u € Wo%(Q) N LI(R") be a weak supersolution to (1.1)
such that w > 0 in Br = Bgr(xg) € Q. Let k > 0. Suppose that there exists
o € (0,1] such that

B, {u> K} > ol B, (52)

for some 0 < r < R/16. Then there exists a constant § = 6(n, s,p,q, \,\,0) €
(0,1/4) such that

infu > 6k — g1 (r® Tail(u_; xo, R)). (5.3)

By
Proof. Step 1: A preliminary estimate. We first show that

Cc

| Ber|- (54)

1
Bg, N {u < 20k — §r5g’1(rs Tail(u_; x, R))H <

1

o log 55

for every 0 € (0,1/4), where ¢ depends only on n, s, p,q, A and A.
Using Lemma 4.1.4 in Bg, with

h = min {(log(k +d) — log(u +d)) 4, log 2_15}

for
1 s _1 S M
d = §7= g (r®Tail(u_; xg, R)),

we have

]i h— (h)s, | de < c. (5.5)

Since {h = 0} = {u > k}, the assumption (5.2) implies

o
|Bs, N{h =0}| > |B,N{h =0} >0o|B,| = 6—n\B6T|.
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Thus we have

1 1
log — ][ (log — — h) dx
2(5 BgTﬂ{h:O} 25

c 1 1
< — — — = .
< U%BGT (log % h) dx = (log % (h)Ber)

Integrating the above inequality over Bg, N {h = log %} and using (5.5), we
get

1 1 c
Bondh=1 1 < ¢ h—(h)g | d
‘ 6 { ngd} nga—a/gwm{hlog%}‘ (M5, | d
<C/ h— (). | de < <|Bg|
=5 Be. Beg, =5 6

for some ¢ = é(n, s,p, q, A, A). Then, using the relation

{h 10g216}:{u§25(k3—|—d)—d}3{u§25l€—d},

we obtain (5.4):

08 25

Step 2: Expansion of positivity. We now determine the constant  to
prove (5.3). Here we may assume 2d < dk, otherwise there is nothing to
prove. For each i € NU {0}, we set

1 -~ PiT Pit1 ~
Pi = (4+2i1)r7 pz:T+7 Bi:BPi’ Bi:Bﬁia

1
l; = (1+2i+1)(5k and  w; = (l; —u)4.

We notice that the above settings give 4r < p; < 6r and B C Bi C B;.
Take cut-off functions ¢; € C3°(B;) satisfying ¢; = 1in B4, 0 < ¢; < 1 and
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|Dé;| < 2773 /r. Applying Lemma 4.1.1 with w;, B; and ¢;, we obtain

][ / <Iwz z(y)l) dzdy
Biy1 J By |‘T - | |:L‘ - y|n
9i(x) — di(y)] dady
<C][/ ( max{w;(z), w;(y
\w—y\ twn{w), wily)) |z —y|
w;(x) dx
+c][ w;(z)pd(z) d sup/ g( ) . (56
Bi ()¢ () <ye]§i r\B;, \|T—yl*) |z —y|rts (56)
On the other hand, applying Lemma 4.2.1 and Jensen’s inequality, we have
7 (s 5
([ o (@) <o(f o (lmtmma),)
Bit1 e Bit1 Pit1
W;
—|—c][ G(—)dx
¢()
][ / (!wz z(y)l) dxdy
Bit1 J Bit1 |£L‘ - | |.’E - y|n
+ c]éi G (7) dz.

where we have also used the fact p; =~ r. Combining (5.6) and (5.7), we
deduce that

[= (][Mcﬁ( )ozgﬁ)é
<C][/ ( \x—y\l( )‘max{w’m’wi(y)}) |xdfd5|n

. w; () ) dx (5.8)
i(x)of () d
+c]iiw ()i (x) d (;;lg /}Rn\Big (‘x —F ) oo y‘nﬂ)
—i—c][ G (%) do
B;

= I+ 11T+ 1V.
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We first estimate I from below. We denote

BN {u < 1}

Ai -
| Bil

Since w; > l; — li41 in {u < l;41}, we get

1
li =1 1 ik g
AfﬂG( H) B ( ¢ (—H> dx) =
s ‘B’L+1‘ Bi+1ﬂ{u<li+1} e

In order to estimate I, we use |¢;(z) — ¢i(y)| < ¢2'|z — y|/r and Fubini’s
theorem as follows:

II < c][ / (l@ oily Nw,(x)) dudy
|z —yl* |z —y["
][ / (’¢z( r) — ¢i(y )! ) dxdy
Bin{u<l;} |z —yl* |z —y|"
qi , ,
peT 2 / / ( ) Wir < v (l—> A,
?\B;| JBingu<t) p;) |z —ylrU-sp e

We next estimate I11. we note that for any = € R*\ B; and y € B;,

| — o <1+|y_x0’ <14 P <oite

v —y| — lz—y| — Pi — Pi

Then

) i d
Ldz x 2(n+sq)z/ g < w;(7) 8) T _
|B | Bin{u<l;} R™\ B; |z — 2 |z — 20|

< ClA X 2 (ntsq)i Tail(wi;xo, pz)
< el Ay x 20 SDN(Tail(1;; x, p;) + Tail(u_; xo, p;)). (5.9)

We further estimate the right-hand side. A direct calculation gives

l; dx c l;
Tail(l;; 7o, p;) < cpsl®™ ”/ (—> " <= (—) 5.10
( 0 p) pz R"\Big ,Of |£B _ xo‘n+sq - rsg rs ( )

We recall the assumptions u > 0 in B and 2d < dk to estimate Tail(u_; xq, p;)
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as
1 ok 1 l;
Tail(u_; xo, p;) = Tail(u_; zg, R) < =9 (—) < —g (—) : (5.11)

Plugging (5.10) and (5.11) into (5.9), we have

e
IIT < s (—) A;.
TS
Finally, It is straightforward to check that
c l; li
|B7J| Biﬁ{u<li} r r

Connecting the estimates found for 7, 1, I1] and IV to (5.8), and then using
the fact that

G(lZ/T'S) < lz )q .
< < 261(1+3)7
G((li = liga) /) = \bi—=liya) —

we have
i A1
Ai+1 < 602(n+sq+q)01Ai+/3’

where f = 6 — 1. Now it remains to choose a proper 6 € (0,1/4) in order to
get lim A; = 0. From (5.4), there exists ¢ > 0 such that

1—00

A, — |Bg, N {u < 30k} < | Bg N {u < 20k — d}| < ¢

|Bﬁr’ - |Bﬁ7~| - O'lOg%.
Let v := ¢y /P2~ (ntsat@0/8* and choose § = texp (—=) < 1. Then
c

Ap < < 061/52—(n+sq+q)€/62'

alog%

Therefore Lemma 4.3.1 gives lim A; = 0, which implies ianu > 0k. This
4r

1— 00

finishes the proof. m

Once we have proved the above lemma, we can proceed with exactly the
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same arguments as in [21, Lemma 4.1] to obtain the following lemma.

Lemma 5.1.3 (Weak Harnack Inequality). Let u € W*%(Q) N LI(R™) be a
weak supersolution to (1.1) such that u > 0 in Br = Br(xo) € 2. Then there

exist constants t € (0,1) and ¢ > 1, both depending only on n,s,p,q, A, and
A, such that for B, C Bg,

(][ utdx> < ci]glfu + erfg (r® Tail(u_; 20, R)).

5.2 The proof of Theorem 1.0.2

We first prove the following lemma, which gives the control of tail contribu-
tion for the Harnack inequality.

Lemma 5.2.1. Let u € Wo%(Q) N LY(R™) be a weak solution to (1.1) such
that u > 0 in Br = Bgr(zo) € Q. Then, for any 0 <r < R,

Tail(uy; xo,7) < ¢ [r‘sg (7’_5 sup u) + Tail(u_; o, R)
B,

holds for some ¢ = ¢(n, s, p,q, A\, \).

Proof. Let k :=supp_u. We may assume k > 0 because if £ = 0, then v =0
in B, so u satisfies Harnack inequality. Take a cut-off function ¢ € C§°(Bs,/4)
satisfying ¢ = 1 in B,5, 0 < ¢ < 1 and |D¢| < 8/r. We test (1.1) with
n = (u— 2k)¢? to have

u(@) —u()]\ ulx)—ul) | dady
0‘/l/l ( e )mu»—mwﬁ“” MWK 9

ue) — u(w)]\ ule) - uly) drdy
*2/ﬂ&/l ( FE—r )mm»—mwﬁ“”“%”M—yv
— I +1I. (5.12)

Step 1: Estimate of I. We first assume ¢(z) > ¢(y). We observe the
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following inequalities:

) — u(y)]\ u(@) —uly) ulz) - uly) (u(x) — u(y)),
g( EETE )|u<x>—u<y>\ FENE ZPG( o — g’ )
fuz) — u(y)]\ u(z) — uly) (u(z) — u(y)),
g( g )|u<x>—u<y>§g( Tyl )

Using the fact —2k < wu — 2k < —k in B, and putting the above inequalities
into I, we discover

= [ (M ya;_yy %Jﬁ;lg;,uﬂ;_m( ) g9() K (2, ) didy
oo ( \x—y\ 2 v (5.13)
<z ”<u<y> KK (@,9) dady

Iﬂf—yl

>p/ / ( )+ ¢1(z)K (z,y) dedy
—2k/ / < >+) <|x)_y| 0'Y) K(x,y)dedy.  (5.14)

We further estimate the last term in the above display. Using the inequality

¢"(x) = &(y) < q¢"(2)(d(x) — ¢(y)) and applying Young’s inequality with
e =min{%, 1}, we get

2k/ / ( x|9)v—y| ) wﬁtﬁ(y)mx,w dzdy
/B /B G( |x_y| +>¢q( VK (2,y) drdy
C/B /B G( Ia:—y| k) K(z,y) dxdy (5.15)

l\DI’U
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Then we combine (5.13) and (5.15), and then use (1.4) to get

IR p—
_ c/r /TG <_—(y)k:) K(x, ) dady (5.16)
>t [, 6 () e 2 e ()

We note that, by interchanging the roles of x and y, we can also obtain (5.16)
when ¢(z) < 6(y).

Step 2: Estimate of /. We start by estimating

z [ (M ))¢“><>??%
=

= II, — I, (5.17)

We observe that

Iy—a:ol <le—y| < —Iy—:vo! for x € suppd C By, ja, y € R\ By,
(5.18)

»-lklﬁ

in order to estimate /1; as

L "B, T/Q |y - 1’0| ly — xo|" s
dyd
ok / / ( ) s (5.19)
» JRM\B, 4 (2 |-T y|

Lk k
> LT&II(U+,£L‘0,T) —ckr" g (—) .

c TS

Next, using the inequality (u(z) — u(y))y < u(x) + u_(y) for z € B, and
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y € R" along with (1.4) and (5.18), we estimate 1[5 as

k+u dwd
ms [ [y ( ))%W()(w) v
"\ B, JB, |513 - y|
o[ [ (—) FEre
- JR\B, 4(2) \T° |95 —y[ts
o[ Lo ()
mBpdB \|Y— 330\ ly — xo|ts

< ckr"® (r ) + ckr" Tail(u_; zo, R).

(5.20)

Combining (5.17), (5.19) and (5.20), we have

n

k k
II > o Tail(uy; xo, ) — ckr" g (—> — ckr” Tail(u_; zo, R)).  (5.21)
/rAS

C

In turn, connecting (5.16) and (5.21) to (5.12) and then dividing both sides
by kr™, the desired estimate follows. O

Before proving Theorem 1.0.2, we introduce the following technical lemma.

Lemma 5.2.2. [35, Lemma 6.1] Let F(t) be a nonnegative bounded function
defined for 0 < Ty <t < TY. Suppose that for Ty <o <1 < T,

F(o)<c(r—o0) "4+ (F(7),

where ¢y, ¢, > 0 and ¢ € (0,1) are constants. Then there exists a constant
c = c(v, () such that for every Ty < p < R < T}, we have

F(p) < cles(R—p) ™" + ca.
We are now ready to prove our main result.

Proof of Theorem 1.0.1. Let us fix a ball B = Bg(x) as in the statement.
By Lemma 5.1.1 and Lemma 5.2.1, we have for any ball B, = B,(x() €

supu < cd 7 p G ][ G <£> dx | +cdsupu+ cop®g~t(p® Tail(u_; o, R)).
Bp/2 By P’ By
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By using [54, Lemma 2.2], we can find a concave function G(t) such that
G(t) =~ G(t'7). Then applying Jensen’s inequality with G—'(t) ~ (G~1(t))?
implies

supu < cd <][ ul dx) + cSsupu + cdp®g~t(p® Tail(u_; zg, R)).
By

By/2 By

We now choose p = (7 — o)r with 4 < ¢ < 7 < 1. A standard covering
argument gives

1
57 a
supu < 9 (][ u? da:) + cSsupu + g (r® Tail(u_; xo, R)).
Bor (tr—o0)a o By

Choosing 6 = ﬁ and using Young’s inequality, we have
a=t 1

c a ' a 1

supu < —— <Sup u> <][ U dm) + — supu

BUT (T - O‘)E BTT‘ Tr 4 BT'I‘

+ erfg (r® Tail(u_; o, R))

1
1 i
< 5 supu + ;ﬂ (][ ut daj) + erfg (r® Tail(u_; xo, R)),

By, (1—o0)t

where t = t(n,s,p,q,\,A) € (0,1) is the constant chosen in Lemma 5.1.3.
Then Lemma 5.2.2 implies

supu < ¢ (][ u' dx) + er®g™(r* Tail(u_; 2o, R)).

B

Finally, combining this estimate with Lemma 5.1.3, we finish the proof. [
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