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Abstract

In this thesis, we investigate Cucker-Smale type (in short, CS-type) mod-

els, mainly focusing on a case of a singular kernel. The CS-type model in-

troduces an activation function to the CS model to describe various group

phenomena, and the theory of relativity can be reflected as an example.

To motivate the CS-type model, we first introduce the relativistic Cucker-

Smale (in short, RCS) model with a singular kernel. More precisely, we study

collision avoidance and flocking dynamics for the RCS model with a singular

communication weight. For a bounded and regular communication weight,

RCS particles can exhibit collisions in finite time depending on the geometry

of the initial configuration. In contrast, for a singular communication weight,

when particles collide, the associated Cucker-Smale vector field becomes un-

bounded, and the standard Cauchy-Lipschitz theory cannot be applied, so

the existence theory after collisions is problematic. Thus, the collision avoid-

ance problem is directly linked to the global solvability of the singular RCS

model and asymptotic flocking dynamics.

We then propose the CS-type model, which is a general nonlinear consen-

sus model incorporating the RCS model. Depending on the regularity and

singularity of communication weight at the origin and far-field, we provide

diverse clustering patterns for collective behaviors on the real line. The singu-

larity of the kernel induces collision avoidance or sticking property, depending

on the integrability of the kernel near the origin. We study the regularity of

sticking solutions of the proposed model on the real line. On the other hand,

we provide a sufficient framework beyond collision avoidance property to

guarantee a strict lower bound between agents in the Euclidean space. We

then introduce a kinetic analog of the proposed model and study its well-

posedness. We also show the structural stability in both particle and kinetic

levels.

Key words: activation function, collision avoidance, emergent behavior, ki-

netic model, relativistic Cucker-Smale model, structural stability

Student Number: 2019-28728
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Chapter 1

Introduction

Collective behaviors of complex systems are ubiquitous in nature. In [34], the

authors presented a unified equation for the first-order modeling on collective

dynamics:

q̇i = νi +
κ

N

N∑
k=1

Ψ(qk − qi), (1.0.1)

where νi is the natural velocity of the i-th agent, which describes the innate

rate of changes. By suitable choice of coupling rule Ψ and ambient spaceM,

basic types of collective behaviors can be modeled from (1.0.1). For example,

flocking of birds [25] or schooling of fish [27, 49] on real line, synchronization of

fireflies [7] etc. Then it is natural to consider the inverse problem i.e., design of

appropriate kernel Ψ for a given consensus behavior. Such reverse engineering

problem is common in theory of deep learning, and typical approach is to

approximate target function by iterated composition of functions of the form

x 7→ g(Ax+ b), x ∈ Rd1 , b ∈ Rd2 .

Above, A : Rd1 → Rd2 is a linear function, and g is a nonlinear function

so-called the activation function, where the nonlinearity of g is essential to

describe nontrivial phenomena [50]. In the authors’ previous work [10], mo-

tivated by the theory of deep learning, they employed nonlinear activation

1



CHAPTER 1. INTRODUCTION

function G and proposed the system

q̇i = G(νi +
κ

N

N∑
k=1

Ψ(qk − qi)), (1.0.2)

where G is a continuously differentiable odd function, whose derivative is

strictly positive. Typical example is the hyperbolic tangent function tanh,

which is an activation function frequently used in deep learning. As an an-

other example, the authors in [29] discussed that relativistic effect can be

considered by choosing suitable activation function involving the Lorentz

factor. For the other examples, we refer to [41].

Regarding (1.0.1) as the basic building block of variant consensus be-

haviors, its generalization have been studied in various manner, e.g. flocking

[26], synchronization [38, 53], aggregation via Hessian communication [40]

etc, where the methodology of generalization depends on the physical con-

text. In context of flocking, Ψ is typically assumed to be an odd function,

which is differentiable, concave, and increasing on R+. In this case, (1.0.2) is

extended to the following Cucker-Smale (in short, CS) type model [10]:

q̇i = G(pi), t > 0, i ∈ [N ] := {1, 2, · · · , N},

ṗi =
κ

N

N∑
k=1

ψ(|qk − qi|)(G(pk)−G(pi)),

(qi, pi)
∣∣
t=0+

= (q0
i , p

0
i ), pi, qi ∈ Rd,

(1.0.3)

where the kernels Ψ and ψ in (1.0.2) and (1.0.3) are coupled as Ψ′ = ψ. If

we pose G = Id in (1.0.3), then we have the standard CS model;

ẋi = vi, t > 0, i ∈ [N ] := {1, 2, · · · , N},

v̇i =
κ

N

N∑
k=1

ψ(|xk − xi|)(vk − vi),

(xi, vi)
∣∣
t=0+

= (x0
i , v

0
i ), xi, vi ∈ Rd,

(1.0.4)

where xi and vi are regarded as a position and velocity of the i-th agent,

respectively. The CS model describes the dynamics of flocking behaviors of

2



CHAPTER 1. INTRODUCTION

self-propelled particles, and have been studied extensively as it unites seem-

ing unrelated phenomena [6, 47, 51, 52]. For the mathematical analysis, ki-

netic description, and hydrodynamic description of CS model, we refer to

[6, 15, 19, 33, 36, 43], [14] and [39], respectively.

As mentioned above, (1.0.3) incorporates relativistic Cucker-Smale model

(in short, RCS) model. Therefore, to motivate (1.0.3), we begin with the

discussion by introducing RCS model. Let (xi, vi) ∈ R2d be the position and

the relativistic velocity of the i-th CS particle satisfying |vi| < c. Here, | · |
denotes the standard `2-norm in Rd. For a velocity vector v in Bc(0) (the

open ball centered at the origin with radius c), we set the Lorentz factor Γ

and the quantity F as

Γ(v) :=

(
1− |v|

2

c2

)−1/2

, F (v) := Γ

(
1 +

Γ

c2

)
,

and define ŵ : Bc(0)→ Rd as

ŵ(v) := F (v)v =
v√

1− |v|2
c2

+
v

c2 − |v|2
.

Then, one can show that ŵ is bijective, and there exists an inverse function

v̂ := ŵ−1 : Rd → Bc(0) satisfying the relation:

v = v̂(w) =
w

F (v)
. (1.0.5)

For further details, we refer to Chapter 2. Now, we are ready to introduce

the RCS model formulated in terms of state variables (xi, wi := F (vi)vi):

dxi
dt

= v̂(wi), t > 0, i ∈ [N ] := {1, . . . , N},

dwi
dt

=
1

N

N∑
k=1

φ(|xi − xk|) (v̂(wk)− v̂(wi)) ,

(xi(0), wi(0)) = (xini , w
in
i ) ∈ R2d,

(1.0.6)

where φ : R+ → R+ is a communication weight, encoding the degree of

interactions between particles in terms of their relative distances. Usually, the

3



CHAPTER 1. INTRODUCTION

communication weight is taken to be monotone decreasing, which means that

the interactions between particles become weaker, as their relative distances

become larger.

The RCS model (1.0.6) and its simplified variants have been extensively

studied from various point of views, e.g., emergent behaviors on the Euclidean

space [4, 29], dynamics on the Riemannian manifold [5], kinetic description

and mean-field limit [4, 30], hydrodynamic description [30], etc. On the other

hand, when we consider real-world applications, one of the main concerns for

the multi-agent system is to guarantee collision avoidance between particles

(agents). To keep particles away from mutual collisions, one may consider a

singular communication weight [12, 20] or additional control inputs [22, 23,

24]. For the CS model, a singular communication weight is mainly considered

due to its simple structure and investigated extensively in literature [13, 18,

31, 42, 44, 46, 45, 48]. In this work, we are mainly interested in the following

specific singular communication weight φ:

φ(r) = r−α, α > 0. (1.0.7)

Note that the explicit form of the communication weight is not important,

but the singularity at r = 0 will be essential in what follows.

Now, we briefly discuss a formal derivation of the general CS-type con-

sensus model (1.0.2) from the RCS model on the real line, and review related

previous results on the CS model on the real line. To set the stage, we begin

with a brief description of the RCS model on the real line. Let xi, pi and

v̂(pi) be the scalar position, momentum and velocity variables of the i-th

RCS particle on the real line. Then, the RCS model reads as

ẋi = v̂(pi), t > 0, i ∈ [N ],

ṗi =
κ

N

N∑
k=1

ψ(xk − xi)(v̂(pk)− v̂(pi)),

(xi, pi)
∣∣
t=0+

= (x0
i , p

0
i ),

(1.0.8)

where ψ : R→ R+ is a Lipschitz continuous communication weight function.

To recast (1.0.8) as an abstract consensus model (1.0.2), we set Ψ(·) to

4



CHAPTER 1. INTRODUCTION

be the antiderivative of ψ:

Ψ(x) :=

∫ x

0

ψ(y) dy, x ∈ R,

as long as ψ is locally integrable around x = 0. Note that

d

dt
Ψ(xk(t)− xi(t)) =

d

dt

∫ xk(t)−xi(t)

0

ψ(y)dy = ψ(xk(t)− xi(t))(vk(t)− vi(t)).

(1.0.9)

Hence, it follows from (1.0.8)2 and (1.0.9) that

d

dt

(
pi −

κ

N

N∑
k=1

Ψ(xk(t)− xi(t))

)
= 0, t > 0, i ∈ [N ]. (1.0.10)

Now, we integrate (1.0.10) with respect to t to get

pi(t) = p0
i −

κ

N

N∑
k=1

Ψ(x0
k − x0

i ) +
κ

N

N∑
k=1

Ψ(xk(t)− xi(t))

=: νi +
κ

N

N∑
k=1

Ψ(xk(t)− xi(t)).

(1.0.11)

Note that νi is a natural velocity depending only on initial data and coupling

strength κ. Finally, we combine (1.0.8)1 and (1.0.11) to get the first-order

abstract consensus model:

p̂(ẋi) = νi +
κ

N

N∑
k=1

Ψ(xk − xi), i ∈ [N ],

or equivalently,

ẋi = v̂

(
νi +

κ

N

N∑
k=1

Ψ(xk − xi)

)
, i ∈ [N ]. (1.0.12)

Hence, if we set qi = xi and G = v̂, then system (1.0.12) corresponds to the

special case of the general abstract consensus model (1.0.2). Another special

5



CHAPTER 1. INTRODUCTION

case of (1.0.2) can be also derived from the relativistic Kuramoto model (see

[41]). Other examples of activation function G, or equivalently G−1, are

Proper velocity: G−1(v) = v

(
1− |v|

2

c2

)−1

,

Rapidity: G−1(v) = c tanh−1
(v
c

)
.

For the detailed derivation, we refer to [41]. Note that the hyperbolic tangent

function, which describes the rapidity, is an activation function frequently

used in machine learning. Indeed, besides the physical semantics, we may

employ activation functions in deep learning satisfying (1.0.13). For example,

we can consider the symmetrized sigmoid function

G−1(v) = cS−1
(v
c

)
, S(x) :=

1

1 + e−x
− 1

2
.

We also assume that for any closed interval I, there exist positive con-

stants mG′ and MG′ such that

0 < mG′ ≤ G′(q) ≤MG′ <∞, G(−q) = −G(q), ∀ q ∈ I, (1.0.13)

because it turns out that (1.0.13) are essential properties of activation func-

tions inducing the flocking phenomena (see Section 4.1). The most simplest

and motivating example for G will be the identity mapping G(q) = q. In

this case, system (1.0.2) reduces to system (1.0.1). We provide emergent dy-

namics of (1.0.2) depending on the behaviors of the communication weight

function ψ := Ψ′ at q = 0 and q =∞:

Type I :

∫ ∞
0

ψ(q) dq =∞ : Regular, long-ranged communication weight,

Type II :

∫ ∞
0

ψ(q) dq <∞ : Regular, short-ranged communication wight,

Type III : ψ(q) =
1

|q|α
, α > 0, q 6= 0 : Singular communication weight.

(1.0.14)

In the thesis, we are mainly interested in the study of asymptotic con-

sensus behavior (flocking) of (1.0.2) and (1.0.3) for each types of kernels in

6



CHAPTER 1. INTRODUCTION

(1.0.14). Analysis on singular kernel (Type III) is in particular interesting

due to its extraordinary behavior. In view of (1.0.2), if α ∈ (0, 1), where

α represents the singularity of kernel as in (1.0.14), then two particles stick

after some finite time if and only if they share the same natural velocity. Re-

garding (1.0.2) as a training model, we may interpret it as a flow classifying

the agents, where each group, labeled by νi, shares some value qi, where qi
depends on time, initial data and coupling Ψ. On the other hand, for α ≥ 1,

two distinct states qi and qj never coincide through time evolution, which

is usually referred as collision avoidance. If each agents lies on the real line,

(1.0.3) might be converted into the first-order consensus model (1.0.2) and

in this case, aforementioned priorities can be rigorously stated and proven.

However, lifting those results into second-order model may not be trivial

(see Remark 4.2.1), even if d = 1. The non-triviality follows from the loss

of regularity from collision; as a kernel is singular, Ψ is not differentiable at

the origin (i.e. at the instance two particles collide), and therefore standard

calculus cannot be applied directly. The one of goals of this thesis is to over-

come such difficulty and rigorously connect (1.0.2) and (1.0.3) on the real

line, which may hint us for the description of a solution to (1.0.2) on general

ambient space. Indeed, we provide some results for (1.0.3) on Rd, which is

parallel to the results of the real line case.

Another content of this thisis is to study structural stability of (3.1.5).

More precisely, we consider the classic CS model (1.0.4) as a reference model

and consider the following problem:

If (p0
i , q

0
i ) = (x0

i , v
0
i ), then would G→ Id implies

(pi(t), qi(t))→ (xi(t), vi(t))?

We provide the structural stability in both microscopic and mesoscopic level.

To be more precise for the mesoscopic description, we first introduce and

study the well-posedness of the following Vlasov-type equation:

∂tf +G(p) · ∇qf +∇p · (F [f ]f) = 0, p, q ∈ Rd,

F [f ](p, q, t) :=

∫
R2d

ψ(|q∗ − q|)(G(p∗)−G(p))f(p∗, q∗, t)dp∗dq∗,

7



CHAPTER 1. INTRODUCTION

which is formally obtained by taking limit N →∞ to (1.0.3). We then study

the convergence of solution toward a solution of

∂tf + p · ∇qf +∇p · (F [f ]f) = 0, p, q ∈ Rd,

F [f ](p, q, t) :=

∫
R2d

ψ(|q∗ − q|)(p∗ − p)f(p∗, q∗, t)dp∗dq∗,

in a suitable sense. In this thesis, in the same vein as the previous paragraph,

we limit ourselves to the singular kernel. For a previous work regarding a

regular kernel, we refer to [4].

In summary, we address the following questions throughout the thesis:

• (Q1): What are the essential properties of the RCS model (1.0.6) that

cause flocking as the standard CS model (1.0.4) does? Under those

properties, can we expect the CS-type consensus model (1.0.3) to show

flocking behavior?

• (Q2): When the kernel ψ is singular, can we guarantee the well-posedness

of the solution? If so, can we expect some special interaction between

agents?

• (Q3): Can the solution to (1.0.4) converge to the solution to (1.0.3) in

suitable sense, as G converges to the identity map Id?

• (Q4): Can we consider the kinetic description of (1.0.3)? If so, what

will be the kinetic analog of answers to (Q1),(Q2), and (Q3)?

The rest of this thesis is organized as follows. In Chapter 2, we present the

relativistic Cucker-Smale model with a singular kernel and collision avoidance

property. In Chapter 3, the study first-order CS-type consensus model on the

real line and analysis of the effect of kernel depending on the regularity or

singularity at the origin or infinity. In Chapter 4, we discuss the asymptotic

dynamics of the CS-type consensus model and consider a further analysis

of results in the previous chapters. Finally, Chapter 5 is devoted to a brief

summary of our main results and some discussion on the remaining issues

for a future work.

8



Chapter 2

The relativistic Cucker-Smale

model with a singular kernel

In this chapter, we first present basic properties and preliminary lemmas for

the following RCS model

dxi
dt

= v̂(wi), t > 0, i ∈ [N ] := {1, . . . , N},

dwi
dt

=
1

N

N∑
k=1

φ(|xi − xk|) (v̂(wk)− v̂(wi)) ,

(xi(0), wi(0)) = (xini , w
in
i ) ∈ R2d,

(2.0.1)

with a singular communication weight and recall previous results for a regular

communication weight. Then, we consider a strongly singular communication

weight

φ(s) = s−α, α > 0, (2.0.2)

with α ∈ [1,∞). In this case, we provide the nonexistence of collisions for

non-collisional initial data and derive a global existence of solutions to (1.0.6)

with asymptotic flocking dynamics under suitable conditions on initial data

and communication weight function. On the other hand, weakly singular

communication weight with α ∈ (0, 1) is also considered. In this setting, we

present an explicit example leading to the finite-time collision for the two-

particle system, and then we derive a sufficient framework for the nonexis-

tence of collisions, so that system (1.0.6) yields a global solution satisfying

9



CHAPTER 2. THE RELATIVISTIC CUCKER-SMALE MODEL WITH
A SINGULAR KERNEL

asymptotic flocking. We note that this chapter is based on the joint work

[11].

Before we proceed further, we first clarify the the concept of asymptotic

flocking for (2.0.1). We define a concise notation for the spatial and velocity

configurations as

X := {xi}, V := {vi}, W := {wi}, Z := {(xi, wi)}.

Definition 2.0.1. Let Z be a global solution to the RCS model (1.0.6). Then

the RCS model exhibits asymptotic flocking if the following estimates hold:

sup
0≤t<∞

|xi(t)− xj(t)| <∞, lim
t→∞
|wi(t)− wj(t)| = 0, i, j ∈ [N ].

2.1 Introduction to the relativistic Cucker-

Smale model

2.1.1 The RCS model

We briefly discuss a derivation of (1.0.6) from the relativistic thermodynamic

CS model. Details can be found in [29].

Let (xi, vi, Ti) be the thermomechanical state consisting of position, ve-

locity and temperature of the i-th relativistic thermodynamic CS particle.

Then, the state dynamics is governed by the following coupled system of

first-order ODEs:

dxi
dt

= vi, t > 0, i ∈ [N ],

d

dt

(
Γivi

(
1 +

Γi
c2

))
=

1

N

N∑
j=1

φij

(
vjΓj
Tj
− viΓi

Ti

)
,

d

dt

(
ΓiTi + c2(Γi − 1)

)
=

1

N

N∑
j=1

ζij

(
Γi
Ti
− Γj
Tj

)
,

(2.1.1)

where Γi := Γ(vi) and we used handy notation for communication weights:

φij := φ(|xj − xi|) and ζij := ζ(|xj − xi|), i, j ∈ [N ].

10
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Note that in the relativistic regime with c � |vi|, we have the following

Taylor expansions for quantities related with Γi:

Γi = 1 +
|vi|2

2c2
+

3

8

|vi|4

c4
+ · · · , Γ2

i = 1 +
|vi|2

c2
+
|vi|4

c4
+ · · · ,

c2Γi(Γi − 1) =
|vi|2

2
+

5

8

|vi|4

c2
+ · · · .

Then, these yield

lim
c→∞

Γi = 1, lim
c→∞

c2(Γi − 1) =
|vi|2

2
.

Thus, in a classical limit c → ∞, the relativistic system (2.1.1) reduces to

the classical TCS model [35]:

dxi
dt

= vi, t > 0, i ∈ [N ],

dvi
dt

=
1

N

N∑
j=1

φij

(
vj
Tj
− vi
Ti

)
,

d

dt

(
Ti +

1

2
|vi|2

)
=

1

N

n∑
j=1

ζij

(
1

Ti
− 1

Tj

)
.

Now, we return to system (2.1.1). Following the principle of system in [29],

we set
Ti
Γi

= T ∗ = 1, i ∈ [N ],

and ignore the third equation (2.1.1)3 to derive the RCS model:
dxi
dt

= vi, t > 0, i ∈ [N ],

d

dt

(
Γivi

(
1 +

Γi
c2

))
=

1

N

N∑
j=1

φij (vj − vi) .

Since vi can be represented in terms of wi, F (vi) itself can be expressed

by wi. However, since the explicit representation of the map v̂ is extremely

complicated, we use the notation Fi := F (vi). We introduce Ψ : [0, c) →
[0,∞) defined as

Ψ(r) :=
cr√
c2 − r2

+
r

c2 − r2
.

11
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Then, it is easy to see

ŵ(vi) = Fi|vi|
vi
|vi|

=

(
c|vi|√
c2 − |vi|2

+
|vi|

c2 − |vi|2

)
vi
|vi|

= Ψ(|vi|)
vi
|vi|

.

Note that the map Ψ is bijective, and both Ψ and Ψ−1 are strictly increasing

in their arguments.

2.1.2 Preliminary lemmas

In this subsection, we study several estimates to be used in later sections.

Lemma 2.1.1. Let Z = Z(t) be a solution to system (1.0.6). Then, the

following assertions hold:

1. The total sum of wi is conserved:

N∑
i=1

wi(t) =
N∑
i=1

win
i , t > 0.

2. The maximal moduli of wi and vi decrease monotonically in time:

max
1≤i≤N

|wi(t)| ≤ max
1≤i≤N

|wi(s)|, max
1≤i≤N

|vi(t)| ≤ max
1≤i≤N

|vi(s)|, 0 ≤ s ≤ t.

In particular, if the initial speed is less than c, then the speed of particles

cannot exceed c:

|vinM | := max
1≤i≤N

|vini | < c =⇒ max
1≤i≤N

|vi(t)| ≤ |vinM | < c.

Proof. (1) Since φ is radially symmetric, we have φij = φji. Then, it follows

from (1.0.6)2 that

d

dt

N∑
i=1

wi =
1

N

N∑
i,j=1

φij (v̂(wj)− v̂(wi)) =
1

N

N∑
i,j=1

φij (v̂(wi)− v̂(wj)) = 0.

12
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(2) Let M be an index satisfying

|wM | := max
1≤i≤N

|wi|.

Again, we use (1.0.6)2 to derive

d|wM |2

dt
=

2

N

N∑
j=1

φMjwM · (vj − vM).

Since Ψ−1 is an increasing function, the map

|w| 7→ |w|
F

= Ψ−1(|w|)

is an increasing function of |w|. Therefore, by the maximality of wM and the

Cauchy-Schwarz inequality, we have

wM · (vj − vM) = wM ·
wj
Fj
− |wM |

2

FM

≤ |wM |
(
|wj|
Fj
− |wM |

FM

)
= |wM |

(
Ψ−1(|wj|)−Ψ−1(|wM |)

)
≤ 0,

for all j = 1, 2, . . . , N . Therefore, we obtain

d|wM |2

dt
≤ 0 for t > 0.

This implies the monotonicity of |wM |. Since the map Ψ−1 : |w| → |v| is an

increasing function, we get the monotonicity of |vM |.

Remark 2.1.1. Thanks to Lemma 3.1.3, without loss of generality, we may

assume
N∑
i=1

wi(t) = 0, t ≥ 0.

Lemma 2.1.2. Let Z = Z(t) be a solution to system (1.0.6) with initial

data:

max
1≤i≤N

|wini | ≤ Uw <∞.

13
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Then, there exists a positive constant CL = CL(Uw) such that

(1) CL|wi − wj| ≤ |v̂(wi)− v̂(wj)| ≤ |wi − wj|,
(2) C2

L|wi − wj|2 ≤ (wi − wj) · (v̂(wi)− v̂(wj)) ≤ |wi − wj|2.
(2.1.2)

Proof. (1) • (Derivation of the left inequality): We fix indices i and j and

denote them by 1 and 2. Without loss of generality, we assume |w1| ≥ |w2|.
We use the mean value theorem and monotonicity of the maximal modulus

of velocity to find

|w1 − w2| ≤ sup
|v|≤Ψ−1(|w1|)

‖ŵ′(v)‖op|v1 − v2|

≤ sup
|v|≤Ψ−1(Uw)

‖ŵ′(v)‖op|v1 − v2|,

where ‖ŵ′(v)‖op stands for the operator norm of the Jacobian of ŵ at v. On

the other hand, the Jacobian ŵ′(v) can be explicitly computed as

ŵ′ =

(
|v|2

(c2 − |v|2)
3
2

+
2|v|2

(c2 − |v|2)2

)
v ⊗ v
|v|2

+

(
c√

c2 − |v|2
+

1

c2 − |v|2

)
Id,

for |v| ≤ Ψ−1(Uw). Since the eigenvalues of v⊗v
|v|2 are 0 and 1 up to multiplicity,

eigenvalues of the symmetric matrix ŵ′ are given by

λ1(v) =
c√

c2 − |v|2
+

1

c2 − |v|2
and

λ2(v) =
c√

c2 − |v|2
+

1

c2 − |v|2
+

|v|2

(c2 − |v|2)
3
2

+
2|v|2

(c2 − |v|2)2
.

Therefore, the operator norm of the Jacobian ŵ′(v), the largest singular value,

is λ2(v). We use maxk=1,2 |vk(t)| ≤ |Ψ−1(Uw)| to achieve

sup
|v|≤Ψ−1(|w1|)

‖ŵ′(v)‖op = sup
|v|≤Ψ−1(Uw)

λ2(v) = λ2(Ψ−1(Uw)) =: C(Uw).

Hence, defining CL(Uw) = 1
C(Uw)

, we have the left inequality of (1).

• (Derivation of the right inequality): To show the right inequality of (1), we

note that

|v1(t)− v2(t)| ≤ sup
|w|≤Uw

‖v̂′(w)‖op|w1(t)− w2(t)|,

14
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where v̂′(w) is now the Jacobian of v̂ at w, which is an inverse of ŵ(v). Thus,

the eigenvalue of v̂′ is also the inverse of λ1 and λ2, and in particular, they

are smaller than 1. Therefore, the operator norm of v̂′(w) is also less than 1,

which implies the desired right inequality of (1).

(2) • (Derivation of the left inequality): Again, without loss of generality, we

assume |w1(t)| ≥ |w2(t)|. Then, it is easy to observe

|v1(t)| ≥ |v2(t)| and F1 ≥ F2 ≥ 1.

We use the above inequalities to obtain

(w1 − w2)·(v̂(w1)− v̂(w2))

= (F1v1 − F2v1 + F2v1 − F2v2) · (v1 − v2)

= F2|v1 − v2|2 + (F1 − F2) (v1 − v2) · v1

≥ F2|v1 − v2|2 ≥ |v1 − v2|2 ≥ C2
L|w1 − w2|2.

• (Derivation of the right inequality): Similarly, under the assumption |w1(t)| ≤
|w2(t)|,

(w1 − w2)·(v̂(w1)− v̂(w2))

=
1

F2

|w1 − w2|2 +

(
1

F1

− 1

F2

)
(w1 − w2) · w1

≤ 1

F2

|w1 − w2|2 ≤
c2

1 + c2
|w1 − w2|2 ≤ |w1 − w2|2.

This proves the right inequality.

Remark 2.1.2. (1) Since the Jacobian ŵ′(v) converges asymptotically to

the identity matrix as c → ∞, one has limc→∞ ‖ŵ′(v)‖op = 1, therefore

limc→∞CL = 1. Consequently, the estimate (2.1.2) implies the coincidence

of v and w, when relativistic effect is not taken into account via c → ∞.

This also agrees with our heuristic intuition. The constant CL depends on

both Uw and c, although the explicit formula for the dependency is extremely

complicated.
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(2) In [29, Lemma 6.6], the authors also obtained the following estimate:

(w1 − w2) · (v̂(w1)− v̂(w2)) ≥ γ(Uw)|w1 − w2|2,

and limc→∞ γ(Uw) = 1
2
. Therefore, Lemma 2.1.2 improves the estimate in

[29].

2.1.3 Previous results

In this subsection, we briefly review a global existence and asymptotic flock-

ing dynamics of the RCS model with bounded and Lipschitz communication

weights. Consider the RCS model with a bounded communication weight:

dxi
dt

= v̂(wi), t > 0, i ∈ [N ],

dwi
dt

=
1

N

N∑
k=1

φb(|xi − xk|) (v̂(wk)− v̂(wi)) ,

(xi(0), wi(0)) = (xini , w
in
i ) ∈ R2d,

(2.1.3)

where φb : R+ ∪ {0} → R+ is non-increasing function satisfying

‖φb‖L∞ ≤ φ∗b and [φb]Lip := sup
r 6=s∈R+∪{0}

|φb(r)− φb(s)|
|r − s|

<∞.

Assume that there exists a positive constant v0 < c such that max1≤i≤N |vini | <
v0. Then, the monotonicity of the radius of velocity (which still holds for the

regular communication weight) implies max1≤i≤N |vi(t)| < v0 for all t ≥ 0.

For asymptotic flocking estimate, we also introduce several Lyapunov

functionals:

Dx := max
1≤i,j≤N

|xi−xj|, Dw := max
1≤i,j≤N

|wi−wj|, Lw :=
1

2N

N∑
i,j=1

|wi−wj|2.

For notational simplicity, we set

φijb := φb(|xi − xj|), i, j ∈ [N ].

In the following two theorems, we summarize state-of-the-art results for the

RCS model with a regular and bounded communication weight.
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Theorem 2.1.1. [29] Let Z be a solution to (2.1.3) with the initial data Zin,

and let R be a positive constant such that

sup
0≤t<∞

max
1≤i≤N

|wi(t)| ≤ R.

Then the following assertions hold.

1. If φijb ≡ 1, then there exists a positive constant Λ(R) such that

Dw(t) ≤ Dw(0)e−Λ(R)t, t ≥ 0.

2. If φijb is constant and satisfies φm := mini,j φ
ij
b > 0, then, Lw decays

exponentially fast:

Lw(t) ≤ Lw(0)e−2Λ(R)φmt, t ≥ 0.

Theorem 2.1.2. [4] Let Z be a solution to (2.1.3) with initial data Zin.

Suppose that initial data Zin satisfy the following assumptions: for given

positive constants α, β and C, there exists a positive constant D∞x such that

β < φ(D∞x )α, Dx(0) +
Dw(0)

C(αφ(D∞x )− β)
< D∞x .

Then, there exists a positive constant Λ such that the following asymptotic

flocking emerges:

Dx(t) < D∞x , Dw(t) ≤ Dw(0)e−Λt, t ≥ 0.

2.2 Strongly singular communication weight

2.2.1 The collision avoidance

We study collision avoidance due to singular interactions for system (1.0.6) to

derive a global well-posedness. Since the communication weight φ is singular

at r = 0, local well-posedness problem will surface up at the instant in which

xi(t) = xj(t), i.e., two particles xi and xj collide. Thus, to obtain a global

well-posedness, it suffices to show that there will be no collisions in any finite

time interval. Our first main result is concerned with the nonexistence of

finite-time collisions.
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Theorem 2.2.1. Suppose that the communication weight φ is sufficiently

singular and non-collisional:

α ≥ 1, min
1≤i 6=j≤N

|xini − xinj | > 0.

Then, system (1.0.6) admits a unique non-collisional global-in-time solution

Z satisfying

min
1≤i 6=j≤N

|xi(t)− xj(t)| > 0, t ≥ 0.

Since the map v̂ in (3.1.4) is bounded and Lipschitz continuous by Lemma

2.1.2 and the communication weight φ(|xi−xj|) is regular unless xi = xj, we

may use the standard Cauchy-Lipschitz theory to guarantee the existence and

uniqueness of the local solution to (1.0.6), before collisions happen. Therefore,

it suffices to show that there are no collisions at any finite time for a global

well-posedness. This will be verified step by step.

In the sequel, collision avoidance will be verified via a contradiction ar-

gument. Suppose that the first collision occurs at time t0 ∈ (0,∞), and let

particle xl be the one of the particles colliding with other particles at time

t = t0. Moreover, we define the index set [l] as the set of indices of particles

colliding with xl at t = t0:

|xl − xj| → 0 as t↗ t0 for all j ∈ [l],

for some δ > 0, |xl − xk| ≥ δ > 0 in t ∈ [0, t0) for all k /∈ [l].

Now, we consider `2-norms of the system {(xi, wi)}i∈[l] by

‖W‖[l] :=

√∑
i,j∈[l]

|wi − wj|2, ‖V ‖[l] :=

√∑
i,j∈[l]

|vi − vj|2,

‖X‖[l] :=

√∑
i,j∈[l]

|xi − xj|2.
(2.2.1)

Then, it is straightforward to see that∣∣∣∣ ddt‖X‖2
[l]

∣∣∣∣ = 2

∣∣∣∣∣∣
∑
i,j∈[l]

(xi − xj) · (v̂(wi)− v̂(wj))

∣∣∣∣∣∣ ≤ 2‖X‖[l]‖V ‖[l].
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This and (2.1.2) yield ∣∣∣∣ ddt‖X‖[l]

∣∣∣∣ ≤ ‖V ‖[l] ≤ ‖W‖[l]. (2.2.2)

Next, we estimate the term ‖W‖[l] as

1

2

d

dt
‖W‖2

[l] =
∑
i,j∈[l]

(wi − wj) ·
(
dwi
dt
− dwj

dt

)

=
1

N

∑
i,j∈[l]

N∑
k=1

(wi − wj) · (φ(|xk − xi|)(v̂(wk)− v̂(wi))

− φ(|xk − xj|)(v̂(wk)− v̂(wj)))

=:
1

N

∑
i,j∈[l]

N∑
k=1

Aijk =
1

N

∑
i,j,k∈[l]

Aijk +
1

N

∑
i,j∈[l],k /∈[l]

Aijk

=: I11 + I12.

Note that I11 and I12 involve with colliding particles with xl and non-colliding

particles with xl, respectively.

In the following two lemmas, we provide estimates for I1i one by one.

Lemma 2.2.1. The term I11 satisfies

I11 ≤ −
CL|[l]|

2N
φ(‖X‖[l])‖W‖2

[l] =: −C1φ(‖X‖[l])‖W‖2
[l],

where |[l]| denotes the cardinality of the set [l].

Proof. Since i, j and k are in the same index set [l], we may use index switch-

ing trick (i↔ k), Lemma 2.1.2 and definition of ‖X‖[l] and ‖W‖[l] to estimate

I11:

I11 =
2

N

∑
i,j,k∈[l]

(wi − wj) · (φki(v̂(wk)− v̂(wi)))

=
1

N

∑
i,j,k∈[l]

(wi − wj) · (φki(v̂(wk)− v̂(wi)))
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+
1

N

∑
i,j,k∈[l]

(wk − wj) · (φki(v̂(wi)− v̂(wk)))

=
1

N

∑
i,j,k∈[l]

φki(wi − wk) · (v̂(wk)− v̂(wi))

≤ −CL|[l]|
N

∑
i,j∈[l]

φij|wi − wj|2

≤ −CL|[l]|
N

φ(‖X‖[l])‖W‖2
[l] =: −C1φ(‖X‖[l])‖W‖2

[l].

Lemma 2.2.2. The term I12 satisfies

I12 ≤
2UvLδ(N − |[l]|)

N
‖W‖[l]‖X‖[l] =: C2‖X‖[l]‖W‖[l],

when Lδ is the Lipschitz constant of φ in (δ,∞).

Proof. By construction, we have

|xi − xk| > δ and |xj − xk| > δ for i, j ∈ [l] and k /∈ [l].

Then, one has

I12 =
1

N

∑
i,j∈[l],k /∈[l]

(wi − wj) · (φki(v̂(wk)− v̂(wi))− φkj(v̂(wk)− v̂(wj)))

=
1

N

∑
i,j∈[l],k /∈[l]

(wi − wj) · [φki(v̂(wj)− v̂(wi))

+ (φki − φkj)(v̂(wk)− v̂(wj))]

≤ 1

N

∑
i,j∈[l],k /∈[l]

(φki − φkj)(wi − wj) · (v̂(wk)− v̂(wj))

≤ Lδ
N

∑
i,j∈[l],k /∈[l]

|xi − xj||wi − wj||v̂(wk)− v̂(wj)|.

The monotonicity of v̂ in Lemma 3.1.3 implies

|v̂(wk)− v̂(wj)| = |vk − vj| ≤ |vk|+ |vj| ≤ 2Uv,
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where Uv is a constant satisfying max1≤i≤N |vini | ≤ Uv. Therefore, we further

estimate I12 as

I12 ≤
2UvLδ
N

∑
i,j∈[l],k /∈[l]

|xi − xj||wi − wj|

=
2UvLδ(N − |[l]|)

N

∑
i,j∈[l]

|xi − xj||wi − wj|

≤ 2UvLδ(N − |[l]|)
N

‖X‖[l]‖W‖[l] =: C2‖X‖[l]‖W‖[l].

Now, we are ready to provide a proof of Theorem 3.1.

Proof of Theorem 2.2.1: It follows from Lemma 3.2.1 and Lemma 2.2.2

to get
1

2

d

dt
‖W‖2

[l] ≤ −C1φ(‖X‖[l])‖W‖2
[l] + C2‖X‖[l]‖W‖[l].

This yields
d

dt
‖W‖[l] ≤ −C1φ(‖X‖[l])‖W‖[l] + C2‖X‖[l].

By Grönwall’s lemma, we have

‖W‖[l](t)

≤
[
C2

∫ t

s

‖X‖[l](τ)eC1

∫ τ
s φ(‖X‖[l](σ))dσdτ + ‖W‖[l](s)

]
e−C1

∫ t
s φ(‖X‖[l](τ))dτ ,

(2.2.3)

for any s, t with 0 ≤ s ≤ t < t0. Now, let Φ be the primitive of φ:

Φ(r) :=

∫ r

r0

φ(s) ds =


log

r

r0

, if α = 1,

1

1− α
(
r1−α − r1−α

0

)
, if α > 1.
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Then, one has

|Φ(‖X‖[l](t))| =
∣∣∣∣∫ t

s

d

dt
Φ(‖X‖[l](τ))dτ + Φ(‖X‖[l](s))

∣∣∣∣
=

∣∣∣∣∫ t

s

φ(‖X‖[l](τ))

(
d

dt
‖X‖[l](τ)

)
dτ + Φ(‖X‖[l](s))

∣∣∣∣
≤
∫ t

s

φ(‖X‖[l](τ))‖W‖[l](τ)dτ︸ ︷︷ ︸
=:J

+|Φ(‖X‖[l](s))|,

(2.2.4)

where we used (2.2.2) in the last inequality.

On the other hand, we use (2.2.3) to further estimate J as

J ≤
∫ t

s

φ(‖X‖[l](τ))

×
[
C2

∫ τ

s

‖X‖[l](σ)eC1

∫ σ
s φ(‖X‖[l](ρ))dρdσ + ‖W‖[l](s)

]
× e−C1

∫ τ
s φ(‖X‖[l](σ))dσdτ

=

∫ t

s

φ(‖X‖[l](τ))

×
[
C2

∫ τ

s

‖X‖[l](σ)eC1

∫ σ
s φ(‖X‖[l](ρ))dρdσ

]
e−C1

∫ τ
s φ(‖X‖[l](σ))dσdτ

+ ‖W‖[l](s)

∫ t

s

φ(‖X‖[l](τ))e−C1

∫ τ
s φ(‖X‖[l](σ))dσdτ

=: I21 + I22.

(2.2.5)

In the sequel, we estimate I2i, i = 1, 2 one by one.

• (Estimate of I21): It follows from Lemma 3.1.3 that there exists a positive

constant C3 = C3(t0) such that

max
{
C2‖X‖[l], ‖W‖[l]

}
< C3, t ∈ [0, t0).

Therefore, we have

I21 ≤ C3

∫ t

s

(∫ τ

s

eC1

∫ σ
s φ(‖X‖[l](ρ))dρdσ

)
φ(‖X‖[l](τ))e−C1

∫ τ
s φ(‖X‖[l](σ))dσdτ.
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Now, we use the following relation

φ(‖X‖[l](τ))e−C1

∫ τ
s φ(‖X‖[l](σ))dσ = − d

dτ

1

C1

e−C1

∫ τ
s φ(‖X‖[l](σ))dσ,

and integration by parts to obtain

I21 ≤
C3

C1

[
−
∫ t

s

eC1

∫ τ
s φ(‖X‖[l](σ))dσdτ e−C1

∫ t
s φ(‖X‖[l](τ))dτ

+

∫ t

s

eC1

∫ τ
s φ(‖X‖[l](σ))dσe−C1

∫ τ
s φ(‖X‖[l](σ))dσdτ

]
≤ C3

C1

t0.

(2.2.6)

• (Estimate of I22): Similar to I21, one has

I22 ≤
C3

C1

(
1− e−C1

∫ t
s φ(‖X‖[l](τ))dτ

)
≤ C3

C1

. (2.2.7)

In (2.2.5), we combine (2.2.6) and (2.2.7) to find

J =

∫ t

s

φ(‖X‖[l](τ))‖W‖[l](τ)dτ ≤ C3

C1

(t0 + 1). (2.2.8)

We substitute (2.2.8) into (2.2.4) to get∣∣Φ(‖X‖[l](t))
∣∣ < C3

C1

(t0 + 1) +
∣∣∣Φ(‖X‖[l](s))

∣∣∣, 0 ≤ s ≤ t < t0.

In particular, since the initial data are non-collisional, we have the bounded-

ness of Φ(‖X‖[l](t)):∣∣Φ(‖X‖[l](t))
∣∣ < C3

C1

(t0 + 1) +
∣∣∣Φ(‖X‖[l](0))

∣∣∣ < +∞, 0 ≤ t < t0. (2.2.9)

However, since the index set [l] is the collisional set at time t0, we have

lim
t↗t0
‖X‖[l](t) = 0.

This implies

lim
t↗t0
|Φ(‖X‖[l](t))| =∞,

which is contradictory to (2.2.9). Therefore, we conclude that particles do

not collide at any finite time t0, and we have a global solution to (1.0.6).
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2.2.2 Asymptotic flocking dynamics

In this subsection, we provide asymptotic flocking dynamics of a global so-

lution whose existence is guaranteed by the previous subsection under the

conditions that the initial configuration is non-collisional and α ≥ 1. Similar

to (2.2.1), we set:

‖X‖ :=

√√√√ N∑
i=1

|xi|2, ‖V ‖ :=

√√√√ N∑
i=1

|vi|2, ‖W‖ :=

√√√√ N∑
i=1

|wi|2. (2.2.10)

Lemma 2.2.3. Suppose the communication weight (3.2.2) is sufficiently sin-

gular and initial configuration is non-collisional:

α ≥ 1, and min
1≤i 6=j≤N

|xini − xinj | > 0.

Then, for a global solution Z to (1.0.6), the functionals of (2.2.10) satisfy:∣∣∣∣ ddt‖X‖
∣∣∣∣ ≤ ‖W‖, d

dt
‖W‖ ≤ −C2

Lφ(
√

2‖X‖)‖W‖, t > 0. (2.2.11)

Proof. In the sequel, we derive the estimates (2.2.11) one by one.

• (First estimate in (2.2.11)): by definition of ‖X‖, one has∣∣∣∣ ddt‖X‖2

∣∣∣∣ = 2

∣∣∣∣∣
N∑
i=1

xi · v̂(wi)

∣∣∣∣∣ ≤ 2‖X‖‖V ‖.

This and Lemma 2.1.2 yield∣∣∣∣ ddt‖X‖
∣∣∣∣ ≤ ‖V ‖ ≤ ‖W‖.

• (Second estimate in (2.2.11)): we use (1.0.6) to find

d

dt
‖W‖2 =

2

N

N∑
i,j=1

φijwi · (v̂(wj)− v̂(wi))
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=
1

N

N∑
i,j=1

φij(wj − wi) · (v̂(wi)− v̂(wj))

≤ −C
2
L

N

N∑
i,j=1

φij|wi − wj|2 ≤ −C2
Lφ(
√

2‖X‖) 1

N

N∑
i,j=1

|wi − wj|2

= −2C2
Lφ(
√

2‖X‖)

(
N∑
i=1

|wi|2
)

= −2C2
Lφ(
√

2‖X‖)‖W‖2.

This yields the desired estimate.

Finally, we employ the Lyapunov functional approach in [33] and Lemma

2.2.3 to derive the following flocking estimate.

Theorem 2.2.2. Suppose the communication weight (3.2.2) and initial data

satisfy:

α ≥ 1, min
1≤i 6=j≤N

|xini − xinj | > 0, ‖W (0)‖ < C2
L√
2

∫ +∞

√
2‖X(0)‖

φ(s) ds, (2.2.12)

and let Z be a global solution to (1.0.6). Then, there exists a positive constant

x∞ < +∞ such that

sup
0≤t<∞

‖X(t)‖ ≤ x∞√
2
, ‖W (t)‖ ≤ ‖W (0)‖e−CLφ(x∞)t, t ≥ 0.

Proof. • Step A (Uniform bound for ‖X‖): First, we use (2.2.12)3 to see that

there exists a positive constant x∞ < +∞ such that

‖W (0)‖ =
C2
L√
2

∫ x∞

√
2‖X(0)‖

φ(s) ds.

Now, we introduce the Lyapunov functional L:

L(t) :=
C2
L√
2

∫ √2‖X(t)‖

√
2‖X(0)‖

φ(s) ds+ ‖W (t)‖. (2.2.13)

Then, it follows from Lemma 2.2.3 that

dL
dt

= C2
Lφ(
√

2‖X(t)‖)d‖X(t)‖
dt

+
d‖W (t)‖

dt

≤ C2
Lφ(
√

2‖X(t)‖)‖W (t)‖ − C2
Lφ(
√

2‖X(t)‖)‖W (t)‖ = 0.

(2.2.14)

25



CHAPTER 2. THE RELATIVISTIC CUCKER-SMALE MODEL WITH
A SINGULAR KERNEL

By (2.2.13) and (2.2.14), one has

C2
L√
2

∫ √2‖X(t)‖

√
2‖X(0)‖

φ(s) ds+ ‖W (t)‖ = L(t)

≤ L(0) = ‖W (0)‖ =
C2
L√
2

∫ x∞

√
2‖X(0)‖

φ(s) ds.

This implies the uniform boundedness of X:

sup
0≤t<∞

‖X(t)‖ ≤ x∞√
2
. (2.2.15)

• Step B (Exponential decay of ‖W‖): We use (2.2.11)2 and (2.2.15) to get

d

dt
‖W‖ ≤ −C2

Lφ(
√

2‖X‖)‖W‖ ≤ −C2
Lφ(x∞)‖W‖.

This implies the desired result:

‖W (t)‖ ≤ ‖W (0)‖e−C2
Lφ(x∞)t, t ≥ 0.

Remark 2.2.1. The role of condition α ≥ 1 is to guarantee the global well-

posedness of (1.0.6). If a solution of (1.0.6) is globally well-posed, then results

of Section 2.2 can be applied, whether the kernel is strongly singular or weakly

singular. We will revisit this aspect in the proof of Proposition 2.3.1.

2.3 Weakly singular communication weight

In this section, we study existence and non-existence of finite-time collisions

for system (1.0.6) with weakly singular communication weight (e.g., long-

ranged interactions):

φ(r) := r−α, 0 < α < 1.

First, we present a simple example of initial data leading to the finite-time

collision for a two-particle system, and then provide sufficient conditions on

initial data so that there are no collisions, both in finite time and asymptot-

ically.
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2.3.1 Existence of finite-time collisions

In this subsection, we provide an example of finite-time collisions using the

two-particle system on a real line:

dx1

dt
= v̂(w1),

dx2

dt
= v̂(w2), t > 0,

dw1

dt
=
v̂(w2)− v̂(w1)

2|x1 − x2|α
,

dw2

dt
=
v̂(w1)− v̂(w2)

2|x1 − x2|α
, α ∈ (0, 1),

(x1(0), x2(0), w1(0), w2(0)) = (xin1 , x
in
2 , w

in
1 , w

in
2 ) ∈ R4.

(2.3.1)

In the following proposition, we construct special initial data leading to a

finite-time collision.

Proposition 2.3.1. There exist noncollisional initial data {(xini , wini )}2
i=1

such that a solution to (2.3.1) subject to it has a finite-time collision, i.e.,

there exists tc ∈ (0,∞) such that

x1(tc) = x2(tc).

Proof. Consider the initial data {(xini , wini )} satisfying

xin1 < xin2 , win2 − win1 +
(xin2 − xin1 )1−α

1− α
= 0. (2.3.2)

Suppose there is no finite-time collision. Then, we have

x1(t) < x2(t) for all t > 0.

Then it follows from (2.3.1) that

d

dt
(w2 − w1) = − v2 − v1

|x2 − x1|α
= − 1

(x2 − x1)α
d

dt
(x2 − x1) = − d

dt

(x2 − x1)1−α

1− α
.

(2.3.3)

We integrate (2.3.3) over (0, t) to obtain

(w2(t)− w1(t))− (win2 − win1 ) = −(x2(t)− x1(t))1−α − (xin2 − xin1 )1−α

1− α
.

(2.3.4)
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From the choice of initial configuration (2.3.2), the relation (2.3.4) reduces

to

w2(t)− w1(t) = −(x2(t)− x1(t))1−α

1− α
. (2.3.5)

On the other hand, it follows from Lemma 2.1.2 that

CL(w2 − w1)2 ≤ (w2 − w1)(v2 − v1), (2.3.6)

and since the right-hand side of (2.3.5) is negative, we get

w2 − w1 < 0.

Therefore, we may divide w2 − w1(< 0) on both sides of (2.3.6) to obtain

d

dt
(x2 − x1) = v2 − v1 ≤ CL(w2 − w1) = −CL(x2 − x1)1−α

1− α
, (2.3.7)

where CL is a constant obtained in Lemma 2.1.2. Then, Grönwall’s inequality

yields

x2(t)− x1(t) ≤ (xin2 − xin1 )e
−

∫ t
0

CL
(1−α)(x2(s)−x1(s))α

ds
. (2.3.8)

On the other hand, since we assume that there is no finite-time collision,

system (1.0.6) is globally well-posed and therefore, we may use the previous

result in Theorem 2.2.2. However, since we assume 0 < α < 1, the communi-

cation weight φ is non-integrable at the infinity, and therefore, the condition

(2.2.12) always holds. Thus, there exists a uniform upper bound xM of |x1|
and |x2|:

max{|x1(t)|, |x2(t)|} ≤ xM <∞, t > 0.

We use an upper bound of |xi(t)| to observe that the exponent of (2.3.8)

tends to −∞ as t→∞:

−
∫ t

0

CL
(1− α)(x2 − x1)α

ds ≤ − CLt

(1− α)(2xM)α
−→
t→∞
−∞.

This implies

lim
t→∞

(x2(t)− x1(t)) = 0.
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Therefore, we can find an increasing sequence of times {tn}∞n=1 by

tn := inf
{
t : x2(s)− x1(s) ≤ 2−n whenever s ≥ t

}
, n ∈ N ∪ {0}.

By definition, we have

x2(tn)− x1(tn) = 2−n, and x2(t)− x1(t) ≤ 2−n for t ≥ tn.

Again, we apply Grönwall’s inequality to (2.3.7) to derive

x2(tn+1)− x1(tn+1) ≤ (x2(tn)− x1(tn))e
−

∫ tn+1
tn

CL
(1−α)(x2(s)−x1(s))α

ds
.

Therefore, one has

log 2 ≥
∫ tn+1

tn

CL
(1− α)(x2(s)− x1(s))α

ds ≥ (tn+1 − tn)
CL2αn

1− α
. (2.3.9)

However, for each n ∈ N, the relation (2.3.9) implies

tn = t0 +
n−1∑
k=0

(tk+1 − tk) ≤ t0 +
(1− α) log 2

CL

n−1∑
k=0

2−αk < t0 +
(1− α) log 2

CL(1− 2−α)
.

Hence, there exists a limit limn→∞ tn = t∞ < +∞ satisfying

x2(t∞)− x1(t∞) = lim
n→∞

(x2(tn)− x1(tn)) ≤ lim
n→∞

2−n = 0,

which is contradictory to the absence of finite-time collision. Therefore, the

collision will occur at some finite time tc < +∞.

Thus, for a weakly singular communication weight satisfying (2.3.2), we

can obtain a finite-time collision depending on the geometry of initial config-

uration. In next subsection, we provide sufficient conditions which guarantee

the nonexistence of collisions.

2.3.2 Sufficient conditions for collision avoidance

In this subsection, we present sufficient conditions for collision avoidance

when the singularity is weak. As we observe in the previous subsection, we

cannot guarantee the collision-free property of system (1.0.6), regardless of
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initial data, when 0 < α < 1. Therefore, if one wants to get a collision-free

property for 0 < α < 1, an extra condition on the geometry of the initial

configuration is needed. In this part, we present a sufficient condition on

initial data that guarantee collision avoidance. We use the flocking estimate

in Section 3.2 to obtain the absence of finite-time collisions.

Theorem 2.3.1. Suppose the communication weight (3.2.2) and initial data

satisfy

0 < α < 1, min
1≤i 6=j≤N

|xini − xinj | > 0,

‖W (0)‖ < C2
L√
2

min

{∫ x∞

√
2‖X(0)‖

φ(s) ds, φ(x∞) min
1≤i,j≤N

|xini − xinj |
}
,

(2.3.10)

for some positive constant x∞ < +∞. Then, the following assertions hold.

1. There exists a global-in-time solution {(xini , wini )}Ni=1 and a constant

δ0 > 0 such that

inf
0≤t<∞

min
1≤i,j≤N

|xi(t)− xj(t)| ≥ δ0.

2. Asymptotic flocking emerges:

‖X(t)‖ ≤ x∞√
2
, ‖W (t)‖ ≤ ‖W (0)‖e−C2

Lφ(x∞)t, t ≥ 0.

Proof. (i) Since the initial data is non-collisional, there exists at least local-

in-time solution {(xi, wi)}Ni=1 to (1.0.6). We now assume that there exists a

critical time t∗ such that the first collision occurs at time t∗. We denote two

particles colliding at time t∗ by xi and xj. In particular, one has

lim
t→t∗
|xi(t)− xj(t)| = 0. (2.3.11)

Since initial data satisfy (2.3.10), Theorem 2.2.2 implies

‖X(t)‖ ≤ x∞√
2

and ‖W (t)‖ ≤ ‖W (0)‖e−C2
Lφ(x∞)t, 0 ≤ t < t∗. (2.3.12)
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Now, we estimate |xi(t)− xj(t)| as

|xi(t)− xj(t)| ≥ |xini − xinj | −
∫ t

0

|vi(s)− vj(s)| ds. (2.3.13)

On the other hand, it follows from (2.3.12) that

|vi(s)− vj(s)| ≤ |wi(s)− wj(s)| ≤ |wi(s)|+ |wj(s)|

≤
√

2(|wi(s)|2 + |wj(s)|2)

≤
√

2‖W (s)‖ ≤
√

2‖W (0)‖e−C2
Lφ(x∞)s.

Therefore, one has∫ t

0

|vi(s)− vj(s)| ds ≤
√

2‖W (0)‖
∫ t

0

e−C
2
Lφ(x∞)s ds ≤

√
2‖W (0)‖
C2
Lφ(x∞)

.

We substitute the above estimate into (2.3.13) to obtain

|xi(t)− xj(t)| ≥ |xini − xinj | −
√

2‖W (0)‖
C2
Lφ(x∞)

> 0, 0 ≤ t < t∗,

where the last inequality comes from the initial condition (2.3.10). This con-

tradicts to (2.3.11). Therefore, there is no finite-time collision, and the so-

lution {(xi, wi)}Ni=1 can be extended globally in time and thus, the flocking

estimate (2.3.12) holds for the whole time t ≥ 0. Moreover, we choose

δ0 := min
1≤i,j≤N

|xini − xinj | −
√

2‖W (0)‖
C2
Lφ(x∞)

.

This yields the desired uniform boundedness for relative distances.

Remark 2.3.1. Since Theorem 3.3.1 does not depend on the singularity of

the communication weight, the same result holds for the case when α ≥ 1

as well, which can guarantee the existence of the uniform lower bound of the

distance between particles.
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Chapter 3

The first-order CS-type

consensus model on the real

line

In this chapter, we are interested in a general nonlinear first-order consen-

sus model motivated by the RCS model and study its emergent dynamics.

We first present a heuristic derivation of the general first-order consensus

model (3.1.4) and recall previous results on the collective behaviors of the

first-order consensus model (3.1.1), and then we show that ordering princi-

ple holds for system (3.1.5), when the communication weight is regular. We

then present the detailed analysis on the asymptotic clustering behaviors of

(3.1.5), when the regular communication weight is long-ranged and short-

ranged, respectively, and we study collective behaviors for system (3.1.5)

with singular coupling function. Finally, we provide structural stability from

the general consensus model (3.1.5) to the standard one (3.1.1). We note that

this chapter is based on the joint work [10].

Notation: Throughout the Chapter 3 and Chapter 4, for state configuration

{qi} and natural velocity {νi}, we set a natural velocity vector, state vector

and a derivative of state vector by N , Q and P , respectively:

Q(t) := (q1(t), . . . , qN(t)), P (t) := (q̇1(t), . . . , q̇N(t)),

Q0 := Q(0), P 0 := P (0), N := (ν1, ν2, · · · , νN).
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3.1 Consensus model on the real line

3.1.1 The CS-type consensus model on the real line

To set the stage, we begin with the first-order nonlinear consensus model

introduced in [34] which combines the Kuramoto model and one-dimensional

Cucker-Smale model as special examples. More precisely, let qi = qi(t) be the

real-valued quantifiable state of the i-th agent lying on the one-dimensional

manifold M such as S1 and R1. In [34], the following consensus model was

proposed:

q̇i = νi +
κ

N

N∑
k=1

Ψ(qk − qi), i ∈ [N ] := {1, . . . , N}, (3.1.1)

where νi is the natural rate of changes (natural velocity for simplicity) of

the i-th agent. In the context of flocking, coupling function Ψ is typically

assumed to be odd, differentiable and monotonically increasing:

Ψ(−q) = −Ψ(q), Ψ′(q) ≥ 0, ∀ q ∈ R. (3.1.2)

The following choices:

(M,Ψ(q)) : (S1, sin q),

(
R1,

∫ q

0

ψ(η)dη

)
,

correspond to the Kuramoto model and the Cucker-Smale model on the real

line with a nonnegative communication weight ψ, respectively (see a general

consensus model [34]). Note that assumptions on a communication function

depends on the realization of the consensus behavior; for example, choice

of (M,Ψ(q)) = (S1, sin q) in the Kuramoto model is based on the context

of synchronization, and does not obey (3.1.2). The emergent dynamics of

(3.1.1) were extensively studied in [8, 21, 31, 28, 34, ?, 39, 40]. Throughout

the thesis, in addition to (3.1.2), we suppose

ψ := Ψ′ is decreasing on [0,∞), (3.1.3)

which is a typical assumption on the communication weight ψ for the flock-

ing models. In this thesis, we are interested in the clustering dynamics of

generalized model for (3.1.1)–(3.1.2).
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We first propose an abstract consensus model by replacing the time-

derivative q̇i by a suitable increasing function of q̇i:

F (q̇i) = νi +
κ

N

N∑
k=1

Ψ(qk − qi), qi(0) = q0
i , i ∈ [N ], (3.1.4)

where F : R → R is a odd function which is strictly increasing and differ-

entiable. Equivalently system (3.1.4) can be rewritten as a more convenient

form:

q̇i = G

(
νi +

κ

N

N∑
k=1

Ψ(qk − qi)

)
, qi(0) = q0

i i ∈ [N ], (3.1.5)

where we call G = F−1 as an “activation function” borrowing terminology

from deep learning, and we also assume that there exist positive constants

mG′ and MG′ such that

0 < mG′ ≤ G′(q) ≤MG′ <∞, ∀ q ∈ R. (3.1.6)

Note that G(−q) = −G(q) since F is odd. The most simplest and motivating

example for G will be the identity mapping G(q) = q. In this case, system

(3.1.4) reduces to system (3.1.1). If we set qi = xi and G = v̂, then sys-

tem (3.1.5) corresponds to the RCS model (1.0.6). See Chapter 1 for other

nontrivial examples of an activation function.

In this chapter, we will provide emergent dynamics of (3.1.5) depending

on the behaviors of the communication weight function ψ := Ψ′ at q = 0 and

q =∞:

Type I :

∫ ∞
0

ψ(q) dq =∞ : Regular, long-ranged communication weight,

Type II :

∫ ∞
0

ψ(q) dq <∞ : Regular, short-ranged communication wight,

Type III : ψ(q) =
1

|q|α
, α > 0, q 6= 0 : Singular communication weight.

(3.1.7)

Due to the singularity at the origin, the coupling kernel of Type III should

be treated in a different manner. For details, we refer to Section 4.4.
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3.1.2 Previous results

We briefly summarize previous results on the abstract consensus model (3.1.5)

with G(x) = x. First, we recall several concepts of clustering as follows.

Definition 3.1.1. Let {qi} be a solution to (3.1.5). Then, the following as-

sertions hold.

1. The i-th and j-th particles belong to the same cluster, if the relative

state is uniformly bounded in time:

sup
t≥0
|qi(t)− qj(t)| <∞.

2. The i-th and j-th particles segregates if the relative state satisfies

lim inf
t→∞

|qi(t)− qj(t)| =∞.

3. The configuration is asymptotically state-locked if the relative states

satisfy

lim sup
t→∞

max
i 6=j
|qi(t)− qj(t)| <∞.

In the sequel, we recall previous clustering results for system (3.1.5) with

the identity map for G:

G(q) = q, q ∈ R.

In this case, system (3.1.5) becomes
q̇i = νi +

κ

N

N∑
k=1

Ψ(qk − qi), i ∈ [N ],

Ψ(−q) = −Ψ(q), qi(0) = q0
i , q ∈ R.

(3.1.8)

Unlike to the abstract model (3.1.4), system (3.1.8) has a conserved quantity.

For a given configuration {(qi, νi)}, we set

C[t] :=
1

N

N∑
i=1

qi −
t

N

N∑
i=1

νi, t ≥ 0.
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Lemma 3.1.1. Let {qi} be a global solution to (3.1.8). Then, the functional

C[t] is time-invariant.

C[t] = C[0], t ≥ 0.

Proof. We sum up (3.1.8)1 over all i to find

d

dt

N∑
i=1

qi =
N∑
i=1

νi +
κ

N

N∑
i,k=1

Ψ(qk − qi) =
N∑
i=1

νi.

This yields the desired estimate.

Next, we recall clustering dynamics of (3.1.8).

Proposition 3.1.1. [31, 34] Suppose the coupling function Ψ is short-ranged

in the sense that

0 < Ψ∞ := lim
q→∞

Ψ(q) <∞,

and let {qi} be a solution to (3.1.4). If i < j, the initial states q0
i and q0

j

satisfy

q0
i < q0

j ,

then the following trichotomy holds.

1. If νi < νj, then qi and qj will never collide in finite time:

|{t∗ ∈ (0,∞) : qi(t∗) = qj(t∗)}| = 0,

where |A| is the cardinality of the set A.

2. If νi > νj, qi and qj will collide once in finite time:

|{t∗ ∈ (0,∞) : qi(t∗) = qj(t∗)}| = 1.

3. If νi = νj, then the relative distance |qi−qj| decays to zero exponentially

fast:

|q0
i − q0

j | exp (−κψM t) ≤ |qi(t)− qj(t)|

≤ |q0
i − q0

j | exp
(
− κ
N
ψ(|q0

i − q0
j |)t
)
, t ≥ 0,

where ψM := max
−∞<r<∞

ψ(r).
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Remark 3.1.1. By Lemma 3.1.1 and Proposition 3.1.1, we may assume the

ordering and mean-zero properties of initial states without loss of generality:

q0
1 ≤ · · · ≤ q0

N ,
1

N

N∑
i=1

q0
i = 0,

N∑
i=1

νi = 0.

Moreover, this imply

q1(t) ≤ · · · ≤ qN(t),
1

N

N∑
i=1

qi(t) = 0, ∀ t ≥ 0.

Next, we recall asymptotic clustering of (3.1.1).

Proposition 3.1.2. [31, 34] Suppose the natural velocity νi is well-ordered

and has mean zero:

ν1 < ν2 · · · < νN and
N∑
i=1

νi = 0,

and let {qi} be a solution to (3.1.1) with initial data {q0
i }. Then, the following

assertions hold:

1. The state configuration is completely segregated:

lim sup
t→+∞

q1(t) = −∞, lim inf
t→+∞

qN(t) =∞,

lim inf
t→+∞

|qi+1(t)− qi(t)| =∞, i ∈ [N − 1]

if and only if the coupling strength κ is sufficiently small such that

κ < min
{
− N

N − 1
· ν1

Ψ∞
,
N

2
· (ν2 − ν1)

Ψ∞
,

· · · , N
2
· (νN − νN−1)

Ψ∞
,

N

N − 1
· νN

Ψ∞

}
.

2. The state configuration is asymptotically state-locked:

∃ q∞ij := lim
t→∞
|qi(t)− qj(t)|, i, j ∈ [N ].

if and only if the coupling strength κ is sufficiently large such that

κ > max
1≤`≤N−1

(
−1

l

∑l
i=1 νi

(N−l)
N

Ψ∞

)
,
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Remark 3.1.2. In [31], the authors provided a criterion to estimate the

number of asymptotic clusters and asymptotic group velocity of each cluster in

terms of initial data and coupling strength. For the singular coupling function,

we refer to the recent work [55].

3.1.3 Ordering principle for state configuration

We present the ordering principle of system (3.1.5)–(3.1.6) with the regular

and long-ranged communication weight which is parallel to Proposition 3.1.1.

For convenience, we assume

ψ0 := ψ(0) = 1.

In what follows, we show that the positions of the particles are aligned ac-

cording to the size of their natural velocities.

Theorem 3.1.1. Let {qi} be a solution to (3.1.5)–(3.1.6) with initial data

{q0
i }. For fixed indices i and j(i 6= j), we assume

q0
i > q0

j .

Then the following trichotomy holds.

1. If νi > νj, then qi and qj will not collide in finite time:

qi(t) > qj(t) for all t ≥ 0.

2. If νi < νj, then qi and qj will collide exactly once, i.e., there exists a

time t∗ ∈ [0,∞) such that

qi(t) > qj(t) for 0 ≤ t ≤ t∗, qi(t
∗) = qj(t

∗)

and qi(t) < qj(t) for t > t∗.

3. If νi = νj, then qi and qj will not collide in finite time, and the relative

distance |qi − qj| satisfies

0 < (q0
i − q0

j )e
−MG′κt ≤ qi(t)− qj(t) ≤ (q0

i − q0
j )e
−

2ψ(q0i−q0j)mG′κ
N

t, t ≥ 0.
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Proof. (1) Suppose that there exists a finite-time collision, and let t∗ be the

first collision time such that

qi(t) > qj(t) 0 ≤ t < t∗ and qi(t
∗) = qj(t

∗). (3.1.9)

Then, we use (3.1.5), νi > νj, (3.1.9) and the mean-value theorem to get

d

dt
(qi − qj)

∣∣∣∣∣
t=t∗

= G

(
νi +

κ

N

N∑
k=1

Ψ(qk(t
∗)− qi(t∗))

)

−G

(
νj +

κ

N

N∑
k=1

Ψ(qk(t
∗)− qj(t∗))

)

= G′(yij)

νi − νj︸ ︷︷ ︸
>0

+
κ

N

N∑
k=1

(Ψ(qk(t
∗)− qi(t∗))−Ψ(qk(t

∗)− qj(t∗)))︸ ︷︷ ︸
=0


≥ mG′(νi − νj) > 0.

(3.1.10)

Therefore, we conclude that at time t = t∗, we have

qi(t
∗) = qj(t

∗) and
d

dt

∣∣∣∣∣
t=t∗

(qi − qj) > 0.

By the continuity of the solution, there exists a sufficiently small δ > 0 such

that

qi(t) < qj(t) for t∗ − δ < t < t∗.

This contradicts to the definition of t∗ in (3.1.9). Therefore, there is no finite-

time collision between qi and qj.

(2) We split the proof of the second assertion into two steps.

• Step A: We claim that

a finite-time collision cannot happen more than once.
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Suppose that qi and qj collide and define the first collision time t∗ as in

(3.1.9). Then by the same argument as in (3.1.10), we have

d

dt
(qi − qj)

∣∣∣∣∣
t=t∗

≤ mG′(νi − νj) < 0.

Therefore, there exists a positive constant δ > 0, such that

qi(t) < qj(t) for t ∈ [t∗, t∗ + δ].

By the result in (1), with i and j reversed, we conclude that the collision

does not occur afterward.

• Step B: Now, we show that finite-time collision must happen. Suppose that

there is no collision:

qi(t) > qj(t) for all t ≥ 0,

which implies

qk − qi < qk − qj, k ∈ [N ].

On the other hand, since Ψ is increasing, one has

Ψ(qk − qi)−Ψ(qk − qj) < 0. (3.1.11)

Then, for t > 0, one has

d

dt
(qi − qj)

= G

(
νi +

κ

N

N∑
k=1

Ψ(qk(t
∗)− qi(t∗))

)
−G

(
νj +

κ

N

N∑
k=1

Ψ(qk(t
∗)− qj(t∗))

)

= G′(yij)

νi − νj +
κ

N

N∑
k=1

(
Ψ(qk(t)− qi(t))−Ψ(qk(t)− qj(t))

)︸ ︷︷ ︸
<0 by (3.1.11)


≤ mG′(νi − νj) < 0.

This yields

qi(t)− qj(t) ≤ q0
i − q0

j +mG′(νi − νj)t, t ≥ 0.
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Therefore, there exists t∗ ≤
q0i−q0j

mG′ (νj−νi)
such that

qi(t∗)− qj(t∗) = 0.

This contradicts to the absence of collision.

(3) Again, we use the mean-value theorem twice to obtain

d

dt
(qi − qj) = G

(
νi +

κ

N

N∑
k=1

Ψ(qk − qi)

)
−G

(
νj +

κ

N

N∑
k=1

Ψ(qk − qj)

)

=
κG′(yij)

N

(
N∑
k=1

Ψ(qk − qi)−Ψ(qk − qj)

)

=
κG′(yij)

N

(
N∑
k=1

ψ(zijk)(qj − qi)

)

= −

(
κG′(yij)

N

N∑
k=1

ψ(zijk)

)
(qi − qj),

where zijk is located between qk − qi and qk − qj.

Since

0 <
κG′(yij)

N

N∑
k=1

ψ(zijk) ≤ κMG′ , (3.1.12)

we deduce

0 < qi(t)− qj(t) < q0
i − q0

j for all t > 0.

Hence, we have

−(q0
i − q0

j ) < qj − qi < zijj < 0 < ziji < qi − qj < q0
i − q0

j ,

and therefore, we refine the lower bound of (3.1.12) as

2mG′κψ(q0
i − q0

j )

N
<
mG′κ(ψ(ziji) + ψ(zijj))

N
<
κG′(yij)

N

N∑
k=1

ψ(zijk) ≤ κMG′ .

Hence, we obtain the desired upper and lower exponential decays for qi− qj:

0 < (q0
i − q0

j )e
−κMG′ t ≤ qi(t)− qj(t) ≤ (q0

i − q0
j )e
−

2κmG′ψ(q0i−q0j)
N

t, t ≥ 0.
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This completes the proof.

Therefore, after a finite time depending on initial data and natural ve-

locity, all particles will be aligned according to the ordering of their natural

velocities νi. More precisely, the following corollary holds.

Corollary 3.1.1. Let {qi} be a solution to (3.1.5)–(3.1.6) with the initial

data {q0
i }. Then, the following assertions hold.

1. Suppose that the natural velocities are distinct and increasing in the

indices by reordering:

ν1 < ν2 < · · · < νN .

Then there exists a positive time T∗ depending on initial data and the

natural velocities such that

q1(t) < q2(t) < · · · < qN(t), ∀ t > T∗.

2. If q0
i − q0

j = νi − νj = 0, then qi and qj stick together:

qi(t) = qj(t), t ≥ 0.

3. If q0
i 6= q0

j and νi = νj, the relative distance |qi − qj| decays to zero

exponentially fast, and they will not collide in finite time.

From now on, throughout Section 3.2 and Section 3.3, we assume that

the initial states and the natural velocities satisfy

q0
1 < q0

2 < · · · < q0
N , and ν1 < ν2 < · · · < νN , (3.1.13)

and collisions never happen. In the following three sections, we consider three

communication weights displayed in (3.1.7) one by one.
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3.2 Regular long-ranged communication weight:

Type I

In this section, we study the clustering dynamics of system (3.1.4) with the

long-ranged communication weight:

lim
q→∞

Ψ(q) =

∫ ∞
0

ψ(η)dη =∞, Ψ(0) = 0, where ψ = Ψ′.

3.2.1 Asymptotic state-locking

We provide estimate on the relative distances. When the communication

weight is long-ranged, we always attain a uniform lower and upper bounds

for the relative distances between particles.

Theorem 3.2.1. (Asymptotic state-locking) Suppose that initial data and

natural velocities satisfy

q0
1 < q0

2 < · · · < q0
N and ν1 < ν2 < · · · < νN , (3.2.1)

and let {qi} be a solution to (3.1.5)-(3.1.6) with the initial data {q0
i }. Then,

the following assertions for relative distances hold:

1. (Existence of a positive minimal distance): for i > j, there exists a

positive constant `ij1 > 0 such that

inf
t≥0
|qi(t)− qj(t)| ≥ `ij1 > 0.

In particular, for consecutive indices i = j + 1 and j (1 ≤ j < N), `ij1
is explicitly given as

`ij1 := min

{
q0
i − q0

j , Ψ−1

(
mG′

MG′
· νi − νj

κ

)}
> 0.

2. (Existence of a positive maximal distance): there exists a positive con-

stant L∞1 := max
{
q0
N − q0

1, Ψ−1
(
MG′
mG′
· νN−ν1

κ

)}
< +∞ such that

sup
t≥0

max
i,j
|qi(t)− qj(t)| ≤ L∞1 <∞.
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Proof. (1) Note that for q,M,m ≥ 0 with M > m, decreasing property of

ψ (3.1.3) yields

Ψ(q +M)−Ψ(M) =

∫ q+M

M

ψ(r)dr ≤
∫ q+m

m

ψ(r)dr = Ψ(q +m)−Ψ(m).

(3.2.2)

We fix consecutive indices i and j such that

j < N and i := j + 1.

Then, we use the mean-value theorem, (3.2.1), (3.2.2) and Ψ(0) = 0 to see

that for t > 0,

d

dt
(qi − qj) = G

(
νi +

κ

N

N∑
k=1

Ψ(qk − qi)

)
−G

(
νj +

κ

N

N∑
k=1

Ψ(qk − qj)

)

= G′(yij)

(
νi − νj +

κ

N

N∑
k=1

[
Ψ(qk − qi)−Ψ(qk − qj)

])

= G′(yij)

(
νi − νj +

κ

N

[
− 2Ψ(qi − qj)−

N∑
k=i+1

(Ψ(qk − qj)−Ψ(qk − qi))

−
j−1∑
k=1

(Ψ(qi − qk)−Ψ(qj − qk))

])
.

(3.2.3)

On the other hand, for k > i, we apply (3.2.2) with

M = qk − qi > 0, q = qi − qj > 0, m = 0

to get

Ψ(qk − qj)−Ψ(qk − qi) ≤ Ψ(qi − qj)−Ψ(0) = Ψ(qi − qj).

This yields

−
N∑

k=i+1

(Ψ(qk − qj)−Ψ(qk − qi)) ≥ −
N∑

k=i+1

Ψ(qi − qj) = −(N − i)Ψ(qi − qj).

(3.2.4)
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Similarly, one has

−
j−1∑
k=1

(Ψ(qi−qk)−Ψ(qj−qk)) ≥ −
j−1∑
k=1

Ψ(qi−qj) = −(j−1)Ψ(qi−qj). (3.2.5)

Now we combine (3.2.3), (3.2.4) and (3.2.5) to get

d

dt
(qi− qj) ≥ G′(yij)

(
νj− νi−κΨ(qi− qj)

)
≥ mG′(νi− νj)−κMG′Ψ(qi− qj).

(3.2.6)

Next, we consider the differential equation:{
ẏ = mG′(νi − νj)− κMG′Ψ(y), t > 0,

y(0) = q0
i − q0

j > 0.
(3.2.7)

By the comparison principle of ordinary differential equation, it suffices to

show that y has a uniform-in-time positive lower bound. However, since

limr→+∞Ψ(r) = +∞, the map Ψ : R → R is a strictly increasing bijective

function. Therefore, the differential equation for y obtains its equilibrium at

y = Ψ−1
(
mG′
MG′
· νi−νj

κ

)
. Moreover, since Ψ is a strictly increasing function, we

have ẏ > 0 if y < Ψ−1
(
mG′
MG′
· νi−νj

κ

)
,

ẏ < 0 if y > Ψ−1
(
mG′
MG′
· νi−νj

κ

)
.

Hence, we obtain

y(t) ≥ min

{
q0
i − q0

j , Ψ−1

(
mG′

MG′
· νi − νj

κ

)}
=: `ij1 , t ≥ 0.

Therefore, the relative state between qj and qi = qj+1 is also bounded below

by `ij1 . Now, for general indices 1 ≤ i < j ≤ N represented by i = j+K (K >

0), we set

`ij1 :=
K−1∑
k=0

`
jk+1jk
1 , jk := j + k,

to obtain the desired positive lower bound of |qi − qj|.
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(2) Similar to (3.2.3), we have

d

dt
(qN − q1) = G′(y1N)

νN − ν1 −
κ

N

N∑
k=1

(Ψ(qk − q1) + Ψ(qN − qk))︸ ︷︷ ︸
≥Ψ(qN−q1)


≤ −κmG′Ψ(qN − q1) +MG′(νN − ν1).

Since the right-hand side of the estimate is negative if and only if

MG′

mG′
· νN − ν1

κ
< Ψ(qN − q1),

by the same argument as (1), we show that

sup
t≥0

max
i 6=j
|qi(t)− qj(t)| ≤ sup

t≥0
|qN(t)− q1(t)|

≤ max

{
q0
N − q0

1,Ψ
−1

(
MG′

mG′
· νN − ν1

κ

)}
.

Therefore, we choose

L∞1 := max

{
q0
N − q0

1, Ψ−1

(
MG′

mG′
· νN − ν1

κ

)}
> 0

to obtain the desired upper bound.

3.2.2 Asymptotic momentum consensus

We provide the exponential decay of relative momentum to (3.1.5)–(3.1.6).

For this, we begin with the second-order formulation of (3.1.5). Let {qi} be

a state configuration. Then, we define

pi := νi +
κ

N

N∑
k=1

Ψ(qk − qi), Dp := max
i,j
|pi − pj|.

Then, it follows from (3.1.5) and Ψ(q) =
∫ q

0
ψ(η)dη that

dpi
dt

=
κ

N

N∑
k=1

d

dt
Ψ(qk − qi) =

κ

N

N∑
k=1

ψ(qk − qi)(G(pk)−G(pi)).
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Hence, the first-order system (3.1.5) can be lifted as the second-order model:
dqi
dt

= G(pi), t > 0, i ∈ [N ],

dpi
dt

=
κ

N

N∑
k=1

ψ(qk − qi)(G(pk)−G(pi)).
(3.2.8)

It is easy to see that the total sum of pi is preserved:

N∑
i=1

pi(t) =
N∑
i=1

pi(0), t ≥ 0.

In particular, when the sum of natural velocities is zero, then so is the sum

of pi:

N∑
i=1

pi(t) =
N∑
i=1

νi +
κ

N

N∑
i,k=1

Ψ(qk − qi) =
N∑
i=1

νi = 0, t ≥ 0. (3.2.9)

Next, we study the exponential decay of Dp under suitable conditions.

Throughout the current subsection, we assume that pk 6= 0 for k ∈ [N ]. If

there exists a particle pk = 0, the proof is still valid with a suitably modified

estimation. For notational simplicity, we set

ψik := ψ(qk − qi) and ψ̃ij :=
ψij
N

+

(
1−

∑N
k=1 ψik
N

)
δij,

where δij is the Kronecker delta. Then, it is easy to see that

ψ̃ij = ψ̃ji, ψ̃ij ≥
ψij
N
,

N∑
k=1

ψ̃ik = 1,

N∑
k=1

ψ̃ik(G(pk)−G(pi)) =
1

N

N∑
k=1

ψik(G(pk)−G(pi)).

Now, we choose i = N and j = 1 so that

pi − pj = Dp. (3.2.10)
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Then, for such i and j, one has

1

2

d

dt
|pi − pj|2 = (pi − pj)

(
dpi
dt
− dpj

dt

)
= (pi − pj)

(
κ

N

N∑
k=1

ψik(G(pk)−G(pi))−
κ

N

N∑
k=1

ψjk(G(pk)−G(pj))

)

= κ(pi − pj)

(
N∑
k=1

ψ̃ki(G(pk)−G(pi))−
N∑
k=1

ψ̃kj(G(pk)−G(pj))

)

= −κ(pi − pj)(G(pi)−G(pj)) + κ(pi − pj)

(
N∑
k=1

(ψ̃ki − ψ̃kj)G(pk)

)
= −κ(pi − pj)(G(pi)−G(pj))

+ κ(pi − pj)

[
N∑
k=1

(
ψ̃ki −min{ψ̃ki, ψ̃kj}+ min{ψ̃ki, ψ̃kj} − ψ̃kj

)
G(pk)

]
=: −κ(pi − pj)(G(pi)−G(pj)) + I1.

(3.2.11)

Next, we proceed to estimate the term I1 as follows.

I1 =κ(pi − pj)

(
N∑
k=1

(
ψ̃ki −min{ψ̃ki, ψ̃kj}

)
G(pk)

)

− κ(pi − pj)

(
N∑
k=1

(
ψ̃kj −min{ψ̃ki, ψ̃kj}

)
G(pk)

)

=κ(pi − pj)

(
N∑
k=1

G(pk)

pk

(
ψ̃ki −min{ψ̃ki, ψ̃kj}

)
pk

)

− κ(pi − pj)

(
N∑
k=1

G(pk)

pk

(
ψ̃kj −min{ψ̃ki, ψ̃kj}

)
pk

)

≤κ(pi − pj)

(
N∑
k=1

G(pk)

pk

(
ψ̃ki −min{ψ̃ki, ψ̃kj}

)
pi

)

− κ(pi − pj)

(
N∑
k=1

G(pk)

pk

(
ψ̃kj −min{ψ̃ki, ψ̃kj}

)
pj

)
,

(3.2.12)
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where we used the relation (3.2.10) to find

(pi − pj)pj ≤ (pi − pj)pk ≤ (pi − pj)pi.

Now, we combine (3.2.11) and (3.2.12) to find

1

2

d

dt
|pi − pj|2

= −κ(pi − pj)(G(pi)−G(pj))

+ κ(pi − pj)pi
N∑
k=1

G(pk)

pk

(
ψ̃ki −min{ψ̃ki, ψ̃kj}

)
− κ(pi − pj)pj

N∑
k=1

G(pk)

pk

(
ψ̃kj −min{ψ̃ki, ψ̃kj}

)
= −κ|pi − pj|2

N∑
k=1

G(pk) min{ψ̃ki, ψ̃kj}
pk

+ κ(pi − pj)
N∑
k=1

ψ̃ki

(
G(pk)pi
pk

−G(pi)

)

+ κ(pi − pj)
N∑
k=1

ψ̃kj

(
G(pj)−

G(pk)pj
pk

)
=: I11 + I12 + I13.

(3.2.13)

Lemma 3.2.1. Suppose that natural velocity set {νi} satisfies

N∑
i=1

νi = 0,

and let {qi} be a solution to (3.1.5)–(3.1.6) with initial data {q0
i }. Then, one

has the following estimates:

(i) I11 ≤ −κmG′ψ(L∞1 )|pi − pj|2.
(ii) I12 ≤ κ(MG′ −mG′)(pi − pj)pi.
(iii) I13 ≤ −κ(MG′ −mG′)(pi − pj)pj,

where L∞1 is defined as a maximal relative distance defined in Theorem 3.2.1.
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Proof. Below, we provide estimates on I1i one by one.

• (Estimate of I11): We use the mean-value theorem to obtain

mG′ <
G(pk)

pk
=
G(pk)−G(0)

pk − 0
= G′(rk) < MG′ , where |rk| < |pk|.

Moreover, since we have already shown that the relative states are uniformly

bounded, we have

ψ̃ki ≥
ψki
N
≥ ψ(L∞1 )

N
.

Hence, we estimate I11 as

I11 = −κ|pi − pj|2
N∑
k=1

G(pk) min{ψ̃ki, ψ̃kj}
pk

≤ −κmG′ψ(L∞1 )|pi − pj|2.

• (Estimate of I12): Note that the sum-zero condition
∑N

k=1 pk = 0 implies

pi > 0 and pj < 0.

Therefore, we estimate I12 as

I12 = κ(pi − pj)pi
N∑
k=1

ψ̃ki

(
G(pk)

pk
− G(pi)

pi

)

≤ κ(pi − pj)pi
N∑
k=1

ψ̃ki

∣∣∣∣G(pk)

pk
− G(pi)

pi

∣∣∣∣ .
However, we have∣∣∣∣G(pk)

pk
− G(pi)

pi

∣∣∣∣ = |G′(rk)−G′(ri)| ≤MG′ −mG′ .

Therefore, we further estimate I12 as

I12 ≤ κ(MG′ −mG′)(pi − pj)pi.

• (Estimate of I13): Similarly, we estimate I13 as

I13 = −κ(pi − pj)pj
N∑
k=1

ψ̃jk

(
G(pk)

pk
− G(pj)

pj

)
≤ −κ(MG′ −mG′)(pi − pj)pj.
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Proposition 3.2.1. Suppose that natural velocity set {νi} satisfies

N∑
i=1

νi = 0,

and let {qi} be a solution to (3.1.4) with initial data {q0
i }.Then, we have

Dp(t) ≤ Dp(0) exp
(
−κ
(
mG′ψ(L∞1 )− (MG′ −mG′)

)
t
)
, t ≥ 0,

where L∞1 is defined as a maximal relative distance defined in Theorem 3.2.1.

Therefore, if mG′ and MG′ in (3.2.7) satisfy

ψ(L∞1 ) >
MG′ −mG′

mG′
,

then Dp decays to zero exponentially fast.

Proof. In (3.2.13), we use Lemma 3.2.1 to find

1

2

dD2
p

dt
≤ −κmG′ψ(L∞1 )D2

p + κ(MG′ −mG′)D
2
p,

or equivalently,

dDp

dt
≤ −κ

(
mG′ψ(L∞1 )− (MG′ −mG′)

)
Dp.

Now we use the assumption:

mG′ψ(L∞1 ) > MG′ −mG′

to obtain the desired exponential decay of Dp.

Remark 3.2.1. Note that if

mG′ ≈MG′ ≈ O(1),

the condition

ψ(L∞1 ) >
MG′ −mG′

mG′
(3.2.14)

holds for almost all initial data since the right-hand side of (3.2.14) can be

small, and in particular, for the case of standard consensus model G(q) = q

where mG′ = MG′ = 1, the assumption (3.2.14) always holds.
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As a consequence of the exponential decay of p-diameter, the position has

its asymptotic limit, if the sum of natural velocities is zero.

Corollary 3.2.1. Suppose {νi}, mG′ and MG′ in (3.2.7) satisfy

N∑
i=1

νi = 0, ψ(L∞1 ) >
MG′ −mG′

mG′
,

where L∞1 is defined as a maximal relative distance defined in Theorem 3.2.1,

and let {qi} be a solution to (3.1.5)–(3.1.6) with initial data {q0
i }. Then, there

exists an asymptotic state configuration {q∞i } such that

lim
t→∞

qi(t) = q∞i , i ∈ [N ].

Proof. We use (3.2.9) to derive

N∑
i=1

pi(t) = 0.

Hence, one has

|pi(t)| =

∣∣∣∣∣ 1

N

N∑
k=1

(pi(t)− pk(t))

∣∣∣∣∣ ≤ Dp(t) ≤ Dp(0) exp(−δt),

where δ is a positive constant defined by

δ := κ
(
mG′ψ(L∞1 )− (MG′ −mG′)

)
.

Then, we use G(0) = 0 to find

qi(t) = qi(0) +

∫ t

0

G(pi(s)) ds and

|G(pi(s))| = |G(pi(s))−G(0)| ≤ |G′(ri(s))||pi(s)| ≤MG′ |pi(s)| ≤ C exp(−δs).

This implies the existence of the limit q∞i := limt→∞ qi(t).

We study the orbital stability of asymptotic state. For given asymptotic

configurations {q∞i } and {q̃∞i }, we set

q∞c :=
1

N

N∑
i=1

q∞i , q̃∞c :=
1

N

N∑
i=1

q̃∞i .
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It is well known from [34] that for system (3.1.5) with G(x) = x, the asymp-

totic state:

q∞i := lim
t→∞

qi(t)

is uniquely determined, when the averaged state is fixed. However, if G is not

an identity mapping, there will no conservation law for (3.1.5). Thus, we can

only expect the uniqueness of the asymptotic position up to a translation.

Proposition 3.2.2. (Orbital stability) Let {qi} and {q̃i} be solutions to

(3.1.4) with initial data {q0
i } and {q̃0

i }, respectively. Suppose that there exist

asymptotic limits {q∞i } and {q̃∞i } such that

lim
t→∞

qi(t) = q∞i , lim
t→∞

q̃i(t) = q̃∞i , ∀ i ∈ [N ].

Then, there exists a constant shift α independent of i such that

q∞i = q̃∞i + α, i ∈ [N ].

Proof. Since {q∞i } and {q̃∞i } are asymptotic states, they satisfy

G

(
νi +

κ

N

N∑
k=1

Ψ(q∞k − q∞i )

)
= 0, G

(
νi +

κ

N

N∑
k=1

Ψ(q̃∞k − q̃∞i )

)
= 0.

Since G is bijective and G(0) = 0, we can conclude that

νi =
κ

N

N∑
k=1

Ψ(q∞i − q∞k ) =
κ

N

N∑
k=1

Ψ(q̃∞i − q̃∞k ).

We now define q̂∞i and ˆ̃q∞i as

q̂∞i := q∞i − q∞c , ˆ̃q∞i := q̃∞ − q̃∞c , i ∈ [N ].

Then, since q̂∞i and ˆ̃q∞i are translations of q∞i and q̃∞i , they also satisfy

νi =
κ

N

N∑
k=1

Ψ(q̂∞i − q̂∞k ) =
κ

N

N∑
k=1

Ψ(ˆ̃q∞i − ˆ̃q∞k ),
N∑
k=1

q̂∞k =
N∑
k=1

ˆ̃q∞k = 0.

Therefore, it follows from [34, Theorem 4.1] that

q̂∞i = ˆ̃q∞i .

Hence, we have

q∞i = q̂∞i + q∞c = ˆ̃q∞i + q∞c = q̃∞i + (q∞c − q̃∞c ).

We set α = q∞c − q̃∞c to get the desired result.
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3.3 Regular short-ranged communication weight:

Type II

We now study the clustering dynamics of system (3.1.5) with the bounded

short-ranged communication weight:

lim
r→+∞

∫ r

0

ψ(x)dx =: Ψ∞ <∞.

As in the case of long-ranged communication weight, we first provide esti-

mates for the lower and upper bounds for relative states. Unlike the case of

long-ranged communication weight, the relative states are bounded only for

the large value of coupling strength. Moreover, when the coupling strength is

sufficiently small, all the particles are segregated with each other. The follow-

ing proposition is the counterpart of Theorem 3.2.1 for a bounded long-ranged

communication weight.

Theorem 3.3.1. (Complete consensus and segregation) Suppose that natural

velocities and initial state satisfy the ordering (3.1.13), and let {qi} be a

solution to (3.1.5)–(3.1.6). Then, the following assertions hold.

1. There exists a positive lower bound `ij1 > 0 such that

inf
t≥0
|qi(t)− qj(t)| ≥ `ij1 > 0,

where `ij1 is defined in Theorem 3.2.1.

2. Suppose that the coupling strength κ is sufficiently large such that

κ >
MG′

mG′
· N

|i− j|+ 1
· |νi − νj|

Ψ∞
.

Then, one has

sup
t≥0
|qi(t)− qj(t)|max

{
q0
i − q0

j ,Ψ
−1

(
MG′

mG′
· N(νi − νj)
κ(i− j + 1)

)}
<∞.

In particular, if the coupling strength κ satisfies

κ >
MG′

mG′
· (νN − ν1)

Ψ∞
,
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then one has

sup
t≥0

max
i 6=j
|qi(t)− qj(t)| < L∞1 <∞,

where L∞1 is defined in Theorem 3.2.1.

3. Suppose that the coupling strength κ is sufficiently small such that

κ <
mG′

MG′
· N

(N − 1 + |i− j|)
· |νi − νj|

Ψ∞
. (3.3.1)

Then, one has

lim inf
t→+∞

|qi(t)− qj(t)| =∞.

Proof. (1) For indices j < N and i = j + 1, we use the same estimate in

(3.2.3) to obtain

d(qi − qj)
dt

≥ mG′(νi − νj)−MG′κΨ(qi − qj).

Again, we consider the differential equation:{
ẏ = mG′(νi − νj)− κMG′Ψ(y) t > 0,

y(0) = q0
i − q0

j > 0.

Next, we consider two separate cases.

• Case A (Ψ∞ >
mG′
MG′
· νi−νj

κ
): In this case, since Ψ is monotonically increasing,

there exists a unique equilibrium y = Ψ−1
(
mG′
MG′
· νi−νj

κ
)
)

of the differential

equation for y. Then, the same argument in the proof of Theorem 3.2.1 (1)

holds and therefore

y(t) ≥ min

{
y(0), Ψ−1

(
mG′

MG′
· νi − νj

κ
)

)}
.

• Case B (Ψ∞ ≤ mG′
MG′
· νi−νj

κ
): In this case, one has

y′ = mG′(νi − νj)− κMG′Ψ(y) ≥ mG′(νi − νj)− κMG′Ψ
∞ ≥ 0.

Therefore, we obtain

y(t) ≥ y(0).
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Finally, we combine Case A and Case B to derive

qi(t)− qj(t) ≥ min

{
q0
i − q0

j , Ψ−1

(
mG′

MG′
· νi − νj

κ
)

)}
.

(2) We fix pair of indices (i, j) such that i > j. We then use the mean-value

theorem to obtain

d(qi − qj)
dt

= G

(
νi +

κ

N

N∑
k=1

Ψ(qk − qi)

)
−G

(
νj +

κ

N

N∑
k=1

Ψ(qk − qj)

)

= G′(yij)

(
νi − νj +

κ

N

N∑
k=1

(Ψ(qk − qi)−Ψ(qk − qj))

)

≤ G′(yij)

(
νi − νj +

κ

N

∑
j≤k≤i

(Ψ(qk − qi)−Ψ(qk − qj))

)

≤ G′(yij)

(
νi − νj −

κ

N

∑
j≤k≤i

Ψ(qi − qj)

)

= G′(yij)

(
νi − νj −

(i− j + 1)κ

N
Ψ(qi − qj)

)
≤MG′(νi − νj)− κmG′

(i− j + 1)

N
Ψ(qi − qj).

(3.3.2)

By the same argument as in the proof of Theorem 3.2.1, the unique equilib-

rium of the differential equation:ż = MG′(νi − νj)− κmG′
(i− j + 1)

N
Ψ(z), t > 0,

z(0) = q0
i − q0

j ,

is given by z = Ψ−1
(
MG′
mG′
· N(νi−νj)
κ(i−j+1)

)
. Note that an existence of the equilib-

rium is guaranteed from (3.3.1). Now, we use the comparison principle and

similar argument as in (1) to deduce

0 < qi(t)− qj(t) ≤ max

{
q0
i − q0

j ,Ψ
−1

(
MG′

mG′
· N(νi − νj)
κ(i− j + 1)

)}
.
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Finally, we choose i = N and j = 1 to obtain that if

κ >
MG′

mG′
· (νN − ν1)

Ψ∞
,

then one has

sup
t≥0
|qN(t)− q1(t)| ≤ max

{
q0
N − q0

1,Ψ
−1

(
MG′

mG′
· νN − ν1

κ

)}
= L∞1 <∞.

This implies the desired boundedness.

(3) By the same estimate as in (3.3.2), we have

d

dt
(qi − qj) = G′(yij)×

(
νi − νj −

κ

N

N∑
k=1

(Ψ(qk − qj)−Ψ(qk − qi))

)

≥ mG′(νi − νj)− κMG′
(N + i− j − 1)

N
Ψ∞ > 0.

Note that the first inequality comes from the the following observation:

0 < Ψ(qk − qj)−Ψ(qk − qi) =

∫ qk−qj

qk−qi
ψ(q)dq

<

{
2Ψ∞ for k ∈ {j + 1, · · · , i− 1},
Ψ∞ for k ∈ {1, · · · , j} ∪ {i, · · · , N},

and the second inequality is valid from the condition (3.3.1). This completes

the proof of Theorem 3.3.1.

Theorem 3.3.2. (Improved complete segregation) Suppose that natural ve-

locities and initial state satisfy the ordering (3.1.13) and

N∑
i=1

νi = 0,

and let {qi} be a solution to (3.1.5)–(3.1.6). Then, all the particles are com-

pletely segregated in the sense that

lim sup
t→∞

q1(t) = −∞, lim inf
t→∞

qN(t) =∞,
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lim inf
t→∞

|qi+1(t)− qi(t)| =∞, ∀ i ∈ [N − 1]

if the coupling strength κ is sufficiently small in the following sense:

κ < min
{
− N

N − 1
· ν1

Ψ∞
,
mG′

MG′
· N

2
· (ν2 − ν1)

Ψ∞
,

· · ·, mG′

MG′
· N

2
· (νN − νN−1)

Ψ∞
,

N

N − 1
· νN

Ψ∞

}
.

(3.3.3)

Proof. It follows from the zero sum condition for {νi} that

ν1 < 0 < νN .

Then, we estimate q1 and qN as

q̇1 = G

(
ν1 +

κ

N

N∑
k=1

Ψ(qk − q1)

)
≤ G

(
ν1 +

κ(N − 1)

N
Ψ∞
)
< 0,

q̇N = G

(
νN +

κ

N

N∑
k=1

Ψ(qk − qN)

)
≥ G

(
νN −

κ(N − 1)

N
Ψ∞
)
> 0,

where we used the following relations:

Ψ(0) = 0 and Ψ(r) ≤ Ψ∞ for r ≥ 0.

Therefore we have

lim sup
t→∞

q1(t) = −∞ and lim inf
t→∞

qN(t) =∞. (3.3.4)

Now we verify that segregation occurs between two particles. Suppose on the

contrary that complete segregation does not occur. Then, there exists index

L and R with L < R satisfying

lim inf
t→∞

(qR(t)− qL(t)) <∞,

but lim inf
t→∞

(qL(t)− qj(t)) = lim inf
t→∞

(qi(t)− qR(t)) =∞,

58



CHAPTER 3. THE FIRST-ORDER CS-TYPE CONSENSUS MODEL
ON THE REAL LINE

whenever 1 ≤ j < L < R < i ≤ N . Then, the relative state between qR and

qL can be estimated as

d

dt
(qR − qL) = G

(
νR +

κ

N

N∑
k=1

Ψ(qk − qR)

)
−G

(
νL +

κ

N

N∑
k=1

Ψ(qk − qL)

)

= G′(yRL)

(
νR − νL +

κ

N

N∑
k=1

(Ψ(qk − qR)−Ψ(qk − qL))

)

≥ κMG′

N

N∑
k=1

(Ψ(qk − qR)−Ψ(qk − qL)) +mG′(νR − νL).

(3.3.5)

On the other hand, the conditions (3.3.4) assert that (L,R) 6= (1, N). There-

fore, if we assume R 6= N , then there exists k satisfying R < k ≤ N and we

have

0 < Ψ(qk − qL)−Ψ(qk − qR) =

∫ qk−qL

qk−qR
ψ(r)dr ≤

∫ ∞
qk−qR

ψ(r) dr.

Since qk segregate from qR,

lim
t→+∞

(qk(t)− qR(t)) = +∞ =⇒ lim
t→+∞

∫ ∞
qk−qR

ψ(r) dr = 0,

and similar estimate holds for L 6= 1 case. Therefore, for any ε > 0, there

exists a time T (ε) such that

0 < Ψ(qk − qL)(t)−Ψ(qk − qR)(t) < ε,

for k < L or k > R, and t > T (ε).

Therefore, for a small positive constant δ > 0, we can choose sufficiently large

time T ∗ = T ∗(δ) and continue estimation on (3.3.5) under t > T ∗ as follows:

d

dt
(qR − qL) ≥ mG′(νR − νL) +

κMG′

N

R∑
k=L

(Ψ(qk − qR)−Ψ(qk − qL))− δ

> mG′(νR − νL)− 2κMG′(R− L)Ψ∞

N
− δ,

(3.3.6)
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where we used the following estimate for the second inequality.

0 < Ψ(qk − qL)−Ψ(qk − qR) =

∫ qk−qL

qk−qR
ψ(q)dq

<

{
2Ψ∞ for k ∈ {L+ 1, · · · , R− 1},
Ψ∞ for k ∈ {L,R}.

Now, since κ is sufficiently small as in (3.3.3), we have

νR − νL =
R−1∑
k=L

(νk+1 − νk) >
R−1∑
k=L

MG′

mG′
· 2κΨ∞

N
=
MG′

mG′
· 2κ(R− L)Ψ∞

N
.

(3.3.7)

Then, it follows from (3.3.6) and (3.3.7) that we can choose T ∗ � 1 which

makes d
dt

(qR − qL) strictly positive for t ≥ T ∗. This implies that qR and qL
segregate asymptotically, which yields a contradiction.

3.4 Singular communication weight: Type III

Finally, we consider the collective dynamics of (3.1.5)–(3.1.6) for the case of

singular communication weight. To fix an idea, we consider the power-law

type singular communication weight:

ψ(q) =
1

|q|α
, α > 0, q 6= 0.

Note that for the first-order model (3.1.5)–(3.1.6), we need to define its an-

tiderivative Ψ appropriately according to the singularity of the communica-

tion weight at q = 0.

If 0 < α < 1, then ψ is integrable at the origin. Thus, we can define

Ψ(q) =

∫ q

0

ψ(r)dr = sgn(q)
|q|1−α

1− α
.

In contrast, for α ≥ 1, ψ is not integrable at the origin. Therefore, we change

the definition of Ψ by the integration from x = 1:

Ψ(q) := sgn(q)

∫ |q|
1

ψ(r)dr =

sgn(q) log |q| q 6= 0, α = 1,

sgn(q) 1
α−1

(
1− 1

|q|α−1

)
, q 6= 0, α > 1.
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For the consistency with a regular communication weight, we define Ψ(0) = 0.

3.4.1 Weak singularity

We consider the dynamics of (3.1.5) when the singular communication weight

has a weak singularity, i.e., α ∈ (0, 1). Even in this case, we will see that sys-

tem (3.1.4) is again aligned according to the natural velocity again, just as in

the regular communication weight case in Proposition 3.1.1 and Proposition

3.2.1. This will be documented in the following proposition.

Proposition 3.4.1. Suppose the communication weight has weak singularity:

ψ(q) =
1

|q|α
, 0 < α < 1, q 6= 0,

and let {qi} be a solution to (3.1.5)–(3.1.6) with initial data {q0
i }. For fixed

indices i and j (i 6= j), without loss of generality, we assume

q0
i > q0

j .

Then the following trichotomy holds.

1. If νi > νj, then qi and qj will not collide in finite time:

qi(t) > qj(t) for all t ≥ 0.

2. If νi < νj, then qi and qj will collide exactly once, i.e., there exists a

time t∗ such that

qi(t) > qj(t) for 0 ≤ t < t∗,

qi(t
∗) = qj(t

∗) and qi(t) < qj(t) for t > t∗.

3. If νi = νj, then qi and qj will collide in finite time, and two particles

will stick together after their first collision.

Proof. Since the proof of the first two statements of Proposition 3.1.1 does

not depend on the regularity of ψ, the proofs for (1) and (2) are the same as

in the proof of Proposition 3.1.1. Therefore, it suffices to prove (3). For this,
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we separate the proof of (3) in two steps. Moreover, we assume that ψ be-

longs to the general class of communication weight as in Remark 3.4.1 below.

• (Collision appearance): Suppose on the contrary that collision does not

occur, i.e.,

qi(t) > qj(t) for all t ≥ 0.

By the same calculation as in (3.3.2), we have

d

dt
(qi − qj) ≤ −

(|i− j|+ 1)κmG′

N
Ψ(qi − qj). (3.4.1)

We now define f : [0,∞)→ [0,∞) as

f(r) :=

∫ r

0

1

Ψ(s)
ds,

which is well-defined since 1
Ψ
∈ L1

loc(R). Then, f satisfies

f(0) = 0, and f(r) > 0, f ′(r) =
1

Ψ(r)
> 0, for r > 0.

Then, the differential inequality (3.4.1) gives

d

dt
f(qi − qj) = f ′(qi − qj)

d(qi − qj)
dt

≤ −(|i− j|+ 1)κmG′

N
< 0.

Therefore f(qi(t)− qj(t)) is initially positive and its derivative is strictly less

than some negative constant, and therefore, there exists T > 0 such that

f(qi(T )− qj(T )) = 0.

Hence we conclude qi(T ) = qj(T ), which gives a contradiction. Therefore,

two particles qi and qj must collide.

• (Post-collision behavior): Suppose that qi and qj collide at time t = T .

Below, we will show that two particles stick together afterwards:

qi(t) = qj(t), for t ≥ T.
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Again, we suppose the contrary, i.e., there exists a separating time T1 ≥ T

such that

qi(T1) = qj(T1) but |qi(t)− qj(t)| > 0,

for t in some non-empty interval (T1, T1 + ε). Since we have already shown

that the two particles should collide after the time T1 +ε, there exists T2 > T1

such that

|qi(t)− qj(t)| > 0 for t ∈ (T1, T2) and qi(T2) = qj(T2).

Without loss of generality, we may assume

qi > qj in (T1, T2).

Then, one has

0 = (qi(T2)− qj(T2))− (qi(T1)− qj(T1)) =

∫ T2

T1

d(qi − qj)
ds

ds

=

∫ T2

T1

κG′(yij(s))

N

N∑
k=1

(
Ψ(qk(s)− qi(s))−Ψ(qk(s)− qj(s))

)
ds

≤ κmG′

N

N∑
k=1

∫ T2

T1

(
Ψ(qk(s)− qi(s))−Ψ(qk(s)− qj(s))

)
ds < 0,

where we used

Ψ(qk − qi) < Ψ(qk − qj) on (T1, T2),

since we have qi > qj on that time interval. This yields a contradiction.

Therefore, we conclude that two particles stick together after the first colli-

sion.

Remark 3.4.1. The third assertion of Proposition 3.4.1(3) holds for a more

general class of kernels satisfying the relations:

ψ ∈ L1
loc(R) and

1

Ψ
∈ L1

loc(R).

Now, we are ready to state the state-locking as follows.
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Theorem 3.4.1. Suppose the communication weight has weak singularity:

ψ(q) =
1

|q|α
, 0 < α < 1, q 6= 0,

and let {qi} be a solution to (3.1.4) with initial data {q0
i }. If each natural

velocity is distinct to each other, the following assertions hold.

1. There exists a positive lower bound `ij1 > 0 of distance between qi and

qj as t→∞:

lim inf
t→+∞

|qi(t)− qj(t)| ≥ `ij1 > 0.

where `ij1 is defined in Theorem 3.2.1.

2. The relative distances |qi − qj| is uniformly bounded by L∞1 < +∞:

sup
t≥0

max
i,j
|qi(t)− qj(t)| ≤ L∞1 <∞.

where Lij1 is defined in Theorem 3.2.1.

Proof. When the singularity of the communication weight is weak, thanks

to Proposition 3.4.1, the position and natural velocities are again aligned

as in the regular communication weight. Therefore, we still may assume the

condition (3.1.13). Furthermore, since the communication weight is long-

ranged for 0 < α < 1, the same results hold as in Theorem 3.2.1. Since the

proof does not depend on the regularity of ψ, we omit the proof.

3.4.2 Strong singularity

We consider the case in which the singularity exponent α is large, i.e., α ≥ 1.

We first begin with the preservation of collisionless property.

Proposition 3.4.2. Suppose the communication weight has a strong singu-

larity:

ψ(q) =
1

|q|α
, α ≥ 1, q 6= 0,

and let {qi} be a solution to (3.1.4) with the collisionless initial data {q0
i }:

q0
i 6= q0

j , i 6= j.
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Then, the solution {qi} is also collisionless:

qi(t) 6= qj(t), for all t ≥ 0.

Proof. In this case, the communication weight is asymptotically integrable,

and therefore, there exists a limit Ψ∞ := limx→∞Ψ(x). Furthermore, there

is no collision between particles, due to the high-singularity. Considering the

second-order model (3.2.8), the proof of collision-free property is almost the

same as in the proof of collision-free property of the relativistic CS model in

[11]. Therefore, we omit the detailed proof for collision-free property.

Note that for the strong singularity case, the relative states are not zero,

and therefore, system (3.1.4) is globally well-posed. Therefore, unlike the reg-

ular or weakly singular communication weight, the state and natural velocity

cannot be aligned as in (3.1.13). Nevertheless, we still attain the lower and

upper bounds for relative states.

Theorem 3.4.2. Suppose the communication weight has a strong singularity:

ψ(q) =
1

|q|α
, α ≥ 1, q 6= 0,

and let {qi} be a solution to (3.1.5) with the well-prepared initial data {q0
i }:

q0
1 < q0

2 < · · · < q0
N .

Then, the following assertions hold.

1. (Existence of a positive minimal relative state): There exists a positive

uniform-in-time lower bound `∞2 > 0 of relative distances:

inf
t≥0

min
i 6=j
|qi(t)− qj(t)| ≥ `∞2 > 0.

2. (Emergence of state-locking): Suppose that coupling strength κ is suffi-

ciently strong in a sense that

κ ≥ max
1≤j<N

{MG′

mG′
· N(νj+1 − νj)(α− 1)

2

}
.
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Then magnitudes of the relative states |qi − qj| are uniformly bounded

above:

sup
0≤t<∞

max
i,j
|qi(t)− qj(t)| < L∞2 <∞.

Proof. (1) Let J < N be a time-dependent index defined by the minimizer

of relative distances:

qJ+1(t)− qJ(t) = min
1≤j<N

(qj+1(t)− qj(t)).

Then, we can divide the time interval by R≥0 = ∪∞m=0[tm, tm+1) and choose

J , if there is more than one minimizer of qj+1(t)− qj(t), in a way that

J = J(t) is a constant in each interval [tm, tm+1).

We will use an induction argument on m to obtain a uniform positive lower

bound of qJ+1(t)− qj(t) in [tm, tm+1). For simplicity, we define

∆(t) := qJ+1(t)− qJ(t).

• Step A (m = 0): For q ≥ 0 and M ≥ m > 0, we recall that (3.1.3) holds

except the origin, which yields:

0 < Ψ(q +M)−Ψ(M) =

∫ q+M

M

ψ(y)dy

≤
∫ q+m

m

ψ(y)dy = Ψ(q +m)−Ψ(m).

(3.4.2)

In contrast to (3.2.2), we assumed the positiveness of m since ψ is not inte-

grable at the origin. As ∆ is a minimum for qj+1 − qJ , we use (3.4.2) with

q = ∆, M = qk − qJ+1 and m = (k − J − 1)∆ for k ≥ J + 2

to obtain

Ψ(qk − qJ)−Ψ(qk − qJ+1) ≤ Ψ((k − J)∆)−Ψ((k − J − 1)∆).

Similarly for k ≤ J − 1, we obtain

Ψ(qJ+1 − qk)−Ψ(qJ − qk) ≤ Ψ((J − k + 1)∆)−Ψ((J − k)∆).
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Consequently,

N∑
k=J+2

(
Ψ(qk − qJ)−Ψ(qk − qJ+1)

)
≤ Ψ((N − J)∆)−Ψ(∆),

J−1∑
k=1

(
Ψ(qJ+1 − qk)−Ψ(qJ − qk)

)
≤ Ψ(J∆)−Ψ(∆).

Therefore, it follows from (3.4.2) that

J−1∑
k=1

(
Ψ(qJ+1 − qk)−Ψ(qJ − qk)

)
+

N∑
k=J+2

(
Ψ(qk − qJ)−Ψ(qk − qJ+1)

)
≤ Ψ((N − J)∆) + Ψ(J∆)− 2Ψ(∆) ≤ 2

(
Ψ

(
N

2
∆

)
−Ψ(∆)

)
.

This implies

N∑
k=1

(
Ψ(qk − qJ)−Ψ(qk − qJ+1)

)
≤ 2Ψ

(
N

2
∆

)
.

Similar to the estimate in (3.2.6), for some yJ(t) ∈ (qJ(t), qJ+1(t)), we have

d∆

dt
=
d(qJ+1 − qJ)

dt

= G′(yJ)

(
νJ+1 − νJ +

κ

N

N∑
k=1

(
Ψ(qk − qJ+1)−Ψ(qk − qJ)

))

≥ G′(yJ)

(
νJ+1 − νJ −

2κ

N
Ψ

(
N

2
∆

))
.

Since G′ has positive lower and upper bounds, the term ∆ satisfies

d∆

dt
≥

mG′(νJ+1 − νJ)−M, if νJ+1 > νJ ,

MG′(νJ+1 − νJ)−M, if νJ+1 ≤ νJ ,

where

M :=
κ

N

(
(MG′ −mG′)

∣∣∣∣Ψ(N2 ∆

)∣∣∣∣+ (mG′ +MG′)Ψ

(
N

2
∆

))
.
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For simplicity, we define Ψ̃ : R+ → R by

Ψ̃(q) := (MG′ −mG′)

∣∣∣∣Ψ(N2 q
)∣∣∣∣+ (mG′ +MG′)Ψ

(
N

2
q

)
.

Then Ψ̃ is a strictly increasing function for q > 0 and limq→∞ Ψ̃(q) = MG′Ψ
∞.

We set

u(x) :=

{
mG′(νJ+1 − νJ)− κ

N
Ψ̃(x), if νJ+1 ≥ νJ ,

MG′(νJ+1 − νJ)− κ
N

Ψ̃(x), if νJ+1 ≤ νJ .

Now, we consider a differential equation y′ = u(y) emanating from t0 = 0

with positive initial data y(t0) = q0
J+1 − q0

J . Then, by the comparison princi-

ple, a lower bound of y becomes a lower bound of ∆ in (t0, t1).

� (Case 1: νJ+1 > νJ): We define

y∞ :=

Ψ̃−1
(
mG′N(νJ+1−νJ )

κ

)
, if

mG′N(νJ+1−νJ )

κ
≤MG′Ψ

∞,

∞, otherwise.

By the definition of y∞, we have y∞ > 0 and u(y) > 0 holds for y ∈ (0, y∞).

Since the initial data y(t0) is positive, if y(t0) < y∞, then y will increase until

it achieve its equilibrium at y = y∞. In particular, if y∞ = ∞, then y will

never decrease. If y(t0) ≥ y∞, y will decrease until it achieve its equilibrium

at y∞. Hence we conclude

inf
t∈(t0,t1)

∆(t) ≥ inf
t∈(t0,t1)

y(t) ≥ min {∆(t0), y∞} .

� (Case 2: νJ+1 ≤ νJ): By the same argument as above, we have the same

result except mG′ is replaced by MG′ :

inf
t∈(t0,t1)

∆(t) ≥ min {∆(t0), z∞} ,

where z∞ :=

Ψ̃−1
(
MG′N(νJ+1−νJ )

κ

)
, if

mG′N(νJ+1−νJ )

κ
≤MG′Ψ

∞,

∞, otherwise.
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Finally, we combine all the estimates in Case 1 and Case 2 to obtain

inf
t∈(t0,t1)

∆(t) ≥ min{∆(t0), y∞, z∞}.

• Step B (Inductive step): Since y∞ and z∞ can be characterized in terms of

νj and νj+1 (j = 1, 2, · · · , N − 1), they only depend on the index j. Thus, we

define

Y ∞ := min
1≤j<N

y∞(j), Z∞ := min
1≤j<N

z∞(j).

Our we claim is that the following lower bound for ∆(t) on the time interval

(t0, tk+1) holds:

inf
t∈(t0,tk+1)

∆(t) ≥ min {∆(0), Y ∞, Z∞} > 0 (3.4.3)

for arbitrary non-negative integer k. Since the case for k = 0 is already proven

in Step A, we only need to show that (3.4.3) holds for k = m + 1 under the

assumption that (3.4.3) holds for k = m. By using the same argument as in

Step A, we have

inf
t∈(tm+1,tm+2)

∆(t) ≥ min {∆(tm+1) , Y ∞ , Z∞} > 0.

for any non-negative integer m. However, since (3.4.3) holds for k = m, we

have

∆(tm+1) ≥ min{∆(0), Y ∞, Z∞}.

This implies

inf
t∈(tm+1,tm+2)

∆(t) ≥ min{∆(0), Y ∞, Z∞}.

Therefore, we obtain

inf
t∈(t0,tm+2)

∆(t) ≥ min

{
inf

t∈(tm+1,tm+2)
∆(t), inf

t∈(t0,tm+1)
∆(t)

}
≥ min{∆(0), Y ∞, Z∞} =: `∞2 .

Hence, we complete the induction argument, and obtain the desired lower

bound of the relative distances.
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(2) Since the proof uses a similar argument as in (1), we just provide a sketch

of the arguments. Suppose now that J(t) < N is an index that maximizing

the relative distances qJ+1 − qJ and redefine ∆(t) := qJ+1 − qJ . We only

consider the time interval [0, t1], on which the index J is constant. Then

again by (3.4.2), similar estimate as in (1) yields

d∆

dt
≤ G′(yJ)

(
νJ+1 − νJ −

κ

N
Ψ ((N − 1)∆)

)
.

and, we obtain a similar upper bound for ∆ as

d∆

dt
≤

{
MG′(νJ+1 − νJ)−M′, if νJ+1 > νJ ,

mG′(νJ+1 − νJ)−M′, if νJ+1 ≤ νJ ,

where

M′ :=
κ

N

(
|Ψ((N − 1)∆)|mG′ −MG′

2
+ Ψ((N − 1)∆)

mG′ +MG′

2

)
.

• Case A (νJ+1 > νJ): For simplicity, we define

Ψ̃(q) := |Ψ((N − 1)q)|mG′ −MG′

2
+ Ψ((N − 1)q)

mG′ +MG′

2
,

which is a strictly increasing function with limx→∞ Ψ̃(x) = mG′Ψ
∞.

Then, a simple comparison principle implies

∆(t) ≤ max

{
∆(0), Ψ̃−1

(
MG′N(νJ+1 − νJ)

κ

)}
, 0 ≤ t ≤ t1

if κ ≥ MG′N(νJ+1−νJ )

2mG′Ψ
∞ .

• Case B (νJ+1 ≤ νJ): It follows from the governing dynamics that

∆(t) ≤ max

{
∆(0), Ψ̃−1

(
mG′N(νJ+1 − νJ)

κ

)}
, 0 ≤ t ≤ t1.

Note that Ψ̃−1
(
mG′N(νJ+1−νJ )

κ

)
is well-defined if νJ+1 ≤ νJ .
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Therefore, if κ ≥ max1≤j<N
MG′N(νJ+1−νJ )

2mG′Ψ
∞ , a similar induction argument as

in (1) can be applied to prove the uniform-in-time upper bound for ∆:

sup
t≥0

∆(t) ≤ max
1≤J<n

{
∆(0), Ψ̃−1

(
MG′N(νJ+1 − νJ)

κ

)
, Ψ̃−1

(
mG′N(νJ+1 − νJ)

κ

)}
=: L∞2 <∞.

Finally, since Ψ∞ can be explicitly calculated as

Ψ∞ =

∫ ∞
1

dq

qα
=

{
1

α−1
, if α > 1,

∞, if α = 1,

we have the desired result. This completes the proof of Theorem 3.4.2.

Remark 3.4.2. Below, we comments on the results of Theorem 3.4.2 as fol-

lows:

1. In the proof of Theorem 3.4.2 for the first statement, the only required

property for the kernel ψ is non-integrability at the origin. Hence, the

first statement can be generalized as following; suppose that the kernel

is not integrable only at the origin as∫ ε

−ε
ψ(q) dq =∞ and ψ1R\(−ε,ε) ∈ L1

loc(R), for each ε > 0.

Then, for any two particles qj and qj+1 (j < N), there exists a uniform-

in-time lower bound of relative distances: there exists a positive constant

`∞2 such that

inf
t≥0

min
i,j
|qi(t)− qj(t)| ≥ `∞2 > 0,

where `∞2 is defined in the proof of Theorem 3.4.2. In particular, colli-

sion does not occur.

2. Similarly, the second statement can be generalized as follows; for Ψ∞ :=∫∞
1
ψ(q)dq, if coupling strength κ is sufficiently strong in a sense that

κ ≥ max
1≤j<N

MG′

mG′
· N

2
· (νj+1 − νj)

Ψ∞
,
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then relative distance |qi − qj| is uniformly bounded above: there exists

a positive constant L∞2 such that

sup
t∈R+

max
i,j
|qi(t)− qj(t)| ≤ L∞2 <∞,

where L∞2 is defined in the proof of Theorem 3.4.2. In particular, long-

ranged communication kernel exhibits uniform-in-time upper bound of

relative states. Also note that, contrast to the previous cases, we do

not assume ordering (3.1.13): νi need not be arranged in an increasing

order of indices.

3.5 Structural stability

In this section, we present the structural stability of (3.1.5), when the acti-

vation function G converges to the identity map. More precisely, we consider

the following one-parameter family of system (3.1.5):

q̇εi = Gε

(
νi +

κ

N

N∑
k=1

Ψ(qεk − qεi )

)
, i ∈ [N ], (3.5.1)

where ε > 0 is a positive constant, and Gε : R → R satisfies the following

properties: there exist one-parameter family of sequences {mG′ε} and {MG′ε}
such thatGε(−q) = −Gε(q), 0 < mG′ε ≤ G′ε(q) ≤MG′ε , q ∈ domain of Dε,

lim
ε→0

mG′ε = lim
ε→0

MG′ε = 1.

(3.5.2)

As ε → 0+, one can expect limε→0Gε(q) = q pointwise, and thus (3.5.1)

converges to the following system:

q̇i = νi +
κ

N

N∑
k=1

Ψ(qk − qi), t > 0, i ∈ [N ]. (3.5.3)

Then, a sequence of solution {qεi } to (3.5.1) may converges to the solution to

(3.5.3). For simplicity, we only consider the case, when the communication

weight is regular.
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Proposition 3.5.1. For T ∈ (0,∞), let {qεi } and {qi} be solutions to (3.5.1)

and (3.5.2) with the common initial data {q0
i } in the time interval [0, T ], re-

spectively. Suppose initial data is ordered as (3.1.13). If natural velocity sat-

isfies zero-zum condition
∑N

i=1 νi = 0, then one has the following assertions:

1. (Finite-in-time convergence): {qei } converges to {qi} in any finite-time

interval [0, T ]:

lim
ε→0

sup
0≤t≤T

max
1≤i≤N

|qεi (t)− qi(t)| = 0.

2. (Uniform-in-time convergence): If Ψ is bounded and long-ranged, con-

vergence can be made uniformly in time:

lim
ε→0

sup
t≥0

max
1≤i≤N

|qεi (t)− qi(t)| = 0.

Proof. Throughout the proof, we denote C by a positive generic constant,

independent of ε and t.

(1) It follows from (3.5.1) and (3.5.3) that the difference qεi − qi satisfies

d

dt
(qεi − qi) = Gε

(
νi +

κ

N

N∑
k=1

Ψ(qεk − qεi )

)
−

(
νi +

κ

N

N∑
k=1

Ψ(qk − qi)

)

= Gε

(
νi +

κ

N

N∑
k=1

Ψ(qεk − qεi )

)
−

(
νi +

κ

N

N∑
k=1

Ψ(qεk − qεi )

)

+

(
νi +

κ

N

N∑
k=1

Ψ(qεk − qεi )

)
−

(
νi +

κ

N

N∑
k=1

Ψ(qk − qi)

)
=: I21 + I22.

Below, we provide estimates for I2i, i = 1, 2 one by one.

• (Estimate of I21): First note that for q ∈ R,

|Gε(q)− q| ≤
∫ |q|

0

|G′ε(y)− 1| dy ≤ max{|mG′ε − 1|, |MG′ε − 1|}|q|.
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Therefore, we estimate I21 as

I21 ≤ max{|mG′ε − 1|, |MG′ε − 1|}

∣∣∣∣∣νi +
κ

N

N∑
k=1

Ψ(qεk − qεi )

∣∣∣∣∣ .
We split the analysis for I21 according to the types of communication weight.

� (Bounded and long-ranged Ψ): It follows from Theorem 3.2.1 that the

relative states are bounded by

|qεk − qεl | ≤ max

{
q0
N − q0

1, Ψ−1

(
MG′,ε

mG′,ε
· νN − ν1

κ

)}
.

However, since

lim
ε→0

mG′ε = lim
ε→0

MG′ε = 1,

there exists a constant q∞, independent to ε, such that

sup
0≤t<∞

max
1≤k,l≤N

|qεk(t)− qεl (t)| < q∞, for all ε� 1.

Therefore, in this case,

sup
0≤t<∞

∣∣∣∣∣νi +
κ

N

N∑
i=1

Ψ(qεk − qεi )

∣∣∣∣∣ ≤ |νi|+ κΨ(q∞),

and we have

I21 ≤ C max{|mG′ε − 1|, |MG′ε − 1|}.

� (Bounded and short-ranged Ψ): In this case, there exists an upper bound

Ψ∞ for Ψ, and thus,

I21 ≤ (|νi|+κΨ∞) max{|mG′ε−1|, |MG′ε−1|} ≤ C max{|mG′ε−1|, |MG′ε−1|}.

Therefore, in any case, we can bound I21 as

I21 ≤ C max{|mG′ε − 1|, |MG′ε − 1|},

where C does not depend on ε.
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• (Estimate of I22): We directly estimate I22 as

I22 =
κ

N

N∑
k=1

(Ψ(qεk − qεi )−Ψ(qk − qi)) ≤
κ‖Ψ′‖L∞

N

N∑
k=1

|(qεk − qk)− (qεi − qi)|

≤ 2κ‖ψ‖L∞ max
1≤i≤N

|qεi (t)− qi(t)|.

Now, we set

Qε(t) := max
1≤i≤N

|qεi (t)− qi(t)|.

Then, we combine all the estimates for I21 and I22 to obtain

dQε

dt
≤ C max{|mG′ε − 1|, |MG′ε − 1|}+ CQε, a.e. t > 0.

Since Qε(0) = 0, we have

Qε(t) ≤ max{|mG′ε − 1|, |MG′ε − 1|}
(
eCt − 1

)
.

Therefore, we obtain

lim
ε→0
Qε(t) = 0 for any 0 ≤ t ≤ T .

(2) We now prove the uniform-in-time convergence, when ψ is bounded and

long-ranged. First of all, we consider the second-order models:
dqεi
dt

= Gε(p
ε
i ), t > 0,

dpεi
dt

=
κ

N

N∑
k=1

ψ(qεk − qεi )(Gε(p
ε
k)−Gε(p

ε
i )).

For sufficiently small ε, since

lim
ε→0

mG′ε = lim
ε→0

MG′ε = 1,

we may assume that L∞1 in Theorem 3.2.1 satisfies

ψ(L∞1 ) >
MG′ε −mG′ε

mG′ε

.
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Then it follows from Lemma 3.2.1 that

max
i,j
|pεi (t)− pεj(t)| ≤ max

i,j
|p0
i − p0

j | exp (−(mG′ψ(L∞1 )− (MG′ −mG′))t)

≤ C exp(−δt)

for some δ > 0. Therefore, for arbitrary time s, t (0 < s < t), one has

|qεi (t)− qi(t)| ≤ |qεi (s)− qi(s)|+
∫ t

s

|Gε(p
ε
i )(τ)− pi(τ)|dτ

≤ |qεi (s)− qi(s)|+ C

∫ t

s

exp(−δτ)dτ

≤ |qεi (s)− qi(s)|+ C exp(−δs).

Taking the maximum over indices, we obtain

Qε(t) ≤ Qε(T ) + exp(−δT ), ∀ 0 < T < t.

Now we fix δ > 0 and take a T = T (δ) satisfying exp(−δT ) < δ to deduce

Qε(t) ≤ Qε(T ) + δ.

Therefore, we take a supremum over t > T to find

sup
t>T
Qε(t) ≤ Qε(T ) + δ,

Then we utilize finite-time convergence estimate in (1) to conclude

lim
ε→0

sup
t>0
Qε(t) ≤ δ.

Since δ is arbitrary small, we achieve the desired result.

Remark 3.5.1. For the choice Gε := v̂ with the parameter ε := c−1, the

result in Proposition 3.5.1 yields the nonrelativistic limit of the RCS model

[4] on the real line.
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Chapter 4

Asymptotic dynamics of the

CS-type consensus model

4.1 Regular communication weight

In this chapter, we introduce and study asymptotic flocking behaviors of CS-

type consensus model, which involves an activation function G. We use the

following handy notation throughout the chapter:

ψij := ψ(|qi − qj|), inf
t≥0

:= inf
0≤t<∞

, sup
t≥0

:= sup
0≤t<∞

,

[n] := {1, 2, · · · , n}, n ∈ N, R≥0 := {x | x ≥ 0}, R+ := {x | x > 0}.

For configuration vectors qi ∈ Rd and pi ∈ Rd, we denote

Q(t) := (q1(t), . . . , qN(t)), P (t) := (p1(t), . . . , pN(t)),

Q0 := Q0, P 0 := P 0, N := (ν1, ν2, · · · , νN).

For S ⊂ [N ], we define the norms on a (sub)system of {pi − pj}i,j∈[N ] and

{qi − qj}i,j∈[N ] as

‖Q‖S :=

√∑
i,j∈S

|qi − qj|2, ‖P‖S :=

√∑
i,j∈S

|pi − pj|2,

‖Q‖ := ‖Q‖[N ] ‖P‖ := ‖P‖[N ],
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DP,S := max
i,j∈S
|pi − pj|, DQ,S := max

i,j∈S
|pi − pj|

DP := DP,[N ], DQ := DQ,[N ].

We note that this chapter is based on the work [9].

4.1.1 The CS-type consensus model.

In this subsection, we impose several conditions on an activation function G

and study its implication to the dynamics. We recall the CS-type model:

q̇i = G(pi), t > 0, i ∈ [N ],

ṗi =
κ

N

N∑
k=1

ψ(|qk − qi|)(G(pk)−G(pi)),

(qi, pi)
∣∣
t=0+

= (q0
i , p

0
i ), pi, qi ∈ Rd,

(4.1.1)

where κ > 0. Throughout Chapter 4, we assume

ψ ∈ (L∞ ∩ C0,1)(R+;R+), (ψ(r)− ψ(s))(r − s) ≤ 0, ∀r, s ∈ R+.

In (4.1.1), G is assumed to be radially symmetric. More precisely, we assume:

G(p) =

g(|p|) p
|p|

, if p 6= 0,

0 , if p = 0,
g ∈ C1(R≥0), g(0) = 0,

0 < mg′ ≤ g′ ≤Mg′ on any compact interval,

g is convex or concave on R+,

(4.1.2)

where mg′ and Mg′ may depends on a compact interval.

Example 4.1.1. We address some possible examples of activation function

G.

1. The CS model. The simplest and most motivating example for G is

the identity mapping G(p) = p. In this case, system (4.1.1) represents

the standard CS model [25, 26].
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2. Speed limit model. Suppose that G is bounded, say g(R) = [0,M), M <

∞. Then we have

|q̇i| = |G(pi)| < M,

and the maximum speed of agents is always bounded by M . This may

not feature out for the model (4.1.1) since maximal speed always de-

crease in this case (see Proposition 4.1.1). However, despite the pres-

ence of extra force, which may increase the maximal speed(e.g., random

noise [3] or bonding force [2]), we can still guarantee the speed limita-

tion.

3. Physical models. Several physical effects can be reflected by the suit-

able choice of G. For example, if we involve the Lorentz factor Γ as

follows:

g−1 : [0, c) 7→ R, g(v) := Γ

(
1 +

Γ

c2

)
v, Γ :=

1√
1− v2

c2

,

then the model (4.1.1) becomes tha relativistic Cucker-Smale (RCS)

model, which is introduced as the relativistic correction of the CS model.

For the derivation and emergent dynamics of the RCS model, we refer

to [4, 29]. Other than relativistic effects, physical semantics like proper

velocity or rapidity can be reflected [10, 41].

4. Almost unit speed model. In literature, several Vicsek-type models

with a unit speed constraint have been studied in terms of the heading

angle. For the CS model with unit speed, refer to [16]. In terms of

(4.1.1), this might be represented by choice of g0 ≡ 1 on R+. This

does not fulfill (4.1.2), but can be approximated by functions satisfying

(4.1.2). For example, for gε(p) := tanh(p/ε), we expect

gε
ε↘0−−→ g0 = 1 on R+,

and we formally have a close-to-unit speed model under ε � 1. Com-

pared to the model in [16], the above model does not strictly have unit

speed but has the advantage of applying methodology consistent with the

standard CS model.

79



CHAPTER 4. ASYMPTOTIC DYNAMICS OF THE CS-TYPE
CONSENSUS MODEL

Technical reason for conditions (4.1.2) will naturally rise up in the fol-

lowing proposition.

Proposition 4.1.1. Let (P,Q) be a global solution to (4.1.1) with initial data

(P 0, Q0). Then the following holds.

1.
∑N

k=1 pj is conserved:

d

dt

N∑
k=1

pj(t) = 0.

2. Maximum modulus of pi decrease in time:

max
i∈[N ]
|pi(t)| ≤ max

i∈[N ]
|pi(s)|, 0 ≤ s ≤ t.

In particular,

sup
t≥0

max
i∈[N ]
|pi(t)| = max

i∈[N ]
|p0
i | =: P 0

M . (4.1.3)

3. For any t ∈ R+ and i, j ∈ [N ],

mG′ |pi(t)− pj(t)| ≤ |G(pi(t))−G(pj(t))| ≤MG′ |pi(t)− pj(t)|,

where

MG′ := max{g′(|p|) : |p| ≤ P 0
M}, mG′ := min{g′(|p|) : |p| ≤ P 0

M}.

4. There exists a positive constant M =M(P 0) > 0 satisfying

M|pi(t)− pj(t)|2 ≤ (pi(t)− pj(t)) · (G(pi(t))−G(pj(t)))

for any t ∈ R+ and i, j ∈ [N ].

Proof. (1) We sum (4.1.1)2 over i ∈ [N ] and utilize the index symmetry to

see

d

dt

N∑
k=1

pj =
κ

N

N∑
i,k=1

ψ(|qk − qi|)(G(pk)−G(pi))
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=
κ

N

N∑
i,k=1

ψ(|qi − qk|)(G(pi)−G(pk)) = 0.

(2) Define M(t) ∈ arg maxi∈[N ] |pi(t)|. Let time t and index M(t) be fixed,

and set ` = M(t). Then we have

d

dt
|p`|2 =

κ

N

N∑
k=1

ψ(|qk − q`|)p` · (G(pk)−G(p`)) ≤ 0,

where the inequality holds from the maximality of M . This proves (4.1.3).

(3) The Jacobian of G at p is

G′(p) =


g(|p|)
|p|

Id +

(
g′(|p|)− g(|p|)

|p|

)
p⊗ p
|p|2

, if p 6= 0,

g′(0)Id , if p = 0,

Since the eigenvalues of p⊗ p are 0 and |p|2 up to multiplicity, eigenvalues of

G′ are

λ1 =


g(|p|)
|p|

, if p 6= 0,

g′(0), if p = 0,

λ2 = g′(|p|)

Due to symmetry of G′, the largest eigenvalue is the operator norm of G′, and

this is bounded by MG′ from (2). Therefore the mean value theorem implies

|G(pi)−G(pj)| ≤MG′|pi − pj|.

On the other hand, operator norm of inverse Jacobian (G−1)′ is 1
min{λ1,λ2} ,

which is less or equal to 1
mG′

. Therefore we have

mG′ |pi − pj| ≤ |G(pi)−G(pj)| ≤MG′|pi − pj|.

(4) Throughout the proof, without the loss of generality, we assume |pi| ≥
|pj|. First suppose that g is convex on R+, so that | · | 7→ g(|·|)

|·| is an increasing

function. Then,

(pi − pj)·(G(pi)−G(pj))
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=
g(|pj|)
|pj|

|pi − pj|2 +

(
g(|pi|)
|pi|

− g(|pj|)
|pj|

)
(pi − pj) · pi

≥ mG′ |pi − pj|2.

Now suppose that g is concave on R+. Since g is increasing, g−1 is convex

and this yields

(pi − pj) · (G(pi)−G(pj))

=
g−1(|G(pj)|)
|G(pj)|

|G(pi)−G(pj)|2

+

(
g−1(|G(pi)|)
|G(pi)|

− g−1(|G(pj)|)
|G(pj)|

)
(G(pi)−G(pj)) ·G(pi)

≥ m2
G′

MG′
|pi − pj|2.

We pose M := min{mG′ ,
m2
G′

MG′
} to complete the proof. Since mG′ and MG′

depends only on P0, so is M.

Remark 4.1.1.

1. In (4.1.2), mg′ and Mg′ depend on the interval. However, thanks to the

uniform-in-time boundedness of |pi|, we can fix the interval by [0, P 0
M ],

and this enables us to fix mg′ and Mg′ according to the initial data,

namely MG′ and mG′.

2. In Proposition 4.1.1, if an ambient space of (4.1.1) is one-dimensional

(d = 1), then the inner product is merely a scalar multiplication, and

(3) proves (4) without convexity or concavity assumption on g.

4.1.2 Emergence of asymptotic flocking.

The CS model is one of the most successful models designing the flocking

behavior, and we can still expect the emergent flocking of (4.1.1) as well. We

recall the definition of (asymptotic) flocking for a model (4.1.1).

Definition 4.1.1. Let (P,Q) be a global solution to (4.1.1).
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1. We say that (P,Q) exhibits a (mono-cluster) flocking if

sup
t≥0

DQ(t) <∞, lim
t→∞

DP (t) = 0.

2. We say that (P,Q) exhibits a bi-cluster flocking if there exists a nonempty

proper subset S of [N ] satisfying

sup
t≥0

max{DQ,S(t), DQ,[N ]−S(t)} <∞, sup
t≥0

min
i∈S
j /∈S

|qi(t)− qj(t)| =∞,

lim
t→∞

DP,S(t) = lim
t→∞

DP,[N ]−S(t) = 0.

In the following lemma, we estimate the relative distance for an arbi-

trary collection of agents, which will be used repeatedly through Section 4.1,

Section 4.2, and Section 4.3.

Lemma 4.1.1 (Subsystem estimation). Let (P,Q) be a solution to (4.1.1).

For any [l] ⊂ [N ], we have the following differential inequalities.

1.

d

dt
‖P‖[l] ≤ −

κMl

N
ψ(‖Q‖[l])‖P‖[l] +

2κMG′(N − l)P 0
MLψ,[l]

N
‖Q‖[l],

Lψ,[l](t) := sup
r,s≥q[l](t),

r 6=s

∣∣∣∣ψ(r)− ψ(s)

r − s

∣∣∣∣ <∞, q[l](t) := min
i′∈[l]
j′ /∈[l]

|qi′(t)− qj′(t)|.

(4.1.4)

2.

d

dt
‖P‖[l] ≤ −

κMl

N
ψ(‖Q‖[l])‖P‖[l] +

4κP 0
MMG′l(N − l)

N
max
i′∈[l]
j′ /∈[l]

ψi′j′ .
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Proof. (1) For simplicity, let pij := pi − pj. We expand ‖P‖[l] as

1

2

d

dt
‖P‖2

[l] =
∑
i,j∈[l]

pij ·
(
dpi
dt
− dpj

dt

)

=
κ

N

∑
i,j∈[l]

N∑
k=1

pij · (ψki(G(pk)−G(pi))− ψkj(G(pk)−G(pj)))︸ ︷︷ ︸
=:Aijk

=
κ

N

∑
i,j,k∈[l]

Aijk +
κ

N

∑
i,j∈[l],k /∈[l]

Aijk

=:
κI1

N
+
κI2

N
.

For the estimate of I1, we utilize the symmetry of indices to use the index

switching trick (i, j, k)→ (j, k, i) to obtain

I1 =
∑

i,j,k∈[l]

ψkipij · (G(pk)−G(pi))−
∑

i,j,k∈[l]

ψkjpij · (G(pk)−G(pj))

=
∑

i,j,k∈[l]

ψkipij · (G(pk)−G(pi)) +
∑

i,j,k∈[l]

ψkipjk · (G(pk)−G(pi))

=
∑

i,j,k∈[l]

ψkipik · (G(pk)−G(pi))

≤ −M
∑

i,j,k∈[l]

ψki|pik|2 ≤ −Mlψ(‖Q‖[l])‖P‖2
[l].

For the estimate of I2, we use the Lipschitz continuity of ψ to get

|ψki − ψkj| ≤ Lψ,[l](t)
∣∣|qk − qi| − |qk − qj|∣∣ ≤ Lψ,[l](t)|qi − qj|,

where Lψ,[l] is a nonnegative function defined as (4.1.4). Then a direct com-

putation yields

I2 =
∑

i,j∈[l],k /∈[l]

pij · (ψki(G(pk)−G(pi))− ψkj(G(pk)−G(pj)))

=
∑

i,j∈[l],k /∈[l]

pij · [ψki(G(pj)−G(pi)) + (ψki − ψkj)(G(pk)−G(pj))]

≤
∑

i,j∈[l],k /∈[l]

(ψki − ψkj)pij · (G(pk)−G(pj))
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≤ 2MG′P
0
MLψ,[l]

∑
i,j∈[l],k /∈[l]

|qi − qj||pi − pj|.

≤ 2MG′(N − l)P 0
MLψ,[l]‖P‖[l]‖Q‖[l],

where we used

0 ≤M|pi − pj|2 ≤ pij(G(pi)−G(pj))

for the first inequality. Combining the estimates altogether, we obtain

d

dt
‖P‖[l] ≤ −

κMl

N
ψ(‖Q‖[l])‖P‖[l] +

2κMG′(N − l)P 0
MLψ,[l]

N
‖Q‖[l].

(2) We estimate I2 as following.

I2 ≤
∑

i,j∈[l],k /∈[l]

(ψki − ψkj)pij · (G(pk)−G(pj))

≤ 2 max
i′∈[l]
j′ /∈[l]

ψi′j′
∑

i,j∈[l],k /∈[l]

|pi − pj||G(pk)−G(pj)|

≤ 4P 0
MMG′l(N − l) max

i′∈[l]
j′ /∈[l]

ψi′j′‖P‖[l].

Together with the estimate of I1, we have

d

dt
‖P‖[l] ≤ −

κMl

N
ψ(‖Q‖[l])‖P‖[l] +

4κP 0
MMG′l(N − l)

N
max
i′∈[l]
j′ /∈[l]

ψi′j′ .

In particular, choice of [l] = [N ] leads to the following result on the emer-

gence of flocking.

Theorem 4.1.1 (Emergence of asymptotic flocking). Let (P,Q) be a solution

to (4.1.1).

1. The following three statements are equivalent.

(a) (P,Q) exhibits flocking; supt≥0DQ(t) <∞, limt→0DP (t) = 0.

(b) DP decays exponentially; DP (t) ≤ Be−Ct, B, C > 0.
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(c) Agents are spatially bounded; supt≥0DQ(t) <∞.

2. Suppose that

‖P 0‖ < Mκ

MG′

∫ +∞

‖Q0‖
ψ(s) ds.

Then (P,Q) exhibits flocking. In particular, if ‖ψ‖L1(R+) = ∞, then a

flocking happens unconditionally.

Proof. Define the function L as

L(t) :=
Mκ

MG′

∫ ‖Q(t)‖

‖Q0‖
ψ(s) ds+ ‖P (t)‖.

We claim that L̇ ≤ 0. We first observe that∣∣∣∣ ddt‖Q‖2
[l]

∣∣∣∣ = 2

∣∣∣∣∣∣
∑
i,j∈[l]

(qi − qj) · (G(pi)−G(pj))

∣∣∣∣∣∣ ≤ 2MG′‖P‖[l]‖Q‖[l]. (4.1.5)

We then choose [l] = [N ] and apply Lemma 4.1.1 to obtain

d

dt
‖P‖ ≤ −κMψ(‖Q‖)‖P‖. (4.1.6)

Then this proves the claim:

dL
dt

=
Mκ

MG′
ψ(‖Q(t)‖)d‖Q(t)‖

dt
+
d‖P (t)‖
dt

≤Mκψ(‖Q(t)‖)‖P (t)‖ −Mκψ(‖Q(t)‖)‖P (t)‖ = 0.

(• Proof of (1)) Implications from (a) to (c) and (b) to (a) are clear. Suppose

that (c) holds. Since any norms are equivalent in a finite dimensional space,

we prove the statement for the norm ‖ · ‖. We have

d

dt
‖P‖ ≤ −κMψ(‖Q‖)‖P‖ ≤ −κMψ

(
sup
t≥0
‖Q(t)‖

)
‖P‖ ≤ −C‖P‖

for some positive constant C independent of time. This yields

‖P (t)‖ ≤ e−tC‖P 0‖.
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(• Proof of (2)) Since L decrease in time, we have

Mκ

MG′

∫ ‖Q(t)‖

‖Q0‖
ψ(s) ds+ ‖P (t)‖ = L(t) ≤ L(0) = ‖P 0‖ < Mκ

MG′

∫ +∞

‖Q0‖
ψ(s) ds.

(4.1.7)

This proves supt≥0 ‖Q(t)‖ <∞, and hence supt≥0DQ(t) <∞. Therefore the

flocking emerges.

In particular, Theorem 4.1.1 states that if flocking happens, then relative

states converge at an exponential rate. Therefore, if agents are far enough

away, they will not collide.

Corollary 4.1.1. Suppose that there exists a positive constant 0 < M <∞
satisfying

MG′‖P 0‖
κM

< min

{∫ M

‖Q0‖
ψ(r)dr, ψ(M) min

i,j∈[N ]
|q0
i − q0

j |
}
. (4.1.8)

Then we have

inf
t≥0

min
i,j∈[N ]

|qi(t)− qj(t)| > 0.

Proof. From (4.1.7) and (4.1.8), we have supt≥0 ‖Q(t)‖ < M < ∞. This

yields

|qi(t)− qj(t)| ≥ |q0
i − q0

j | −
∫ t

0

|G(pi(s))−G(pj(s))|ds

≥ |q0
i − q0

j | −MG′

∫ t

0

DP (s)ds

≥ |q0
i − q0

j | −MG′

∫ t

0

‖P (s)‖ds

≥ |q0
i − q0

j | −MG′‖P 0‖
∫ t

0

exp

(
−κM

∫ s

0

ψ(‖Q(τ)‖)dτ
)
ds

≥ |q0
i − q0

j | −MG′‖P 0‖
∫ t

0

exp

(
−κM

∫ s

0

ψ(M)dτ

)
ds

≥ |q0
i − q0

j | −
MG′‖P 0‖
κMψ(M)

> 0.
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Remark 4.1.2. Suppose that kernel is of the form

ψ(|q|) = |q|−α, α > 1.

In this case, even if ψ /∈ (L∞ ∩ C0,1)(R+;R+), the result in Corollary 4.1.1

still holds. In fact, a priori condition relaxes to

‖P 0‖ < Mκ

MG′

∫ +∞

‖Q0‖
ψ(s) ds.

and the proof will be provided in Theorem 4.3.1.

4.1.3 Application to bi-cluster flocking

Theorem 4.1.1 demonstrates a close relationship between spatial bounded-

ness and the emergence of flocking. Likewise, spacial boundedness plays an

essential role in the bi-cluster flocking.

Proposition 4.1.2. Let (P,Q) be a solution to (4.1.1). Then the following

two statements are equivalent.

1. (P,Q) exhibits the bi-cluster flocking.

2. There exists a partition {A,B} of [N ] satisfying

sup
t≥0

max{DQ,A(t), DQ,B(t)} <∞, sup
t≥0

min
i∈A
j∈B

|qi(t)− qj(t)| =∞.

To prove Proposition 4.1.2, we introduce a preliminary lemma.

Lemma 4.1.2. Let (P,Q) be a solution to (4.1.1). Suppose that there exists

a partition {A,B} of [N ] satisfying

sup
t≥0

max{DQ,A(t), DQ,B(t)} <∞.

Then whenever two groups generate different cluster, two groups segregate:

sup
t∈R+

min
i∈A,j∈B

|qi(t)− qj(t)| =∞ =⇒ lim
t→∞

min
i∈A,j∈B

|qi(t)− qj(t)| =∞.
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Proof. It suffices to prove

lim inf
t→∞

min
i∈A,j∈B

|qi(t)− qj(t)| =∞.

Suppose on the contrary that

lim inf
t→∞

min
i∈A,j∈B

|qi(t)− qj(t)| = MAB <∞.

Then there exists a time sequence {tn}n∈N satisfying

t1 < t2 < · · · , lim
n→∞

tn =∞, sup
n∈N

min
i∈A,j∈B

|qi(tn)− qj(tn)| < 1 +MAB.

As each groups are spatially bounded, we have

sup
n∈N

max
i,j∈[N ]

|qi(tn)− qj(tn)|

< 1 +MAB + sup
t∈R+

‖Q(t)‖A + sup
t∈R+

‖Q(t)‖B =: M ′
AB <∞.

Then for any T > 0,

sup
n∈N

sup
t∈(tn,tn+T )

DQ(t) ≤M ′
AB + 2TMG′P

0
M =: M ′

AB,T <∞,

since pi(t) (resp. q̇i(t) = (G(pi(t))) is bounded above by P 0
M (resp. MG′P

0
M)

from Proposition 4.1.1. Therefore if (t1,∞) ⊂ ∪n∈N(tn, tn+T ) for some finite

T , the flocking must emerge from Theorem 4.1.1. Since A and B generates

different cluster, this cannot happen, which yields

lim sup
n→∞

(tn+1 − tn) =∞.

Passing to a subsequence, we may assume limn→∞(tn+1 − tn) =∞. Let ` be

an index maximizing |pi|. We recall that

d

dt
|p`|2 =

2κ

N

N∑
k=1

ψk`p` · (G(pk)−G(p`)) ≤
2κ

N
ψ(DQ)

N∑
k=1

p` · (G(pk)−G(p`)).

(4.1.9)
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As a maximum of R.H.S. in (4.1.9) is achieved when each pi have same

direction (i.e. cos(pi, pj) = 1), we further estimate

d

dt
|p`|2 ≤

2κ

N
ψ(DQ)

N∑
k=1

p` ·
(
g(|pk|)
|p`|

p` −
g(|p`|)
|p`|

p`

)

≤ 2κmG′

N
ψ(DQ)

N∑
k=1

|p`| (|pk| − |p`|)

= −2κmG′

N
ψ(DQ)|p`|

(
N |p`| −

N∑
k=1

|pk|

)

= −2κmG′ψ(DQ)|p`|

(
|p`| −

1

N

∣∣∣∣∣
N∑
k=1

pk

∣∣∣∣∣
)

(∵ cos(pi, pj) = 1)

=: −2κmG′ψ(DQ)|p`|
(
|p`| − |p0

ave|
)
.

Note that p0
ave is a constant vector, since the derivative of

∑N
k=1 pk is zero.

Thus we have

d

dt

(
|p`| − |p0

ave|
)

=
d

dt
|p`| ≤ −κmG′ψ(DQ)

(
|p`| − |p0

ave|
)
,

which leads to

0 ≤ |p`(t)| − |p0
ave| ≤ exp

(
−κmG′

∫ t

s

ψ(DQ(u))du

)
(|p`(s)| − |p0

ave|), s ≤ t,

where the first inequality comes from the maximality of `. Now fix T and

take N � 1, so that each interval (tn, tn + T ) is disjoint for each n ≥ N .

Then

0 ≤ |p`(tn +T )| − |p0
ave| ≤ exp

(
−κmG′Tψ(M ′

AB,T )
)

(|p`(tn)| − |p0
ave|), n ≥ N.

On the other hand, |p`| is unconditionally decreasing from Proposition 4.1.1.

Thus,

0 ≤ |p`(tn+1 + T )| − |p0
ave| ≤ exp

(
−κmG′Tψ(M ′

AB,T )
)

(|p`(tn+1)| − |p0
ave|)

≤ exp
(
−κmG′Tψ(M ′

AB,T )
)

(|p`(tn + T )| − |p0
ave|)

≤ exp
(
−κmG′2Tψ(M ′

AB,T )
)

(|p`(tn)| − |p0
ave|).
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Then a straightforward induction yields

0 ≤ |p`(t∗)| − |p0
ave|

≤ exp
(
−κmG′(m+ 1)Tψ(M ′

AB,T )
)

(|p`(tn)| − |p0
ave|), t∗ ≥ tn+m + T,

and therefore

lim
t→∞
|p`(t)| = |p0

ave|.

We again use the maximality of ` and apply the squeeze theorem to find

N |p0
ave| =

∣∣∣∣∣
N∑
k=1

pk(t)

∣∣∣∣∣ ≤
N∑
k=1

|pk(t)| ≤ N |p`(t)| ,

so that

lim
t→∞

N∑
k=1

1

N
|pk(t)| = |p0

ave|.

Now we claim

lim
t→∞

pk(t) = p0
ave, k ∈ [N ]. (4.1.10)

It suffices to show limt→∞ |pk(t)| = |p0
ave| for each k. Suppose the contrary.

Then since

lim sup
t→∞

|pk(t)| ≤ lim sup
t→∞

|p`(t)| = |p0
ave|, k ∈ [N ],

there exists a constant Pm satisfying

lim inf
t→∞

min
i∈[N ]
|pi(t)| < Pm < |p0

ave|,

and there exists a time sequence {sn}n∈N such that

0 < s1 < s2 < · · · , lim
n→∞

sn =∞, min
i∈[N ]
|pi(sn)| < Pm.

This leads to

|p0
ave| =

1

N

N∑
i=1

lim
n→∞

|pi(sn)| ≤ 1

N
Pm + lim

n→∞

N − 1

N
|p`(sn)| < |p0

ave|
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which yields a contradiction, verifying the claim (4.1.10). Finally, since flock-

ing does not happen, from Theorem 4.1.1 we have

‖P (tn)‖ ≥ Mκ

MG′

∫ +∞

‖Q(tn)‖
ψ(s) ds

for any tn. As ‖Q(tn)‖ is uniformly bounded in n from the definition of tn, let

QM <∞ be its upper bound. Since ‖P (tn)‖ converges to zero from (4.1.10),

we obtain

0 <
Mκ

MG′

∫ +∞

QM

ψ(s) ds ≤ Mκ

MG′

∫ +∞

‖Q(tn)‖
ψ(s) ds ≤ ‖P (tn)‖ n→∞−−−→ 0,

and this completes the proof by contradiction.

Proof of Proposition 4.1.2. Clearly, (1) implies (2). Suppose that (2) holds.

From Lemma 4.1.1, we have

d

dt
‖P‖A ≤ −

κMl

N
ψ(‖Q‖A)‖P‖A +

4κP 0
MMG′l(N − l)

N
max
i′∈A
j′∈B

ψi′j′ .

From the assumptions on (2) and Lemma 4.1.2, we have

inf
t∈R+

(
κMl

N
ψ(‖Q(t)‖A)

)
≥ C1 > 0, lim

t→∞
max
i′∈A
j′∈B

ψi′j′ = 0,

for some positive constant C1. Therefore for any ε > 0, there exists a time T

satisfying
d

dt
‖P (t)‖A ≤ −C1‖P (t)‖A + ε, ∀t > T (ε) > 0.

Then by the comparison principle, we have

0 ≤ lim sup
t→∞

‖P‖A ≤
ε

C1

.

Since the choice of ε > 0 is arbitrary, we conclude ‖P (t)‖A
t→∞−−−→ 0. The proof

of ‖P (t)‖B
t→∞−−−→ 0 is similar.
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Example 4.1.2. In this example, we briefly sketch an example that achieves

a bi-cluster flocking. For convenience, let G = Id so that mG′ = MG′ =

M = 1. Suppose that D0
Q 6= 0. Then from [17, Theorem 5.1], under some

well-prepared initial configuration, there exists a set of indices [l] (after re-

ordering), which is a nonempty proper subset of [N ], and a positive constant

C such that

min
i∈[l] j /∈[l]

|qi(t)− qj(t)| ≥ Ct.

This leads to∫ t

0

max
i∈[l],j /∈[l]

ψ(qi(s)− qj(s))ds ≤
∫ t

0

ψ(Cs)ds ≤
‖ψ‖L1(R+)

C
.

Then, integrating the second estimate in Lemma 4.1.1 leads to

‖P (t)‖[l] +
κl

N

∫ ‖Q(t)‖[l]

‖Q0‖[l]
ψ(r)dr ≤ ‖P 0‖[l] +

4κP 0
M l(N − l)‖ψ‖L1(R+)

CN
.

Therefore, if a velocity deviation in a group [l] is small and C is sufficiently

large in the sense that

N

κl
‖P 0‖[l] +

4P 0
M(N − l)‖ψ‖L1(R+)

C
<

∫ ∞
‖Q0‖[l]

ψ(r)dr,

then we have supt∈R+
‖Q(t)‖[l] <∞. Similarly, we have supt∈R+

‖Q(t)‖[N ]−[l] <

∞ for large C > 0, and this implies the bi-cluster flocking. Note that C can

be chosen sufficiently large for a suitable choice of initial data. For the detail,

we refer to [17].

4.2 Analysis under weakly singular commu-

nications

In this section, we consider the kernel of form

ψ(x) =
1

|x|α
, α ∈ (0, 1).

In this case, particles may collide (for the colliding example, see [11]) and

the vector field blows up. The description of such a solution is not straight-

forward, as provided in the following Definition and Theorem [45, 46].

93



CHAPTER 4. ASYMPTOTIC DYNAMICS OF THE CS-TYPE
CONSENSUS MODEL

Definition 4.2.1. Let Bi and ψn be defined as

Bi(t) := {k ∈ [N ] : xk(t) 6= xi(t) or vk(t) 6= vi(t)},

ψn(s) :=


ψ(s) if s ≥ (n− 1)−

1
α

smooth and monotone if n−
1
α ≤ s ≤ (n− 1)−

1
α

n if s ≤ n−
1
α

and let 0 = T0 ≤ T1 ≤ TNs be the set of all times of sticking (i.e. xi(t) −
xj(t) = vi(t)− vj(t) for some i) and TNs+1 := T be a given positive number.

For n ∈ {0, · · · , Ns}, on each interval [Tn, Tn+1], consider the problem
ẋi = vi,

v̇i = 1
N

∑
k∈Bi(Tn)(vk − vi)ψn(|xk − xi),

xi ≡ xj if j /∈ Bi(Tn),

(4.2.1)

for t ∈ [Tn, Tn+1], with initial data x(Tn), v(Tn). We say that (x, v) solve

(4.2.1) on the time interval [0, T ] with weight ψ(s) = s−α if and only if for

all n = 0, · · · , Ns and arbitrary small ε > 0, the function x ∈ (C1([0, T ]))Nd

is a weak in (W 2,1([Tn, Tn+1 − ε]))Nd solution of (4.2.1).

Proposition 4.2.1.

1. Let α ∈ (0, 1
2
) be given. Then for all T > 0 and arbitrary initial data,

there exists a unique x ∈ W 2,1([0, T ]) ⊂ C1([0, T ]) that solves (4.1.1)

with communication weight ψ(s) = 1
|x|α weakly in W 2,1([0, T ]).

2. Let α ∈ (1
2
, 1) be given. Then there exists a unique solution in the sense

of Definition 4.2.1.

Although the description of a collisional solution under a singular kernel

is somewhat non-trivial, if we restrict (4.1.1) on the real line, we may convert

it into the first-order model, and its analysis may hint at the property of a

solution in the second-order model as well. In this section, we are interested
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in the model (4.1.1) on the real line, equipped with a weakly singular kernel:
q̇i = G(pi), t > 0, i ∈ [N ],

ṗi =
κ

N

N∑
k=1

ψ(qk − qi)(G(pk)−G(pi)),

(qi, pi)
∣∣
t=0+

= (q0
i , p

0
i ), pi, qi ∈ R,

ψ(s) =
1

|s|α
, α ∈ (0, 1).

(4.2.2)

If ψ is regular and (P,Q) is a classical solution of (4.2.2), then we have a

following relation:∫ t

0

ψ(qk(s)− qi(s))(G(pk(s))−G(pi(s)))ds =

∫ qk(t)−qi(t)

0

ψ(s)ds.

Therefore P is a solution of

q̇i = G(νi +
κ

N

N∑
k=1

Ψ(qk − qi)), (4.2.3)

provided that two systems are coupled by the following relationship:

Ψ(r) :=

∫ r

0

ψ(x)dx, νi := p0
i −

κ

N

N∑
k=1

Ψ(q0
k − q0

i ). (4.2.4)

On the other hand, the converse holds; if Ψ is differentiable, a solution of

(4.2.3) is also a solution of (4.2.2) under (4.2.4), and therefore two models

are equivalent. What if ψ weakly singular? In this case, we have

ψ(q) =
1

|q|α
(α ∈ (0, 1)) =⇒ Ψ(q) =

∫ q

0

ψ(r)dr = sgn(q)
|q|1−α

1− α
.

(4.2.5)

As Ψ is continuous, Peano’s theorem guarantees a classical solution of (4.2.3).

However, this may not be a classical solution of (4.2.2), since a solution of

(4.2.2) requires more regularity of qi than (4.2.3), but the regularity of Ψ

(and hence regularity of q̇i) breaks down at the origin.
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Example 4.2.1. Consider a two-particle system with

G = Id, ψ(q) =
1
√
q
, Ψ(q) = 2sgn(q)

√
|q|.

Then, (4.2.3) is of the form

q̇1 = ν1 +
κ

2
Ψ(q2 − q1), q̇2 = ν2 +

κ

2
Ψ(q1 − q2).

If we pose ν1 = ν2 = 0 and q0
1 ≥ q0

2, we have a following classical solution of

(4.2.3).

qi =



1

2

(
(q0

1 + q0
2) + κ2

(
t− 1

κ

√
|q0

1 − q0
2|
)2
)
, if i = 1, t <

1

κ

√
|q0

1 − q0
2|,

1

2

(
(q0

1 + q0
2)− κ2

(
t− 1

κ

√
|q0

1 − q0
2|
)2
)
, if i = 2, t <

1

κ

√
|q0

1 − q0
2|,

q0
1 + q0

2

2
, otherwise.

However, since q̇i is not differentiable, we cannot recover a classical solution

of (4.2.2).

The above example illustrates that two models are not equivalent under

the classical regime if ψ is singular; a solution of (4.2.3) need not be twice

differentiable. Therefore, if one attempts to make two models equivalent, one

needs to enlarge the concept of solution of (4.2.2). It turns out that the

Sobolev space W 2,1 is an appropriate function space, as described in the

following theorem.

Theorem 4.2.1. Let (P,Q) be a solution to (4.2.2). Then the following as-

sertions holds.

1. The model (4.2.2) has a unique global (weak) solution where

qi ∈ W 2,γ([0, T ]),

for each i ∈ [N ], T ∈ R+, and

γ ∈
[
1,

1

max{1−K,α}

)
, K :=

mG′2
1−2α(1− α)

NMG′α
.
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2. Flocking emerges unconditionally:

sup
t≥0

max
i,j∈[N ]

|qi(t)− qj(t)| <∞, max
i,j∈[N ]

|pi(t)− pj(t)| . e−Ct, C > 0.

Remark 4.2.1. Below, we list some comments about Theorem 4.2.1

1. Theorem 4.2.1 states that qi is always continuously differentiable and

pi is always differentiable almost everywhere, and the regularity of pi
improves as α decreases. Roughly speaking, when α is close to 1, then

pi is close to an absolutely continuous function, and when α is close to

0, then pi is close a to Lipschitz continuous function. In fact, if only

sticking happens and collision does not occur (see Definition 4.2.2),

then pi can be indeed Lipschitz, as described in Example 4.2.1.

2. Equivalence between (4.2.2) and (4.2.3) is not trivial for a singular

kernel. When the kernel ψ is regular, equivalence is essentially based

on the following change of variable formula:∫ t

0

ψ(qk(s)− qi(s))(G(pk(s))−G(pi(s)))ds =

∫ qk(t)−qi(t)

0

ψ(s)ds.

The above formula holds if ψ is continuous and t 7→ qk(t)−qi(t) is con-

tinuously differentiable. However, if ψ is merely a nonnegative measur-

able function, even if t 7→ qk(t)− qi(t) is absolutely continuous, change

of variable formula requires either monotonicity of qk− qi or integrabil-

ity of ψ and ψ(qk(s)− qi(s))(G(pk(s))−G(pi(s))) (see Lemma 4.2.2).

Therefore, due to the possibility of pathological behavior near a collision

time, a change of variable formula cannot be applied directly.

3. In [44], the authors provided a framework to rigorously derive a kinetic

description of the model (4.1.1) (under G = Id) with a weakly singular

communication in a weak-atomic sense. For this, the solution should

have a regularity of W 2,1 and therefore the derivation was limited to

the case where α ∈ (0, 1/2) (see Proposition 4.2.1). Theorem 4.2.1

states that a weak-atomic solution can be derived for any α ∈ (0, 1) on

the real line.
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Before we establish the equivalence between (4.2.2) and (4.2.3), we first

review the dynamics of (4.2.3). Recall that

N := (ν1, ν2, · · · , νN), Ψ(r) :=

∫ r

0

ψ(x)dx, νi := p0
i −

κ

N

N∑
k=1

Ψ(q0
k − q0

i ).

Proposition 4.2.2. [11] Suppose that communication weight has weak sin-

gularity of the following form:

ψ(q) =
1

|q|α
, 0 < α < 1, q 6= 0,

and let Q be a solution to (4.2.3) with initial data (Q0,N ). For fixed indices

i and j (i 6= j), suppose that

q0
i > q0

j .

Then the following trichotomy holds.

1. If νi > νj, then qi and qj will not collide in finite time:

qi(t) > qj(t) for all t ≥ 0.

2. If νi < νj, then qi and qj will collide exactly once, i.e., there exists a

time t∗ such that

qi(t) > qj(t) for 0 ≤ t < t∗,

qi(t
∗) = qj(t

∗) and qi(t) < qj(t) for t > t∗.

3. If νi = νj, then qi and qj will collide in finite time, and two particles

will stick together after their first collision.

4. If νi 6= νj, then we have

lim inf
t→∞

|qi(t)− qj(t)| > 0.

Therefore, two particles pi and pj will overlap in some time unless (p0
i −

p0
j)(νi − νj) > 0, and will eventually ‘stick’ if and only if νi = νj. It is easy

to see that

νi = νj ⇐⇒ pi(t) = pj(t) implies ṗi(t) = ṗj(t),
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as illustrated in Example 4.2.1. If a kernel is regular, then (1),(2), and (4)

in Proposition 4.2.2 still hold, but (3) does not happen; agents never stick

unless they are sticking at the initial state [11, 31]. Thus such ‘finite-in-time

sticking’ characterizes a singular kernel [45, 46]. In what follows, we clarify

the definition of sticking and related concepts:

Definition 4.2.2. Let Q be a C1 solution of (4.2.3). Consider two agents qi
and qj.

1. We say qi and qj collide at time t if

qi(t) = qj(t) but q̇i(t) 6= q̇j(t).

2. We say qi and qj stick at time t if

qi(t) = qj(t) and q̇i(t) = q̇j(t).

From Proposition 4.2.2, if particles stick at some instance, they stick

afterwards. Therefore, if some agents stick at time t among N agents, the

system immediately changes into a system of weighted N ′(< N) agents. To

describe this phenomena, we define sets of collisional indices, sticking indices

and their time set as follows:

Ci(t) := {j ∈ [N ] | qi and qj collide at time t},
Si(t) := {j ∈ [N ] | qi and qj stick at time t},

T :=
⋃
i∈[N ]

({t ∈ R+ : |Ci(t)| 6= 0} ∪ {t ∈ R+ : |Si| is discontinuous at t}) .

(4.2.6)

Note that Ci,Si and T depends on solution of (4.2.3), and Si is discontinuous

at the instance when two particles start to stick.

Proposition 4.2.3. Suppose that an initial data (Q0,N ) of (4.2.3) is given.

1. System (4.2.3) has a unique global classical (i.e. qi(t) ∈ C1(R+;R) for

each i) solution. In particular, Ci(t),Si(t) and T are well defined for

each i ∈ [N ] and t ∈ R+.
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2. For each i ∈ [N ], |Ci(t)| is zero for all but finitely many t ∈ R+.

3. For each i ∈ [N ] and 0 ≤ s ≤ t < ∞, we have Si(s) ⊂ Si(t). In

particular, |Si| is a right-continuous increasing step function.

4. T has a finite cardinality.

Proof. If we prove (1), then the other statements are direct consequences

of Proposition 4.2.2 and (1). Therefore we focus on the proof of (1). The

existence of a global classical solution is guaranteed by Peano’s Theorem.

Therefore it suffices to verify the uniqueness. Suppose that there exists two

solutions Q = (q1, · · · , qN) and Q′ = (q′1, · · · , q′2) with same initial data

(Q0,N ) = (q0
1, · · · , q0

N , ν1, · · · , νN), which is neither collisional nor sticking

(i.e.
∏

i,j∈[N ]
i 6=j

(q0
i −q0

j ) 6= 0). Let (Ci, Si, T ) and (C ′i, S
′
i, T ′) be defined as (4.2.6)

with respect to Q and Q′, respectively. From Proposition 4.2.2, there exists

finite number of times {ti}i∈[M ] sayisfting

[0,∞) =
M⋃
c=0

[tc, tc+1), 0 = t0 < t1 < · · · < tM = +∞, M <∞,

such that {t1, · · · , tM} = T . Similarly, we set [0,∞) =
⋃M ′

c=0[t′c, t
′
c+1) with re-

spect to Q′. Now we use an induction argument to prove tc = t′c and Q = Q′

on [0, tc) for each c = 1, 2, · · · ,M .

• (c=1) Since Ψ is locally Lipschitz except the origin and Ψ is not eval-

uated at 0 in t ∈ [0,min{t1, t′1}), the standard theory of ODE guarantees

that Q(t) = Q′(t) in [0,min{t1, t′1}). Without loss of generality, suppose that

t1 ≤ t′1. Since we have global existence of a classical solution, both of Q and

Q′ uniquely extends to [0, t1] and they are same. In particular, if qi and qj
collide or starts to stick at t1, then so are q′i and q′j. Therefore we have t1 = t′1
and Q = Q′ in [0, t1] = [0, t′1].

• (Inductive step) Suppose tn = t′n for n = 1, 2, · · · , c and assume that

solution is unique in [0, tc), so that Sk(t) and Ck(t) are well defined for each

k ∈ [N ] in t ∈ [0, tc). We claim that
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for any t∗ ∈ [tc,min{tc+1, t
′
c+1}), we have Q = Q′ in [0, t∗].

To prove this by contradiction, suppose that

Q(T ) 6= Q′(T ) for some T ∈ (tc, t
∗]. (4.2.7)

Let D(t) := maxi∈[N ] |qi(t)−q′i(t)| and M = M(t) be a time-dependent index

satisfying D(t) = |qM(t) − q′M(t)|. Let time t ∈ (tc, t
∗] and index M(t) = `

be fixed. If we assume, without loss of generality, that q`(t) ≥ q′`(t), then we

have

q̇`(t)− q̇′`(t)

= G(νi +
κ

N

N∑
k=1

Ψ(qk(t)− q`(t)))−G(νi +
κ

N

N∑
k=1

Ψ(q′k(t)− q′`(t)))

=
κG′(q̃i)

N

N∑
k=1

(Ψ(qk(t)− q`(t))−Ψ(q′k(t)− q′`(t))) , t ∈ (tc + ε, t∗],

where we used the mean value theorem for the last equality. Then definition

of M yields

qk(t)− q′k(t) ≤ q`(t)− q′`(t) ⇐⇒ qk(t)− q`(t) ≤ q′k(t)− q′`(t).

As Ψ is increasing, we have q̇`(t)− q̇′`(t) ≤ 0. From the existence of a global

solution, each q̇i and q̇′i are uniformly bounded in [tc, t
∗). Therefore we have

Ḋ(t) ≤ 0 for almost every t ∈ [tc, t
∗), and

0 ≤ D(t∗) ≤ D(tc) = 0,

where the equality comes from the induction hypothesis. Therefore, by the

same argument as in the c = 1 case, we have tc+1 = t′c+1 and D(t) ≡ 0

on (tc, tc+1]. By induction, we conclude D ≡ 0 on (tc, t
∗]. This contradicts

(4.2.7), which completes the proof for not overlapping initial data. The proof

for a collisional or sticking initial data follows by letting t1 = 0.

Lemma 4.2.1. Let (P,N ) be a solution to (4.2.3) with a communication of

the form (4.2.5). For sufficiently small ε > 0, we have the following asser-

tions.
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1. If pi and pj collide at T > 0, then

Cε ≤ |qi(T ± ε)− qj(T ± ε)|,

for some positive constant C > 0.

2. If pi and pj stick at T > 0,

D1ε
1
α ≤ |qi(T − ε)− qj(T − ε)| ≤ D2ε

1
α ,

where

D1 =

(
2κmG′α

N(1− α)

) 1
α

, D2 =

(
κMG′2

αα

1− α

) 1
α

.

Proof. Throughout the proof, we set

T = {t1, t2, · · · , tc}, t1 < t2 < · · · < tc, t0 = 0,

where T is defined as Proposition 4.2.3.

(• Proof of (1)). Without loss of generality, set νi > νj and q0
j > q0

i .

Suppose that qi collide with qj at tC ∈ T . First, we use the mean value

theorem to observe

d

dt
(qi − qj)|t=tC

= G

(
νi +

κ

N

N∑
k=1

Ψ(qk − qi)

)∣∣∣∣
t=tC

−G

(
νj +

κ

N

N∑
k=1

Ψ(qk − qj)

)∣∣∣∣
t=tC

= G′(yij)(νi − νj) ≥ mG′(νi − νj) =: vij > 0.

(4.2.8)

Then from the continuity of the solution, for some δ > 0 we have

vij
2
≤ G(pi(t))−G(pj(t)), t ∈ [tC − δ, tC + δ].

Therefore, as qi(tC)− qj(tC) = 0, for any 0 < ε ≤ δ, we obtain

|qi(tC ± ε)− qj(tC ± ε)| ≥
∣∣∣∣∫ ε

0

G(pi(tC ± s))−G(pj(tC ± s))ds
∣∣∣∣ ≥ εvij

2
.
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(• Proof of (2)). Suppose that, q1, q2, · · · , ql−1, ql starts to stick at time

tS ∈ T (S ∈ [c]) simultaneously with suitable reordering of indices, and set

q1(t) < q2(t) < · · · < ql−1(t) < ql(t), for any t ∈ (tS−1, tS).

Let i := j + 1(i, j ∈ [l]). We use the mean-value theorem twice to obtain

d

dt
(qi − qj) = G

(
νi +

κ

N

N∑
k=1

Ψ(qk − qi)

)
−G

(
νj +

κ

N

N∑
k=1

Ψ(qk − qj)

)

=
κG′(yij)

N

(
N∑
k=1

(
Ψ(qk − qi)−Ψ(qk − qj)

))

=
κG′(yij)

N

(
N∑
k=1

ψ(zijk)(qj − qi)

)

= −

(
κG′(yij)

N

N∑
k=1

ψ(zijk)

)
(qi − qj),

where zijk is located between qk − qi and qk − qj. Note that the second mean

value theorem is valid since i and j are consecutive, so that Ψ is differentiable

in the interval (qk−qi, qk−qj). In particular, for k ∈ {i, j}, zijk is specifically

ψ(zijj) = ψ(ziji) =
Ψ(qi − qj)
qi − qj

=
1

(1− α)(qi − qj)α
.

Therefore, we have

d

dt
(qi − qj)

≤ −κmG′

N
(ψ(zijj) + ψ(ziji))(qi − qj)

= −C1(qi − qj)1−α, C1 :=
2κmG′

N(1− α)
,

and C1 > 0 is independent of initial data. Now we recall the following ODE:

ẋ = −C1x
1−α, x(0) = x0 > 0

=⇒ x(t) = (C1α)
1
α

(
(x0)α

C1α
− t
) 1

α

, t ∈
(

0,
(x0)α

C1α

)
.
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Then, by the comparison principle, for any sufficiently small δ > 0, we have

qi(tS − ε)− qj(tS − ε)

≤ (C1α)
1
α

(
(qi(tS − δ)− qj(tS − δ))α

C1α
− (δ − ε)

) 1
α

, ε ∈ [0, δ].

(4.2.9)

Now we claim that

qi(tS − ε)− qj(tS − ε) ≥ (C1αε)
1
α , ε ∈ [0, δ]. (4.2.10)

Suppose that (4.2.10) does not hold. Then for some ε∗ ∈ [0, δ], we have

qi(tS − ε∗)− qj(tS − ε∗) < (C1αε
∗)

1
α .

Then (4.2.9) under δ = ε∗ yields

qi(tS − ε)− qj(tS − ε) < (C1αε)
1
α , ε ∈ [0, ε∗].

Then, as the inequality is strict and (C1αε)
1
α |ε=0 = 0, there exists ε∗∗ ∈ (0, ε∗]

satisfying

qi(tS − ε∗∗)− qj(tS − ε∗∗) = 0.

However, since tS is a time that qi and qj starts to stick, this is awkward,

verifying (4.2.10). Since choice of i and j = i − 1 was arbitrary and C1 is

independent of indices, we have

min
i 6=j,i,j∈[l]

|qi(tS − ε)− qj(t− ε)| ≥ (C1αε)
1
α =: D1ε

1
α .

Now take any i′, j′ ∈ [l] with i′ > j′. Since ψ(|r|) decreasing in |r|, we

have

Ψ(qk − qj′)−Ψ(qk − qi′) =

∫ qk−qj′

qk−qi′
ψ(r)dr

≤
∫ qi′−qj′

2

−
qi′−qj′

2

ψ(r)dr =
2α

1− α
(qi′ − qj′)1−α.
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We apply the mean value theorem to get

d

dt
(qi′−qj′) =

κG′(yi′`)

N

(
N∑
k=1

(
Ψ(qk − qi′)−Ψ(qk − qj′)

))

≥ −κMG′2
α

1− α
(qi′ − qj′)1−α =: −C2(qi′ − qj′)1−α, t ∈ (tS − ε, tS),

for a positive constant C2 > 0 independent of i′ and j′. We then apply similar

technique to derive (4.2.10) to yield

qi′(tS − ε)− qj′(tS − ε) ≤ (C2αε)
1
α , ε ∈ [0, δ],

and therefore

max
i 6=j,i,j∈[l]

|qi(tS − ε)− qj(t− ε)| ≤ (C2αε)
1
α =: D2ε

1
α .

Lemma 4.2.2. Suppose that 0 ≤ f ∈ L1
loc(R) and u is absolutely continuous

on [a, b]. If (f ◦ u)× u′ ∈ L1([a, b]), then∫ u(b)

u(a)

f(x)dx =

∫ b

a

f(u(t))u′(t)dt.

Proof. First suppose that 0 ≤ f is bounded and measurable. For some con-

stant c, define

F (x) :=

∫ x

c

f(t)dt,

Then from boundedness of f , we have F ∈ C0,1(R). Thus F ◦ u is absolutely

continuous and

(F ◦ u)′(t) = f ′(u(t))u′(t),

for almost every t ∈ [a, b]. Therefore we have∫ b

a

f(u(t))u′(t)dt =

∫ b

a

(F ◦ u)′(t)dt = (F ◦ u)(b)− (F ◦ u)(b)

= F (u(b))− F (u(a)) =

∫ u(b)

u(a)

F ′(x)dx =

∫ u(b)

u(a)

f(x)dx.
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Now suppose that 0 ≤ f ∈ L1
loc(R). Define an approximating function fn as

fn(x) :=

{
f(x), if 0 ≤ f(x) ≤ n,

0, if f(x) > n.

Then since fn is bounded, we have∫ b

a

fn(u(t))u′(t)dt =

∫ u(b)

u(a)

fn(x)dx.

From the integrability of f and f(u(t))|u′(t)|, we have a desired result from

the dominated convergence theorem.

As a direct consequence, we can establish the equivalence between (4.2.2)

and (4.2.3) whenever ψ(qi − qj)(G(pi)−G(pj)) is locally integrable for each

i, j ∈ [N ]. More precisely, let Ψ(·) be an antiderivative of ψ:

Ψ(x) :=

∫ x

0

ψ(y)dy, x ∈ R,

as long as ψ is locally integrable. Let (P,Q) be a solution to (4.2.2), where

pi ∈ W 2,1([0, T ]) for any T > 0. Then from Lemma 4.2.2, it follows that

d

dt
Ψ(qk(t)− qi(t)) =

d

dt

∫ qk(t)−qi(t)

qk(0)−qi(t)
ψ(y)dy

=
d

dt

∫ t

0

ψ(qk(t)− qi(t))(G(qk(t))−G(qi(t)))dt

= ψ(qk(t)− qi(t))(G(pk(t))−G(pi(t))),

for almost every t. Hence, it follows from (4.2.2) that

d

dt

(
pi −

κ

N

N∑
k=1

Ψ(qk(t)− qi(t))

)
= 0, i ∈ [N ],

for almost every t. Now, we integrate above with respect to t to get

pi(t) = p0
i −

κ

N

N∑
k=1

Ψ(q0
k − q0

i ) +
κ

N

N∑
k=1

Ψ(qk(t)− qi(t))
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=: νi +
κ

N

N∑
k=1

Ψ(qk(t)− qi(t)).

Conversely, if each qi is continuously differentiable and q̇i is absolutely con-

tinuous in any finite time interval, we recover (4.2.2) from (4.2.3) for almost

every t by direct differentiation.

Now we are ready to prove Theorem 4.2.1.

Proof of Theorem 4.2.1. Let T = (t1, t2, · · · , tc) and t0 = 0, tc+1 =∞, where

ti is increasing with respect to indices. Let [l] be a set of indices sticking at

tS ∈ T as in the proof of Lemma 4.2.1. For any ε > 0, k ∈ [c] and i, j ∈ [N ],

we have either

qi(t) ≡ qj(t) for t ≥ tk, or inf
t∈(tk+ε,tk+1−ε)

|qi(t)− qj(t)| > C > 0, (4.2.11)

for some constant C > 0 from Proposition 4.2.2. Thus Ψ(qi(s) − qj(s)) is

continuously differentiable for s where |s − tk| > ε, tk ∈ T . Therefore by

Lemma 4.2.2, (4.2.2) and (4.2.3) are equivalent in time T ∈ (tk + ε, tk+1− ε).
Now consider a bounded regular communcation ψ̃ satisfying

ψ(x) = ψ̃(x), x ∈ (C,∞),

and its antiderivative Ψ̃(x) :=
∫ x

0
ψ̃(r)dr. Let T ∈ (tk + ε, tk+1 − ε). For the

former case of (4.2.11), we have

Ψ(qi(T )− qj(T ))−Ψ(qi(tk + ε)− qj(tk + ε))

= 0 = Ψ̃(qi(T )− qj(T ))− Ψ̃(qi(tk + ε)− qj(tk + ε)).

For the latter case of (4.2.11), since ψ and ψ̃ are same in (C,∞), we have

Ψ(qi(T )− qj(T ))−Ψ(qi(tk + ε)− qj(tk + ε))

=

∫ qi(T )−qj(T )

qi(tk+ε)−qj(tk+ε)

ψ(r)dr

=

∫ qi(T )−qj(T )

qi(tk+ε)−qj(tk+ε)

ψ̃(r)dr
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= Ψ̃(qi(T )− qj(T ))− Ψ̃(qi(tk + ε)− qj(tk + ε)).

This yields

pi(T ) = νi +
κ

N

N∑
k=1

Ψ(qk(T )− qi(T ))

= pi(tk + ε)− κ

N

N∑
k=1

Ψ(qk(tk + ε)− qi(tk + ε))

+
κ

N

N∑
k=1

Ψ(qk(T )− qi(T ))

= pi(tk + ε)− κ

N

N∑
k=1

Ψ̃(qk(tk + ε)− qi(tk + ε))

+
κ

N

N∑
k=1

Ψ̃(qk(T )− qi(T ))

= pi(tk + ε) +
κ

N

N∑
k=1

∫ T

tk+ε

ψ̃(qk(s)− qi(s))(G(pk(s))−G(pi(s)))ds.

Therefore, even if we change the kernel of (4.2.2) from ψ to ψ̃ at time tS + ε,

pi still remains as a solution of a differential equation in time (tk+ε, tk+1−ε).
Now consider a differential equation

˙̃qi = G(ν̃i +
κ

N

N∑
k=1

Ψ̃(q̃k(t)− q̃i(t))),

ν̃i := p̃0
i −

κ

N

N∑
k=1

(Ψ̃(q̃0
k − q̃0

i )), q̃0
i = q̃i(0),

where q̃0
i = qi(tk + ε), p̃0

i = pi(tk + ε). Since (4.2.11) also holds for q̃i,

by the same argument, we can replace ψ̃ to ψ as well. In other word, for

t ∈ (tk + ε, tk+1− ε), a value of solution is independent of the value of ψ near

the origin. Therefore we may assume that ψ is regular and use Lemma 4.1.1

for any t /∈ T . As a choice of ε > 0 is arbitrary, we have

d

dt
‖P‖[l] ≤ −

κmG′l

N
ψ(‖Q‖[l])‖P‖[l] +

2κMG′(N − l)P 0
MLψ,[l]

N
‖Q‖[l],
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Lψ,[l](t) := sup
r,s≥q[l](t),

r 6=s

∣∣∣∣ψ(r)− ψ(s)

r − s

∣∣∣∣ <∞, q[l](t) := min
i′∈[l]
j′ /∈[l]

|qi′(t)− qj′(t)|,

for t /∈ T . As pi and pj stick at tS, Lemma 4.2.1 yields

D1ε
1
α ≤ |qi(tS − ε)− qj(tS − ε)| ≤ D2ε

1
α ,

where

D1 =

(
2κmG′α

N(1− α)

) 1
α

, D2 =

(
κMG′2

αα

1− α

) 1
α

.

Since [l] is a set of sticking particles, particles pi and pj with indices i ∈ [l] and

j /∈ [l] are either collisional or separated at time tS. Therefore for 0 < δ � 1,

Lemma 4.2.1 yields

Lψ,[l](tS − δ) ≤
∣∣∣ d
dx

1

xα

∣∣∣∣∣∣∣∣
x=Cδ

= αC−α−1δ−α−1

‖Q(tS − δ)‖[l] ≤
√

(l2 − l)× (D2δ
1
α )2 ≤ lD2δ

1
α .

Therefore for 0 < δ � 1,

d

dt
‖P (tS − δ)‖[l] ≤ −

κmG′l
1−αD−α2

N
δ−1‖P (t− δ)‖[l]

+
2κMG′(N − l)P 0

M

N
C−1−αδ−1−αlD2δ

1
α

=: −K1δ
−1‖P (t− δ)‖[l] +K2δ

−1−α+ 1
α .

Then for fixed ε > 0 and t∗ < t− ε, the Grönwall inequality yields

‖P (t− ε)‖[l] ≤

exp

(
−K1

∫ tS−ε

t∗

1

tS − s
ds

)
×
[
‖P (t∗)‖[l] +K2

∫ tS−ε

t∗
exp

(
K1

∫ s

t∗

1

tS − u
du

)
(tS − s)−1−α+ 1

αds

]
=

εK1

(ts − t∗)K1
×
[
‖P (t∗)‖+K2(ts − t∗)K1

∫ tS−ε

t∗
(tS − s)−1−α+ 1

α
−K1ds

]
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.

{
εK1(log(tS − t∗)− log ε), if − α + 1

α
−K1 = 0,

εK1((ts − t∗)−α+ 1
α
−K1 − ε−α+ 1

α
−K1), if − α + 1

α
−K1 6= 0.

Therefore, if qi and qj starts to stick at time tS, then for ε� 1,

ψ(qi − qj)(G(pi)−G(pj))|t=tS−ε
≤MG′ψ((D1ε

1
α ))DP,[l](t− ε)

≤MG′ψ((D1ε
1
α ))‖P (t− ε)‖[l]

.

{
εK1−1(1− log ε), if − α + 1

α
−K1 = 0,

|εK1−1 − ε−1−α+ 1
α |, if − α + 1

α
−K1 6= 0.

As G(pi(t))−G(pj(t)) ≡ 0 for t ≥ tS, we have

ψ(qi − qj)(G(pi)−G(pj))|[tS−ε,tS+ε] ∈ Lp,

where p ∈
[
1,

1

max{0, 1−K1, 1 + α− 1/α}

)
.

Furthermore, if 1+α−1/α ≤ 0 and 1 ≤ K1, then we can choose p =∞. Note

that K1 is increasing in l, the number of simultaneously sticking particles, so

that

K1 =
κmG′l

1−αD−α2

N
=
mG′l

1−α(1− α)

NMG′2αα
≥ mG′2

1−2α(1− α)

NMG′α
=: K.

If qi and qj collide at time tS, where νi > νj, by similar calculation in

(4.2.8) we have

mG′(νi − νj) ≤ G(pi(tS))−G(pj(tS)) ≤MG′(νi − νj),

and G(pi(tS)) − G(pj(tS)) is nonzero bounded in a neighborhood of tS. To-

gether with Lemma 4.2.1, this yields

ψ(qi − qj)(G(pi)−G(pj))|t=tS±ε . ε−α.

In this case, we have

ψ(qi − qj)(G(pi)−G(pj))|[tS−ε,tS+ε] ∈ Lp, where p ∈
[
1,

1

α

)
.
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If pi and pj are neither collisional nor sticking at tS, then ψ(qi − qj)(G(pi)−
G(pj)) is bounded near tS. On the other hand, ψ(qi(s) − qj(s))(G(pi(s)) −
G(pj(s))) is bounded for s such that |s− tc| > ε, tc ∈ T . Putting the results

altogether, we conclude

N∑
i=1

ψ(qi − qj)(G(pi)−G(pj)) ∈ Lploc(R+),

where p ∈
[
1,

1

max{1−K,α}

)
.

This proves the first assertion of the Theorem 4.2.1.

To prove the second assertion, we consider the solution to (4.2.2) emanat-

ing from an initial data (P (T ), Q(T )), where T > tc. Then from Proposition

4.2.2, we have either

qi(t) ≡ qj(t) for t > T, or inf
t≥T
|qi(t)− qj(t)| > C > 0,

for some constant C > 0. Therefore, as we did in the beginning of the proof,

a value of solution for t > T is independent of the value of ψ near the

origin. Therefore we may assume that ψ is regular and apply Theorem 4.1.1.

Since
∫∞
r
ψ(x)dx =∞ for any r > 0, we conclude that the flocking emerges

unconditionally.

4.3 Analysis under strongly singular commu-

nications

In this section, we consider strongly singular communications, which are not

integrable near the origin. A typical example is

ψ(q) =
1

|q|α
, where α ≥ 1. (4.3.1)

As in the previous section, the well-posedness of a solution is directly related

to singularity arising from a collision. For a strongly singular kernel case,

this issue can be treated by the so-called ‘collision avoidance property’ of the

strongly singular kernel.
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Proposition 4.3.1. Suppose that

ψ ∈ (C0,1
loc ∩ L

1
loc)(R+;R+), (ψ(r)− ψ(s))(r − s) ≤ 0, ∀r, s ∈ R+,

and let Q be a solution of (4.1.1) with noncollisional initial data (P 0, Q0).

If
∫ ε

0
ψ(r)dr = ∞ for any ε > 0, then there exists a unique global classical

solution with the collision avoidance property:

inf
t∈[0,T ]

min
i,j∈[N ]
i 6=j

|qi(t)− qj(t)| > 0, ∀T ∈ R+.

Furthermore, if the ambient space is one-dimensional(d = 1), then we have

inf
t≥0

min
i,j∈[N ]
i 6=j

|qi(t)− qj(t)| > 0.

Proof. Although the Proposition can proved by direct modification of [10,

Theorem 5.2] and [11, Theorem 3.1], we provide a more simple proof here.

Since Q0 is non-collisional, from the standard Cauchy-Lipschitz theory, a

solution is well-posed before the first collision time τ (i.e. the smallest τ > 0

satisfying qi(τ) = qj(τ) for some i, j, i 6= j). To establish the global well-

posedness, we first observe that the collision does not happen in any finite

time. Suppose that the first collision time τ ∈ R+ exists and let qi be a

colliding particle. By the rearrangement of indices suppose define a set of

indices [l] ⊂ [N ] as

[l] := {j ∈ [N ] | qi(τ) = qj(τ)} 6= ∅.

Then, for any ε > 0, we can apply the second estimate in Lemma 4.1.1 in time

t ∈ [0, τ − ε). From the definition of [l], there exists two positive constants

C1, C2 > 0 satisfying

d

dt
‖P‖[l] ≤ −C1ψ(‖Q‖[l])‖P‖[l] + C2‖Q‖[l], t ∈ [0, τ − ε). (4.3.2)

Now define the functional

L̃(t) :=
C1

MG′

∫ ‖Q(t)‖[l]

‖Q0‖[l]
ψ(s) ds.
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Then |L̃(t)| + ‖P (t)‖[l] have a linear or sub-linear growth; there exists a

positive constant C satisfying

d

dt
|L̃(t)|+ d

dt
‖P (t)‖[l] ≤

∣∣∣∣ ddtL̃(t)

∣∣∣∣+
d

dt
‖P (t)‖[l]

=

∣∣∣∣ C1

MG′
ψ(‖Q(t)‖[l])

d

dt
‖Q(t)‖[l]

∣∣∣∣+
d

dt
‖P (t)‖[l] ≤ C2‖Q‖[l] < C <∞,

where we used (4.1.5) and (4.3.2) for the second inequality. Therefore if col-

lision happen, there exists a constant C satisfying

∞ = lim
t↗τ
|L̃(t)| . C(1 + τ) <∞,

which yields a contradiction. Therefore collision cannot happen in any fi-

nite time, and this proves the existence and uniqueness of a global classical

solution.

Now suppose d = 1. From (4.1.1), we can deduce an integral equation

G−1(q̇i(t)) = G−1(q̇i(0)) +
κ

N

∫ t

0

N∑
k=1

αki(s)(G
−1(q̇k(s))−G−1(q̇i(s)))ds,

for t ∈ R+, where the modified kernel αki is defined as

αki(t) =

0 if q̇k(t) = q̇i(t),

φ(qk(t)− qi(s))×
q̇k(t)− q̇i(t)

G−1(q̇k(t))−G−1(q̇i(t))
if q̇k(t) 6= q̇i(t).

so that αki is nonnegative, measurable and symmetric with respect to indices.

Since a finite-in-time collision never happens, a solution is well defined glob-

ally, and [37, Theorem 1] guarantees the existence the following uniform-in-t

bound U for each i, j ∈ [N ](i 6= j):∣∣∣∣∣
∫ qi(t)−qj(t)

q0i−q0j
ψ(r)dr

∣∣∣∣∣ =

∣∣∣∣∫ t

0

ψ(qi(s)− qj(s))(q̇i(s)− q̇j(s))ds
∣∣∣∣

=

∣∣∣∣∫ t

0

αij(s)(G
−1(q̇i(s))−G−1(q̇j(s)))ds

∣∣∣∣
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≤
∫ ∞

0

αij(s)|(G−1(q̇i(s))−G−1(q̇j(s))|ds =: U <∞.

As ψ is not integrable near the origin, we conclude

sup
t≥0

max
i,j∈[N ]
i 6=j

∣∣∣∣∣
∫ qi(t)−qj(t)

q0i−q0j
ψ(r)dr

∣∣∣∣∣ ≤ U =⇒ inf
t≥0

min
i,j∈[N ]
i 6=j

|qi(t)− qj(t)| > 0.

Remark 4.3.1.

1. From Proposition 4.3.1, the origin of the kernel is not referred to in any

finite time. Therefore, under the same assumption in Proposition 4.3.1,

although ψ is not Lipschitz, the results of Theorem 4.1.1 still hold.

2. Although the proof of Proposition 4.3.1 is rather simple, explicit lower

bounds between agents cannot be deduced. For the explicit expression

for a lower bound, refer to the proof of [10, Theorem 5.2].

3. If the kernel is weakly singular at the origin (i.e.,
∫ ε

0
ψ(r)dr < ∞ for

some ε > 0), then a collision might happen, as described in the previous

section.

For the Euclidean space of arbitrary dimension, the authors of [54] derived

an existence of strict positive lower bound for relative distances under α > 2

and G = Id:

min
i,j∈[N ]

|q0
i − q0

j | > 0 ⇒ inf
t≥0

min
i,j∈[N ]

|qi(t)− qj(t)| ≥ L∞ > 0,

by employing a suitable potential energy with a dissipative structure. Unfor-

tunately, the dissipation of potential energy heavily depends on the Galilean

invariance, which (4.1.1) lacks due to the presence of an activation function.

Instead, we provide an alternative characterization for the existence of L∞.

Theorem 4.3.1. Let (P,Q) be a solution of (4.1.1) with a kernel of the form

(4.3.1). Suppose that Q is non-collisional and further assume that

1. α 6= 1, and
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2. (P,Q) exhibits flocking.

Then there exists a strictly positive lower bound of distance between agents:

inf
t≥0

min
i,j∈[N ]
i 6=j

|qi(t)− qj(t)| > 0.

Proof. From Proposition 4.3.1, the result of Theorem 4.1.1 holds for kernel

of the form (4.3.1) as well. Therefore there exists a constant C > 0 satisfying

max
i,j
|pi(t)− pj(t)| . e−tC , t ∈ R+,

and the limit limt→∞ |qi(t)− qj(t)| always exists for any indices. In particular

if limt→∞ |qi(t)− qj(t)| = 0, then we have

|qi(t)− qj(t)| =
∣∣∣∣∫ t

∞
(q̇i(t)− q̇j(t))dt

∣∣∣∣ =

∣∣∣∣∫ ∞
t

(q̇j(t)− q̇i(t))dt
∣∣∣∣

≤MG′

∫ ∞
t

|pi(s)− pj(s)|ds .
∫ ∞
t

e−sCds . e−tC .

(4.3.3)

Now for some index i, suppose that there exists a set [l] ⊂ [N ] defined as

[l] := {j ∈ [N ] | lim
t→∞

(qi(t)− qj(t)) = 0} 6= ∅.

From (4.3.3), there positive constants B,C > 0 satisfying ‖Q(t)‖[l] ≤ Be−tC .

Therefore for sufficiently large t� 1, we obtain∣∣∣∣∣
∫ ‖Q(t)‖[l]

‖Q0‖[l]
ψ(s)ds

∣∣∣∣∣ =

∫ ‖Q0‖[l]

‖Q(t)‖[l]
ψ(s)ds

≥
∫ ‖Q0‖[l]

Be−tC
ψ(s)ds =

B1−αetC(α−1) − ‖Q0‖1−α
[l]

α− 1
.

Since the limit of |pi(t)−pj(t)| always exists and finite-in-time collision never

happens, there exists a positive constant U satisfying

sup
t≥0

sup
i∈[l]
j /∈[l]

ψ(qi − qj) < U <∞.
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Therefore |L̃| defined in the proof of Proposition 4.3.1 have a linear or sub-

linear growth, which leads to the contradiction:

etC(α−1) − 1 .

∣∣∣∣∣
∫ ‖Q(t)‖[l]

‖Q0‖[l]
ψ(s)ds

∣∣∣∣∣ . 1 + t.

Therefore we conclude [l] = ∅, as desired.

Remark 4.3.2. 1. Let (P,Q) be a solution to (4.1.1) with non-collisional

initial data (P 0, Q0). Corollary 4.1.1 states a high value of κ leads to

not only flocking but also the strict spacing between the agents;

min
i,j∈[N ]
i 6=j

inf
t≥0
|qi(t)− qj(t)| > 0 (4.3.4)

Moreover, when communication is of form ψ(x) = |x|−α, the theorem

in [54] states that (4.3.4) can be achieved for arbitrary κ > 0 under

α > 2 and G = Id. However, to the author’s knowledge, a further

result to have (4.3.4) under α ∈ [1, 2] is missing. Meanwhile, Theorem

4.1.1 and 4.3.1 states that κ can be arbitrarily small when α is close to

1. Therefore Theorem 4.1 may complement the previous result.

2. If a strictly positive lower bound of the relative state is guaranteed, as

we did in the proof of Theorem 4.2.1, we may regularize the kernel. As

an application, for example, we may apply results of stability estimates

in [32] for singular kernels as well, even though proof of the theorem

requires the Lipschitz continuity of the kernel. On the other hand, we

may relax a priori condition for stability estimate in [1], since some

of the conditions are devoted to ensuring strict lower bound between

relative states.

3. In many cases concerning a many-body system equipped with a singu-

lar kernel, it is often desirable to guarantee a strictly positive lower

bound for a relative distance between agents. This, for example, guar-

antees the well-definedness of a ω-limit set, which enables us to apply

the dynamical system theory like LaSalle’s invariance principle.

116



CHAPTER 4. ASYMPTOTIC DYNAMICS OF THE CS-TYPE
CONSENSUS MODEL

4.4 The kinetic description

We recall the the CS-type model (4.1.1):

q̇i = G(pi), t > 0, i ∈ [N ] := {1, 2, · · · , N},

ṗi =
κ

N

N∑
k=1

φ(qk − qi)(G(pk)−G(pi)),

(qi, pi)
∣∣
t=0+

= (q0
i , p

0
i ), pi, qi ∈ Rd, φ(q) = 1

|q|α ,

(4.4.1)

where we used φ : q 7→ 1
|q|α instead of ψ : |q| 7→ 1

|q|α for the convenience

of further analysis. In the current section, we are interested with a kinetic

description of CS-type model (4.4.1), which is of the form:
∂tf +G(p) · ∇qf +∇p · (L[f ]f) = 0, (t, q, p) ∈ R+ × Rd × Rd,

L[f ](t, q, p) :=
∫
R2d φ

(
q∗ − q

)
(G(p∗)−G(p))f(t, q∗, p∗)dq∗dp∗,

f(0, q, p) = f 0(q, p), φ(q) =
1

|q|α
.

(4.4.2)

For the formal derivation of (4.4.2), we use the standard BBGKY hierarchy

to derive the following kinetic equation of the probability density function

f = f(t, q, p).

Note that (4.4.2) can be regarded as a generalization of (4.4.1). To see

this, Let {qi(t), pi(t)}Ni=1 be a solution of (4.4.1). If we regard f as a distribu-

tion(generalized function), then f(t, q, p) = 1
N

∑N
i=1 δ(qi(t),pi(t)) is a distribu-

tional weak solution of (4.4.2) for Direc-delta distribution δ and vice versa

(for more details, see [44]). Therefore, it might be subtle to consider a kinetic

analog of (4.4.1) with non-discrete support, since Section 4.3 features out

the collision avoidance property of a singular kernel. Nevertheless, one can

interpret the Theorem 3.2.1 as an allowance of collision or sticking of char-

acteristics in terms of (4.4.2), as far as singularity is not too strong. On the

other hand, sticking of characteristics might be interpreted as a blow-up of

one-particle distribution function, which violates the regularity of a solution.
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Indeed, we will prove the local-in-time well-posedness of (4.4.2) under weak

singularity.

4.4.1 Preliminaries in optimal transport theory

In this subsection, we present the basic definitions. Let M(R2d) be the set

of regular Borel measures on R2d. We denote the duality paring between

measure and function by

〈µ, f〉 :=

∫
R2d

f(q, p)dµ(q, p), µ ∈M(R2d).

To employ the language of optimal transport theory, we introduce several

definitions and related properties. Definitions for a generic p ∈ [1,∞) will be

provided, and we mainly deal with the case of p = 1.

Definition 4.4.1. Let (X, ‖ · ‖) be a normed vector space, P(X) ⊂ M(X)

be a space of probability measures on X, and and p ∈ [1,∞).

1. The Wasserstein space of order p on X is defined as a collection of

probability measures with a finite p-th moment:

Pp(X) :=

{
µ ∈ P(X) : 〈µ, ‖y‖p〉 =

∫
X

‖y‖pdµ(y) <∞
}
.

2. Let µ ∈ M(Rd) and T : Rd → Rd be a measurable mapping. Then the

push-forward of µ by T is the measure T#µ ∈M(Rd) defined by

T#µ(B) := µ(T−1(B)) for any Borel set B ⊂ Rd.

Such T is called a transport map from µ to T#µ in the context of

optimal transport.

3. Let µ and ν in Pp(X) be two measures. Then, the Wasserstein metric

Wp of order p between µ and ν is given by

Wp(µ, ν) :=

(
inf

γ∈Π(µ,ν)

∫
X×X

‖y − ỹ‖pdγ(y, ỹ)

) 1
p

,
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where Π(µ, ν) is the collection of probability measures on X ×X with

marginals µ and ν:

Π(µ, ν) = {γ ∈M(X ×X) : π1#γ = µ, π2#γ = ν},

where πi(x1, x2) = xi. Such γ ∈ Π(µ, ν) are called the transport plans,

and those achieving the infimum, if exist, are called the optimal trans-

port plans.

We recall some classic properties in Definition 4.4.1.

Remark 4.4.1.

1. (Kantorovich-Rubinstein Duality for p = 1) For a compact set X ⊂ Rd,

Wasserstein-1 distance on P1(X) coincide with the bounded Lipschitz

distance, which is also known as Monge-Kantorovich-Rubinstein dis-

tance dLip:

W1(µ1, µ2) = dLip(µ1, µ2) := sup
φ∈Lip(X)
Lip[φ]≤1

∫
X

φ(x)d(µ1 − µ2)(x).

2. If µ, ν ∈ Pp(X) (1 ≤ p < ∞) are atomless, there exists an optimal

transport map from µ to ν. That is, there exists a transport map T
from µ to ν achieving the following infimum:

inf
T

∫
X

‖x− T (x)‖pdµ(x) =

∫
X

‖x− T (x)‖pdµ(x),

where the infimum is taken over the set of transport maps from µ to ν.

Furthermore, for a compact subset X of Rd, it turns out that (Id×T )#µ

is an optimal transport. In particular, we have

W p
p (µ, ν) =

∫
X

‖x− T (x)‖pdµ(x).

3. The definition of push-forward measure is equivalent to adjunction for-

mula:

〈F#µ, φ〉 = 〈µ, φ ◦ F 〉 for any φ ∈ Cb(Rd).

Therefore, for µ ∈ Pp(Rd) and Borel mapping f1, f2 : Rd → Rd, the

following inequality holds:

W p
p (f1#µ, f2#µ) ≤

〈(
(f1 × f2)#µ

)
(x, y), |x− y|p

〉
= 〈µ, |f1 − f2|p〉.
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4.4.2 Local well-posedness

We start by rewriting (4.4.1) in a view of measure. Let C([0, T ];P1(X)) be

the space of all continuous probability measure-valued function from [0, T ]

to P1(X).

Definition 4.4.2 (Weak Solution). For T ∈ [0,∞], f is a weak solution of

(4.4.1) on the time interval [0, T ) if and only if

1. f ∈ L∞(0, T ;Lp(R2d)) and fdqdp ∈ C([0, T ];P1(R2d)).

2. f satisfies the following equation for all the test functions g ∈ C∞c ([0, T ]×
R2d):∫

R2d

f(t, q, p)g(t, q, p)dqdp−
∫
R2d

f 0(q, p)g0(q, p)dqdp

=

∫ T

0

∫
R2d

f(∂tg +G(p) · ∇xg + L[f ] · ∇pg)dqdpdt.

If f is a weak solution of (4.4.1), then f(t, q, p)dqdp = µt(dq, dp) is a measure-

valued solution of (4.4.2). Conversely, if a measure valued solution µt of

(4.4.2) is absolutely continuous with respect to Lebesgue measure with Radon-

Nikodym derivative f(t, q, p)dqdp = µt(dq, dp), then f is a weak soluton of

(4.4.1). In particular, if f is a function with sufficient regularity, µ can be

translated into classical solution f . Therefore, we use f(t, q, p) and µt(dq, dp)

interchangeably: for example, when fi(t, q, p)dqdp = µti(dq, dp) for i = 1, 2,

we may abuse notation and denote

Wp(f1, f2) := Wp(µ
t
1, µ

t
2).

Similarly, we may write f2 = F#f1 in place of µt2 = F#µt1.

Since the solution of (4.4.2) is globally well-posed under regular kernel,

our strategy is to approximate the solution of (4.4.2) via its regularized sys-

tem. We introduce a Dirac sequence of radially symmetric mollifiers in Rd:

ζ(x) = ζ̄(|x|) ≥ 0, ζ ∈ C∞c (Rd), supp(ζ) ⊂ B1(0),
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∫
Rd
ζdx = 1, ζε(x) :=

1

εd
ζ
(x
ε

)
.

Using regularized communication weight, we introduce regularized system

for (4.4.2):
∂tfε +G(p) · ∇qfε +∇p · (Lε[fε]fε) = 0, (t, q, p) ∈ R+ × Rd × Rd,

Lε[fε](t, q, p) :=
∫
R2d φε

(
q∗ − q

)
(G(p∗)−G(p))fε(t, q∗, p∗)dq∗dp∗,

fε(0, q, p) = f 0(q, p), φε(q) =
1

|q|α
∗ ζε.

(4.4.3)

NOTATION. From now on, C will denote a generic positive constant which

may vary even in the same line. Given a constant β ∈ (1,∞], Hölder con-

jugate of β will be denoted by γ so that 1
β

+ 1
γ

= 1. We denote the norms

by

‖f‖Lβ := ‖f‖Lβ(U) where U = Rd or R2d, ‖f‖ := ‖f‖L∞(0,T ;Lβ),

and define the momentum support and its maximum modulus by Rε(t) :=

maxp∈Ωε(t) |p| and

Ωε(t) := cl({ p ∈ Rd | fε(t, q, p) 6= 0 for some (q, p) ∈ R2d }).

When notational simplicity is required, we abbreviate variables in the follow-

ing way.

(q, p) = z, (q∗, p∗) = z∗, dqdp = dz, dq∗dp∗ = dz∗.

Analogues to Proposition 4.1.1, we first observe the decrement in the

maximal momentum.

Proposition 4.4.1. Let Zε(t) be a solution to the particle trajectory (4.4.3)

emanating from an initial point in the support of classicial solution fε,0. If

initial velocity support is bounded, then we have

d

dt
Rε(t) ≤ 0, t > 0.
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Proof. We denote Z by bi-characteristics Zε(s) = (Qε(s; 0, q, p), Pε(s; 0, q, p))

satisfying 

dQε(s)

ds
= G(Pε)

dQε(s)

ds
= Lε[fε](s, Pε(s))

Zε(0) = (q, p)

(4.4.4)

For each t, we choose an initial data in support of fε,0 which generates char-

acteristic curve (q, p) satisfying Rε(t) = |Pε(t)|. Then we obtain

1

2

d

dt
(Rε(t))

2 =
1

2

d

dt
|Pε(t)|2 = Pε(t) ·

d

dt
Pε(t)

=

∫
R2d

φε(q∗ −Qε(t))(G(p∗)−G(Pε(t))) · Pε(t)fε(t, q∗, p∗)dq∗dp∗.

Since |p| 7→ g(|p|) is an increasing function, maximality of Pε implies

(G(p∗)−G(Pε)(t)) · P (t) = (g(|p∗|)p∗ − g(|Pε|)Pε) · Pε ≤ 0,

and therefore Rε is a decreasing function.

Proposition 4.4.2. Let fε be a classical solution to (4.4.3) which vanish at

infinity sufficiently fast with ‖f 0
ε ‖Lβ < ∞ and satisfies Rε(0) =: Rp < ∞. If

αγ < d, then there exists a T > 0, independent in ε, such that the uniform

L1 ∩ Lβ-estimate of fε holds:

sup
t∈[0,T ]

‖fε‖L1∩Lβ ≤ C, where ‖ · ‖L1∩Lβ := ‖ · ‖L1 + ‖ · ‖Lβ ,

holds for a positive constant C independent in and ε.

Proof. Since fε vanish at infinity, we have

d

dt

∫
R2d

fεdz =
d

dt

∫
R2d

1× fεdz = 0, therefore ‖fε‖L1 ≡ ‖f 0
ε ‖L1 .

Now we estimate ‖fε‖Lβ by

d

dt

∫
R2d

fβε dz =

∫
R2d

∂tf
β
ε dz = (1− β)

∫
R2d

fβε ∇p · Lε[fε]dz. (4.4.5)
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To estimate the last term, we consider a cut-off function χ : Rd → R

χ(x) :=

{
1 |x| ≤ 1,

0 |x| > 1,

and apply Young’s convolution inequality to see

‖(φχ) ∗ ζε‖Lγ ≤ ‖φχ‖Lγ < +∞,
‖(φ(1− χ)) ∗ ζε‖L∞ ≤ ‖φ(1− χ)‖L∞ ≤ 1,

(4.4.6)

where we used αγ < d to guarantee that ‖φχ‖Lγ is finite. Note that

∇p ·G(p) = trace(G′) = sum of eigenvalues of G′ ≤ d max
|p|≤Rε(0)

g′(|p|) =: Gp,

from Proposition 4.4.1, and Gp is independent of ε, since it depends only on

the initial data. We then have

|∇p · Lε[fε]| ≤ Gp

∫
R2d

|(φχ) ∗ ζε||fε|dz∗ +Gp

∫
R2d

|(φ(1− χ)) ∗ ζε||fε|dz∗

≤ GpR
1
γ
p ‖φχ‖Lγ‖fε‖Lβ + ‖φ(1− χ)‖L∞‖fε‖L1 ≤ C‖fε‖L1∩Lβ .

Therefore from (4.4.5) we obtain

d

dt
‖fε‖βLβ ≤ C‖fε‖βLβ‖fε‖L1∩Lβ .

Using d
dt
‖fε‖L1 = 0, we achive

d

dt
‖fε‖L1∩Lβ ≤ C‖fε‖2

L1∩Lβ .

Hence, by the comparison principle, there exist T > 0, independent of ε, c,

such that ‖fε‖L1∩Lβ does not blow up in [0, T ], which is the desired result.

Remark 4.4.2. From Proposition 4.4.1, if an initial data f0 of (4.4.3) has

compact (q, p)-support, then f(t, ·, ·) also have compact (q, p)-support for any

finite t. In this case, L1 norm is uniformly controlled by Lβ. In particular,

we can replace estimates on ‖f(t)‖L1∩Lβ by the one using ‖f(t)‖Lβ .
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Proposition 4.4.3. Let fε and fε′ be two classical solutions of the system

(4.4.3) satisfying

supp(f0) ⊂⊂ R2d, ‖f 0‖Lβ <∞, 0 < α <
d

γ
− 1.

Then there exist a constant C independent in ε, ε′ such that

d

dt
W1(fε(t), fε′(t)) ≤ C(W1(fε(t), fε′(t)) + ε+ ε′). (4.4.7)

Proof. Throughout the proof, we denote dµtε := fε(t, q, p)dqdp and dµtε′ :=

fε′(t, q, p)dqdp. For each (t, q, p), we define characteristic curve

Zε(s) = (Qε(s; t, q, p), Pε(s; t, q, p))

as a solution to the following ODEs:
d
ds
Qε(s) = G(Pε(s; t, q, p)),

d
ds
Pε(s) = Lε[fε]

(
s, Zε(s)

)
,

(Qε(t; t, q, p), Pε(t; t, q, p)) = (q, p),

so that fε(t) = Zε(t; t0, ·, ·)#fε(t0), and define Zε′(s) in similar way. To em-

phasize a role as a transport map, Zε(t2; t1, ·, ·) will be occasionally denoted

by T t1→t2ε . As µt0ε and µt0ε′ are absolutely continuous with respect to Lebesgue

measure, they are atomless and we can introduce an optimal transport map

T t0ε→ε′ from fε(t0) to fε′(t0) so that

µt0ε′ = T t0ε→ε′#µ
t0
ε , T t0ε→ε′(q, p) =: (qε′ , pε′),

and we define the transport map from fε(t) to fε′(t):

T tε→ε′#µtε = µtε′ , where T tε→ε′ := T t0→tε′ ◦ T t0ε→ε′ ◦ T
t→t0
ε ,

and regard T t0ε as the identity map Id.

From Remark 4.4.1, we have

W1(µtε, µ
t
ε′) = W1(T t0→tε #µt0ε , (T

t0→t
ε′ ◦ T t0ε→ε′)#µ

t0
ε )

≤
〈
µt0ε ,

∣∣T t0→tε − (T t0→tε′ ◦ T t0ε→ε′))
∣∣〉

=
〈
µt0ε ,

∣∣Zε(t; t0, ·, ·)− Zε′(t; t0, T t0ε→ε′(·, ·))∣∣〉 =: Qε,ε′(t).
(4.4.8)
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Differentiating with respect to t and evaluating t = t+0 , we get

d

dt
Qε,ε′(t)

∣∣∣
t=t+0

≤
〈
µt0ε ,

∣∣G(Pε(t; t0, ·, ·))−G(Pε′
(
t; t0, T t0ε→ε′(·, ·))

)∣∣〉 ∣∣∣
t=t+0

+
〈
µt0ε ,

∣∣Lε[fε](t, Zε(t; t0, ·, ·))− Lε′ [fε′ ](t, Zε′(t; t0, T t0ε→ε′(·, ·))∣∣〉 ∣∣∣
t=t+0

=
〈
µt0ε ,

∣∣G(pt0ε )−G(pt0ε′ )
)∣∣〉+

〈
µt0ε ,

∣∣Lε[fε](t0, T t0ε )− Lε′ [fε′ ](t, T t0ε→ε′)
∣∣〉

=: I1 + 〈µt0ε , I2〉.

During the estimation of d
dt
Qε,ε′(t)

∣∣∣
t=t+0

, as the time t is fixed, we will suppress

the upper index which represents the time configuration. For the estimate of

I1, we notice that

I1 = 〈µε, |G(pε)−G(pε′)|〉 . 〈µε, |pε − pε′|〉
≤ 〈µε, |Tε − Tε→ε′ |〉 = 〈µε, |Id− Tε→ε′|〉 = W1(µε, µε′),

(4.4.9)

where the last equality holds because T t0ε→ε′ is optimal (Remark 4.4.1). Now

we rewrite I2 as

I2 = |〈dµε(z∗), φε(q∗ − q)(G(p∗)−G(p))〉
− 〈dµε′(z∗), φε′(q∗ − qε′)(G(p∗)−G(pε′)〉|

= |〈dµε(z∗), φε(q∗ − q)(G(p∗)−G(p))〉
− 〈dµε(z∗), φε′(q∗ε′ − qε′)(G(p∗ε′)−G(pε′)〉|

=

∣∣∣∣〈dµε(z∗), (φε(q∗ − q)− φε′(q∗ε′ − qε′)) (G(p∗)−G(p))〉

− 〈dµε(z∗), φε′(q∗ε′ − qε′)(G(p∗ε′)−G(pε′))− (G(p∗)−G(p)))〉
∣∣∣∣

=: |I21 + I22|.

• (Estimate of I21): We find that

I21 = 〈dµε(z∗),
(
φε(q∗ − q)− φε′(q∗ε′ − qε′))(G(p∗)−G(p))〉
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≤
〈
dµε(z∗),

∣∣((φε − φε′)(q∗ − q)(G(p∗)−G(p))
∣∣〉

+
〈
dµε(z∗),

∣∣(φε′(q∗ − q)− φε′(q∗ε′ − qε′))(G(p∗)−G(p))
∣∣〉

=: I211 + I212.

Since support of ζε is contained in Bε(0), for any x 6= 0 we use the mean

value theorem to have

|φε(x)− φ(x)| ≤
∫
Rd
|φ(x− y)− φ(x)|ζε(y)dy

=

∫
Rd

∣∣∣∣ |x|−α − |x− y|−α|x| − |x− y|

∣∣∣∣ ∣∣|x| − |x− y|∣∣ζε(y)dy

≤ α

∫
Rd

(
1

|x|1+α
+

1

|x− y|1+α

)
|y|ζε(y)dy

≤ αε

∫
{y : ε≥|y|}

(
1

|x|1+α
+

1

|x− y|1+α

)
ζε(y)dy ≤ Cε

|x|1+α
.

Therefore, from a priori regularity condition (α + 1)γ < d, we can apply

Hölder inequality near the origin and its complement to obtain〈
dµε(z∗),

∣∣((φε − φ)(q∗ − q)(G(p∗)−G(p))
∣∣〉

≤ εRε(0)C

∫
Rd×Ωε(0)

1

|x|1+α
fεdz∗ ≤ εC‖fε‖Lβ ,

(4.4.10)

and the same inequality holds for ε′. Hence we have

〈µε(dz), I211〉 ≤ C‖fε‖2
Lβ(ε+ ε′), (4.4.11)

where C is independent in ε, ε′, t. Now we turn to estimate of I212. First note

that

φε(x) =

∫
Rd

1

|x− y|α
ζε(y)dy

≤
∫
{y:2|y|<|x|}

ζε(y)

|x− y|α
dy + 1{|x|≤2ε}

∫
{y:|y|≤ε}

ζε(y)

|x− y|α
dy ≤ C

|x|α
,

which leads to

|φε(x)− φε(y)| ≤ C|x− y|
min(|x|, |y|)1+α

,
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for C independent in ε. Therefore,

〈dµε(z), I212〉

=
〈
µε(dz)

〈
dµε(z∗),

∣∣(φε′(q∗ − q)− φε′(q∗ε′ − qε′))(G(p∗)−G(p))
∣∣〉 〉

≤ 2CRε(0)

∫
R2d×Ωε(0)2

(
|qε′ − q|
|x− q∗|1+α

+
|qε′ − q|

|qε′ − q∗ε′ |1+α

)
fε(z∗)fε(z)dz∗dz

=: C(I2121 + I2122).

(4.4.12)

We used change of variable z ↔ z∗ for the inequality. Now we compute I2122

to find

I2121 ≤ C‖fε‖Lβ〈µε, |qε′ − q|〉 ≤ C‖fε‖LβW1

(
µε, µε′

)
,

where we followed a similar procedure as in (4.4.10) for the first inequality.

Then we obtain

I2122 ≤ C

〈
µε(dz),

〈
dµε(z∗),

|qε′ − q|
|qε′ − q∗ε′ |1+α

〉〉
= C

〈
µε(dz), |qε′ − q|

〈
dµε′(z∗),

1

|qε′ − q∗ε|1+α

〉〉
≤ C‖fε′‖LβW1(µε, µε′).

Then from (4.4.12), we achieve

〈µε(dz), I212〉 ≤ C max(‖fε‖Lβ , ‖fε′‖Lβ)W1(µε, µε′). (4.4.13)

Combining (4.4.11) and (4.4.13), we deduce the following estimation:

〈µε, I21〉 ≤ C max(‖fε‖Lβ , ‖fε′‖Lβ)W1(µε, µε′) + C‖fε‖2
Lβ(ε+ ε′), (4.4.14)

for C is independent in ε, ε′ and t.

• (Estimate of I22): From a direct computation,

〈µε(dz), I22〉 ≤
∫
R4d

|φε′(q∗ε′ − qε′)| |G(p∗)−G(p∗ε′)|fε(t0, z)fε(t0, z∗)dzdz∗

+

∫
R4d

|φε′(q∗ε′ − qε′)| |G(p)−G(pε′)|fε(t0, z)fε(t0, z∗)dzdz∗.
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Again using same computation as (4.4.10), we have

〈µε(dz), I22〉 ≤ C‖fε′‖LβW1(µε, µ
′
ε). (4.4.15)

Finally, putting (4.4.9),(4.4.14) and (4.4.15) altogether, we achieve

d

dt
Qε,ε′(t)

∣∣∣
t=t+0

≤ C(W1(µt0ε , µ
t0
ε′ ) + ε+ ε′).

On the other hand, since T t0ε→ε′ is an optimal map, inequality in (4.4.8) turns

to be a equality if t = t0. Hence, by subtracting W1(µt0ε , µ
t0
ε′ ) = Qε,ε′(t0) and

then dividing t− t0 from (4.4.8), the limit t→ t0 leads to

d

dt
W1(fε(t), fε′(t))

∣∣∣
t=t+0

≤ C(W1(µt0ε , µ
t0
ε′ ) + ε+ ε′).

Since t0 can be chosen arbitrary, we have the desired inequality

d

dt
W1(fε(t), fε′(t)) ≤ C(W1(µtε, µ

t
ε′) + ε+ ε′),

for C independent in ε, ε′ and t.

Remark 4.4.3. Applying Grönwall lemma to (4.4.7) gives

W1(fε(t), fε′(t)) ≤ eCtW1(f 0
ε , f

0
ε′) + C(ε+ ε′)

∫ t

0

eC(t−s)ds

for a positive constant C independent in ε, ε′ and t. Therefore, if fε and

fε′ defined in finite time interval [0,T] have a same initial data, then fε is

uniformly Cauchy in C(0, T ;P1(R2d)), where P(R2d) is equipped with W1

distance, provided that ε is sufficiently small.

Now, by the limiting process ε→ 0, we prove local-in-time existence and

uniqueness of the weak solution.

Theorem 4.4.1. Suppose that initial data f 0 ∈ (Lβ ∩ P1)(R2d) of (4.4.2)

has compact support and p, α satisfies the following relation:

0 < α <
d

γ
− 1,
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where γ is a Hölder conjugate of β. Then there exist a unique weak solution of

(4.4.2) in a time interval [0, T ]. Furthermore, local-in-time solutions satisfies

uniform stability with respect to W1 distance: for two local-in-time solutions

f1 and f2 defined in [0, T ], we have

sup
0≤t≤T

W1(f1(t), f2(t)) ≤ CW1(f 0
1 , f

0
2 ),

where C is a positive constant independent of the time T .

Proof. •(Existence of solution) Again, we use f and µ interchangeably. Since

a family of regular function {fε} is a Cauchy sequence in C(0, T ;P1(R2d)) as

ε→ 0, there exist the limit function f . From the definition 4.4.2, we have to

show

〈µt, g(t, ·, ·)〉 − 〈µ0, g(0, ·, ·)〉 =

∫ t

0

〈µs, ∂tg +G(p) · ∇qg + L[µ] · ∇pg〉ds.

for arbitrary g ∈ C∞c ([0, T ]×R2d). From standard method of characteristics,

there exists a global-in-time solution fε of regularized solution (4.4.3). Then

we have

〈µtε, g(t, ·, ·)〉 − 〈µ0
ε, g(0, ·, ·)〉 =

∫ t

0

〈µsε, ∂tg +G(p) · ∇qg + Lε[µε] · ∇pg〉ds.

As ε→ 0, we have

〈µtε, g(t, ·, ·)〉 − 〈µ0
ε, g(0, ·, ·)〉 → 〈µt, g(t, ·, ·)〉 − 〈µ0, g(0, ·, ·)〉,∫ t

0

〈µsε, ∂tg +G(p) · ∇qg〉ds→
∫ t

0

〈µs, ∂tg +G(p) · ∇qg〉ds.

Hence, it suffices to show∫ t

0

(〈µsε, Lε[µε] · ∇pg〉 − 〈µs, L[µ] · ∇pg〉) ds→ 0.

We split the integral into three terms as∣∣∣∣∫ t

0

∫
R2d

(fεLε[fε]− fL[f ]) · ∇pgdzdt

∣∣∣∣
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≤
∣∣∣∣∫ t

0

∫
R2d

fε(Lε[fε]− L[fε]) · ∇pgdzdt

∣∣∣∣
+

∣∣∣∣∫ t

0

∫
R2d

fε(L[fε]− L[f ]) · ∇pgdzdt

∣∣∣∣
+

∣∣∣∣∫ t

0

∫
R2d

(fε − f)L[f ] · ∇pgdzdt

∣∣∣∣
=: I31 + I32 + I33.

By the same calculation as in (4.4.10), one has

I31 ≤ Cε‖fε‖2 ≤ Cε→ 0.

On the other hand, we denote

I32 =

∣∣∣∣∫ t

0

∫
R2d

I ′32d
(
µtε(z∗)− µt(z∗)

)
dt

∣∣∣∣ ,
where I ′32 =

∫
R2d

fε(t, z)φ(q∗ − q)(G(p∗)−G(p)) · ∇pg(z)dz.

Then, from a priori regularity condition we have∫
Rd

∫
|q−q∗|<δ

fε(t, z)φ(q∗ − q)(G(p∗)−G(p)) · ∇pg(z)dqdp < Cδ,

where C is independent in ε. Therefore we may neglect the singularity near

the origin and regard I ′32 as a bounded Lipschitz function. Therefore, inter-

preting I32 in terms of bounded Lipchitz distance(Remark 4.4.1), we have

I32 ≤ C sup
0≤t≤T

W1(fε(t), f(t))→ 0, as ε→ 0.

Similarly, one can also achieve

I33 ≤ C sup
0≤t≤T

W1(fε(t), f(t))→ 0, as ε→ 0,

and this proves the existence.
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• (Uniqueness and stability of solution) Let f1 and f2 be two weak solutions

of equation (4.4.2). Then, Proposition (4.4.3) implies

d

dt
W1(f1(t), f2(t)) ≤ CW1(f1(t), f2(t)), t ∈ [0, T ].

Therefore, from the Grönwall lemma, both of uniqueness and stability are

verified.

4.4.3 Structural stability in a finite-time interval.

We consider a structural stability of kinetic CS type model with singular

kernel. Then, the following two kinetic equations with the same initial data

are given:


∂tfg +G(p) · ∇qfg +∇p · (Lg[fg]fg) = 0, (t, q, p) ∈ R+ × Rd × Rd,

Lg[f ](t, q, p) :=
∫
R2d φ

(
q∗ − q

)
(G(p∗)−G(p))f(t, q∗, p∗)dq∗dp∗,

fg(0, q, p) = f 0, φ(q) =
1

|q|α
,

(4.4.16)


∂tf∞ + w · ∇qf∞ +∇p · (L∞[f∞]f∞) = 0, (t, q, p) ∈ R+ × Rd × Rd,

L∞[f ](t, q, p) :=
∫
R2d φ

(
q∗ − q

)
(p∗ − p)f(t, q∗, p∗)dq∗dp∗,

f∞(0, q, p) = f 0, φ(q) =
1

|q|α
.

(4.4.17)

The equation (4.4.17) can be obtained by posing G = id to (4.4.16). There-

fore, regarding (4.4.17) as a reference model, we show that the CS type kinetic

model (4.4.2) converges to the standard kinetic CS model.

Definition 4.4.3. Let F (p) = f(|p|) p
|p| and G(p) = g(|p|) p

|p| be activation

functions (i.e. (F, f) and (G, g) satisfies (4.1.2)). We say that F converges

to G as an activation function (notation: F
act−→ G) if and only if there is a

collection of functions {Fc}c∈[1,∞), parametrized by c, such that
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1. each Fc = fc(|p|) p
|p| is an activation function,

2. F1 = F, F∞ = G,

3. f ′c → f ′∞ in L∞loc as c→∞.

Theorem 4.4.2. Let fg and f∞ be local-in-time solutions of (4.4.16) and

(4.4.17) respectively, defined in [0, T ]. Suppose that α, β and f0 satisfy the

following relation:

supp(f 0) ⊂⊂ R2d, f 0 ∈ (Lβ ∩ P1)(R2d), 0 < α <
d

γ
− 1.

Then we have a following finite-in-time structural stability:

G
act−→ Id =⇒ sup

t∈[0,T ]

W1(fg(t), f∞(t))→ 0,

where Id is the identity map.

Proof. We take a similar procedure as in Proposition (4.4.7). Let 0 < ε� 1

be fixed. Consider two regularized systems:
∂tfg +G(p) · ∇qfg +∇p · (Lg[fg]fg) = 0, (t, q, p) ∈ R+ × Rd × Rd,

Lg[f ](t, q, p) :=
∫
R2d φε

(
q∗ − q

)
(G(p∗)−G(p))f(t, q∗, p∗)dq∗dp∗,

fg(0, q, p) = f 0, φε(x) =
1

|x|α
∗ ζε,

(4.4.18)


∂tf∞ + w · ∇qf∞ +∇p · (L∞[f∞]f∞) = 0, (t, q, p) ∈ R+ × Rd × Rd,

L∞[f ](t, q, p) :=
∫
R2d φε

(
q∗ − q

)
(p∗ − p)f(t, q∗, p∗)dq∗dp∗,

f∞(0, q, p) = f 0, φε(x) =
1

|x|α
∗ ζε.

(4.4.19)
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Let µtg = fg(t, q, p)dqdp and µt∞ = f∞(t, q, p)dqdp be solutions of (4.4.18)

and (4.4.19), respectively. We definte characteristic curves Zg = (Qg, Pg) and

Z∞ = (Q∞, P∞) by
d

ds
Qg(s) = G(Pg(s; t, q, p)),

d

ds
Pg(s) = Lg[fg]

(
s, Zg(s)

)
,

(Qg(t; t, q, p), Pg(t; t, q, p)) = (q, p),


d

ds
Q∞(s) = P∞(s; t, q, p),

d

ds
P∞(s) = L∞[f∞]

(
s, Z∞(s)

)
,

(Q∞(t; t, q, p), P∞(t; t, q, p)) = (q, p),

respectively, so that T t→t0g = Zg(t; t0, q, p) and T t→t0∞ = Z∞(t; t0, q, p) can be

served as transport maps shifting the time configuration. Let T t0g→∞ be an

optimal transport map from µg(t0) to µ∞(t0). We adopt same convention as

in the proof of Proposition (4.4.3), but we place g−configuration in place of

ε−configuration.

Following the similar calculations as in the proof of proposition (4.4.7), we

have

W1(µtg, µ
t
∞) ≤

〈
µt0g ,

∣∣Zg(t; t0, ·, ·)− Z∞(t; t0, T t0g→∞(·, ·)
)∣∣〉 =: Qg,∞(t),

which leads to

d

dt
Qg,∞(t)

∣∣∣
t=t+0

≤
〈
µt0g ,

∣∣G(pt0c )− wt0∞
∣∣〉+

〈
µt0g ,

∣∣Lg[fg](t0, T t0g )− L∞[f∞](t0, T t0g→∞)
∣∣〉

≤
〈
µt0g ,

∣∣G(pt0c )−G(pt0∞)
∣∣〉+

〈
µt0g ,

∣∣G(pt0∞)− wt0∞
∣∣〉

+
〈
µt0g ,

∣∣Lg[fg](t0, T t0g )− L∞[f∞](t0, T t0g→∞)
∣∣〉

≤ W1(µt0g , µ
t0
∞) +

〈
µt0g ,

∣∣G(pt0∞)− wt0∞
∣∣〉

+
〈
µt0g ,

∣∣Lg[fg](t0, T t0g )− L∞[f∞](t0, T t0g→∞)
∣∣〉

=: W1(µt0g , µ
t0
∞) + 〈µt0g ,J1〉+ 〈µt0g ,J2〉,

where we used the same methodology as in (4.4.9) for the last inequality.

From now on, during the estimation of d
dt
Qg,∞(t)

∣∣∣
t=t+0

, we suppress the upper

index again. To estimate J1, we recall the decrement of maximal momentum
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(Proposition 4.4.1) to obtain an uniform upper bound Up of |p|, independent

in g, ε and t. On the other hand, Proposition 4.1.1 implies

|p−G(p)| ≤ ‖Id−G‖op|p| = Up max
|p|∈[0,Up]

|1− g′(|p|)| =: Ug′ , (4.4.20)

from the mean value theorem, where ‖ · ‖op stands for the operator norm.

Then, since supports of fg(t, ·, ·) and f∞(t, ·, ·) are bounded uniformly in t,

and ε (Remark 4.4.2), Hölder’s inequality deduces

〈µg(dz),J1〉 ≤ Ug′C‖fg(t0)‖Lβ ,

for C independent in ε, and t. For further estimate, we split J2 as

J2 = |Lg[fg](t0, Tg)− L∞[f∞](t0, Tg→∞)|
= ‖〈µg(dz∗), φε(q∗ − q)(G(p∗)−G(p))〉

− 〈µ∞(dz∗), φε(q∗ − q∞)(p∗ − p∞)〉‖
= ‖〈µg(dz∗), φε(q∗ − q)(G(p∗)−G(p))〉

− 〈µg(dz∗), φε(q∗∞ − q∞)(p∗∞ − p∞)〉‖
≤
∣∣〈µg(dz∗), (φε(q∗ − q)− φε(q∗∞ − q∞))(G(p∗)− p)〉

∣∣
+
∣∣〈µg(dz∗), φε(q∗∞ − q∞)((G(p∗)− p)− (G(p∗∞)− p∞))〉

∣∣
+
∣∣〈µg(dz∗)φε(q∗ − q)(p−G(p))− φε(q∗∞ − q∞)(p∗∞ −G(p∗∞))〉

∣∣
=: J21 + J22 + J23.

From the similar calculation as in (4.4.12) – (4.4.13), we have

〈µg(dz),J21〉 ≤ CW1(µg, µ∞).

For the estimate of J22, note that

J22 =
∣∣〈µg(dz∗), φε(q∗∞ − q∞)((G(p∗)− p)− (G(p∗∞)− p∞))〉

∣∣
≤ 〈µg(dz∗), φε(q∗∞ − q∞)|p∗ − p∗∞|〉

+ 〈µg(dz∗), φε(q∗∞ − q∞)|w − p∞|〉
=: J221 + J222,

where

〈µg(dz),J221〉 =
〈
µg(dz∗), |p∗ − p∗∞|〈µg(dz), φε(q∗∞ − q∞)〉

〉
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≤ C〈µg(dz∗), |p∗ − p∗∞|〉
≤ C〈µg(dz∗), |z∗ − z∗∞|〉 = CW1(µg, µ∞),

and similarly we have 〈µg(dz),J221〉 ≤ CW1(µg, µ∞).

Finally, using (4.4.20), we can deduce

〈µg(dz),J23〉 ≤ CUg′ .

Summing the estimates altogether, one has

d

dt
W1(µtg, µ

t
∞)
∣∣∣
t=t+0

≤ d

dt
Qg,∞(t)

∣∣∣
t=t+0

≤ C
(
W1(µt0g , µ

t0
∞) + Ug′

)
,

where t0 is arbitrary in [0, T ]. Therefore, from the Grönwall ineqaulty, we

have

W1(µtg, µ
t
∞) ≤ eCtW1(µ0

g, µ
0
∞) + Ug′

∫ t

0

eC(t−s)ds, (4.4.21)

for a positive constant C, independent in ε, and t. Now, we recall that the

solution of (4.4.16) is the W1 limit of regularized equation (4.4.3)(Proposition

4.4.3) and the convergence is uniform in time t from the Grönwall lemma

(Remark (4.4.3)). Since a proof of Proposition 4.4.3 is valid for classical model

(i.e. (4.4.2) with G = Id) and (4.4.21) is an ε−independent estimation, by

approximation, we have the desired result.

Corollary 4.4.1. Suppose that G = g(|p|) p
|p| and H = h(|p|) p

|p| are activation

functions satisfying (4.1.2). Let fg and fh be local-in-time solutions of (4.4.2)

corresponding to G and H defined on time interval [0, T ], respectively. If fg
and fh has a same initial data, then we obtain

G
act−→ H =⇒ sup

t∈[0,T ]

W1(fg(t), fh(t))→ 0.

Proof. This follows from the proof of Theorem 4.4.2; we replace Id to h, and

the proof is still valid.
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Conclusion and future work

In this thesis, we have studied an emergent behavior of the CS-type consen-

sus model, especially for the singular kernel.

First, we have provided a global flocking dynamics of the relativistic

Cucker-Smale model with a singular communication weight. When the sin-

gularity is sufficiently strong, near the singular point, there is no finite time

collision between particles, if the initial data is non-collisional. Thus, nonex-

istence of finite-time collisions guarantees the global existence of smooth

solutions. Once we obtain a global existence of solution, we can use stan-

dard Lyapunov functional approach to find sufficient conditions in terms of

initial data and communication weight function. On the other hand, when

the singularity is weak at single point, one cannot guarantee that there is no

finite-time collision between particles, and indeed, we can provide a simple

example for the existence of the finite time collision in the one-dimensional

two-particle system. Therefore, to guarantee the collision avoidance in the

weak singularity regime, we need to impose an extra condition on initial

data, under which one can obtain a global lower bound for relative distances.

Besides the singular model, there are still a lot of topics to be studied even

for the regular RCS model, such as finding a sufficient framework for bi- or

multi-cluster flocking.

Second, we have proposed the asymptotic dynamics of the first-order
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consensus model on the real line, which was obtained from the relativistic

Cucker-Smale flocking model on the real line. We provided a detailed analysis

on the large-time behaviors of the proposed nonlinear consensus model, ac-

cording to the regularity and singularity of the communication weights at zero

and infinity. When the communication weight is regular and long-ranged, the

nonlinear consensus model exhibits a complete consensus behaviors, under

the mild assumptions on system parameters. On the other hand, when the

communication weight is still regular but short-ranged, asymptotic cluster-

ing behavior becomes completely different, and system may present complete

consensus or segregation, depending on the size of a coupling strength κ. We

present sufficient conditions for the coupling strength under which either

system aggregates or segregates asymptotically. We also consider the case of

singular communication weight, and present similar results on the asymptotic

behaviors. Finally, we also studied the structural stability of the activation

function. The one-dimensional flocking model can be lifted in the kinetic and

hydrodynamic levels. In particular, the singular communication weight case

is more interesting, not only because it is mathematically challenging, but it

is also related to the fractional diffusion. Therefore, it would be interesting

to investigate the corresponding kinetic and hydrodynamic counterparts of

the proposed generalized consensus model.

Third, we have presented the CS-type consensus model and studied its

asymptotic behavior. In particular, when the ambient space is one-dimensional

(d = 1), the proposed model can be transformed into the first-order consensus

model, and its study provides a deeper understanding of the second model as

well. The CS model for a singular kernel has several interesting properties not

found in a regular kernel, depending on the integrability of the kernel near

the origin. If the kernel is weakly singular, the particles can stick or collide in

finite time, which leads to loss of regularity. We have studied the regularity

of such solutions on the real line. On the other hand, when the kernel is

strongly singular, the particles never collide in a finite time if the initial data

is non-collisional. However, the existence of a strictly lower bound for relative

distance for the general initial data was left as a remaining issue. We proved

that a prototypical kernel with strong singularity (ψ(|q|) = |q|−α, α ≥ 1)
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have a strictly positive lower bound between agents, provided that singu-

larity is not critical(α 6= 1) and flocking is guaranteed. We also provide a

well-posedness and structural stability for a kinetic analog of the proposed

model. Several related problems remain as future perspectives. For example,

relaxing a priori condition for the existence of a strictly positive lower bound

is one of the remaining problems. On the other hand, the property of sticking

was not featured in the kinetic model in our thesis, and it would be inter-

esting to investigate the realization of such special behavior in the kinetic

model
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국문초록

본 학위 논문에서는, 특이적 핵을 통해 상호작용하는 쿠커-스메일 유형의

모델들을 연구한다. 쿠커-스메일 유형 모델은 기계학습의 이론에 창안하여

쿠커-스메일 모델에 활성화 함수를 도입한 것으로서, 이를 통해 다양한 집단

행동의 묘사를 기대할 수 있다. 예를 들어, 적절한 활성화 함수를 도입하여

상대성 이론을 반영할 수 있다.

쿠커-스메일 유형 모델에 대한 동기 부여를 위해, 본 학위 논문에서는 먼

저 상대론적 쿠커-스메일 모델(이하 RCS)을 소개한다. 구체적으로, 플로킹 및

핵의 특이성에 기인한 충돌방지가 일어날 조건에 대해서 연구한다. 정규성을

지닌 유계인 핵에 대하여, RCS의 입자들은 초기 상태의 기하적 구조에 따

라 충돌할 수 있다. 다른 한편으로, 특이적인 핵에 대해서는 입자들이 충돌할

때 쿠커-스메일 벡터장이 유계가 아니게 되므로 표준적인 코시-립시츠 이론을

적용할 수 없고, 따라서 이 경우 해의 존재성을 논하기 어려워진다. 따라서,

충돌방지에 대한 연구는 RCS의 해의 타당성 및 플로킹 현상과 직결된다.

이후 우리는 쿠커-스메일 유형 모델을 도입한다. 해당 모델은 RCS를 포괄

하는 일반화된 모델이며, 창발 현상을 기술한다. 우리는 영점 근처와 무한점

근처에서 핵의 정규성 혹은 특이성에 대응하여 실직선 위에서 발생하는 다양

한 군집 유형을 연구한다. 이후 해당 모델에서 접착성을 가진 해의 정칙성을

분석한다.다른한편으로,충돌회피를넘어입자간의상대거리에대한하한을

보장하는 충분조건을 제공한다. 또한, 제안된 모델에 대응하는 기체 운동방정

식을 도입하여 이에 대한 타당성 및 구조적 안정성을 논증한다.

주요어휘:구조적안정성,기체분자운동론,상대론적쿠커-스메일모델,창발

현상, 충돌 방지, 활성화 함수
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