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Abstract

In this thesis, we investigate Cucker-Smale type (in short, CS-type) mod-
els, mainly focusing on a case of a singular kernel. The CS-type model in-
troduces an activation function to the CS model to describe various group
phenomena, and the theory of relativity can be reflected as an example.

To motivate the CS-type model, we first introduce the relativistic Cucker-
Smale (in short, RCS) model with a singular kernel. More precisely, we study
collision avoidance and flocking dynamics for the RCS model with a singular
communication weight. For a bounded and regular communication weight,
RCS particles can exhibit collisions in finite time depending on the geometry
of the initial configuration. In contrast, for a singular communication weight,
when particles collide, the associated Cucker-Smale vector field becomes un-
bounded, and the standard Cauchy-Lipschitz theory cannot be applied, so
the existence theory after collisions is problematic. Thus, the collision avoid-
ance problem is directly linked to the global solvability of the singular RCS
model and asymptotic flocking dynamics.

We then propose the CS-type model, which is a general nonlinear consen-
sus model incorporating the RCS model. Depending on the regularity and
singularity of communication weight at the origin and far-field, we provide
diverse clustering patterns for collective behaviors on the real line. The singu-
larity of the kernel induces collision avoidance or sticking property, depending
on the integrability of the kernel near the origin. We study the regularity of
sticking solutions of the proposed model on the real line. On the other hand,
we provide a sufficient framework beyond collision avoidance property to
guarantee a strict lower bound between agents in the Euclidean space. We
then introduce a kinetic analog of the proposed model and study its well-
posedness. We also show the structural stability in both particle and kinetic
levels.

Key words: activation function, collision avoidance, emergent behavior, ki-
netic model, relativistic Cucker-Smale model, structural stability
Student Number: 2019-28728
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Chapter 1

Introduction

Collective behaviors of complex systems are ubiquitous in nature. In [34], the
authors presented a unified equation for the first-order modeling on collective
dynamics:

N
K
q V+N; (ax — ) (1.0.1)

where v; is the natural velocity of the i-th agent, which describes the innate
rate of changes. By suitable choice of coupling rule ¥ and ambient space M,
basic types of collective behaviors can be modeled from (1.0.1). For example,
flocking of birds [25] or schooling of fish [27, 49] on real line, synchronization of
fireflies [7] etc. Then it is natural to consider the inverse problem i.e., design of
appropriate kernel U for a given consensus behavior. Such reverse engineering
problem is common in theory of deep learning, and typical approach is to
approximate target function by iterated composition of functions of the form

x> g(Ar +0), xR becR®

Above, A : R — R% is a linear function, and ¢ is a nonlinear function
so-called the activation function, where the nonlinearity of g is essential to
describe nontrivial phenomena [50]. In the authors’ previous work [10], mo-
tivated by the theory of deep learning, they employed nonlinear activation



CHAPTER 1. INTRODUCTION

function G and proposed the system

G = Gvi+ % D W(g — ), (1.0.2)
k=1

where GG is a continuously differentiable odd function, whose derivative is
strictly positive. Typical example is the hyperbolic tangent function tanh,
which is an activation function frequently used in deep learning. As an an-
other example, the authors in [29] discussed that relativistic effect can be
considered by choosing suitable activation function involving the Lorentz
factor. For the other examples, we refer to [41].

Regarding (1.0.1) as the basic building block of variant consensus be-
haviors, its generalization have been studied in various manner, e.g. flocking
[26], synchronization [38, 53], aggregation via Hessian communication [40]
etc, where the methodology of generalization depends on the physical con-
text. In context of flocking, ¥ is typically assumed to be an odd function,
which is differentiable, concave, and increasing on R, . In this case, (1.0.2) is
extended to the following Cucker-Smale (in short, CS) type model [10]:

G(pi), t>0, i€[N]:={1,2,--- N},
o
hi= > dlae — a)(Gpr) = G(pi), (1.0.3)
k=1
QHpZ ‘t 0+ <q1 7pz) Di, q; € Rd?

where the kernels ¥ and ¢ in (1.0.2) and (1.0.3) are coupled as ¥ = 1. If
we pose G = Id in (1.0.3), then we have the standard CS model;

(

Fi=v;, t>0, i€[N]:=1{12---,N},
o
=N Z (|ek — z]) (vp — v;), (1.0.4)
k=1

where x; and v; are regarded as a position and velocity of the i-th agent,
respectively. The CS model describes the dynamics of flocking behaviors of

2



CHAPTER 1. INTRODUCTION

self-propelled particles, and have been studied extensively as it unites seem-
ing unrelated phenomena [6, 47, 51, 52|. For the mathematical analysis, ki-
netic description, and hydrodynamic description of CS model, we refer to
6, 15, 19, 33, 36, 43|, [14] and [39], respectively.

As mentioned above, (1.0.3) incorporates relativistic Cucker-Smale model
(in short, RCS) model. Therefore, to motivate (1.0.3), we begin with the
discussion by introducing RCS model. Let (z;,v;) € R be the position and
the relativistic velocity of the i-th CS particle satisfying |v;| < c¢. Here, | - |
denotes the standard f;-norm in RY. For a velocity vector v in B.(0) (the
open ball centered at the origin with radius ¢), we set the Lorentz factor T’
and the quantity F as

P & — vz

C

Then, one can show that w is bijective, and there exists an inverse function

~

0 :=w"!: R — B,(0) satisfying the relation:

w

0L (1.0.5)

v="10(w)=

For further details, we refer to Chapter 2. Now, we are ready to introduce
the RCS model formulated in terms of state variables (z;, w; 1= F(v;)v;):

fai;l =d(w;), t>0, i€[N]:={1,...,N},
dwi 1 N ) . (106>
= 7 2 Olle = a]) (6(wn) = d(wy)) 0.
k=1
[ (2:(0), wi(0)) = (af", wi") € R,

where ¢ : R, — R, is a communication weight, encoding the degree of
interactions between particles in terms of their relative distances. Usually, the

3
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communication weight is taken to be monotone decreasing, which means that
the interactions between particles become weaker, as their relative distances
become larger.

The RCS model (1.0.6) and its simplified variants have been extensively
studied from various point of views, e.g., emergent behaviors on the Euclidean
space [4, 29], dynamics on the Riemannian manifold [5], kinetic description
and mean-field limit [4, 30], hydrodynamic description [30], etc. On the other
hand, when we consider real-world applications, one of the main concerns for
the multi-agent system is to guarantee collision avoidance between particles
(agents). To keep particles away from mutual collisions, one may consider a
singular communication weight [12, 20] or additional control inputs [22, 23,
24]. For the CS model, a singular communication weight is mainly considered
due to its simple structure and investigated extensively in literature [13, 18,
31, 42, 44, 46, 45, 48]. In this work, we are mainly interested in the following
specific singular communication weight ¢:

o(r)=r"" a>0. (1.0.7)

Note that the explicit form of the communication weight is not important,
but the singularity at » = 0 will be essential in what follows.

Now, we briefly discuss a formal derivation of the general CS-type con-
sensus model (1.0.2) from the RCS model on the real line, and review related
previous results on the CS model on the real line. To set the stage, we begin
with a brief description of the RCS model on the real line. Let x;, p; and
0(p;) be the scalar position, momentum and velocity variables of the i-th
RCS particle on the real line. Then, the RCS model reads as

1'1:77(171)7 t>05 (&S [N]7

Pi= 5 D lan = 2)(0(ps) — (p), (1.08)

L (xiapi)}t:()_i_ = (l‘?,p?),

where ¥ : R — R, is a Lipschitz continuous communication weight function.
To recast (1.0.8) as an abstract consensus model (1.0.2), we set ¥(-) to
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be the antiderivative of ):

:/0 Y(y)dy, = €R,

as long as v is locally integrable around z = 0. Note that

k(B)—(t)
GV =) = [ vy = vl - ) o) = ulo):
(1.0.9)
Hence, it follows from (1.0.8), and (1.0.9) that
% (p, - % 3 Wan(t) - :Bz(t))> =0, t>0, i€l[N] (1.0.10)
Now, we integrate (1.0.10) with respect to ¢ to get
pilt) = b} — 5 D Wl —af) + D Wlan(t) — ai(t))
o k=t (1.0.11)
= Vit > W (ai(t) — ()
k=1

Note that v; is a natural velocity depending only on initial data and coupling
strength x. Finally, we combine (1.0.8), and (1.0.11) to get the first-order
abstract consensus model:

N
ﬁ = U %kg :r;k—xl ZE[N],

or equivalently,

9'51-:13<V2 Z (zp — 4 ) i € [N]. (1.0.12)

k

Hence, if we set ¢; = x; and G = v, then system (1.0.12) corresponds to the
special case of the general abstract consensus model (1.0.2). Another special
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case of (1.0.2) can be also derived from the relativistic Kuramoto model (see
[41]). Other examples of activation function G, or equivalently G~!, are

2\ —1
Proper velocity: G_l(v) = (1 _ @) 7

Rapidity: G~*(v) = ctanh™! (%) :

For the detailed derivation, we refer to [41]. Note that the hyperbolic tangent
function, which describes the rapidity, is an activation function frequently
used in machine learning. Indeed, besides the physical semantics, we may
employ activation functions in deep learning satisfying (1.0.13). For example,
we can consider the symmetrized sigmoid function

_ 1 (0 1 1
G(v) = ¢S 1<Z)’ S() = 1o~ 5

We also assume that for any closed interval I, there exist positive con-
stants mq and Mg such that

0< meg < Gl(q> < MG’ < 00, G<_Q) = _G(q>7 v qe [7 (1013>

because it turns out that (1.0.13) are essential properties of activation func-
tions inducing the flocking phenomena (see Section 4.1). The most simplest
and motivating example for G will be the identity mapping G(¢) = ¢. In
this case, system (1.0.2) reduces to system (1.0.1). We provide emergent dy-
namics of (1.0.2) depending on the behaviors of the communication weight
function ¢ := V" at ¢ = 0 and ¢ = oo:

Type I : / ¥(q)dg = oo : Regular, long-ranged communication weight,
0

Type II : / ¥(q)dq < oo : Regular, short-ranged communication wight,
0

1
Type IIT: ¢¥(q) = —, «>0, ¢#0 : Singular communication weight.

lqle”
(1.0.14)

In the thesis, we are mainly interested in the study of asymptotic con-
sensus behavior (flocking) of (1.0.2) and (1.0.3) for each types of kernels in

6
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(1.0.14). Analysis on singular kernel (Type III) is in particular interesting
due to its extraordinary behavior. In view of (1.0.2), if @ € (0, 1), where
a represents the singularity of kernel as in (1.0.14), then two particles stick
after some finite time if and only if they share the same natural velocity. Re-
garding (1.0.2) as a training model, we may interpret it as a flow classifying
the agents, where each group, labeled by v;, shares some value ¢;, where g;
depends on time, initial data and coupling ¥. On the other hand, for a > 1,
two distinct states ¢; and g; never coincide through time evolution, which
is usually referred as collision avoidance. If each agents lies on the real line,
(1.0.3) might be converted into the first-order consensus model (1.0.2) and
in this case, aforementioned priorities can be rigorously stated and proven.
However, lifting those results into second-order model may not be trivial
(see Remark 4.2.1), even if d = 1. The non-triviality follows from the loss
of regularity from collision; as a kernel is singular, ¥ is not differentiable at
the origin (i.e. at the instance two particles collide), and therefore standard
calculus cannot be applied directly. The one of goals of this thesis is to over-
come such difficulty and rigorously connect (1.0.2) and (1.0.3) on the real
line, which may hint us for the description of a solution to (1.0.2) on general
ambient space. Indeed, we provide some results for (1.0.3) on R¢, which is
parallel to the results of the real line case.

Another content of this thisis is to study structural stability of (3.1.5).
More precisely, we consider the classic CS model (1.0.4) as a reference model
and consider the following problem:

If (p%,¢)) = (22,0?), then would G — Id implies

1) 7

(pi(t), qi(t)) — (wi(t), vi(t))?

We provide the structural stability in both microscopic and mesoscopic level.
To be more precise for the mesoscopic description, we first introduce and
study the well-posedness of the following Vlasov-type equation:

0f +Gp) Vol + Y, (FIIf) =0, p.geRs
FUlipa.t) = [ 0la” = aD(Gl) = GoDS ', q" ) d'

7
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which is formally obtained by taking limit N — oo to (1.0.3). We then study
the convergence of solution toward a solution of

Ouf +p-Vof +V, - (FIfIf) =0, p,g€R,
FUflpa.t) = [ olla” =aD’ =) (", 0’

in a suitable sense. In this thesis, in the same vein as the previous paragraph,
we limit ourselves to the singular kernel. For a previous work regarding a
regular kernel, we refer to [4].

In summary, we address the following questions throughout the thesis:

e (Q1): What are the essential properties of the RCS model (1.0.6) that
cause flocking as the standard CS model (1.0.4) does? Under those
properties, can we expect the CS-type consensus model (1.0.3) to show
flocking behavior?

e (Q2): When the kernel 9 is singular, can we guarantee the well-posedness
of the solution? If so, can we expect some special interaction between
agents?

e (QQ3): Can the solution to (1.0.4) converge to the solution to (1.0.3) in
suitable sense, as GG converges to the identity map Id?

e (Q4): Can we consider the kinetic description of (1.0.3)7 If so, what
will be the kinetic analog of answers to (Q1),(Q2), and (Q3)?

The rest of this thesis is organized as follows. In Chapter 2, we present the
relativistic Cucker-Smale model with a singular kernel and collision avoidance
property. In Chapter 3, the study first-order CS-type consensus model on the
real line and analysis of the effect of kernel depending on the regularity or
singularity at the origin or infinity. In Chapter 4, we discuss the asymptotic
dynamics of the CS-type consensus model and consider a further analysis
of results in the previous chapters. Finally, Chapter 5 is devoted to a brief
summary of our main results and some discussion on the remaining issues
for a future work.



Chapter 2

The relativistic Cucker-Smale
model with a singular kernel

In this chapter, we first present basic properties and preliminary lemmas for
the following RCS model

d(l]i N .
o —v(wij)v, t>0, ie€[N]:={1,...,N},
B >l — aal) () — o)), (2.0.)
k=1
| (2:(0), w;(0)) = ()", wi") € R*,

with a singular communication weight and recall previous results for a regular
communication weight. Then, we consider a strongly singular communication
weight

o(s)=s"% a>0, (2.0.2)

with @ € [1,00). In this case, we provide the nonexistence of collisions for
non-collisional initial data and derive a global existence of solutions to (1.0.6)
with asymptotic flocking dynamics under suitable conditions on initial data
and communication weight function. On the other hand, weakly singular
communication weight with a € (0, 1) is also considered. In this setting, we
present an explicit example leading to the finite-time collision for the two-
particle system, and then we derive a sufficient framework for the nonexis-
tence of collisions, so that system (1.0.6) yields a global solution satisfying

9



CHAPTER 2. THE RELATIVISTIC CUCKER-SMALE MODEL WITH
A SINGULAR KERNEL

asymptotic flocking. We note that this chapter is based on the joint work
[11].

Before we proceed further, we first clarify the the concept of asymptotic
flocking for (2.0.1). We define a concise notation for the spatial and velocity
configurations as

X ={x;}, V:={v}, W:=A{w}, Z:={(x;,w)}.

Definition 2.0.1. Let Z be a global solution to the RCS model (1.0.6). Then
the RCS model exhibits asymptotic flocking if the following estimates hold:

sup |z;(t) — x;(t)] < oo, tli)m lw;(t) —w;(t)] =0, 1,5€[N].

0<t<o0o

2.1 Introduction to the relativistic Cucker-
Smale model

2.1.1 The RCS model

We briefly discuss a derivation of (1.0.6) from the relativistic thermodynamic
CS model. Details can be found in [29].

Let (x;,v;,T;) be the thermomechanical state consisting of position, ve-
locity and temperature of the i-th relativistic thermodynamic CS particle.
Then, the state dynamics is governed by the following coupled system of
first-order ODEs:

fdl )
CZ:vi, t>0, 1€[N],

(5 )):%i S(5-T) en

N
d r,oT
ST+ A= 1) = <___J)

\

where I'; := T'(v;) and we used handy notation for communication weights:
¢ij = @(lw; —wil) and G o= ((lj —wl), 4,5 € [N].

10
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A SINGULAR KERNEL

Note that in the relativistic regime with ¢ > |v;|, we have the following
Taylor expansions for quantities related with I';:

oil* | 3 vl MP|M4
I, =1 Sl 2=
T gt S R
2 \M25W#
AT(0; — 1 oW
( )= 2 +8 c? -
Then, these yield
: : |vil?
lim[; =1, lim (T —1) =
c—00 c—00 2

Thus, in a classical limit ¢ — oo, the relativistic system (2.1.1) reduces to
the classical TCS model [35]:

(
dx; ‘
d‘i v, Nt >0, i€l[N]
dv; 1 vj i
i-w2o(g-1)
d 1 1 1 1
@ (g L) L3 (221
dt( + gl N;CJ (T T])
Now, we return to system (2.1.1). Following the principle of system in [29],
we set e
F—Z:T*zl, i€ [N,
and ignore the third equation (2.1.1), to derive the RCS model:
dx; .
dxt =uv;, t>0,1i¢€][N],

d r; 1 &
dt (F’Uz (1_'_6_2)) :N;(bij(Uj_vi)'

Since v; can be represented in terms of w;, F(v;) itself can be expressed
by w;. However, since the explicit representation of the map o is extremely
complicated, we use the notation F; := F(v;). We introduce ¥ : [0,¢) —
[0, 00) defined as

cr r
2

U(r) =

+ .
2—r2 2—r?

11
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Then, it is easy to see

X Vs c|1}-| |U| U Vi
N — Pl 2 — d . = V(lvil) -
blv) = Fid |vi ( ? — |ug[? T |Uz'|2> [oil () [vi]

Note that the map ¥ is bijective, and both ¥ and ¥~! are strictly increasing

in their arguments.

2.1.2 Preliminary lemmas

In this subsection, we study several estimates to be used in later sections.

Lemma 2.1.1. Let Z = Z(t) be a solution to system (1.0.6). Then, the
following assertions hold:

1. The total sum of w; is conserved:
Zwi(t) = Zwim, t>0.
i=1 i=1
2. The mazimal moduli of w; and v; decrease monotonically in time:

; < ; ; < ; <s<
max |w;(t)] < max wi(s)|, max |vi(t)] < max ui(s)], 0<s<t.

In particular, if the initial speed is less than c, then the speed of particles
cannot exceed c:

m| o.__ mn . n
oy = max "] <c = max Jui(t)] < oy <e

Proof. (1) Since ¢ is radially symmetric, we have ¢;; = ¢;;. Then, it follows
from (1.0.6), that

d & N N
dt zwi - % 2¢iﬂ' (0(w;) — O(w;)) = % Zl¢ij (0(w;) — v(w;)) = 0.

12
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(2) Let M be an index satisfying

|wa| == max |wy.
1<i<N

Again, we use (1.0.6), to derive
d|wi]? Al
|wM| Z Oujwi - (vj = var)-

Since ¥~! is an increasing function, the map

ol _ o
R )

is an increasing function of |w|. Therefore, by the maximality of w),; and the
Cauchy-Schwarz inequality, we have

wy Jwwf?
F,  Fy

wil o ] ]
< o (121 = 520 = o 9 ul) = 0 () <0,
J M

wyr - (v; —vm) = Wy

for all j =1,2,..., N. Therefore, we obtain

dlwy|?

o <0 fort¢>0.

This implies the monotonicity of |wy|. Since the map ¥~ : |w| — |v] is an
increasing function, we get the monotonicity of |vyy].
[

Remark 2.1.1. Thanks to Lemma 3.1.3, without loss of generality, we may
assume

Lemma 2.1.2. Let Z = Z(t) be a solution to system (1.0.6) with initial
data:

max |w!"| < U, < oc.

1<i<N

13
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Then, there ezists a positive constant C, = Cp(Uy,) such that

(1) Crlw; —wj| < [o(w;) — o(wy)| < w; —wyl,

. , ’ ) ,  (212)
(2) Crlwi — w;|” < (wi —wy) - (0(w;) — 0(w;)) < fw; —w;l”.

Proof. (1) e (Derivation of the left inequality): We fix indices ¢ and j and
denote them by 1 and 2. Without loss of generality, we assume |w;| > |ws].
We use the mean value theorem and monotonicity of the maximal modulus
of velocity to find

jwi —wa| < sup  [['(0)|op|v1 — v2]
[o] ST =1 (Jwi|)

< sup @' (0)[loplvr — val,
[o|<T=1(Uw)

where [|@'(v)]|,p stands for the operator norm of the Jacobian of w at v. On
the other hand, the Jacobian «@’(v) can be explicitly computed as

N [v]? N 2|v|? VRV N c N 1 I
w = d»
(=) (@ =2 ) P = &= = Jof?
for |v| < ¥~1(U,). Since the eigenvalues of % are 0 and 1 up to multiplicity,
eigenvalues of the symmetric matrix @’ are given by

1
A (v) = ¢ + and

Ve =P ¢ = ol

c N 1 N v]? N 2|v)?
VE—T @ =P (@ —pP): (¢ =P
Therefore, the operator norm of the Jacobian @' (v), the largest singular value,
is Ag(v). We use maxy—y 2 |vi(¢)] < |[¥~1(U,)| to achieve

)\2 (’U) =

sup [ (0)llop = sup  Aa(v) = A (TTH(Uu)) = C(Uw).

] <E=1 (Jws]) ] <T=1(Uw)

Hence, defining C,(U,,) we have the left inequality of (1).

_ 1
— CUw)’
e (Derivation of the right inequality): To show the right inequality of (1), we
note that

[02(8) = v2(t)] < Sup 19 (w) [l op s () — wa(t)],

14
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where 0'(w) is now the Jacobian of ¢ at w, which is an inverse of w(v). Thus,
the eigenvalue of ¢’ is also the inverse of A\; and As, and in particular, they
are smaller than 1. Therefore, the operator norm of ¢'(w) is also less than 1,
which implies the desired right inequality of (1).

(2) e (Derivation of the left inequality): Again, without loss of generality, we
assume |w(t)| > |wq(t)]. Then, it is easy to observe

|1)1(t)| Z |’02(t)| and F1 Z F2 Z 1.
We use the above inequalities to obtain

(w1 — wy)-(0(w1) — 0(w2))
= (FlUl — F2U1 + FQUl - FQUQ) . (Ul — UQ)
= F2|’Ul — ’UQ‘Z + (Fl — Fg) (U1 — ’02) U1

> Byl — vaf? > |1 — va)® > CFlwy — wyl?

e (Derivation of the right inequality): Similarly, under the assumption |w, (t)| <

|wa ()],

(w1 — wa)(d(w1) — D(ws))

= 2o (= - ) )
= —|w; —w — — — | (wy —wy) - w
7t 2 7R 1 2 1
< P < :
—|w; —w wy — W wy — wal”.
= F v 2" = T pln 2|” < |wr 2
This proves the right inequality. O]

Remark 2.1.2. (1) Since the Jacobian w'(v) converges asymptotically to
the identity matriz as ¢ — oo, one has lim,. o ||0'(v)|,p = 1, therefore
lim. o, C;, = 1. Consequently, the estimate (2.1.2) implies the coincidence
of v and w, when relativistic effect is not taken into account via ¢ — ©o.
This also agrees with our heuristic intuition. The constant C, depends on
both U, and c, although the explicit formula for the dependency is extremely
complicated.

15
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(2) In [29, Lemma 6.6], the authors also obtained the following estimate:
(w1 — ws) - (B(wr) = D(ws)) = (V) |wr — wal?,

and lim._,o ¥(Uy) = % Therefore, Lemma 2.1.2 improves the estimate in

[29].

2.1.3 Previous results

In this subsection, we briefly review a global existence and asymptotic flock-
ing dynamics of the RCS model with bounded and Lipschitz communication
weights. Consider the RCS model with a bounded communication weight:

(%), 120, ic IV
o Ly U ) 2.1.3
i N Z(bb(m‘ — xp]) (0(wi) — 0(w;)), (2.1.3)
k=1
[ (2:(0), wi(0)) = (", wi") € R*,

where ¢y, : Ry U {0} — R, is non-increasing function satisfying

r)— S
ol < ¢p and  [gp|Lip :=  sup |95(r) — Pu(s)| < 0o,
r#seR,U{0} ]

Assume that there exists a positive constant v < ¢ such that max;<;<y |[v/"] <
v%. Then, the monotonicity of the radius of velocity (which still holds for the
regular communication weight) implies max;<;<y |v;(t)| < v° for all ¢ > 0.

For asymptotic flocking estimate, we also introduce several Lyapunov

functionals:

| X
D, := max |x;—x; D, ;= max |w;—w; L ::—E w; —w;|?
* 1§z‘,j§N| il Do 1<ig<n ' ' il L 2N i =]

ij=1
For notational simplicity, we set
J = ollm — ), 0,5 €[N,

In the following two theorems, we summarize state-of-the-art results for the
RCS model with a regular and bounded communication weight.

16
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Theorem 2.1.1. [29] Let Z be a solution to (2.1.3) with the initial data Z™,
and let R be a positive constant such that

(1) < R.
2 2 0l <

Then the following assertions hold.

1. If qﬁzj = 1, then there ezists a positive constant A(R) such that

Dy(t) < Dyp(0)e 2B ¢ >0,

2. 1If gbff is constant and satisfies ¢, 1= min, ; gsz > 0, then, L, decays
exponentially fast:

Loy(t) < L,(0)e 22EBomt >,

Theorem 2.1.2. [4] Let Z be a solution to (2.1.3) with initial data Z™.
Suppose that initial data Z' satisfy the following assumptions: for given
positive constants a, B and C', there exists a positive constant D° such that

Dy (0)
Clag(Dge) — B)
Then, there exists a positive constant A such that the following asymptotic
flocking emerges:

B <o(D)a, Du(0) +

< Dy.

D,(t) < DL, Dy(t) < Dy(0)e™ ¢ >0.

2.2 Strongly singular communication weight

2.2.1 The collision avoidance

We study collision avoidance due to singular interactions for system (1.0.6) to
derive a global well-posedness. Since the communication weight ¢ is singular
at r = 0, local well-posedness problem will surface up at the instant in which
x;(t) = x;(t), i.e., two particles z; and x; collide. Thus, to obtain a global
well-posedness, it suffices to show that there will be no collisions in any finite
time interval. Our first main result is concerned with the nonexistence of
finite-time collisions.

17
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Theorem 2.2.1. Suppose that the communication weight ¢ is sufficiently
singular and non-collisional:

a>1, min |z — 27" > 0.
1<iAj<N

Then, system (1.0.6) admits a unique non-collisional global-in-time solution
Z satisfying
i () — 2 ()] >0, t>0.
\Join () — ()] > >

Since the map ¢ in (3.1.4) is bounded and Lipschitz continuous by Lemma
2.1.2 and the communication weight ¢(|z; —x;|) is regular unless z; = z;, we
may use the standard Cauchy-Lipschitz theory to guarantee the existence and
uniqueness of the local solution to (1.0.6), before collisions happen. Therefore,
it suffices to show that there are no collisions at any finite time for a global
well-posedness. This will be verified step by step.

In the sequel, collision avoidance will be verified via a contradiction ar-
gument. Suppose that the first collision occurs at time tq € (0,00), and let
particle z; be the one of the particles colliding with other particles at time
t = to. Moreover, we define the index set [I] as the set of indices of particles
colliding with x; at t = t:

|z — ;] =0 as t 7ty forall jell],
for some § >0, |z, —xK| >d>0 in te[0,ty) forall k¢&][l.

Now, we consider fo-norms of the system {(z;, w;)}icpy by

Wl == [ fwi—wl?, [Vl = N > i =l
1,5€[1] i,j€[l]
! ’ (2.2.1)
XNy = [ o — 5
i,5€(l]

Then, it is straightforward to see that

=20 (2 — 1) - (9(wi) — 0(wy))| < 20X |llV |-

i,J€[l]

d
I

18
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This and (2.1.2) yield

'—Ilelm < Vil < Wl (222)

Next, we estimate the term |[W ||y as

dwi dU)j
= 2w w) (E )

sz[l]

== Z Z O(|n — 4]) (0(wy) — 0(wy))
zje[l] k=1
- <Z5(!5Ck — x;]) (0(wy) — 0(wy)))

=—ZZ - ZAZ]H > A

3,J€[l] zyke[l zye[l] ke[l
=. ZH + Ilg.

Note that Z;; and Z;5 involve with colliding particles with z; and non-colliding
particles with z;, respectively.

In the following two lemmas, we provide estimates for Z;; one by one.
Lemma 2.2.1. The term Iy, satisfies

Co|[]]
Ty < ——£
11 2N

SUX N IW G =: =Cro(IX ) W Nl

where |[l]| denotes the cardinality of the set [I].

Proof. Since i, j and k are in the same index set [I], we may use index switch-
ing trick (¢ <+ k), Lemma 2.1.2 and definition of || X[y and ||[W{|p to estimate

2 N .
Ty = kae[z](wi — wjy) * (Pri(O(wr) — 0(w;)))
1 .
= Nigke[l](w —w;) - (ki (0 (wr) — D(w;)))
19
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< - C&||§:¢U

4,5€[1]
_cull

< = eUX TGy = =Cro(IX ) 111G

Lemma 2.2.2. The term Z5 satisfies

2U, Ls(N —

17]1)
N Wl XNy =: Coll X Wl

T2 <

when Lg is the Lipschitz constant of ¢ in (d,00).
Proof. By construction, we have
|z, — x| >0 and |z; —ax| > fori,j e[l and k ¢ [I].

Then, one has

Ly = N Z (Dri(0(wy) — 0(w;)) — ¢rj (0(wy) — 0(wy)))
S URLAU
% S = wy) - [Builwy) — 9(w)
S U3l
+ (Pri — Pry) (0(wi) — 0(w;))]
< % (615 = ) (ws = ;) - (0(wn) = 0(wy))
K[l
Ls N A
<3 Z — s = w5 a) = ()]

i,j€[l]

The monotonicity of v in Lemma 3.1.3 implies
|0(wi) — 0(wy)| = [ve — v < vkl + |v;] < 20,

20
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where U, is a constant satisfying max;<;<y [v"| < U,. Therefore, we further
estimate Z;5 as

2U, Ls
Tz < N Z i — 5] lwi — wy]

ijE[l]k¢[l]
20U, Ls(
u Z’xz | |wi — wjl
i,5€l]
2U,Ls(N —[[1]])
< [ X Wy =: Coll X | [W |-

- N

Now, we are ready to provide a proof of Theorem 3.1.

Proof of Theorem 2.2.1: It follows from Lemma 3.2.1 and Lemma 2.2.2
to get

2dtl\WH i < —Cro(IX ) IWIIEy + Call Xl W .

This yields
d
2 Wl = =Cro(IX i)Wl + Call X1y

By Gronwall’s lemma, we have

W[ ()
¢
< {02 / 1X (| (m)eCr I 6NN gy W[y () | e Cr ds X T (ar
(2.2.3)
for any s,t with 0 < s <t < ty. Now, let ® be the primitive of ¢:
T IOg 17 lf o = 1’
To
O(r):= [ ¢(s)ds =
h Lo (o), i a1
1—a ’
21

___;rx_-l! E CI.'II

1_'_] |
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Then, one has

[PX @)l =

/s %(I)(”XHU](T))dT + @(“XH[Z](S))‘

[ o) (51X10(0) dr + 21X (o)

(2.2.4)

< / SUX N (DI Nl (T)dr (X |y (5))],

—7
where we used (2.2.2) in the last inequality.

On the other hand, we use (2.2.3) to further estimate J as
¢
7 < [ ollx ()

% [02/ ||XH[”(U)601f,f¢(IIXH[z](p))dde+ HW||[Z](S>:|

w e~ C1JJ oI Xllw(o))do g

=/¢wwmm

x {02 /T 11X || ()€ I7 ¢(||X[z](p))dpd0} e—C1 S ¢IX Il (@))do .-

t
+ ||WH[11(S>/ (11X |y (r))e Jo 20X (e gy

=: Igl + IQQ.
(2.2.5)

In the sequel, we estimate Zy;, © = 1,2 one by one.

o (Estimate of Zy): It follows from Lemma 3.1.3 that there exists a positive
constant C3 = C3(ty) such that

max { Col| X, Wl } < Cs, ¢ € [0,0)

Therefore, we have

t T
7, < C / ( / Ol ¢(|Xm<p>)dpda> (11X ||y (r))e=C1J7 oUX (Do g

s
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Now, we use the following relation

T d 1 T
X =C1 [ (XNl (oNde — = = =C1 [] ¢([| Xl (0))do
SIX Ny () e ,

and integration by parts to obtain

Im&[_

t
<5 / O T oIX Ny (0))do g o =Ch [ 6(IX Iy (7))dr
1

S

t
n / eclf;¢><|X||m(a>>daeclf;qs(||xm<o>>dodT] < %to-

s 1

(2.2.6)
e (Estimate of Zys): Similar to Zy;, one has
03 —C, [t 03
T < 22 (1 = L o(X N (r)dr ) « =3 29
22—01< c )—01 (22.7)
In (2.2.5), we combine (2.2.6) and (2.2.7) to find
t 03
T = [ o X[[gE)Wy(r)dr < a(to +1). (2.2.8)
We substitute (2.2.8) into (2.2.4) to get
C
21X ()] < S2tto+ 1)+ [2(IX ()], 05 <<t

In particular, since the initial data are non-collisional, we have the bounded-
ness of ©([|.X1/y(t)):

201Xy (0)] < S+ 1)+ @ X O] < o0, 0=t <to. (229)

However, since the index set [[] is the collisional set at time ¢o, we have
lim || X||;(¢) = 0.
Jim [ Xy (t) = 0

This implies

th/rg) [D([| X ()] = o0,

which is contradictory to (2.2.9). Therefore, we conclude that particles do
not collide at any finite time ¢y, and we have a global solution to (1.0.6). O

23
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2.2.2 Asymptotic flocking dynamics

In this subsection, we provide asymptotic flocking dynamics of a global so-
lution whose existence is guaranteed by the previous subsection under the
conditions that the initial configuration is non-collisional and « > 1. Similar
to (2.2.1), we set:

N

Dol V=

=1

N

D lwf2 W=

=1

N

D w2 (2:2.10)

i=1

X1 =

Lemma 2.2.3. Suppose the communication weight (3.2.2) is sufficiently sin-
gular and initial configuration is non-collisional:

a>1, and  min |z;" — 2| > 0.
1<i#j<N J

Then, for a global solution Z to (1.0.6), the functionals of (2.2.10) satisfy:

d d
SIXI < IV SIS -CRoG/EIXDIW, o0, @21

Proof. In the sequel, we derive the estimates (2.2.11) one by one.

e (First estimate in (2.2.11)): by definition of || X ||, one has

N

i=1

IX1%) =2 < 2[[XVI

d
dt
This and Lemma 2.1.2 yield

d
— X < ||V < |[|W]|.
] < w1 <

e (Second estimate in (2.2.11)): we use (1.0.6) to find

d e 2y ; )
WP =55 32 by () — ()

i,j=1
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1 . )
=5 D dulwy — w) - (o(ws) — o(w,)

ij=1
o2 N 1 X
< —WL > dijlwi — w;* < —C%¢(\/§HXH)N > Jwi = wjl?
i,j=1 i,j=1
N
= —2C (V2| X])) (Z Iwi|2> = —207(V2| X|) W%
i=1
This yields the desired estimate. O]

Finally, we employ the Lyapunov functional approach in [33] and Lemma
2.2.3 to derive the following flocking estimate.

Theorem 2.2.2. Suppose the communication weight (3.2.2) and initial data
satisfy:

) ) 02 +o0
a>1, min |z —27 >0, |[W(0)| < —& o(s)ds, (2.2.12
19#@' i W(O)] V2 s (s)ds, ( )

and let Z be a global solution to (1.0.6). Then, there exists a positive constant
x> < 400 such that

xOO
sup [ X ()] < —

0<t<o0o \/§7

Proof. e Step A (Uniform bound for || X|): First, we use (2.2.12), to see that
there exists a positive constant 2°° < 400 such that

_a
V2 Jvaix o)

Now, we introduce the Lyapunov functional L:

W@ < [W()[le et >0.

oo

W (0)]] ¢(s) ds.

c? V2|lX @)
V2 vaix
Then, it follows from Lemma 2.2.3 that

L _ covaix i@l AW O (2.214)

dt
< CLo(V2IX@)IDIW B = CRe(V2 X O IW @) = 0.

L(t) : é(s) ds + |[W (). (2.2.13)
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By (2.2.13) and (2.2.14), one has

L[ s+ 1w = 6o
— o(s)ds+ ||W(t)|| = L(t
V2 Jvaix o)
<o = wo =L [ ops)as
- V2 Jax ) '
This implies the uniform boundedness of X:
.CCOO
sup X0 < X 2.2.15
s X0 < 2219

e Step B (Exponential decay of ||W]|): We use (2.2.11), and (2.2.15) to get

%HWH < —CLo(V2|XIDIW | < ~CLo(=>)|W]|.
This implies the desired result:
W@ < [W(O)le ™", ¢ > 0.
O

Remark 2.2.1. The role of condition o > 1 is to guarantee the global well-
posedness of (1.0.6). If a solution of (1.0.6) is globally well-posed, then results
of Section 2.2 can be applied, whether the kernel is strongly singular or weakly
singular. We will revisit this aspect in the proof of Proposition 2.5.1.

2.3 Weakly singular communication weight

In this section, we study existence and non-existence of finite-time collisions
for system (1.0.6) with weakly singular communication weight (e.g., long-
ranged interactions):

o(r)=r"% 0<a<l.

First, we present a simple example of initial data leading to the finite-time
collision for a two-particle system, and then provide sufficient conditions on
initial data so that there are no collisions, both in finite time and asymptot-
ically.
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2.3.1 Existence of finite-time collisions

In this subsection, we provide an example of finite-time collisions using the
two-particle system on a real line:

( dx . dx .
d_tl = ’U(U}l), d_t2 = U('IUQ), t > 0,
dw1 _ QA}(U)Q) — ﬁ(w1)7 d’w2 _ @(wl) — TA)(UJQ)’ o€ (O, 1)7 (231)
dt 2’1’1 —332‘0‘ dt 2‘1’1 —$2|a
\(gjl(O)al?(O)?wl(O)?wQ(O)) = (:Binvxénvwin>wén) € R%.

In the following proposition, we construct special initial data leading to a
finite-time collision.

Proposition 2.3.1. There exist noncollisional initial data {(x", wi™)}2_,

such that a solution to (2.3.1) subject to it has a finite-time collision, i.e.,
there exists t. € (0,00) such that

Il@a) = Ig(tc>.
Proof. Consider the initial data {(z!",w!")} satisfying

(xzzn _ xzin)l—oz

o <2, wi —wl + T—a =0. (2.3.2)
Suppose there is no finite-time collision. Then, we have
x1(t) < wo(t) for all £ > 0.
Then it follows from (2.3.1) that
%(wz —wy) = — |37U22—_:11’°‘ = "= _11,1)&%(3:2 —x) = —%W.
(2.3.3)

We integrate (2.3.3) over (0,t) to obtain

(a(t) — 2y (8))1 7 — (ain — xzin)l—a.

(wa(t) — wi(t)) — (wh* —wi*) = — 11—«

(2.3.4)

27
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From the choice of initial configuration (2.3.2), the relation (2.3.4) reduces
to

(wo(t) — xl(t))l_a' (2.3.5)

wg(t)—wl(t):— 1—a

On the other hand, it follows from Lemma 2.1.2 that
Cr(wy —wy)? < (wy — wy)(vy — v1), (2.3.6)
and since the right-hand side of (2.3.5) is negative, we get
wy — wp < 0.

Therefore, we may divide wy — w;(< 0) on both sides of (2.3.6) to obtain

d Cr(ry — xp)t ™
(02— 21) = vz — v S Cp(wz —wy) = — 2 i_al)

: (2.3.7)

where C7, is a constant obtained in Lemma 2.1.2. Then, Gronwall’s inequality
yields

CL

OEZIONE (2.3.8)

©2(t) = m(t) < (2 —af)e” b o

On the other hand, since we assume that there is no finite-time collision,
system (1.0.6) is globally well-posed and therefore, we may use the previous
result in Theorem 2.2.2. However, since we assume 0 < a < 1, the communi-
cation weight ¢ is non-integrable at the infinity, and therefore, the condition
(2.2.12) always holds. Thus, there exists a uniform upper bound x,; of |z1|
and |zl

max{|z1(t)|, |z2(t)|} < xp < o0, t>0.

We use an upper bound of |z;(t)| to observe that the exponent of (2.3.8)
tends to —oo as t — oo:

—/t G ds < — Gt — —00
o (I=a)(za—x)* = (1 —a)(2xy)" t=oo '

This implies
lim (xo(t) — z1(t)) = 0.

t—o00

28

&

| &1



CHAPTER 2. THE RELATIVISTIC CUCKER-SMALE MODEL WITH
A SINGULAR KERNEL

Therefore, we can find an increasing sequence of times {t,}°°; by
tn:=1inf {t : xo(s) —z1(s) <27" whenever s>t}, neNU{0}.
By definition, we have
xo(ty) —x1(ty) = 27", and xo(t) —xq(t) <277 for ¢ >1t,.

Again, we apply Gronwall’s inequality to (2.3.7) to derive

tn41 C
(1) — T1(tng1) < (22(tn) — 21 (t,))e o TERE

ROk

Therefore, one has

tnt1 (ZL (jL2an
log2 > ds > (tas1 — b . (239
§ _/tn (1 — a)(za(s) — z1(s)) 2 (o1 = tn) 35 (2:3.9)

However, for each n € N, the relation (2.3.9) implies

n—1 n—1
1 —«)log?2 1 —«)log?2
tn:to“‘Z(thrl_tk)StO‘i‘(%ZQak<t0+ﬁ'
k=0 L k=0 L

Hence, there exists a limit lim,, .o t, = oo < 400 satisfying

Ta(too) — T1(too) = lm (22(t,) — 21(t,)) < lim 27" =0,

n—oo n—o0

which is contradictory to the absence of finite-time collision. Therefore, the
collision will occur at some finite time ¢, < +o0. O

Thus, for a weakly singular communication weight satisfying (2.3.2), we
can obtain a finite-time collision depending on the geometry of initial config-
uration. In next subsection, we provide sufficient conditions which guarantee
the nonexistence of collisions.

2.3.2 Sufficient conditions for collision avoidance

In this subsection, we present sufficient conditions for collision avoidance
when the singularity is weak. As we observe in the previous subsection, we
cannot guarantee the collision-free property of system (1.0.6), regardless of
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initial data, when 0 < a < 1. Therefore, if one wants to get a collision-free
property for 0 < o < 1, an extra condition on the geometry of the initial
configuration is needed. In this part, we present a sufficient condition on
initial data that guarantee collision avoidance. We use the flocking estimate
in Section 3.2 to obtain the absence of finite-time collisions.

Theorem 2.3.1. Suppose the communication weight (3.2.2) and initial data

satisfy
0<a<l, min |z" — 2| > 0,
1<i#j<N
2 a A A (2.3.10)
WOl < Enin{ [ os)ds o) min [ot" - a2l
V2 V2| X (0)] 1<i,j<N g

for some positive constant x> < 4+o00. Then, the following assertions hold.
1. There exists a global-in-time solution {(z™, wi™)}Y, and a constant
0o > 0 such that

_ .
o min () — (1) = 6.

2. Asymptotic flocking emerges:

_ (2 £
X < ==, WO < [[W(©O)[le e, ¢ > 0.

Sl

Proof. (i) Since the initial data is non-collisional, there exists at least local-
in-time solution {(x;, w;)}Y, to (1.0.6). We now assume that there exists a
critical time ¢, such that the first collision occurs at time t,. We denote two
particles colliding at time ¢, by z; and x;. In particular, one has

lim |x;(t) — x;(t)| = 0. (2.3.11)

t—tx«

Since initial data satisfy (2.3.10), Theorem 2.2.2 implies

X)) < 5= and W) < [WO)e D 0<i <t (2312)

Sl
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A SINGULAR KERNEL

Now, we estimate |z;(t) — z;(t)| as

t
i) = (0] 2 [af* = a7 = [ Jus(s) = (o) . (23.13)
On the other hand, it follows from (2.3.12) that

[0i(s) = ()] < [wi(s) — w3 ()] < wn(s)] + wy s)|
<\ 2([wi(3)] + Jwy(5)]2)
< VW (s)]| < V2W(0) e,

Therefore, one has

/ vi(s) — v;(s)| ds < V2|[W(0) ||/ ~C36®)s gg < Q%J)H-

We substitute the above estimate into (2.3.13) to obtain

gy Y2 O]

|lzi(t) — 2 ()| > |2 — >0, 0<t<t,,

! T Cio(a)
where the last inequality comes from the initial condition (2.3.10). This con-
tradicts to (2.3.11). Therefore, there is no finite-time collision, and the so-
lution {(x;, w;)}Y, can be extended globally in time and thus, the flocking
estimate (2.3.12) holds for the whole time ¢ > 0. Moreover, we choose

] | — ——

dp := mi - )
0= 2l Cro)
This yields the desired uniform boundedness for relative distances. ]

Remark 2.3.1. Since Theorem 3.53.1 does not depend on the singularity of
the communication weight, the same result holds for the case when o > 1
as well, which can guarantee the existence of the uniform lower bound of the
distance between particles.
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Chapter 3

The first-order CS-type
consensus model on the real
line

In this chapter, we are interested in a general nonlinear first-order consen-
sus model motivated by the RCS model and study its emergent dynamics.
We first present a heuristic derivation of the general first-order consensus
model (3.1.4) and recall previous results on the collective behaviors of the
first-order consensus model (3.1.1), and then we show that ordering princi-
ple holds for system (3.1.5), when the communication weight is regular. We
then present the detailed analysis on the asymptotic clustering behaviors of
(3.1.5), when the regular communication weight is long-ranged and short-
ranged, respectively, and we study collective behaviors for system (3.1.5)
with singular coupling function. Finally, we provide structural stability from
the general consensus model (3.1.5) to the standard one (3.1.1). We note that
this chapter is based on the joint work [10].

Notation: Throughout the Chapter 3 and Chapter 4, for state configuration
{¢;} and natural velocity {v;}, we set a natural velocity vector, state vector
and a derivative of state vector by NV, Q and P, respectively:

Q) = (q(?),...,an(t)), P(t):=(q(t),...,an(¢)),
Q" :=Q(0), P°:=P(0), N :=(,vy--,vN).
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CHAPTER 3. THE FIRST-ORDER CS-TYPE CONSENSUS MODEL
ON THE REAL LINE

3.1 Consensus model on the real line

3.1.1 The CS-type consensus model on the real line

To set the stage, we begin with the first-order nonlinear consensus model
introduced in [34] which combines the Kuramoto model and one-dimensional
Cucker-Smale model as special examples. More precisely, let ¢; = ¢;(t) be the
real-valued quantifiable state of the i-th agent lying on the one-dimensional
manifold M such as S' and R!. In [34], the following consensus model was
proposed:

N
. K .
qi:m—i—N;\II(qk—qi), i€ [N]:={1,...,N}, (3.1.1)

where v; is the natural rate of changes (natural velocity for simplicity) of
the i-th agent. In the context of flocking, coupling function W is typically
assumed to be odd, differentiable and monotonically increasing;:

U(—q)=-Y(q), V'(¢q) >0, VgeR. (3.1.2)

The following choices:

(M, B(q) : (5",5inq). (R% / qwm)dn) ,

correspond to the Kuramoto model and the Cucker-Smale model on the real
line with a nonnegative communication weight v, respectively (see a general
consensus model [34]). Note that assumptions on a communication function
depends on the realization of the consensus behavior; for example, choice
of (M, ¥(q)) = (S',sing) in the Kuramoto model is based on the context
of synchronization, and does not obey (3.1.2). The emergent dynamics of
(3.1.1) were extensively studied in [8, 21, 31, 28, 34, 7, 39, 40]. Throughout
the thesis, in addition to (3.1.2), we suppose

Y=V s decreasing on [0, c0), (3.1.3)

which is a typical assumption on the communication weight v for the flock-
ing models. In this thesis, we are interested in the clustering dynamics of
generalized model for (3.1.1)—(3.1.2).
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We first propose an abstract consensus model by replacing the time-
derivative ¢; by a suitable increasing function of ¢;:

F(Qz) =1 + % Z\I}(Qk - Qi)7 Qz(()) = in’ (NS [N]7 (314>
k=1

where F' : R — R is a odd function which is strictly increasing and differ-
entiable. Equivalently system (3.1.4) can be rewritten as a more convenient
form:

¢G=G (Vi + % kz:; U (qr — C]z)) , (0)=¢q) i€[N], (3.1.5)

where we call G = F~! as an “activation function” borrowing terminology
from deep learning, and we also assume that there exist positive constants
me and M such that

0<mg < G’(q) < Mg <00, VqeR. (316)

Note that G(—q) = —G(q) since F' is odd. The most simplest and motivating
example for G will be the identity mapping G(q) = ¢. In this case, system
(3.1.4) reduces to system (3.1.1). If we set ¢; = x; and G = 0, then sys-
tem (3.1.5) corresponds to the RCS model (1.0.6). See Chapter 1 for other
nontrivial examples of an activation function.

In this chapter, we will provide emergent dynamics of (3.1.5) depending
on the behaviors of the communication weight function ¢ := ¥’ at ¢ = 0 and
q = oo:

Type I: / ¥(q)dg = oo : Regular, long-ranged communication weight,
0

Type I : / ¥(q) dg < oo : Regular, short-ranged communication wight,
0

1
Type II1: ¢(q) = W, a>0, ¢q#0 : Singular communication weight.
(3.1.7)

Due to the singularity at the origin, the coupling kernel of Type III should
be treated in a different manner. For details, we refer to Section 4.4.
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3.1.2 Previous results

We briefly summarize previous results on the abstract consensus model (3.1.5)
with G(z) = x. First, we recall several concepts of clustering as follows.

Definition 3.1.1. Let {q;} be a solution to (3.1.5). Then, the following as-
sertions hold.

1. The i-th and j-th particles belong to the same cluster, if the relative
state is uniformly bounded in time:

sup [q;(t) — ¢;(t)] < oc.
t>0

2. The i-th and j-th particles segregates if the relative state satisfies

liminf |g;(t) — ¢;(t)| = oo.

t—o00

3. The configuration is asymptotically state-locked if the relative states
satisfy

lim sup max |g;(t) — ¢;(t)] < oo.
t—o0 1#]

In the sequel, we recall previous clustering results for system (3.1.5) with

the identity map for G:
Gla)=q, q€R

In this case, system (3.1.5) becomes
o N

U(—q)=-¥(q9), @(0)=g), qeR.

(3.1.8)

Unlike to the abstract model (3.1.4), system (3.1.8) has a conserved quantity.
For a given configuration {(g;,v;)}, we set

N

1 t
Ct] ::NZQZ-—NZW, t>0.
i=1

=1
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Lemma 3.1.1. Let {¢;} be a global solution to (3.1.8). Then, the functional
Clt] is time-invariant.

Proof. We sum up (3.1.8), over all ¢ to find

q N L N
T G=D it D Va—a) =) v
i=1 i=1 i k=1 i=1
This yields the desired estimate. O]

Next, we recall clustering dynamics of (3.1.8).

Proposition 3.1.1. [31, 34] Suppose the coupling function V is short-ranged
in the sense that
0 < U™ := lim ¥(q) < oo,

q— o0

and let {q;} be a solution to (3.1.4). If i < j, the initial states g} and q;
satisfy

g <5,
then the following trichotomy holds.
1. If v; <vj, then q; and q; will never collide in finite time:
{t. € (0,00) : qi(ts) = ¢; (L)} =0,

where |A| is the cardinality of the set A.

2. If v; > vj, q; and q; will collide once in finite time:
{t. € (0,00) : qilts) = ¢;(t.)} = 1.

3. If v; = v;, then the relative distance |q;—q;| decays to zero exponentially
fast:

|4} — )| exp (—rpurt) < Jai(t) — (1))
K
< ¢ — ¢j| exp (—N@b(\qzo - q;’\)t) , t>0,

where Yy == max  P(r).
—oo<r<oo
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Remark 3.1.1. By Lemma 3.1.1 and Proposition 3.1.1, we may assume the
ordering and mean-zero properties of initial states without loss of generality:

1 N N
0 0 0_ o
@ <<, NZ;%_O’ ;y,—().

Moreover, this imply

N
1
@) < - < qn(t), N;qz-(t) =0, Vt>0.

Next, we recall asymptotic clustering of (3.1.1).

Proposition 3.1.2. [31, 34] Suppose the natural velocity v; is well-ordered
and has mean zero:

N
<y <vy and Zui:(),
i=1
and let {q;} be a solution to (3.1.1) with initial data {q?}. Then, the following
assertions hold:

1. The state configuration is completely segregated:

limsup ¢;(t) = —oo, liminf gy (t) = oo,

t—+o00 t—+o0
lim inf |g;1 () — :(t)| = 00, @ € [N —1]

if and only if the coupling strength r is sufficiently small such that

N—1 U=’ 2 poo
N (vy —vNn-1) N VN}

{ N v N (ry—1)

9 Yo ' N—1 U

2. The state configuration is asymptotically state-locked:
3 g7 = lim Jg;(t) — q;(1)], 0,5 € [N].

if and only if the coupling strength r is sufficiently large such that

1 l
— 72 Vi
k> max |—————],
1<t<N-1 \ Wb oo
N
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CHAPTER 3. THE FIRST-ORDER CS-TYPE CONSENSUS MODEL
ON THE REAL LINE

Remark 3.1.2. In [31], the authors provided a criterion to estimate the
number of asymptotic clusters and asymptotic group velocity of each cluster in
terms of initial data and coupling strength. For the singular coupling function,
we refer to the recent work [55].

3.1.3 Ordering principle for state configuration

We present the ordering principle of system (3.1.5)—(3.1.6) with the regular
and long-ranged communication weight which is parallel to Proposition 3.1.1.
For convenience, we assume

In what follows, we show that the positions of the particles are aligned ac-
cording to the size of their natural velocities.

Theorem 3.1.1. Let {¢;} be a solution to (3.1.5)—(3.1.6) with initial data
{q%}. For fized indices i and j(i # j), we assume

% > q)-
Then the following trichotomy holds.
1. If v; > v}, then q; and q; will not collide in finite time:

qi(t) > q;(t) forall t>0.

2. If v; < vj, then q; and q; will collide exactly once, i.e., there exists a
time t* € [0, 00) such that

Gi(t) > q;(t) for 0<t <t g(t") = g;(t")
and q;(t) < q;(t) fort > t*.

3. If v; = vj, then ¢; and q; will not collide in finite time, and the relative
distance |q; — q;| satisfies

0< () —g))e ™Mot < qi(t) —qs(t) < (¢ — e~ v 1, t=>0.
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Proof. (1) Suppose that there exists a finite-time collision, and let ¢t* be the
first collision time such that

a(t) > ¢;(t) 0<t<t" and g(t") = g;(t"). (3.1.9)

Then, we use (3.1.5), v; > v;, (3.1.9) and the mean-value theorem to get

= G'lyiy) | = vy D (Wan(t) — ) = Ualt) = g;(+))

> me (v —v;) > 0.

Therefore, we conclude that at time ¢ = t*, we have
* * d
¢(t") = ¢;(t") and pr (g —gq5) > 0.

By the continuity of the solution, there exists a sufficiently small § > 0 such
that
q(t) <qi(t) fort*—o <t <th

This contradicts to the definition of ¢* in (3.1.9). Therefore, there is no finite-
time collision between ¢; and g;.

(2) We split the proof of the second assertion into two steps.

e Step A: We claim that

a finite-time collision cannot happen more than once.
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Suppose that ¢; and ¢; collide and define the first collision time ¢* as in
(3.1.9). Then by the same argument as in (3.1.10), we have

d

E(q’ — q]) S m(;/(y,- — l/j) < 0.

t=t
Therefore, there exists a positive constant ¢ > 0, such that
¢i(t) < q;(t) forte [t t*+4].

By the result in (1), with ¢ and j reversed, we conclude that the collision
does not occur afterward.

e Step B: Now, we show that finite-time collision must happen. Suppose that
there is no collision:
qi(t) > q;(t) forallt >0,

which implies
Q@ — ¢ < q—qj, k€[N]
On the other hand, since V¥ is increasing, one has

gk — a:) — Ylgr — q;) <O. (3.1.11)

Then, for ¢ > 0, one has

ap—
- ( 5 O Wt — qz<t*>>> -G ( D () - qj<t*>>>
= G'(y) | = v+ D (Bat) = ailt) — Wlaelt) = (1))

< mG/(VZ‘ — Vj) < 0.
This yields
G(t) — q;(t) < @ — ¢} +ma(vi —vj)t, t>0.
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a9
mer (vj—vi)

¢i(t.) = g;(t.) = 0.

This contradicts to the absence of collision.

Therefore, there exists t, < such that

(3) Again, we use the mean-value theorem twice to obtain

%(% -q) =G <Vi + % ;\I’(Qk — Qz)> -G <Vj + % ;\I](Qk - Qj)>

|
=
Q
e
S
N
[]=
=
=)
Pl
|
R
|
sy
)
ol
|
IS
N———

k=1
kG (y; al
- ) (Z $(z50) 0 q»)
k=1
HG/ i N
= - ( ]E]—y]) Zw(zzjk)> (% - Qj)a
k=1
where z;5;, is located between g, — ¢; and ¢ — g;.
Since N
KG'(yi;)
0< T ;@D(zwk) < I{M(;/, (3112)
we deduce

0<qt)—qd) <qg — q? for all ¢ > 0.
Hence, we have
_(qg_qg) <@ — @ < 25 <0<z <qi— g <ql(-)—q§.),

and therefore, we refine the lower bound of (3.1.12) as

2 /¢?_? ' iji) T Y (Zijj G'(yig
meg' Rk ]Efq q;) < Me “(¢(2J]\2 U(zi55)) < B ]Efyj)zl¢(2ijk) < kMg

N
k=
Hence, we obtain the desired upper and lower exponential decays for ¢; — g;:
0 0\, —kMgt o o 2marvld=g),
0 < (g _q]')e ot <qi(t) —qi(t) < (g _Qj)e N , t=20.
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This completes the proof.
O

Therefore, after a finite time depending on initial data and natural ve-
locity, all particles will be aligned according to the ordering of their natural
velocities v;. More precisely, the following corollary holds.

Corollary 3.1.1. Let {q;} be a solution to (3.1.5)~(3.1.6) with the initial
data {@7}. Then, the following assertions hold.

1. Suppose that the natural velocities are distinct and increasing in the
indices by reordering:

vV <y < - <UN.

Then there exists a positive time T, depending on initial data and the
natural velocities such that

ql(t) <QQ(t) < v <(]N(t), Vi>T,.
2. If ¢ — q? =v; —v; =0, then ¢; and q; stick together:
au(t) = ¢;(t), t>0.

3. 1If @) # q? and v; = v;, the relative distance |q; — q;| decays to zero
exponentially fast, and they will not collide in finite time.

From now on, throughout Section 3.2 and Section 3.3, we assume that
the initial states and the natural velocities satisfy
B <d<--<ql, and v <y <---<uwy, (3.1.13)

and collisions never happen. In the following three sections, we consider three
communication weights displayed in (3.1.7) one by one.
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3.2 Regular long-ranged communication weight:

Type I

In this section, we study the clustering dynamics of system (3.1.4) with the
long-ranged communication weight:

q—o0

lim ¥(q) = /Oow(n)dn =00, P(0)=0, wherey ="
0

3.2.1 Asymptotic state-locking

We provide estimate on the relative distances. When the communication
weight is long-ranged, we always attain a uniform lower and upper bounds
for the relative distances between particles.

Theorem 3.2.1. (Asymptotic state-locking) Suppose that initial data and
natural velocities satisfy

<@ <-<qd and v <y <<y, (3.2.1)

and let {q;} be a solution to (3.1.5)-(3.1.6) with the initial data {q0}. Then,
the following assertions for relative distances hold:

1. (Ezistence of a positive minimal distance): for i > j, there exists a
positive constant (7 > 0 such that

inf |g:(t) — g, i
infla:(t) — ¢;(H)] = & > 0.

In particular, for consecutive indices i = j+ 1 and j (1 < j < N), Eilj
15 explicitly given as

.. . _ magr Vi —V;
(7 :=min<¢d — ¢ v —. I > 0.
1 {qz q] MG/ P

2. (Existence of a positive mazimal distance): there exists a positive con-
stant L$° := max {q?\, —q), vt (ﬁ : M)} < 400 such that

mer K

sup max |q;(t) — ¢;(¢)] < Ly® < oc.
>0 i
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Proof. (1) Note that for ¢, M,m > 0 with M > m, decreasing property of
¥ (3.1.3) yields

q+M g+m
Wg+ ) =00 = [ < [ v = g+ m) - W),
" " (3.2.2)
We fix consecutive indices ¢ and j such that
J<N and i:=j5+1.

Then, we use the mean-value theorem, (3.2.1), (3.2.2) and ¥(0) = 0 to see
that for ¢ > 0,

k=1

(3.2.3)

On the other hand, for k& > i, we apply (3.2.2) with

M=q¢-¢>0, ¢=¢—-¢>0, m=0
to get
V(g — q5) — Vige — @) < V(g —q;) — ¥(0) = ¥(g; — q;).
This yields
N
- Z (=) = (g —q) = — Y U(g—q;) = —(N —i)T(q; — qp).
h=i+1 h=i+1
(3.2.4)
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Similarly, one has

—iiﬂd%—%%JW%—%MZ——_YW%—%)z—U—mer@ﬂ.wza

Now we combine (3.2.3), (3.2.4) and (3.2.5) to get

d
a(%‘ —q;) > G'(y) (Vj —v;—Kk¥(g — Qj)) > mer (Vi —vj) — kMg V(g — )
(3.2.6)
Next, we consider the differential equation:
y = mG/<I/i — Vj) — HMG*I\I/(y), t > 0, (3 9 7)
y(0) = q — ¢} > 0. B

By the comparison principle of ordinary differential equation, it suffices to
show that y has a uniform-in-time positive lower bound. However, since
lim, ;oo ¥(r) = 400, the map ¥ : R — R is a strictly increasing bijective
function. Therefore, the differential equation for y obtains its equilibrium at

y=w"! (% . %) Moreover, since V is a strictly increasing function, we

Mg
have
. . 1 ( mgr vi—vj
y >0 lf Yy ' Mg/ . TJ s
. . —1 U Vi—Vj

Hence, we obtain

y(t) > min {q? —q), U <§\n/[G' YT Vj)} =17 t>0.
¢ K

Therefore, the relative state between ¢; and ¢; = g;1; is also bounded below
by ¢¢. Now, for general indices 1 <14 < j < N represented by i = j+ K (K >
0), we set

K-1
Bo= D0 o=+,
k=0

to obtain the desired positive lower bound of |¢; — ¢;].
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(2) Similar to (3.2.3), we have

d
.

N
K

_ !

av — 1) = G'(y1v) VN_VI_NZ Qe — ¢ +‘I’(N—Qk))
k=1
‘I’(QN q1)

< —kmaV(qy — q1) + Mo (vy — 11).

Since the right-hand side of the estimate is negative if and only if

MG’ VN — U1

< ¥(gn — q1),
mqgr K
by the same argument as (1), we show that

sup max |q;(t) — q;(t)| < sup|gn(t) — qi(t)]
# t>0

t>0 i#]
Mg vy —v
SmaX{Q?V—Q?,\I"1< S 1>}
mg K
Therefore, we choose

Mer -
LY = max{q?v—q(lj, (e (_G YN Vl)} =~ 0
mgqgr K

to obtain the desired upper bound. O

3.2.2 Asymptotic momentum consensus

We provide the exponential decay of relative momentum to (3.1.5)—(3.1.6).
For this, we begin with the second-order formulation of (3.1.5). Let {g;} be
a state configuration. Then, we define

N
K
pi =V + N;‘I’(Qk —q), Dp,:= H%Z‘.X [pi — pj-

Then, it follows from (3.1.5) and ¥(q) = [ ¥ (n)dn that

N

T G- w - %ZM% — @) (G ) = G o).

k=1
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Hence, the first-order system (3.1.5) can be lifted as the second-order model:

dg; ;
a ~ w0 re N (3.2.8)
d];z _ % Z (g — ¢:)(G(pr) — G(py)). B

It is easy to see that the total sum of p; is preserved:

N N
D pit) =Y pi(0), t>0
i=1 i=1

In particular, when the sum of natural velocities is zero, then so is the sum

of p;:

N N L N
i + = —q) = =0, t>0. 3.2.9
2 n®=2 v N; (e —a) =) v (3:2.9)

i=1 i=1

Next, we study the exponential decay of D, under suitable conditions.
Throughout the current subsection, we assume that pp # 0 for k£ € [N]. If
there exists a particle p,, = 0, the proof is still valid with a suitably modified
estimation. For notational simplicity, we set

Vi = V(g — ¢;) and {pvij = % + (1 — w> 0ij,

where 0;; is the Kronecker delta. Then, it is easy to see that
~ - %J
bij = Vjar Py 2 Zwm =1,

5 Ta(Glon) — G) = = 3 a(Glp) — G

Now, we choose i = N and j = 1 so that
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Then, for such ¢ and j, one has

1d 2 dpz dp]
5@’2% pil” = (pi — p”)(dt dt

~ (i — 1)) (ﬁ > vu(Glo) = Gi) = 55 Y ol Glon) - G<pj>>>

k=1
= k(pi — p;) (Z Ui (Gpr) — G(p) — Y i (Glpr) — G(pm)
k=1 k=1

+ r(pi — pj) [Z — min{¢p;, P} + min{he, vis} — wk]> (k)

=: —k(pi — p;)(G(p:) — G(p;)) + L1

(3.2.11)
Next, we proceed to estimate the term Z; as follows.
Ty =r(pi — ) (Z (s — min{ds, b} ) Gl >)
k=1
— K(pi — pj) ( <¢k3 - mln{¢kz7¢k9}> G(p ))
k=1
=rK(pi — pj) (; G](jk 20, (l/)k:z — min{¢, @Dky}) )
N ) (3.2.12)
G(p
— K(pi — pj) (; o (wkj — mln{wkz, Wq}) >
N ) R
<k(pi — pj) (; o (%z mlﬂ{¢kz,¢kj}) pz‘)
— K(pi — pj) (i G (Jka - min{&kia Jk;}) Pj) 5
w1 Pk
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where we used the relation (3.2.10) to find

(pi —pj)p; < (i —pj)pre < (pi — pj)Di-

Now, we combine (3.2.11) and (3.2.12) to find

1d )
5%&% — pjl
= —r(pi —p;)(G(pi) — G(py))
+ k(pi — pj)pi i Gl (W — min{i, Vi }>
o 1 Pk l v
— k(P = D)D) G;ik) (% — min{ty, wm})
k=1
N - (3.2.13)
— —l€|p¢ |2 Z G(pk) p:¢k17¢k]}
k=1
+ 5P =) Y ki (G(Z)pl el ,))
30 () - )

=: 111 +ZLis + I13.

Lemma 3.2.1. Suppose that natural velocity set {v;} satisfies

N
E Vv, = O,
i=1

and let {q;} be a solution to (3.1.5)~(3.1.6) with initial data {¢{}. Then, one
has the following estimates:

(i) Zn < —wmap(L)|pi — ps.
(ii) Lo < K(Me — mer)(pi — pj)pi-
(i4i) Thy < —k(Mgr — mer)(pi — j)pj,

where L$° is defined as a mazximal relative distance defined in Theorem 3.2.1.
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Proof. Below, we provide estimates on Z;; one by one.

e (Estimate of Z;1): We use the mean-value theorem to obtain

mea < Glpe) = Glpy) = G(O) = G'(ry) < Mg, where |rg| < |pxl.

Pk pe—0
Moreover, since we have already shown that the relative states are uniformly

bounded, we have
> U (L)
;> > .
Q/Jm =N = N

Hence, we estimate Z;; as

G (pr mln{d}km 1/%}

< —rmep (L) pi — pi*.

I = —K’Pz p]| Z

e (Estimate of Z15): Note that the sum-zero condition Zi;vﬂ pr = 0 implies
> (0 and p; < 0.

Therefore, we estimate Z;5 as

T2 = k(pi — p; pzz% ( _ G(M))

Di

- G(pi
—Pj)pizwkz - ( ) :

k=1 pi

However, we have

‘G(pk) _ G(p)

D ; = |G,(Tk> — G/(Tz>| S MG’ — Mgr.

Therefore, we further estimate Z;5 as

Ths < K(Me —mer)(pi — pj)pi-

e (Estimate of Z;3): Similarly, we estimate Z;3 as

N
Tz = —k(pi — p;)ps Z%k <G(pk) B G@j)> < —r(Me —me)(pi = pj)p;-
P Pk Dj

]
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Proposition 3.2.1. Suppose that natural velocity set {v;} satisfies

N
E Vv, = O7
i=1

and let {q;} be a solution to (3.1.4) with initial data {q0}.Then, we have

Dy(t) < Dy(0) exp (—r (mer (L) = (Mg = ma) )t), £ 0,
where L$° 1s defined as a maximal relative distance defined in Theorem 3.2.1.
Therefore, if mg and Mg in (3.2.7) satisfy

Mgl — Mg
> =

(L)

Y

mgr
then D, decays to zero exponentially fast.
Proof. In (3.2.13), we use Lemma 3.2.1 to find

1 dDZ% 00 2 2
5 o < —/imG/w(Ll )Dp + H(MG/ — mG/)Dp,

or equivalently,

dD .
d_tp < —H<mG/w(L1 ) — (MG/ — mG/))Dp.

Now we use the assumption:

me (L) > Mg — mer
to obtain the desired exponential decay of D,,. O]
Remark 3.2.1. Note that if

mgy ~ MG’ ~ (9(1)7

the condition
(LFT) > Mo —me: (3.2.14)
mer
holds for almost all initial data since the right-hand side of (3.2.14) can be
small, and in particular, for the case of standard consensus model G(q) = q

where mg: = Mg = 1, the assumption (3.2.14) always holds.
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As a consequence of the exponential decay of p-diameter, the position has
its asymptotic limit, if the sum of natural velocities is zero.

Corollary 3.2.1. Suppose {v;}, mg and Mg in (3.2.7) satisfy

MG’ — mG'

N
D=0, YLy > ——,
i=1

mgr

where L° is defined as a mazimal relative distance defined in Theorem 3.2.1,
and let {q;} be a solution to (3.1.5)~(3.1.6) with initial data {q0}. Then, there
exists an asymptotic state configuration {¢°} such that

lim ¢;(t) = ¢°, i€ [N].
t—o0

Proof. We use (3.2.9) to derive

Z pi(t) = 0.

Hence, one has

Ipi(t)| = < Dy(t) < Dy(0) exp(—6t),

N

1

N > (pilt) — pe(t))
k=1

where ¢ is a positive constant defined by

§:= /<;<mG/¢(L‘1’°) — (Mg — mG/)>.

Then, we use G(0) = 0 to find

qi(t) = ¢:(0) +/0 G(pi(s))ds and

G (pi(s)] = G (pi(s)) = GO)] < |G (ri(s))lIpi(s)| < Mer|pi(s)] < C exp(—ds).

This implies the existence of the limit ¢° := lim;_,o ¢;(2). O

We study the orbital stability of asymptotic state. For given asymptotic
configurations {¢°} and {G®}, we set

1 & 1 &
qc 3:N;CI§°7 qc ::N;qf‘).
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It is well known from [34] that for system (3.1.5) with G(z) = z, the asymp-
totic state:

¢ = lim ¢;(t)
t—o0
is uniquely determined, when the averaged state is fixed. However, if G is not

an identity mapping, there will no conservation law for (3.1.5). Thus, we can
only expect the uniqueness of the asymptotic position up to a translation.

Proposition 3.2.2. (Orbital stability) Let {¢;} and {¢;} be solutions to
(3.1.4) with initial data {0} and {G°}, respectively. Suppose that there exist
asymptotic limits {q2°} and {G°} such that

}g&q@'(t) =4q;, }g&qi(t) =q;, Vi€ [N]
Then, there exists a constant shift o independent of i such that
¢ =q¢°+a, 1€][N].
Proof. Since {¢*} and {¢} are asymptotic states, they satisfy

K oo _ 00 _ . i ~OO_"’QO —
G(W"’N;\D(Qk qi)>—0, G(’/z"‘N;\IJ(CIk qz)) 0.

Since G is bijective and G(0) = 0, we can conclude that

v, =

WE

% U(g° — Z\If — )

b
Il

1
We now define ¢* and (}
G = w—%,fth@%iﬂm

Then, since ¢;° and qi are translations of ¢ and q?o , they also satisfy

N N
K ~00 ~00 K =00
vi= e D W@ =) = 5 D W@ - qu —qu =
k=1 k=1
Therefore, it follows from [34, Theorem 4.1] that
Q=
Hence, we have

=+ =+ =+ (- ).

We set o = ¢2° — ¢2° to get the desired result. O

c
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3.3 Regular short-ranged communication weight:
Type 11

We now study the clustering dynamics of system (3.1.5) with the bounded
short-ranged communication weight:

r—-+00

lim / Y(z)dr = U™ < oo.
0

As in the case of long-ranged communication weight, we first provide esti-
mates for the lower and upper bounds for relative states. Unlike the case of
long-ranged communication weight, the relative states are bounded only for
the large value of coupling strength. Moreover, when the coupling strength is
sufficiently small, all the particles are segregated with each other. The follow-
ing proposition is the counterpart of Theorem 3.2.1 for a bounded long-ranged
communication weight.

Theorem 3.3.1. (Complete consensus and segregation) Suppose that natural
velocities and initial state satisfy the ordering (3.1.13), and let {q;} be a
solution to (3.1.5)—(3.1.6). Then, the following assertions hold.

1. There exists a positive lower bound (¥ > 0 such that
' (1) — a. ij
infla:(t) — ¢;(O)] 2 &' > 0,
where (¢ is defined in Theorem 3.2.1.

2. Suppose that the coupling strength k is sufficiently large such that

Mgl N |Vi—Vj‘

K >

Then, one has

Mg N(v; —v))
sup |g;(t) — ¢;(t)| ma 0_ Q,\I/_l( <. — j>}<00-
tZgM() q; (1) X{qz 9 me ml—j+1)

In particular, if the coupling strength k satisfies

My —
o> G _(VN V1)’
mgr oo
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then one has

sup max|gi(t) — ¢;(t)] < L < oo,
>0 7]

where L{° 1s defined in Theorem 3.2.1.

3. Suppose that the coupling strength r is sufficiently small such that

mgr N |Vi — I/j|

K < : : . (3.3.1)

Mg (N—1+i—j]) W=
Then, one has

lim inf |g;(t) — g;(t)] = .

t—+o00

Proof. (1) For indices j < N and ¢ = j + 1, we use the same estimate in

(3.2.3) to obtain

d(%’ - (Jj)
dt

Again, we consider the differential equation:

Z mgl(lji — l/j) — MG/H\I/<(]Z‘ — QJ)

{y =mea (v, —vj) — kMaVU(y) t>0,
y(0) = ¢ — g} > 0.

Next, we consider two separate cases.

e Case A (> > 7¢-. 221 In this case, since ¥ is monotonically increasing,
G

there exists a unique equilibrium y = U1 (M : %)) of the differential

Mg

equation for y. Then, the same argument in the proof of Theorem 3.2.1 (1)

holds and therefore

y(t) > min {y(O), vt (Z}—Z = — Vj)) } :

o Case B (U™ < 76~ . “2): In this case, one has
leld K

y' = mG/(yi — Vj) — I{Mgl\lf(y) Z m(;/(yi — I/j) — /fMgl\I’OO Z 0.

Therefore, we obtain
y(t) = y(0).
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Finally, we combine Case A and Case B to derive

. _ mgr Vi — U;
¢;(t) — ¢;(t) > min {q?—q?7 it (M_G/ J)>}

K

(2) We fix pair of indices (7, j) such that ¢ > j. We then use the mean-value
theorem to obtain

= G () (m — v+ ; > (Wlge — ;) — Ulgr — qg))>
k=1

< G'(yyy) (W —vit+ = > (Wlge—a) — (g — qg))>

< G,(yw) (Vi — Vi " Z\D(q’ - %))

= G'(yi) <1/7; 2 L _€V+ 1)K\Ij( i qJ))

< Me/(v; — vj) — kme (i _}jv+ 1)‘1’(% q)

(3.3.2)

By the same argument as in the proof of Theorem 3.2.1, the unique equilib-
rium of the differential equation:

S
i = Mo (vi — 1) — KmG,M

Mgr | Nvizv;)

mer | r(i—j+1)
rium is guaranteed from (3.3.1). Now, we use the comparison principle and

is given by z = ¥~! < > Note that an existence of the equilib-

similar argument as in (1) to deduce

Mg Ny —v) >}

0<q(t) —q(t) < o
0(0) - () < max {gf = gowt (52 )
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Finally, we choose : = N and 7 = 1 to obtain that if

Mer —
> G (vn V1)’
mg oo

then one has

_ Mgl VN — UV 0o
sup |gn (t) — q1(t)] Smax{q%—q?,\ﬂ 1(—- N 1)} = L < o0.
t>0 mgagr K

This implies the desired boundedness.

(3) By the same estimate as in (3.3.2), we have

N
d , K
E(Qi —q;) = G'(yij) X (Vi Vi N ;(‘I’(Qk —q;) — V(g — %‘)))
N+4+1—7-—-1
ZmG’(Vi—Vj)_IiMG/( +ZN] )\I/°°>0.

Note that the first inequality comes from the the following observation:

(Ik_qj
0 < Wlgs —q5) — Wlgy — q5) = / (a)dg

k—4qi
_ PAVRS for ke{j+1,---,1—1},
poe for ke{l,---,j}uU{i,--- N},
and the second inequality is valid from the condition (3.3.1). This completes

the proof of Theorem 3.3.1.
]

Theorem 3.3.2. (Improved complete segregation) Suppose that natural ve-
locities and initial state satisfy the ordering (3.1.13) and

N
E Vi = 07
=1

and let {g;} be a solution to (3.1.5)=(3.1.6). Then, all the particles are com-
pletely segregated in the sense that

limsup ¢;(t) = —oo, liminfgy(t) = oo,
t—o0 t—00
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li{ninf |gis1(t) — q;(t)] =00, Vie[N—1]
—00

if the coupling strength k is sufficiently small in the following sense:

N vy mg N (ry—1u)

N—10=" Mg 2 U~

N mgr ) ﬂ ) (VN — VNfl) N ) UN }
" Mo 2 oo "N—1 PUx]J’

k< min{ — 533

Proof. 1t follows from the zero sum condition for {v;} that
<0 <vy.

Then, we estimate ¢; and gy as

e k(N —1)
q1=G<V1+N;‘P(qk—q1)> SG(Vl—FT\IIOO) <0,

el k(N = 1)
qN:G(VN—FNZ\II(qk—qN)) ZG(VN_T\POO) >O,

k=1

where we used the following relations:
VU(0)=0 and W(r)<¥*>® forr >0.
Therefore we have

limsupq(t) = —oco and liminf gy (f) = oo. (3.3.4)

t—00 t—o0

Now we verify that segregation occurs between two particles. Suppose on the
contrary that complete segregation does not occur. Then, there exists index
L and R with L < R satisfying

liminf(qr(t) — qr(t)) < oo,

t—r00
but liminf(q(¢) — ¢;(t)) = liminf(g;(t) — qr(t)) = oo,
t—o0 t—o0

o8

&

| &1



CHAPTER 3. THE FIRST-ORDER CS-TYPE CONSENSUS MODEL
ON THE REAL LINE

whenever 1 < 7 < L < R <1 < N. Then, the relative state between gr and
qr, can be estimated as

%(‘L’% —q) =G (VR + % > (g - QR)> -G (VL + % > (g - QL)>

k=1 k=1

= G'(ygrr) (VR —vL+ % (W(gr —qr) — ¥(gr — q/L)))

(3.3.5)

On the other hand, the conditions (3.3.4) assert that (L, R) # (1, N). There-
fore, if we assume R # N, then there exists k satisfying R < k£ < N and we
have

9k —4qL 00
0< U a) - V- = [ wdr< [ vy
9k —4R 9k —4R
Since ¢ segregate from qg,
Jim (gi(t) —qr(t)) = +oo = lim o e(r)dr =0,

and similar estimate holds for L # 1 case. Therefore, for any € > 0, there
exists a time T'(¢) such that

0 < WU(gr —qr)(t) — ¥(gr — qr)(t) <e,
for k<L or k>R, and t>T(e).

Therefore, for a small positive constant § > 0, we can choose sufficiently large
time 7™ = T7(0) and continue estimation on (3.3.5) under ¢ > T as follows:

d KM al
gilan =) = mer(ve —ve) + =5 3 (Vo — gr) = Yo — qr)) =0
k=L
26Me (R — L)W
> me (VR — VL) — G(N ) — 0,

(3.3.6)
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where we used the following estimate for the second inequality.
9k —4qL

0 < Wlar —q1) — U(gn — an) = / (a)dg

9k —d4R
<{2xp°° for ke{L+1,---,R—1},
poo for ke {L,R}.
Now, since « is sufficiently small as in (3.3.3), we have
R-1 R—1

MG’ 2kW> Mgl QK(R - L)\I/OO
Vp — V[ = Z(Vk+1 — I/k) > Z —” . N — o . N .
k=L k=L
(3.3.7)
Then, it follows from (3.3.6) and (3.3.7) that we can choose T > 1 which

makes %(qR — qr) strictly positive for ¢ > T*. This implies that gr and ¢,

segregate asymptotically, which yields a contradiction. O]

3.4 Singular communication weight: Type III

Finally, we consider the collective dynamics of (3.1.5)—(3.1.6) for the case of
singular communication weight. To fix an idea, we consider the power-law
type singular communication weight:

1
w(Q) = T3
|l
Note that for the first-order model (3.1.5)—(3.1.6), we need to define its an-

tiderivative W appropriately according to the singularity of the communica-

a>0, q#0.

tion weight at ¢ = 0.

If 0 < a < 1, then ¥ is integrable at the origin. Thus, we can define

v(o) = [ )i = sl ™"

1—a’
In contrast, for a« > 1, v is not integrable at the origin. Therefore, we change
the definition of ¥ by the integration from x = 1:

al sgn(q) log g ¢#0, a=1,
U(q) := sgn(q) W(r)dr = L 1
1 sgn(q)ﬁ <1—W—4>7 q#0, a>1
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For the consistency with a regular communication weight, we define ¥(0) = 0.

3.4.1 Weak singularity

We consider the dynamics of (3.1.5) when the singular communication weight
has a weak singularity, i.e., « € (0,1). Even in this case, we will see that sys-
tem (3.1.4) is again aligned according to the natural velocity again, just as in
the regular communication weight case in Proposition 3.1.1 and Proposition
3.2.1. This will be documented in the following proposition.

Proposition 3.4.1. Suppose the communication weight has weak singularity:

1
¢(q):W’ O<C¥<1, Q#Oa
qa

and let {q;} be a solution to (3.1.5)—(3.1.6) with initial data {¢0}. For fized
indices i and j (i # j), without loss of generality, we assume

@ > q)-
Then the following trichotomy holds.
1. If v; > v, then ¢; and q; will not collide in finite time:

qi(t) > q;(t) forall t>0.

2. If v; < vj, then q; and q; will collide exactly once, i.e., there exists a
time t* such that

q(t) > q;(t) for 0<t <t
gi(t*) = q;(t*) and q(t) < q;(t) fort >t

3. If v; = v;, then q; and q; will collide in finite time, and two particles
will stick together after their first collision.

Proof. Since the proof of the first two statements of Proposition 3.1.1 does
not depend on the regularity of ¢, the proofs for (1) and (2) are the same as
in the proof of Proposition 3.1.1. Therefore, it suffices to prove (3). For this,
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we separate the proof of (3) in two steps. Moreover, we assume that ) be-
longs to the general class of communication weight as in Remark 3.4.1 below.

e (Collision appearance): Suppose on the contrary that collision does not
occur, i.e.,
¢;(t) > q;(t) forall t > 0.

By the same calculation as in (3.3.2), we have

d (i = j| + Drme
Llg—q) < - U(g — q;). 4.1

We now define f : [0,00) — [0,00) as

1= [ g

which is well-defined since 3 € Li, (R). Then, f satisfies

loc

1

f(0)=0, and f(r)>0, f'(r)= 0

>0, for r>0.

Then, the differential inequality (3.4.1) gives

da—a) _ (i=dl+Drmo _
dt N

d ,
Ef(q@' - C]j) =f (Qi - C]j)

Therefore f(g;(t) —¢;(t)) is initially positive and its derivative is strictly less
than some negative constant, and therefore, there exists T' > 0 such that

f(@(T) —q;(T)) = 0.

Hence we conclude ¢;(T) = ¢;(7T"), which gives a contradiction. Therefore,
two particles ¢; and g; must collide.

e (Post-collision behavior): Suppose that ¢; and g¢; collide at time ¢t = T.
Below, we will show that two particles stick together afterwards:

¢i(t) =q;(t), fort>T.
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Again, we suppose the contrary, i.e., there exists a separating time T} > T
such that

¢i(Th) = q;(T1) but |g(t) —q;(t)| >0,

for ¢ in some non-empty interval (77,7} + ). Since we have already shown
that the two particles should collide after the time T3 +¢, there exists To > T}
such that

|qz(t) - QJ(t)l >0 forte (Tl,TQ) and (]Z(Tg) = q](TQ)
Without loss of generality, we may assume
q; > Qj in (T17T2).

Then, one has

0= (i(T2) — ¢;(T2)) — (@(Th) — ¢;(T1)) = /T 2 W ds
— /T 2 kG ( yw Z ( —q;(s)) — U(gi(s) — qj(s))> ds

< e Z / () ~ Wauls) — g5(s)) ) ds <0,

where we used
U(gy —q;) < V(g —q;) on (Th,Ts),

since we have ¢; > ¢; on that time interval. This yields a contradiction.
Therefore, we conclude that two particles stick together after the first colli-
sion. 0

Remark 3.4.1. The third assertion of Proposition 3.4.1(3) holds for a more
general class of kernels satisfying the relations:

1
77Z) € Lloc(R) and E € LZOC(R)

Now, we are ready to state the state-locking as follows.
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Theorem 3.4.1. Suppose the communication weight has weak singularity:

V() ==, 0<a<l, q#0,

and let {q;} be a solution to (3.1.4) with initial data {q?}. If each natural
velocity is distinct to each other, the following assertions hold.

1. There exists a positive lower bound Kij > 0 of distance between q; and

qj ast — oo:
lim inf |g;(t) — ¢;(t)] > €7 > 0,

t—+00

where (7 is defined in Theorem 3.2.1.
2. The relative distances |q; — q;| is uniformly bounded by L < 4o0:

sup max |q;(t) — ¢;(t)| < Li® < oo.
t>0 GJ

where LY is defined in Theorem 3.2.1.

Proof. When the singularity of the communication weight is weak, thanks
to Proposition 3.4.1, the position and natural velocities are again aligned
as in the regular communication weight. Therefore, we still may assume the
condition (3.1.13). Furthermore, since the communication weight is long-
ranged for 0 < o < 1, the same results hold as in Theorem 3.2.1. Since the
proof does not depend on the regularity of 1, we omit the proof. m

3.4.2 Strong singularity

We consider the case in which the singularity exponent « is large, i.e., o > 1.
We first begin with the preservation of collisionless property.

Proposition 3.4.2. Suppose the communication weight has a strong singu-
larity:

1
Y(q) = gl

and let {g;} be a solution to (3.1.4) with the collisionless initial data {q°}:

@A), i#]

a>1 q#0,
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Then, the solution {¢;} is also collisionless:

qi(t) # q;(t), for all t>0.

Proof. In this case, the communication weight is asymptotically integrable,
and therefore, there exists a limit > := lim, ,, ¥(x). Furthermore, there
is no collision between particles, due to the high-singularity. Considering the
second-order model (3.2.8), the proof of collision-free property is almost the
same as in the proof of collision-free property of the relativistic CS model in
[11]. Therefore, we omit the detailed proof for collision-free property. O

Note that for the strong singularity case, the relative states are not zero,
and therefore, system (3.1.4) is globally well-posed. Therefore, unlike the reg-
ular or weakly singular communication weight, the state and natural velocity
cannot be aligned as in (3.1.13). Nevertheless, we still attain the lower and
upper bounds for relative states.

Theorem 3.4.2. Suppose the communication weight has a strong singularity:

1
g™’

and let {q;} be a solution to (3.1.5) with the well-prepared initial data {q}:

a>1

¥(q) , q#0,

0 0 0
4 < Qg3 < <(p-

Then, the following assertions hold.

1. (Existence of a positive minimal relative state): There ezists a positive
uniform-in-time lower bound ¢3° > 0 of relative distances:

s it o) — anld)| > £ > 0.
inf min |g;(t) — ¢;(t)] = 57 > 0

2. (Emergence of state-locking): Suppose that coupling strength r is suffi-
ciently strong in a sense that

Me N —vj)(a - 1)}
mgr 2 ‘

K > max {
1<j<N
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Then magnitudes of the relative states |q; — q;| are uniformly bounded
above:
sup max |g;(t) — ¢;(t)] < L3 < oo.
0<t<oo ©J

Proof. (1) Let J < N be a time-dependent index defined by the minimizer
of relative distances:

ara(t) = as(t) = min (g (t) = (1))

Then, we can divide the time interval by Rsg = UX_,[tm, tmy1) and choose
J, if there is more than one minimizer of ¢;;1(t) — ¢;(¢), in a way that

J = J(t) is a constant in each interval [t,,, ;1)

We will use an induction argument on m to obtain a uniform positive lower
bound of g;41(¢) — ¢;(t) in [tm, tmer). For simplicity, we define

A(t) == qraa(t) — qs(b).

e Step A (m = 0): For ¢ > 0 and M > m > 0, we recall that (3.1.3) holds
except the origin, which yields:

g+ M
o<w¢um—wwa=/' by)dy i
M 3.4.2

q+m
< / Y(y)dy = V(g +m) — ¥(m).

In contrast to (3.2.2), we assumed the positiveness of m since 1 is not inte-
grable at the origin. As A is a minimum for ¢; 11 — ¢, we use (3.4.2) with

g=A, M=q¢—qj1 and m=(k—J—-1)A for k>J+2
to obtain
U(gw — as) = Wl — qs+1) < U((k = J)A) = V((k = J = 1)A).
Similarly for £ < J — 1, we obtain
U(gs1 —ar) — V(gs — @) < U((J =k +1)A) = ¥((J — k)A).
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Consequently,

N

Z (U(gk = qs) = U(gr — qr41)) < U((N = J)A) = T(A),

D> (Wlgser —ar) — Wlgs —qr)) < U(JA) = T(A).

k=1

Therefore, it follows from (3.4.2) that

y (W(qre1—aw) = Vg —aqn) + Y (Ylae — 1) — Vg — qs11))
< W((N — J)A) + U(JA) — 20(A) < 2 (\1/ (gA) _ \IJ(A)) .

This implies
- N
> (Wlge — qs) — Ulge — qrg)) <20 <§A) _
k=1

Similar to the estimate in (3.2.6), for some y;(t) € (¢s(t), gs+1(t)), we have

% _ d(gs+1 — q4)
dt dt

N
= G/(?JJ) (VJJrl —Vj+ % Zl @ — 1) — Vg — CD)))

> C'(yy) (+ S ( ))

Since G’ has positive lower and upper bounds, the term A satisfies

dA me (Vi —vy) — M, ifvyg >y,
dt = Me (Vi1 —vy) =M, if vy <wvy,
where
M = % ((MG/ me) |0 (gA) ‘ + (mer + Mg U (gA»
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For simplicity, we define ¥ : R, — R by

U(q) = (Mg — me) '\If (gq) ’ + (mer + M)W (%1) .

Then W is a strictly increasing function for ¢ > 0 and limg o0 \if(q) = Mg ¥,

We set

u(z) = %\Ij(:p), if vy > vy,
Me (v —vy) — %\I’(I), if vy <vwy.

{mG'(VJ+1 - VJ) -

Now, we consider a differential equation 3y’ = wu(y) emanating from ¢, = 0
with positive initial data y(ty) = ¢%,; — ¢J. Then, by the comparison princi-
ple, a lower bound of y becomes a lower bound of A in (g, ).

o (Case 1: vy41 > vy): We define

K

P! (mG/N(VJH*VJ)), if mg/N(V;H*VJ) < MU,

0, otherwise.

By the definition of y>°, we have y*>° > 0 and u(y) > 0 holds for y € (0,y).
Since the initial data y(t) is positive, if y(ty) < y°, then y will increase until
it achieve its equilibrium at y = y*°. In particular, if y>* = oo, then y will
never decrease. If y(ty) > y*°, y will decrease until it achieve its equilibrium
at y>°. Hence we conclude

inf A(t) > inf £ > min {A(t). ™)
tegé,tl) ()_te%tr(l),h)y()_mln{ (0>’y }

o (Case 2: vy < vy): By the same argument as above, we have the same
result except m¢ is replaced by Mg:

inf  A(t) > min {A(to), 2>},

te(to,t1)

y-! (MGIN(VJH*VJ)) : if mc/N(VI;IH*VJ) < MW,

[e.e] K

where 2% :=
0, otherwise.
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Finally, we combine all the estimates in Case 1 and Case 2 to obtain

inf A(t) > min{A(ty),y>, 2>}.
tE(to,tl)
e Step B (Inductive step): Since y* and z* can be characterized in terms of
viand vy (j =1,2,--- , N —1), they only depend on the index j. Thus, we
define

Y := min y*(j), Z°%°:= min z
1<j<N 1<j<N

Our we claim is that the following lower bound for A(t) on the time interval
(to, tk+1) holds:

inf  A(t) > min {A(0),Y>, 2} >0 (3.4.3)
te(to,tk+1)
for arbitrary non-negative integer k. Since the case for k = 0 is already proven
in Step A, we only need to show that (3.4.3) holds for £ = m + 1 under the
assumption that (3.4.3) holds for £ = m. By using the same argument as in
Step A, we have

inf  A(t) > min {A(tmy1) , Y™, 2%} > 0.
te(tnz+lytm+2)

for any non-negative integer m. However, since (3.4.3) holds for k& = m, we

have
A(tyme1) > min{A(0), Y, Z*}.

This implies
inf  A(t) > min{A(0), Y™, Z>}.

te(tm+1,tm+2)

Therefore, we obtain

inf A(t)Zmin{ inf  A(t), inf A(t)}

t€(to,tm+2) te€(tm+1,tm+2) t€(to,tm+1)

> min{A(0),Y>, Z*°} =: (5.

Hence, we complete the induction argument, and obtain the desired lower
bound of the relative distances.
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(2) Since the proof uses a similar argument as in (1), we just provide a sketch
of the arguments. Suppose now that J(¢) < N is an index that maximizing
the relative distances g;.1 — ¢y and redefine A(t) := ¢q;.1 — q;. We only
consider the time interval [0,%;], on which the index J is constant. Then
again by (3.4.2), similar estimate as in (1) yields

92 < @) (v — vy — W (V- 1))

and, we obtain a similar upper bound for A as

dA _ {MG’(VJ—H —vy) =M, ifvg >y,

dt = me(vyp —vy) — M, iftvyg <wy,
where
M=% <|\I/((N - 1)A)|”‘G+MG’ +U((N - 1)A)%MG’) |
e Case A (v;41 > vy): For simplicity, we define
meg — Mg me + Mer

B(g) == [W((N - 1)q)| +W((N = 1)q)

2 2 ’

which is a strictly increasing function with lim, . ¥(x) = mg V.

Then, a simple comparison principle implies

A(t) < max {A(O), g (MG'N(V"“ - V")) } . 0<t<t

K

: Mg N(Wwyt1—vy)
lf K Z QmG/\IJOO :

e Case B (vy41 < vy): It follows from the governing dynamics that

A(t) < max {A(o), g (mgN(VJH - ”J)) } L 0<t<t.

K

Note that ¥—! (W) is well-defined if v;; < v;.

K
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Mg Nwj+1—vy)
2m g W
in (1) can be applied to prove the uniform-in-time upper bound for A:

Therefore, if kK > maxi<j<n , a similar induction argument as

>0 1<J<n K K

sup A(t) < max {A(O),\izl <MG’N<VJ+1 — VJ)) ! <mG’N(VJ+1 - VJ))}

=: L3® < 00.

Finally, since ¥*° can be explicitly calculated as

‘I]OO:/‘X’@: ﬁ, if > 1,
1 g 00, ifao=1,
we have the desired result. This completes the proof of Theorem 3.4.2.
[

Remark 3.4.2. Below, we comments on the results of Theorem 3.4.2 as fol-
lows:

1. In the proof of Theorem 3.4.2 for the first statement, the only required
property for the kernel 1 is non-integrability at the origin. Hence, the
first statement can be generalized as following; suppose that the kernel
18 not integrable only at the origin as

Y(q)dg =00 and Ylg\(—ce) € Lio(R), for eache > 0.

Then, for any two particles g; and gj+1 (7 < N), there exists a uniform-
in-time lower bound of relative distances: there exists a positive constant
03¢ such that

.
inf min |g:(t) — ¢;(t)] > 3 > 0,

where (5° is defined in the proof of Theorem 3.4.2. In particular, colli-
sion does not occur.

2. Similarly, the second statement can be generalized as follows; for U™ =
floo W(q)dgq, if coupling strength k is sufficiently strong in a sense that

T 1<G<N mey 2 oo
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then relative distance |q; — q;| is uniformly bounded above: there exists
a positive constant L3 such that

sup max |q;(t) — ¢;(t)| < L3° < oo,

teR+ WJ
where LS is defined in the proof of Theorem 3.4.2. In particular, long-
ranged communication kernel exhibits uniform-in-time upper bound of
relative states. Also note that, contrast to the previous cases, we do
not assume ordering (3.1.13): v; need not be arranged in an increasing
order of indices.

3.5 Structural stability

In this section, we present the structural stability of (3.1.5), when the acti-
vation function G converges to the identity map. More precisely, we consider
the following one-parameter family of system (3.1.5):

N

" K I ,

¢ = Ge (%‘FNZ\I/(%_%)) , 1 €[N], (3.5.1)
k=1

where € > 0 is a positive constant, and G, : R — R satisfies the following
properties: there exist one-parameter family of sequences {m¢: } and {M¢q: }
such that

G.(—q) = —G(q), 0<mg <G.(q) < Mg, ¢ € domain of D,,
lim meg: = lim Mg/ =1.
e—0 N e—0 €
(3.5.2)
As ¢ — 04, one can expect lim._,0G.(q¢) = ¢ pointwise, and thus (3.5.1)
converges to the following system:

N
. R .
G=vit ,;_1 V(g —qi), t>0, i€l[N]. (3.5.3)

Then, a sequence of solution {¢} to (3.5.1) may converges to the solution to
(3.5.3). For simplicity, we only consider the case, when the communication
weight is regular.
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Proposition 3.5.1. For T € (0,00), let {¢¢} and {¢q;} be solutions to (3.5.1)
and (3.5.2) with the common initial data {q0} in the time interval [0,T], re-
spectively. Suppose initial data is ordered as (3.1.13). If natural velocity sat-
isfies zero-zum condition Zf\il v; = 0, then one has the following assertions:

1. (Finite-in-time convergence): {¢f} converges to {¢;} in any finite-time
interval [0,T):

lim sup max | (t) — ()] = 0.

e—0 0<t<T 1<i<N

2. (Uniform-in-time convergence): If ¥ is bounded and long-ranged, con-
vergence can be made uniformly in time:

fisup s 4f (1) — a(0)) = 0.

Proof. Throughout the proof, we denote C' by a positive generic constant,
independent of € and t.

(1) It follows from (3.5.1) and (3.5.3) that the difference ¢ — ¢; satisfies

k=1 k=1
K N K N
_GE<VZ+NZ\I/(qz—qf)) <uz+ﬁz\1; —ql>
k=1 k=1
K N K N
+(uz+ﬁzw<qz—qf>)—( +sz—%)
k=1 k=1
=:To1 + Iao

Below, we provide estimates for Z;, ¢ = 1,2 one by one.

e (Estimate of Zy;): First note that for ¢ € R,

lal
Gla) ~al < [ 1GA) ~ 1 dy < max{lme, 1, [Me, ~ 1]}l
0
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Therefore, we estimate Zy; as

N
K € €
Vi+NZ\II(Qk_qZ') :

k=1

Igl S IIlELX{|7’I’Lgl5 — 1|, |MG/5 — 1|}

We split the analysis for Zy; according to the types of communication weight.

¢ (Bounded and long-ranged W): It follows from Theorem 3.2.1 that the
relative states are bounded by

MG/ VN — U1
¢ _ o°] < max 0 O7 \If_l €. ]
gk — gl < {m i more | x

However, since
limmg =limMg =1
e—0 Gz e—0 Ge ’

there exists a constant ¢*, independent to ¢, such that

— * for all 1.
ﬁgwggﬁ%ﬁ g ()] < g™, foral &<

Therefore, in this case,

sup |v; + — Z\II = )| < |l + k¥ (¢™),

0<t<o0o

and we have
Igl S Cmax{|mG/S — 1|, ‘MG’E — 1|}

¢ (Bounded and short-ranged W): In this case, there exists an upper bound
P> for ¥, and thus,

121 (’V,L’—FH\I]OO) max{|mG/ —1’ ‘MG’ —1|} < C’max{|mG/ —1‘ |MG” — 1|}
Therefore, in any case, we can bound Zy; as
Igl S C’maX{|mG/E — 1|, |MG§: — 1|},

where C' does not depend on €.
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e (Estimate of Zy): We directly estimate Zyy as

N N
K c e K‘HlI],”L‘X’ e e
In =+ ;(‘I’(qk — ) =Vl @) £ T ; (g5 — ax) — (@ — @)
< 26|1] L max |5 (t) — qi(1)].

1<i<N

Now, we set
Q(t) = max |g;(t) — a(t)].

Then, we combine all the estimates for Zy; and Zy, to obtain

dor

dt

Since Q¢(0) = 0, we have

§C’max{|mgr5—1|,]MG/E—1|}—|—C'Q€, a.e. t > 0.

Qg(t) S max{|mgé — 1|, |MG/5 — 1‘} (ECt — 1) .
Therefore, we obtain

liI%QE(t) =0 forany 0 <t <T.
E—

(2) We now prove the uniform-in-time convergence, when 1 is bounded and
long-ranged. First of all, we consider the second-order models:

A4 _

dt GE(Zjvi>7 Y

dpze K & £ £ 2
dt N Z¢(Qk = q;)(G=(py) — G<(p7)).

For sufficiently small e, since
lim mgqg: = lim Mgl = 1,
e—0 € e—0 €

we may assume that L° in Theorem 3.2.1 satisfies

M ; — ’
¢(L<1>0)>Gs—mc’e.

mG/s

I0)

¥ [ -1 ==
| = Lh.
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Then it follows from Lemma 3.2.1 that
max [p; (f) — p; (1)] < max | — pjlexp (= (me (L) = (M = ma))t)
< Cexp(—dt)

for some § > 0. Therefore, for arbitrary time s, (0 < s < t), one has

|¢; (1) — ai(t)] < ICJ?(S)—%(S)H/ |Ge(p})(7) = pi(T)ldT

<165 (5) — a0 + € [ expl-omin
< [g; (s) — ai(s)[ + C exp(=ds).
Taking the maximum over indices, we obtain
Q°(t) < Q°(T) +exp(—dT), VO<T <t
Now we fix § > 0 and take a T' = T'(9) satisfying exp(—dT") < 0 to deduce
Q°(t) < Q°(T) + 6.
Therefore, we take a supremum over ¢t > T to find

sup Q°(t) < Q°(T) + 4,

t>T

Then we utilize finite-time convergence estimate in (1) to conclude

lim sup Q°(¢t) < 0.

e—0 >0

Since ¢ is arbitrary small, we achieve the desired result.

[]

Remark 3.5.1. For the choice G, := © with the parameter € == ¢!, the
result in Proposition 3.5.1 yields the nonrelativistic limit of the RCS model
[4] on the real line.
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Chapter 4

Asymptotic dynamics of the
CS-type consensus model

4.1 Regular communication weight

In this chapter, we introduce and study asymptotic flocking behaviors of CS-
type consensus model, which involves an activation function G. We use the
following handy notation throughout the chapter:

= vla =gl = e T By
n]:={1,2,---,n}, neN, Ryo:={z|z>0}, Ry:={z|xz>0}

For configuration vectors ¢; € R? and p; € R, we denote

Q) = (q1(t),...,an(t)), P(t) = (pr(t), ..., pn (1)),
Q":=qQ° P :=P° N :=(vi,n-,vN).

For S C [N], we define the norms on a (sub)system of {p; — p;}i e and
{ai — qj}ijern as

1Qls = [ D lai—a? IPlls:= [>_ Ipi—p
i,j€S i,jeS

1Q1 == 1R~ 1Pl == 1Pl
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We note that this chapter is based on the work [9].

4.1.1 The CS-type consensus model.

In this subsection, we impose several conditions on an activation function GG
and study its implication to the dynamics. We recall the CS-type model:

G(p)), t>0, i€el[N],

)i = % Z (lae — al)(G(pe) — G(pi)), (4.1.1)

Qzapl |t =0+ (Q'L7pz) Dis Qi € Rda

where £ > 0. Throughout Chapter 4, we assume
€ (L2NC)(RRy),  ((r) —9(s))(r —s) <0, Vrs €R,.

In (4.1.1), G is assumed to be radially symmetric. More precisely, we assume:

g(p) L i p#0,
G(p) = b g€ C*(Rsp),  9(0) =0,
0 i p=0, (4.1.2)

0 <mgy < g < M,y on any compact interval,

g is convex or concave on R,
where m, and My, may depends on a compact interval.

Example 4.1.1. We address some possible examples of activation function

G.

1. The CS model. The simplest and most motivating example for G is
the identity mapping G(p) = p. In this case, system (4.1.1) represents
the standard CS model [25, 26].
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2. Speed limit model. Suppose that G is bounded, say g(R) = [0, M), M <
oo. Then we have

4| = |G(pi)| < M,

and the mazimum speed of agents is always bounded by M. This may
not feature out for the model (4.1.1) since maximal speed always de-
crease in this case (see Proposition 4.1.1). However, despite the pres-
ence of extra force, which may increase the mazimal speed(e.g., random
noise [3] or bonding force [2]), we can still guarantee the speed limita-
tion.

3. Physical models. Several physical effects can be reflected by the suit-
able choice of G. For example, if we involve the Lorentz factor I' as
follows:

r 1
g ':[0,c) =R, gv):=T (1 + —2> v, I''=-—ex,
2
C Ji-z
then the model (4.1.1) becomes tha relativistic Cucker-Smale (RCS)
model, which is introduced as the relativistic correction of the CS model.
For the derivation and emergent dynamics of the RCS model, we refer

to [4, 29]. Other than relativistic effects, physical semantics like proper
velocity or rapidity can be reflected [10, 41].

4. Almost unit speed model. In literature, several Vicsek-type models
with a unit speed constraint have been studied in terms of the heading
angle. For the CS model with unit speed, refer to [16]. In terms of
(4.1.1), this might be represented by choice of go = 1 on Ry. This
does not fulfill (4.1.2), but can be approzimated by functions satisfying
(4.1.2). For example, for g.(p) := tanh(p/e), we expect

956\—0>9021 OHR+,

and we formally have a close-to-unit speed model under ¢ < 1. Com-
pared to the model in [16], the above model does not strictly have unit
speed but has the advantage of applying methodology consistent with the
standard CS model.
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Technical reason for conditions (4.1.2) will naturally rise up in the fol-
lowing proposition.

Proposition 4.1.1. Let (P, Q) be a global solution to (4.1.1) with initial data
(P°,Q°). Then the following holds.

N .
1. > | p; is conserved:

2. Maximum modulus of p; decrease in time:

max [p;(t)] < max |pi(s)], 0<s<t.

1E€[N] 1€[N]
In particular,
sup max |p;(¢)| = max [p}| =: Py, 4.1.3
up max pi(1)] = max|pi| == Py (4.1.3)

3. For anyt € Ry andi,j € [N],
me|pi(t) = pi(t)] < G (pi(t) — Glp; (1)) < Mar|pi(t) — p; ()],
where
Mg = max{g'(|p]) : [p| < Py}, me = min{g'(|p]) : [p| < Py}
4. There exists a positive constant M = M(P°) > 0 satisfying
Mpi(t) = p;(0)1* < (pi(t) = p; (1)) - (G(ps(t)) — G(p;(1)))
foranyt € Ry andi,j € [N].

Proof. (1) We sum (4.1.1), over i € [N] and utilize the index symmetry to
see

N N
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= 2 Yla— a) (G ) — Glpw) = 0.

i,k=1

(2) Define M(t) € argmax;e(y [pi(t)]. Let time ¢ and index M (t) be fixed,
and set £ = M (t). Then we have

7 ’PAQ N Z¢ gk — qe|)pe - (G(pr) — G(pe)) <0,

=1

where the inequality holds from the maximality of M. This proves (4.1.3).
(3) The Jacobian of G at p is

g(lp) o)\ por
=) bl A (0 - SRR it
¢(0)1d i p=o,

Since the eigenvalues of p ® p are 0 and |p|? up to multiplicity, eigenvalues of
G’ are

ALt b,

g(
M=4 | X = ¢'(Ip))
q(0

), if p=0,

Due to symmetry of G’, the largest eigenvalue is the operator norm of G’, and
this is bounded by Mg from (2). Therefore the mean value theorem implies

|G (pi) — G(pj)| < Mar|pi — pjl-

On the other hand, operator norm of inverse Jacobian (G™!) is m,

which is less or equal to mLo/ Therefore we have

ma|pi — pil < |G(pi) — G(py)| < Mer|ps — pjl.

(4) Throughout the proof, without the loss of generality, we assume |p;| >

|p;|. First suppose that g is convex on R, so that |-| — g(“”) is an increasing

function. Then,
(pi — pj)’(G(pz‘) - G(pj))
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oy, e (22 BDY

|pjl |pil |pjl
> mer|pi — pj|2~

1

Now suppose that g is concave on R, . Since g is increasing, g~ is convex

and this yields

(pi —pj) - (G(pi) — G(p;))

-1
9 (IG(pj))) 2
= 4 PG ) — Gy
-1 ~1
g (G g (\G(pj)\)>
+ - G(pi) — G(ps)) - G(pi
(ot~ ag) ©10 -6 6t
2
m
> Gy g2
= i — pj
We pose M := min{mg, E—E'/} to complete the proof. Since mg and Mg
depends only on Fy, so is M. H
Remark 4.1.1.

1. In (4.1.2), my and My depend on the interval. However, thanks to the
uniform-in-time boundedness of |p;|, we can fix the interval by [0, PY],
and this enables us to fix my and My according to the initial data,
namely Mg and mgr.

2. In Proposition 4.1.1, if an ambient space of (4.1.1) is one-dimensional
(d = 1), then the inner product is merely a scalar multiplication, and
(3) proves (4) without convezity or concavity assumption on g.

4.1.2 Emergence of asymptotic flocking.

The CS model is one of the most successful models designing the flocking
behavior, and we can still expect the emergent flocking of (4.1.1) as well. We
recall the definition of (asymptotic) flocking for a model (4.1.1).

Definition 4.1.1. Let (P, Q) be a global solution to (4.1.1).
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1. We say that (P, Q) ezhibits a (mono-cluster) flocking if

sup Dg(t) < oo, lim Dp(t) = 0.
t>0 t—00

2. We say that (P, Q) exhibits a bi-cluster flocking if there exists a nonempty
proper subset S of [N] satisfying

sup max{Dq,s(t), Do,n-s(t)} < oo, supmin|g;(t) — g¢;(t)| = oo,
t>0 t>0 ic€S

Jjgs

tllglo Des(t) = tlggo Dej-s(t) = 0.

In the following lemma, we estimate the relative distance for an arbi-

trary collection of agents, which will be used repeatedly through Section 4.1,
Section 4.2, and Section 4.3.

Lemma 4.1.1 (Subsystem estimation). Let (P, Q) be a solution to (4.1.1).
For any [l] C [N], we have the following differential inequalities.

1
d kM 26Mer (N — 1) Py Ly,
Ziplg < — P ’
dtH g < N YR IP Ny + N Q11
P(r) — (s .
Log@ = sup [P ZUEN 0 p6) = min g () — g, (0)].
7,824 (t), r—=s i'ell]
r#s J'¢ll]
(4.1.4)
2,
d kMl 4k PY, M (N — 1)
2Pl < — P
dt” g < N PR IP Ny + N glgﬁ@/u
0
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Proof. (1) For simplicity, let p;; :== p; — p;. We expand || P||;; as

dpl dpj
th Pl = > po- (dt_ dt)

1,5€[1]

=_ Z pr (Vii(G(pr) — G(pi)) — Vi (G(pr) — G(p;)))

zje[l]k 1 :X
=% 2 Auty X Auw
zgke zge[l kel
HIl K,Ig
=N + N

For the estimate of Z;, we utilize the symmetry of indices to use the index
switching trick (7, j,k) — (j, k,4) to obtain

Il = Z Z/Jmng Z wkjpm )_ G(pj))

i,5,k€l] i,5,k€[l]

= Z Q/Jmng Z wkzp]k ) - G(pz))
1,5,k€(l] 1,5,k€E[l]

= Y rpi - (Glpr) — G(p1))
1,5,k€(l]

<=M D> Yualpal® < —MI(1QIw)IIPIIE-

i,5,k€[l]

For the estimate of 7y, we use the Lipschitz continuity of ¥ to get

Uk — Yrj] < qu;,[l](t)“(lk —qi| — |ax — QjH < Ly ()] — g5l

where Ly is a nonnegative function defined as (4.1.4). Then a direct com-
putation yields

L= Y py- WalGor) — Gp) — ¥ (Glor) — Gpy)))

el kel

= > piy- [Wk(Gpy) — Gpi)) + (i — ¥ug)(Gpr) — G(p;))]
ijelll kel

< > (W — i)y - (Glpk) — G(py))
injelll bl

84



CHAPTER 4. ASYMPTOTIC DYNAMICS OF THE CS-TYPE
CONSENSUS MODEL

<2MaPyLyg Y o — asllpi — pil.
igell kel
< 2Me/(N = D) Py Lyl Pllull@llu,

where we used
0 < Mipi — p;* < pij(G(pi) — G(py))
for the first inequality. Combining the estimates altogether, we obtain

KMl 26Mg (N — 1) P Ly
LRl 1Pl + QN

d

2Pl < —

TPl <
(2) We estimate Z, as following.

< Y (Yni—vw)py - (Glow) = Glpy)

i,5€]kE[l]
< 2?1655](%/3‘/ Z Ipi - ijG<pk) - G(pj)|
7'¢ll] i,3€[1kE[l]
< APy Mel(N —1) max Yy | Pl

"¢l

Together with the estimate of Z;, we have

d kMl 4K,PO MGUZ(N — l)

—||P||g < — P M i

Pl < === ¥Rl Pllwm + N glgﬁlb j
3¢l

O

In particular, choice of [I| = [N] leads to the following result on the emer-

gence of flocking.

Theorem 4.1.1 (Emergence of asymptotic flocking). Let (P, Q) be a solution
to (4.1.1).

1. The following three statements are equivalent.

(a) (P, Q) exhibits flocking; sup,>o Dq(t) < oo, lim;_o Dp(t) = 0.
(b) Dp decays exponentially; Dp(t) < Be=“*, B,C > 0.
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(c) Agents are spatially bounded; sup,~, Dq(t) < oo.

2. Suppose that

Mg [T
1P < //ww
Mer Jyqoy

Then (P, Q) exhibits flocking. In particular, if ||[¢|| L1,y = 0o, then a
flocking happens unconditionally.

Proof. Define the function £ as

M [l
£ =g [ e0d PO

We claim that £ < 0. We first observe that

=2 (@ —q) - (G(p:) = G(py))| < 2Mar || PllgllQlly- (4.1.5)

i,5€ll]

d
el

We then choose [[] = [N] and apply Lemma 4.1.1 to obtain

d
H Pl < —sMy(lQIDIPI. (4.1.6)

Then this proves the claim:

dC Mk

diewl  dipw|
= Tevllemh =g + O

< Mrp(lQ@IDIIP@) = Mry (R IDIP @) = 0.

(e Proof of (1)) Implications from (a) to (c) and (b) to (a) are clear. Suppose
that (c) holds. Since any norms are equivalent in a finite dimensional space,

we prove the statement for the norm || - ||. We have
d
S IPI = —sMe(RIDIPI = —kMy (SthOJ HQ(t)H> 1Pl < =CIP]

for some positive constant C' independent of time. This yields
1P < e[ Pl
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(e Proof of (2)) Since £ decrease in time, we have

M [le®l Mr [+
ks d P = L(t) < £(0) = ||PY| < =— ds.
Vo [ Vs IPOL = £0) < £0) = [P < 2 [ ots)as

(4.1.7)

This proves sup,s [|Q(f)|| < oo, and hence sup,;, Dg(t) < 0o. Therefore the
flocking emerges. m

In particular, Theorem 4.1.1 states that if flocking happens, then relative
states converge at an exponential rate. Therefore, if agents are far enough
away, they will not collide.

Corollary 4.1.1. Suppose that there exists a positive constant 0 < M < oo
satisfying

MG’HPOH : M : 0 0
— < min o W(r)dr, (M) Zr]rél[%] g —q;l ¢ - (4.1.8)

Then we have

e e |
inf min la:(t) —¢;(H)] >0

Proof. From (4.1.7) and (4.1.8), we have sup,s, [|Q(t)|| < M < oo. This
yields

6) = 0,01 2 1~ 1~ [ 16(5) ~ Gl (o))
> 1 - ) - Mo | ' Dp(s)ds
> o= - Mo [ 1Pl
> o= )~ MoA P [ o (et [ utli@mhar ) ds
> o=l - Mol [ e (=t [ oanar ) as
M || P°|| O 0

> g0 — 0 — == T .
> |g; — g nMw(M)>O
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Remark 4.1.2. Suppose that kernel is of the form

Y(lgl) =lg|™* a>1.

In this case, even if 1 ¢ (L N C%)(Ry;R,), the result in Corollary 4.1.1
still holds. In fact, a priori condition relaxes to

Mg [T
P? ds.
1P < e [ s

and the proof will be provided in Theorem 4.3.1.

4.1.3 Application to bi-cluster flocking

Theorem 4.1.1 demonstrates a close relationship between spatial bounded-
ness and the emergence of flocking. Likewise, spacial boundedness plays an
essential role in the bi-cluster flocking.

Proposition 4.1.2. Let (P, Q) be a solution to (4.1.1). Then the following
two statements are equivalent.

1. (P, Q) exhibits the bi-cluster flocking.

2. There exists a partition {A, B} of [N] satisfying

supmax{Dg 4(t), Do p(t)} < oo, supmin|g(t) — ¢;(t)| = oo.
>0 >0 J@Eg

To prove Proposition 4.1.2, we introduce a preliminary lemma.

Lemma 4.1.2. Let (P, Q) be a solution to (4.1.1). Suppose that there exists
a partition {A, B} of [N]| satisfying

supmax{Dq 4(t), Do p(t)} < oo.
0

Then whenever two groups generate different cluster, two groups segregate:

sup uinlt) —g;(t)] =00 = lm min Jai(t) = q;(8)] = 0.
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Proof. It suffices to prove

liminf min_o,(t) — g;(1)] = oo.

Suppose on the contrary that

hggfieggrelB lqi(t) — q;(t)| = Map < oo.

Then there exists a time sequence {t, },en satisfying

th<ty<---, limt,=o00, sup min |¢g(t,) —¢q;j(tn)] <1+ Mag.

n—r00 neN €A JEB

As each groups are spatially bounded, we have
sup max |g;(t,) — q;(t,
sup max 64(,) = 05 (1,)
<1+ Map + sup [|[Q(t)[la + sup |Q()]| 5 =: Myp < .
teR4

teRy

Then for any T' > 0,

sup  sup  Dq(t) < M)yp + 2T Mg Py =: Myp 1 < 00,

nEN te(tn tn+T)
since p;(t) (resp. ¢;(t) = (G(p;i(t))) is bounded above by Py, (resp. Mg Py)
from Proposition 4.1.1. Therefore if (¢;,00) C Upen(tn, t, +7') for some finite
T, the flocking must emerge from Theorem 4.1.1. Since A and B generates
different cluster, this cannot happen, which yields

lim sup(t,41 — t,) = 00.
n—oo

Passing to a subsequence, we may assume lim,, (41 — t,) = 00. Let £ be
an index maximizing |p;|. We recall that

=2

2K

ol = 2 v (o) = Gl < S0P Yo (o) - Gl

- (4.1.9)
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As a maximum of R.H.S. in (4.1.9) is achieved when each p; have same
direction (i.e. cos(p;, p;) = 1), we further estimate

(g(lpkl) g(lml)p)

¢ — ¢
|Pe| |Pé|

d, o5 2K al
i §W¢(DQ)ZPZ'
k=1

2r<;mG/

N ¥(Dq) kz:; el (Ipx| — |pel)

5 , N
= - U(Do)lpe (Nrm - \m)

k=1
N

Z P
k=1

=: —Q/ngfw(DQ)’pe\ (‘pé‘ - ’nge‘) :

IN

= —2rmaP(Dq)|pl <\m| - % > (.- cos(pi; ps) = 1)

Note that p? . is a constant vector, since the derivative of Z,ivzl Pk is zero.
Thus we have

d d
y (Ipel — [Pihel) = —Ipel < —rme (Do) (Ipel = [Piel) +

which leads to

0 < |pe(t)] — |Phvel < exp <—f<amcf/ ¢(DQ(U))dU> (Ipe(s)] = [Payel)s s < ¢,

where the first inequality comes from the maximality of ¢. Now fix T" and
take N > 1, so that each interval (¢,,t, + T') is disjoint for each n > N.
Then

0 < [pe(tn +T)| = |Pdye] < exp (—kma T (M) (Ipe(tn)] = [Phel), 7 > N.

On the other hand, |p,| is unconditionally decreasing from Proposition 4.1.1.
Thus,

0< ‘p5<tn+1 + T)’ - ‘pgve’ < €xp (_HmG’Tw(MAB,T)) (|pf(tn+1>| - |pgve|>
< exp (—rmaTY(Myg 7)) (Ipe(tn + T)| = [Dovel)
< exp (—rma 2T (Mg 7)) (Ipe(tn)] = [Piel)-

90

&

| &1

1V



CHAPTER 4. ASYMPTOTIC DYNAMICS OF THE CS-TYPE
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Then a straightforward induction yields

0 < [pe(t)] — |Poyel
< exp (—kma (m + D)TO(Myg 1)) (pe(ta)] = [Poel): 5= togm + T

and therefore
Iim [pe(t)] = |pavel
oo

We again use the maximality of ¢ and apply the squeeze theorem to find

)| <D k)] < Npe(t)]

k=1

Npoel =

so that

hmz [Pr(8)] = [Pavel

Now we claim

lim pi(t) = ., k€N (4.1.10)
—00
It suffices to show lim; o, |pr(t)] = [p%.| for each k. Suppose the contrary.

Then since

limsup [py.(t)| < limsup |pe(t)] = [Pyl & € [N],
t—o00

t—o0

there exists a constant P, satisfying

lim inf mln Ipi(t)] < P < P2l

t—oo €

and there exists a time sequence {s, },en such that

0<s1<sp<---, lims,=o00, min|pi(s,)| < Ppn.
1€[N]

n—oo

This leads to

N
ave| Z hm |p7« STL — P + hm |pz(8n)| < |pave|
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which yields a contradiction, verifying the claim (4.1.10). Finally, since flock-
ing does not happen, from Theorem 4.1.1 we have

M oo
1Pl = 5 [ wds
G JQtn)|l

for any ¢,,. As [|Q(t,)|| is uniformly bounded in n from the definition of ¢, let
Qv < oo be its upper bound. Since || P(t,)|| converges to zero from (4.1.10),

we obtain
+oo +oo
0 < Mn W(s)ds < %/ W(s)ds < ||P(tn)] “==% 0,
Mer Jqu Mer J Q)
and this completes the proof by contradiction. O

Proof of Proposition 4.1.2. Clearly, (1) implies (2). Suppose that (2) holds.
From Lemma 4.1.1, we have

d kMl 4KJPJ(\)4MG/Z(N — l)

—||Pl|la < — P L

ZIPlLa < =0 (IQUIPIs + T
j'e

From the assumptions on (2) and Lemma 4.1.2, we have

. kMl _
nf ( W ¢(||Q(t)||,4)) 201 >0, lim maxyyy =0,
j'eB

for some positive constant C;. Therefore for any € > 0, there exists a time T’
satisfying

d
aHP(t)HA < —Ch||P(t)||a+e, Vt>T(e)>0.

Then by the comparison principle, we have

€
0 <limsup ||P||a < =
t—»00

Ch
Since the choice of & > 0 is arbitrary, we conclude || P(t)[|4 —= 0. The proof
of |P(t)]|lz == 0 is similar. O
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Example 4.1.2. In this example, we briefly sketch an example that achieves
a bi-cluster flocking. For convenience, let G = Id so that mg = Mg =
M = 1. Suppose that D% # 0. Then from [17, Theorem 5.1], under some
well-prepared initial configuration, there exists a set of indices [l] (after re-
ordering), which is a nonempty proper subset of [N], and a positive constant
C such that

min |q;(t) — q;(t)| > Ct.
i [ai(6) ~ a5(t)

This leads to

' Y]y
A(s) — q;(s))ds < Cs)ds < T ED)
/Oleﬁ%z]wq s) — q;(s)) S_/O Y(Cs)ds < — 5

Then, integrating the second estimate in Lemma 4.1.1 leads to

kl 1@ 4kPYUN — D)W 1
w(r)dr < [P + P D

1P|l + = <
N Jiooiy CN

Therefore, if a velocity deviation in a group [l| is small and C' is sufficiently
large in the sense that

b(r)dr,

N 4P, (N —1 o
Nipoyg + 2=l f
I

¢ Q%I

then we have supeg, [|Q(1)||y < oo. Similarly, we have sup;eg, [|Q(t)/n-p <
oo for large C' > 0, and this implies the bi-cluster flocking. Note that C' can
be chosen sufficiently large for a suitable choice of initial data. For the detail,
we refer to [17].

4.2 Analysis under weakly singular commu-

nications

In this section, we consider the kernel of form

b(z) = —

R

€ (0,1).

In this case, particles may collide (for the colliding example, see [11]) and
the vector field blows up. The description of such a solution is not straight-
forward, as provided in the following Definition and Theorem [45, 46].
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Definition 4.2.1. Let B; and v, be defined as

Bi(t) :== {k € [N] : z(t) # zi(t) or vip(t) # vi(t)},

P(s) if s>(m—1)a
Yn(s) := { smooth and monotone if nma<s< (n — 1)_§
n if s< n-a

and let 0 = Ty < Ty < Ty, be the set of all times of sticking (i.e. x;(t) —
xj(t) = vi(t) — v;(t) for some i) and Tn,+1 =T be a given positive number.

Forn € {0,---, N5}, on each interval [T,,,T,11], consider the problem
'j:i = Vi,
U = % ZkeBi(Tn)(vk — v3)¥n |z — 33), (4.2.1)

for t € [T, Thi1], with initial data x(T,),v(T,). We say that (z,v) solve
(4.2.1) on the time interval [0,T] with weight ¥(s) = s~ if and only if for
alln =0,---, N, and arbitrary small ¢ > 0, the function x € (C1([0,T]))N¢
is a weak in (W2Y([T,,, Ts1 — €]))N? solution of (4.2.1).

Proposition 4.2.1.

1. Let a € (0, %) be given. Then for all T > 0 and arbitrary initial data,
there exists a unique x € W([0,T]) € C*([0,T]) that solves (4.1.1)
with communication weight ¥ (s) = == weakly in W>([0,T).

~ [z

2. Let a € (%, 1) be given. Then there exists a unique solution in the sense
of Definition 4.2.1.

Although the description of a collisional solution under a singular kernel
is somewhat non-trivial, if we restrict (4.1.1) on the real line, we may convert
it into the first-order model, and its analysis may hint at the property of a
solution in the second-order model as well. In this section, we are interested
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in the model (4.1.1) on the real line, equipped with a weakly singular kernel:
(4= G(p;), t>0, ielN],
N

Pi= 5 2 e —a)GE) — G, g(s) = —, ae(0,1),

k=1 |3|a

Qsz |t —0+ (q17pz) Di, qi S Ra
(4.2.2)

If 9 is regular and (P, Q) is a classical solution of (4.2.2), then we have a
following relation:

t qr(t)—qi(t)
| 9(ants) = ) Gon(s) = Gltsh)ds = [ b(s)ds.
Therefore P is a solution of
o N
G(v; + N ; ) (4.2.3)

provided that two systems are coupled by the following relationship:

= /07“ Y(x)de, v;:=p;, — —Z\I/ — ). (4.2.4)

On the other hand, the converse holds; if ¥ is differentiable, a solution of
(4.2.3) is also a solution of (4.2.2) under (4.2.4), and therefore two models
are equivalent. What if ¢ weakly singular? In this case, we have

1—
(4.2.5)

_ L, i — som !(JI”“
W) = e 0) = /w an(g) 20—

As VU is continuous, Peano’s theorem guarantees a classical solution of (4.2.3).
However, this may not be a classical solution of (4.2.2), since a solution of
(4.2.2) requires more regularity of ¢; than (4.2.3), but the regularity of ¥
(and hence regularity of ¢;) breaks down at the origin.
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Example 4.2.1. Consider a two-particle system with

G=1d, () =—=, ¥(g) =2sen(g)/]al-
Then, (4.2.3) is of the form

. K . K
g =1+ 5‘1’@2 —q1), Go=12+ 5‘1’(% — ¢2).

If we pose vy = vy =0 and ¢¥ > ¢3, we have a following classical solution of

(4.2.3).
(1 1 2 o 1
3 ((Q? +q3) + Rt — =/1d) — ¢3]) ) , o ifi=1t< =/]¢) — 8],
K K
1 1 2 e 1
G =9 = (( ?+qg)—%2(t—;\/|q(f—qg|) ) ifi =2t < —y/la —dl,

@ + 43
(2 7
However, since ¢; is not differentiable, we cannot recover a classical solution
of (4.2.2).

[\]

otherwise.

The above example illustrates that two models are not equivalent under
the classical regime if 1 is singular; a solution of (4.2.3) need not be twice
differentiable. Therefore, if one attempts to make two models equivalent, one
needs to enlarge the concept of solution of (4.2.2). It turns out that the
Sobolev space W2! is an appropriate function space, as described in the
following theorem.

Theorem 4.2.1. Let (P,Q) be a solution to (4.2.2). Then the following as-
sertions holds.

1. The model (4.2.2) has a unique global (weak) solution where
g € W*7((0, 7)),
for each i € [N], T € Ry, and

1 1 L mG/21_20‘(1 — Oé)
"max{l — K,a} )’ B NMga

v E
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2. Flocking emerges unconditionally:

sup max |g;(t) — q;(t)] < oo, max |p;(t) —p; ()] <e ¢, C>0.
tzgi’je[N]\QU q;(t)| i’jemlp() PO S

Remark 4.2.1. Below, we list some comments about Theorem 4.2.1

. Theorem 4.2.1 states that q; is always continuously differentiable and
p; 1s always differentiable almost everywhere, and the reqularity of p;
improves as « decreases. Roughly speaking, when « is close to 1, then
p;i s close to an absolutely continuous function, and when « is close to
0, then p; is close a to Lipschitz continuous function. In fact, if only
sticking happens and collision does not occur (see Definition 4.2.2),
then p; can be indeed Lipschitz, as described in Example 4.2.1.

. Equivalence between (4.2.2) and (4.2.3) is not trivial for a singular
kernel. When the kernel v is reqular, equivalence is essentially based
on the following change of variable formula:

t qr(t)—ai(t)
/0 U(ar(s) — ai(s))(G(pe(s)) — G(pi(s)))ds = /0 U(s)ds.

The above formula holds if 1 is continuous and t — q(t) — q;(t) is con-
tinuously differentiable. However, if 1 is merely a nonnegative measur-
able function, even if t — qi(t) — q;(t) is absolutely continuous, change
of variable formula requires either monotonicity of qi — q; or integrabil-
ity of ¥ and Y(qi(s) — 4i(s))(G(pr(s)) — G(pi(s))) (see Lemma 4.2.2).
Therefore, due to the possibility of pathological behavior near a collision
time, a change of variable formula cannot be applied directly.

. In [44], the authors provided a framework to rigorously derive a kinetic
description of the model (4.1.1) (under G = 1d) with a weakly singular
commumnication in a weak-atomic sense. For this, the solution should
have a reqularity of W21 and therefore the derivation was limited to
the case where o € (0,1/2) (see Proposition 4.2.1). Theorem 4.2.1
states that a weak-atomic solution can be derived for any o € (0,1) on
the real line.
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Before we establish the equivalence between (4.2.2) and (4.2.3), we first
review the dynamics of (4.2.3). Recall that

, N
N = (v1,v9,- ,un), ¥(r) ::/0 Y(x)dr, v = p? — %;\D(qg —q?).

Proposition 4.2.2. [11] Suppose that communication weight has weak sin-
gularity of the following form:

1
w(Q):Wa O<Oé<]., Q%Oa

and let Q be a solution to (4.2.3) with initial data (Q°, N). For fized indices
i and j (i # j), suppose that
% > q)-

Then the following trichotomy holds.
1. If v; > v}, then q; and q; will not collide in finite time:

qi(t) > q;(t) forall t>0.

2. If v; < vj, then q; and q; will collide exactly once, i.e., there exists a
time t* such that

q(t) > q;(t) for 0<t <t

¢(t") = q;(t") and q(t) <q;(t) fort>t".

3. If v; = v;, then q; and q; will collide in finite time, and two particles
will stick together after their first collision.

4. If v; # v;, then we have

lim inf |¢;(#) — ¢;(t)| > 0.

Therefore, two particles p; and p; will overlap in some time unless (p) —
P))(vi — v;) > 0, and will eventually ‘stick’ if and only if v; = v;. It is easy
to see that
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as illustrated in Example 4.2.1. If a kernel is regular, then (1),(2), and (4)
in Proposition 4.2.2 still hold, but (3) does not happen; agents never stick
unless they are sticking at the initial state [11, 31]. Thus such ‘finite-in-time
sticking’ characterizes a singular kernel [45, 46]. In what follows, we clarify
the definition of sticking and related concepts:

Definition 4.2.2. Let Q be a C' solution of (4.2.3). Consider two agents g;
and q;.

1. We say q; and q; collide at time t if

G(t) = q;(t)  but  Gi(t) # ().
2. We say q; and q; stick at time t if

¢(t) = q;(t) and  G¢(t) = ¢;(1).

From Proposition 4.2.2, if particles stick at some instance, they stick
afterwards. Therefore, if some agents stick at time ¢ among N agents, the
system immediately changes into a system of weighted N’'(< N) agents. To
describe this phenomena, we define sets of collisional indices, sticking indices
and their time set as follows:

Ci(t) :={j € [N] | ¢; and g; collide at time ¢},
S

(t) :=={j € [N] | ¢; and g¢; stick at time ¢},
T = U {t e Ry |Ci(t)| # 0} U {t € Ry : |S;| is discontinuous at t}).

1€[N]

(4.2.6)

Note that C;,S; and T depends on solution of (4.2.3), and S; is discontinuous
at the instance when two particles start to stick.

Proposition 4.2.3. Suppose that an initial data (Q°, N) of (4.2.3) is given.

1. System (4.2.3) has a unique global classical (i.e. q;(t) € C*(Ry;R) for
each i) solution. In particular, C;(t),S;(t) and T are well defined for
each i € [N] and t € R,.
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2. For each i € [N], |C;(t)| is zero for all but finitely many t € R.

3. For each i € [N] and 0 < s < t < oo, we have Si(s) C Si(t). In
particular, |S;| is a right-continuous increasing step function.

4. T has a finite cardinality.

Proof. If we prove (1), then the other statements are direct consequences
of Proposition 4.2.2 and (1). Therefore we focus on the proof of (1). The
existence of a global classical solution is guaranteed by Peano’s Theorem.
Therefore it suffices to verify the uniqueness. Suppose that there exists two
solutions @ = (q1, - ,qn) and Q" = (q},- - ,¢5) with same initial data
(Q° N) = (¢, -+ ,q%,v1, -+ ,vn), which is neither collisional nor sticking
(i.e. [Tijepm (@) —a)) # 0). Let (C;, S;, T) and (Cj, Sj, T') be defined as (4.2.6)

i#]
with respect to @ and @), respectively. From Proposition 4.2.2, there exists
finite number of times {t;};c;a sayisfting

M
(0,00) = | Jlter teyr), 0=to <ti <--- <ty =-+00, M < o0,
c=0

such that {¢;,--- ,ty} = T. Similarly, we set [0, 00) = Ui‘ilo[t’c, t.. 1) with re-
spect to )'. Now we use an induction argument to prove ¢, =t/ and @ = @’
on [0,t.) for each ¢ =1,2,--- M.

e (c=1) Since V is locally Lipschitz except the origin and V¥ is not eval-
uated at 0 in ¢t € [0, min{¢y,%]}), the standard theory of ODE guarantees
that Q(t) = Q'(t) in [0, min{¢, ¢} }). Without loss of generality, suppose that
t; < t}. Since we have global existence of a classical solution, both of @) and
()’ uniquely extends to [0,#;] and they are same. In particular, if ¢; and g;
collide or starts to stick at ¢;, then so are ¢; and q;. Therefore we have t; =
and @ = Q' in [0,t,] = [0,#)].

e (Inductive step) Suppose ¢, = t/, for n = 1,2,--- , ¢ and assume that

solution is unique in [0, ¢.), so that Sk(t) and Cj(t) are well defined for each
ke [N]int e [0,t.). We claim that
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for any t* € [t., min{t.11,%.,,}), we have @ = Q' in [0, ¢*].

To prove this by contradiction, suppose that
Q(T) # Q'(T) for some T € (t.,t*]. (4.2.7)

Let D(t) := max;eny |¢:(t) — ¢;(t)] and M = M(t) be a time-dependent index
satisfying D(t) = |qa(t) — ¢y, (t)]. Let time t € (t.,t*] and index M(t) = ¢
be fixed. If we assume, without loss of generality, that ¢,(t) > ¢;(t), then we
have

- KGJ/\(f%) ; (U(g(t) = ar(t) = U(ag(t) — (1)), € (te+et],

where we used the mean value theorem for the last equality. Then definition
of M yields

@ (t) = (1) < qu(t) — q(t) = a(t) — q(t) < q;,(t) — q(t).
As W is increasing, we have ¢,(t) — ¢;(t) < 0. From the existence of a global
solution, each ¢; and ¢; are uniformly bounded in [t.,t*). Therefore we have

D(t) <0 for almost every t € [t.,t*), and
0 < D(t") < D(t.) =0,

where the equality comes from the induction hypothesis. Therefore, by the
same argument as in the ¢ = 1 case, we have t..1 = t,,; and D(t) = 0
on (t¢,ter1]. By induction, we conclude D = 0 on (t.,t*]. This contradicts
(4.2.7), which completes the proof for not overlapping initial data. The proof
for a collisional or sticking initial data follows by letting ¢; = 0. O

Lemma 4.2.1. Let (P,N') be a solution to (4.2.3) with a communication of
the form (4.2.5). For sufficiently small € > 0, we have the following asser-
tions.
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1. If p; and p; collide at T > 0, then
Ce <|qi(T +¢) — ¢;(T' £ )],
for some positive constant C' > 0.
2. If p; and p; stick at T > 0,
Diev < |gi(T —€) — q;(T — £)| < Dyew,

where )

1
2/£m(;/oz a InglQaa «
Di=(—"7— Dy=——"-] .
= (rsa) 2 ()
Proof. Throughout the proof, we set
T ={t1,to, -+ ,tc}, t1<ta<---<t, to=0,

where 7 is defined as Proposition 4.2.3.

(e Proof of (1)). Without loss of generality, set v; > v; and ¢) > gp.
Suppose that ¢; collide with ¢; at tc € 7. First, we use the mean value
theorem to observe

d

%(Qi - CIj)|t=tc

=G (Vi+ %;‘I’(C]k _Qi)>

= G/(yz])(yz — l/j) > mgl(l/i — Vj) =1 V4 > 0.

N
K
()

k=1 t=tc

(4.2.8)
Then from the continuity of the solution, for some d > 0 we have
Vii
7] < G(pi(t) — Glp;(t), tefte—0dtc+d]
Therefore, as ¢;(tc) — ¢;(tc) = 0, for any 0 < ¢ < 9, we obtain
© EVi4q
alte£2) — gt £ 2| [ Glotte £5) - Glos(to + 5))ds| = .
0
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(e Proof of (2)). Suppose that, ¢1,q2, -+ ,q_1,q starts to stick at time
ts € T (S € [c]) simultaneously with suitable reordering of indices, and set

(1) < gat) <+ <q-1(t) <qft), foranyt € (ts-1,ts).

Let i :=j+ 1(i,j € [l]). We use the mean-value theorem twice to obtain

%(% -q) =G <Vi + % ;‘I’(Qk - %)) -G (Vj + % ;\D(Qk - %))
= RG;E[%) (Z (W(gk — ) — O — Qj))>

where z;;; is located between ¢ — ¢; and g, — g;. Note that the second mean
value theorem is valid since i and j are consecutive, so that W is differentiable
in the interval (¢; —¢;, g — q;). In particular, for k € {7, j}, ;% is specifically

‘I’(%‘—%’) _ 1
a—q  (1—a)(s—g)*

P(2i55) = P(2i50) =

Therefore, we have

d
%(Qi - Qj)
KM
< - NG (w(zm) + w(zzﬂ))(%’ - qj)
2 ’
( )1—047 Cl = N(/iniGay

and C; > 0 is independent of initial data. Now we recall the following ODE:

i=-Cx'™* 2(0)=2">0
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Then, by the comparison principle, for any sufficiently small § > 0, we have

qi(ts —¢) — q;(ts —€)

< (Cra) (@Z'(ts - 5)0_1(‘3“5 —0F (5o 5)) )]
(4.2.9)
Now we claim that
Gilts —e) — qi(ts — ) > (Crae)=, =€ 0,d]. (4.2.10)

Suppose that (4.2.10) does not hold. Then for some £* € [0, 4], we have
gi(ts — ") —qi(ts —€") < (Crae*)a.
Then (4.2.9) under § = ¢* yields
gi(ts —¢) —qi(ts —¢) < (C’las)i, e €[0,e%].

Then, as the inequality is strict and (Cyae)«|.—o = 0, there exists e € (0, &*]
satisfying

qi(tg — 8**) — Qj(tS — 8**> = 0.
However, since tg is a time that ¢; and ¢; starts to stick, this is awkward,

verifying (4.2.10). Since choice of i and j = i — 1 was arbitrary and C} is
independent of indices, we have

Q=

. 1
“min_|gi(ts —¢) — ¢t —¢)| > (Chag)= =: Diea.
i#j,4,5€l]

Now take any i, ;" € [l] with ¢ > j'. Since ¥(|r|) decreasing in |r|, we
have

Qk_q]'/
U(ar — a) — gy — qv) = / O(r)dr
qrk—q;r

;! —qj/

= / b(r)dr =
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We apply the mean value theorem to get

N

CZ( —qy) = W (Z (‘I'(Qk —qr) — V(g — qj/)))

(g —q;)' ™" =t —=Ca(qy — q;1)' ™%, tE€ (ts —&,ts),

for a positive constant Cy > 0 independent of 7" and j’. We then apply similar
technique to derive (4.2.10) to yield

i (ts — ) — qy(ts — ) < (Chae)s, € 0,4,

and therefore

Q=

1
max |g;(ts —€) — q;(t — €)| < (Chae)s =: Dyea,
i#5,1,5€[l]

]

Lemma 4.2.2. Suppose that 0 < f € Ll _(R) and u is absolutely continuous
on [a,b]. If (f ou) x v’ € L*([a,b]), then

u(b) b
/ f(x)dx :/ f(u(®)d(t)dt
u(a) a

Proof. First suppose that 0 < f is bounded and measurable. For some con-

- / o

Then from boundedness of f, we have F' € C%}(R). Thus F ou is absolutely
continuous and

stant ¢, define

(Frou)(t) = f'(u(t)u'(t),

for almost every t € [a, b]. Therefore we have

/ fu(t)u' (t)dt = / (Fou)(t)dt = (Fou)(b) — (Fou)b)
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Now suppose that 0 < f € L{ _(R). Define an approximating function f,, as

) f(=), if 0 < f(z) <n
fo(z) = {O, if f(z) > n

Then since f,, is bounded, we have

u(b)
/ fu(u t)dt = fulz)dx
u(a)

From the integrability of f and f(u(t))|w'(t)|, we have a desired result from
the dominated convergence theorem. O

As a direct consequence, we can establish the equivalence between (4.2.2)
and (4.2.3) whenever ¢(¢; — ¢;)(G(p;) — G(p;)) is locally integrable for each
i,7 € [N]. More precisely, let ¥(-) be an antiderivative of 1:

=/0 Y(y)dy, =R,

as long as 1 is locally integrable. Let (P, Q) be a solution to (4.2.2), where
€ W21([0,T]) for any T' > 0. Then from Lemma 4.2.2, it follows that

ar(t)—4i(t)
v —am) =g [ iy

/ Blar(t) — a(®)(Glan(t)) — Cla(t)))de
— Y(gult) — a:(D) (G (palt)) — Glpi(t))),

for almost every t. Hence, it follows from (4.2.2) that

( Z‘I/qk —qit ))—0 i € [N],

for almost every t. Now, we integrate above with respect to t to get

N N
K K
pi(t):p?—NZ\I/ h— 4 -I—NZ\IJ ) — ai(t))
k=1 k=1
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N

D W(gr(t) — i(t)).

k=1

= Vi‘i‘

=] =

Conversely, if each g; is continuously differentiable and ¢; is absolutely con-
tinuous in any finite time interval, we recover (4.2.2) from (4.2.3) for almost
every t by direct differentiation.

Now we are ready to prove Theorem 4.2.1.

Proof of Theorem 4.2.1. Let T = (t1,tq, - ,t.) and ty = 0,t.41 = 0o, where
t; is increasing with respect to indices. Let [I] be a set of indices sticking at
ts € T as in the proof of Lemma 4.2.1. For any € > 0,k € [c] and i,j € [N],
we have either

¢i(t) = q;(t) for t > t, or inf lgi(t) — q;(t)| > C >0, (4.2.11)

te(ty +e b1 —g)

for some constant C' > 0 from Proposition 4.2.2. Thus ¥(g;(s) — ¢;(s)) is
continuously differentiable for s where |s — tx| > &, t, € T. Therefore by
Lemma 4.2.2, (4.2.2) and (4.2.3) are equivalent in time 7" € (tx + ¢, tx11 —€).
Now consider a bounded regular communcation ¢ satisfying

Y(x) = P(x), e (C,00),
and its antiderivative W (z) := foxz/;(r)dr. Let T € (tx + €,t)41 — €). For the

former case of (4.2.11), we have

U (qi(T) = q;(T) =W (qi(ts +€) — q;(te + €))

=0="U(q(T) — q;(T)) — ¥(a(tx + &) — q;(tx +€)).
For the latter case of (4.2.11), since ¢ and 1) are same in (C,00), we have

U(qi(T) — q;(T)—V(qi(tr + ) — q;(tr. +¢))
qi(T)—q;(T)
/ Y(r)dr

i (th+e)—q; (ti+e)

qi(T)—q;(T) B
/ I(r)dr
q

i (th+e)—q; (thte)
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= U(q:(T) = ¢;(T)) — Wit + &) — q;(te + €))-
This yields

pi(T) = v, %Z (q(T) — q:(T))
= pilti ) = 5 > Wanlte +9) — alti +2))
k=1
+ % ’;‘P(Qk(T) —qi(T))
= pilte+€) = 5 D W@l +2) — alti +¢))
%;@qk — q(T))
=pilti+ )+ [ Plals) = al(9)(Glpals) — Glpils))ds.
k=1 tkte

Therefore, even if we change the kernel of (4.2.2) from 1) to ¥ at time tg +e,
p; still remains as a solution of a differential equation in time (¢, +e¢, tj41 —¢).
Now consider a differential equation

G = G+ 55 > W) — ain).
k=1
2z Zﬁ?—%Z(@(QE—Q?))» G = :(0),

where ¢ = ¢;(tx + ¢), p? = pi(ty, + €). Since (4.2.11) also holds for ¢,
by the same argument, we can replace gZ to ¢ as well. In other word, for
t € (ty +¢,tg1 —€), a value of solution is independent of the value of ¢ near
the origin. Therefore we may assume that 1 is regular and use Lemma 4.1.1
for any t ¢ T. As a choice of € > 0 is arbitrary, we have

QI{MG/(N — Z)P](\)/[Lw,[l] ||QH
N [”7

IimG

YU QU Py +

d
— P < —
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Ly (t) == sup lr) = ¥ls) < oo, qut):=minlg(t) — gy (1),
7 r,s>qp (t r—=s i'ell]
s2>q) (1), ',
S 3¢l

for t ¢ T. As p; and p; stick at tg, Lemma 4.2.1 yields

1 1
Diea < lqi(ts —€) — q;(ts — ¢)| < Doge,

1 1
2kmera \ @ kMg 2%\ @
Di=—"— Dy=—""—] .
' (N(l—a)) C ( l1—a )

Since [[] is a set of sticking particles, particles p; and p; with indices ¢ € [{] and
J ¢ [l] are either collisional or separated at time tg. Therefore for 0 < § < 1,

where

Lemma 4.2.1 yields

d 1

_ —a—1 6—a—1
dx x® at

z=C¢

1Q(ts — )l < /(2 = 1) x (D0%)2 < 1Dy,

Lyu(ts —9) < ‘

Therefore for 0 < § < 1,

d kme ' ™Dy
—||P(ts — ¢ <————=4||Pt—-9
dt” (ts N < N 1P( il
2/€MG1<N -

* N

1
= —Kl(S_IHP(t — 6)”[” + KQ(S_l_OH_E.

0
Z)PM C—l—a(s—l—ochﬂsé

Then for fixed € > 0 and t, < t — ¢, the Gronwall inequality yields

[Pt —=¢)lly <

tg—e 1
exp (—Kl/ ; ds)
t* S — S

tg—e s 1 )
X {HP(t*)HM + KQ/ exp <K1/ du) (ts — S>1a+ad51
t* * ts — U

€K1 i Ky ts—e etl
:mx [P + Ka(ts —t7) (ts — s) Lok g

t*
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- it —a+i-K =0,

~Y

ef1(log(ts — t*) — loge),
eB1((t, — t*) ota K _gmota—KY) if g 4 LK #0.

Therefore, if ¢; and g; starts to stick at time tg, then for ¢ < 1,

¢(qi - Qj)(G(pi) - G(pj))|t:ts—a
< Mep((Die=)) Dyt — €)
Y((Drew)||P(t - )y

< Mg
< ef17t(1—1loge), if —a++—-K; =0,
~eFt - 5—1—a+§|, if —a+ i — K, #0.

As G(pi(t)) — G(p;(t)) = 0 for t > tg, we have
V(g — ¢;)(G(pi) — G(Pj)|its—e s+ € L7,

1
h 1 .
where  p € { ’maX{O,l—K1,1+a—1/a}>

Furthermore, if 1+a—1/a < 0 and 1 < K, then we can choose p = co. Note
that K is increasing in [, the number of simultaneously sticking particles, so

that
K/mG,llfo‘D;a mGlllia(]_ — O{) S mG’/2172a(1 — O[) _. K

K = s
! N NMG/2aOé - NMG/OZ

If ¢; and ¢; collide at time tg, where v; > v;, by similar calculation in

(4.2.8) we have
ma (vi —vj) < G(pi(ts)) — G(pi(ts)) < Mo (vi — v;),

and G(p;(ts)) — G(p;(ts)) is nonzero bounded in a neighborhood of tg. To-
gether with Lemma 4.2.1, this yields
(g — 4)(G(pi) — G(p))le=tsze S

In this case, we have

000 = 0)(G0) = Gl Dlisepora € 1, where e [1,7),
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If p; and p; are neither collisional nor sticking at tg, then ¢(¢; — ¢;)(G(p;) —
G(p;)) is bounded near tg. On the other hand, ¢(¢;(s) — ¢;(s))(G(pi(s)) —
G(p;(s))) is bounded for s such that |s —t.| > ¢, t. € T. Putting the results
altogether, we conclude

Zw(qi — 4)(G(pi) — G(p))) € Ly (Ry),

h €|l !
ere :
where p "max{l — K, o}

This proves the first assertion of the Theorem 4.2.1.

To prove the second assertion, we consider the solution to (4.2.2) emanat-
ing from an initial data (P(T"),Q(T")), where T' > t.. Then from Proposition
4.2.2, we have either

¢i(t) = g;(t) for t > T, or inf|gi(t) —g;(t)] > C >0,

for some constant C' > 0. Therefore, as we did in the beginning of the proof,
a value of solution for ¢ > T is independent of the value of 1 near the
origin. Therefore we may assume that 1 is regular and apply Theorem 4.1.1.
Since froo Y(z)dr = oo for any r > 0, we conclude that the flocking emerges
unconditionally. O

4.3 Analysis under strongly singular commu-

nications

In this section, we consider strongly singular communications, which are not
integrable near the origin. A typical example is

T——, Wwhere a>1. (4.3.1)

As in the previous section, the well-posedness of a solution is directly related
to singularity arising from a collision. For a strongly singular kernel case,
this issue can be treated by the so-called ‘collision avoidance property’ of the
strongly singular kernel.
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Proposition 4.3.1. Suppose that

€ (Choe N Lig) (R Ry),  ((r) —4p(s))(r —s) <0, Vr,s € Ry,

loc

and let Q be a solution of (4.1.1) with noncollisional initial data (P°, Q).
If fo r)dr = oo for any € > 0, then there exists a unique global classical
solution wzth the collision avoidance property:

f —q;(t) >0, VT eR..
té[%m%[%] |:(t) — a;(1)] +
1#]

Furthermore, if the ambient space is one-dimensional(d = 1), then we have

nf min |qi(t) — q;(t)| > 0.

i#]

Proof. Although the Proposition can proved by direct modification of [10,
Theorem 5.2] and [11, Theorem 3.1], we provide a more simple proof here.
Since Q° is non-collisional, from the standard Cauchy-Lipschitz theory, a
solution is well-posed before the first collision time 7 (i.e. the smallest 7 > 0
satisfying ¢;(7) = ¢;(7) for some i,j,i # j). To establish the global well-
posedness, we first observe that the collision does not happen in any finite
time. Suppose that the first collision time 7 € R, exists and let ¢; be a
colliding particle. By the rearrangement of indices suppose define a set of
indices [I[] C [N] as

[l :=={j € [N]|a(r)=q(r)} #0.

Then, for any € > 0, we can apply the second estimate in Lemma 4.1.1 in time
€ [0,7 — ¢). From the definition of [I], there exists two positive constants
C1, Cy > 0 satisfying

d
EHPHU] < =Cwp(|Qllp)lIPlly + CallQll, te[0,7—¢). (4.3.2)

Now define the functional

) o, [leolg
L(t) = / YP(s)ds.
Mer Jyqoyy
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Then |£(t)] + ||P(t)||y have a linear or sub-linear growth; there exists a
positive constant C satisfying

d 5 d d d
- - < | = -
SO+ ZIPOl < | ££0)] + FIPOly

C d d
~ QW F 1|+ ZIPOlly < CallQlly < € < s

where we used (4.1.5) and (4.3.2) for the second inequality. Therefore if col-
lision happen, there exists a constant C' satisfying

—1gn|£()|50(1+7)<00,

which yields a contradiction. Therefore collision cannot happen in any fi-
nite time, and this proves the existence and uniqueness of a global classical
solution.

Now suppose d = 1. From (4.1.1), we can deduce an integral equation

G Hai(1) = Gl Zakz 0r(s)) — G (di(s)))ds,

0 k=1
for t € R, , where the modified kernel «y; is defined as

0 if 4. (t) = ¢i(t),

ai(t) = qr (1) —qz() o :
P(qr(t) — qi(s)) x (0 (t) = G (G (D) if g(t) # ().

so that ay; is nonnegative, measurable and symmetric with respect to indices.

Since a finite-in-time collision never happens, a solution is well defined glob-
ally, and [37, Theorem 1] guarantees the existence the following uniform-in-¢
bound U for each i, € [N](i # j):

qi(t)—aq;(t)
/ b(r)dr| =
a?—qf

3

/0 Bar(3) — 45()) (G (5) — d5(5))ds

/0 s ()G (G (5)) — G (45 (5)))ds
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< / " g ($)(C () — G (g (s))ds =: U < oo.

As 1 is not integrable near the origin, we conclude

qi(t)—q;(t)
sup max rydr| <U = inf min |q;(t) —q;(t)| > 0.
25 iElN] /qoqo Ylrydr| < tZOz',je[N]m() (1)
iz 1T i#]
O
Remark 4.3.1.

1. From Proposition 4.5.1, the origin of the kernel is not referred to in any
finite time. Therefore, under the same assumption in Proposition 4.3.1,
although 1) is not Lipschitz, the results of Theorem 4.1.1 still hold.

2. Although the proof of Proposition 4.3.1 is rather simple, explicit lower
bounds between agents cannot be deduced. For the explicit expression
for a lower bound, refer to the proof of [10, Theorem 5.2].

3. If the kernel is weakly singular at the origin (i.e., f;@[)(r)dr < oo for
some e > 0), then a collision might happen, as described in the previous
section.

For the Euclidean space of arbitrary dimension, the authors of [54] derived
an existence of strict positive lower bound for relative distances under a > 2

and G = Id:

: 0_ 0 : .
min |¢; —¢q;| >0 = inf min |¢;(t) — q;(t)| > Lo > 0,
min @ = 4] nf min la:(t) —¢;(0)] 2

by employing a suitable potential energy with a dissipative structure. Unfor-
tunately, the dissipation of potential energy heavily depends on the Galilean
invariance, which (4.1.1) lacks due to the presence of an activation function.
Instead, we provide an alternative characterization for the existence of L.

Theorem 4.3.1. Let (P, Q) be a solution of (4.1.1) with a kernel of the form
(4.3.1). Suppose that Q) is non-collisional and further assume that

1. a#1, and
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2. (P,Q) exhibits flocking.
Then there exists a strictly positive lower bound of distance between agents:

f i(t) — q;(t)] > 0.
inf min |gi(t) — g ()|

i#]

Proof. From Proposition 4.3.1, the result of Theorem 4.1.1 holds for kernel
of the form (4.3.1) as well. Therefore there exists a constant C' > 0 satisfying

max |p;(t) — p; (1) S e, teR,,
2,7

and the limit lim; o |¢;(t) — ¢;(t)| always exists for any indices. In particular
if limy o |i(t) — ¢;(t)] = 0, then we have

4t) — g5(0)] = ] /Oo (6ult) - q‘j<t>>dt‘ STACCE %(t))dt\
< Mer /too pi(s) — pj(s)lds < /too e*Cds < e7'C

(4.3.3)

Now for some index 4, suppose that there exists a set [I] C [/N] defined as
0= G € IV | lim (q:(6) — 4,(8)) = 0} 0.

From (4.3.3), there positive constants B, C' > 0 satisfying ||Q(t)|y < Be™°.
Therefore for sufficiently large ¢t > 1, we obtain

Q) Q%I
/ w s)ds| = / W(s)ds
1Ry 1Ry

||Q0H[z] Bl « tC’ (a—1) QO
- / Hls)ds — — Q%N
B

- e—tC a—1

Since the limit of |p;(¢) —p;(¢)| always exists and finite-in-time collision never
happens, there exists a positive constant U satisfying

supsup ¥(q; — q;) < U < 0.
>0 ic(l]
J¢ll
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Therefore |£| defined in the proof of Proposition 4.3.1 have a linear or sub-
linear growth, which leads to the contradiction:

QM
etfle=b 1 < / P(s)ds| S 1+t.
Q01
Therefore we conclude [I] = (), as desired. O

Remark 4.3.2. 1. Let (P, Q) be a solution to (4.1.1) with non-collisional
initial data (P°,Q°). Corollary 4.1.1 states a high value of k leads to
not only flocking but also the strict spacing between the agents;

min inf |q:(t) — q;(t)] > 0 (4.3.4)

i#]

Moreover, when communication is of form ¥ (x) = |x|~®, the theorem
in [54] states that (4.3.4) can be achieved for arbitrary k > 0 under
a > 2 and G = 1d. However, to the author’s knowledge, a further
result to have (4.3.4) under € [1,2] is missing. Meanwhile, Theorem
4.1.1 and 4.3.1 states that k can be arbitrarily small when « is close to
1. Therefore Theorem 4.1 may complement the previous result.

2. If a strictly positive lower bound of the relative state is guaranteed, as
we did in the proof of Theorem 4.2.1, we may reqularize the kernel. As
an application, for example, we may apply results of stability estimates
in [32] for singular kernels as well, even though proof of the theorem
requires the Lipschitz continuity of the kernel. On the other hand, we
may relax a priori condition for stability estimate in [1], since some
of the conditions are devoted to ensuring strict lower bound between
relative states.

3. In many cases concerning a many-body system equipped with a singu-
lar kernel, it is often desirable to guarantee a strictly positive lower
bound for a relative distance between agents. This, for example, guar-
antees the well-definedness of a w-limit set, which enables us to apply
the dynamical system theory like LaSalle’s invariance principle.
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4.4 The kinetic description

We recall the the CS-type model (4.1.1):

Glps), >0, i€[N]i={1,2,- N},
N
:%kg ar — 4:)(G(pr) — G(pi)), (4.4.1)
qzapz }t 0+ (Q'L7pz) Pis qi ERda ¢(Q) = #7

where we used ¢ : ¢ — ﬁ instead of ¢ : |g| — ﬁ for the convenience

of further analysis. In the current section, we are interested with a kinetic
description of CS-type model (4.4.1), which is of the form:

Ouf +G(p)-Vof +V, - (LIfIf) =0, (t,q,p) € Ry x R x RY,
LIfI(t,q,p) = [gea @(ax — ) (G(ps) — G(p)) f(t, gs, pu)dgudps,

£(0,q,p) = f°(a.p), ¢(a) = =

o

(4.4.2)

For the formal derivation of (4.4.2), we use the standard BBGKY hierarchy
to derive the following kinetic equation of the probability density function

f=f(t.qp).

Note that (4.4.2) can be regarded as a generalization of (4.4.1). To see
this, Let {q:(t), pi(t)} Y, be a solution of (4.4.1). If we regard f as a distribu-
tion(generalized function), then f(t,q,p) = % le\il O(gi(t),pi(1)) 18 a distribu-
tional weak solution of (4.4.2) for Direc-delta distribution § and vice versa
(for more details, see [44]). Therefore, it might be subtle to consider a kinetic
analog of (4.4.1) with non-discrete support, since Section 4.3 features out
the collision avoidance property of a singular kernel. Nevertheless, one can
interpret the Theorem 3.2.1 as an allowance of collision or sticking of char-
acteristics in terms of (4.4.2), as far as singularity is not too strong. On the
other hand, sticking of characteristics might be interpreted as a blow-up of
one-particle distribution function, which violates the regularity of a solution.
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Indeed, we will prove the local-in-time well-posedness of (4.4.2) under weak
singularity:.

4.4.1 Preliminaries in optimal transport theory

In this subsection, we present the basic definitions. Let M(R??) be the set
of regular Borel measures on R??. We denote the duality paring between
measure and function by

(1, f) = /Rmf(q,p)du(q,p), 1e M(R*).

To employ the language of optimal transport theory, we introduce several
definitions and related properties. Definitions for a generic p € [1, 00) will be
provided, and we mainly deal with the case of p = 1.

Definition 4.4.1. Let (X, || - ||) be a normed vector space, P(X) C M(X)
be a space of probability measures on X, and and p € [1,00).

1. The Wasserstein space of order p on X 1is defined as a collection of
probability measures with a finite p-th moment:

%@3:{MGWX%WWMW=AJWWMM<w}-

2. Let p € M(R?Y) and T : RY — R? be a measurable mapping. Then the
push-forward of 1 by T is the measure T#u € M(R?) defined by

TH#u(B) := u(T~Y(B)) for any Borel set B C R%

Such T is called a transport map from p to T#p in the context of
optimal transport.

3. Let p and v in Py(X) be two measures. Then, the Wasserstein metric
W, of order p between p and v is given by

1
wumuwz( we [ \W—MWM@@O |
XxX

vEIl(p,v)
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where II(p, v) is the collection of probability measures on X x X with
marginals g and v:

M, v) ={y € M(X x X) : m#ty = p, mity = v},

where m;(x1,x9) = x;. Such vy € T(u,v) are called the transport plans,
and those achieving the infimum, if exist, are called the optimal trans-
port plans.

We recall some classic properties in Definition 4.4.1.
Remark 4.4.1.

1. (Kantorovich-Rubinstein Duality for p = 1) For a compact set X C RY,
Wasserstein-1 distance on Py(X) coincide with the bounded Lipschitz
distance, which s also known as Monge-Kantorovich-Rubinstein dis-

tance dp;p:
Wi(p, po2) = drip(pia, po) sup /¢ p2) ().
¢>€L1p
L1p[¢<1

2. If pov € Pp(X) (1 < p < o0) are atomless, there exists an optimal
transport map from p to v. That is, there exists a transport map T
from p to v achieving the following infimum:

it [ o = T@IPduto) = [ o = T@)IPduto),

where the infimum is taken over the set of transport maps from p to v.
Furthermore, for a compact subset X of RY, it turns out that (IdxT)#pu
1s an optimal transport. In particular, we have

) = [ la=T@lPduta),

3. The definition of push-forward measure is equivalent to adjunction for-
mula:

(F#p,0) = (n, 00 F)  for any ¢ € Cy(RY).
Therefore, for i € P,(R?) and Borel mapping fi, f : RY — RY, the
following inequality holds:

W;I))(fl#ﬂ7 fo#tp) < <((f1 X fz)#/i) (z,9), |z — y|p> = (i, |f1 = foI?).
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4.4.2 Local well-posedness

We start by rewriting (4.4.1) in a view of measure. Let C([0,T]; P1(X)) be
the space of all continuous probability measure-valued function from [0, T
to Pl (X )

Definition 4.4.2 (Weak Solution). For T € [0,00|, f is a weak solution of
(4.4.1) on the time interval [0,T) if and only if

1. f € L>(0,T; LP(R?*%)) and fdqdp € C([0,T]; P;(R??)).
2. f satisfies the following equation for all the test functions g € C°([0, T]x
RQd)J

/ f(t,q,p)g(t,q,p)dqdp—/ f(a,p)9° (¢, p)dqdp
R2d R2d

T
N / | J 09+ G(p) - Vog + LIf) - Vyg)dgdpdt.

If f is a weak solution of (4.4.1), then f(¢, q, p)dgdp = u'(dq, dp) is a measure-
valued solution of (4.4.2). Conversely, if a measure valued solution u' of
(4.4.2) is absolutely continuous with respect to Lebesgue measure with Radon-
Nikodym derivative f(t,q,p)dgdp = u'(dg,dp), then f is a weak soluton of
(4.4.1). In particular, if f is a function with sufficient regularity, p can be
translated into classical solution f. Therefore, we use f(t,q, p) and u'(dgq, dp)
interchangeably: for example, when f;(t,q,p)dqdp = ut(dq,dp) for i = 1,2,
we may abuse notation and denote

W (fis f2) = Wo(py, p13).
Similarly, we may write fo = F#f1 in place of ub = F#ut.
Since the solution of (4.4.2) is globally well-posed under regular kernel,

our strategy is to approximate the solution of (4.4.2) via its regularized sys-
tem. We introduce a Dirac sequence of radially symmetric mollifiers in R¢:

¢(x) =C(jz]) 20, ¢ € CERT), supp(¢) C Bi(0),
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[ =1, G ::é (g)

Using regularized communication weight, we introduce regularized system
for (4.4.2):

atfe + G(p) ’ que + Vp : (Ls[fs]fs) =0, (t,q,p) € R—f— x R x Rd,

L[ f(t,q,p) = [goa 0= (ax — @) (G(ps) — G(p)) f=(t, 4, pi)dgudps,

£0.0.0) = 1(0.p), 6:(q) = ﬁ vl

(4.4.3)

NOTATION. From now on, C' will denote a generic positive constant which
may vary even in the same line. Given a constant 5 € (1, 00|, Holder con-
jugate of  will be denoted by ~ so that % + % = 1. We denote the norms
by

1fllee =11 flleow) where U =R or R*, ||f|| :=[|fllzer:15),

and define the momentum support and its maximum modulus by R.(t) :=
maxpeq, (1) [p| and

Qe(t) == cl({ p € R | fo(t,q,p) # O for some (¢,p) € R* }).

When notational simplicity is required, we abbreviate variables in the follow-
ing way.

Analogues to Proposition 4.1.1, we first observe the decrement in the
maximal momentum.

Proposition 4.4.1. Let Z.(t) be a solution to the particle trajectory (4.4.3)
emanating from an initial point in the support of classicial solution f.o. If
tnatial velocity support is bounded, then we have

d
—R.(t) <0, t>0.
dtR(> 0 > 0
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Proof. We denote Z by bi-characteristics Z.(s) = (Q:(s;0,q,p), P-(s;0,q,p))
satisfying

(1) _gp)
ds °
T L1, Po(o) (444
| Z:(0) = (¢,p)

For each ¢, we choose an initial data in support of f. o which generates char-
acteristic curve (g, p) satisfying R.(t) = |P-(t)|. Then we obtain

1d , 1d d
55( (1) = ST, 7
= Ge(q — Q=(1))(G(ps) — G(P:(t))) - P(t) f=(t, ¢, Pi)dgudp.

R2d

[P(t)]* = P(t) - — PL(t)

Since |p| — g(|p|) is an increasing function, maximality of P. implies

(G(pe) = G(P)(1)) - P(t) = (9(Ip<|)ps — g(|Pe|) Fe) - P <0,
and therefore R, is a decreasing function. m

Proposition 4.4.2. Let f. be a classical solution to (4.4.3) which vanish at
infinity sufficiently fast with || f2||s < oo and satisfies R.(0) =: R, < oo. If
ay < d, then there exists a T > 0, independent in e, such that the uniform
L' N LB-estimate of f. holds:

sup || fellpinps < €, where ||+ |lpars = |- o + 1 |,
te[0,7

holds for a positive constant C' independent in and ¢.

Proof. Since f. vanish at infinity, we have

d d
— fedz = — 1 x fodz =0, therefore | f|lz: = |2z
dt R2d dt R2d

Now we estimate || f||zs by

d
o sa= [ aga-a-p |

R2d R2d R

09, Lf)ds  (445)
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To estimate the last term, we consider a cut-off function y : R — R
1 |z <1,
x(x) =
0 |z| >1,
and apply Young’s convolution inequality to see

1(&x) * Cellzr < lloxllr < 400,

(A1 = x)) * Cllree < [|@(1 — x)||pe <1, (4.4.6)

where we used ay < d to guarantee that ||¢x||z+ is finite. Note that

V, - G(p) = trace(G") = sum of eigenvalues of G’ < d‘ max J(pl) =: G,,
pI=1e

from Proposition 4.4.1, and G, is independent of ¢, since it depends only on
the initial data. We then have

V- Le[fe]] < Gp/ |(@x) * Cel[ fe]dz. +Gp/ [(@(1 = X)) * G| feldz.

R2d R2d
1
< Gl |l ox ool fells + 16(1 = X Lee || fell 2 < Cl fellamps-

Therefore from (4.4.5) we obtain

d
Ellfsllﬁa < Ollfllgsll fell s

Using 4| f.||z: = 0, we achive

d
%Hfa”leLB < C||f€||%lmLﬁ-

Hence, by the comparison principle, there exist T" > 0, independent of ¢, c,
such that || f.||p1nrs does not blow up in [0, 7], which is the desired result. [J

Remark 4.4.2. From Proposition 4.4.1, if an initial data fo of (4.4.3) has
compact (q, p)-support, then f(t,-,-) also have compact (q, p)-support for any
finite t. In this case, L' norm is uniformly controlled by L®. In particular,
we can replace estimates on || f(t)||pi~rs by the one using || f(t)||1s-
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Proposition 4.4.3. Let f. and f. be two classical solutions of the system
(4.4.3) satisfying

d
supp(fo) CC R*, || flls <00, 0<a< - 1.

Then there exist a constant C' independent in €,&" such that

d

Ewl(fa(t% fa’(t)) S C(Wl(fe(t)v fa’ (t)) +e+ 5/)' (447)

Proof. Throughout the proof, we denote dut := f.(t,q,p)dgdp and dut, =
fer(t,q,p)dqdp. For each (t,q,p), we define characteristic curve

Z.(s) = (Q(s;t,q,p), Pe(s;t,q,p))

as a solution to the following ODEs:

LQ.(s) = G(P(s;t,q,p)),

EP-(s) = Le[f)(s, Z(5)),

(Q:(t:t,q,p), P-(t;t,4,p)) = (¢, p),
so that f.(t) = Z.(t;to, -, - )# f-(to), and define Z./(s) in similar way. To em-
phasize a role as a transport map, Z.(ts;t1, -, ) will be occasionally denoted
by T2, As plo and p'9 are absolutely continuous with respect to Lebesgue

measure, they are atomless and we can introduce an optimal transport map
0, from f.(to) to fu(to) so that

e—e’
pl = TO #pL, T2 (q,p) = (g, per),
and we define the transport map from f.(¢) to fo(¢):
7—;—»2’#:“2 = :ué’a where 7:—>5’ = 7_;0_>t ° 7_;3)8/ © 7?_%07

and regard T'° as the identity map Id.
From Remark 4.4.1, we have

Wipe, per) = Wi (T2 0, (T2 0 T2 ) #0)
< (e, [T = (T2 o T2L)))) (44.8)
- </~L§O7 }Ze(ta lo, - ) - Z&’ (ta lo, 7—;3)5/('7 )) |> = Qs,e’(t)'
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Differentiating with respect to ¢ and evaluating t = tJ, we get

d
% Qa,&’ (t)

< <:u207 ‘G(Pa(tQ to, - )) - G(PE/ (t to, 5_>5/ R ‘> t=tg
+ (2 [Le[f) (t, Ze(tsto, -, ) = Larlf)(E Ze (110, T2 (1) )

:<'u ‘G _G(ps’ )|>+<'u | ff](t()v,]—t )_LE’[fE’](t 7:-:?)5)
=Ty + (ul, I).

+
t=t]

During the estimation of % Qe er (t)’ L the time t is fixed, we will suppress

the upper index which represents the time configuration. For the estimate of
7, we notice that

Il = <PJ€7 |G(p8) - G(pS’)D 5 <l‘87 |pa _p£’|>

(4.4.9)
< <Me7 |7; - 7;—>e’|> = <N67 |Id - 7;—>:—:’|> = Wl(ﬂeaﬂs’)a

where the last equality holds because T°,_, is optimal (Remark 4.4.1). Now
we rewrite 7y as

Iy = [{dpe(24), 8 (0. — @) (G (p.) — G(p)))
— {dper(24), O (@5 — ¢) (G(ps) — G(per))]
= [{dpe(24), d<(q- — @) (G(p.) — G(p)))
— (dpe(22), e (quer — G ) (G (Paer) — Gper))]

= [(dpe(24), (9<(qx — @) — b= (Geer — ¢=1)) (G(ps) — G(p)))
— (dpe(24), Per (quer — 4 )(G(pier) — G(per)) — (Glps) — G(p))))
= |Zo1 + Zoa|.

o (Estimate of Zy;): We find that

Iy = (dpe(z), (0e(gx — q) — ¢ (g — 42))(G(ps) — G(p)))
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< (dpe(z2), | (¢ — do) (g — ) (G(ps) — G(p))])
+ <du5(z*), |(¢s’(Q* - q) - (be’(Q*g/ - QE’))(G<p*) - G(p))w
=:Lo11 + Io1o.

Since support of (. is contained in B.(0), for any = # 0 we use the mean
value theorem to have

16:(z) — B(x)] < / 6(z — y) — 6(@) [ (w)dy
e
90 e ey
1 1
<o [ (i oo ) blcy

1 1 Ce
Sae/ < + )C(y)dyg—.
{y:e>ly|} |$|1+a |£L‘ - yll—i-a ) |:L‘|1+o¢

Therefore, from a priori regularity condition (o + 1)y < d, we can apply
Holder inequality near the origin and its complement to obtain

<d,U,E(Z*), |((¢€ - ¢)( - Q)< ’>

2| = = — yl|¢(y)dy

4.4.10
< 5R6(0)0/ I+a fsdz* < Z':C(Hf.EHLﬁv ( )
R x Q. ( | |
and the same inequality holds for ¢’. Hence we have
(e(dz), Ton) < C|lfellgs (e + ), (4.4.11)

where C'is independent in €, ¢’, . Now we turn to estimate of Zy15. First note
that

1

Qbe x) = Cs Y dy
() M (y)
e - C
< / ¢ (y)ady + 1]-{|z|<25}/ ¢ <y>ady <
{y2lyl<lal} 1T = Y| {wiyl<e) 1T — Y] |z
which leads to
Clz -y

|¢5(1’) - ¢e(y) <

min(|z], |y[)*+e’
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for C' independent in e. Therefore,

(due(2), Zor2)

- <Ms(dz> <d,u€(z*), (¢6’(Q* - Q> - Qbs’(Q*a’ - QE’))(G(p*) - G(p>>‘> >
cion [, (e k) s

=: C(Za121 + T2192)-
(4.4.12)

We used change of variable z <> z, for the inequality. Now we compute Zo19o
to find

Toron < Ol fellpe e, |g — ql) < Ol fellsWh (Meaﬂs’)y

where we followed a similar procedure as in (4.4.10) for the first inequality.
Then we obtain

Inw < C <ua(dz), <d,u€(z*) M»

) ’qE’ o q*6/|1+a

1
=C Edzas/_ ds/z*v—
<u( ) la q!< fher (%) Iqef—q*5|1+a>>
S CHfE’HLBWI(MEHLLE’)'

Then from (4.4.12), we achieve

(e(dz), Torz) < Cmax(|[ fel o, [ fo | Lo ) Wi (e, prer). (4.4.13)

Combining (4.4.11) and (4.4.13), we deduce the following estimation:

(e, Ion) < Cmax(|[ fellps, 1 ferll o) Wi pte, prer) + Cll fellZae + &), (4.4.14)

for C' is independent in €,&" and ¢.

e (Estimate of Zy,): From a direct computation,

(e (d2), Tos) < /

|92 (@ = @) [Gpa) = Gpec) fe b, 2)febo, 22)ddz.

+ /]R‘ld ’¢6’(Q*a’ - Qs’>| |G<p) - G(p€/)|f€<t0, Z)fs(t(b Z*)dZdZ*'
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Again using same computation as (4.4.10), we have

(be(dz), Ioa) < C|| forll Lo Wi (pe, p1l). (4.4.15)

Finally, putting (4.4.9),(4.4.14) and (4.4.15) altogether, we achieve

d
EQM, (t) < C(Wi(ple, uo) + e+ €.

t=td

On the other hand, since T, is an optimal map, inequality in (4.4.8) turns
to be a equality if ¢ = to. Hence, by subtracting Wy(ul, u’?) = Q. (ty) and
then dividing ¢ — to from (4.4.8), the limit ¢ — ¢, leads to

d
ZWfet), fot)| _ < COMuld, i) + e+ ).

Since ty can be chosen arbitrary, we have the desired inequality

d

ZWi(fe(t), fo (1)) < C(Wi(pe, pr) + e+ &),

for C' independent in ¢, &’ and ¢. O

Remark 4.4.3. Applying Gronwall lemma to (4.4.7) gives

Wi(fe(t), fo (1) < W2, f2) + Cle +€) /t e“ds
0

for a positive constant C' independent in €,&' and t. Therefore, if f. and
fer defined in finite time interval [0,T] have a same initial data, then f. is
uniformly Cauchy in C(0,T;P(R?*?)), where P(R*) is equipped with Wy
distance, provided that € is sufficiently small.

Now, by the limiting process € — 0, we prove local-in-time existence and
uniqueness of the weak solution.

Theorem 4.4.1. Suppose that initial data f° € (LP NPy)(R??) of (4.4.2)
has compact support and p, « satisfies the following relation:

d
I<a<——1,
Y
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where v is a Holder conjugate of 3. Then there exist a unique weak solution of
(4.4.2) in a time interval [0, T|. Furthermore, local-in-time solutions satisfies
uniform stability with respect to Wy distance: for two local-in-time solutions
f1 and fy defined in [0,T], we have

sup Wl(f1<t)7f2(t>> < CWl(ff,fg),

0<t<T
where C'is a positive constant independent of the time T

Proof. e(Existence of solution) Again, we use f and p interchangeably. Since
a family of regular function {f.} is a Cauchy sequence in C(0, T; P;(R?*?)) as
€ — 0, there exist the limit function f. From the definition 4.4.2, we have to
show

(' g(t, ) —(u,9(0,-,-) = /Otw, dig + G(p) - Veg + L] - Vpg)ds.

for arbitrary g € C2°([0,T] x R??). From standard method of characteristics,
there exists a global-in-time solution f. of regularized solution (4.4.3). Then

we have
(ikoalt)) = (2900, = [ 2.0+ G0) - Vg + Ll - Vg
As ¢ — 0, we have
<:u§>g(t7 K >> - <:u(5)79(0> K )> - <:utag(t7 ) )) - <:u079<07 K )>7

t t
/ (12,009 + Gp) - Vag)ds — / (1,049 + G(p) - V,9)ds.
0 0

Hence, it suffices to show

/ (s Lole) - ¥09) — (s Ll - Vpg)) ds — 0.

We split the integral into three terms as

/Ot /Rm(fel/a[fa] — FLf]) - V,gdzdt
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<

/ fe(Lelfe) — LIf2]) - Vpgdzdt’
0 JR2d

+

/Ot o fe(L{fs] = L[f]) - Vpgdzdt‘

/Ot /Rw(fa — f)Lf] 'Vpgdzdt‘

=: L3y + I3p + Iss.

+

By the same calculation as in (4.4.10), one has
I3 < CEHfEH2 < (Ce—0.

On the other hand, we denote

/ot /de Tiod (pe(2:) = p' (24))dt

where Tiy= | £t 2)6(a. — q)(G(p.) — G(p)) - Vpgl2)d

R2d

IS2 =

Then, from a priori regularity condition we have
[ ] nt2eta - 0G0 - 6w) - Vaole)dadp < €
Re J|g—q«|<8

where C' is independent in . Therefore we may neglect the singularity near
the origin and regard Z%, as a bounded Lipschitz function. Therefore, inter-
preting Z3s in terms of bounded Lipchitz distance(Remark 4.4.1), we have

I3o < C sup Wi(fe(t), f(t)) =0, as e—0.

0<t<T

Similarly, one can also achieve

Z33 < C sup Wi([e(t), (1)) =0, as e—0,

0<t<T

and this proves the existence.
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e (Uniqueness and stability of solution) Let f; and f; be two weak solutions
of equation (4.4.2). Then, Proposition (4.4.3) implies

d

S Wih(@), fa(8)) < CWI(AQR), (1)), € [0,T].
Therefore, from the Gronwall lemma, both of uniqueness and stability are
verified. m

4.4.3 Structural stability in a finite-time interval.

We consider a structural stability of kinetic CS type model with singular
kernel. Then, the following two kinetic equations with the same initial data
are given:

Ofy+ G) - Vofy + V- (Llflf) =0, (t,q,p) € Re x R x RY,
Ly[f1(t,a,p) = [goa #(ax — @) (G(ps) — G(p)) f(t, ., ps)dqsdp,,

fo(0.q,p) = f°, o(q) = #,

(4.4.16)

Oifoo+W-Vofoo + V- (Laclfoclfoc) =0, (£,0,p) € Ry x R x R,
Loo[f] (tv Qap) = fRM ¢(Q* - Q> (p* - p)f<t7 Q*ap*)dQ*dp*;

f00<07Q7p) = foa ¢(Q) = #-

(4.4.17)
The equation (4.4.17) can be obtained by posing G' = id to (4.4.16). There-

fore, regarding (4.4.17) as a reference model, we show that the CS type kinetic
model (4.4.2) converges to the standard kinetic CS model.

Definition 4.4.3. Let F(p) = f(|pl)£; and G(p) = g(|pl)% be activation
functions (i.e. (F,f) and (G,g) satisfies (4.1.2)). We say that F' converges
to G as an activation function (notation: F N G) if and only if there is a
collection of functions {F¢}cep o0), parametrized by c, such that
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1. each F, = fc(|p])% is an activation function,
9. F,=F, Fy =G,
3. fl— floin LS. as ¢ — oo.

Theorem 4.4.2. Let f, and fs be local-in-time solutions of (4.4.16) and
(4.4.17) respectively, defined in [0,T]. Suppose that o, B and fo satisfy the

following relation:

d
supp(f°) cc R*, e (L nP)R*™), 0<a< - 1.

Then we have a following finite-in-time structural stability:

GX51d = sup Wi(fy(t), fo(t)) = 0

te[0,7
where Id is the identity map.

Proof. We take a similar procedure as in Proposition (4.4.7). Let 0 < ¢ < 1
be fixed. Consider two regularized systems:

0fy+ Gp)-Vofs+ Vo (L)) =0, (tq,p) € Ry x RY x RY,
Ly[f1(t, 4, p) = [goa = (a0 — ) (G(ps) — G)) f(t, ., pe)dg.dp.,

mww:ﬁ,awzﬁy@
(4.4.18)

Do+ Vofoo+ V- (Laolfoclfoc) =0, (£,0,p) € Ry x RY x RY,

Loo[f1(t,q,p) := [goa &= (¢x — q) (s« — P) f(t, @, ) dg.dps,

foo<07Q7p) :fO’ ¢s( ) ﬁ*@

(4.4.19)
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Let u, = fo(t,q,p)dqdp and pl, = fw(t,q,p)dgdp be solutions of (4.4.18)
and (4.4.19),

respectively. We definte characteristic curves Z, = (Q,, F,) and

= (Qu. P) by
L Qu(s) = G(Ry(s:1,0.9)), @ Qo) = Pulsitia ),
TR(s) = L) (5, 2,(5), D pr(s) = Luclfc) (5 Zoe(5))

(Qq(t:t,4,p), Py(t;t,q,p)) = (¢:p), (Q(t:t,4,p), Poo(t; t,q,p)) = (¢, D),

respectively, so that 77" = Zy(t;to, ¢, p) and T2 = Z(t;to,q,p) can be
served as transport maps shifting the time configuration. Let ’7;300 be an
optimal transport map from fi,(tg) t0 fieo(to). We adopt same convention as
in the proof of Proposition (4.4.3), but we place g—configuration in place of
e—configuration.

Following the similar calculations as in the proof of proposition (4.4.7), we
have

Wy (,LLg,,uoo ) < </L } o(tito, ) — Zoo(t;toaﬁioo('f))b =: Qg.0(t),

which leads to

igg,wu)tt
< (i, |G ) - \>+<u toﬂﬂ Lclfocl 0, T2}
< (g [G2) — \>+<u \G —w)
+<,,, TATALC ,7;0>—Loo[fooJ<to,7;zoo>}>
< Wa(ule, pl2) + (uid, |G(p2) — wio|)

—|—</L |L fg 77;()) _Loo[foo]<t077;ioo)}>
= Wl(“f]o?lu“io) <lug ’\71> <H’g 7\72>7

where we used the same methodology as in (4.4.9) for the last inequality.

From now on, during the estimation of %Qg,m(t)‘ ., We suppress the upper

index again. To estimate 7, we recall the decrement of maximal momentum
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(Proposition 4.4.1) to obtain an uniform upper bound U, of |p|, independent
in g, and ¢. On the other hand, Proposition 4.1.1 implies

Ip— G(p)| < 1d = Gllop|p| = Up max | 1 =g'(p)| = Uy, (4.4.20)

Ip€[0,Up

from the mean value theorem, where || - ||,, stands for the operator norm.
Then, since supports of f,(t,-,-) and fs(¢,-,-) are bounded uniformly in ¢,
and € (Remark 4.4.2), Holder’s inequality deduces

(tg(d2), Ti) < Uy Cllfy(to)llLe,

for C' independent in ¢, and . For further estimate, we split /5 as

T2 = |Lg[fol(to, Tg) — Loo[foo](to, Tg—s00)]
= [[(pg(d2.), ¢ (g« — @) (G (ps) — G(p)))
— (oo (d24), D (G — Goo) (P — Poo))
= [[{1g(dzs), ¢c(q« — @)(G(p.) — G(p)))
— (1g(d24), e(Groo = Goo) (Proo — Poo)) |l
< g (dz.), (de(ar — @) = Pe(drne — 4))(G(p2) — p))]
+ [(1g(d2), 0 (Groe — 4o0) (G(D2) = P) = (G(Proe) — Poo)))|
+ [{1g(dz) (@ — ) (p = G(D)) = De(Groe — o) (Proo — G(Pro)))]
=: Jo1 + J22 + Jos.

From the similar calculation as in (4.4.12) — (4.4.13), we have
<:u9(dz)a \721> < CWl(Mgv //Joo)
For the estimate of J5o, note that
Ta2 = [{11g(d2.), ¢e(@uoe — 4oo) (G (1) = P) = (G (Proo) — o))
< (g(dzi), 0= (dr0o — Goo) [P — Procl)

+ (Hg(dzs), Pe (oo — Goo) |0 — Do)
=: Joo1 + J222,

where

(1g(d2), Tan) = (pg(dz.), [pe — Prool(ttg(dz), c(Guoe — Go0)))

134



CHAPTER 4. ASYMPTOTIC DYNAMICS OF THE CS-TYPE
CONSENSUS MODEL

IAIA

Cpg(dze), [Ps — Prool)
C<:ug(dz*)’ |Z* - Z*OOD = CWl(Nga ,uoo)7

and similarly we have (p14(d2), Ja21) < CWi(pg, fioo)-
Finally, using (4.4.20), we can deduce

(1g(dz), Jaz) < CUy.

Summing the estimates altogether, one has

d d
Sl i)| < 2 Qut)]

< C (Wi(plo, pte ,
dt :ta_ — dt —C( 1(:u’g7/1’oo)+Ug)7

=t3'
where ¢y is arbitrary in [0,T]. Therefore, from the Gronwall ineqaulty, we
have

t
Wilih i) < Wl ) + Uy [ <09, (14.21)
0

for a positive constant C', independent in €, and ¢. Now, we recall that the
solution of (4.4.16) is the W limit of regularized equation (4.4.3)(Proposition
4.4.3) and the convergence is uniform in time ¢ from the Gronwall lemma
(Remark (4.4.3)). Since a proof of Proposition 4.4.3 is valid for classical model
(i.e. (4.4.2) with G = Id) and (4.4.21) is an e—independent estimation, by
approximation, we have the desired result. O

Corollary 4.4.1. Suppose that G = g(|p|)f; and H = h(|p|); are activation
functions satisfying (4.1.2). Let f, and fi, be local-in-time solutions of (4.4.2)
corresponding to G- and H defined on time interval [0,T], respectively. If f,
and fn has a same initial data, then we obtain

act

G—H = sup Wi(f,(t), fu(t)) — 0.
te[0,T

Proof. This follows from the proof of Theorem 4.4.2; we replace Id to h, and
the proof is still valid. O]
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Chapter 5

Conclusion and future work

In this thesis, we have studied an emergent behavior of the CS-type consen-
sus model, especially for the singular kernel.

First, we have provided a global flocking dynamics of the relativistic
Cucker-Smale model with a singular communication weight. When the sin-
gularity is sufficiently strong, near the singular point, there is no finite time
collision between particles, if the initial data is non-collisional. Thus, nonex-
istence of finite-time collisions guarantees the global existence of smooth
solutions. Once we obtain a global existence of solution, we can use stan-
dard Lyapunov functional approach to find sufficient conditions in terms of
initial data and communication weight function. On the other hand, when
the singularity is weak at single point, one cannot guarantee that there is no
finite-time collision between particles, and indeed, we can provide a simple
example for the existence of the finite time collision in the one-dimensional
two-particle system. Therefore, to guarantee the collision avoidance in the
weak singularity regime, we need to impose an extra condition on initial
data, under which one can obtain a global lower bound for relative distances.
Besides the singular model, there are still a lot of topics to be studied even
for the regular RCS model, such as finding a sufficient framework for bi- or
multi-cluster flocking.

Second, we have proposed the asymptotic dynamics of the first-order
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consensus model on the real line, which was obtained from the relativistic
Cucker-Smale flocking model on the real line. We provided a detailed analysis
on the large-time behaviors of the proposed nonlinear consensus model, ac-
cording to the regularity and singularity of the communication weights at zero
and infinity. When the communication weight is regular and long-ranged, the
nonlinear consensus model exhibits a complete consensus behaviors, under
the mild assumptions on system parameters. On the other hand, when the
communication weight is still regular but short-ranged, asymptotic cluster-
ing behavior becomes completely different, and system may present complete
consensus or segregation, depending on the size of a coupling strength x. We
present sufficient conditions for the coupling strength under which either
system aggregates or segregates asymptotically. We also consider the case of
singular communication weight, and present similar results on the asymptotic
behaviors. Finally, we also studied the structural stability of the activation
function. The one-dimensional flocking model can be lifted in the kinetic and
hydrodynamic levels. In particular, the singular communication weight case
is more interesting, not only because it is mathematically challenging, but it
is also related to the fractional diffusion. Therefore, it would be interesting
to investigate the corresponding kinetic and hydrodynamic counterparts of
the proposed generalized consensus model.

Third, we have presented the CS-type consensus model and studied its
asymptotic behavior. In particular, when the ambient space is one-dimensional
(d = 1), the proposed model can be transformed into the first-order consensus
model, and its study provides a deeper understanding of the second model as
well. The CS model for a singular kernel has several interesting properties not
found in a regular kernel, depending on the integrability of the kernel near
the origin. If the kernel is weakly singular, the particles can stick or collide in
finite time, which leads to loss of regularity. We have studied the regularity
of such solutions on the real line. On the other hand, when the kernel is
strongly singular, the particles never collide in a finite time if the initial data
is non-collisional. However, the existence of a strictly lower bound for relative
distance for the general initial data was left as a remaining issue. We proved
that a prototypical kernel with strong singularity (¢¥(|q|) = |¢|™®, « > 1)
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have a strictly positive lower bound between agents, provided that singu-
larity is not critical(a # 1) and flocking is guaranteed. We also provide a
well-posedness and structural stability for a kinetic analog of the proposed
model. Several related problems remain as future perspectives. For example,
relaxing a priori condition for the existence of a strictly positive lower bound
is one of the remaining problems. On the other hand, the property of sticking
was not featured in the kinetic model in our thesis, and it would be inter-
esting to investigate the realization of such special behavior in the kinetic
model
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