
 

 

저 시-비 리- 경 지 2.0 한민  

는 아래  조건  르는 경 에 한하여 게 

l  저 물  복제, 포, 전송, 전시, 공연  송할 수 습니다.  

다 과 같  조건  라야 합니다: 

l 하는,  저 물  나 포  경 ,  저 물에 적 된 허락조건
 명확하게 나타내어야 합니다.  

l 저 터  허가를 면 러한 조건들  적 되지 않습니다.  

저 에 른  리는  내 에 하여 향  지 않습니다. 

것  허락규약(Legal Code)  해하  쉽게 약한 것 니다.  

Disclaimer  

  

  

저 시. 하는 원저 를 시하여야 합니다. 

비 리. 하는  저 물  리 목적  할 수 없습니다. 

경 지. 하는  저 물  개 , 형 또는 가공할 수 없습니다. 

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/


이학박사 학위논문

Regularity theory for local and
nonlocal measure data

problems

(국소 및 비국소 측도 데이터 문제의 정칙성 이론)

2023년 2월

서울대학교 대학원

수리과학부

송경



Regularity theory for local and
nonlocal measure data

problems
(국소 및 비국소 측도 데이터 문제의 정칙성 이론)

지도교수 변순식

이 논문을 이학박사 학위논문으로 제출함

2022년 10월

서울대학교 대학원

수리과학부

송경

송경의 이학박사 학위논문을 인준함

2022년 12월

위 원 장 (인)

부 위 원 장 (인)

위 원 (인)

위 원 (인)

위 원 (인)



Regularity theory for local and
nonlocal measure data

problems

A dissertation

submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

to the faculty of the Graduate School of

Seoul National University

by

Kyeong Song

Dissertation Director : Professor Sun-Sig Byun

Department of Mathematical Sciences

Seoul National University

February 2023



c© 2023 Kyeong Song

All rights reserved.



Abstract

Regularity theory for local and nonlocal
measure data problems

Kyeong Song

Department of Mathematical Sciences
The Graduate School

Seoul National University

In this thesis, we establish various regularity results for nonlinear mea-
sure data problems. The results obtained are part of a program devoted to
nonlinear Calderón-Zygmund theory and nonlinear potential theory.

Firstly, we obtain maximal integrability and fractional differentiability
results for elliptic measure data problems with Orlicz growth and borderline
double phase growth, respectively. We also obtain fractional differentiability
results for parabolic measure data problems under a minimal assumption on
the coefficients.

Secondly, we obtain gradient potential estimates and fractional differen-
tiability results for elliptic obstacle problems with measure data, by using
linearization techniques. In particular, we develop a new method to obtain
potential estimates for irregular obstacle problems. For the case of single
obstacle problems with L1-data, we further obtain uniqueness results and
comparison principles in order to improve such regularity results.

Lastly, we show existence, regularity and potential estimates for mixed
local and nonlocal equations with measure data. Also, as a first step to the
regularity theory for anisotropic nonlocal problems with nonstandard growth,
we establish Hölder regularity for nonlocal double phase problems by identi-
fying sharp assumptions analogous to those for local double phase problems.

Key words: Measure data, Calderón-Zygmund theory, Potential theory,
Nonstandard growth, Obstacle problem, Nonlocal operator
Student Number: 2017-28961
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Chapter 1

Introduction

This thesis is concerned with regularity theory for measure data problems.
Emphasis is on nonlinear Calderón-Zygmund theory and nonlinear potential
theory. Closely linked to each other, they aim at reproducing the classical
Calderón-Zygmund theory and potential theory for nonlinear problems. Their
several main results are based on the De Giorgi-Nash-Moser theory.

1.1 Measure data problems

We first outline the existence and regularity results for elliptic equations with
measure data. One of the main features in measure data problems is that they
do not in general have weak solutions. Thus, several notions of solutions
have been suggested. Here we recall the notion of SOLA (Solution Obtained
as Limits of Approximations) introduced by Boccardo and Gallouët [28, 29].
Consider the Dirichlet problem defined on a bounded domain Ω ⊂ Rn, n ≥ 2:{

−div (|Du|p−2Du) = µ in Ω,

u = 0 on ∂Ω,
(1.1)

where µ ∈ Mb(Ω), the space of all Borel measures with finite total mass on
Ω, and p > 2 − 1/n. A function u ∈ W 1,1

0 (Ω) is called a SOLA to (1.1) if it
is a distributional solution, and moreover it is obtained as a (W 1,1- and a.e.)
limit of approximating solutions {uk} ⊂ W 1,p

0 (Ω) to the regularized problems{
−div (|Duk|p−2Duk) = µk in Ω,

uk = 0 on ∂Ω,

1



CHAPTER 1. INTRODUCTION

where the sequence {µk} ⊂ W−1,p′(Ω)∩L1(Ω) converges to µ weakly* in the
sense of measures and satisfies

lim sup
k→∞

|µk|(B) ≤ |µ|(B) for every ball B ⊂ Rn.

In [28], the authors proved the existence of a SOLA u to (1.1) satisfying

u ∈ W 1,q(Ω) ∀ q < min

{
n(p− 1)

n− 1
, p

}
. (1.2)

The result in (1.2) is optimal in the sense that we cannot in general take
q = n(p− 1)/(n− 1). This can be shown by the fundamental solution

Gp(x) = c(n, p)

{
|x|

p−n
p−1 − 1 if p 6= n,

log |x| if p = n,
(1.3)

which is the unique SOLA to the Dirichlet problem{
−div (|Du|p−2Du) = δ0 in B1(0),

u = 0 on ∂B1(0),
(1.4)

with δ0 being the Dirac measure charging the origin; see [84, 165, 197]. Also,
the lower bound p > 2 − 1/n, equivalent to n(p − 1)/(n − 1) > 1, is not
avoidable in order to ensure u ∈ W 1,1(Ω). This is a common phenomenon in
the theory of measure data problems, and one needs other notions of solutions
when 1 < p ≤ 2 − 1/n. We refer to [23, 30, 84, 160] for various notions of
solutions to measure data problems; see also [73, 77, 120] for problems with
nonstandard growth. All such definitions are essentially equivalent in the case
of nonnegative measures [128].

The uniqueness of SOLA to general measure data problems remains open
except for p = 2 [37, 123, 197] and p = n [104, 119]. However, when the data
is an L1-function, it is possible to show the uniqueness, see [23, 85].

1.1.1 Nonlinear Calderón-Zygmund theory

Calderón-Zygmund theory is concerned with integrability and differentiabil-
ity of solutions. We first consider integrability results, recalling (1.2). In fact,
as can be seen by (1.3), Marcinkiewicz spaces (see Section 2.2.3 below) are

2



CHAPTER 1. INTRODUCTION

the correct ones for a sharp integrability for measure data problems, see
[23, 103, 104]. For (1.1), it holds that

µ ∈Mb(Ω) =⇒ |Du|p−1 ∈M
n
n−1

loc (Ω).

Since the sharpness of (1.2) is shown by counterexamples like (1.4) involving
Dirac measures, one may expect better regularity results when considering
“diffusive” measures. Namely, we consider the case when

|µ|(BR) . Rn−θ (1.5)

for every ball BR ⊂ Ω, where θ ∈ [0, n]. In this case we say that µ belongs
to the Morrey space L1,θ(Ω), and accordingly define

‖µ‖L1,θ(Ω) := sup
BR⊂Ω

|µ|(BR)

Rn−θ .

Note that a measure satisfying (1.5) cannot concentrate on sets with Haus-
dorff dimension less than n−θ, see [6, Theorem 5.1.12]. Indeed, in [164, 168],
it was identified that condition (1.5) leads to the improvement in maximal
integrability, along with Morrey type regularity, of the gradient. That is,

µ ∈ L1,θ(Ω) =⇒ |Du|p−1 ∈M
θ
θ−1

,θ

loc (Ω) (1.6)

holds for θ ∈ [p, n], with 2 − 1/n < p ≤ n. Note that in the case θ < p, we
have µ ∈ W−1,p′(Ω) from Sobolev’s embedding theorem (when p > n) and
Adams’ trace theorem [4] (when θ < p ≤ n). In turn, we are in the realm of
weak solutions in W 1,p(Ω), where (1.6) is trivial since θ/(θ− 1) < p/(p− 1).
The parabolic analogs of (1.6) were obtained in [11, 14].

We next examine differentiability results. For the Poisson equation

−4u = µ in Ω, (1.7)

the classical Calderón-Zygmund theory [67, 68] asserts that

µ ∈ Lqloc(Ω) =⇒ Du ∈ W 1,q
loc (Ω)

holds whenever q ∈ (1,∞). This result fails when q = 1. Nevertheless, it
holds that

µ ∈ L1
loc(Ω) =⇒ Du ∈ W σ,1

loc (Ω) ∀ σ ∈ (0, 1),

3



CHAPTER 1. INTRODUCTION

which still holds when µ is merely a Borel measure. For the definition of
fractional Sobolev spaces, see Section 2.2.2 below.

For nonlinear elliptic problems modeled on (1.1), higher differentiability
results in the scale of fractional Sobolev spaces were first proved in [164, 168]
via the variational difference quotients argument originally introduced in
[140, 141]. For the case of parabolic equations with p = 2, see [19].

Later, differentiability results were eventually upgraded to a completely
linearized form in [7]. For example, in the model case (1.1) it holds that

µ ∈Mb(Ω) =⇒ |Du|p−2Du ∈ W σ,1
loc (Ω) ∀ σ ∈ (0, 1). (1.8)

We also refer to [55] for the case of equations with coefficients.
In [164, 168], it was also observed that the Morrey condition (1.5) with

θ ∈ [p, n] leads to fractional Sobolev-Morrey regularity of the gradient. We
further note that in the case θ < p, different kinds of differentiability results
as the one in [164, Theorem 1.10] can be obtained.

We also mention the paper [9], where linearized Calderón-Zygmund type
estimates in the scale of Besov and Triebel-Lizorkin spaces were proved for
the p-Laplace equation with data in divergence form:

− div (|Du|p−2Du) = −divF in Ω, with F ∈ Lp′(Ω). (1.9)

Specifically, when p > 2 and n = 2, it holds that

F ∈ W σ,1
loc (Ω) =⇒ |Du|p−2Du ∈ W σ,1

loc (Ω) whenever
2

p
< σ < 1. (1.10)

For more on nonlinear Calderón-Zygmund theory, see [165, 169].

1.1.2 Nonlinear potential theory

Potential theory is concerned with pointwise estimates and fine properties of
solutions. Pointwise potential estimates for solutions to nonlinear problems
modeled on (1.1) were first obtained by Kilpeläinen and Malý [129, 130],
where they actually considered nonnegative p-superharmonic functions and
corresponding nonnegative measures. These results were later revisited by
Trudinger and Wang [196] with a different method that can be extended
to subelliptic equations; see also [136]. Another approach was developed by
Duzaar and Mingione [111], which applies to equations with signed measures.

4



CHAPTER 1. INTRODUCTION

We summarize those results in [111, 129, 130, 136, 196] as follows: if u is a
SOLA to (1.1), then there holds

|u(x0)| ≤ cWµ
1,p(x0, R) + c

(∫
BR(x0)

|u|q0 dx
) 1

q0

(1.11)

whenever BR(x0) ⊂ Ω is a ball and the right-hand side is finite with q0 :=
max{p− 1, 1}, where

Wµ
β,p(x0, R) :=

∫ R

0

[
|µ|(Bρ(x0))

ρn−βp

] 1
p−1 dρ

ρ
, β > 0,

is the nonlinear Wolff potential of µ. Moreover, the estimate (1.11) is sharp
in the sense that the potential Wµ

1,p cannot be replaced by any other smaller
potential. This comes from the following lower bound, which holds when both
the measure µ and the solution u are nonnegative:

Wµ
1,p(x0, R) ≤ cu(x0). (1.12)

The estimate (1.11) was extended to the p-Laplace system in [151], where no
analog of (1.12) is available due to the absence of maximum principle.

Later, potential estimates for nonlinear equations were upgraded to the
gradient level. The first result was obtained by Mingione [167] for the non-
degenerate case p = 2:

|Du(x0)| ≤ cIµ1(x0, R) + c

∫
BR(x0)

|Du| dx (1.13)

for a.e. x0 ∈ Ω whenever BR(x0) ⊂ Ω, where

Iµβ(x0, R) :=

∫ R

0

|µ|(Bρ(x0))

ρn−β
dρ

ρ
, β > 0,

is the truncated Riesz potential of µ. Note that (1.13) is the same as the one
available for the Poisson equation (1.7) via representation formulas.

Subsequently, in [111] concerning the case p ≥ 2, it was proved that

|Du(x0)| ≤ cWµ
1
p
,p

(x0, R) + c

∫
BR(x0)

|Du| dx. (1.14)

Note that (1.14) reduces to (1.13) when p = 2, since Wµ
1/2,2 = Iµ1 .

5



CHAPTER 1. INTRODUCTION

Surprisingly, in contrast to (1.11) and (1.12), it was shown in [110, 145]
that gradient estimates via Riesz potentials continue to hold for nonlinear,
possibly degenerate, equations with p > 2− 1/n. To be precise, we have the
following estimate in a completely linearized form:

|Du(x0)| ≤ c [Iµ1(x0, R)]
1
p−1 + c

∫
BR(x0)

|Du| dx (1.15)

whenever BR(x0) ⊂ Ω and the right-hand side is finite; see also [105, 173,
174, 175] for the range 1 < p ≤ 2 − 1/n. In particular, when p ≥ 2, (1.15)
improves (1.14) in light of the inequality

[Iµ1(x0, R)]
1
p−1 ≤ c(p)Wµ

1
p
,p

(x0, 2R).

We note that (1.15) can be considered as a counterpart of (1.8) for potential
estimates. The underlying linearization phenomena also appear in several
elliptic equations with nonstandard growth [13, 38, 61, 62]; see also [47, 111,
144, 148, 149] for the corresponding results for parabolic equations. Later in
[151], the estimate (1.15) was extended to the p-Laplace system with measure
data. Moreover, when the data µ is regular enough to ensure the existence of
weak solutions, it is possible to obtain potential estimates for elliptic systems
without quasi-diagonal structure in the setting of partial regularity [63, 150].

Such Riesz potential estimates provide a universal approach to a sharp
borderline regularity, such as Lipschitz regularity, for nonlinear problems [22,
88]. They also imply Calderón-Zygmund type estimates in various function
spaces via the mapping properties of Riesz potentials [5, 76].

We also mention the papers [35, 78] concerning sharp maximal function
estimates and potential estimates for the p-Laplace system (1.9) with data
in divergence form. Specifically, in [35] it was proved that

|Du(x0)|p−1 ≤ c

∫ R

0

(∫
Br(x0)

|F − (F )Br(x0)|p
′
dx

) 1
p′ dr

r

+ c

∫
BR(x0)

|Du|p−1 dx (1.16)

whenever BR(x0) b Ω and the right-hand side is finite. For more on nonlinear
potential theory, see [146, 170].

6



CHAPTER 1. INTRODUCTION

1.2 Elliptic measure data problems with non-

standard growth

Let us consider the following equation

−div

(
∂tΦ(x, |Du|)
|Du|

Du

)
= µ in Ω,

where Φ : Ω× [0,∞)→ [0,∞) is a generalized N -function, see Section 2.2.1
for details. The following are typical examples of nonstandard growth:

• Orlicz growth:
Φ(x, t) = G(t). (1.17)

• Variable exponents:

Φ(x, t) = (t2 + s2)
p(x)−2

2 t2, p : Ω→ (1,∞), s ∈ [0, 1]. (1.18)

• Double phase:

Φ(x, t) = tp + a(x)tq, 1 < p ≤ q <∞, a : Ω→ [0,∞). (1.19)

• Double phase in the borderline case:

Φ(x, t) = tp + a(x)tp log(e+ t), p ∈ (1,∞), a : Ω→ [0,∞). (1.20)

The case (1.17) was introduced in [157] as a natural generalization of the
p-Laplacian. The nonautonomous cases (1.18)-(1.20) are typical examples of
nonuniformly elliptic problems, which were first introduced in [198, 199, 200,
201]. In particular, (1.18) and (1.20) have several similarities [17]. We refer
to [163, 171] for a comprehensive overview of nonuniformly elliptic problems.

There are several regularity results for measure data problems with (1.17),
(1.18) and (1.20), such as global Calderón-Zygmund estimates [40, 41, 51] and
potential estimates [13, 20, 32, 61, 62].

In Chapter 3, we first prove Marcinkiewicz-Morrey regularity for the case
(1.17), which is announced in [56]. We then prove fractional differentiability
for the case (1.20), which is announced in [54]. We also prove fractional
differentiability for parabolic measure data problems with coefficients, which
is announced in [39].

7



CHAPTER 1. INTRODUCTION

1.3 Elliptic obstacle problems with measure

data

We next consider elliptic obstacle problems related to (1.1). As in the case of
equations, usual variational inequalities are not available for such problems.
In this case, Scheven [188, 189] introduced limits of approximating solutions,
analogous to SOLA, see Chapter 4 for the precise definition. For other notions
of solutions, see for instance [189] and related references.

Existence and regularity of limits of approximating solutions were first
treated in [188, 189]. Specifically, in [189] gradient estimates via Wolff poten-
tials (when p > 2) and Riesz potentials (when 2− 1/n < p ≤ 2) were proved
under an additional assumption that the obstacle ψ ∈ W 1,p(Ω) ∩ W 2,1(Ω)
satisfies DΨ := |Dψ|p−2|D2ψ| ∈ L1(Ω). In fact, such a higher differentiability
assumption was used to treat the measures µ and DΨ in the same manner,
thereby obtaining estimates via potentials involving both µ and DΨ.

In Chapter 4, we first provide a natural approach to gradient potential
estimates for obstacle problems; in particular, this leads us to remove the
extra differentiability assumption on the obstacle. Moreover, Wolff potentials
of µ appearing in [189] are replaced by Riesz potentials. The main outcome
is a linearization phenomenon with respect to the pointwise estimates for the
gradient, which allows to obtain new borderline regularity results. The main
difficulty arises from the interplay between the measure and the obstacle. To
overcome this, we apply an intrinsic linearization argument motivated from
those developed in [7, 35]. The result is announced in [58].

By applying several ideas in the proof of potential estimates, we next
prove fractional differentiability for double obstacle problems with measure
data. More precisely, we prove an analog of (1.8) under a suitable differen-
tiability assumption on the obstacles (see (4.103) below). Unlike the case of
potential estimates, such a differentiability assumption is rather natural and
almost sharp for the maximal differentiability result in Theorem 4.2.2 below,
in view of the results in (1.8) and (1.10). Moreover, we are able to apply the
linearization techniques developed in [7]. The result is announced in [59].

We also establish a comparison principle for obstacle problems with L1-
data. As a consequence, we show that the solution to a given obstacle problem
with zero Dirichlet boundary condition is indeed affected by only the positive
part of the obstacle, instead of the whole obstacle. This in turn improves
several regularity results for such problems. The result is announced in [195].
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CHAPTER 1. INTRODUCTION

1.4 Nonlocal equations, mixed local and non-

local equations

The regularity theory for nonlocal problems with fractional orders has been
extensively studied for the last two decades. Caffarelli and Silvestre [65]
proved Harnack inequality for the fractional Laplace equation, (−4)su = 0,
by using an extension argument. Caffarelli, Chan and Vasseur [64] applied De
Giorgi’s approach to linear parabolic equations involving general kernels, and
proved Hölder continuity of weak solutions. We refer to [66, 125, 126, 153,
162, 176, 177, 178, 194] for regularity results for nonlocal linear equations.

Later, for nonlocal nonlinear equations of fractional p-Laplacian type,
Di Castro, Kuusi and Palatucci [93, 94] employed De Giorgi’s approach to
prove Hölder regularity and Harnack inequality for weak solutions. Cozzi [82]
extended these results to inhomogeneous problems with lower order terms,
by using fractional De Giorgi classes. We further refer to [33, 34, 115, 137,
138, 139, 159, 190] and references therein for various results for nonlocal
problems of fractional p-Laplacian type. For a general overview of the history
and related topics, see [36, 183].

We note that such a nonlocal operator is associated with a purely jump
process. On the other hand, the generator of a general Lévy process is given
by the sum of local and nonlocal operators, whose prototype is

−4+ (−4)s.

For elliptic and parabolic equations involving the above operator, Hölder
continuity and Harnack inequality were proved in [10, 114] by combining
probabilistic and analytic techniques. See also [24, 25, 26] for further results
including regularity, maximum principles and other qualitative behaviors.

Subsequently, there have been also recent results for nonlinear operators
modeled on

−4p + (−4)sp. (1.21)

Garain and Kinnunen [116] employed purely analytic methods based on
[93, 94] to obtain regularity results including Hölder continuity and Harnack
inequality. We refer to [26, 27, 117] for various results and relevant function
spaces; see also [87] for a connection between a class of mixed functionals
and local functionals with (p, q)-growth. We also mention the paper [89], in
which the maximal regularity was established for a more general class of
mixed local and nonlocal problems.

9



CHAPTER 1. INTRODUCTION

1.5 Nonlocal operators and measure data

Consider the following nonlocal nonlinear equation with measure data:

(−4)spu = µ in Ω.

Existence and regularity results for such equations were obtained by Kuusi,
Mingione and Sire [152, 154]. They first defined SOLA and proved its ex-
istence. Next, they proved the nonlocal analogs of the pointwise estimates
(1.11) and (1.12) via perturbation arguments and excess decay estimates as
in [111, 146]. More precisely, they proved the following: for any SOLA u,
there holds

|u(x0)| ≤ cWµ
s,p(x0, R) + c

(∫
BR(x0)

|u|q0 dx
) 1

q0

+ c

(
Rsp

∫
Rn\BR(x0)

|u(x)|p−1

|x− x0|n+sp
dx

) 1
p−1

(1.22)

whenever BR(x0) ⊂ Ω is a ball and the right-hand side is finite with q0 :=
max{p− 1, 1}. Moreover, if both µ and u are nonnegative in BR(x0), then

Wµ
s,p(x0, R/8) ≤ cu(x0) + c

(
Rsp

∫
Rn\BR/2(x0)

(u−(x))p−1

|x− x0|n+sp
dx

) 1
p−1

. (1.23)

In [131], the approach in [129, 130] was extended to fractional p-superharmonic
functions for a potential upper bound similar to (1.22), which in turn shows
a nonlocal counterpart of the Wiener criterion. We also note that, for the
case p = 2, gradient potential estimates for SOLA were proved in [155].

The last term in each of (1.22) and (1.23) is called a nonlocal tail, which
already appears in [93, 94]. Nonlocal tails play a crucial role in the local
regularity theory for nonlocal fractional equations, accounting for long-range
interactions of solutions.

In Chapter 5, we prove existence and potential estimates for measure data
problems involving mixed local and nonlocal operators modeled on (1.21).
The main results reflect both local and nonlocal characters of the problems.
On one hand, since the local term has higher order, we obtain estimates via
Wµ

1,p. On the other hand, due to the presence of the nonlocal term, we need
to involve nonlocal tails in the estimates. The result is announced in [57].

10



CHAPTER 1. INTRODUCTION

1.6 Nonlocal operators with nonstandard growth

Nonlocal problems with nonstandard growth have been the object of recent
investigation. As in the local case described in Section 1.2, we can consider
typical examples of nonlocal operators with nonstandard growth conditions:

• Orlicz growth:

P.V.

∫
Rn
g

(
|u(x)− u(y)|
|x− y|s

)
u(x)− u(y)

|u(x)− u(y)|
dy

|x− y|n+s
. (1.24)

• Variable powers:

P.V.

∫
Rn

|u(x)− u(y)|p(x,y)−2(u(x)− u(y))

|x− y|n+s(x,y)p(x,y)
dy, (1.25)

s : Rn × Rn → (0, 1), p : Rn × Rn → (1,∞).

• Double phase:

P.V.

∫
Rn

|u(x)− u(y)|p−2(u(x)− u(y))

|x− y|n+sp
dy

+ P.V.

∫
Rn
a(x, y)

|u(x)− u(y)|q−2(u(x)− u(y))

|x− y|n+tq
dy,

(1.26)

s, t ∈ (0, 1), p, q > 1.

The techniques and results in [93, 94] were extended to nonlocal equations
with Orlicz growth (1.24) and variable powers (1.25) in [45, 46] and [182],
respectively. See also [70, 71, 72], where the techniques in [82] were extended,
with more restrictive assumptions, to (1.24) and (1.25).

Nonlocal equations of double phase type were first treated in [91], where
the authors proved Hölder regularity for viscosity solutions. A nonlocal self-
improving property for bounded weak solutions was proved in [191]. We also
mention the paper [113] concerning Hölder regularity for bounded weak so-
lutions and a relationship between weak and viscosity solutions. Here, we
point out that the papers [91, 113, 191] are restricted to solutions which are
bounded in Rn and are under the assumption that t ≤ s. This means that
the second term in (1.26) is a lower order term, which allows to consider a
bounded, possibly discontinuous modulating coefficient a(·, ·).

11
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In Chapter 6, we prove the local boundedness and Hölder continuity of
weak solutions to nonlocal equations with double phase growth condition
(1.26), which is announced in [52]. We emphasize that we deal with the case
s ≤ t, which is a main difference from the papers [91, 113, 191]. This case
is more delicate than the other case, since the second term in (1.26) has a
higher order in the sense that t ≥ s, q ≥ p. To the best of our knowledge,
the results presented in [52] are the first regularity results in this case. When
we prove Hölder continuity in this case, we assume that the modulating
coefficient a(·, ·) is Hölder continuous, which together with a restriction on
the ranges of t and q allows us to replace a(·, ·) with a constant. Note that
this argument is exactly the same as the one for the local double phase
problem. Therefore, we are able to make the assumptions on t, q and a(·, ·)
that are analogous to those for local double phase problems. Moreover, we
assume that weak solutions are not bounded in Rn, but only locally bounded
in Ω. Therefore, we need to handle the nonlocal tails. The main difficulty
arises in deriving the logarithmic type estimate (see Lemma 6.5.1 below). An
analogous estimate was obtained for fractional p-Laplacian type equations
in [93, Lemma 1.3], but we could not apply the same approach directly to
our problem with nonstandard growth (1.26). In order to obtain such an
estimate, we first assume that the weak solution is locally bounded, and
then take advantage of the Hölder continuity of a(·, ·) in order to modify and
develop the techniques used in the proof of [93, Lemma 1.3].

We also mention the paper [48], where Hölder regularity and Harnack
inequality for mixed local and nonlocal double phase problems related to

(−4)spu− div (a(x)|Du|q−2Du) = 0 in Ω,

with 0 < s < 1 < p ≤ q and a(·) ≥ 0, were proved.

12



Chapter 2

Preliminaries

2.1 General notations

Throughout this thesis, we use the following notations.

1. Ω is a bounded domain in Rn, n ≥ 2, and ∂Ω is its boundary.

2. Br(x0) ≡ B(x0, r) := {x ∈ Rn : |x − x0| < r} is the open ball in Rn

with center x0 ∈ Rn and radius r > 0. If there is no confusion, we
simply write Br(x0) ≡ Br. Moreover, given a ball B, we denote by γB
the concentric ball with radius magnified by a factor γ > 0.

3. For a set S ⊂ Rn, diam(S) := sup{|x− y| : x, y ∈ S} is the diameter of
S. For two sets S1, S2 ⊂ Rn, dist(S1, S2) := inf{|x−y| : x ∈ S1, y ∈ S2}
is the distance between S1 and S2.

4. For each Lebesgue measurable set S ⊂ Rn, |S| is the (n-dimensional)
Lebesgue measure of S.

5. If f : S → Rk (k ∈ N) is an integrable map and 0 < |S| < ∞, we
denote the integral average of f over S by

(f)S :=

∫
S

f dx :=
1

|S|

∫
S

f dx.

6. The oscillation of a map f on S is defined by

osc
S
f := sup

x,y∈S
|f(x)− f(y)|.

13



CHAPTER 2. PRELIMINARIES

7. For a real-valued function f , we denote f± := max{±f, 0}.

8. For each k > 0, we define the truncation operators Tk,Tk : R→ R by

Tk(t) := min{k,max{−k, t}}, Tk(t) := T1(t− Tk(t)).

9. We denote by c a generic constant greater than or equal to one, whose
value may possibly vary from line to line. Special occurrences will be
denoted by c∗, c0, c1 or the like. We denote relevant dependencies on
parameters by using parentheses, and use the abbreviation data. The
meaning of data will be specified in each chapter.

10. We write a . b to mean that there exists c ≡ c(data) ≥ 1 such that
a ≤ cb. We write a ≈ b if a . b and b . a. If the constant c depends
also on χ other than data, we write a .χ b and a ≈χ b.

11. For any p ≥ 1, we denote its Hölder and Sobolev conjugate exponents
by

p′ :=


p

p− 1
if p > 1,

∞ if p = 1

and

p∗ :=


np

n− p
if 1 ≤ p < n,

any number in (p,∞) if p ≥ n,

respectively. Moreover, given s ∈ (0, 1), we denote the (s-)fractional
Sobolev conjugate exponent of p by

p∗s :=


np

n− sp
if sp < n,

any number in (p,∞) if sp ≥ n.

12. For a function space X(U ;Rk) of possibly vector valued measurable
maps defined on an open set U ⊆ Rn, we define the local variant
Xloc(U ;Rk) as that space of maps f : U → Rk such that f ∈ X(U ′;Rk)
for every U ′ b U . Moreover, also in the case f is vector valued, that is
k > 1, we simply denote X(U ;Rk) ≡ X(U), or even X(U ;Rk) ≡ X.

14
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13. For an open set U ⊆ Rn, we denote by Mb(U) the set of all signed
Borel measures on U having finite total mass. Moreover, we identify
L1(U) with a subset of Mb(U) in the following way: for each function
µ ∈ L1(U) and each measurable set S ⊆ U , we denote

|µ|(S) =

∫
S

|µ| dx.

We also identify each element ofMb(U) with its zero extension to Rn.

2.2 Function spaces

2.2.1 Musielak-Orlicz spaces

Let U ⊆ Rn be an open set. A function Φ : U × [0,∞) → [0,∞) is called a
generalized Young function if Φ(x, ·) is a convex function that satisfies

Φ(x, 0) = 0, lim
t→∞

Φ(x, t) =∞ for a.e. x ∈ U

and Φ(·, t) is measurable for every t > 0.
We say that Φ : U × [0,∞)→ [0,∞) is a generalized N -function if it is a

generalized Young function satisfying Φ(x, t) > 0 for all t > 0,

lim
t→0

Φ(x, t)

t
= 0, lim

t→∞

Φ(x, t)

t
=∞ for a.e. x ∈ U

and Φ(·, t) is positive and measurable for every t > 0. Additionally, we assume
that Φ(x, ·) ∈ C2(0,∞) for a.e. x ∈ U and there holds

p1 ≤
t∂2
t Φ(x, t)

∂tΦ(x, t)
≤ p2 (2.1)

for some positive constants p1 ≤ p2, for t > 0 and a.e. x ∈ U . Then we have

p1 + 1 ≤ t∂tΦ(x, t)

Φ(x, t)
≤ p2 + 1

and

min{αp1+1, αp2+1}Φ(x, t) ≤ Φ(x, αt) ≤ max{αp1+1, αp2+1}Φ(x, t)

15
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for t, α ≥ 0 and a.e. x ∈ U . The last inequalities imply the so called ∆2 and
∇2 conditions; we refer to [122] for more details. Hereafter, we always assume
that a generalized N -function Φ satisfies (2.1).

Given a generalized Young function Φ, we define its Young’s conjugate
Φ∗ : U × [0,∞)→ [0,∞) by

Φ∗(x, t) := sup
s≥0

(st− Φ(x, s)) , x ∈ U, t ≥ 0.

This definition directly implies the Young’s inequality

st ≤ Φ(x, t) + Φ∗(x, s)

whenever s, t ≥ 0 and x ∈ U .
We also note that

Φ∗
(
x,

Φ(x, t)

t

)
≤ Φ(x, t) ≤ Φ∗

(
x,

Φ(x, 2t)

t

)
.

Given a generalized N -function Φ, the Musielak-Orlicz space LΦ(U ;Rk) ≡
LΦ(U) is the set of all Lebesgue measurable maps f : U → Rk satisfying∫

U

Φ(x, |f |) dx <∞,

equipped with the following Luxemburg norm

‖f‖LΦ(U) := inf

{
λ > 0 :

∫
U

Φ

(
x,
|f |
λ

)
dx ≤ 1

}
,

and the Musielak-Orlicz-Sobolev space W 1,Φ(U ;Rk) ≡ W 1,Φ(U) is the set of
all maps f ∈ LΦ(U) ∩W 1,1(U) satisfying |Df | ∈ LΦ(U), equipped with the
norm

‖f‖W 1,Φ(U) := ‖f‖LΦ(U) + ‖Df‖LΦ(U).

Also, we define W 1,Φ
0 (U) as the closure of C∞0 (U) in W 1,Φ(U). By (2.1) and

the fact that infx∈UΦ(x, 1) > 0, they are Banach spaces. When Φ(x, t) = tp(x),
the spaces LΦ and W 1,Φ are called variable exponent Lebesgue and Sobolev
spaces, respectively. When Φ(·) is independent of x, we call it an N -function.
In this case the spaces LΦ and W 1,Φ are called Orlicz and Orlicz-Sobolev
spaces, respectively. We refer to [99, 122] for a comprehensive introduction.
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We recall the following embedding theorem and Sobolev-Poincaré type
inequality for Orlicz-Sobolev spaces.

Lemma 2.2.1 ([75]). Let U ⊂ Rn, n ≥ 2, be a bounded open set and Φ(·) an
N-function satisfying∫

0

(
s

Φ(s)

) 1
n−1

ds <∞ and

∫ ∞( s

Φ(s)

) 1
n−1

ds =∞.

Then there exists a constant cS(n), depending only on n, such that for every
u ∈ W 1,Φ

0 (U) there holds∫
U

Φn

(
|u|

cS(n)
(∫

U
Φ(|Du|) dx

)1/n

)
dx ≤

∫
U

Φ(|Du|) dx,

where

Φn(t) := (Φ ◦H−1
n )(t) for Hn(t) :=

(∫ t

0

[
s

Φ(s)

] 1
n−1

ds

)n−1
n

. (2.2)

Lemma 2.2.2 ([63]). Let Φ ∈ C1[0,∞) be an N-function satisfying

p1 ≤
tΦ′(t)

Φ(t)
≤ p2, t ≥ 0,

for some 1 < p1 ≤ p2 <∞. Then there exist constants ϑ ∈ (0, 1) and c ≥ 1,
both depending only on n, p1 and p2, such that∫

BR

Φ

(∣∣∣∣f − (f)BR
R

∣∣∣∣) dx ≤ c

(∫
BR

[Φ(|Df |)]ϑ dx
) 1

ϑ

for any ball BR ⊂ Rn and f ∈ W 1,Φ(BR)

We also recall the following estimate in the Zygmund space L logβ L (see
[2, 124]): for any q, β > 1 and f ∈ Lq(U), we have∫

U

|f | logβ
(
e+

|f |
(|f |)U

)
dx ≤ c(q, β)

(∫
U

|f |q dx
) 1

q

. (2.3)
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2.2.2 Fractional Sobolev spaces

For any open set U ⊆ Rn, α ∈ (0, 1) and q ≥ 1, the fractional Sobolev space
Wα,q(U ;Rk) ≡ Wα,q(U) is the set of all functions f : U → Rk satifying

‖f‖Wα,q(U) := ‖f‖Lq(U) + [f ]α,q;U

:=

(∫
U

|f |q dx
) 1

q

+

(∫
U

∫
U

|f(x)− f(y)|q

|x− y|n+αq
dxdy

) 1
q

.

We also define Wα,q
0 (U) as the closure of C∞0 (U) in Wα,q(U).

From the above definition, one can see that the strict inclusions

W 1,q
loc (U) ( W t,q

loc(U) ( W s,q
loc (U) ( Lqloc(U)

hold whenever 0 < s < t < 1 ≤ q. For the first inclusion, we recall the fol-
lowing result from [95, Proposition 2.2]: If U is a bounded Lipschitz domain,
then

‖f‖Wα,q(U) ≤ c(n, α, q, U)‖f‖W 1,q(U) ∀ f ∈ W 1,p(U).

The second inclusion is a special case of the following lemma. Note that it
fails to hold when s = t, see [172].

Lemma 2.2.3. Let 1 ≤ p ≤ q and 0 < s < t < 1. Let U ⊂ Rn be a bounded
open set. Then, for any f ∈ W t,q(U) we have

[f ]s,p;U ≤ c|U |
q−p
pq (diam(U))t−s[f ]t,q;U

for a constant c ≡ c(n, s, t, p, q).

Proof. When p < q, the result follows from [82, Lemma 4.6]. When p = q,
we directly have(∫

U

∫
U

|f(x)− f(y)|p

|x− y|n+sp
dxdy

) 1
p

=

(∫
U

∫
U

|f(x)− f(y)|p

|x− y|n+tp
|x− y|(t−s)p dxdy

) 1
p

≤ (diam(U))t−s
(∫

U

∫
U

|f(x)− f(y)|p

|x− y|n+tp
dxdy

) 1
p

.
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Fractional Sobolev spaces have their own embedding properties together
with Poincaré type inequalities, see [95, 106, 182].

Lemma 2.2.4. Let α ∈ (0, 1] and q ≥ 1 be such that αq < n. Let U ⊂ Rn be
a bounded Lipschitz domain. Then for any f ∈ Wα,q(U ;Rk), we have

‖f‖Lq∗α (U) ≤ c‖f‖Wα,q(U)

for a constant c ≡ c(n, α, q, [∂U ]0,1, diam(U)).

Lemma 2.2.5. Let α ∈ (0, 1) and q ≥ 1. Let BR ⊂ Rn be a ball and
f ∈ Wα,q(BR).

(1) We have∫
BR

|f − (f)BR |q dx ≤ cRαq

∫
BR

∫
BR

|f(x)− f(y)|q

|x− y|n+αq
dxdy (2.4)

for a constant c ≡ c(n, α, q).

(2) If αq ≤ n, then we have(∫
BR

|f − (f)BR |q
∗
α dx

) q
q∗α
≤ cRαq

∫
BR

∫
BR

|f(x)− f(y)|q

|x− y|n+αq
dxdy (2.5)

for a constant c ≡ c(n, α, q).

We also recall another fractional Poincaré inequality, see [82, Lemma 4.7].

Lemma 2.2.6. Let α ∈ (0, 1) and q ≥ 1. Let f ∈ Wα,q(BR) be such that
f = 0 a.e. on a set Ω0 ⊆ BR, with |Ω0| ≥ γ|BR| for some γ ∈ (0, 1]. Then,∫

BR

|f |q dx ≤ cRαq

∫
BR

∫
BR

|f(x)− f(y)|q

|x− y|n+αq
dxdy

for a constant c ≡ c(n, α, q, γ).

For a vector h ∈ Rn, we denote U|h| := {x ∈ U : dist(x, ∂U) > |h|}, and
define the finite difference operator τh : L1(U)→ L1(U|h|) by letting

τhf(x) ≡ τh(f)(x) := f(x+ h)− f(x), x ∈ U|h|

for each possibly vector-valued function f ∈ L1(U), whenever U|h| is nonempty.
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The Nikol’skii space Nα,q(U ;Rk) ≡ Nα,q(U) is the set of all functions
f : U → Rk for which

‖f‖Nα,q(U) :=

(∫
U

|f |q dx
) 1

q

+

(
sup
h6=0

∫
U|h|

|τhf |q

|h|αq
dx

) 1
q

<∞.

If we define N1,q(U) in the same way, then the standard difference quotient
characterization of Sobolev spaces impliesN1,q(U) ⊂ W 1,q

loc (U) andW 1,q
loc (U) =

N1,q
loc (U) for q > 1, along with the inequality∫

Br

|τhf |q dx ≤ c(n, q)|h|q
∫
BR

|Df |q dx (2.6)

for any concentric balls Br b BR b U , vector h ∈ Rn with |h| ≤ R − r and
f ∈ W 1,q(BR).

Its fractional counterpart is the following strict inclusions

Wα,q(U) ( Nα,q(U) ( Wα−ε,q(U) ∀ ε ∈ (0, α)

which hold for instance for bounded Lipschitz domain U . In particular, the
local version of the second inclusion is quantified as follows, see [87, Lemma 1].

Lemma 2.2.7. Let f ∈ Lq(Ω), q ≥ 1, and assume that for ᾱ ∈ (0, 1], S ≥ 0
and a bounded open set Ω̃ b Ω we have

‖τhf‖Lq(Ω̃) ≤ S|h|ᾱ

for every h ∈ Rn satisfying 0 < |h| ≤ d, where 0 < d ≤ dist(Ω̃, ∂Ω). Then
f ∈ Wα,q(Ω̃) for every α ∈ (0, ᾱ). Moreover, for every α ∈ (0, ᾱ) we have

‖f‖Wα,q(Ω̃) ≤ c(n, q)

(
dᾱ−αS

[(ᾱ− α)q]1/q
+

‖f‖Lq(Ω̃)

min{dn/q+α, 1}

)
.

We then recall the definition of fractional Sobolev-Morrey spaces. Let
U ⊆ Rn be an open set. For α ∈ (0, 1), q ≥ 1 and θ ∈ [0, n], we say that a
map f ∈ Wα,q(U ;Rk) belongs to Wα,q,θ(U ;Rk) if and only if

[f ]qα,q,θ;U := sup
BR⊂U

Rθ−n[f ]qα,q;BR <∞.

We accordingly define ‖f‖Wα,q,θ(U) := ‖f‖Wα,q(U) + [f ]α,q,θ;U .
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2.2.3 Lorentz spaces, Marcinkiewicz spaces

For γ ∈ [1,∞) and q ∈ (0,∞), the Lorentz space L(γ, q)(U) is defined as the
set of all measurable maps f : U → Rk satisfying

‖f‖qL(γ,q)(U)
:= γ

∫ ∞
0

(λγ|{x ∈ U : |f(x)| > λ}|)
q
γ
dλ

λ
<∞.

In the case q =∞, L(γ,∞)(U) ≡Mγ(U) is called the Marcinkiewicz space.
It is defined as the set of all measurable maps f : U → Rk satisfying

‖f‖γMγ(U)
:= sup

λ≥0
λγ|{x ∈ U : |f(x)| > λ}| <∞. (2.7)

Marcinkiewicz spaces are often called weak Lebesgue spaces, due to the strict
inclusions

Lγ(U) (Mγ(U) ( Lγ−ε(U) ∀ ε ∈ (0, γ).

In particular, for the second inclusion we have the following Hölder type
inequality:

‖f‖Lq(U) ≤
(

γ

γ − q

) 1
q

|U |
1
q
− 1
γ ‖f‖Mγ(U) ∀ f ∈Mγ(U),

whenever 1 ≤ q < γ, see [164, Lemma 2.8]. We also have the Riesz potential
embedding Iβ : L1 →Mn/(n−β) for β ∈ (0, n), see [4].

With θ ∈ [0, n], we define the Marcinkiewicz-Morrey space Mγ,θ(U) as
the set of all f ∈Mγ(U) satisfying

sup
BR⊂U

Rθ−n‖f‖γMγ(BR) <∞.

Accordingly, we define

‖f‖Mγ,θ(U) := ‖f‖Mγ(U) +

[
sup
BR⊂U

Rθ−n‖f‖γMγ(BR)

] 1
γ

.

It is obvious that Mγ,n(U) ≡ Mγ(U). We also note that ‖·‖Mγ,θ(U) is lower
semicontinuous with respect to the a.e. convergence, see [166, Remark 3].
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2.3 Auxiliary results

2.3.1 Basic properties of the vector fields V (·) and A(·)
We consider a vector field A : Rn → Rn which is C1-regular on Rn for p ≥ 2
and on Rn \{0} for p < 2. It also satisfies the following growth and ellipticity
assumptions: {

|A(z)|+ |∂A(z)|(|z|2 + s2)
1
2 ≤ L(|z|2 + s2)

p−1
2 ,

ν(|z|2 + s2)
p−2

2 |ξ|2 ≤ ∂A(z)ξ · ξ,
(2.8)

for every z, ξ ∈ Rn, where p > 1, 0 < ν ≤ L and s ≥ 0 are fixed constants.
Here we denote data = (n, p, ν, L).

Observe that the ellipticity assumption in (2.8) implies the following
monotonicity property:

(A(z1)− A(z2)) · (z1 − z2) ≈ (|z1|2 + |z2|2 + s2)
p−2

2 |z1 − z2|2

for any z1, z2 ∈ Rn.
We now define the auxiliary vector field V = Vs : Rn → Rn by

V (z) = Vs(z) := (|z|2 + s2)
p−2

4 z, z ∈ Rn,

which is a locally bi-Lipschitz bijection of Rn. Moreover, for any z1, z2 ∈ Rn,

|V (z1)− V (z2)| ≈ (|z1|2 + |z2|2 + s2)
p−2

4 |z1 − z2|, (2.9)

holds with the implicit constant depending only on p. In particular, we have

|z1 − z2|p . |V (z1)− V (z2)|2 when p ≥ 2. (2.10)

Consequently, taking (2.9) into account, the monotonicity of A(·) can be
written simply in terms of V (·). Namely, for any z1, z2 ∈ Rn there holds

(A(z1)− A(z2)) · (z1 − z2) ≈ |V (z1)− V (z2)|2. (2.11)

We also notice that, by the definition of V (·),

|V (z)|2 + sp ≈ |z|p + sp ≈ (|z|+ s)p.
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We then recall some properties of the vector field A(·), see [7, 187].

Lemma 2.3.1. The following inequalities hold for every z, z1, z2 ∈ Rn:

|A(z)|+ sp−1 ≈ |z|p−1 + sp−1 ≈ (|z|+ s)p−1,

|A(z1)− A(z2)| ≈ (|z1|2 + |z2|2 + s2)
p−2

2 |z1 − z2|.
(2.12)

In particular, A(·) is a locally bi-Lipschitz bijection, and it holds that

|A(z1)− A(z2)| . (|z1|2 + s2)
p−2

2 |z1 − z2|+ |z1 − z2|p−1 when p ≥ 2,

|A(z1)− A(z2)| . |z1 − z2|p−1 when 1 < p ≤ 2.

We now recall some inequalities for integrals. If S ⊂ Rn is a measurable
set with 0 < |S| <∞ and f ∈ Lq(S;Rk) for some q ∈ [1,∞], then we have

‖f − (f)S‖Lq(S) ≤ 2‖f − z0‖Lq(S) ∀ z0 ∈ Rk. (2.13)

In particular, using this inequality and recalling that A(·) is bijective, we can
prove the following lemma, see [100, Lemma A.2].

Lemma 2.3.2. Let p > 1, and let B be a ball in Rn. Given any map f ∈
Lp(B;Rn), denote by fA ∈ Rn the vector satisfying A(fA) = (A(f))B. Then
we have∫
B

|V (f)−(V (f))B|2 dx ≈
∫
B

|V (f)−V ((f)B)|2 dx ≈
∫
B

|V (f)−V (fA)|2 dx.

(2.14)

We next introduce a class of shifted N -functions and their properties.
Shifted N -functions play a crucial role in various regularity estimates for
problems with general growth, and they are especially effective when dealing
with both super- and sub-quadratic growth simultaneously. For more on the
definitions and properties of general shifted N -functions, we refer to [97, 98,
101].

For the N -function ϕ(t) ≡ ϕ0(t) = (s + t)p−2t2, t ≥ 0, we define the
shifted N -function

ϕa(t) := (a+ s+ t)p−2t2, t ≥ 0,

for each a ≥ 0. Then ϕa(·) is an N -function. Moreover, a direct calculation
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shows that

min{p− 1, 1} ≤tϕ
′′
a(t)

ϕ′a(t)
≤ max{p− 1, 1},

min{p, 2} ≤tϕ
′
a(t)

ϕa(t)
≤ max{p, 2}

hold for every t ≥ 0. Note that the second inequality implies that the family
{ϕa}a≥0 satisfies the ∆2 and∇2 conditions uniformly in a, i.e., ϕa(2t) ≈ ϕa(t)
uniformly in a, t ≥ 0. In turn, the following versions of Young’s inequality

t1t2 ≤ εϕa(t1) + cε1−max{p′,2}(ϕa)
∗(t2),

t1t2 ≤ cε1−max{p,2}ϕa(t1) + ε(ϕa)
∗(t2)

(2.15)

hold for all t1, t2 ≥ 0 and ε ∈ (0, 1], where c ≡ c(p). Moreover, we have

(ϕa)
∗(t) ≈ ((a+ s)p−1 + t)p

′−2t2, t ≥ 0. (2.16)

Using shiftedN -functions, the monotonicity property ofA(·) can be rephrased
as follows:

(A(z1)− A(z2)) · (z1 − z2)

≈ |V (z1)− V (z2)|2 ≈ ϕ|z1|(|z1 − z2|) ≈ (ϕ|z1|)
∗(|A(z1)− A(z2)|). (2.17)

We also note the “shift change formula”: for any z1, z2 ∈ Rn, ε ∈ (0, 1] and
t ≥ 0, it holds that

ϕ|z1|(t) ≤ cε1−max{p′,2}ϕ|z2|(t) + ε|V (z1)− V (z2)|2,
(ϕ|z1|)

∗(t) ≤ cε1−max{p,2}(ϕ|z2|)
∗(t) + ε|V (z1)− V (z2)|2.

(2.18)

2.3.2 Regularity for homogeneous equations

In this section, we examine various regularity estimates for the homogeneous
equation

− divA(Dv) = 0 in Ω. (2.19)

Let us start with the reverse Hölder’s inequalities. The first estimate was
proved in [164, 168]; the second estimate follows from the first one and [100,
Corollary 3.4].
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Lemma 2.3.3. Let v ∈ W 1,p
loc (Ω) be a weak solution to (2.19) under as-

sumptions (2.8) with p > 1. Then for any σ ∈ (0, 1) there exists a constant
c ≡ c(data, σ) such that∫

B

|V (Dv)− V (z0)|2 dx ≤ c

(∫
2B

|V (Dv)− V (z0)|2σ dx
) 1

σ

(2.20)

holds for every z0 ∈ Rn, whenever 2B b Ω. Moreover, there exists a constant
c ≡ c(data) such that∫

B

ϕ|z0|(|Dv − z0|) dx ≤ cϕ|z0|

(∫
2B

|Dv − z0| dx
)

(2.21)

holds for every z0 ∈ Rn, whenever 2B b Ω.

We now recall the following result concerning the maximal regularity for
(2.19), see [7, 96, 118, 161]. Moreover, we also recall an excess decay estimate
below the natural growth exponent, see [111, Section 3.2].

Lemma 2.3.4. Let v ∈ W 1,p
loc (Ω) be a weak solution to (2.19) under assump-

tions (2.8) with p > 1. Then v ∈ C1,β
loc (Ω) for some β ≡ β(data) ∈ (0, 1).

Moreover, we have the following:

(1) For every t > 0, there exists a constant cb ≡ cb(data, t) such that

sup
εB

(|Dv|+ s) ≤ cb
(1− ε)n/t

(∫
B

(|Dv|2 + s2)
t
2 dx

) 1
t

(2.22)

holds for every ball B b Ω and ε ∈ (0, 1).

(2) There exists a constant ch ≡ ch(data) such that

|Dv(x1)−Dv(x2)| ≤ chε
β

∫
B

|Dv − (Dv)B| dx (2.23)

holds for every ball B b Ω and x1, x2 ∈ εB with ε ∈ (0, 1/2].

(3) There exists a constant c ≡ c(data) such that∫
εB

|Dv − (Dv)εB| dx ≤ cεβ
∫
B

|Dv − (Dv)B| dx (2.24)

25



CHAPTER 2. PRELIMINARIES

holds for every ball B b Ω and ε ∈ (0, 1).

Since the vector fields V (·) and A(·) are locally bi-Lipschitz, the above
lemma implies that both V (Dv) and A(Dv) are also locally Hölder contin-
uous. However, in order to obtain potential estimates for A(Dv), we further
need corresponding excess decay estimates for A(Dv). For this we first need
excess decay estimates for V (Dv), see [9, 100]. To the best of our knowledge,
such results available in the literature are only concerned with equations
with additional structural assumptions [1, 110, 121] and the p-Laplace (or
ϕ-Laplace) system [101, 102, 107], respectively. Here we give a new proof for
general equations (2.19), assuming only (2.8). The proof will be divided into
two parts, treating the cases p ≥ 2 and 1 < p < 2 in different manners.

Theorem 2.3.5. Let v ∈ W 1,p
loc (Ω) be a weak solution to (2.19) under assump-

tions (2.8) with p > 1. Then there exist constants αV ∈ (0, 1] and c ≥ 1, both
depending only on data, such that∫

Bρ

|V (Dv)− (V (Dv))Bρ|2 dx ≤ c
( ρ
R

)2αV
∫
BR

|V (Dv)− (V (Dv))BR |2 dx

holds whenever Bρ ⊂ BR b Ω are concentric balls.

Proof of Theorem 2.3.5 in the case p ≥ 2

Considering only the case ρ ≤ R/4 as usual, we first prove an L1-decay
estimate. We start with∫

B2ρ

|V (Dv)− V ((Dv)B2ρ)| dx

(2.9)

≤ c

∫
B2ρ

(|Dv|+ |(Dv)B2ρ|+ s)
p−2

2 |Dv − (Dv)B2ρ| dx

p≥2

≤ c

[
sup
B2ρ

(|Dv|+ s)

] p−2
2 ∫

B2ρ

|Dv − (Dv)B2ρ| dx

(2.24)

≤ c
( ρ
R

)β [
sup
BR/2

(|Dv|+ s)

] p−2
2 ∫

BR/2

|Dv − (Dv)BR/2| dx.
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Here, we estimate the last integral as

( ρ
R

)β [
sup
BR/2

(|Dv|+ s)

] p−2
2 ∫

BR/2

|Dv − (Dv)BR/2| dx

≤ c
( ρ
R

)β [
inf
BR/2

(|Dv|+ s)

] p−2
2
∫
BR/2

|Dv − (Dv)BR/2| dx

+ c
( ρ
R

)β [
osc
BR/2
|Dv|

] p−2
2
∫
BR/2

|Dv − (Dv)BR/2| dx

(2.23)

≤ c
( ρ
R

)β ∫
BR/2

(|Dv|+ |(Dv)BR |+ s)
p−2

2 |Dv − (Dv)BR | dx

+ c
( ρ
R

)β (∫
BR

|Dv − (Dv)BR | dx
) p

2

(2.9)

≤ c
( ρ
R

)β ∫
BR

|V (Dv)− V ((Dv)BR)| dx.

Combining the above two estimates yields the L1-decay estimate∫
B2ρ

|V (Dv)− V ((Dv)B2ρ)| dx ≤ c
( ρ
R

)β ∫
BR

|V (Dv)− V ((Dv)BR)| dx,

which in turn gives the desired L2-decay estimate∫
Bρ

|V (Dv)− (V (Dv))Bρ|2 dx
(2.13)

≤ c

∫
Bρ

|V (Dv)− V ((Dv)B2ρ)|2 dx

(2.20)

≤ c

(∫
B2ρ

|V (Dv)− V ((Dv)B2ρ)| dx

)2

(2.14)

≤ c
( ρ
R

)2β
∫
BR

|V (Dv)− (V (Dv))BR |2 dx.

Proof of Theorem 2.3.5 in the case 1 < p < 2

In the following, BR ≡ BR(x0) is a fixed ball as in the statement, and all
the balls considered will have the same center x0 and r will denote a positive
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radius with r ≤ R. We accordingly denote

E(r) :=

∫
Br

|V (Dv)− (V (Dv))Br |2 dx, ξr := (Dv)Br .

With Br ⊂ BR and θ0 ∈ (0, 1), we consider the following alternatives:∫
Br

|V (Dv)− (V (Dv))Br |2 dx ≤ θ0

∫
Br

|V (Dv)|2 dx (2.25)

and ∫
Br

|V (Dv)− (V (Dv))Br |2 dx > θ0

∫
Br

|V (Dv)|2 dx. (2.26)

The parameter θ0 will be determined as a universal constant later in the
proof.

Step 1: The non-degenerate case. In this case we assume that (2.25) holds.
Then ∫

Br

|V (Dv)− (V (Dv))Br |2 dx ≤ θ0

∫
Br

|V (Dv)|2 dx

≤ 2θ0

∫
Br

|V (Dv)− V ((Dv)Br)|2 dx+ 2θ0|V ((Dv)Br)|2

(2.14)

≤ 2c0θ0

∫
Br

|V (Dv)− (V (Dv))Br |2 dx+ 2θ0|V ((Dv)Br)|2

holds for some c0 ≡ c0(data). Thus, if

θ0 ≤
1

4c0

, (2.27)

then we have∫
Br

|V (Dv)− (V (Dv))Br |2 dx ≤
2θ0

1− 2c0θ0

|V ((Dv)Br)|2

(2.17)

≤ cθ0

1− c0θ0

ϕ(|ξr|). (2.28)
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Next, for any δ ∈ (0, 1/4], we observe that

|ξδr − ξr| ≤
∫
Bδr

|Dv − ξr| dx ≤ δ−n
∫
Br

|Dv − ξr| dx

≤ δ−n(ϕ|ξr|)
−1

(∫
Br

ϕ|ξr|(|Dv − ξr|) dx
)

(2.17),(2.14)

≤ cδ−n(ϕ|ξr|)
−1

(∫
Br

|V (Dv)− (V (Dv))Br |2 dx
)

(2.28)

≤ cδ−n
(

θ0

1− 2c0θ0

) 1
2

(ϕ|ξr|)
−1(ϕ(|ξr|))

≤ c1δ
−n
(

θ0

1− 2c0θ0

) 1
2

|ξr|

holds for a constant c1 ≡ c1(data), where for the last inequality we have used

ϕ(|ξr|) =
|ξr|2

(|ξr|+ s)2−p ≤ 22−pϕ|ξr|(|ξr|) ≤ ϕ|ξr|

(
2

2−p
p |ξr|

)
.

Now, if θ0 satisfies

c1δ
−n
(

θ0

1− 2c0θ0

) 1
2

≤ 1

2
, (2.29)

then it holds that
1

2
|ξr| ≤ |ξδr| ≤

3

2
|ξr|, (2.30)

which in turn implies∫
Bδr

|V (Dv)− (V (Dv))Bδr |2 dx
(2.14),(2.17)

≤ c

∫
Bδr

ϕ|ξδr|(|Dv − ξδr|) dx

(2.21)

≤ cϕ|ξδr|

(∫
B2δr

|Dv − ξδr| dx
)

≤ cϕ|ξδr|

(∫
B2δr

|Dv − ξ2δr| dx
)

(2.24)

≤ cϕ|ξδr|

(
δβ
∫
Br

|Dv − ξr| dx
)
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≤ cδβp
∫
Br

ϕ|ξδr|(|Dv − ξr|) dx

(2.30)

≤ cδβp
∫
Br

ϕ|ξr|(|Dv − ξr|) dx

(2.17),(2.14)

≤ c2δ
βp

∫
Br

|V (Dv)− (V (Dv))Br |2 dx.

Summarizing, if θ0 ≡ θ0(data, δ) ∈ (0, 1) is so small that (2.27) and (2.29)
hold, then we have

E(δr) ≤ c2δ
βpE(r)

for a constant c2 ≡ c2(data).
Step 2: The degenerate case. In this case we assume that (2.26) holds.

Then for any N ∈ N we have∫
B
δNr

|V (Dv)− (V (Dv))B
δNr
|2 dx

(2.14)

≤ c

∫
B
δNr

|V (Dv)− V (ξδNr)|2 dx

(2.17),(2.21)

≤ cϕ|ξ
δNr
|

(∫
B

2δNr

|Dv − ξδNr| dx

)
(2.24)

≤ cδβNpϕ|ξ
δNr
|

(∫
Br

|Dv − ξr| dx
)
.

Since p < 2, we have ϕa(t) ≤ ϕ(t) for every a, t ≥ 0. This and (2.13) imply∫
B
δNr

|V (Dv)− (V (Dv))B
δNr
|2 dx ≤ cδβNpϕ

(∫
Br

|Dv| dx
)

≤ cδβNp
∫
Br

ϕ(|Dv|) dx

(2.17)

≤ cδβNp
∫
Br

|V (Dv)|2 dx

(2.26)

≤ c3

θ0

δβNp
∫
Br

|V (Dv)− (V (Dv))Br |2 dx

for a constant c3 ≡ c3(data). We recall that the constant θ0 ≡ θ0(data, δ) ∈
(0, 1) is assumed to be small enough to satisfy (2.27) and (2.29). Now, if
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N0 ≡ N0(data, δ) ∈ N is so large that

c3

θ0

δβN0p <
1

2
, (2.31)

then it follows that

E(δNr) ≤ 1

2
E(r) ∀ N ≥ N0.

Step 3: Choice of the constants. We first choose δ ≡ δ(data) ∈ (0, 1/2] so
small that

c2δ
βp ≤ 1

2
.

We then choose the constants, the small one θ0 ≡ θ0(data) ∈ (0, 1) and the
large one N0 ≡ N0(data) ∈ N, in order to satisfy (2.27), (2.29) and (2.31),
respectively. All in all, as a consequence of Step 1 and Step 2, we have that
one of the following inequalities must hold:

E(δr) ≤ 1

2
E(r) (2.32)

or

E(δNr) ≤ 1

2
E(r) ∀ N ≥ N0. (2.33)

Step 4: Conclusion. We now consider an arbitrary radius r̃ and set

Nτ := d2N0n log2(1/δ)e+N0,

where dte denotes the least integer greater than or equal to t. We examine
the two cases.

(i) If (2.32) holds with r = δir̃ for every i ∈ {0, . . . , d2N0n log2(1/δ)e},
then we have

E(δNτ r̃) ≤ 2δ−N0nE(δd2N0n log2(1/δ)er̃)

≤ 2δ−N0n

(
1

2

)2N0n log2(1/δ)

E(r̃) ≤ 1

2
E(r̃).

(ii) If (2.33) holds with r = δir̃ for at least one i ∈ {0, . . . , d2N0n log2(1/δ)e},
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then let k be the smallest such number. Then we have

E(δNτ r̃) ≤ 1

2
E(δkr̃) ≤

(
1

2

)k+1

E(r̃) ≤ 1

2
E(r̃).

Therefore, in any case we obtain

E(δNτ r̃) ≤ 1

2
E(r̃) ∀ r̃ ∈ (0, R].

Iterating this estimate in a standard way, we complete the proof.

Linearized excess decay estimates

Once we have Lemma 2.3.3 and Theorem 2.3.5, then we can prove the desired
excess decay estimate for A(Dv) by following [100, Section 5].

Theorem 2.3.6. Let v ∈ W 1,p
loc (Ω) be a weak solution to (2.19) under assump-

tions (2.8) with p > 1. Then there exist constants αA ∈ (0, 1] and c ≥ 1, both
depending only on data, such that the estimate∫

Bρ

|A(Dv)− (A(Dv))Bρ| dx ≤ c
( ρ
R

)αA ∫
BR

|A(Dv)− (A(Dv))BR | dx

(2.34)
holds whenever Bρ ⊂ BR b Ω are concentric balls.

By Campanato’s characterization of Hölder spaces (see for instance [118,
Theorem 2.9]), we also have local oscillation estimates for V (Dv) and A(Dv).

Corollary 2.3.7. Let v ∈ W 1,p
loc (Ω) be as in the above theorem. Then there

exist constants cV , cA ≥ 1, both depending only on data, such that

sup
x1,x2∈εB

|V (Dv(x1))− V (Dv(x2))|2 ≤ cV ε
2αV

∫
B

|V (Dv)− (V (Dv))B|2 dx

and

sup
x1,x2∈εB

|A(Dv(x1))− A(Dv(x2))| ≤ cAε
αA

∫
B

|A(Dv)− (A(Dv))B| dx

hold for every ε ∈ (0, 1/2] and every ball B b Ω, where αV ∈ (0, 1] and
αA ∈ (0, 1] are as in Theorems 2.3.5 and 2.3.6, respectively.

32



CHAPTER 2. PRELIMINARIES

The next lemmas are concerned with higher differentiability for nonlinear
functions of the gradient of solutions. The classical result is concerned with
V (Dv); we state it in the following form, by combining the two estimates in
[164, Lemma 3.2].

Lemma 2.3.8. Let v ∈ W 1,p
loc (Ω) be a weak solution to (2.19) under assump-

tions (2.8) for p > 1. Then V (Dv) ∈ W 1,2
loc (Ω). Moreover, for any t > 0 there

exists a constant c ≡ c(data, t) such that(∫
B3R/4

|D(V (Dv))|2 dx

) 1
2

≤ c

R

(∫
BR

|V (Dv)− z0|t dx
) 1

t

holds for every z0 ∈ Rn, whenever BR b Ω.

Using this lemma, we can also obtain differentiability of A(Dv). We re-
mark that, while it is stated that A(Dv) ∈ W 1,1 in [7, Lemma 4.1], its proof
actually gives A(Dv) ∈ W 1,2, as pointed out in [55, Lemma 2.3].

Lemma 2.3.9. Let v ∈ W 1,p
loc (Ω) be a weak solution to (2.19) under assump-

tions (2.8) for p > 1, and let BR b Ω be a ball. In the case 1 < p < 2, assume
further that

inf
B3R/4

(|Dv|+ s) > 0.

Then A(Dv) ∈ W 1,2(BR/2). Moreover, if p ≥ 2, then(∫
BR/2

|D(A(Dv))|2 dx

) 1
2

≤ c

R

[
sup
B3R/4

(|Dv|+ s)

] p−2
2 ∫

BR

|V (Dv)− z0| dx

holds for every z0 ∈ Rn, where c ≡ c(data). Finally, if 1 < p < 2, then(∫
BR/2

|D(A(Dv))|2 dx

) 1
2

≤ c

R

[
inf
B3R/4

(|Dv|+ s)

] p−2
2
∫
BR

|V (Dv)− z0| dx

holds for every z0 ∈ Rn, where c ≡ c(data).

Under the additional symmetry condition on ∂A(·), another differentia-
bility result is also available, see [7, Theorem 4.2] for the proof.
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Lemma 2.3.10. Let v ∈ W 1,p
loc (Ω) be a weak solution to (2.19) under as-

sumptions (2.8) for p > 1, and assume also that ∂A(·) is symmetric. Then

A(Dv) ∈ W 1,2
loc (Ω;Rn).

Moreover, for every ball BR b Ω, the inequality(∫
BR/2

|D(A(Dv))|2 dx

) 1
2

≤ c

R

∫
BR

|A(Dv)− z0| dx

holds for every choice of z0 ∈ Rn, where c ≡ c(data).

2.3.3 Technical lemmas

We end this chapter with two technical lemmas, see for instance [118, Chap-
ters 6-7] and [21, Appendix B] for the proofs.

Lemma 2.3.11. Let Z : [0, R̄] → [0,∞) be a nondecreasing function such
that

Z(ρ) ≤ c0

[( ρ
R

)δ0
+ ε

]
Z(R) + BRγ for every 0 ≤ ρ < R ≤ R̄,

where c0,B, ε ≥ 0 and γ ∈ (0, δ0) are given constants. Then there exist
constants ε0 and c, both depending only on c0, δ0 and γ, such that if ε ≤ ε0,
then it holds that

Z(ρ) ≤ c
( ρ
R

)γ
Z(R) + cBργ for every 0 ≤ ρ ≤ R ≤ R̄.

Lemma 2.3.12. Let Z : [ρ0, ρ1]→ [0,∞) be a bounded function such that

Z(t) ≤ ε0Z(s) +
B1

(s− t)γ1
+

B2

(s− t)γ2
for every ρ0 ≤ t < s ≤ ρ1,

where ε0 ∈ (0, 1) and B1,B2, γ1, γ2 ≥ 0 are given constants. Then there exists
a constant c ≡ c(ε0, γ1, γ2) such that

Z(ρ0) ≤ cB1

(ρ1 − ρ0)γ1
+

cB2

(ρ1 − ρ0)γ2
.
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Chapter 3

Elliptic and parabolic equations
with measure data

3.1 Maximal integrability for elliptic measure

data problems with Orlicz growth

3.1.1 Main results

We consider the following Dirichlet problem{
−divA(x,Du) = µ in Ω,

u = 0 on ∂Ω,
(3.1)

where µ ∈ L1,θ(Ω). The Carathéodory vector field A : Ω×Rn → Rn satisfies
the following growth and monotonicity assumptions:

|A(x, z)| ≤ Lg(|z|),

ν
g(|z1|+ |z2|)
|z1|+ |z2|

|z1 − z2|2 ≤ (A(x, z1)− A(x, z2)) · (z1 − z2),
(3.2)

for every z, z1, z2 ∈ Rn with |z1|+ |z2| 6= 0 and x ∈ Ω, where 0 < ν ≤ L <∞
are fixed constants. Note in particular that the map x 7→ A(x, z) is only
measurable. The function g : [0,∞) → [0,∞) is the derivative of an N -
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function G ∈ C2(0,∞) satisfying

1 ≤ g0 ≤
tg′(t)

g(t)
≤ g1 ≤ n− 1, t > 0, (3.3)

for some positive constants g0, g1.

Definition 3.1.1. A function u ∈ W 1,1
0 (Ω) is a SOLA to (3.1) under as-

sumptions (3.2) if A(·, Du) ∈ L1(Ω;Rn),∫
Ω

A(x,Du) ·Dϕdx =

∫
Ω

ϕdµ ∀ ϕ ∈ C∞0 (Ω),

and moreover there exists a sequence of weak solutions {uk} ⊂ W 1,G
0 (Ω) to

the problems {
−divA(x,Duk) = µk in Ω,

uk = 0 on ∂Ω
(3.4)

such that uk → u in W 1,g
0 (Ω), where the sequence {µk} ⊂ L∞(Ω) converges

to µ weakly* in the sense of measures and satisfies

lim sup
k→∞

|µk|(B) ≤ |µ|(B̄)

for every ball B ⊂ Rn.

Throughout this section, we use the abbreviation data := (n, g0, g1, ν, L).
We now state our main result:

Theorem 3.1.2. Let u ∈ W 1,g
0 (Ω) be a SOLA to (3.1) under assumptions

(3.2) and (3.3). Assume that (1.5) holds with g1 + 1 ≤ θ ≤ n. Then

g(|Du|) ∈M
θ
θ−1

,θ

loc (Ω).

Moreover, for any ball BR b Ω of radius R ≤ 1 we have

‖g(|Du|)‖θ/(θ−1)

Mθ/(θ−1)(BR)
= sup

λ≥0
λ

θ
θ−1 |{x ∈ BR : g(|Du(x)|) > λ}|

≤ c[|µ|(Ω) + ‖µ‖L1,θ(Ω)]
θ
θ−1Rn−θ, (3.5)

where c ≡ c(data, dist(BR, ∂Ω)).
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Remark 3.1.3. When g(t) = tp−1, Theorem 3.1.2 reduces to [164, Theo-
rem 1.8]. Moreover, in the case of general measures (θ = n), Theorem 3.1.2
gives a result similar to [77, Theorem 3.2]. One can also consider the case of
generalized Morrey space as in [15], by assuming that

‖µ‖L1,φ(Ω) := sup
BR⊂Ω

φ(R)
|µ|(BR)

Rn
<∞.

Then we expect that the approach in this section can be extended to regularity
results in generalized Marcinkiewicz spaces.

Remark 3.1.4. The Morrey condition (1.5) also implies fractional Sobolev-
Morrey regularity results, that for the sake of simplicity we state for the model
case

−div

(
g(|Du|)
|Du|

Du

)
= µ.

Namely, combining [38, Theorem 1.1] and Lemma 3.1.10 below, one can prove

µ ∈ L1,θ =⇒ g(|Du|)
|Du|

Du ∈ W σ,1,θ
loc ∀ σ ∈ (0, 1).

3.1.2 Some technical results

We first recall the reverse Hölder’s inequality and higher integrability results
for the homogeneous equation

− divA(x,Dv) = 0 in Ω. (3.6)

Lemma 3.1.5 ([13, 180]). Let v ∈ W 1,G
loc (Ω) be a weak solution to (3.6) under

assumptions (3.2) and (3.3). Then for every ball BR b Ω, there holds∫
BR/2

G(|Dv|) dx ≤ cG

(∫
BR

|Dv| dx
)

for some c ≡ c(data). Moreover, there exists χ ≡ χ(data) > 1 such that∫
BR/2

[G(|Dv|)]χ dx ≤ c

[
G

(∫
BR

|Dv| dx
)]χ

holds whenever BR b Ω, where c ≡ c(data).
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Using this lemma, we obtain a decay estimate for (3.6) below the natural
growth.

Lemma 3.1.6. Let v ∈ W 1,G
loc (Ω) be a weak solution to (3.6) under assump-

tions (3.2) and (3.3). Then there exists an exponent α ≡ α(data) ∈ (0, 1]
such that for every

ξ ∈
[
1,

n

n− 1

)
, (3.7)

there holds ∫
Bρ

[g(|Dv|)]ξ dx ≤ c
( ρ
R

)ξg1(α−1)
∫
BR

[g(|Dv|)]ξ dx

for a constant c ≡ c(data, ξ), whenever Bρ ⊂ BR b Ω are concentric balls.

Proof. As usual we only consider the case ρ ≤ R/2, otherwise the lemma
follows trivially. A standard decay estimate for (3.6) is∫

Bρ

G(|Dv|) dx ≤ c
( ρ
R

)n+(g0+1)(α−1)
∫
BR/2

G(|Dv|) dx,

see [180, Lemma 3.4] for the proof. Now, for ξ as in (3.7) we consider the
auxiliary function

fξ(t) := ξ

∫ t

0

[g(s)]ξ

s
ds, t ≥ 0, (3.8)

introduced in the proof of [13, Lemma 5.3]. A direct computation shows that

fξ(t) ≈ [g(t)]ξ (3.9)

and that G◦f−1
ξ is increasing and convex. We then apply Jensen’s inequality

and Lemma 3.1.5 to have∫
Bρ

fξ(|Dv|) dx ≤ (fξ ◦G−1)

(∫
Bρ

G(|Dv|) dx

)

≤ (fξ ◦G−1)

[
c
( ρ
R

)(g0+1)(α−1)
∫
BR/2

G(|Dv|) dx

]
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≤ (fξ ◦G−1)

[
c
( ρ
R

)(g0+1)(α−1)

G

(∫
BR

|Dv| dx
)]

≤ c
( ρ
R

)ξg1(α−1)
∫
BR

fξ(|Dv|) dx,

which along with (3.9) completes the proof.

We now proceed with the additional assumption

µ ∈ W−1,G′(Ω) ∩ L1(Ω), u ∈ W 1,G
0 (Ω), (3.10)

which will be eventually removed in Section 3.1.3 below. We fix a ball BR ≡
BR(x0) ⊂ Ω, and define v ∈ u+W 1,G

0 (BR) as the weak solution to{
−divA(x,Dv) = 0 in BR,

v = u on ∂BR.
(3.11)

The following comparison estimate is from [13, Lemma 5.3]. In fact, its proof
is valid for equations with x-dependence as well as in [74, Proposition 4.2].

Lemma 3.1.7. Let u ∈ W 1,G
0 (Ω) and v ∈ u+W 1,G

0 (BR) be the weak solutions
to (3.1) and (3.11), respectively, under assumptions (3.2) and (3.3). Then
for every ξ satisfying (3.7), we have the estimate∫

BR

[g(|Du−Dv|)]ξ dx ≤ c

[
|µ|(BR)

Rn−1

]ξ
for a constant c ≡ c(data, ξ).

Next, we find a global a priori estimate for (3.1). The idea is based on [13,
Lemma 5.3], and we only give a sketch of proof. See also [164, Remark 4.8].

Lemma 3.1.8. Let u ∈ W 1,G
0 (Ω) be the weak solution to (3.1) under assump-

tions (3.2) and (3.3). Then for every ξ satisfying (3.7),∫
Ω

[g(|Du|)]ξ dx ≤ c[|µ|(Ω)]ξ (3.12)

holds for a constant c ≡ c(data, |Ω|, ξ).
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Proof. By a proper normalization, we may assume that |µ|(Ω) = 1. We again
recall the auxiliary function fξ(·) given in (3.8), with ξ satisfying (3.7); note
that fξ(1) ≤ 1. Since g1 ≤ n− 1, we are always in the “slow growth case”∫ ∞( s

G(s)

) 1
n−1

ds =∞.

In order to apply the Sobolev embedding theorem, we modify fξ(·) as

fξ(t) :=


0 if t = 0,

fξ(1)t if t ∈ (0, 1),

fξ(t) if t ∈ [1,∞).

For k ∈ N, we recall the truncation operators Tk(·) and Tk(·), and define

Ck :=

{
x ∈ Ω :

|u(x)|
cS(n)F

≤ k

}
, Dk :=

{
x ∈ Ω : k <

|u(x)|
cS(n)F

≤ k + 1

}
.

By normalization once again, we also assume that

F :=

(∫
Ω

fξ(|Du|) dx
) 1

n

≥ 1.

Then we test (3.1) with

ϕ ≡ Tk

(
u

cS(n)F

)
∈ W 1,G

0 (Ω) ∩ L∞(Ω),

where cS(n) is the constant appearing in Lemma 2.2.1, to obtain∫
Ck

G(|Du|) dx ≤ cF
∫

Ω

A(x,Du) ·Dϕdx ≤ cF
∣∣∣∣∫

Ω

ϕdµ

∣∣∣∣ ≤ ckF (3.13)

for every k ∈ N, where c ≡ c(data, |Ω|). In a similar way, we also have∫
Dk

G(|Du|) dx ≤ cF .

Now, by a straightforward computation as in [13, Lemma 5.3], the function
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fξ◦G−1 is increasing and concave. Thus, Jensen’s inequality and (3.13) imply∫
Ck

fξ(|Du|) dx ≤ |Ck|(fξ ◦G−1)

(∫
Ck

G(|Du|) dx
)

≤ c|Ck|(fξ ◦G−1)

(
kF
|Ck|

)
= ckFH−1

ξ

(
|Ck|
kF

)
,

where

H−1
ξ (t) := t1−ξ

[
G−1

(
1

t

)]−ξ
≈ξ tfξ

(
G−1

(
1

t

))
.

Also, since ξ < n/(n − 1) ≤ (g1 + 1)/g1, a direct computation shows that
H−1
ξ (·) is increasing.

For the integrals over Dk, we have∫
Dk

fξ(|Du|) dx ≤ cFH−1
ξ

(
|Dk|
F

)
.

Thus, summing up all the integrals, we have∫
Ω

fξ(|Du|) dx ≤ cF

[
H−1
ξ

(
|Ω|
F

)
+
∞∑
k=1

H−1
ξ

(
|Dk|
F

)]
.

We denote the Sobolev conjugate function of fξ by (fξ)n := fξ ◦ H−1
n , where

Hn(·) is given by (2.2) with the choice Φ ≡ fξ. From the definition of Dk, it
follows that

|Dk| ≤
1

(fξ)n(k)

∫
Dk

(fξ)n

(
|u|

cS(n)F

)
dx.

Note that∫
0

(
s

fξ(s)

) 1
n−1

ds <∞ and

∫ ∞( s

fξ(s)

) 1
n−1

ds =∞.

Now, using Young’s inequality with ε ∈ (0, 1) to be chosen, we have

∞∑
k=1

H−1
ξ

(
|Dk|
F

)
≤

∞∑
k=1

H−1
ξ

(
1

F(fξ)n(k)

∫
Dk

(fξ)n

(
|u|

cS(n)F

)
dx

)
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≤ ε

F

∫
Ω

(fξ)n

(
|u|

cS(n)F

)
dx+ cε

∞∑
k=1

(
H−1
ξ ◦H

∗
ξ

)( 1

(fξ)n(k)

)
≤ ε

F

∫
Ω

fξ(|Du|) dx+ cε

∞∑
k=1

(
H−1
ξ ◦H

∗
ξ

)( 1

(fξ)n(k)

)
,

where we have also used Lemma 2.2.1. The last series in the right-hand side
can be estimated by using a similar argument as the one after [13, (5.40)].
Consequently, we have∫

Ω

fξ(|Du|) dx ≤ c̃FH−1
ξ

(
|Ω|
F

)
+ εc̃

∫
Ω

fξ(|Du|) dx+ cε

+ c(n, g0, g1, |Ω|, ε, ξ)F .

We then choose ε = 1/4c̃ to reabsorb the second term to the left-hand side.
For the first term, we recall the definition of H−1

ξ (·) and the fact that F ≥ 1
to discover

FH−1
ξ

(
|Ω|
F

)
≤ cF ξ[G−1(F)]−ξ ≤ cF ξ

(
1− 1

1+g1

)
= cF ξ

g1
1+g1 .

Since ξ < n/(n − 1) ≤ (g1 + 1)/g1, we have ξg1/(g1 + 1) < 1. Hence we use
once again Young’s inequality to complete the proof.

Remark 3.1.9. Consider a standard, symmetric and nonnegative mollifier
φ ∈ C∞0 (B1) satisfying ‖φ‖L1(Rn) = 1, and then define µk := µ∗φk for k ∈ N,
where φk(x) := knφ(kx). Then µk ∈ L∞(Ω), and we can find a unique weak
solution uk ∈ W 1,G

0 (Ω) to (3.4). Once we have established (3.12) for uk, the
compactness and truncation arguments in [28, 29] imply that there exists a
function u ∈ W 1,1

0 (Ω) such that

uk → u strongly in W 1,gξ

0 (Ω) for every ξ ∈
[
1,

n

n− 1

)
. (3.14)

In particular, as a consequence of (3.14), u solves (3.1) in the sense of Defi-
nition 3.1.1 and satisfies the global estimate (3.12) as well. This is a complete
generalization of [168, Theorem 3.1], which was previously mentioned in [13,
Section 7]. We also note that

|µk|(Ω) ≤ |µ|(Ω), ‖µk‖L1,θ(Ω) ≤ ‖µ‖L1,θ(Ω). (3.15)
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3.1.3 Proof of Theorem 3.1.2

We first establish a Morrey type decay estimate for (3.1).

Lemma 3.1.10. Let u ∈ W 1,G
0 (Ω) be the weak solution to (3.1) under as-

sumptions (3.2) and (3.3), and assume that (1.5) holds with g1 + 1 ≤ θ ≤ n.
Then for every ξ satisfying (3.7), there exists a constant c ≡ c(data, ξ) such
that the following inequality holds whenever Bρ ⊂ BR ⊂ Ω are concentric
balls:

ρξ(θ−1)

∫
Bρ

[g(|Du|)]ξ dx ≤ c

{
Rξ(θ−1)

∫
BR

[g(|Du|)]ξ dx+ ‖µ‖ξ
L1,θ(Ω)

}
.

(3.16)
Moreover, for every ball Bρ b Ω, we have

ρξ(θ−1)

∫
Bρ

[g(|Du|)]ξ dx ≤ c[|µ|(Ω) + ‖µ‖L1,θ(Ω)]
ξ (3.17)

for a constant c ≡ c(data, ξ, dist(Bρ, ∂Ω)).

Proof. Consider the weak solution v ∈ u + W 1,G
0 (BR) to (3.11). Applying

Lemmas 3.1.6 and 3.1.7, we have∫
Bρ

[g(|Du|)]ξ dx ≤ c

∫
Bρ

[g(|Dv|)]ξ dx+ c

∫
Bρ

[g(|Du−Dv|)]ξ dx

≤ c
( ρ
R

)n+ξg1(α−1)
∫
BR

[g(|Dv|)]ξ dx+ c

∫
BR

[g(|Du−Dv|)]ξ dx

≤ c
( ρ
R

)n+ξg1(α−1)
∫
BR

[g(|Du|)]ξ dx+ c‖µ‖ξ
L1,θ(Ω)

Rn−ξ(θ−1).

We then apply Lemma 2.3.11 with

Z(t) :=

∫
Bt

[g(|Du|)]ξ dx

and γ = n − ξ(θ − 1) < n + ξg1(α − 1), to obtain (3.16). Then we recall
Lemma 3.1.8 to obtain (3.17). This completes the proof.

With this above lemma in hand, we start the proof of Theorem 3.1.2,
based on the maximal function free technique developed in [168].
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Proof of Theorem 3.1.2. Step 1: Reduction to a priori estimates. We recall
that it is sufficient to prove (3.5) under assumption (3.10). Once we have
estimate (3.5) for weak solutions uk to approximating problems (3.4), the
limiting procedure in Remark 3.1.9, together with (3.15) and the lower semi-
continuity of ‖·‖Mθ/(θ−1) , give the desired estimate for a SOLA u.

Step 2: Rescaling. We first fix ξ and ξ1 satisfying

1 ≤ ξ < ξ1 <
n

n− 1

and depending only on n. For any open ball BR b Ω considered, we define

ū(y) :=
u(x0 +Ry)

HR
, Ā(y, z) :=

A(x0 +Ry,Hz)

g(H)
,

µ̄(y) := R
µ(x0 +Ry)

g(H)
, ḡ(t) :=

g(Ht)

g(H)

with the choice

H := g−1

[(∫
BR

[g(|Du|)]ξ1 dx
) 1

ξ1

]

+ g−1

(
R

∫
BR

|µ| dx
)

+ g−1
(
R1−θ‖µ‖L1,θ(Ω)

)
. (3.18)

We may assume H > 0, otherwise there is nothing to prove. Then Ā(·)
satisfies (3.2) with g(·) replaced by ḡ(·), and ū is a weak solution to

−div Ā(y,Dū) = µ̄ in B1.

Moreover, we have(∫
B1

[g(|Dū|)]ξ1 dy
) 1

ξ1

+ g−1

(∫
B1

|µ̄| dy
)
≤ 1 (3.19)

and
|µ̄|(Bρ) ≤ ρn−θ, ∀ Bρ ⊂ B1. (3.20)

From now on, we will drop the bar notation for the simplicity, recovering it
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only at the end of Step 6. Then (3.16) implies∫
Bρ

[g(|Du|)]ξ1 dx ≤ cρn−ξ1(θ−1) and

∫
Bρ

[g(|Du|)]ξ dx ≤ cρn−ξ(θ−1) (3.21)

whenever Bρ ⊂ B2/3, where c ≡ c(data).
Step 3: Calderón-Zygmund type decomposition. With a free parameter

M ≥ 1, whose value will be determined later in the proof, we define a set
function CZ(·) as

CZ(S) := g−1

[(∫
S

[g(|Du|)]ξ dx
) 1

ξ

]
+ g−1

[(
M

∫
S

|µ| dx
) θ−1

θ

]

for each measurable subset S ⊂ Ω with 0 < |S| <∞. We next fix 1/2 ≤ t <
ρ ≤ 2/3 and denote

Et
λ := {x ∈ Bt : |Du(x)| > λ}, Eρ

λ := {x ∈ Bρ : |Du(x)| > λ}

for λ ≥ 0 and concentric balls Bt ⊂ Bρ ⊂ B2/3. We now set

λ0 := CZ(B2/3), (3.22)

and from now on, we consider λ large enough to have

λ ≥ 8n(ρ− t)−n/ξg0λ0 =: λ1 (3.23)

and fix any x0 ∈ Et
8λ. Observe that B(x0, ρ− t) ⊂ Bρ ⊂ B2/3, which implies

CZ(B(x0, ρ− t)) ≤ 8n(ρ− t)−n/ξg0CZ(B2/3) = λ1 ≤ λ. (3.24)

We then define the exit time index by

i(x0) := min{i ∈ N : CZ(B(x0, 2
−i(ρ− t))) ≥ 8λ}.

By Lebesgue’s differentiation theorem, we have 1 ≤ i(x0) < ∞ for a.e. x0 ∈
Et

8λ, and the family {B(x0, 2
−i(x0)(ρ − t)) : x0 ∈ Et

8λ} covers Et
8λ up to a

negligible set. We then apply the Besicovitch covering theorem to extract
a finite number Q(n) of possibly countable subfamilies of mutually disjoint
balls {Bj}1≤j≤Q(n), Bj ≡ {Bj

i }i, whose union covers Et
8λ up to a negligible set.
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Renaming all these balls, we have a possibly countable family {Bk}k. Here,
since i(x0) ≥ 1 for a.e. x0 ∈ Et

8λ, the radius of Bk does not exceed (ρ− t)/2.
Then 2Bk ⊂ Bρ, since the center of Bk is in Bt. Summarizing, we have

Et
8λ ⊂

⋃
k

Bk ∪ negligible set,
∑
k

|Eρ
λ ∩Bk| ≤ Q(n)|Eρ

λ|, 2Bk ⊂ Bρ, (3.25)

8λ ≤ CZ(Bk) and CZ(2Bk) < 8λ (3.26)

for every k ∈ N.
We next denote by Rk the radius of Bk. Then (3.19)-(3.21) imply

CZ(Bk) ≤ cg−1
(
R
−(θ−1)
k

)
,

and moreover, (3.26) implies

Rk ≤ c[g(λ)]−
1
θ−1 . (3.27)

Step 4: A density estimate. Here we single out a generic ball Bk and
observe that, by (3.26), one of the following inequalities must hold:

g(4λ) ≤
(∫

Bk

[g(|Du|)]ξ dx
) 1

ξ

or g(4λ) ≤
(
M

∫
Bk

|µ| dx
) θ−1

θ

. (3.28)

Let us first consider the case (3.28)1. Using Hölder’s inequality, we have

[g(4λ)]ξ|Bk| ≤
∫
Bk

[g(|Du|)]ξ dx

≤ [g(λ)]ξ|Bk \ Eρ
λ|+

∫
Eρλ∩Bk

[g(|Du|)]ξ dx

≤ [g(λ)]ξ|Bk \ Eρ
λ|+ |E

ρ
λ ∩Bk|1−

ξ
ξ1

(∫
Eρλ∩Bk

[g(|Du|)]ξ1 dx

) ξ
ξ1

.

By a straightforward manipulation, it follows that

2 ≤
[
g(4λ)

g(λ)

]ξ
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≤ |Bk \ Eρ
λ|

|Bk|
+

[
|Eρ

λ ∩Bk|
|Bk|

]1− ξ
ξ1 1

[g(λ)]ξ

(∫
Bk

[g(|Du|)]ξ1 dx
) ξ

ξ1

. (3.29)

To estimate the last integral, we define vk ∈ u + W 1,G
0 (2Bk) to be the weak

solution to {
−divA(x,Dvk) = 0 in 2Bk,

vk = u on ∂(2Bk).

Triangle inequality gives∫
Bk

[g(|Du|)]ξ1 dx ≤ c

∫
Bk

[g(|Du−Dvk|)]ξ1 dx+ c

∫
Bk

[g(|Dvk|)]ξ1 dx. (3.30)

Using Lemma 3.1.7 and (1.5), we find∫
2Bk

[g(|Du−Dvk|)]ξ1 dx ≤ c[|µ|(2Bk)]
ξ1Rn−ξ1(n−1)

≤ c[|µ|(2Bk)]R
n−ξ1(n−1)+(n−θ)(ξ1−1)
k ,

which leads to∫
2Bk

[g(|Du−Dvk|)]ξ1 dx ≤ cR
θ−ξ1(θ−1)
k

∫
2Bk

|µ| dx

(3.27)

≤ c[g(λ)]−
θ
θ−1

+ξ1

∫
2Bk

|µ| dx

(3.26)

≤ c[g(λ)]ξ1 , (3.31)

where we have used the facts that M ≥ 1 and θ − ξ1(θ − 1) > 0.
Likewise, we find∫

2Bk

[g(|Du−Dvk|)]ξ dx ≤ cR
θ−ξ(θ−1)
k

∫
2Bk

|µ| dx

≤ c[g(λ)]−
θ
θ−1

+ξ

∫
2Bk

|µ| dx

≤ c[g(λ)]ξ. (3.32)
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At this point, we apply Lemma 3.1.5 to vk in order to discover

G−1

[(∫
Bk

[G(|Dvk|)]χ dx
) 1

χ

]
≤ c

∫
2Bk

|Dvk| dx.

Now, using the auxiliary function as in Lemma 3.1.6 and applying Jensen’s
inequality, it follows that

G−1

[(∫
Bk

[G(|Dvk|)]χ dx
) 1

χ

]
+ g−1

[(∫
Bk

[g(|Dvk|)]ξ1 dx
) 1

ξ1

]

≤ cg−1

[(∫
2Bk

[g(|Dvk|)]ξ dx
) 1

ξ

]
. (3.33)

We then observe that (3.26) and (3.32) imply∫
2Bk

[g(|Dvk|)]ξ dx ≤ c

∫
2Bk

[g(|Du−Dvk|)]ξ dx+ c

∫
2Bk

[g(|Du|)]ξ dx

≤ c[g(λ)]ξ. (3.34)

Using (3.34) and (3.33), we have∫
2Bk

[g(|Dvk|)]ξ1 dx ≤ c[g(λ)]ξ1 . (3.35)

But then, we connect (3.31) and (3.35) to (3.30) to obtain∫
Bk

[g(|Du|)]ξ1 dx ≤ c[g(λ)]ξ1 .

Plugging this estimate into (3.29), we have

2 ≤ |Bk \ Eρ
λ|

|Bk|
+ c1

[
|Eρ

λ ∩Bk|
|Bk|

]1− ξ
ξ1

,

which in turn implies

|Eρ
λ ∩Bk|
|Bk|

≥
(

1

c1

) ξ1
ξ1−ξ

> 0.
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Therefore, taking into account the case (3.28)2 as well, we conclude with the
density estimate

|2Bk| = 2n|Bk| ≤ c|Eρ
λ ∩Bk|+

cM [|µ|(Bk)]

[g(λ)]
θ
θ−1

. (3.36)

Step 5: Estimates on balls. We take another parameter H ≥ 8, whose
value will be chosen later, so that we have

|Et
Hλ| ≤

∑
|Et

Hλ ∩Bk|. (3.37)

We split each term in the following way:

|Et
Hλ ∩Bk| ≤ |{x ∈ Bk : |Du(x)| > Hλ}|

≤ |{x ∈ Bk : |Du(x)−Dvk(x)| > Hλ/2}|
+ |{x ∈ Bk : |Dvk(x)| > Hλ/2}|

=: Ik + IIk. (3.38)

We estimate Ik as

Ik ≤
c

[g(Hλ)]ξ

∫
Bk

[g(|Du−Dvk|)]ξ dx

(3.32)

≤ c

[
g(λ)

g(Hλ)

]ξ
[|µ|(2Bk)]

[g(λ)]
θ
θ−1

(3.26)

≤ c

[
g(λ)

g(Hλ)

]ξ |2Bk|
M

.

As for IIk, we have

IIk ≤
c

[G(Hλ)]χ

∫
Bk

[G(|Dvk|)]χ dx

(3.33)

≤ c|2Bk|
[G(Hλ)]χ

{
(G ◦ g−1)

[(∫
2Bk

[g(|Dvk|)]ξ dx
) 1

ξ

]}χ

(3.34)

≤ c

[
G(λ)

G(Hλ)

]χ
|2Bk|.
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Combining the above two estimates with (3.38), and using (3.36), we see that

|Et
Hλ ∩Bk| ≤ c∗

{[
G(λ)

G(Hλ)

]χ
+

1

M

[
g(λ)

g(Hλ)

]ξ}
|Eρ

λ ∩Bk|+
cM [|µ|(Bk)]

[g(λ)]
θ
θ−1

holds for a constant c∗ ≡ c∗(data). Summing up on k and using (3.37) and
(3.25), we have

|Et
Hλ| ≤ c∗Q(n)

{[
G(λ)

G(Hλ)

]χ
+

1

M

[
g(λ)

g(Hλ)

]ξ}
|Eρ

λ|+
cM [|µ|(B1)]

[g(λ)]
θ
θ−1

. (3.39)

We notice that the parameters M and H are still free; we will determine
their values in the next step.

Step 6: Iteration. We define the level function l(·, ·) as

l(λ, γ) := [g(λ)]
θ
θ−1 |Eγ

λ | for every γ ∈ [1/2, 2/3] and λ > 0.

Then (3.39) becomes

l(Hλ, t) ≤ c∗Q(n)

{[
G(λ)

G(Hλ)

]χ
+

1

M

[
g(λ)

g(Hλ)

]ξ}[
g(Hλ)

g(λ)

] θ
θ−1

l(λ, ρ)

+ c

[
g(Hλ)

g(λ)

] θ
θ−1

M

≤ c∗Q(n)

{[
G(λ)

G(Hλ)

]χ
+

1

M

[
g(λ)

g(Hλ)

]ξ}[
g(Hλ)

g(λ)

] θ
θ−1

l(λ, ρ)

+ cH
θg1
θ−1M.

We now observe[
G(λ)

G(Hλ)

]χ [
g(Hλ)

g(λ)

] θ
θ−1

≤ cH−
θ
θ−1

[
G(λ)

G(Hλ)

]χ− θ
θ−1

and consider the following two cases.
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(i) If χ ≥ θ/(θ − 1), then we have[
G(λ)

G(Hλ)

]χ [
g(Hλ)

g(λ)

] θ
θ−1

≤ cH−
θ
θ−1 .

(ii) If χ < θ/(θ − 1), then we have[
G(λ)

G(Hλ)

]χ [
g(Hλ)

g(λ)

] θ
θ−1

≤ c[G(λ)]χ−
θ
θ−1H−

θ
θ−1 [G(Hλ)]

θ
θ−1
−χ

≤ cH(g1+1)( θ
θ−1
−χ)− θ

θ−1 [G(λ)]χ−
θ
θ−1 .

Since g1 + 1 ≤ θ, it follows that

θ

θ − 1
≤ g1 + 1

g1

<
g1 + 1

g1

χ =⇒ (g1 + 1)

(
θ

θ − 1
− χ

)
<

θ

θ − 1
.

Therefore, in any case, we have

lim
H→∞

[
G(λ)

G(Hλ)

]χ [
g(Hλ)

g(λ)

] θ
θ−1

= 0.

Now we take H ≡ H(data) so large that

c∗Q(n)

[
G(λ)

G(Hλ)

]χ [
g(Hλ)

g(λ)

] θ
θ−1

≤ 1

4
,

and then we finally choose M ≡M(data) large enough to have

c∗Q(n)

M

[
g(Hλ)

g(λ)

] θ
θ−1
−ξ

≤ 1

4
.

Hence we arrive at

l(Hλ, t) ≤ 1

2
l(λ, ρ) + c(data)

whenever λ ≥ λ1, where λ1 was defined in (3.23). Recalling (2.7), we have

sup
λ≥Hλ1

l(λ, t) ≤ 1

2
‖g(|Du|)‖θ/(θ−1)

Mθ/(θ−1)(Bρ)
+ c.
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Considering also the case λ < Hλ1, with (3.22)-(3.24), we discover

‖g(|Du|)‖θ/(θ−1)

Mθ/(θ−1)(Bt)
≤ 1

2
‖g(|Du|)‖θ/(θ−1)

Mθ/(θ−1)(Bρ)
+
c[g(Hλ0)]

θ
θ−1

(ρ− t)n/ξ
+ c.

Note that we are assuming (3.10). Then, since θ/(θ − 1) ≤ g1/(g1 + 1), it
follows that

‖g(|Du|)‖Mθ/(θ−1)(B1) <∞.

We then apply Lemma 2.3.12 with

Z(t) := ‖g(|Du|)‖Mθ/(θ−1)(Bt)

and 1/2 ≤ t < ρ ≤ 2/3, and use (3.19) and (3.22) to finally obtain

‖g(|Dū|)‖θ/(θ−1)

Mθ/(θ−1)(B1/2)
≤ c(data), (3.40)

where we have recovered the bar notation introduced in Step 1.
Step 7: Scaling back. We now consider the case of a general ball BR.

Scaling back, (3.40) becomes

‖g(|Du|)‖θ/(θ−1)

Mθ/(θ−1)(BR/2)
≤ cRn[g(H)]

θ
θ−1 .

Recalling (3.18), and then using (3.17) and (1.5), we obtain

[g(H)]
θ
θ−1 ≤ c

[(∫
BR

[g(|Du|)]ξ1 dx
) 1

ξ1

] θ
θ−1

+ c

(
R

∫
BR

|µ| dx
) θ

θ−1

+ cR−θ‖µ‖
θ
θ−1

L1,θ(Ω)

≤ cR−θ[|µ|(Ω) + ‖µ‖L1,θ(Ω)]
θ
θ−1 ,

where c ≡ c(data, dist(BR, ∂Ω). Combining the last two displays and replac-
ing the arbitrarily given R by 2R, we obtain the desired estimate (3.5).
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3.2 Fractional differentiability for elliptic mea-

sure data problems with double phase in

the borderline case

3.2.1 Main results

We consider the following Dirichlet problem:{
−divA(x,Du) = µ in Ω,

u = 0 on ∂Ω,
(3.41)

where µ ∈ Mb(Ω). The vector field A : Ω × Rn → Rn is assumed to be C1-
regular in the second variable, with ∂A(x, z) = ∂zA(x, z) being Carathéodory
regular. It also satisfies the following growth, ellipticity and continuity as-
sumptions:
|A(x, z)|+ |∂A(x, z)||z| ≤ L

[
|z|p−1 + a(x)|z|p−1 log(e+ |z|)

]
,

ν
[
|z|p−2 + a(x)|z|p−2 log(e+ |z|)

]
|ξ|2 ≤ ∂A(x, z)ξ · ξ,

|A(x, z)− A(y, z)| ≤ Lωa(|x− y|)|z|p−1 log(e+ |z|)
(3.42)

for every z, ξ ∈ Rn and x, y ∈ Ω, and for some constants 0 < ν ≤ L < ∞
and 2 ≤ p ≤ n. Here, the modulating coefficient a : Ω→ [0,∞) admits ωa as
its modulus of continuity, i.e.,

ωa(ρ) := sup{|a(x)− a(y)| : x, y ∈ Ω, |x− y| ≤ ρ}.

We further assume the Lipschitz continuity on a(·):

ωa(ρ) ≤ ρ. (3.43)

We define two functions G, g : Ω× [0,∞)→ R by

G(x, t) := tp + a(x)tp log(e+ t),

g(x, t) := tp−1 + a(x)tp−1 log(e+ t).
(3.44)

Then the Musielak-Orlicz spaces W 1,G(Ω) and W 1,g(Ω) are where a weak
solution and a very weak solution belong to, respectively.
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Definition 3.2.1. A function u ∈ W 1,1
0 (Ω) is a SOLA to (3.41) under as-

sumptions (3.42) if A(·, Du) ∈ L1(Ω;Rn),∫
Ω

A(x,Du) ·Dϕdx =

∫
Ω

ϕdµ ∀ ϕ ∈ C∞0 (Ω),

and moreover there exists a sequence of weak solutions {uk} ⊂ W 1,G
0 (Ω) to

the problems {
−divA(x,Duk) = µk in Ω,

uk = 0 on ∂Ω

such that uk → u in W 1,g
0 (Ω), and the sequence {µk} ⊂ L∞(Ω) converges to

µ weakly* in the sense of measures and satisfies

lim sup
k→∞

|µk|(B) ≤ |µ|(B̄)

for every ball B ⊂ Rn.

The existence of a SOLA to (3.41) was proved in [62]. Moreover, with the
sequence {µk} defined as above, it holds that

uk → u in W 1,q
0 (Ω) ∀ q < n(p− 1)

n− 1
. (3.45)

Now, defining

V (x,Du) := (|Du|p−2 + a(x)|Du|p−2 log(e+ |Du|))
1
2Du (3.46)

and denoting data := (n, p, ν, L), we state our main result:

Theorem 3.2.2. Let u ∈ W 1,g
0 (Ω) be a SOLA to the problem (3.41) under

assumptions (3.42) and (3.43). Then we have

V (·, Du) ∈ W
p−ε

2(p−1)
,
2(p−1)
p

loc (Ω;Rn) ∀ ε ∈ (0, 1). (3.47)

Moreover, for any open subset Ω′ b Ω, we have∫
Ω′

∫
Ω′

|V (x,Du(x))− V (y,Du(y))|2(p−1)/p

|x− y|n+1−ε dx dy ≤ c|µ|(Ω), (3.48)

where c ≡ c(data, dist(Ω′, ∂Ω),Ω, ε).
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In light of the discussion in [164, Section 11.2], the result in Theorem 3.2.2
is optimal in the sense that we cannot allow ε = 0 in (3.47).

3.2.2 Preliminaries

Here, we remark some properties of the functions g(·) and G(·) in (3.44) for
p ≥ 2, see [41, 62] for the proofs. A direct calculation yields

∂G

∂t
(x, t) ≈ g(x, t); G(x, t) ≈

∫ t

0

g(x, s) ds

for every x ∈ Ω and t ≥ 0. Furthermore, there holds

p ≤ t∂tG(x, t)

G(x, t)
≤ p+ 1 and p− 1 ≤ t∂2

tG(x, t)

∂tG(x, t)
≤ p− 1

4

for every t > 0 and x ∈ Ω; in particular, the map t 7→ g(x, t)/t is increasing
for a.e. x ∈ Ω. We also have

tp ≤ G(x, t). (3.49)

For a point x0, we denote a0 := a(x0) and

g0(t) := tp−1 + a0t
p−1 log(e+ t), G0(t) := tp + a0t

p log(e+ t).

Then both g0 and G0 are N -functions. We recall the following result from
[97, Lemma 20].

Lemma 3.2.3. Let ξ and η be two vectors in Rn with |ξ| + |η| > 0. Then
there holds ∫ 1

0

g′0(|(1− t)ξ + tη|) dt ≈ g′0(|ξ|+ |η|).

We next recall a property of the vector field V (·) defined in (3.46) related
to the monotonocity of A(·). Namely,

|V (x, z1)− V (x, z2)|2 ≈ g(x, |z1|+ |z2|)
|z1|+ |z2|

|z1 − z2|2

. (A(x, z1)− A(x, z2)) · (z1 − z2)

55



CHAPTER 3. ELLIPTIC AND PARABOLIC EQUATIONS WITH
MEASURE DATA

holds for any x ∈ Ω and z1, z2 ∈ Rn, see [97, Lemma 3]. Moreover, since
t 7→ g(x, t)/t is increasing for a.e. x ∈ Ω, we have

G(x, |z1 − z2|) =
g(x, |z1 − z2|)
|z1 − z2|

|z1 − z2|2

≤ g(x, |z1|+ |z2|)
|z1|+ |z2|

|z1 − z2|2 . |V (x, z1)− V (x, z2)|2. (3.50)

3.2.3 Regularity for homogeneous problems

In this section, we obtain a differentiability result for the limiting equation,
which is an extension of Lemma 2.3.8.

Lemma 3.2.4. Under assumptions (3.42), let v ∈ W 1,G0

loc (Ω) be a weak solu-
tion to

− divA(x0, Dv) = 0 in Ω. (3.51)

Then V (x0, Dv) ∈ W 1,2
loc (Ω;Rn). Moreover, for every number t ∈ (0, 1] there

exists a positive constant c ≡ c(data, t) such that∫
BR/2

|D(V (x0, Dv))|2t dx ≤ c

R2t

∫
BR

|V (x0, Dv)− z0|2t dx (3.52)

for every z0 ∈ Rn and every ball BR b Ω.

Proof. Step 1: A preliminary estimate. Let BR b Ω be a fixed ball. We first
establish a classical differentiability estimate under the present assumption:∫

BR/2

|D(V (x0, Dv))|2 dx ≤ c

R2

∫
B3R/4

|V (x0, Dv)− z0|2 dx, (3.53)

where c ≡ c(data). This is (3.52) in the case t = 1. The differentiability of
V (x0, Dv) was already proved in [97], but estimate (3.53) was obtained only
in the case z0 = 0. In order to consider the general case with any choice of
z0, we follow the proof of [69, Theorem 1.I]; see also [121, Theorem 4.1].

We choose a cut-off function φ ∈ C∞0 (B5R/8) satisfying 0 ≤ φ ≤ 1 in
B5R/8, φ ≡ 1 in BR/2, and |Dφ| ≤ 16/R. Moreover, we fix i ∈ {1, . . . , n},
h ∈ R satisfying 0 < |h| ≤ min{R, dist(BR, ∂Ω)}/100, and any affine function
P : Ω → R. In the following, with {ei}1≤i≤n denoting the standard basis of
Rn, we simply denote τheif ≡ τi,hf.
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Testing (3.51) with ϕ ≡ τi,−h(φ
2τi,h(v − P )) ∈ W 1,G0

0 (Ω), we have∫
Ω

τi,h(A(x0, Dv)) ·D(φ2τi,h(u− P )) dx = 0, (3.54)

where D(φ2τi,h(v − P )) = φ2τi,hDv + 2φDφ(τi,h(v − P )). Note that the C1-
vector field

Ã(z) :=

∫ 1

0

A(x0, z + tτi,hDv) dt

satisfies

∂Ã(z) =

∫ 1

0

∂A(x0, z + tτi,hDv) dt

and so
τi,h(A(x0, Dv)) = ∂Ã(Dv) · τi,hDv.

Using this, (3.54) becomes

I1 :=

∫
B5R/8

∂Ã(Dv)τi,hDv · φ2τi,hDv dx

= −2

∫
B5R/8

∂Ã(Dv)τi,hDv · φDφτi,h(v − P ) dx =: I2. (3.55)

We then apply Lemma 3.2.3 and assumptions (3.42) with x = x0 to estimate

|I2| ≤ c

∫
B5R/8

|∂Ã(Dv)||τi,hDv|φ|Dφ||τi,h(u− P )| dx

≤ c

R

∫
B5R/8

φg′0(|Dv|+ |τi,hDv|)|τi,hDv||τi,h(v − P )| dx

and

I1 ≥ c

∫
B5R/8

φ2g′0(|Dv|+ |τi,hDv|)|τi,hDv|2 dx.

Connecting the last two displays to (3.55) gives∫
B5R/8

φ2g′0(|Dv|+ |τi,hDv|)|τi,hDv|2 dx

≤ c

R

∫
B5R/8

φg′0(|Dv|+ |τi,hDv|)|τi,hDv||τi,h(v − P )| dx

57



CHAPTER 3. ELLIPTIC AND PARABOLIC EQUATIONS WITH
MEASURE DATA

≤ 1

2

∫
B5R/8

φ2g′0(|Dv|+ |τi,hDv|)|τi,hDv|2 dx

+
c

R2

∫
B5R/8

g′0(|Dv|+ |τi,hDv|)|τi,h(v − P )|2 dx,

where we have also used Young’s inequality. Consequently, we arrive at∫
BR/2

g′0(|Dv|+ |τi,hDv|)|τi,hDv|2 dx

≤ c

R2

∫
B5R/8

g′0(|Dv|+ |τi,hDv|)|τi,h(v − P )|2 dx,

which further implies∫
BR/2

∣∣∣∣τi,h(V (x0, Dv))

h

∣∣∣∣2 dx
≤ c

∫
BR/2

g′0(|Dv(·+ hei)|+ |Dv|)|τi,hDv|2

|h|2
dx

≤ c

∫
BR/2

g′0(|Dv|+ |τi,hDv|)|τi,hDv|2

|h|2
dx

≤ c

R2

∫
B5R/8

g′0(|Dv|+ |τi,hDv|)
∣∣∣∣τi,h(v − P )

h

∣∣∣∣2 dx
≤ c

R2

∫
B5R/8

g′0(|Dv|)
∣∣∣∣τi,h(v − P )

h

∣∣∣∣2 dx
+

c

R2

∫
B5R/8

g′0(|Dv(·+ hei)|)
∣∣∣∣τi,h(v − P )

h

∣∣∣∣2 dx
≤ c

R2

∫
B3R/4

g′0(|Dv|)
∣∣∣∣τi,h(v − P )

h

∣∣∣∣2 dx
+

c

R2

∫
B3R/4

g′0(|Dv|)
∣∣∣∣τi,−h(v − P )

h

∣∣∣∣2 dx.
Since v is locally Lipschitz (see [13, Lemma 4.1] and [157, Lemma 5.1]), we
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have

g′0(|Dv(x)|)
∣∣∣∣τi,±h(v − P )(x)

h

∣∣∣∣2 = g′0(|Dv(x)|)
∣∣∣∣∫ 1

0

Di(v − P )(x± thei) dt
∣∣∣∣2

≤ g′0(|Dv(x)|)
∫ 1

0

|Di(v − P )(x± thei)|2 dt

. g′0(|Dv(x)|)
(

sup
BR

|Dv|2 + |DP |2
)

and

g′0(|Dv(x)|)
∣∣∣∣τi,±h(v − P )(x)

h

∣∣∣∣2 → g′0(|Dv(x)|)|Di(v − P )(x)|2 as h→ 0

for a.e. x ∈ B3R/4. Thus, the dominated convergence theorem implies∫
B3R/4

g′0(|Dv|)
∣∣∣∣τi,±h(v − P )

h

∣∣∣∣2 dx→ ∫
B3R/4

g′0(|Dv|)|Di(v−P )|2 dx as h→ 0,

In turn, for every h as above we have∫
BR/2

∣∣∣∣τi,h(V (x0, Dv))

h

∣∣∣∣2 dx ≤ c

R2

∫
B3R/4

g′0(|Dv|)|Di(v − P )|2 dx.

Therefore, it follows that V (x0, Dv) ∈ W 1,2
loc (Ω;Rn) with the estimate∫

BR/2

|Di(V (x0, Dv))|2 dx ≤ c

R2

∫
B3R/4

g′0(|Dv|)|Di(v − P )|2 dx.

Hence, summing up these inequalities for all i ∈ {1, . . . , n}, we conclude with∫
BR/2

|D(V (x0, Dv))|2 dx ≤ c

R2

∫
B3R/4

g′0(|Dv|)|D(v − P )|2 dx

≤ c

R2

∫
B3R/4

|V (x0, Dv)− V (x0, DP )|2 dx.

Since V (x0, ·) is bijective, we can choose the vector DP ∈ Rn so that
V (x0, DP ) = z0. Then (3.53) follows.
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Step 2: Estimates below the natural growth exponent. Next, we follow the
proof of [168, Theorem 9.1]. The Sobolev embedding theorem gives(∫

BR/2

|V (x0, Dv)− z0|2χ dx

) 1
χ

≤ c

∫
BR/2

|V (x0, Dv)− z0|2 dx+ cR2

∫
BR/2

|D(V (x0, Dv))|2 dx,

where χ = n/(n−2) if n > 2 and χ is any number larger than 1 when n = 2.
Matching the last two estimates now gives the reverse Hölder inequality(∫

BR/2

|V (x0, Dv)− z0|2χ dx

) 1
χ

≤ c

∫
B3R/4

|V (x0, Dv)− z0|2 dx.

By applying the self-improving property of reverse Hölder inequalities (see
[118, Remark 6.12]), we get(∫

B3R/4

|V (x0, Dv)− z0|2χ dx

) 1
2χ

≤ c

(∫
BR

|V (x0, Dv)− z0|2t dx
) 1

2t

.

At this point, (3.52) follow from the last estimate together with (3.53) and
Hölder’s inequality:∫

BR/2

|D(V (x0, Dv))|2t dx ≤

(∫
BR/2

|D(V (x0, Dv))|2 dx

)t

≤ c

(
1

R2

∫
B3R/4

|V (x0, Dv)− z0|2 dx

)t

≤ c

R2t

∫
BR

|V (x0, Dv)− z0|2t dx.

Remark 3.2.5. The above lemma continues to hold if g0 ∈ C1(0,∞) is any
function satisfying

1 ≤ tg′0(t)

g0(t)
≤ g2 <∞

and V (x0, z) is replaced by Vg0(z) := (g0(|z|)/|z|)1/2z.
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3.2.4 Comparison estimates

In this section, we establish several comparison estimates between (3.41) and
the reference problems. To do this, we additionally assume that

µ ∈ L∞(Ω), u ∈ W 1,G
0 (Ω). (3.56)

This assumption will be removed in Section 3.2.5.
We consider the homogeneous problem{

−divA(x,Dw) = 0 in B2R,

w = u on ∂B2R.
(3.57)

In order to obtain several estimates suitable in the setting of measure
data problems, we assume that there exists a positive radius

R1 ≡ R1(L, |µ|(Ω), ‖Du‖L1(Ω)) ≤
1

|µ|(Ω) + ‖Du‖L1(Ω) + 1

such that

r log
1

r
≤ 1

16npL
for every 0 < r ≤ R1.

In the following, we always assume that every ball has radius less than R1.
Let us first recall a higher integrability result for (3.57). Note that in

[62, Lemma 3.5], the restriction R ≤ R1 plays a crucial role in establishing
estimates suitable in the setting of measure data problems.

Lemma 3.2.6. Let w ∈ u+W 1,G
0 (B2R) be the weak solution to (3.57) under

assumptions (3.42). Then there exists σ0 ≡ σ0(data) such that for any θ ∈
(0, 1), σ ∈ [0, σ0] and t ∈ (0, 1], there holds(∫

Bθρ

[G(x, |Dw|)]1+σ dx

) 1
1+σ

≤ c

(∫
Bρ

[G(x, |Dw|)]t dx

) 1
t

(3.58)

for a constant c ≡ c(data, θ, t), whenever Bρ ⊂ B2R.

We now establish comparison estimates. The first one is between (3.41)
and (3.57).

61



CHAPTER 3. ELLIPTIC AND PARABOLIC EQUATIONS WITH
MEASURE DATA

Lemma 3.2.7. Let u ∈ W 1,G
0 (Ω) and w ∈ u + W 1,G

0 (B2R) be the weak solu-
tions to (3.41) and (3.57), respectively, under assumptions (3.42). Then we
have the estimate∫

B2R

(
|Du−Dw|q + |V (x,Du)− V (x,Dw)|

2q
p

)
dx ≤ c

[
|µ|(B2R)

(2R)n−1

] q
p−1

(3.59)
for a constant c ≡ c(data, q), whenever

1 ≤ q <
n(p− 1)

n− 1
. (3.60)

Proof. We first recall the following estimate obtained in [62, Lemma 3.4]:∫
B2R

|V (x,Du)− V (x,Dw)|2

(h+ |u− w|)ξ
dx ≤ c

h1−ξ

ξ − 1
|µ|(B2R) (3.61)

for a constant c ≡ c(data), whenever h > 0 and ξ > 1.
Since q satisfies (3.60), we can choose ξ = n(p− q)/(n− q) > 1 so that

ξq

p− q
=

nq

n− q
= q∗. (3.62)

We are now going to apply (3.61) with this choice of ξ and

h =

(∫
B2R

|u− w|q∗ dx
) 1

q∗

≤ cR

(∫
B2R

|Du−Dw|q dx
) 1

q

.

We may assume h > 0, otherwise u ≡ w in BR and the lemma follows
trivially. Then we have∫

B2R

|V (x,Du)− V (x,Dw)|
2q
p dx

=

∫
B2R

(
|V (x,Du)− V (x,Dw)|2

(h+ |u− w|)ξ

) q
p

(h+ |u− w|)
ξq
p dx

≤
(∫

B2R

|V (x,Du)− V (x,Dw)|2

(h+ |u− w|)ξ
dx

) q
p
(∫

B2R

(h+ |u− w|)q∗ dx
) p−q

p
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≤ c

(
|µ|(B2R)

Rn
h1−ξ

) q
p

h
ξq
p

≤ c

[
|µ|(B2R)

(2R)n−1

] q
p
(∫

B2R

|Du−Dw|q dx
) 1

p

. (3.63)

We observe that (3.49) and (3.50) imply

|Du−Dw|p . G(x, |Du−Dw|) . |V (x,Du)− V (x,Dw)|2

and so
|Du−Dw|q .q |V (x,Du)− V (x,Dw)|

2q
p . (3.64)

Putting this into (3.63) and then using Young’s inequality, we have∫
B2R

|V (x,Du)− V (x,Dw)|
2q
p dx

≤ c

[
|µ|(B2R)|
(2R)n−1

] q
p
(∫

B2R

|V (x,Du)− V (x,Dw)|
2q
p dx

) 1
p

≤ c

[
|µ|(B2R)|
(2R)n−1

] q
p−1

+
1

2

∫
B2R

|V (x,Du)− V (x,Dw)|
2q
p dx.

This and (3.64) complete the proof.

With the same ball B2R ≡ B2R(x0) as before, let v ∈ W 1,G0

0 (BR) be the
unique weak solution to{

−divA(x0, Dv) = 0 in BR,

v = w on ∂BR.
(3.65)

Lemma 3.2.8. Let w ∈ u + W 1,G
0 (B2R) and v ∈ w + W 1,G0

0 (BR) be the
weak solutions to (3.57) and (3.65), respectively, under assumptions (3.42)
and (3.43). Then for each q satisfying (3.60), there exists a constant c ≡
c(data, q) such that∫

BR

|V (x,Dw)− V (x0, Dv)|
2q
p dx ≤ c

(
R log

1

R

) 2q
p
∫
B2R

[G(x, |Dw|)]
q
pdx.

(3.66)
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Proof. As in the proof of [62, Lemma 3.6], we have∫
BR

|V (x0, Dw)− V (x0, Dv)|2 dx ≤ cR2

∫
B5R/4

G(x, |Dw|) dx

≤ cR2

(∫
B2R

[G(x, |Dw|)]
q
p dx

) p
q

, (3.67)

where we have also used (3.58). Now we use the mean value theorem to have

|V (x, z)− V (x0, z)| =
∣∣g(x, |z|)1/2 − g(x0, |z|)1/2

∣∣ |z|1/2 . R|z|p/2 log(e+ |z|).

We estimate exactly as in [62, (3.20)-(3.23)], with the help of (2.3), and then
apply Lemma 3.2.6 in order to get∫

BR

|V (x,Dw)− V (x0, Dw)|2 dx

≤ cR2

∫
BR

|Dw|p log2(e+ |Dw|) dx

≤ cR2

∫
B5R/4

G(x, |Dw|) dx+ cR2 log2 1

R

∫
B5R/4

G(x, |Dw|) dx

≤ cR2 log2 1

R

∫
B5R/4

G(x, |Dw|) dx

≤ cR2 log2 1

R

(∫
B2R

[G(x, |Dw|)]
q
p dx

) p
q

.

Combining this inequality with (3.67) and then applying Hölder’s inequality,
(3.66) follows.

From Lemmas 3.2.7 and 3.2.8, we have the following comparison estimate
between (3.41) and (3.65).

Lemma 3.2.9. Let u and v be as in (3.41) and (3.65), respectively, under
assumptions (3.42) and (3.43). Then the estimate∫

BR

|V (x,Du)− V (x0, Dv)|
2q
p dx

≤ c

[
|µ|(B2R)

(2R)n−1

] q
p−1

+ c

(
R log

1

R

) 2q
p
∫
B2R

[G(x, |Du|)]
q
pdx
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holds for a constant c ≡ c(data, q), whenever q satisfies (3.60).

Proof. We first observe that∫
B2R

[G(x, |Dw|)]
q
p dx =

∫
B2R

|V (x,Dw)|
2q
p dx

≤ c

∫
B2R

|V (x,Du)|
2q
p dx+ c

∫
B2R

|V (x,Du)− V (x,Dw)|
2q
p dx

= c

∫
B2R

[G(x, |Du|)]
q
p dx+ c

∫
B2R

|V (x,Du)− V (x,Dw)|
2q
p dx.

Now we put this into (3.66) and apply (3.59) twice to obtain the desired
estimate.

We end this section with a global a priori estimate for the gradient of
solutions to (3.41), which is more explicit and stronger than what follows
from (3.45). The proof is almost the same as that of Lemma 3.2.7.

Lemma 3.2.10. Let u ∈ W 1,G
0 (Ω) be the weak solution to (3.41) under

assumptions (3.42). Then for every q satisfying (3.60), there exists a constant
c ≡ c(data, q) such that∫

Ω

[G(x, |Du|)]
q
p dx ≤ c[|µ|(Ω)]

q
p−1 . (3.68)

Proof. We test (3.41) with ϕ = h1−ξ− (h+u±)1−ξ and argue in a completely
similar way as in the proof of (3.61) in [62, Lemma 3.4], with u− v and BR

replaced by u and Ω, respectively. Then we find that the following estimate∫
Ω

|V (x,Du)|2

(h+ |u|)ξ
dx ≤ c

h1−ξ

ξ − 1
|µ|(Ω)

holds whenever h > 0 and ξ > 1.
Now we choose ξ so that ξq/(p− q) = q∗ as in (3.62) and

h =

(∫
Ω

|u|q∗ dx
) 1

q∗

≤ c

(∫
Ω

|Du|q dx
) 1

q

,

again assuming without loss of generality that h > 0, and then proceed as in
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(3.63) to obtain∫
Ω

[G(x, |Du|)]
q
p dx =

∫
Ω

|V (x,Du)|
2q
p dx

≤
(∫

Ω

|V (x,Du)|2

(h+ |u|)ξ
dx

) q
p
(∫

Ω

(h+ |u|)q∗ dx
) p−q

q

≤ c
(
|µ|(Ω)h1−ξ) qp h ξqp

≤ c[|µ|(Ω)]
q
p

(∫
Ω

|Du|q dx
) 1

p

≤ c[|µ|(Ω)]
q
p

(∫
Ω

[G(x, |Du|)]
q
p dx

) 1
p

≤ c[|µ|(Ω)]
q
p−1 +

1

2

∫
Ω

[G(x, |Du|)]
q
p dx.

This finally completes the proof.

3.2.5 Proof of Theorem 3.2.2

With q satisfying

p− 1 ≤ q <
n(p− 1)

n− 1
,

we write

δ :=
p

2

(
n

q
− n− 1

p− 1

)
; γ(t) :=

δ

δ + 1− t
for every t ∈ [0, δ + 1).

Lemma 3.2.11. Let u ∈ W 1,G
0 (Ω) be the weak solution to (3.41) under

assumptions (3.42) and (3.43), and let q ∈ [p− 1, n(p− 1)/(n− 1)). Assume
that

V (·, Du) ∈ W t,2q/p
loc (Ω;Rn), for some t ∈ [0, δ),

and that for every couple of open subsets Ω′ b Ω′′ b Ω there exists a constant
c1, depending only on dist(Ω′, ∂Ω′′), such that

[V (·, Du)]
2q/p
t,2q/p;Ω′ ≤ c1

∫
Ω′′

[G(x, |Du|)]
q
p dx+ c1[|µ|(Ω′′)]

q
p−1 .
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Then
V (·, Du) ∈ W t̃,2q/p

loc (Ω;Rn) ∀ t̃ ∈ [0, γ(t)),

and for every couple of open subsets Ω′ b Ω′′ b Ω, there exists a constant c,
depending only on data, dist(Ω′, ∂Ω′′), t̃, c1, such that

[V (·, Du)]
2q/p

t̃,2q/p;Ω′
≤ c

∫
Ω′′

[G(x, |Du|)]
2q
p dx+ c[|µ|(Ω′′)]

q
p−1 . (3.69)

Moreover, for every vector h ∈ Rn with 0 < |h| < dist(Ω′, ∂Ω′′), we have

sup
h

∫
Ω′

|τh(V (·, Du))|2q/p

|h|γ(t)2q/p
dx ≤ c

∫
Ω′′

[G(x, |Du|)]
q
p dx+ c[|µ|(Ω′′)]

q
p−1 . (3.70)

Proof. We fix arbitrary open subsets Ω′ b Ω′′ b Ω, take β ∈ (0, 1) to be
chosen later, and let h ∈ Rn be a vector satisfying

0 < |h| ≤ min

{(
dist(Ω′, ∂Ω′′)

10000
√
n

) 1
β

,

(
1

10000

) 1
1−β
}

=: d < dist(Ω′, ∂Ω′′).

(3.71)
We take x0 ∈ Ω′ and fix a ball B ≡ B(x0, |h|β). Then we consider the weak
solutions w ∈ u+W 1,G

0 (8B) and v ∈ w +W 1,G0

0 (4B) to the problems (3.57)
and (3.65) with B2R ≡ 8B, respectively. Since B + B|h|(0) ⊂ 4B by (3.71),
we have∫

B

|τh(V (·, Du))|
2q
p dx

≤ c

∫
B

|τh(V (x0, Dv))|
2q
p dx+ c

∫
B

|V (x,Du)− V (x0, Dv)|
2q
p dx

+ c

∫
B

|V (x+ h,Du(x+ h))− V (x0, Dv(x+ h))|
2q
p dx

≤ c

∫
B

|τh(V (x0, Dv))|
2q
p dx+ c

∫
4B

|V (x,Du)− V (x0, Dv)|
2q
p dx

=: I1 + I2.
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In order to estimate I2, we use Lemma 3.2.9, which gives

I2 ≤ c|h|βδ
2q
p [|µ|(8B)]

q
p−1 + c

(
8|h|β log

1

8|h|β

) 2q
p
∫

8B

[G(x, |Du|)]
q
p dx

≤ c|h|βδ
2q
p λ0(8B),

where we have set

λ0(E) :=

∫
E

[G(x, |Du|)]
q
p dx+ [|µ|(E)]

q
p−1 .

In order to estimate I1, we apply Lemma 3.2.4 with t = q/p to find

I1

(2.6)

≤ c|h|
2q
p

∫
2B

|D(V (x0, Dv))|
2q
p dx

≤ c|h|(1−β) 2q
p

∫
4B

|V (x0, Dv)− z0|
2q
p dx

≤ c|h|(1−β) 2q
p

∫
4B

|V (x,Du)− z0|
2q
p dx

+ c|h|(1−β) 2q
p

∫
4B

|V (x,Du)− V (x0, Dv)|
2q
p dx.

We then recall that |h| < 1 and 0 < β < 1 to discover∫
B

|τh(V (·, Du))|
2q
p dx

≤ c|h|βδ
2q
p

+(1−β) 2q
p λ0(8B) + c|h|(1−β) 2q

p

∫
4B

|V (x,Du)− z0|
2q
p dx. (3.72)

We next choose z0 ∈ Rn in the last display. We distinguish two cases.
Case t = 0. In this case, we take z0 = 0 in (3.72). Then, since t < δ and

|h| < 1, we have∫
B

|τh(V (·, Du))|
2q
p dx ≤ c

[
|h|βt

2q
p

+(1−β) 2q
p + |h|βδ

2q
p

]
λ0(8B).

Case t > 0. In this case, we take z0 = (V (·, Du))8B in (3.72) and then
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apply (2.4) to V (·, Du) ∈ W t,2q/p(8B), which gives∫
B

|τh(V (·, Du))|
2q
p dx ≤ c|h|βδ

2q
p λ0(8B) + c|h|βt

2q
p

+(1−β) 2q
p [V (·, Du)]

2q/p
t,2q/p;8B

≤ c
[
|h|βδ

2q
p + |h|βt

2q
p

+(1−β) 2q
p

]
λt(8B),

where we have set

λt(S) := λ0(S) + χ{t>0}[V (·, Du)]
2q/p
t,2q/p;S.

Observe that this set function is countably super-additive. Thus, we apply
the covering argument from [164, Lemma 6.2] to get, for any 0 ≤ t < δ,∫

Ω′
|τh(V (·, Du))|

2q
p dx ≤ c

[
|h|βδ

2q
p + |h|(βt+1−β) 2q

p

]
λt(Ω

′′). (3.73)

Now we take β = γ(t)/δ so that βt + 1 − β = βδ. Observe that this is
admissible, since t < δ implies γ(t)/δ < 1. In turn, for any h as in (3.71),
estimate (3.73) becomes∫

Ω′
|τh(V (·, Du))|

2q
p dx ≤ c0|h|γ(t) 2q

p λt(Ω
′′)

for c0 ≡ c0(data, q). Considering the remaining case d < |h| < dist(Ω′, ∂Ω′′)
and trivially estimating as∫

Ω′
|τh(V (·, Du))|

2q
p dx

≤ c

dγ(t)2q/p

∫
Ω′

(
|V (x+ h,Du(x+ h))|

2q
p + |V (x,Du)|

2q
p

)
dx

≤ c

dγ(t)2q/p

∫
Ω′′
|V (x,Du)|

2q
p dx =

c

dγ(t)2q/p

∫
Ω′′

[G(x, |Du|)]
q
p dx,

we eventually obtain (3.70), which with Lemma 2.2.7 implies (3.69). Since
the open subsets considered are arbitrary, the proof is complete.

Proof of Theorem 3.2.2. We prove estimate (3.48), which with a standard
covering argument gives (3.47). Moreover, in the proof, we argue without
loss of generality under the additional regularity assumption (3.56). Indeed,
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once we establish (3.48) for approximating solutions {uk} for a SOLA u
as described in Definition 3.2.1, a standard approximation procedure along
with the strong convergence (3.45) will give the same estimate for u, thereby
completing the proof.

Now the proof follows by iterating Lemma 3.2.11. The basic strategy is
similar to that of [164, Lemma 6.3], so here we give a sketch of the iterating
process. We define two sequences {sk}k≥1 and {tk}k≥1 inductively by

s1 :=
δ

4(δ + 1)
, t1 = 2s1, sk+1 := γ(sk) and tk+1 :=

γ(sk) + γ(tk)

2
.

Then it follows that

t ∈ (0, δ) =⇒ γ(t) ∈ (t, δ) and γ(δ) = δ,

and that
sk ↗ δ, sk < tk < δ, and so tk ↗ δ.

Therefore, applying Lemma 3.2.11 with the choice t = tk for each k ∈ N, we
can show that

V (·, Du) ∈ W tk,2q/p
loc (Ω;Rn) ∀ k ∈ N,

which with the convergence tk ↗ δ gives

V (·, Du) ∈ W t,2q/p
loc (Ω;Rn) ∀ t ∈ [0, δ).

Moreover, we have the estimate

[V (·, Du)]
2q/p
t,2q/p;Ω′ ≤ c

∫
Ω

G(x, |Du|)
q
p dx+ c[|µ|(Ω)]

q
p−1

(3.68)

≤ c[|µ|(Ω)]
q
p−1 .

Finally, taking q = p− 1 so that δ = p/[2(p− 1)], the desired estimate (3.48)
follows.
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3.3 Fractional differentiability for parabolic

measure data problems

3.3.1 Main results

In this section, we consider the following Cauchy-Dirichlet problem:{
∂tu− divA(x, t,Du) = µ in ΩT ,

u = 0 on ∂pΩT ,
(3.74)

where µ is a signed Borel measure on ΩT with finite total mass |µ|(ΩT ) <∞.
The Carathéodory vector field A : ΩT × Rn → Rn is assumed to satisfy

(A(x, t, ξ1)− A(x, t, ξ2)) · (ξ1 − ξ2) ≥ ν|ξ1 − ξ2|2,
|A(x, t, ξ1)− A(x, t, ξ2)| ≤ L|ξ1 − ξ2|,

|A(x, t, 0)| ≤ Ls

(3.75)

for all ξ1, ξ2 ∈ Rn, x ∈ Ω and t ∈ (−T, 0), where 0 < ν ≤ L and s ≥ 0.
Our main regularity assumption on the coefficient is the following:

|A(x1, t, ξ)− A(x2, t, ξ)| ≤ L|x1 − x2|α (κ(x1, t) + κ(x2, t)) (s+ |ξ|) (3.76)

for all x1, x2 ∈ Ω, t ∈ (−T, 0) and ξ ∈ Rn, where α ∈ (0, 1] is fixed and
κ : ΩT → R is a nonnegative function satisfying

κ ∈ Lγ(ΩT ) for some γ ≥ n+ 2

α
. (3.77)

We note that (3.76) and (3.77) are the parabolic analogs of those in [55], see
also Remark 3.3.4 below. In fact, such an assumption, related to Calderón
spaces introduced in [92], is another way to measure fractional differentiabil-
ity of the coefficients; in particular, Hölder continuous coefficients are allowed.

As in the elliptic case, we consider SOLA.

Definition 3.3.1. A function u ∈ L1(−T, 0;W 1,1
0 (Ω)) is a SOLA to (3.74)

under assumptions (3.75) if A(·, Du) ∈ L1(ΩT ;Rn),∫
ΩT

(−uϕt + A(x, t,Du) ·Dϕ) dz =

∫
ΩT

ϕdµ ∀ ϕ ∈ C∞0 (ΩT ),
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and moreover there exists a sequence of weak solutions {uk} ⊂ C(−T, 0;L2(Ω))∩
L2(−T, 0;W 1,2

0 (Ω)) to the problems{
∂tuk − divA(x, t,Duk) = µk in ΩT ,

uk = 0 on ∂pΩT

such that uk → u in L1(−T, 0;W 1,1
0 (Ω)), where the sequence {µk} ⊂ L∞(ΩT )

converges to µ weakly* in the sense of measures and satisfies

lim sup
k→∞

|µk|(Q) ≤ |µ|(Q ∪ ∂pQ)

for every cylinder Q = B × (t1, t2) ⊂ Rn+1.

In [28], the existence of SOLA was proved for general parabolic p-Laplacian
type equations. We remark the following existence result, which is a special
case of those in [28].

Proposition 3.3.2. With the sequence {uk} defined as above, there exists
a SOLA u ∈ L1(−T, 0;W 1,1

0 (Ω)) to (3.74). Moreover, up to a not relabeled
subsequence, it holds that

uk → u in Lq(−T, 0;W 1,q
0 (Ω) for any q < 2− n

n+ 1
,

together with the following global estimate

‖Du‖Lq(ΩT ) ≤ c(n, ν, L, q, |Ω|, T ) (|µ|(ΩT ) + s) .

Throughout this section, we consider

q ∈
[
1,

(n+ 2)γ

(n+ 1)γ + n+ 2

)
, δ(q) :=

n+ 2

q
− (n+ 1). (3.78)

Now we state our main result. We denote data := (n, ν, L, γ, ‖κ‖Lγ(ΩT )).

Theorem 3.3.3. Let u ∈ L1(−T, 0;W 1,1
0 (Ω)) be a SOLA to (3.74) under

assumptions (3.75)-(3.77). For every q satisfying (3.78), we have

Du ∈ W σ,σ/2;q
loc (ΩT ;Rn) ∀ σ ∈ [0,min{α, δ(q)}). (3.79)
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Moreover, for every parabolic cylinder QR ⊂ ΩT with R ≤ 1, we have∫
IR/2

∫
BR/2

∫
BR/2

|Du(x, t)−Du(y, t)|q

|x− y|n+qσ
dx dy dt

+

∫
BR/2

∫
IR/2

∫
IR/2

|Du(x, t)−Du(x, s)|q

|t− s|1+qσ/2
dt ds dx

≤ c

Rqσ

(∫
QR

(|Du|+ s)
qγ
γ−q dz

) γ−q
γ

+
c

Rqσ

[
|µ|(QR)

Rn+1

]q
(3.80)

for a constant c ≡ c(data, q, σ).

Remark 3.3.4. Consider the following problem:{
∂tu− div (c(x, t)A(Du)) = µ in ΩT ,

u = 0 on ∂pΩT ,

where the vector field A(·) satisfies (3.75), when obviously recast in the case
A(·) is independent of x. Moreover, assume that

|c(x1, t)− c(x2, t)| ≤ (κ(x1, t) + κ(x2, t))|x1 − x2|α

holds for all x1, x2 ∈ Ω, t ∈ (−T, 0), with α and κ satisfying (3.77). Then
Theorem 3.3.3 holds with Du replaced by A(Du), in the same spirit as in
[7, 55]. Moreover, under the assumption µ ∈ L1,θ(ΩT ) with 2 ≤ θ ≤ n, it is
possible to prove fractional Sobolev-Morrey regularity results as in [12].

Assumption (3.76) is similar to the one treated in [156], where κ in (3.76)
belongs to L2χ/(χ−1)(ΩT ), with χ > 1 being the higher integrability exponent
from Gehring’s theory for linear homogeneous systems. The value of χ can
be very close to 1, which makes 2χ/(χ− 1) to be potentially very large. On
the other hand, our assumption (3.77) is natural and sharp for the desired
regularity. Our approach relies on the observation that (3.76)-(3.77) imply
the VMO condition, which enables us to apply the known Lp-theory, see
Lemma 3.3.6. We also point out that Theorem 3.3.3 is a natural extension
of [19, Theorem 1.2], where α = 1 and γ =∞.

3.3.2 Preliminaries

In this section, we use the following notations for parabolic problems:
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• We denote a typical point in Rn+1 = Rn × R by z = (x, t).

• A standard parabolic cylinder is denoted by

QR(z0) := BR(x0)× IR(t0) := BR(x0)× (t0 −R2, t0 +R2).

We shall omit the center when it is clear from the context.

• For a function f : Rn+1 → Rk with k ≥ 1 and h ∈ R, we denote
τi,hf(x, t) := f(x+hei, t)−f(x, t) and τt,hf(x, t) := f(x, t+h)−f(x, t),
where {ei}ni=1 is the standard basis for Rn.

• For E ⊂ Ω and (t1, t2) ⊂ (−T, 0), the parabolic boundary of C :=
E × (t1, t2) is denoted by

∂pC := E × {t1} ∪ ∂E × (t1, t2).

• For a measurable set C ⊂ Rn+1 and f ∈ L1(C), we denote

(f)C :=

∫
C

f dz :=
1

|C|

∫
C

f dz.

• For a measurable set E ⊂ Rn and a function g : E × (−T, 0) → Rk

such that g(·, t) ∈ L1(E) for each fixed t ∈ (−T, 0), we denote

(g(·, t))E :=

∫
E

g(x, t) dx :=
1

|E|

∫
E

g(x, t) dx.

Here we briefly recall the definition and basic properties of parabolic
fractional Sobolev spaces, see [19, Section 4] for details. Let θ ∈ (0, 1) and
q ≥ 1. Then we say that

g ∈ W θ,θ/2;q(ΩT ) if g ∈ Lq(−T, 0;W θ,q(Ω)) and g ∈ Lq(Ω;W θ/2,q(−T, 0)).

It is a Banach space endowed with the norm

‖g‖W θ,θ/2;q(ΩT ) := ‖g‖Lq(ΩT ) + [g]W θ,θ/2;q(ΩT ),
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where the seminorm [·]W θ,θ/2;q(ΩT ) is defined by

[g]q
W θ,θ/2;q(ΩT )

:=

∫ 0

−T

∫
Ω

∫
Ω

|g(x, t)− g(y, t)|q

|x− y|n+θq
dx dy dt

+

∫
Ω

∫ 0

−T

∫ 0

−T

|g(x, t)− g(x, s)|q

|t− s|1+θq/2
dt ds dx.

We also note the following Poincaré type inequality for parabolic fractional
Sobolev spaces: if QR is a parabolic cylinder and g ∈ W θ,θ/2;q(QR), then∫

QR

|g − (g)QR |
q dz ≤ c(n, q)Rθq[g]q

W θ,θ/2;q(QR)
(3.81)

holds, see [19, 108]. Also, the following result from [19, Corollary 4.5] shows
a difference quotient characterization of parabolic fractional Sobolev spaces.

Lemma 3.3.5. Let g ∈ Lq(ΩT ) for some q ≥ 1. Assume that for θ̄ ∈ (0, 1],
S > 0 and bounded open sets Ω1 × J1 b Ω2 × J2 b ΩT , we have

‖τt,h2g‖Lq(Ω2×J2) +
n∑
i=1

‖τi,hg‖Lq(Ω2×J2) ≤ Shθ̄

for every 1 ≤ i ≤ n and every h ∈ R satisfying 0 < |h| ≤ d1, where

d1 := min{1, dist(Ω1, ∂Ω2), dist(Ω2, ∂Ω), dist(J1, ∂J2), dist(J2, ∂(−T, 0))}/2.

Then g ∈ W θ,θ/2;q(Ω1 × J1) for any θ ∈ (0, θ̄), with the estimate

[g]W θ,θ/2;q(Ω1×J1) ≤ c
(
S + ‖g‖Lq(Ω2×J2)

)
for some positive constant c depending only on q, θ̄ − θ, d1, |Ω| and T.

3.3.3 Some technical results

In this section, we prove a comparison estimate between (3.74) and a homo-
geneous frozen problem, by adopting the ideas and techniques from [55]. In
view of the Definition 3.3.1 and Proposition 3.3.2, we first assume that

µ ∈ L∞(ΩT ), u ∈ L2(−T, 0;W 1,2
0 (Ω)). (3.82)
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These assumptions will be removed in Section 3.3.4
We fix a parabolic cylinderQ2R ≡ Q2R(z0) b ΩT withR ≤ 1, and consider

the following homogeneous problem:{
∂tw − divA(x, t,Dw) = 0 in Q2R,

w = u on ∂pQ2R.
(3.83)

We first observe that

lim
ρ→0

(
sup

z′∈Rn+1

∫
Qρ(z′)

sup
ξ∈Rn\{0}

|A(x, t, ξ)− (A(·, t, ξ))Bρ(x)|
s+ |ξ|

dx dt

)
(3.76)

≤ lim
ρ→0

(
ρα sup

z′∈Rn+1

∫
Qρ(z′)

∫
Bρ(x)

(κ(x, t) + κ(x′, t)) dx′ dx dt

)

≤ c lim
ρ→0

ρα−
n+2
γ sup

z′∈Rn+1

‖κ‖Lγ(Q2ρ(z′)) = 0,

where we have used the fact that γ ≥ (n + 2)/α and κ ∈ Lγ(ΩT ). Namely,
assumptions (3.76)-(3.77) imply that x 7→ A(x, t, ξ)/(s+|ξ|) is VMO-regular.
Under the VMO condition, it is well known that Dw belongs to Lploc(Q2R) for
all p ∈ (1,∞), see [3, Theorem 1] and [112, Theorem 1.8]. By further using
the self-improving property of reverse Hölder’s inequalities, [19, Lemma 3.2],
we have the following estimate.

Lemma 3.3.6. Let w ∈ u+L2(I2R;W 1,2
0 (B2R)) be the weak solution to (3.83).

Then for any p ∈ [1,∞), there exists a constant c ≡ c(data, p) satisfying(∫
QR

(|Dw|+ s)p dz

) 1
p

≤ c

∫
Q2R

(|Dw|+ s) dz. (3.84)

Next, we define Ã(t, ξ) := (A(·, t, ξ))BR and consider the frozen problem:{
∂tv − div Ã(t,Dv) = 0 in QR,

v = w on ∂pQR.
(3.85)

In the following lemma, we derive a comparison estimate.
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Lemma 3.3.7. Let u and v be as in (3.74) and (3.85), respectively. Then
for any q satisfying (3.78)1, there exists a constant c ≡ c(data, q) such that∫

QR

|Du−Dv|q dz ≤ cRqmin{α,δ(q)}
(

[|µ|(Q2R)]q +K−
γ
q

∫
Q2R

|κ|γ dz

+K
γ
γ−q

∫
Q2R

(|Du|+ s)
qγ
γ−q dz

)
holds whenever K > 0.

Proof. We first recall the following estimate from [19, Lemma 6.4]:∫
Q2R

|Du−Dw|q dz ≤ cRqδ(q)[|µ|(Q2R)]q. (3.86)

Next, we test (3.83) and (3.85) with w − v in order to get

0 =

∫
QR

∂t(w − v)(w − v) dz +

∫
QR

(A(x, t,Dw)− Ã(t,Dv)) · (Dw −Dv) dz

=: I1 + I2.

By using Steklov formulation, we see that

I1 ≥ 0, and so I2 ≤ 0. (3.87)

Now we have

ν

∫
QR

|Dw −Dv|2 dz
(3.75)

≤
∫
QR

(Ã(t,Dw)− Ã(t,Dv)) · (Dw −Dv) dz

(3.87)

≤
∫
QR

(Ã(t,Dw)− A(x, t,Dw)) · (Dw −Dv) dz

=

∫
QR

∫
BR

(A(y, t,Dw)− A(x, t,Dw)) · (Dw −Dv) dy dz

(3.76)

≤ cRα

∫
QR

(κ(x, t) + (κ(·, t))BR)(|Dw|+ s)|Dw −Dv| dz

≤ cR2α

∫
QR

(κ(x, t) + (κ(·, t))BR)2(|Dw|+ s)2 dz +
ν

2

∫
QR

|Dw −Dv|2 dz,
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where we have used Young’s inequality in the last line. In turn, we obtain∫
QR

|Dw −Dv|2 dz ≤ cR2α

∫
QR

(κ(x, t) + (κ(·, t))BR)2(|Dw|+ s)2 dz.

Then we use Hölder’s inequality to discover∫
QR

|Dw −Dv|q dz ≤
(∫

QR

|Dw −Dv|2 dz
) q

2

≤ cRqα

(∫
QR

(
κ(x, t) + (κ(·, t))BR

)2
(|Dw|+ s)2 dz

) q
2

≤ cRqα

(∫
Q2R

|κ|γ dz
) q

γ
(∫

QR

(|Dw|+ s)
2γ
γ−2 dz

) q(γ−2)
2γ

(3.84)

≤ cRqα

(∫
Q2R

|κ|γ dz
) q

γ
(∫

Q2R

(|Dw|+ s)
qγ
γ−q dz

) γ−q
γ

.

Using Young’s inequality, we arrive at∫
QR

|Dw −Dv|q dz ≤ cRqα‖κ‖qLγ(Q2R)

(∫
Q2R

(|Dw|+ s)
qγ
γ−q dz

) γ−q
γ

≤ cRqα‖κ‖qLγ(Q2R)

(∫
Q2R

(|Du|+ s)
qγ
γ−q dz

) γ−q
γ

+ cRqα‖κ‖qLγ(Q2R)

(∫
Q2R

|Du−Dw|
qγ
γ−q dz

) γ−q
γ

≤ cRqα

(
K−

γ
q ‖κ‖γLγ(Q2R) +K

γ
γ−q

∫
Q2R

(|Du|+ s)
qγ
γ−q dz

)
+ cRqα‖κ‖qLγ(ΩT )

(∫
Q2R

|Du−Dw|
qγ
γ−q dz

) γ−q
γ

.

This estimate and (3.86) imply the desired estimate.

We now recall a fractional regularity estimate for (3.85), which follows
from [19, Lemma 7.1] and Hölder’s inequality.
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Lemma 3.3.8. Let v ∈ L2(IR;W 1,2
0 (QR)) be the weak solution to (3.85).

Then for each q satisfying (3.78), there exists a constant c ≡ c(data, q) such
that ∫

QR/4

|D2v|q dz +

∫
QR/8

|τt,hDv|q

|h|q/2
dz ≤ c

Rq

∫
QR

|Dv − z0|q dz

holds for every z0 ∈ Rn.

3.3.4 Proof of Theorem 3.3.3

We prove (3.80), which with a standard covering argument gives (3.79). More-
over, without loss of generality, we confine ourselves to the situation when
(3.82) holds. Once estimate (3.80) is obtained for regular solutions, a stan-
dard approximation process as the one presented in the proof of [19, Theorem
1.2] gives the desired estimate for a SOLA.

We denote m := min{α, δ(q)}, where δ(q) is given in (3.78)2. Then we
define for θ ∈ [0,m+ 1)

ω(θ) :=
m

m+ 1− θ
and

λK,θ(C) := [|µ|(C)]q +K−
γ
q

∫
C

|κ|γ dz +K
γ
γ−q

∫
C

(|Du|+ s)
qγ
γ−q dz

+ χ{θ>0}[Du]q
W θ,θ/2;q(C)

. (3.88)

Moreover in the next lemma, we shall deal with fixed open sets

Ω0 × J0 b Ω1 × J1 b Ω2 × J2 b ΩT (3.89)

such that

dist(Ω0, ∂Ω1) ≈ dist(Ω1, ∂Ω2) =: d1, dist(J0, ∂J1) ≈ dist(J1, ∂J2) =: d2.

We now conduct a bootstrap argument.

Lemma 3.3.9. Assume that for open sets as in (3.89) it holds that Du ∈
W θ,θ/2;q(Ω2 × J2) for some θ ∈ [0,m), and that

[Du]q
W θ,θ/2;q(Ω1×J1)

≤ c1λK,0(Ω2 × J2). (3.90)

79



CHAPTER 3. ELLIPTIC AND PARABOLIC EQUATIONS WITH
MEASURE DATA

Then it follows that Du ∈ W θ̃,θ̃/2;q(Ω0 × J0) for every θ̃ ∈ (0, ω(θ)), and
moreover there exists a constant c2, depending only on data, q, d1, d2, θ̃, c1,
such that

[Du]q
W θ̃,θ̃/2;q(Ω0×J0)

≤ c2λK,0(Ω2 × J2). (3.91)

Proof. We take β ∈ (0, 1) to be chosen later, and let h ∈ R be such that

0 < |h| < min

{(
d1

1000
√
n

) 1
β

,

(√
d2

1000

) 1
β

,
1

1000
√
n

}
. (3.92)

We take z0 ∈ Ω0 × J0, and fix a parabolic cylinder Q ≡ Q|h|β(z0). Let w and
v be weak solutions to (3.83) and (3.85), respectively, with Q2R ≡ 16Q. We
then use Lemma 3.3.7, Lemma 3.3.8 and (3.81) to discover that

n∑
i=1

∫
Q

|τi,hDu|q dz +

∫
Q

|τt,h2Du|q dz

≤ c
n∑
i=1

∫
Q

|τi,hDv|q dz + c

∫
Q

|τt,h2Dv|q dz + c

∫
8Q

|Du−Dv|q dz

≤ c|h|q
(∫

2Q

|D2v|q dz +

∫
Q

|τt,h2Dv|q

|h|q
dz

)
+

∫
8Q

|Du−Dv|q dz

≤ c|h|q(1−β)

∫
8Q

|Du−Dv|q dz + c|h|q(1−β)

∫
8Q

|Du− (Du)8Q|q dz

+ c

∫
8Q

|Du−Dv|q dz

≤ c

∫
8Q

|Du−Dv|q dz + c|h|q(1−β)

∫
8Q

|Du− (Du)8Q|q dz

≤ c|h|qβmλK,0(16Q) + c|h|q(1−β)+qβθ[Du]W θ,θ/2;q(8Q)

≤ c
[
|h|qβm + |h|q(1−β+βθ)

]
λK,θ(16Q), (3.93)

where we used the fact that since |h| < 1 and β < 1, |h|q(1−β) ≤ 1. Next, we
take β = 1/(m+ 1− θ) so that βm = 1− β + βθ = ω(θ). This is admissible
since θ < m implies β < 1. Then (3.93) becomes

n∑
i=1

∫
Q

|τi,hDu|q dz +

∫
Q

|τt,h2Du|q dz ≤ c|h|qω(θ)λK,θ(16Q) (3.94)
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for c ≡ c(data, d1, d2, c1), where λK,θ(·) is given in (3.88) and Q ≡ Q|h|β(z0)
with h ∈ Rn satisfying (3.92).

Now we proceed with a covering argument similar to those in [19, 164].
Let {Cj}Nj=1 be a disjoint family of cuboids parallel to the coordinate axis

and centers (yj, sj), so that the union of {Cj}Nj=1 covers Ω0 × J0:

Cj :=

{
x ∈ Rn : max

1≤i≤n
|xi − (yj)i| <

√
n|h|β

}
× (sj − |h|2β, sj + |h|2β)

and
N⋃
j=1

Cj ⊃ Ω0 × J0.

For each Cj, we choose the smallest open cylinder Qj satisfying Cj ⊂ Qj ⊂
16Qj ⊂ Ω2 × J2. By construction, we have that the dilated cylinders 16Qj

intersects each other no more than a fixed number, say H ≡ H(n). Also note
that the set function λK,θ(·) is countably super-additive, to discover

n∑
i=1

∫
Ω0×J0

|τi,hDu|q dz +

∫
Ω0×J0

|τt,h2Du|q dz

≤
N∑
j=1

(
n∑
i=1

∫
Qj

|τi,hDu|q dz +

∫
Qj

|τt,h2Du|q dz

)
(3.94)

≤ c|h|qω(θ)

N∑
j=1

λK,θ(16Qj)

≤ cH|h|qω(θ)λK,θ(Ω2 × J2)

(3.90)

≤ c|h|qω(θ)λK,0(Ω2 × J2).

Finally, (3.91) follows from Lemma 3.3.5.

In particular, choosing

K =

(∫
Ω2×J2

|κ|γ dz
) q(γ−q)

γ2
(∫

Ω2×J2

(|Du|+ s)
qγ
γ−q dz

)− q(γ−q)
γ2

in the above lemma gives:

81



CHAPTER 3. ELLIPTIC AND PARABOLIC EQUATIONS WITH
MEASURE DATA

Lemma 3.3.10. Under the setting of Lemma 3.3.9, assume that

[Du]q
W θ,θ/2;q(Ω1×J1)

≤ c1[|µ|(Ω2 × J2)]q + c1

(∫
Ω2×J2

(|Du|+ s)
qγ
γ−q dz

) γ−q
γ

for some θ ∈ [0,m), then we have

[Du]q
W θ̃,θ̃/2;q(Ω0×J0)

≤ c2[|µ|(Ω2 × J2)]q + c2

(∫
Ω2×J2

(|Du|+ s)
qγ
γ−q dz

) γ−q
γ

for all θ̃ ∈ (0, ω(θ)), with the constant c2 given in Lemma 3.3.9.

We now prove Theorem 3.3.3. It suffices to derive estimate (3.80).

Proof of Theorem 3.3.3. By a standard scaling argument, we may assume
that R = 1 and (∫

Q1

(|Du|+ s)
qγ
γ−q dz

) γ−q
γ

+ [|µ|(Q1)]q ≤ 1.

Then we assert that

[Du]Wσ,σ/2;q(Q1/2) ≤ c(data, q). (3.95)

We consider two sequences {tk} and {sk} defined by

t0 := ω(0)/2, tk+1 := ω(tk), s0 := ω(0)/4, sk+1 := (ω(tk) + ω(sk))/2,

which satisfy

tk ↗ m, tk < sk < m, and so sk ↗ m.

Then by iterating Lemma 3.3.10, we conclude that

Du ∈ W σ,σ/2;q(Q1/2) ∀ σ ∈ [0,m),

with estimate (3.95). Scaling back to QR, we finish the proof.
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Chapter 4

Elliptic obstacle problems with
measure data

In this chapter, we consider obstacle problems related to

−divA(Du) = µ in Ω,

where the vector field A : Rn → Rn is assumed to be C1-regular on Rn for
p ≥ 2 and on Rn \ {0} for p < 2. It also satisfies the growth and ellipticity
assumptions (2.8). We also denote data = (n, p, ν, L).

For a given boundary data g ∈ W 1,p(Ω), we set

T 1,p
g (Ω) :=

{
u : Ω→ R | Tt(u− g) ∈ W 1,p

0 (Ω) for every t > 0
}
.

For any u ∈ T 1,p
g (Ω), there exists a unique measurable map Zu : Ω → Rn

such that
D[Tt(u)] = χ{|u|<t}Zu a.e. in Ω

for every t > 0, see [23, Lemma 2.1]. If u ∈ T 1,p
g (Ω) ∩ W 1,1(Ω), then Zu

coincides with the weak derivative Du of u. In what follows, we denote Zu
by Du for the simplicity of notation.

In Sections 4.1 and 4.2, we assume (2.8) with

p > 2− 1

n
, (4.1)

which ensures u ∈ W 1,1(Ω).
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4.1 Potential estimates for obstacle problems

with measure data

In this section, we consider the obstacle problem OP (ψ;µ) with the con-
straint u ≥ ψ a.e. in Ω, where ψ ∈ W 1,p(Ω) is a given obstacle. If p > n,
then it follows that µ ∈ W−1,p′(Ω) by the Morrey embedding theorem, and
OP (ψ;µ) is characterized by the variational inequality∫

Ω

A(Du) ·D(φ− u) dx ≥
∫

Ω

(φ− u) dµ (4.2)

for every φ ∈ u + W 1,p
0 (Ω) with φ ≥ ψ a.e. in Ω. Moreover, the existence of

its unique weak solution follows from monotone operator theory [134]. On
the other hand, as in the case of obstacle-free problems, when p ≤ n such
a variational inequality is not available for OP (ψ;µ). In this case, we adopt
the notion of limits of approximating solutions introduced in [189].

Definition 4.1.1. Suppose that an obstacle ψ ∈ W 1,p(Ω), measure data µ ∈
Mb(Ω) and boundary data g ∈ W 1,p(Ω) with (ψ − g)+ ∈ W 1,p

0 (Ω) are given.
We say that a function u ∈ T 1,p

g (Ω) with u ≥ ψ a.e. in Ω is a limit of
approximating solutions to the obstacle problem OP (ψ;µ) under assumptions
(2.8) if there exist a sequence of functions {µk} ⊂ W−1,p′(Ω) ∩ L1(Ω) withµk

∗
⇀ µ in Mb(Ω),

lim sup
k→∞

|µk|(B) ≤ |µ|(B̄) for every ball B ⊂ Rn

and weak solutions uk ∈ g+W 1,p
0 (Ω) with uk ≥ ψ a.e. in Ω to the variational

inequalities ∫
Ω

A(Duk) ·D(φ− uk) dx ≥
∫

Ω

(φ− uk) dµk

for every φ ∈ uk +W 1,p
0 (Ω) with φ ≥ ψ a.e. in Ω, such that

uk → u a.e. in Ω,∫
Ω

|uk − u|γ dx→ 0 for every 0 < γ <
n(p− 1)

n− p
,∫

Ω

|Duk −Du|q dx→ 0 for every 0 < q <
n(p− 1)

n− 1
.
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4.1.1 Main results

The first result is concerned with the case 2− 1/n < p ≤ 2:

Theorem 4.1.2. Let u ∈ W 1,1(Ω) with u ≥ ψ a.e. in Ω be a limit of ap-
proximating solutions to the problem OP (ψ;µ) under assumptions (2.8) with
2− 1/n < p ≤ 2. If

lim
ρ→0

 |µ|(Bρ(x0))

ρn−1
+

(∫
Bρ(x0)

ϕ∗(|A(Dψ)− (A(Dψ))Bρ(x0)|) dx

) 1
p′
 = 0

(4.3)
holds for a certain x0 ∈ Ω, then A(Du) has vanishing mean oscillation at x0,
that is, there holds

lim
ρ→0

∫
Bρ(x0)

|A(Du)− (A(Du))Bρ(x0)| dx = 0. (4.4)

Moreover, if

Iµ1(x0, 2R) +

∫ 2R

0

(∫
Br(x0)

ϕ∗(|A(Dψ)− (A(Dψ))Br(x0)|) dx
) 1

p′ dr

r
<∞

(4.5)
holds on a ball B2R(x0) ⊂ Ω, then x0 is a Lebesgue point of A(Du) with the
following estimate

|A(Du(x0))− (A(Du))B2R(x0)|

≤ c

∫
B2R(x0)

|A(Du)− (A(Du))B2R(x0)| dx+ cIµ1(x0, 2R)

+ c

∫ 2R

0

(∫
Br(x0)

ϕ∗(|A(Dψ)− (A(Dψ))Br(x0)|) dx
) 1

p′ dr

r
, (4.6)

where ϕ∗(·) is a function defined in Section 2.3.1 and c ≡ c(data).

The second result, concerning the case p > 2, is the following:

Theorem 4.1.3. Let u ∈ W 1,p−1(Ω) with u ≥ ψ a.e. in Ω be a limit of
approximating solutions to the problem OP (ψ;µ) under assumptions (2.8)
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with p > 2. If

Iµ1(x0, 2R) +

∫ 2R

0

(∫
Br(x0)

ϕ∗(|A(Dψ)− (A(Dψ))Br(x0)|) dx
) 1

2 dr

r
<∞

(4.7)
holds on a ball B2R(x0) ⊂ Ω, then x0 is a Lebesgue point of A(Du) with the
following estimate

|A(Du(x0))− (A(Du))B2R(x0)|

≤ c

∫
B2R(x0)

|A(Du)− (A(Du))B2R(x0)| dx+ cIµ1(x0, 2R)

+ c

[∫ 2R

0

(∫
Br(x0)

ϕ∗(|A(Dψ)− (A(Dψ))Br(x0)|) dx
) 1

2 dr

r

] 2
p′

+ c

(∫
B2R(x0)

(|A(Du)|+ sp−1) dx

) p−2
2(p−1)

·
∫ 2R

0

(∫
Br(x0)

ϕ∗(|A(Dψ)− (A(Dψ))Br(x0)|) dx
) 1

2 dr

r
, (4.8)

where c ≡ c(data).

Remark 4.1.4. In (4.6) and (4.8), the terms related to the obstacle are
slightly different from the one in (1.16). This is simply due to the presence of
the constant s in (2.8), whose role is to distinguish the degenerate case (s = 0)
from the non-degenerate one (s 6= 0). When s = 0, we have ϕ∗(t) ≈ tp

′
.

Moreover, when s 6= 0 and p ≥ 2, we have ϕ∗(t) . tp
′
.

We note that the constant c involved in estimate (4.8) is stable as p↘ 2
(see Remark 4.1.29 below), that is, letting p↘ 2 in (4.8) we obtain the same
estimate as the one in (4.6). We conjecture that estimate (4.6) continues
to hold when p > 2, which is expected to be sharp in view of the results
in [35, 145]. The main issue is to handle the obstacle appropriately in the
linearization process, see Remark 4.1.25. Also, it would be interesting to
extend the range of p in Theorem 4.1.2 to 1 < p ≤ 2− 1/n by modifying and
developing the approaches in [105, 173, 174, 175]. We further expect that
obstacle problems with measure data and Dini continuous coefficients can be
further studied by using the techniques developed in [110, 133, 146, 147].
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We now give some consequences of the above theorems.

Corollary 4.1.5. Under the assumptions of Theorems 4.1.2 and 4.1.3, we
have the following pointwise estimates.

(1) If 2− 1/n < p ≤ 2, then

|Du(x0)|p−1 ≤ c

∫
B2R(x0)

(|Du|+ s)p−1 dx+ cIµ1(x0, 2R)

+ c

∫ 2R

0

(∫
Br(x0)

ϕ∗(|A(Dψ)− (A(Dψ))Br(x0)|) dx
) 1

p′ dr

r
.

(2) If p > 2, then

|Du(x0)|p−1 ≤ c

∫
B2R(x0)

(|Du|+ s)p−1 dx+ cIµ1(x0, 2R)

+ c

[∫ 2R

0

(∫
Br(x0)

ϕ∗(|A(Dψ)− (A(Dψ))Br(x0)|) dx
) 1

2 dr

r

] 2
p′

.

Once we have the excess decay estimates in the proof of Theorems 4.1.2
and 4.1.3, we can also obtain the following C1-regularity criteria by applying
the arguments in [109, Theorem 1] and [146, Theorem 4]. We also refer to
[147] for a direct proof which does not appeal to potentials.

Corollary 4.1.6. Under the assumptions of Theorems 4.1.2 and 4.1.3, as-
sume that µ satisfies one of the following two conditions:

(i) µ ∈ L(n, 1) locally in Ω,

(ii) |µ|(Br) ≤ h(r)rn−1 for every ball Br ⊂ Ω, with h : [0,∞) → [0,∞)
satisfying ∫

0

h(r)
dr

r
<∞,

and that A(Dψ) has Dini mean oscillation, which means that∫
0

[ω(r)]
1

max{p′,2}
dr

r
<∞, where ω(r) := sup

y∈Ω

∫
Br(y)

ϕ∗(|A(Dψ)−(A(Dψ))Br(y)|) dx.

Then Du is continuous in Ω.
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4.1.2 Reverse Hölder’s inequalities for homogeneous
obstacle problems

We start this section with the following comparison principle from [189,
Lemma 2.1], which enables us to establish comparison estimates between
obstacle problems and obstacle-free problems.

Lemma 4.1.7. Assume that O ⊂ Rn is a bounded domain and that the
vector field A : Rn → Rn satisfies (2.8) with p > 1. Then for functions
w,ψ ∈ W 1,p(O) that satisfy{

−divA(Dw) ≥ −divA(Dψ) in O,
w ≥ ψ on ∂O

in the weak sense, there holds w ≥ ψ a.e. in O.

We use the following notations for the admissible sets of OP (ψ;µ): given
an open set O ⊆ Ω, we denote

Aψ(O) :=
{
φ ∈ W 1,p(O) : φ ≥ ψ a.e. in O

}
and

Agψ(O) :=
{
φ ∈ g +W 1,p

0 (O) : φ ≥ ψ a.e. in O
}

for g ∈ Aψ(O).

We aim to prove reverse Hölder type inequalities for the following homo-
geneous obstacle problem:

∫
Ω

A(Dw1) ·D(φ− w1) dx ≥ 0 ∀ φ ∈ Aw1
ψ (Ω),

w1 ≥ ψ a.e. in Ω.

(4.9)

In order to establish various estimates suitable in the setting of measure
data problems, we need certain reverse Hölder type inequalities. We first
recall such results for obstacle-free problems, see [100, Lemma 3.2] and [100,
Corollary 3.5] for the proof. Moreover, using the self-improving property of
reverse Hölder’s inequalities such as the one in [118, Remark 6.12], we state
them as follows:
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Lemma 4.1.8. Let w2 ∈ W 1,p
loc (Ω) be a weak solution to

− divA(Dw2) = −divA(Dψ) in Ω, (4.10)

under assumptions (2.8) with p > 1. Then for any σ ∈ (0, 1) there exists a
constant c ≡ c(data, σ) such that∫

B

|V (Dw2)− V (z0)|2 dx ≤ c

(∫
2B

|V (Dw2)− V (z0)|2σ dx
) 1

σ

+ c

∫
2B

(ϕ|z0|)
∗(|A(Dψ)− A(ξ0)|) dx

holds for every z0, ξ0 ∈ Rn, whenever 2B b Ω. Moreover, there exists a
constant c ≡ c(data) such that∫

B

|V (Dw2)− V (z0)|2 dx ≤ c(ϕ|z0|)
∗
(∫

2B

|A(Dw2)− A(z0)| dx
)

+ c

∫
2B

(ϕ|z0|)
∗(|A(Dψ)− A(ξ0)|) dx

holds for every z0, ξ0 ∈ Rn, whenever 2B b Ω.

In addition to Lemma 4.1.8, we need to establish similar reverse Hölder’s
inequalities for (4.9) as well. Note that, due to the obstacle constraint, we
cannot use the same test functions as in the proof of Lemma 4.1.8 to prove
Lemma 4.1.9 below. To overcome this, we first obtain a Caccioppoli type
estimate for comparison maps involving (4.10), and then use a comparison
estimate in Lemma 4.1.14 between (4.9) and (4.10). We remark that we will
prove Lemma 4.1.14 without using any of the lemmas in this section.

Lemma 4.1.9. Let w1 ∈ Aψ(Ω) be a weak solution to (4.9) under assump-
tions (2.8) with p > 1. Then for any σ ∈ (0, 1) there exists a constant
c ≡ c(data, σ) such that∫

B

|V (Dw1)− V (z0)|2 dx ≤ c

(∫
2B

|V (Dw1)− V (z0)|2σ dx
) 1

σ

+ c

∫
2B

(ϕ|z0|)
∗(|A(Dψ)− A(ξ0)|) dx (4.11)
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holds for every z0, ξ0 ∈ Rn, whenever 2B b Ω. Moreover, there exists a
constant c ≡ c(data) such that∫

B

|V (Dw1)− V (z0)|2 dx ≤ c(ϕ|z0|)
∗
(∫

2B

|A(Dw1)− A(z0)| dx
)

+ c

∫
2B

(ϕ|z0|)
∗(|A(Dψ)− A(ξ0)|) dx (4.12)

holds for every z0, ξ0 ∈ Rn, whenever 2B b Ω.

Proof. By a standard scaling argument, we may assume that B = B1/2(0).

For each 1/2 < r ≤ 1 we consider the weak solution w2,r ∈ w1 +W 1,p
0 (Br) to{

−divA(Dw2,r) = −divA(Dψ) in Br,

w2,r = w1 on ∂Br.
(4.13)

We take a number ρ such that 1/2 ≤ ρ < r and a cut-off function η ∈ C∞0 (Br)
such that 0 ≤ η ≤ 1, η ≡ 1 in Bρ and |Dη| ≤ 4/(r − ρ). We test (4.13) with

(w2,r − (w2,r)Br − z0 · x)η`, where ` := max{p, 2},

and estimate in a standard way∫
Br

|V (Dw2,r)− V (z0)|2η` dx

≤ c

∫
Br

(A(Dw2,r)− A(z0)) · (Dw2,r − z0)η` dx

≤ c

∫
Br

|A(Dw2,r)− A(z0)||Dη|η`−1|w2,r − (w2,r)Br − z0 · x| dx

+ c

∫
Br

|A(Dψ)− A(ξ0)||D[(w2,r − (w2,r)Br − z0 · x)η`]| dx

≤ c

∫
Br

|A(Dw2,r)− A(z0)| |w2,r − (w2,r)Br − z0 · x|
r − ρ

η`−1 dx

+ c

∫
Br

|A(Dψ)− A(ξ0)| |w2,r − (w2,r)Br − z0 · x|
r − ρ

η`−1 dx

+ c

∫
Br

|A(Dψ)− A(ξ0)||Dw2,r − z0|η` dx.
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Using Young’s inequality (2.15) with the Young function ϕ|z0|(·) and reab-
sorbing terms into the left-hand side, we obtain the following Caccioppoli
type estimate:∫

Bρ

|V (Dw2,r)− V (z0)|2 dx

≤ c

(
r

r − ρ

)` ∫
Br

ϕ|z0|

(
|w2,r − (w2,r)Br − z0 · x|

r

)
dx

+ c

∫
Br

(ϕ|z0|)
∗(|A(Dψ)− A(ξ0)|) dx.

Now, using the triangle inequality twice, we find∫
Bρ

|V (Dw1)− V (z0)|2 dx

≤ 2

∫
Bρ

|V (Dw2,r)− V (z0)|2 dx+ 2

∫
Bρ

|V (Dw1)− V (Dw2,r)|2 dx

≤ c

(
r

r − ρ

)` ∫
Br

ϕ|z0|

(
|w1 − (w1)Br − z0 · x|

r

)
dx

+ c

(
r

r − ρ

)` ∫
Br

ϕ|z0|

(
|w1 − w2,r − (w1)Br + (w2)Br |

r

)
dx

+ c

∫
Br

|V (Dw1)− V (Dw2,r)|2 dx+ c

∫
Br

(ϕ|z0|)
∗(|A(Dψ)− A(ξ0)|) dx.

Then we apply Lemma 2.2.2 and Hölder’s inequality to obtain∫
Bρ

|V (Dw1)− V (z0)|2 dx

≤ c

(
r

r − ρ

)` ∫
Br

ϕ|z0|

(
|w1 − (w1)Br − z0 · x|

r

)
dx

+ c

(
r

r − ρ

)` ∫
Br

ϕ|z0|(|Dw1 −Dw2,r|) dx

+ c

∫
Br

|V (Dw1)− V (Dw2,r)|2 dx+ c

∫
Br

(ϕ|z0|)
∗(|A(Dψ)− A(ξ0)|) dx.

(4.14)
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Here, denoting m := min{p, 2}, we have

ϕ|z0|(|Dw1 −Dw2,r|)
(2.18)

≤ c

(
r

r − ρ

)`(m′−1)

ε1−m′ϕ|Dw1|(|Dw1 −Dw2,r|)

+

(
r

r − ρ

)−`
ε|V (Dw1)− V (z0)|2

(2.17)

≤ c

(
r

r − ρ

)`(m′−1)

ε1−m′ |V (Dw1)− V (Dw2,r)|2

+

(
r

r − ρ

)−`
ε|V (Dw1)− V (z0)|2

for any ε ∈ (0, 1]. Plugging this into (4.14) yields∫
Bρ

|V (Dw1)− V (z0)|2 dx

≤ c

(
r

r − ρ

)` ∫
Br

ϕ|z0|

(
|w1 − (w1)Br − z0 · x|

r

)
dx

+ cε1−m′
(

r

r − ρ

)`m′ ∫
Br

|V (Dw1)− V (Dw2,r)|2 dx

+ cε

∫
Br

|V (Dw1)− V (z0)|2 dx+ c

∫
Br

(ϕ|z0|)
∗(|A(Dψ)− A(ξ0)|) dx.

(4.15)

To proceed further, we now use the following comparison estimate from
Lemma 4.1.14 below:∫

Br

|V (Dw1)− V (Dw2,r)|2 dx

≤ ε̃

∫
Br

|V (Dw1)− V (z0)|2 dx+ cε̃1−`
∫
Br

(ϕ|z0|)
∗(|A(Dψ)− A(ξ0)|) dx,

which holds with any ε̃ ∈ (0, 1]. Choosing

ε̃ =

(
r

r − ρ

)−`m′
εm
′
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for ε ∈ (0, 1] as in the above, and connecting the resulting estimate to (4.15),
we find ∫

Bρ

|V (Dw1)− V (z0)|2 dx

≤ c

(
r

r − ρ

)` ∫
Br

ϕ|z0|

(
|w1 − (w1)Br − z0 · x|

r

)
dx

+ cε1−`m′
(

r

r − ρ

)`2m′ ∫
Br

(ϕ|z0|)
∗(|A(Dψ)− A(ξ0)|) dx

+ 2cε

∫
Br

|V (Dw1)− V (z0)|2 dx.

Now we choose ε = 1/4c and use Lemma 2.2.2 for the first term in the
right-hand side in order to have∫

Bρ

|V (Dw1)− V (z0)|2 dx ≤ 1

2

∫
Br

|V (Dw1)− V (z0)|2 dx

+
c

(r − ρ)`

(∫
B1

|V (Dw1)− V (z0)|2ϑ dx
) 1

ϑ

+
c

(r − ρ)`2m′

∫
B1

(ϕ|z0|)
∗(|A(Dψ)− A(ξ0)|) dx

(4.16)

for any 1/2 ≤ ρ < r ≤ 1, where ϑ = ϑ(data) ∈ (0, 1) is the constant in
Lemma 2.2.2 when Φ = ϕ|z0|. Then Lemma 2.3.12 gives (4.11) in the case
σ = ϑ. For lower values of σ it again follows from the self-improving property
[118, Remark 6.12]. Finally, (4.12) is obtained in the same way as in [100].

4.1.3 Basic comparison estimates

In this section we derive several comparison estimates. Here we assume that

µ ∈ W−1,p′(Ω) ∩ L1(Ω), u ∈ Agψ(Ω). (4.17)

This assumption will be removed in Section 4.1.7 below.
For a fixed ball B4R b Ω, we first consider the homogeneous obstacle
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problem 
∫
B4R

A(Dw1) ·D(φ− w1) dx ≥ 0 ∀ φ ∈ Auψ(B4R),

w1 ≥ ψ a.e. in B4R,

w1 = u on ∂B4R.

(4.18)

We start with a weighted type energy estimate.

Lemma 4.1.10. Let u ∈ Agψ(Ω) be the weak solution to (4.2) under assump-
tions (2.8) and (4.1), and let w1 ∈ Auψ(B4R) be as in (4.18). Then∫

B4R

|V (Du)− V (Dw1)|2

(h+ |u− w1|)ξ
dx ≤ c

h1−ξ

ξ − 1
|µ|(B4R) (4.19)

holds whenever h > 0 and ξ > 1, where c ≡ c(n, p, ν).

Proof. Estimate (4.19) is exactly the same as the one in [146, Lemma 1].
However, the test functions used in its proof are not available here, since they
are not guaranteed to belong to the admissible set in our obstacle problems.
Hence we need to modify the test functions. We consider

η± :=
1

ξ − 1

[
1−

(
1 +

(u− w1)±
h

)1−ξ
]
∈ W 1,p

0 (B4R) ∩ L∞(B4R).

Note in particular that η± ≥ 0. Also, by applying the mean value theorem
to the function t 7→ t1−ξ/(ξ − 1), we have

η±(x) =
(u− w1)±(x)

h
(h̃±(x))−ξ for some 1 ≤ h̃±(x) ≤ 1 +

(u− w1)±(x)

h

whenever x ∈ B4R. Then it follows that

u− hη+ = u− (h̃+)−ξ(u− w1)+ ≥ u− (u− w1)+ = min{u,w1} ≥ ψ,

w1 − hη− = w1 − (h̃−)−ξ(u− w1)− ≥ w1 − (u− w1)− = min{u,w1} ≥ ψ

a.e. in B4R. Therefore, the functions u ± hη∓ and w1 ± hη± belong to the
admissible set.
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We now test the weak formulations∫
B4R

A(Du) ·D(φ− u) dx ≥
∫
B4R

(φ− u) dµ

and ∫
B4R

A(Dw1) ·D(φ− w1) dx ≥ 0

with φ ≡ u± hη∓ and φ ≡ w1 ± hη±, respectively. Then it follows that∫
B4R

A(Du) ·D(u− w1)+

(h+ (u− w1)+)ξ
dx ≤

∫
B4R

h1−ξη+ dµ,∫
B4R

A(Dw1) ·D(u− w1)+

(h+ (u− w)+)ξ
dx ≥ 0

(4.20)

and ∫
B4R

A(Du) ·D(u− w1)−
(h+ (u− w1)−)ξ

dx ≥
∫
B4R

h1−ξη− dµ,∫
B4R

A(Dw1) ·D(u− w1)−
(h+ (u− w1)−)ξ

dx ≤ 0.

(4.21)

Hence, we estimate the difference of two integrals in each of (4.20) and (4.21)
by using (2.11), in order to obtain∫

B4R∩{u≥w1}

|V (Du)− V (Dw1)|2

(h+ |u− w1|)ξ
dx ≤ c

∣∣∣∣∫
B4R

h1−ξη+ dµ

∣∣∣∣ ≤ c
h1−ξ

ξ − 1
|µ|(B4R)

and∫
B4R∩{u<w1}

|V (Du)− V (Dw1)|2

(h+ |u− w1|)ξ
dx ≤ c

∣∣∣∣∫
B4R

h1−ξη− dµ

∣∣∣∣ ≤ c
h1−ξ

ξ − 1
|µ|(B4R).

Combining the last two estimates finally gives (4.19).

Once we have estimate (4.19), we can obtain the following comparison
estimate between (4.2) and (4.18), which is standard in measure data prob-
lems; see for example [144, 146]. We also refer to [189, Lemma 3.5] for another
proof.
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Lemma 4.1.11. Let u ∈ Agψ(Ω) be the weak solution to (4.2) under as-
sumptions (2.8) and (4.1), and let w1 ∈ Auψ(B4R) be as in (4.18). Then for
every

1 ≤ q < min

{
p,
n(p− 1)

n− 1

}
,

there exists a constant c ≡ c(data, q) such that∫
B4R

(
|Du−Dw1|q + |V (Du)− V (Dw1)|

2q
p

)
dx

≤ c

[
|µ|(B4R)

(4R)n−1

] q
p−1

+ cχ{p<2}

[
|µ|(B4R)

(4R)n−1

]q (∫
B4R

(|Du|+ s)q dx

)2−p

.

(4.22)

In the case 2 − 1/n < p < 2 we need a modified version of the above
lemma, that will be actually used with q = p − 1 < 1. For this, we need
to establish a reverse Hölder type inequality for (4.2). We proceed with an
additional argument based on the proof of [143, Proposition 4.1], alongside
Lemma 4.1.9.

Lemma 4.1.12. Let u ∈ Agψ(Ω) be the weak solution to (4.2) under assump-
tions (2.8) with 2 − 1/n < p < 2. Then for every t ∈ (0, 1) there exists a
constant c ≡ c(data, t) such that∫

Br̃/2

(|Du|+ s) dx ≤ c

(∫
Br̃

(|Du|+ s)t dx

) 1
t

+ c

[
|µ|(Br̃)

r̃n−1

] 1
p−1

+ c

(∫
Br̃

ϕ∗(|A(Dψ)− (A(Dψ))Br̃ |) dx
) 1

p

(4.23)

holds whenever Br̃/2 ⊂ Br̃ ⊂ Ω are concentric balls.

Proof. We may assume that r̃ = 1 by the standard scaling argument. For
each 1/2 < r ≤ 1, we consider the weak solution w1,r ∈ Auψ(Br) to∫

Br

A(Dw1,r) ·D(φ− w1,r) dx ≥ 0 ∀ φ ∈ Auψ(Br).
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Using Lemma 4.1.11 and Young’s inequality, we have for any ε ∈ (0, 1)∫
Br

|Du−Dw1,r| dx

≤ crn−
n−1
p−1 [|µ|(Br)]

1
p−1 + cr1−n(2−p)[|µ|(Br)]

(∫
Br

(|Du|+ s) dx

)2−p

≤ cε−
2−p
p−1 rn−

n−1
p−1 [|µ|(Br)]

1
p−1 + ε

∫
Br

(|Du|+ s) dx. (4.24)

Now we take ρ such that 1/2 ≤ ρ < r. Moreover we recall (4.16), but here
with a different choice of parameters ρ ≤ ρ̃ < r̃ ≤ r and z0 = 0. By applying
Lemma 2.3.12 for these parameters, we have∫

Bρ

(|Dw1,r|+ s)p dx ≤ c

(r − ρ)2

(∫
Br

(|Dw1,r|+ s)pϑ dx

) 1
ϑ

+
c

(r − ρ)4p′

∫
Br

ϕ∗(|A(Dψ)− A(ξ0)|) dx

for some ϑ ∈ (0, 1). At this moment, a slightly modified version of the self-
improving property given in [142, Lemma 5.1] implies that for any t > 0(∫

Bρ

(|Dw1,r|+ s)p dx

) 1
p

≤ c

(r − ρ)ξ1

(∫
Br

(|Dw1,r|+ s)t dx

) 1
t

+
c

(r − ρ)ξ2

(∫
Br

ϕ∗(|A(Dψ)− A(ξ0)|) dx
) 1

p

,

where ξ1, ξ2 > 0 depend only on n, p and t. Using this inequality, we estimate∫
Bρ

(|Du|+ s) dx ≤
∫
Bρ

(|Dw1,r|+ s) dx+

∫
Bρ

|Du−Dw1,r| dx

≤ c

(r − ρ)ξ1

[(∫
Br

(|Du|+ s)t dx

) 1
t

+

∫
Br

|Du−Dw1,r| dx

]

+
c

(r − ρ)ξ2

(∫
Br

ϕ∗(|A(Dψ)− A(ξ0)|) dx
) 1

p
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(4.24)

≤ c

(r − ρ)ξ1

(∫
B1

(|Du|+ s)t dx

) 1
t

+
cε

(r − ρ)ξ1

∫
Br

(|Du|+ s) dx

+
cε−

2−p
p−1

(r − ρ)ξ1
[|µ|(B1)]

1
p−1 +

c

(r − ρ)ξ2

(∫
B1

ϕ∗(|A(Dψ)− A(ξ0)|) dx
) 1

p

.

Now we choose ε = (r − ρ)ξ1/2c to see that∫
Bρ

(|Du|+ s) dx

≤ 1

2

∫
Br

(|Du|+ s) dx+
c

(r − ρ)ξ1

(∫
B1

(|Du|+ s)t dx

) 1
t

+
c

(r − ρ)
ξ1
p−1

[|µ|(B1)]
1
p−1 +

c

(r − ρ)ξ2

(∫
B1

ϕ∗(|A(Dψ)− A(ξ0)|) dx
) 1

p

holds whenever 1/2 ≤ ρ < r < 1. Applying Lemma 2.3.12 yields the desired
estimate.

Lemma 4.1.13. Let u ∈ Agψ(Ω) be the weak solution to (4.2) under assump-
tions (2.8) with 2 − 1/n < p < 2, and let w1 ∈ Auψ(B4R) be as in (4.18). If
B8R b Ω, then we have∫

B4R

(
|Du−Dw1|q + |V (Du)− V (Dw1)|

2q
p

)
dx

≤ c

[
|µ|(B8R)

(8R)n−1

] q
p−1

+ c

[
|µ|(B8R)

(8R)n−1

]q (∫
B8R

(|Du|+ s)t dx

) q(2−p)
t

+ c

[
|µ|(B8R)

(8R)n−1

]q (∫
B8R

ϕ∗(|A(Dψ)− (A(Dψ))B8R
|) dx

) q(2−p)
p

(4.25)

for every q ∈ (0, 1] and t ∈ (0, q], where c ≡ c(data, q, t).

Proof. It suffices to consider only the case q = 1, since the estimate for lower
values of q follows from Hölder’s inequality. We apply Lemma 4.1.12 with
Br̃ ≡ B8R to have[

|µ|(B4R)

(4R)n−1

](∫
B4R

(|Du|+ s) dx

)2−p
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(4.23)

≤ c

[
|µ|(B8R)

(8R)n−1

](∫
B8R

(|Du|+ s)t dx

) 2−p
t

+ c

[
|µ|(B8R)

(8R)n−1

]1+ 2−p
p−1

+ c

[
|µ|(B8R)

(8R)n−1

](∫
B8R

ϕ∗(|A(Dψ)− (A(Dψ))B8R
|) dx

) 2−p
p

= c

[
|µ|(B8R)

(8R)n−1

](∫
B8R

(|Du|+ s)t dx

) 2−p
t

+ c

[
|µ|(B8R)

(8R)n−1

] 1
p−1

+ c

[
|µ|(B8R)

(8R)n−1

](∫
B8R

ϕ∗(|A(Dψ)− (A(Dψ))B8R
|) dx

) 2−p
p

.

Plugging this into (4.22), we get the desired estimate.

Next, we also consider the obstacle-free problem{
−divA(Dw2) = −divA(Dψ) in B2R,

w2 = w1 on ∂B2R,
(4.26)

and the limiting problem{
−divA(Dv) = 0 in BR,

v = w2 on ∂BR.
(4.27)

Lemma 4.1.14. Let w1, w2, and v be defined as above, under assumptions
(2.8) with p > 1. Then both∫
BR

|V (Dw1)− V (Dv)|2 dx ≤ ε

∫
B2R

|V (Dw1)− V (z0)|2 dx

+ cε1−max{p,2}
∫
B2R

(ϕ|z0|)
∗(|A(Dψ)− A(ξ0)|) dx

and∫
BR

|V (Dw1)− V (Dv)|2 dx ≤ ε(ϕ|z0|)
∗
(∫

B4R

|A(Dw1)− A(z0)| dx
)

+ cε1−max{p,2}
∫
B4R

(ϕ|z0|)
∗(|A(Dψ)− A(ξ0)|) dx

hold for a constant c ≡ c(data), whenever z0, ξ0 ∈ Rn and ε ∈ (0, 1).
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Proof. We only prove the first estimate, which with Lemma 4.1.9 directly
implies the second one. We test (4.18) and (4.26) with w2 ∈ Aw1

ψ (B2R) and

w2 − w1 ∈ W 1,p
0 (B2R), respectively, in order to have∫

B2R

|V (Dw1)− V (Dw2)|2 dx

(2.11)

≤ c

∫
B2R

(A(Dw2)− A(Dw1)) · (Dw2 −Dw1) dx

≤ c

∫
B2R

|A(Dψ)− A(ξ0)||Dw1 −Dw2| dx.

Applying Young’s inequality (2.15) with the Young function ϕ|Dw1|(·) and
reabsorbing terms, we obtain∫

B2R

|V (Dw1)− V (Dw2)|2 dx ≤ c

∫
B2R

(ϕ|Dw1|)
∗(|A(Dψ)− A(ξ0)|) dx.

In a similar way, as for (4.26) and (4.27), we have∫
BR

|V (Dw2)− V (Dv)|2 dx ≤ c

∫
BR

(ϕ|Dw2|)
∗(|A(Dψ)− A(ξ0)|) dx

(2.18)

≤ c

∫
BR

(ϕ|Dw1|)
∗(|A(Dψ)− A(ξ0)|) dx+ c

∫
BR

|V (Dw1)− V (Dw2)|2 dx.

Combining the above two displays and applying (2.18) again, we find∫
BR

|V (Dw1)− V (Dv)|2 dx ≤ c

∫
B2R

(ϕ|Dw1|)
∗(|A(Dψ)− A(ξ0)|) dx

≤ ε

∫
B2R

|V (Dw1)− V (z0)|2 dx

+ cε1−max{p,2}
∫
B2R

(ϕ|z0|)
∗(|A(Dψ)− A(ξ0)|) dx

for any ε ∈ (0, 1], as desired.

We also note another simple comparison estimate in the case p ≥ 2.
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Lemma 4.1.15. Let w1 and v be as in (4.18) and (4.27), respectively, under
assumptions (2.8) with p ≥ 2. Then we have∫

BR

(
|Dw1 −Dv|p + |V (Dw1)− V (Dv)|2

)
dx

≤ c

∫
B2R

ϕ∗(|A(Dψ)− A(ξ0)|) dx (4.28)

for a constant c ≡ c(data), whenever ξ0 ∈ Rn.

Proof. We recall the following estimate in the proof of Lemma 4.1.14:∫
BR

|V (Dw1)− V (Dv)|2 dx ≤ c

∫
B2R

(ϕ|Dw1|)
∗(|A(Dψ)− A(ξ0)|) dx, (4.29)

which holds whenever p > 1. Now, for p ≥ 2 we use (2.10) and the fact that
(ϕa)

∗(t) . ϕ∗(t) holds for a, t ≥ 0, to derive (4.28).

To proceed further, we consider additional comparison maps. In the fol-
lowing, we fix a ball

B4MR = B4MR(x0) b Ω with M ≥ 8 and R ≤ 1, (4.30)

where M is a free parameter whose relevant value will be determined in the
next section.

We then define comparison maps. The first one is the weak solution w1,∗ ∈
Auψ(B4MR) to

∫
B4MR

A(Dw1,∗) ·D(φ− w1,∗) dx ≥ 0 ∀ φ ∈ Aw1,∗
ψ (B4MR),

w1,∗ ≥ ψ a.e. in B4MR,

w1,∗ = u on ∂B4MR.

Accordingly, w2,∗ ∈ w1,∗ +W 1,p
0 (B2MR) is defined as the weak solution to{

−divA(Dw2,∗) = −divA(Dψ) in B2MR,

w2,∗ = w1,∗ on ∂B2MR.

The last one is v∗ ∈ w2,∗ +W 1,p
0 (BMR) which is defined as the weak solution
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to {
−divA(Dv∗) = 0 in BMR,

v∗ = w2,∗ on ∂BMR.

The following lemma will play a crucial role in the linearization procedure
in the case p > 2. We note that, in contrast with the results in [61, 62, 146],
the weak solutions w1,∗ and w2,∗ do not in general enjoy the C1-regularity
unless Dψ is Dini continuous, see [179]. In this situation, we instead use the
C1-regularity of v∗ as in [55, Lemma 4.3].

Lemma 4.1.16. Let u ∈ Agψ(Ω) be the weak solution to (4.2) under assump-
tions (2.8) with p ≥ 2, and let w1,∗, w2,∗, v∗ be the functions defined in the
above display. Suppose further that[

|µ|(B4MR)

(4MR)n−1

] 1
p−1

+

(∫
B4MR

ϕ∗(|A(Dψ)− (A(Dψ))B4MR
|) dx

) 1
p

≤ Hλ

(4.31)
holds for some constants λ > 0 and H ≥ 1, together with the bounds

λ

H
≤ |Dv∗|+ s ≤ Hλ in B4R. (4.32)

Then there exists a constant c ≡ c(data,M,H) such that∫
B4R

|Du−Dw1| dx

≤ cλ2−p
[
|µ|(B4MR)

(4MR)n−1

]
+ cλ2−p

(∫
B4MR

ϕ∗(|A(Dψ)− (A(Dψ))B4MR
|) dx

) 1
p′

.

(4.33)

Proof. When p = 2, (4.33) is a direct consequence of Lemma 4.1.13. Therefore
we will assume p > 2 in the rest of the proof. We fix the numbers

γ :=
1

4(p− 1)(n+ 1)
and ξ := 1 + 2γ.

We also set

w̄1 :=
w1

λ
, w̄1,∗ :=

w1,∗

λ
, v̄ :=

v

λ
, v̄∗ :=

v∗
λ
, and s̄ :=

s

λ
,
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and then estimate the left-hand side in (4.33) as follows:∫
B4R

|Du−Dw1| dx
(4.32)

≤ H(p−2)(1+γ)

∫
B4R

(|Dv̄∗|+ s̄)(p−2)(1+γ)|Du−Dw1| dx

≤ c

∫
B4R

|Dv̄∗ −Dw̄1|(p−2)(1+γ)|Du−Dw1| dx

+ c

∫
B4R

(|Dw̄1|+ s̄)(p−2)(1+γ)|Du−Dw1| dx

=: I1 + I2. (4.34)

To estimate I1, we use Lemmas 4.1.15 and 4.1.11 with any q ≤ ξ(p − 1) in
order to infer that∫
B4R

|Dv̄∗ −Dw̄1|q dx

≤ cλ−q
∫
BMR

|Dv∗ −Dw1,∗|q dx+ cλ−q
∫
B4MR

|Dw1,∗ −Du|q dx

+ cλ−q
∫
B4R

|Du−Dw1|q dx

≤ cλ−q
(∫

B4MR

ϕ∗(|A(Dψ)− (A(Dψ))B4MR
|) dx

) q
p

+ cλ−q
[
|µ|(B4MR)

(4MR)n−1

] q
p−1

≤ c

[
|µ|(B4MR)

λp−1(4MR)n−1

] q
p−1

+

(
1

λp

∫
B4MR

ϕ∗(|A(Dψ)− (A(Dψ))B4MR
|) dx

) q
p

.

(4.35)

Then, using Hölder’s inequality and once again Lemma 4.1.11, it follows that

I1 ≤ c

(∫
B4R

|Dv̄∗ −Dw̄1|(p−1)(1+γ) dx

) p−2
p−1
(∫

B4R

|Du−Dw1|p−1 dx

) 1
p−1

≤ c

[
|µ|(B4MR)

(4MR)n−1

] 1
p−1

{[
|µ|(B4MR)

λp−1(4MR)n−1

]

+

(
1

λp

∫
B4MR

ϕ∗(|A(Dψ)− (A(Dψ))B4MR
|) dx

) 1
p′
} (p−2)(1+γ)

p−1
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≤ cλ

{[
|µ|(B4MR)

λp−1(4MR)n−1

]

+

(
1

λp

∫
B4MR

ϕ∗(|A(Dψ)− (A(Dψ))B4MR
|) dx

) 1
p′
} (p−2)(1+γ)+1

p−1

≤ cλ

{[
|µ|(B4MR)

λp−1(4MR)n−1

]
+

(
1

λp

∫
B4MR

ϕ∗(|A(Dψ)− (A(Dψ))B4MR
|) dx

) 1
p′
}

= cλ2−p

{[
|µ|(B4MR)

(4MR)n−1

]
+

(∫
B4MR

ϕ∗(|A(Dψ)− (A(Dψ))B4MR
|) dx

) 1
p′
}
,

(4.36)

where we have used (4.31) and the fact that

(1 + γ)(p− 2) + 1 > p− 1.

We next estimate I2. Applying Hölder’s inequality and (4.19), and recalling
that ξ = 1 + 2γ, we have for any h > 0 that

I2 ≤ c

∫
B4R

[
λ2−p (|Dw1|+ |Du|+ s)p−2|Du−Dw1|2

(h+ |u− w1|)ξ

] 1
2

·
[
(|Dw̄1|+ s̄)(p−2)(1+2γ)(h+ |u− w1|)ξ

] 1
2 dx

≤ c

∫
B4R

[
λ2−p |V (Du)− V (Dw1)|2

(h+ |u− w1|)ξ

] 1
2

·
[
(|Dw̄1|+ s̄)(p−2)ξ(h+ |u− w1|)ξ

] 1
2 dx

≤ c

(
λ2−p

∫
B4R

|V (Du)− V (Dw1)|2

(h+ |u− w1|)ξ
dx

) 1
2

·
(∫

B4R

(|Dw̄1|+ s̄)(p−2)ξ(h+ |u− w1|)ξ dx
) 1

2

≤ cλ
2−p

2

[
h1−ξ |µ|(B4R)

Rn

] 1
2
(∫

B4R

(|Dw̄1|+ s̄)(p−2)ξ(h+ |u− w1|)ξ dx
) 1

2

.

(4.37)
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Now we choose

h :=

(∫
B4R

(|Dw̄1|+ s̄)(p−2)ξ|u− w1|ξ dx
) 1

ξ

+ δ (4.38)

for δ > 0 sufficiently small, thereby obtaining(∫
B4R

(|Dw̄1|+ s̄)(p−2)ξ(h+ |u− w1|)ξ dx
) 1

2

≤ ch
ξ
2

(∫
B4R

(|Dw̄1|+ s̄)(p−2)ξ dx

) 1
2

+ ch
ξ
2 .

We note that the role of δ in (4.38) is just to guarantee that h > 0; we shall
eventually let δ → 0 at the end of the proof. Also, (4.35) and (4.32) imply∫

B4R

(|Dw̄1|+ s̄)(p−2)ξ dx

≤ c

∫
B4R

|Dw̄1 −Dv̄∗|(p−2)ξ dx+ c

∫
B4R

(|Dv̄∗|+ s̄)(p−2)ξ dx

≤ c

(
1

λp

∫
B4MR

ϕ∗(|A(Dψ)− (A(Dψ))B4MR
|) dx

) (p−2)ξ
p

+ c

[
|µ|(B4MR)

λp−1(4MR)n−1

] (p−2)ξ
p−1

+ cH(p−2)ξ

≤ c,

which gives (∫
B4R

(|Dw̄1|+ s̄)(p−2)ξ(h+ |u− w1|)ξ dx
) 1

2

≤ ch
ξ
2

for a constant c ≡ c(data,M,H). Plugging this into (4.37) and applying
Young’s inequality, we have

I2 ≤ c

(
h

R

) 1
2
[
|µ|(B4R)

λp−2Rn−1

] 1
2

≤ cλ2−p

ε

[
|µ|(B4MR)

(4MR)n−1

]
+
εh

R
(4.39)
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whenever ε ∈ (0, 1), where c ≡ c(data,M,H).
Finally, it remains to estimate h. We estimate

h ≤ c

(∫
B4R

|Dv̄∗ −Dw̄1|(p−2)ξ|u− w1|ξ dx
) 1

ξ

+ c

(∫
B4R

(|Dv̄∗|+ s̄)(p−2)ξ|u− w1|ξ dx
) 1

ξ

+ δ

=: I3 + I4 + δ. (4.40)

Using (4.22) and (4.35), I3 is estimated as

I3 ≤ c

(∫
B4R

|Dv̄∗ −Dw̄1|ξ(p−1) dx

) p−2
ξ(p−1)

(∫
B4R

|u− w1|ξ(p−1) dx

) 1
ξ(p−1)

≤ cR

{[
|µ|(B4MR)

λp−1(4MR)n−1

]
+

(
1

λp

∫
B4MR

ϕ∗(|A(Dψ)− (A(Dψ))B4MR
|) dx

) 1
p′
} p−2

p−1

·
(∫

B4R

|Du−Dw1|ξ(p−1) dx

) 1
ξ(p−1)

≤ cR

{[
|µ|(B4MR)

λp−1(4MR)n−1

]
+

(
1

λp

∫
B4MR

ϕ∗(|A(Dψ)− (A(Dψ))B4MR
|) dx

) 1
p′
} p−2

p−1

·
[
|µ|(B4R)

(4R)n−1

] 1
p−1

≤ cRλ

{[
|µ|(B4MR)

λp−1(4MR)n−1

]
+

(
1

λp

∫
B4MR

ϕ∗(|A(Dψ)− (A(Dψ))B4MR
|) dx

) 1
p′
}

= cRλ2−p

{[
|µ|(B4MR)

(4MR)n−1

]
+

(∫
B4MR

ϕ∗(|A(Dψ)− (A(Dψ))B4MR
|) dx

) 1
p′
}
.

(4.41)

We now estimate I4 by using (4.22) and applying (4.32) repeatedly as follows:

I4 ≤ cHp−2

(∫
B4R

|u− w1|ξ dx
) 1

ξ
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≤ cR

∫
B4R

|Du−Dw1| dx

≤ cH(p−2)(1+γ)R

∫
B4R

(|Dv̄∗|+ s̄)(p−2)(1+γ)|Du−Dw1| dx

≤ cR

∫
B4R

(|Dw̄1|+ s̄)(p−2)(1+γ)|Du−Dw1| dx

+ cR

∫
B4R

|Dv̄∗ −Dw̄1|(p−2)(1+γ)|Du−Dw1| dx.

Recalling (4.34)-(4.36), we have

I4 ≤ cRI2 + cRλ2−p
[
|µ|(B4MR)

(4MR)n−1

]
+ cRλ2−p

(∫
B4MR

ϕ∗(|A(Dψ)− (A(Dψ))B4MR
|) dx

) 1
p′

.

Combining this inequality with (4.40) and (4.41) yields

h

R
≤ c∗I2 + c∗λ

2−p
[
|µ|(B4MR)

(4MR)n−1

]
+ c∗λ

2−p
(∫

B4MR

ϕ∗(|A(Dψ)− (A(Dψ))B4MR
|) dx

) 1
p′

+
δ

R
,

where c∗ ≡ c∗(data, H,M). Plugging the last inequality into (4.39), choosing
ε = 1/(2c∗) and then reabsorbing terms lead to

I2 ≤ cλ2−p
[
|µ|(B4MR)

(4MR)n−1

]
+ cλ2−p

(∫
B4MR

ϕ∗(|A(Dψ)− (A(Dψ))B4MR
|) dx

) 1
p′

+
cδ

R
.

Merging this inequality with (4.34) and (4.36), and finally letting δ → 0,
(4.33) follows.

We also establish a linearized comparison estimate between (4.18) and
(4.27) in the case p ≤ 2.
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Lemma 4.1.17. Let w1 and v be as in (4.18) and (4.27), respectively, under
assumptions (2.8) with 1 < p ≤ 2. Then we have∫

BR

|A(Dw1)− A(Dv)| dx ≤ ε

∫
B4R

|A(Dw1)− (A(Dw1))B4R
| dx

+ cε

(∫
B4R

ϕ∗(|A(Dψ)− A(ξ0)|) dx
) 1

p′

(4.42)

for every ε ∈ (0, 1) and ξ0 ∈ Rn, where cε ≡ cε(data, ε) is proportional to
some negative power of ε.

Proof. We denote by WR the vector satisfying A(WR) = (A(Dw1))BR . Then

(ϕ|WR|)
∗
(∫

BR

|A(Dw1)− A(Dv)| dx
)
≤
∫
BR

(ϕ|WR|)
∗(|A(Dw1)− A(Dv)|) dx

(2.18)

≤ cγ1−`
1

∫
BR

(ϕ|Dw1|)
∗(|A(Dw1)− A(Dv)|) dx

+ γ1

∫
BR

|V (Dw1)− V (WR)|2 dx

(2.17)

≤ cγ1−`
1

∫
BR

|V (Dw1)− V (Dv)|2 dx+ γ1

∫
BR

|V (Dw1)− V (WR)|2 dx

for any γ1 ∈ (0, 1), where ` = max{p, 2}. We next apply Lemmas 4.1.14 and
4.1.9 to estimate each term in the right-hand side, thereby obtaining

(ϕ|WR|)
∗
(∫

BR

|A(Dw1)− A(Dv)| dx
)

≤ cγ1−`
1 γ2(ϕ|WR|)

∗
(∫

B4R

|A(Dw1)− (A(Dw1))BR | dx
)

+ cγ1−`
1 γ1−`

2

∫
B4R

(ϕ|WR|)
∗(|A(Dψ)− A(ξ0)|) dx

+ cγ1(ϕ|WR|)
∗
(∫

B2R

|A(Dw1)− (A(Dw1))BR | dx
)

+ cγ1

∫
B2R

(ϕ|WR|)
∗(|A(Dψ)− A(ξ0)|) dx
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for any γ2 ∈ (0, 1), where c ≡ c(data). Choosing γ2 = γ`1, we arrive at

(ϕ|WR|)
∗
(∫

BR

|A(Dw1)− A(Dv)| dx
)

≤ cγ1(ϕ|WR|)
∗
(∫

B4R

|A(Dw1)− (A(Dw1))B4R
| dx
)

+ cγ1−`2
1

∫
B4R

(ϕ|WR|)
∗(|A(Dψ)− A(ξ0)|) dx,

which holds whenever p > 1. Finally, when 1 < p ≤ 2, a direct calculation as
in [9, Lemma 2.13] gives

(ϕa)
∗
(
t

1
p′
)

(2.16)
≈
(

(a+ s)p−1 + t
1
p′
)p′−2

t
2
p′

≈

{
(a+ s)(p−1)(p′−2)t

2
p′ if t

1
p′ ≤ (a+ s)p−1,

t if t
1
p′ > (a+ s)p−1,

with the last function being concave. Namely, t 7→ [((ϕa)
∗)−1(t)]p

′
is quasi-

convex. Hence, choosing γ1 in a suitable way, applying Jensen’s inequality to
the last term and then using the fact that tp

′
. ϕ∗(t) for 1 < p ≤ 2, (4.42)

follows.

4.1.4 Linearized comparison estimates

In this section, we establish linearized comparison estimates between (4.2)
and (4.27). Throughout this section, we again assume (4.17) to ensure the
existence of weak solutions to (4.2).

4.1.5 The two-scales degenerate alternative

We first consider the situation when∫
B4MR

|A(Du)− (A(Du))B4MR
| dx ≥ θ

[
|(A(Du))BR/M |+ sp−1

]
(4.43)

holds for another free parameter θ ∈ (0, 1), where M is as in (4.30). The
values of M and θ will be determined in the next section; their specific values
do not affect the results in this section.
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We start by observing that∫
B4R

(|Du|2 + s2)
p−1

2 dx
(2.12)

≤ c

∫
B4R

(|A(Du)|+ sp−1) dx

≤ c

∫
B4R

|A(Du)− (A(Du))BR/M | dx+ c
[
|(A(Du))BR/M |+ sp−1

]
≤ cM2n

∫
B4MR

|A(Du)− (A(Du))B4MR
| dx+ c

[
|(A(Du))BR/M |+ sp−1

]
(4.43)

≤ cM2n

(
1 +

1

θ

)∫
B4MR

|A(Du)− (A(Du))B4MR
| dx (4.44)

holds with c ≡ c(data).

Lemma 4.1.18. Let θ ∈ (0, 1) be such that (4.43) holds and let M ≥ 8 be
as in (4.30). Then the inequality∫

BR

|A(Du)− A(Dv)| dx

≤ εM2n

(
1 +

1

θ

)∫
B4MR

|A(Du)− (A(Du))B4MR
| dx

+ cε

[
|µ|(B8R)

(8R)n−1

]
+ cε

(∫
B8R

ϕ∗(|A(Dψ)− (A(Dψ))B8R
|) dx

) 1
p′

(4.45)

holds for any ε ∈ (0, 1], where cε ≡ cε(data, ε) is proportional to some nega-
tive power of ε.

Proof. When p = 2, (4.45) follows immediately from (2.12), (4.22) and (4.28).
When p > 2, we use (2.12) and Young’s inequality to estimate∫

BR

|A(Du)− A(Dv)| dx

≤ c

∫
BR

(|Du|2 + s2)
p−2

2 |Du−Dv| dx+ c

∫
BR

|Du−Dv|p−1 dx

≤ ε

∫
BR

(|Du|2 + s2)
p−1

2 dx+ cε2−p
∫
BR

|Du−Dv|p−1 dx

for any ε ∈ (0, 1]. Then (4.22), (4.28) and (4.44) yield (4.45).
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When 2− 1/n < p < 2, we have∫
B4R

|A(Du)− A(Dw1)| dx
(2.12)

≤ c

∫
B4R

|Du−Dw1|p−1 dx

(4.25)

≤ c

[
|µ|(B8R)

(8R)n−1

]
+ c

[
|µ|(B8R)

(8R)n−1

]p−1(∫
B8R

(|Du|+ s)p−1 dx

)2−p

+

[
|µ|(B8R)

(8R)n−1

]p−1(∫
B8R

ϕ∗(|A(Dψ)− (A(Dψ))B8R
|) dx

) 2−p
p′

≤ ε

∫
B8R

(|Du|2 + s2)
p−1

2 dx+ cε
p−2
p−1

[
|µ|(B8R)

(8R)n−1

]
+ c

(∫
B8R

ϕ∗(|A(Dψ)− (A(Dψ))B8R
|) dx

) 1
p′

for any ε ∈ (0, 1], where we have applied Young’s inequality in the last line.
Combining this estimate with (4.42) and using (4.44), we obtain (4.45).

4.1.6 The two-scales non-degenerate alternative

Here we consider the situation when∫
B4MR

|A(Du)− (A(Du))B4MR
| dx < θ

[
|(A(Du))BR/M |+ sp−1

]
(4.46)

is assumed to hold for a number θ ∈ (0, 1). In the following, we denote

λ :=

(∫
BR/M

(|Du|2 + s2)
p−1

2 dx

) 1
p−1

. (4.47)

Then we have the following lemma.

Lemma 4.1.19. For every M ≥ 8 as in (4.30) and with λ defined as in
(4.47), there exists a number θ ≡ θ(M) such that if (4.46) is in force, then∫

BκR

(|Du|2 + s2)
p−1

2 dx ≤ cλp−1, ∀ κ ∈ [1/M, 4M ] (4.48)

holds for a constant c ≡ c(data).
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The proof of Lemma 4.1.19 is essentially the same as that of [7, Lemma 5.3].
We only note that in the proof the constant θ is chosen so small that

M2nθ ≤ 1. (4.49)

We now prove a non-degenerate counterpart of Lemma 4.1.18.

Lemma 4.1.20. It is possible to determine θ and M as functions of data
such that if (4.46) is in force, then there holds∫

BR/M

|A(Du)− A(Dv)| dx

≤ c

[
|µ|(B4MR)

(4MR)n−1

]
+ c

(∫
B4MR

ϕ∗(|A(Dψ)− (A(Dψ))B4MR
|) dx

) 1
p′

+ cχ{p>2}

(∫
B4MR

(|A(Du)|+ sp−1) dx

) p−2
2(p−1)

·
(∫

B4MR

ϕ∗(|A(Dψ)− (A(Dψ))B4MR
|) dx

) 1
2

(4.50)

for a constant c ≡ c(data).

In the proof of Lemma 4.1.20, we will distinguish two cases, making use
of another free parameter σ1 ∈ (0, 1). The first one is when the following
inequality holds:[

|µ|(B4MR)

(4MR)n−1

]
+

(∫
B4MR

ϕ∗(|A(Dψ)− (A(Dψ))B4MR
|) dx

) 1
p′

≤ σ1λ
p−1.

(4.51)
The second one is when the above inequality fails; that is,

λp−1 <
1

σ1

[
|µ|(B4MR)

(4MR)n−1

]
+

1

σ1

(∫
B4MR

ϕ∗(|A(Dψ)− (A(Dψ))B4MR
|) dx

) 1
p′

.

(4.52)
The value of σ1 will be determined in Lemma 4.1.21 below.
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Proof of Lemma 4.1.20 in the first case (4.51) and determination of
σ1

Lemma 4.1.21. There exists a choice of the parameters

M ≡M(data) ≥ 8 and σ1 ≡ σ1(data,M) ∈ (0, 1)

such that, if θ ≡ θ(M) is the constant determined in Lemma 4.1.19 and
(4.46) is in force, then the following bounds hold:

λ

c̃l
≤ |Dv∗|+ s in B4R and |Dv∗|+ s ≤ c̃uλ in BMR/2 when p ≥ 2,

(4.53)
and

λ

cl
≤ |Dv|+ s in B4R/M and |Dv|+ s ≤ cuλ in BR/2, (4.54)

with constants c̃l, cl, c̃u, cu depending only on data.

Remark 4.1.22. For brevity, we state and prove (4.53) only for p ≥ 2. In
the case 2− 1/n < p < 2, we can also prove (4.53) in a very similar way as
in the proof of (4.54).

Proof. Step 1: Proof of (4.53). For the upper bound, we use (2.22), (4.22)
and (4.28) to have

sup
BMR/2

(|Dv∗|+ s) ≤ c

(∫
BMR

(|Dv∗|2 + s2)
p−1

2 dx

) 1
p−1

≤ c

(∫
BMR

(|Du|2 + s2)
p−1

2 dx

) 1
p−1

+ c

(∫
BMR

|Du−Dv∗|p−1 dx

) 1
p−1

≤ cλ+ c

[
|µ|(B4MR)

(4MR)n−1

] 1
p−1

+ c

(∫
B4MR

ϕ∗(|A(Dψ)− (A(Dψ))B4MR
|) dx

) 1
p

(4.51)

≤ c̃uλ. (4.55)

We now prove the lower bound. By using (4.48), we fix a constant c4 ≡
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c4(data) > 1 satisfying

λp−1

c4

≤ (|A(Du)|)B4R/M
+ sp−1 ≤ c4λ

p−1 (4.56)

to find

(|A(Dv∗)|)B4R/M
+ sp−1

≥ (|A(Du)|)B4R/M
+ sp−1 −

∣∣∣(|A(Dv∗)|)B4R/M
− (|A(Du)|)B4R/M

∣∣∣
= (|A(Du)|)B4R/M

+ sp−1 −

∣∣∣∣∣
∫
B4R/M

(|A(Dv∗)| − |A(Du)|) dx

∣∣∣∣∣
≥ λp−1

c4

−
∫
B4R/M

|A(Dv∗)− A(Du)| dx. (4.57)

By (4.55), (4.22), (4.28) and (4.51), the last integral in (4.57) is estimated as∫
B4R/M

|A(Dv∗)− A(Du)| dx

≤ c

∫
B4R/M

|Du−Dv∗|p−1 dx+ c

∫
B4R/M

(|Dv∗|2 + s2)
p−2

2 |Du−Dv∗| dx

≤ cM2n

∫
BMR

|Du−Dv∗|p−1 dx+ cM2nλp−2

(∫
BMR

|Du−Dv∗|p−1 dx

) 1
p−1

≤ cM2n

{[
|µ|(B4MR)

(4MR)n−1

]
+

(∫
BMR

ϕ∗(|A(Dψ)− (A(Dψ))BMR
|) dx

) 1
p′
}

+ cM2nλp−2

{[
|µ|(B4MR)

(4MR)n−1

]
+

(∫
B4MR

ϕ∗(|A(Dψ)− (A(Dψ))B4MR
|) dx

) 1
p′
} 1

p−1

≤ c5M
2n
[
σ1 + σ

1/(p−1)
1

]
λp−1,

where c5 ≡ c5(data). At this stage, we choose σ1 ≡ σ1(data,M) so small
that

c5M
2n
[
σ1 + σ

1/(p−1)
1

]
≤ 1

2c4

(4.58)
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in order to have ∫
B4R/M

|A(Dv∗)− A(Du)| dx ≤ λp−1

2c4

and therefore

(|A(Dv∗)|)B4R/M
+ sp−1 ≥ λp−1

2c4

.

In particular, there exists a point x̃0 ∈ B4R/M such that

|A(Dv∗(x̃0))|+ sp−1 ≥ λp−1

2c4

. (4.59)

We then apply Lemma 2.3.7, (2.13) and (4.55) to see that

osc
B4R

A(Dv∗) ≤
c

MαA

∫
BMR/2

|A(Dv∗)| dx ≤
c6

MαA
λp−1

holds for some c6 ≡ c6(data). Now, choosing M ≡M(data) so large that

c6

MαA
≤ 1

4c4

=⇒ osc
B4R

A(Dv∗) ≤
λp−1

4c4

, (4.60)

and then combining this with (4.59), we have

|A(Dv∗(x))|+ sp−1 ≥ |A(Dv∗(x̃0))|+ sp−1− osc
B4R

A(Dv∗) ≥
λp−1

4c4

∀ x ∈ B4R.

We then recall (2.12) and choose c̃l ≡ c̃l(data) in a suitable way, to prove
the lower bound in (4.53).

Step 2: proof of (4.54). We first prove the upper bound. For p ≥ 2, we get

sup
BR/2

(|Dv|+ s)
(2.22)

≤ c

(∫
BR

(|Dv|2 + s2)
p−1

2 dx

) 1
p−1

≤ c

(∫
BR

(|Du|2 + s2)
p−1

2 dx

) 1
p−1

+ c

(∫
BR

|Du−Dv|p−1 dx

) 1
p−1

(4.22),(4.28)

≤ cλ+ cM
n−1
p−1

[
|µ|(B4MR)

(4MR)n−1

] 1
p−1

115



CHAPTER 4. ELLIPTIC OBSTACLE PROBLEMS WITH MEASURE
DATA

+ cM
n
p

(∫
B4MR

ϕ∗(|A(Dψ)− (A(Dψ))B4MR
|) dx

) 1
p

≤ c

[
1 +

(
Mn−1σ1

)1/(p−1)
+
(
Mn/p′σ1

)1/(p−1)
]
λ

for a constant c ≡ c(data). In the case 2−1/n < p < 2, using Lemma 4.1.17,
we have[

sup
BR/2

(|Dv|+ s)

]p−1

≤ c

∫
BR

(|A(Dv)|+ sp−1) dx

≤ c

∫
BR

(|A(Dw1)|+ sp−1) dx+ c

∫
BR

|A(Dw1)− A(Dv)| dx

≤ c

∫
B4R

(|A(Dw1)|+ sp−1) dx

+ cM
n
p′

(∫
B4MR

ϕ∗(|A(Dψ)− (A(Dψ))B4MR
|) dx

) 1
p′

.

We then use (4.48), (4.25) and (4.51) in order to estimate∫
B4R

(|A(Dw1)|+ sp−1) dx ≤
∫
B4R

(|Dw1|+ s)p−1 dx

≤ c

∫
B4R

(|Du|+ s)p−1 dx+ c

∫
B4R

|Du−Dw1|p−1 dx

≤ cλp−1 + cMn−1

[
|µ|(B4MR)

(4MR)n−1

]
+ cM (n−1)(p−1)

[
|µ|(B4MR)

(4MR)n−1

]p−1(∫
B4R

(|Du|+ s)p−1 dx

)2−p

+ cM
2n−p
p′

[
|µ|(B4MR)

(4MR)n−1

]p−1(∫
B4MR

ϕ∗(|A(Dψ)− (A(Dψ))B4MR
|) dx

) 2−p
p′

≤ c
[
1 +Mn−1σ1 +

(
Mn−1σ1

)p−1
+M (2n−p)/p′σ1

]
λp−1. (4.61)
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Combining the above two estimates and using (4.51), we arrive at[
sup
BR/2

(|Dv|+ s)

]p−1

≤ c
[
1 +Mn−1σ1 +

(
Mn−1σ1

)p−1
+M (2n−p)/p′σ1 +Mn/p′σ1

]
λp−1

for a constant c ≡ c(data). By choosing σ1 ≡ σ1(data,M) such that

(
Mn−1σ1

) 1
p−1 +Mn−1σ1 +

(
Mn/p′σ1

) 1
p−1

+
(
M (2n−p)/p′σ1

) 1
p−1 ≤ 1, (4.62)

in any case we conclude with

sup
BR/2

(|Dv|+ s) ≤ cuλ. (4.63)

To prove the lower bound, we recall (4.56) and argue as in (4.57), with v∗
replaced by v, to find

(|A(Dv)|)B4R/M
+ sp−1 ≥ λp−1

c4

−
∫
B4R/M

|A(Dv)− A(Du)| dx. (4.64)

We need to estimate the last integral. We again distinguish two different
cases. When p ≥ 2, we have∫

B4R/M

|A(Dv)− A(Du)| dx

(2.12)

≤ c

∫
B4R/M

|Du−Dv|p−1 dx+ c

∫
B4R/M

(|Dv|2 + s2)
p−2

2 |Du−Dv| dx

(4.55)

≤ cMn

∫
BR

|Du−Dv|p−1 dx+ cMnλp−2

(∫
BR

|Du−Dv|p−1 dx

) 1
p−1

(4.22),(4.28)

≤ cM2n−1

[
|µ|(B4MR)

(4MR)n−1

]
+ cM

n+ n
p′

(∫
B4MR

ϕ∗(|A(Dψ)− (A(Dψ))B4MR
|) dx

) 1
p′
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+ cλp−2Mn+n−1
p−1

[
|µ|(B4MR)

(4MR)n−1

] 1
p−1

+ cλp−2Mn+n
p

(∫
B4MR

ϕ∗(|A(Dψ)− (A(Dψ))B4MR
|) dx

) 1
p

(4.51)

≤ c41

[
M2n−1σ1 +Mn(2p−1)/pσ1

+ (Mnp−1σ1)1/(p−1) + (Mn(p2−1)/pσ1)1/(p−1)
]
λp−1

for a constant c41 ≡ c41(data). Choosing σ1 ≡ σ1(data,M) such that

c41

[
M2n−1σ1 +M

n(2p−1)
p σ1 +

(
Mnp−1σ1

) 1
p−1 +

(
M

n(p2−1)
p σ1

) 1
p−1

]
≤ 1

2c4

,

(4.65)
we have ∫

B4R/M

|A(Dv)− A(Du)| dx ≤ λp−1

2c4

. (4.66)

When 2− 1/n < p < 2, we split the integral as∫
B4R/M

|A(Dv)− A(Du)| dx

≤ cMn

∫
BR

|A(Dv)− A(Dw1)| dx+ cMn

∫
B4R

|A(Dw1)− A(Du)| dx

=: I1 + I2. (4.67)

We estimate I2 as

I2

(2.12)

≤ cMn

∫
B4R

|Dw1 −Du|p−1 dx

(4.25)

≤ cM2n−1

[
|µ|(B4MR)

(4MR)n−1

]
+ cMnp−p+1

[
|µ|(B4MR)

(4MR)n−1

]p−1(∫
B4R

(|Du|+ s)p−1 dx

)2−p

+ cM
2n−p
p′ +1

[
|µ|(B4MR)

(4MR)n−1

]p−1(∫
B4MR

ϕ∗(|A(Dψ)− (A(Dψ))B4MR
|) dx

) 2−p
p′
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(4.51)

≤ c42

[
M2n−1σ1 +M2n−p+1σp−1

1 +M (2n−p)/p′+1σ1

]
λp−1

for a constant c42 ≡ c42(data). Choosing σ1 ≡ σ1(data,M) such that

c42

[
M2n−1σ1 +M2n−p+1σp−1

1 +M (2n−p)/p′+1σ1

]
≤ 1

4c4

, (4.68)

we arrive at

I2 ≤
λp−1

4c4

. (4.69)

As for I1, we have

I1

(4.42)

≤ cMnε

∫
B4R

|A(Dw1)− (A(Dw1))B4R
| dx

+ cεM
n

(∫
B4R

ϕ∗(|A(Dψ)− (A(Dψ))B4MR
|) dx

) 1
p′

≤ cMnε

(∫
B4R

|A(Du)− (A(Du))B4R
| dx+

∫
B4R

|A(Du)− A(Dw1)| dx
)

+ cεM
n
(

1+ 1
p′

)(∫
B4MR

ϕ∗(|A(Dψ)− (A(Dψ))B4MR
|) dx

) 1
p′

≤ cM2nε

∫
B4MR

|A(Du)− (A(Du))B4MR
| dx+ cεI2 + cεM

n(2p−1)
p σ1λ

p−1

(4.46),(4.69)

≤ cM2nθελp−1 + cελp−1 + cεM
n(2p−1)

p λp−1

(4.49)

≤ c43

[
ε+ cεM

n(2p−1)
p σ1

]
λp−1

for constant c43 ≡ c43(data) and cε ≡ cε(data, ε), whenever ε ∈ (0, 1). Then,
choosing ε = 1/(8c43c4) and then σ1 ≡ σ1(data,M) satisfying

cεc43M
n(2p−1)

p σ1 ≤
1

8c4

, (4.70)

it follows that

I1 ≤
λp−1

4c4

. (4.71)

Connecting the estimates (4.66), (4.67), (4.69) and (4.71) to (4.64), in any
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case we conclude that

(|A(Dv)|)B4R/M
+ sp−1 ≥ λp−1

2c4

.

We now proceed in a similar way as in Step 1. We first choose a point x0 ∈
B4R/M satisfying

|A(Dv(x0))|+ sp−1 ≥ λp−1

2c4

. (4.72)

Then, again using Lemma 2.3.7, (2.13) and (4.63), we find that

osc
B4R/M

A(Dv) ≤ c

MαA

∫
BR/2

|A(Dv)| dx ≤ c7

MαA
λp−1

holds for a constant c7 ≡ c7(data). Choosing M such that

c7

MαA
≤ 1

4c4

(4.73)

and then combining the resulting inequality with (4.72), we conclude with
the lower bound in (4.54) for a suitable constant cl ≡ cl(data).

Remark 4.1.23. We summarize the process of fixing the constants θ, M
and σ1. We first fix M ≡M(data) as in Lemma 4.1.21 satisfying (4.60) and
(4.73). Then, by Lemma 4.1.19, we determine θ ≡ θ(data) satisfying (4.49).
In a similar way, we finally determine σ1 ≡ σ1(data) as in Lemma 4.1.21,
by requiring that (4.58), (4.62), (4.65), (4.68) and (4.70) are satisfied. Con-
sequently, we have chosen θ, M and σ1 as universal constants for which the
assertions of Lemmas 4.1.19 and 4.1.21 hold simultaneously. These values of
the parameters will be used in the rest of this section.

We now prove estimate (4.50). To do this, we first consider the case p ≥ 2.
We estimate∫

BR/M

|A(Du)− A(Dv)| dx

(2.12)

≤ c

∫
BR/M

(|Dv|+ s)p−2|Du−Dv| dx+ c

∫
BR/M

|Du−Dv|p−1 dx

≤ c

∫
BR/M

(|Dv|+ s)p−2|Du−Dw1| dx
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+ c

∫
BR/M

(|Dv|+ s)p−2|Dw1 −Dv| dx+ c

∫
BR/M

|Du−Dv|p−1 dx

p≥2

≤ c

[
sup
BR/M

(|Dv|+ s)

]p−2 ∫
BR/M

|Du−Dw1| dx

+ c

[
sup
BR/M

(|Dv|+ s)

] p−2
2 ∫

BR/M

(|Dw1|+ |Dv|+ s)
p−2

2 |Dw1 −Dv| dx

+ c

∫
BR/M

|Du−Dv|p−1 dx.

Then estimates (4.22) and (4.28), together with the gradient bound (4.54)2,
imply∫

BR/M

|A(Du)− A(Dv)| dx

≤ cλp−2

∫
B4R

|Du−Dw1| dx+ cλ
p−2

2

∫
BR

|V (Dw1)− V (Dv)| dx

+ c

∫
BR

|Du−Dv|p−1 dx

≤ cλp−2

∫
B4R

|Du−Dw1| dx

+ cλ
p−2

2

(∫
B4MR

ϕ∗(|A(Dψ)− (A(Dψ))B4MR
|) dx

) 1
2

+ c

[
|µ|(B4MR)

(4MR)n−1

]
+ c

(∫
B4MR

ϕ∗(|A(Dψ)− (A(Dψ))B4MR
|) dx

) 1
p′

.

Moreover, since we have (4.51) and (4.53), we can apply Lemma 4.1.16 to
estimate the first integral in the right-hand side. Recalling the definition of
λ in (4.47), we conclude that∫

BR/M

|A(Du)− A(Dv)| dx

≤ c

[
|µ|(B4MR)

(4MR)n−1

]
+ c

(∫
B4MR

ϕ∗(|A(Dψ)− (A(Dψ))B4MR
|) dx

) 1
p′
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+ c

(∫
B4MR

(|A(Du)|+ sp−1) dx

) p−2
2(p−1)

·
(∫

B4MR

ϕ∗(|A(Dψ)− (A(Dψ))B4MR
|) dx

) 1
2

.

In the case 2− 1/n < p < 2, we have∫
BR/M

|A(Du)− A(Dv)| dx

(2.12)

≤ c

∫
BR/M

(|Du|+ |Dv|+ s)p−2|Du−Dv| dx

p<2

≤ c

[
inf
BR/M

(|Dv|+ s)

]p−2 ∫
BR/M

|Du−Dv| dx

(4.54)

≤ cλp−2

(∫
B4R

|Du−Dw1| dx+

∫
BR

|Dw1 −Dv| dx
)
. (4.74)

We now estimate the two integrals in the right-hand side of (4.74). The first
integral is estimated as

λp−2

∫
B4R

|Du−Dw1| dx

(4.25)

≤ cλp−2

[
|µ|(B8R)

(8R)n−1

] 1
p−1

+ cλp−2

[
|µ|(B8R)

(8R)n−1

](∫
B8R

(|Du|+ s)p−1 dx

) 2−p
p−1

+ cλp−2

[
|µ|(B8R)

(8R)n−1

](∫
B8R

ϕ∗(|A(Dψ)− (A(Dψ))B8R
|) dx

) 2−p
p

(4.51)

≤ c

[
|µ|(B4MR)

(4MR)n−1

]
. (4.75)

As for the second one, we recall the following estimate in [168, (9.39)]:

|Dw1 −Dv| ≤ c|V (Dw1)− V (Dv)|
2
p + c|V (Dw1)− V (Dv)|(|Dv|+ s)

2−p
2 .
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Then we use Hölder’s inequality to get

λp−2

∫
BR

|Dw1 −Dv| dx

≤ cλp−2

(∫
BR

|V (Dw1)− V (Dv)|2 dx
) 1

p

+ cλp−2

[
sup
BR/M

(|Dv|+ s)

] 2−p
2 (∫

BR

|V (Dw1)− V (Dv)|2 dx
) 1

2

(4.54)

≤ cλp−2

(∫
BR

|V (Dw1)− V (Dv)|2 dx
) 1

p

+ cλ
p−2

2

(∫
BR

|V (Dw1)− V (Dv)|2 dx
) 1

2

=: I1 + I2. (4.76)

In order to estimate I1 and I2, we discover∫
BR

|V (Dw1)− V (Dv)|2 dx
(4.29)

≤ c

∫
B2R

(ϕ|Dw1|)
∗(|A(Dψ)− (A(Dψ))B2R

|) dx

(2.16)

≤ c

∫
B2R

|A(Dψ)− (A(Dψ))B2R
|p′ dx

+ c

∫
B2R

(|Dw1|+ s)2−p|A(Dψ)− (A(Dψ))B2R
|2 dx

≤ c

∫
B2R

|A(Dψ)− (A(Dψ))B2R
|p′ dx

+ c

(∫
B2R

(|Dw1|+ s)p dx

) 2−p
p
(∫

B2R

|A(Dψ)− (A(Dψ))B2R
|p′ dx

) 2
p′

≤ c

[(∫
B2R

|A(Dψ)− (A(Dψ))B2R
|p′ dx

) 2−p
p

+

(∫
B2R

(|Dw1|+ s)p dx

) 2−p
p

]

·
(∫

B2R

|A(Dψ)− (A(Dψ))B2R
|p′ dx

) 2
p′

≤ cλ2−p
(∫

B4MR

ϕ∗(|A(Dψ)− (A(Dψ))B4MR
|) dx

) 2
p′

,
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where for the last inequality, we have used (4.51), the fact that tp
′
. ϕ∗(t)

for p < 2, and the following estimate from (4.11), (4.51) and(4.61):∫
B2R

(|Dw1|+ s)p dx ≤ c

∫
B2R

|V (Dw1)|2 dx+ csp

≤ c

(∫
B4R

|V (Dw1)|
2
p′ dx

)p′
+ csp + c

∫
B4R

ϕ∗(|A(Dψ)− (A(Dψ))B4MR
|) dx

≤ c

(∫
B4R

(|A(Dw1)|+ sp−1) dx

)p′
+ c

∫
B4MR

ϕ∗(|A(Dψ)− (A(Dψ))B4MR
|) dx

≤ cλp.

This immediately yields

I2 ≤ c

(∫
B4MR

ϕ∗(|A(Dψ)− (A(Dψ))B4MR
|) dx

) 1
p′

(4.77)

and

I1 ≤ cλp−2 · λ
2−p
p

(∫
B4MR

ϕ∗(|A(Dψ)− (A(Dψ))B4MR
|) dx

) 2
p′p

= cλ
p−2
p′

(∫
B4MR

ϕ∗(|A(Dψ)− (A(Dψ))B4MR
|) dx

) 1
p

2−p
p′ + 1

p′

(4.51)

≤ c

(∫
B4MR

ϕ∗(|A(Dψ)− (A(Dψ))B4MR
|) dx

) 1
p′

. (4.78)

Combining all the above estimates (4.74)-(4.78) leads to the desired estimate
(4.50).

Proof of Lemma 4.1.20 in the second case (4.52)

We observe that, from (4.48) and (4.52),∫
BκR

(|Du|2 + s2)
p−1

2 dx

≤ c

[
|µ|(B4MR)

(4MR)n−1

]
+ c

(∫
B4MR

ϕ∗(|A(Dψ)− (A(Dψ))B4MR
|) dx

) 1
p′

(4.79)
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holds whenever κ ∈ [1/M, 4M ], where c ≡ c(data). We recall that σ1 ≡
σ1(data) has been determined in Lemma 4.1.21.

Now we prove (4.50). Again, it is straightforward from (4.25) when p = 2.
If p > 2, we estimate∫

BR/M

|A(Du)− A(Dv)| dx

(2.12)

≤ c

∫
BR/M

(|Du|2 + s2)
p−2

2 |Du−Dv| dx+ c

∫
BR/M

|Du−Dv|p−1 dx

≤ c

∫
BR/M

(|Du|2 + s2)
p−1

2 dx+ cMn

∫
BR

|Du−Dv|p−1 dx

(4.79),(4.22)

≤ c

[
|µ|(B4MR)

(4MR)n−1

]
+ c

(∫
B4MR

ϕ∗(|A(Dψ)− (A(Dψ))B4MR
|) dx

) 1
p′

.

If 2− 1/n < p < 2, we instead have∫
BR/M

|A(Du)− A(Dw1)| dx
(2.12)

≤ cMn

∫
B4R

|Du−Dw1|p−1 dx

(4.25)

≤ c

[
|µ|(B8R)

(8R)n−1

]
+ c

[
|µ|(B8R)

(8R)n−1

]p−1(∫
B8R

(|Du|2 + s2)
p−1

2 dx

)2−p

+ c

[
|µ|(B8R)

(8R)n−1

]p−1(∫
B8R

ϕ∗(|A(Dψ)− (A(Dψ))B8R
|) dx

) 2−p
p′

≤ c

[
|µ|(B8R)

(8R)n−1

]
+ c

∫
B8R

(|Du|2 + s2)
p−1

2 dx

+ c

(∫
B8R

ϕ∗(|A(Dψ)− (A(Dψ))B8R
|) dx

) 1
p′

(4.79)

≤ c

[
|µ|(B4MR)

(4MR)n−1

]
+ c

(∫
B4MR

ϕ∗(|A(Dψ)− (A(Dψ))B4MR
|) dx

) 1
p′

.

(4.80)

We then apply Lemma 4.1.17 to discover∫
BR/M

|A(Dw1)− A(Dv)| dx
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≤ c

∫
B4R

|A(Dw1)− (A(Dw1))B4R
| dx

+ c

(∫
B4R

ϕ∗(|A(Dψ)− (A(Dψ))B4MR
|) dx

) 1
p′

≤ c

∫
B4R

|A(Du)− (A(Du))B4R
| dx+ c

∫
B4R

|A(Du)− A(Dw1)| dx

+ c

(∫
B4MR

ϕ∗(|A(Dψ)− (A(Dψ))B4MR
|) dx

) 1
p′

.

In the above display, the first term in the right-hand side is estimated by
using (4.46) and (4.79); the second one is estimated in the same way as in
(4.80). Combining the resulting estimate with (4.80) gives (4.50). The proof
for the full range p > 2− 1/n is now complete.

4.1.7 Combining the two alternatives

Taking account of the above two alternatives, we conclude with the following
comparison estimate.

Lemma 4.1.24. Let u and v be the weak solutions to (4.2) and (4.27),
respectively, under assumptions (2.8) and (4.1). Then we have∫

BR/M

|A(Du)− A(Dv)| dx

≤ ε

∫
B4MR

|A(Du)− (A(Du))B4MR
| dx

+ cε

[
|µ|(B4MR)

(4MR)n−1

]
+ cε

(∫
B4MR

ϕ∗(|A(Dψ)− (A(Dψ))B4MR
|) dx

) 1
p′

+ cχ{p>2}

(∫
B4MR

(|A(Du)|+ sp−1) dx

) p−2
2(p−1)

·
(∫

B4MR

ϕ∗(|A(Dψ)− (A(Dψ))B4MR
|) dx

) 1
2

(4.81)

for any ε ∈ (0, 1), where cε ≡ cε(data, ε) is proportional to some negative
power of ε, and c depends only on data.
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Remark 4.1.25. The difficulty that prevents us from obtaining (4.6) for
p > 2 arises when (4.46) and (4.51) hold. We could not linearize the last term
on the right-hand side of (4.81) by adapting the approach in [7]. On the other
hand, one might expect to apply the method in [35] to the setting of obstacle
problems. Note that the linear Calderón-Zygmund theory [35, Theorem 2.16]
is the crucial tool in their approach to handling the non-degenerate alternative
case. Indeed, in our setting, we are forced to consider some linear obstacle
problems, which makes it hard to apply the linear Calderón-Zygmund theory
below the duality exponent.

Excess decay estimates for limits of approximating solutions

Note that in Sections 4.1.3 and 4.1.4, we have obtained comparison estimates
for weak solutions to (4.2) under assumption (4.17), which ensures the ex-
istence of weak solutions. In this section, we first prove the following excess
decay estimates for weak solutions to (4.2). Note that we have chosen the
constant M depending only on data in the previous section.

Lemma 4.1.26. Let u ∈ Agψ(Ω) be the weak solution to (4.2) under assump-
tions (2.8) and (4.1). Then∫

Bρ

|A(Du)− (A(Du))Bρ| dx

≤ cex

(ρ
r

)αA ∫
Br

|A(Du)− (A(Du))Br | dx+ c

(
r

ρ

)n+γ [ |µ|(Br)

rn−1

]
+ c

(
r

ρ

)n+γ (∫
Br

ϕ∗(|A(Dψ)− (A(Dψ))Br |) dx
) 1

p′

+ cχ{p>2}

(
r

ρ

)n+γ (∫
Br

(|A(Du)|+ sp−1) dx

) p−2
2(p−1)

·
(∫

Br

ϕ∗(|A(Dψ)− (A(Dψ))Br |) dx
) 1

2

(4.82)

holds whenever Bρ ⊂ Br b Ω are concentric balls, where c, cex ≥ 1 and γ ≥ 0
depend only on data, and αA ∈ (0, 1] is as in Theorem 2.3.6.

Proof. We may assume ρ ≤ r/4M2 since one can handle the remaining case
directly by enlarging the size of the ball. With the comparison map v as in
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(4.27) with R = r/4M , we apply Lemma 2.3.6 to find∫
Bρ

|A(Du)− (A(Du))Bρ| dx ≤ 2

∫
Bρ

|A(Du)− (A(Dv))Bρ| dx

≤ 2

∫
Bρ

|A(Dv)− (A(Dv))Bρ| dx+ 2

∫
Bρ

|A(Du)− A(Dv)| dx

≤ c
(ρ
r

)αA ∫
Br/4M2

|A(Dv)− (A(Dv))Br/4M2 | dx

+ c

(
r

ρ

)n ∫
Br/4M2

|A(Du)− A(Dv)| dx

≤ c
(ρ
r

)αA ∫
Br/4M2

|A(Du)− (A(Du))Br/4M2 | dx

+ c

(
r

ρ

)n ∫
Br/M2

|A(Du)− A(Dv)| dx.

The last integral is estimated by applying Lemma 4.1.24 with the choice
ε = (ρ/r)αA , which implies the desired estimate.

Now we have to recall Definition 4.1.1 to proceed further. For any limit
of approximating solutions u to OP (ψ;µ) with µ ∈ Mb(Ω), there exist a
sequence of functions {µk} ⊂ W−1,p′(Ω) ∩ L1(Ω) and corresponding weak
solutions {uk} ⊂ Agψ(Ω) that satisfy the convergence properties described in
Definition 4.1.1. In particular, the strong convergence of Duk implies that
(4.82) continues to hold for any limits of approximating solutions to (4.2).

Lemma 4.1.27. Let u ∈ W 1,max{p−1,1}(Ω) with u ≥ ψ a.e. in Ω be a limit
of approximating solutions to OP (ψ;µ) under assumptions (2.8) and (4.1).
Then (4.82) still holds whenever Bρ ⊂ Br b Ω are concentric balls.

4.1.8 Proof of Theorem 4.1.2

We fix a ball B2R = B2R(x0) ⊂ Ω as in the statement of Theorem 4.1.2. In
the following, all the balls considered will be centered at x0.

We choose an integer K = K(data) ≥ 4M such that

cex

KαA
≤ 1

2
.
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Applying Lemma 4.1.27 on arbitrary balls Bρ = Br/K ⊂ Br b Ω, we have∫
Br/K

|A(Du)− (A(Du))Br/K | dx

≤ 1

2

∫
Br

|A(Du)− (A(Du))Br | dx

+ c

[
|µ|(Br)

rn−1

]
+ c

(∫
Br

ϕ∗(|A(Dψ)− (A(Dψ))Br |) dx
) 1

p′

. (4.83)

For i = 0, 1, 2, . . ., we define Ri := R/Ki, Bi := BRi(x0),

ki := (A(Du))Bi and Ei :=

∫
Bi

|A(Du)− (A(Du))Bi| dx.

Step 1: Proof of (4.4). Let us prove that A(Du) has vanishing mean
oscillation at x0 when (4.3) holds. Applying (4.83) with r = Ri−1 for every
i ≥ 1 gives

Ei ≤
1

2
Ei−1 + c

[
|µ|(Bi−1)

Rn−1
i−1

+

(∫
Bi−1

ϕ∗(|A(Dψ)− (A(Dψ))Bi−1
|) dx

) 1
p′
]
.

(4.84)
Iterating the above inequality, we have that for any k ≥ 0

Ek ≤
1

2k
E0 + c

k∑
i=1

1

2k−i
|µ|(Bi−1)

Rn−1
i−1

+ c
k∑
i=1

1

2k−i

(∫
Bi−1

ϕ∗(|A(Dψ)− (A(Dψ))Bi−1
|) dx

) 1
p′

≤ 1

2k
E0 + c sup

0<ρ≤R

 |µ|(Bρ)

ρn−1
+

(∫
Bρ

ϕ∗(|A(Dψ)− (A(Dψ))Bρ|) dx

) 1
p′
 .

From (4.3), for any δ > 0, we temporarily fix the radius R ≡ R(δ) > 0 in
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this step to satisfy

sup
0<ρ≤R

 |µ|(Bρ)

ρn−1
+

(∫
Bρ

ϕ∗(|A(Dψ)− (A(Dψ))Bρ|) dx

) 1
p′
 < δ.

Then there exists k0 ∈ N such that

1

2k0
E0 ≤ δ.

Then for any 0 < r ≤ Rk0 , we obtain∫
Br

|A(Du)− (A(Du))Br | dx

≤ Kn

2k0−1
E0 + c sup

0<ρ≤R

 |µ|(Bρ)

ρn−1
+

(∫
Bρ

ϕ∗(|A(Dψ)− (A(Dψ))Bρ|) dx

) 1
p′


≤ cδ.

Since δ is an arbitrary positive constant, (4.4) follows.
Step 2: Proof of the pointwise estimate (4.6). To prove (4.6), let us first

verify that {ki} is a Cauchy sequence in Rn. Take any m1 < m2 ∈ N. Sum-
ming up (4.84) over i ∈ {m1 + 1, . . . ,m2}, we have

m2∑
i=m1+1

Ei ≤
1

2

m2−1∑
i=m1

Ei + c

m2−1∑
i=m1

|µ|(Bi)

Rn−1
i

+ c

m2−1∑
i=m1

(∫
Bi

ϕ∗(|A(Dψ)− (A(Dψ))Bi |) dx
) 1

p′

and hence

m2∑
i=m1

Ei ≤ 2Em1 + 2c

m2−1∑
i=m1

|µ|(Bi)

Rn−1
i

+ 2c

m2−1∑
i=m1

(∫
Bi

ϕ∗(|A(Dψ)− (A(Dψ))Bi |) dx
) 1

p′

. (4.85)
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By the calculations in [146, (115)], we notice

m2−1∑
i=m1

[
|µ|(Bi)

Rn−1
i

]
≤ c(K)Iµ1(x0, 2Rm1) (4.86)

and

m2−1∑
i=m1

(∫
Bi

ϕ∗(|A(Dψ)− (A(Dψ))Bi|) dx
) 1

p′

≤ c(K)

∫ 2Rm1

0

(∫
Br(x0)

ϕ∗(|A(Dψ)− (A(Dψ))Br(x0)|) dx
) 1

p′ dr

r
. (4.87)

Plugging (4.86) and (4.87) in (4.85), we have

|km1 − km2 | ≤
m2−1∑
i=m1

|ki − ki+1| ≤ Kn

m2−1∑
i=m1

Ei

≤ cEm1 + cIµ1(x0, 2Rm1)

+ c

∫ 2Rm1

0

(∫
Br

ϕ∗(|A(Dψ)− (A(Dψ))Br |) dx
) 1

p′ dr

r
. (4.88)

Note that (4.5) implies (4.3) and

lim
ρ→0

[
Iµ1(x0, ρ) +

∫ ρ

0

(∫
Br

ϕ∗(|A(Dψ)− (A(Dψ))Br |) dx
) 1

p′ dr

r

]
= 0.

Therefore, A(Du) has vanishing mean oscillation at x0. Then for every ε > 0
we can take N ∈ N such that

EN + Iµ1(x0, 2RN) +

∫ 2RN

0

(∫
Br

ϕ∗(|A(Dψ)− (A(Dψ))Br |) dx
) 1

p′ dr

r
< ε.

Hence, we obtain for any N ≤ m1 < m2

|km1 − km2 | < cε,

which implies that {ki} is a Cauchy sequence in Rn. As a consequence of the
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classical Lebesgue measure theory, x0 is a Lebesgue point of A(Du).
Now we again take an arbitrary small constant ε > 0. Since x0 is a

Lebesgue point of A(Du), we can take m ∈ N large enough to satisfy

|A(Du(x0))− (A(Du))Bm| ≤ ε.

It then follows from (4.88) that

|A(Du(x0))− (A(Du))B0|
≤ |A(Du(x0))− (A(Du))Bm|+ |(A(Du))Bm − (A(Du))B0 |
≤ ε+ cE0 + cIµ1(x0, 2R)

+ c

∫ 2R

0

(∫
Br(x0)

ϕ∗(|A(Dψ)− (A(Dψ))Br(x0)|) dx
) 1

p′ dr

r
. (4.89)

Recalling that ε is an arbitrary positive constant, we conclude that

|A(Du(x0))− (A(Du))B2R(x0)|
≤ |A(Du(x0))− (A(Du))B0|+ |(A(Du))B0 − (A(Du))B2R(x0)|

≤ c

∫
B2R(x0)

|A(Du)− (A(Du))B2R(x0)| dx+ cIµ1(x0, 2R)

+ c

∫ 2R

0

(∫
Br(x0)

ϕ∗(|A(Dψ)− (A(Dψ))Br(x0)|) dx
) 1

p′ dr

r
.

This completes the proof of Theorem 4.1.2.

4.1.9 Proof of Theorem 4.1.3

The basic strategy of the proof is similar as in the previous section, but
here we need to deal with the last term appearing in the above excess decay
estimate (4.82). For this reason, we will first obtain a bound of the integral
averages of A(Du) over a sequence of concentric balls. We start with a ball
B2R = B2R(x0) ⊂ Ω as in the statement of Theorem 4.1.3, and all the balls
considered will be centered at x0.

We recall (4.7). We choose an integer K ≡ K(data) ≥ 4M large enough
to have

cex

KαA
≤ 1

2
. (4.90)

132



CHAPTER 4. ELLIPTIC OBSTACLE PROBLEMS WITH MEASURE
DATA

Applying Lemma 4.1.27 on arbitrary balls Bρ ≡ Br/K ⊂ Br b Ω, we have∫
Br/K

|A(Du)− (A(Du))Br/K | dx

≤ 1

2

∫
Br

|A(Du)− (A(Du))Br | dx

+ c

[
|µ|(Br)

rn−1
+

(∫
Br

ϕ∗(|A(Dψ)− (A(Dψ))Br |) dx
) 1

p′
]

+ c

(∫
Br

(|Du|+ s)p−1 dx

) p−2
2(p−1)

(∫
Br

ϕ∗(|A(Dψ)− (A(Dψ))Br |) dx
) 1

2

.

(4.91)

For i = 0, 1, 2, . . ., we define Ri := R/Ki, Bi := BRi(x0),

hi :=

∫
Bi

|A(Du)| dx, ki := (A(Du))Bi , Ei :=

∫
Bi

|A(Du)−(A(Du))Bi | dx.

We apply (4.91) with r ≡ Ri−1 to find

Ei ≤
1

2
Ei−1 + c

[
|µ|(Bi−1)

Rn−1
i−1

+

(∫
Bi−1

ϕ∗(|A(Dψ)− (A(Dψ))Bi−1
|) dx

) 1
p′
]

+ c
(
hi−1 + sp−1

) p−2
2(p−1)

(∫
Bi−1

ϕ∗(|A(Dψ)− (A(Dψ))Bi−1
|) dx

) 1
2

,

(4.92)

whenever i ≥ 1. Summing up this estimate over i ∈ {1, . . . ,m} for any
m ∈ N, we have

m∑
i=1

Ei ≤
1

2

m−1∑
i=0

Ei + c

m−1∑
i=0

[
|µ|(Bi)

Rn−1
i

+

(∫
Bi

ϕ∗(|A(Dψ)− (A(Dψ))Bi |) dx
) 1

p′
]

+ c

m−1∑
i=0

(
hi + sp−1

) p−2
2(p−1)

(∫
Bi

ϕ∗(|A(Dψ)− (A(Dψ))Bi|) dx
) 1

2
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and therefore

m∑
i=1

Ei ≤ E0 + 2c
m−1∑
i=0

[
|µ|(Bi)

Rn−1
i

+

(∫
Bi

ϕ∗(|A(Dψ)− (A(Dψ))Bi |) dx
) 1

p′
]

+ 2c
m−1∑
i=0

(
hi + sp−1

) p−2
2(p−1)

(∫
Bi

ϕ∗(|A(Dψ)− (A(Dψ))Bi |) dx
) 1

2

.

(4.93)

Then it holds that

|km+1| ≤
m∑
i=0

|ki+1 − ki|+ |k0|

≤
m∑
i=0

∫
Bi+1

|A(Du)− (A(Du))Bi | dx+ |k0| ≤ Kn

m∑
i=0

Ei + |k0|.

Combining this and (4.93) gives

|km+1| ≤ cE0 + c|k0|+ c
m−1∑
i=0

|µ|(Bi)

Rn−1
i

+ c
m−1∑
i=0

(∫
Bi

ϕ∗(|A(Dψ)− (A(Dψ))Bi |) dx
) 1

p′

+ c
m−1∑
i=0

(
hi + sp−1

) p−2
2(p−1)

(∫
Bi

ϕ∗(|A(Dψ)− (A(Dψ))Bi |) dx
) 1

2

.

(4.94)

Moreover, from (4.92) we also have

Em ≤
1

2m
E0 + c

m−1∑
i=0

[
|µ|(Bi)

Rn−1
i

+

(∫
Bi

ϕ∗(|A(Dψ)− (A(Dψ))Bi |) dx
) 1

p′
]

+ c

m−1∑
i=0

(
hi + sp−1

) p−2
2(p−1)

(∫
Bi

ϕ∗(|A(Dψ)− (A(Dψ))Bi|) dx
) 1

2

.

(4.95)
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We recall (4.86) and further note that, since 2/p′ > 1,

m−1∑
i=0

(∫
Bi

ϕ∗(|A(Dψ)− (A(Dψ))Bi |) dx
) 1

p′

≤

[
m∑
i=0

(∫
Bi

ϕ∗(|A(Dψ)− (A(Dψ))Bi |) dx
) 1

2

] 2
p′

≤ c(K)

[∫ 2R

0

(∫
Br

ϕ∗(|A(Dψ)− (A(Dψ))Br |) dx
) 1

2 dr

r

] 2
p′

. (4.96)

We can also easily see

E0 + |k0| ≤ 3

∫
BR

|A(Du)| dx and |k1| ≤ Kn

∫
BR

|A(Du)| dx. (4.97)

Combining (4.94) and (4.95), and then using the fact that hi ≤ |ki|+Ei, we
discover

hm+1 ≤ |km+1|+ Em+1

≤ cE0 + c|k0|+ c
m∑
i=0

[
|µ|(Bi)

Rn−1
i

+

(∫
Bi

ϕ∗(|A(Dψ)− (A(Dψ))Bi |) dx
) 1

p′
]

+ c
m∑
i=0

(
hi + sp−1

) p−2
2(p−1)

(∫
Bi

ϕ∗(|A(Dψ)− (A(Dψ))Bi |) dx
) 1

2

≤ c8I
µ
1(x0, 2R) + c8

[∫ 2R

0

(∫
Br

ϕ∗(|A(Dψ)− (A(Dψ))Br |) dx
) 1

2 dr

r

] 2
p′

+ c8

m∑
i=0

(
hi + sp−1

) p−2
2(p−1)

(∫
Bi

ϕ∗(|A(Dψ)− (A(Dψ))Bi |) dx
) 1

2

+ c8

∫
BR

|A(Du)| dx (4.98)

for some constant c8 ≡ c8(data), where we also have used (4.86), (4.96) and
(4.97) for the last inequality.

Now we need to establish a uniform estimate for hm.
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Lemma 4.1.28. There exists a constant c9 ≡ c9(data) ≥ 1 such that, for

Γ := c9

∫
B2R(x0)

(|A(Du)|+ sp−1) dx+ c9I
µ
1(x0, 2R)

+ c9

[∫ 2R

0

(∫
Br(x0)

ϕ∗(|A(Dψ)− (A(Dψ))Br(x0)|) dx
) 1

2 dr

r

] 2
p′

, (4.99)

there holds
hm ≤ Γ for every m ≥ 0. (4.100)

Proof. Let us initially consider c9 as a free parameter to be determined at
the end of the proof. We will proceed by strong induction. First, h0 ≤ Γ is
obvious; if c9 ≥ Kn, then h1 ≤ Γ. We now assume that (4.100) holds for
i = 0, 1, . . . ,m. Using this in (4.98), we find

hm+1 ≤
2c8

c9

Γ + 2c8Γ
p−2

2(p−1)

m∑
i=0

(∫
Bi

ϕ∗(|A(Dψ)− (A(Dψ))Bi |) dx
) 1

2

≤ 2c8

c9

Γ + 2c8Γ
p−2

2(p−1) c(K)

∫ 2R

0

(∫
Br

ϕ∗(|A(Dψ)− (A(Dψ))Br |) dx
) 1

2 dr

r

≤

(
2c8

c9

+
2c8c(K)

c
p′/2
9

)
Γ.

Recalling that K ≡ K(data) has been fixed in (4.90), we now choose the
constant c9 ≡ c9(data) satisfying

c9 ≥ Kn and
2c8

c9

+
2c8c(K)

c
p′/2
9

≤ 1

in order to conclude that hm+1 ≤ Γ, as desired.

Connecting (4.86), (4.87), (4.96) and (4.100) to (4.93), we obtain

m∑
i=1

Ei ≤ E0 + c
m−1∑
i=0

[
|µ|(Bi)

Rn−1
i

+

(∫
Bi

ϕ∗(|A(Dψ)− (A(Dψ))Bi |) dx
) 1

p′
]

+ cΓ
p−2

2(p−1)

m−1∑
i=0

(∫
Bi

ϕ∗(|A(Dψ)− (A(Dψ))Bi |) dx
) 1

2
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≤ E0 + cIµ1(x0, 2R)

+ c

[∫ 2R

0

(∫
Br

ϕ∗(|A(Dψ)− (A(Dψ))Br |) dx
) 1

2 dr

r

] 2
p′

+ cΓ
p−2

2(p−1)

∫ 2R

0

(∫
Br

ϕ∗(|A(Dψ)− (A(Dψ))Br |) dx
) 1

2 dr

r
.

Here, the left-hand side is bounded uniformly with respect to m ∈ N, and so
Ei → 0 as i→∞. Therefore, A(Du) has vanishing mean oscillation at x0.

At this stage, one can prove the pointwise bound (4.8) by modifying the
calculations in Section 4.1.8. For any m1 < m2 ∈ N, a suitable adaptation of
(4.93) gives

|km1 − km2| ≤ cEm1 + cIµ1(x0, 2Rm1)

+ c

[∫ 2Rm1

0

(∫
Br

ϕ∗(|A(Dψ)− (A(Dψ))Br |) dx
) 1

2 dr

r

] 2
p′

+ cΓ
p−2

2(p−1)

∫ 2Rm1

0

(∫
Br

ϕ∗(|A(Dψ)− (A(Dψ))Br |) dx
) 1

2 dr

r
.

Taking into account the fact that A(Du) has vanishing mean oscillation, we
find that {ki} is a Cauchy sequence. Then a similar calculation as in (4.89)
gives

|A(Du(x0))− (A(Du))B2R(x0)|

≤ c

∫
B2R(x0)

|A(Du)− (A(Du))B2R(x0)| dx+ cIµ1(x0, 2R)

+ c

[∫ 2R

0

(∫
Br(x0)

ϕ∗(|A(Dψ)− (A(Dψ))Br(x0)|) dx
) 1

2 dr

r

] 2
p′

+ cΓ
p−2

2(p−1)

∫ 2R

0

(∫
Br(x0)

ϕ∗(|A(Dψ)− (A(Dψ))Br(x0)|) dx
) 1

2 dr

r
.

In the above display, we recall the definition of Γ given in (4.99), and then
apply Young’s inequality with conjugate exponents 2(p−1)/(p−2) and 2/p′.
This finally gives (4.8), and the proof of Theorem 4.1.3 is complete.
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Remark 4.1.29. As mentioned in Section 4.1.1, the constant c in (4.8) for
p > 2 remains bounded when p ↘ 2, which gives the same estimate as the
one in (4.6). This is due to the stability of the constants in (2.34) and (4.81).

4.2 Fractional differentiability for double ob-

stacle problems with measure data

In this section, we consider the double obstacle problem OP (ψ1, ψ2;µ) with
the constraint ψ1 ≤ u ≤ ψ2 a.e. in Ω, where ψ1, ψ2 ∈ W 1,p(Ω) are given
obstacles satisfying ψ1 ≤ ψ2 a.e. in Ω. Limits of approximating solutions can
be defined analogously.

Definition 4.2.1. Suppose that we are given two obstacles ψ1, ψ2 ∈ W 1,p(Ω)
with ψ1 ≤ ψ2 a.e. in Ω, measure data µ ∈ Mb(Ω) and boundary data g ∈
W 1,p(Ω) with (ψ1 − g)+, (ψ2 − g)− ∈ W 1,p

0 (Ω). We say that a function u ∈
T 1,p
g (Ω) with ψ1 ≤ u ≤ ψ2 a.e. in Ω is a limit of approximating solutions to

the obstacle problem OP (ψ1, ψ2;µ) under assumptions (2.8) if there exist a
sequence of functions {µk} ⊂ W−1,p′(Ω) ∩ L1(Ω) withµk

∗
⇀ µ in Mb(Ω),

lim sup
k→∞

|µk|(B) ≤ |µ|(B̄) for every ball B ⊂ Rn (4.101)

and weak solutions uk ∈ g + W 1,p
0 (Ω) with ψ1 ≤ uk ≤ ψ2 a.e. in Ω to the

variational inequalities∫
Ω

A(Duk) ·D(φ− uk) dx ≥
∫

Ω

(φ− uk) dµk

for every φ ∈ uk +W 1,p
0 (Ω) with ψ1 ≤ φ ≤ ψ2 a.e. in Ω, such that

uk → u a.e. in Ω,∫
Ω

|uk − u|γ dx→ 0 for every 0 < γ <
n(p− 1)

n− p
,∫

Ω

|Duk −Du|q dx→ 0 for every 0 < q <
n(p− 1)

n− 1
.

(4.102)

By following the classical approach in [28, 29], the existence of limits of
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approximating solutions to OP (ψ1, ψ2;µ) was proved in [43].

4.2.1 Main results

The aim of this section is to prove an analog of (1.8) for OP (ψ1, ψ2;µ),
under suitable differentiability assumptions on the obstacles. More precisely,
we assume that ψ1, ψ2 ∈ W 1,p(Ω) ∩W 2,1(Ω) satisfy

DΨi := divA(Dψi) ∈ L1(Ω), i = 1, 2. (4.103)

We assume (4.1). When p < 2, we also assume that ∂A(·) is symmetric, i.e.,

∂iAj = ∂jAi ∀ i, j ∈ {1, . . . , n}. (4.104)

Theorem 4.2.2. Let u ∈ W 1,max{p−1,1}(Ω) with ψ1 ≤ u ≤ ψ2 a.e. in Ω be
a limit of approximating solutions to OP (ψ1, ψ2;µ) under assumptions (2.8)
when p ≥ 2, and assumptions (2.8) and (4.104) when 2 − 1/n < p < 2.
Assume that ψ1, ψ2 ∈ W 1,p(Ω) ∩W 2,1(Ω) satisfy (4.103). Then

A(Du) ∈ W σ,1
loc (Ω;Rn) ∀ σ ∈ (0, 1). (4.105)

Moreover, for any σ ∈ (0, 1), there exists a constant c ≡ c(data, σ) such that∫
BR/2

∫
BR/2

|A(Du(x))− A(Du(y))|
|x− y|n+σ

dx dy

≤ c

Rσ

∫
BR

|A(Du)| dx+
c

Rσ

[
|µ|(BR)

Rn−1

]
+

c

Rσ

[
|DΨ1|(BR)

Rn−1

]
+

c

Rσ

[
|DΨ2|(BR)

Rn−1

]
(4.106)

whenever BR b Ω is a ball.

Once we prove the above theorem, we can also obtain the following corol-
lary in the case p ≥ 2, which corresponds to [7, Theorem 1.3].

Corollary 4.2.3. Under the assumptions of Theorem 4.2.2 with p ≥ 2, let
u ∈ W 1,p−1(Ω) with ψ1 ≤ u ≤ ψ2 a.e. in Ω be a limit of approximating
solutions to OP (ψ1, ψ2;µ). Then for every γ ∈ [0, p− 2], we have

(|Du|2 + s2)γ/2Du ∈ W
σ γ+1
p−1

, p−1
γ+1

loc (Ω;Rn) ∀ σ ∈ (0, 1).
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Moreover, for any σ ∈ (0, 1), there exists a constant c ≡ c(data, σ) such that

[(|Du|2 + s2)γ/2Du]σ γ+1
p−1

, p−1
γ+1

;BR/2

≤ c

(
1

Rσ

∫
BR

|A(Du)| dx
) γ+1

p−1

+ c
[
R1−σ|µ|(BR)

] γ+1
p−1

+ c
[
R1−σ|DΨ1|(BR)

] γ+1
p−1 + c

[
R1−σ|DΨ2|(BR)

] γ+1
p−1

whenever BR b Ω is a ball.

This shows a trade between integrability and differentiability according
to the power of nonlinear functions of the gradient. In particular, this gives
differentiability results analogous to those in [164]. For instance, in the case
γ = 0, we have

Du ∈ W
σ
p−1

,p−1

loc (Ω;Rn) ∀ σ ∈ (0, 1).

We also consider the case when the measure satisfies the density condition
(1.5) with p ≤ θ ≤ n.

Theorem 4.2.4. Let u ∈ W 1,max{p−1,1}(Ω) with ψ1 ≤ u ≤ ψ2 a.e. in Ω be
a limit of approximating solutions to OP (ψ1, ψ2;µ) under assumptions (2.8)
when 2 ≤ p ≤ n, and assumptions (2.8) and (4.104) when 2− 1/n < p < 2.
Assume that ψ1, ψ2 ∈ W 1,p(Ω) ∩W 2,1(Ω) satisfy (4.103) and

µ,DΨ1,DΨ2 ∈ L1,θ(Ω) (4.107)

with p ≤ θ ≤ n. Then

A(Du) ∈ W σ,1,θ
loc (Ω;Rn) ∀ σ ∈ (0, 1).

Moreover, for any ball BR b Ω and σ ∈ (0, 1), we have

[A(Du)]σ,1,θ;BR/3 ≤ cRθ−n−σ
∫
BR

(|Du|+ s)p−1 dx+ cR1−σ‖µ‖L1,θ(BR)

+ cR1−σ‖DΨ1‖L1,θ(BR) + cR1−σ‖DΨ2‖L1,θ(BR) (4.108)

for a constant c ≡ c(data, σ).

We also have the counterpart of Corollary 4.2.3, which reads as follows.
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Corollary 4.2.5. Under the assumptions of Theorem 4.2.4 with 2 ≤ p ≤ n,
let u ∈ W 1,p−1(Ω) with ψ1 ≤ u ≤ ψ2 a.e. in Ω be a limit of approximating
solutions to OP (ψ1, ψ2;µ). Then for every γ ∈ [0, p− 2], we have

(|Du|2 + s2)γ/2Du ∈ W
σ γ+1
p−1

, p−1
γ+1

,θ

loc (Ω;Rn) ∀ σ ∈ (0, 1).

Moreover, for any ball BR b Ω and σ ∈ (0, 1), we have

[(|Du|2 + s2)γ/2Du]σ γ+1
p−1

, p−1
γ+1

,θ;BR/3

≤ cR(θ−n−σ) γ+1
p−1

(∫
BR

(|Du|+ s)p−1 dx

) γ+1
p−1

+ cR(1−σ) γ+1
p−1
(
‖µ‖L1,θ(BR) + ‖DΨ1‖L1,θ(BR) + ‖DΨ2‖L1,θ(BR)

) γ+1
p−1

for a constant c ≡ c(data, σ).

Remark 4.2.6. Under assumption (4.103), the differentiability result given
in (4.105) is sharp in the sense that we cannot have A(Du) ∈ W 1,1

loc (Ω;Rn),
which is already invalid for the case of equation (1.1). An interesting ques-
tion is whether we can obtain lower differentiability results for A(Du) under
weaker assumptions than (4.103). For instance, in view of (1.10), it should
be interesting that one can prove, for some fixed α ∈ (0, 1),

A(Dψ1), A(Dψ2) ∈ Wα,1
loc =⇒ A(Du) ∈ W σ,1

loc ∀ σ ∈ (0, α).

Note that in the case α = 1, this follows from Theorem 4.2.2. For lower
values of α, the techniques in [9] are not directly applicable. Indeed, the reason
why [9, Theorem 1.1] covers only the p-Laplace operator with p ≥ 2 and
n = 2 is that its proof uses certain regularity results for p-harmonic functions,
related to the Cp′-conjecture, in order to obtain (1.10). In the case of general
structure conditions and higher dimensions, the range of σ in (1.10) is more
restricted and even not clear, as mentioned in [9, Remark 4.2].

4.2.2 Comparison estimates

We introduce the following notations for the admissible sets of the problem
OP (ψ1, ψ2;µ): given an open set O ⊆ Ω and a function g ∈ W 1,p(O) with
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ψ1 ≤ g ≤ ψ2 a.e. in O, we denote

Agψ1,ψ2
(O) :=

{
ϕ ∈ g +W 1,p

0 (O) : ψ1 ≤ ϕ ≤ ψ2 a.e. in O
}
.

Throughout this section, we recall (4.103) and further assume that

µ ∈ W−1,p′(Ω) ∩ L1(Ω) and u ∈ Agψ1,ψ2
(Ω) (4.109)

satisfy∫
Ω

A(Du) ·D(φ− u) dx ≥
∫

Ω

(φ− u) dµ ∀ φ ∈ Auψ1,ψ2
(Ω), (4.110)

in order to derive several comparison estimates.
With B2R b Ω being a fixed ball, we first consider the single obstacle

problem

∫
B2R

A(Dw1) ·D(φ− w1) dx

≥
∫
B2R

A(Dψ2) ·D(φ− w1) dx

∀ φ ∈ Auψ1
(B2R),

w1 ≥ ψ1 a.e. in B2R,

w1 = u on ∂B2R.

(4.111)

We then consider the two obstacle-free problems{
−divA(Dw2) = −divA(Dψ1) in B2R,

w2 = u on ∂B2R

(4.112)

and {
−divA(Dv) = 0 in B2R,

v = u on ∂B2R.
(4.113)

We start with a weighted type energy estimate, whose proof is essentially
the same as that of (4.19).

Lemma 4.2.7. Let u ∈ Agψ1,ψ2
(Ω) be the weak solution to (4.110) under
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assumptions (2.8), and let w1 ∈ Auψ1
(B2R) be as in (4.111). Then∫

B2R

|V (Du)− V (Dw1)|2

(h+ |u− w1|)ξ
dx ≤ c

h1−ξ

ξ − 1
(|µ|(B2R) + |DΨ2|(B2R)) (4.114)

holds whenever h > 0 and ξ > 1, where c ≡ c(data).

Proof. We first show that w1 ≤ ψ2 a.e. in B2R by a similar argument as in
the proof of Lemma 4.1.7. Testing (4.111) with φ = min{w1, ψ2} and using
(2.11), we get ∫

B2R∩{w1≥ψ2}
|V (Dw1)− V (Dψ2)|2 dx ≤ 0.

Recalling that w1 ∈ u + W 1,p
0 (B2R) and u ≤ ψ2 a.e. in B2R, we obtain

(w1 − ψ2)+ ∈ W 1,p
0 (B2R), which in turn implies w1 ≤ ψ2 a.e. in B2R.

We now turn to the proof of (4.114). The estimate is essentially similar
to that in [146, Lemma 2], but we need to modify the test functions due to
the setting of obstacle problems. We consider

η± :=
1

ξ − 1

[
1−

(
1 +

(u− w1)±
h

)1−ξ
]
,

which obviously belong to W 1,p
0 (B2R)∩L∞(B2R). Also, by applying the mean

value theorem to the function t 7→ t1−ξ/(ξ − 1), we have

η±(x) =
(u− w1)±(x)

h
(h̃±(x))−ξ for some 1 < h̃±(x) < 1 +

(u− w1)±(x)

h

whenever x ∈ B2R. Using this and the fact that η± ≥ 0, we observe that

min{u,w1} ≤ u− hη+ ≤ u ≤ u+ hη− ≤ max{u,w1} a.e. in B2R

and

min{u,w1} ≤ w1 − hη− ≤ w1 ≤ w1 + hη+ ≤ max{u,w1} a.e. in B2R.

Therefore, u± hη∓ and w1 ± hη± belong to the admissible set Auψ1,ψ2
(B2R).
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We now test (4.110) with φ ≡ u± hη∓ to have∫
B2R

A(Du) ·D(u− w1)+

(h+ (u− w1)+)ξ
dx ≤ h1−ξ

∫
B2R

η+ dµ

and ∫
B2R

A(Du) ·D(u− w1)−
(h+ (u− w1)−)ξ

dx ≥ h1−ξ
∫
B2R

η− dµ.

Similarly, testing (4.111) with φ ≡ w1 ± hη±, we obtain∫
B2R

A(Dw1) ·D(u− w1)+

(h+ (u− w)+)ξ
dx ≥ −h1−ξ

∫
B2R

η+DΨ2 dx

and ∫
B2R

A(Dw1) ·D(u− w1)−
(h+ (u− w1)−)ξ

dx ≤ −h1−ξ
∫
B2R

η−DΨ2 dx.

Hence, using (2.11) in each case we obtain∫
B2R∩{u≥w1}

|V (Du)− V (Dw1)|2

(h+ |u− w1|)ξ
dx

≤ c

∣∣∣∣∫
B2R

h1−ξη+ dµ

∣∣∣∣+ c

∣∣∣∣∫
B2R

DΨ2h
1−ξη+ dx

∣∣∣∣
≤ c

h1−ξ

ξ − 1
(|µ|(B2R) + |DΨ2|(B2R))

and ∫
B2R∩{u<w1}

|V (Du)− V (Dw1)|2

(h+ |u− w1|)ξ
dx

≤ c

∣∣∣∣∫
B2R

h1−ξη− dµ

∣∣∣∣+ c

∣∣∣∣∫
B2R

DΨ2h
1−ξη− dx

∣∣∣∣
≤ c

h1−ξ

ξ − 1
(|µ|(B2R) + |DΨ2|(B2R)) .

Combining the last two estimates finally gives (4.114).
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As in Section 4.1.3, the following comparison estimate between (4.110)
and (4.111) follows by the arguments in [144, Lemma 4.3] and [146, Lemma 1].
We also refer to [43, Lemma 4.1] for another proof.

Lemma 4.2.8. Let u ∈ Agψ1,ψ2
(Ω) be the weak solution to (4.110) under

assumptions (2.8), and let w1 ∈ Auψ1
(B2R) be as in (4.111). Then we have∫

B2R

(
|Du−Dw1|q + |V (Du)− V (Dw1)|

2q
p

)
dx

≤ c

[
|µ|(B2R)

(2R)n−1

] q
p−1

+ c

[
|DΨ2|(B2R)

(2R)n−1

] q
p−1

+ cχ{p<2}

([
|µ|(BR)

(2R)n−1

]q
+

[
|DΨ2|(B2R)

(2R)n−1

]q)(∫
B2R

(|Du|+ s)q dx

)2−p

(4.115)

for every q satisfying

1 < q < min

{
p,
n(p− 1)

n− 1

}
, (4.116)

where c ≡ c(data, q).

In light of Lemma 4.1.7, the following lemmas can be proved in exactly
the same way.

Lemma 4.2.9. Let w1, w2 and v be as in (4.111), (4.112) and (4.113),
respectively. Then∫

B2R

|V (Dw1)− V (Dw2)|2

(h1 + |w1 − w2|)ξ1
dx ≤ c

h1−ξ1
1

ξ1 − 1
(|DΨ1|(B2R) + |DΨ2|(B2R))

and ∫
B2R

|V (Dw2)− V (Dv)|2

(h2 + |w2 − v|)ξ2
dx ≤ c

h1−ξ2
2

ξ2 − 1
|DΨ1|(B2R)

hold for any h1, h2 > 0 and ξ1, ξ2 > 1, where c ≡ c(data).

Lemma 4.2.10. Let w1, w2 and v be as in (4.111), (4.112) and (4.113),
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respectively. Then we have∫
B2R

(
|Dw1 −Dw2|q + |V (Dw1)− V (Dw2)|

2q
p

)
dx

≤ c

[
|DΨ1|(B2R)

(2R)n−1

] q
p−1

+ c

[
|DΨ2|(B2R)

(2R)n−1

] q
p−1

+ cχ{p<2}

([
|DΨ1|(B2R)

(2R)n−1

]q
+

[
|DΨ2|(B2R)

(2R)n−1

]q)(∫
B2R

(|Dw1|+ s)q dx

)2−p

(4.117)

and∫
B2R

(
|Dw2 −Dv|q + |V (Dw2)− V (Dv)|

2q
p

)
dx

≤ c

[
|DΨ1|(B2R)

(2R)n−1

] q
p−1

+ cχ{p<2}

[
|DΨ1|(B2R)

(2R)n−1

]q (∫
B2R

(|Dw2|+ s)q dx

)2−p

(4.118)

for every q satisfying (4.116), where c ≡ c(data, q).

In the following, we consider the positive measure Λ ∈Mb(Ω) defined by

Λ(S) := |µ|(S) + |DΨ1|(S) + |DΨ2|(S) (4.119)

for each measurable set S ⊆ Ω. Combining Lemmas 4.2.8 and 4.2.10, we
establish a comparison estimate between (4.110) and (4.113).

Lemma 4.2.11. Let u and v be as in (4.110) and (4.113), respectively. Then∫
B2R

(
|Du−Dv|q + |V (Du)− V (Dv)|

2q
p

)
dx

≤ c

[
Λ(B4R)

(4R)n−1

] q
p−1

+ cχ{p<2}

[
Λ(B4R)

(4R)n−1

]q (∫
B4R

(|Du|+ s)t dx

) q(2−p)
t

(4.120)

holds for every q satisfying

0 < q < min

{
p,
n(p− 1)

n− 1

}
(4.121)
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and t ∈ (0, q], where c ≡ c(data, q, t).

Proof. Estimate (4.120) in the case t = q ≥ 1 can be obtained from Lem-
mas 4.2.8 and 4.2.10; it is immediate when p ≥ 2. When 2 − 1/n < p < 2,
we observe that([

|DΨ1|(B2R)

(2R)n−1)

]q
+

[
|DΨ2|(B2R)

(2R)n−1

]q)(∫
B2R

(|Dw1|+ s)q dx

)2−p

≤ c

[
Λ(B2R)

(2R)n−1

]q (∫
B2R

(|Du|+ s)q dx+

∫
B2R

|Du−Dw1|q dx
)2−p

≤ c

[
Λ(B2R)

(2R)n−1

]q (∫
B2R

(|Du|+ s)q dx

)2−p

+ c

[
Λ(B2R)

(2R)n−1

]q([ |µ|(B2R)

(2R)n−1

] q
p−1

+

∫
B2R

(|Du|+ s)q dx

)2−p

≤ c

[
Λ(B2R)

(2R)n−1

] q
p−1

+ c

[
Λ(B2R)

(2R)n−1

]q (∫
B2R

(|Du|+ s)q dx

)2−p

, (4.122)

where we have used (4.115) and Young’s inequality. Estimating in a com-
pletely similar way, and then using (4.122), we also have[

DΨ1(B2R)

(2R)n−1

]q (∫
B2R

(|Dw2|+ s)q dx

)2−p

≤ c

[
Λ(B2R)

(2R)n−1

] q
p−1

+ c

[
Λ(B2R)

(2R)n−1

]q (∫
B2R

(|Dw1|+ s)q dx

)2−p

≤ c

[
Λ(B2R)

(2R)n−1

] q
p−1

+ c

[
Λ(B2R)

(2R)n−1

]q (∫
B2R

(|Du|+ s)q dx

)2−p

. (4.123)

Combining (4.115), (4.117), (4.118), (4.122) and (4.123), we arrive at∫
B2R

(
|Du−Dv|q + |V (Du)− V (Dv)|

2q
p

)
dx

≤ c

[
Λ(B2R)

(2R)n−1

] q
p−1

+ c

[
Λ(B2R)

(2R)n−1

]q (∫
B2R

(|Du|+ s)q dx

)2−p

(4.124)

whenever q satisfies (4.116). Now, estimate (4.120) for lower values of q ∈
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(0, 1) and t ∈ (0, q] follows from the arguments in [143, Proposition 4.1] and
[7, Lemma 3.1].

In order to linearize the above comparison estimates, we establish an
additional estimate. We fix a ball

B2MR ≡ B2MR(x0) b Ω with M ≥ 8 and R ≤ 1, (4.125)

where M is a free parameter whose value will be determined later in this
section.

We then consider the following comparison maps. The first one is w1,∗ ∈
Auψ1

(BMR), which is defined as the weak solution to

∫
BMR

A(Dw1,∗) ·D(φ− w1,∗) dx

≥
∫
BMR

A(Dψ2) ·D(φ− w1,∗) dx

∀ φ ∈ Auψ1
(BMR),

w1,∗ ≥ ψ1 a.e. in BMR,

w1,∗ = u on ∂BMR.

Accordingly, w2,∗ ∈ u+W 1,p
0 (BMR) is defined as the weak solution to{

−divA(Dw2,∗) = −divA(Dψ2) in BMR,

w2,∗ = u on ∂BMR.

The last one is v∗ ∈ u+W 1,p
0 (BMR) which is defined as the weak solution to{
−divA(Dv∗) = 0 in BMR,

v∗ = u on ∂BMR.

The following lemma will be of crucial importance in the linearization
procedure for p ≥ 2.

Lemma 4.2.12. Let u ∈ Agψ1,ψ2
(Ω) be the weak solution to (4.110) under

assumptions (2.8) with p ≥ 2, and let w1,∗, w2,∗, v∗ be the functions defined
in the above display. Suppose further that[

Λ(BMR)

(MR)n−1

]
≤ λp−1 (4.126)
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holds for some λ > 0, together with the bounds

λ

H
≤ |Dv∗|+ s ≤ Hλ in B2R, (4.127)

where H ≥ 1 is a constant. Then there exists a constant c ≡ c(data,M,H)
such that ∫

B2R

|Du−Dv| dx ≤ cλ2−p
[

Λ(BMR)

(MR)n−1

]
. (4.128)

Proof. We basically follow the proof of [146, Lemma 3]. When p = 2, (4.128)
is a direct consequence of Lemma 4.2.11. Therefore we will assume p > 2 in
the rest of the proof. We fix two constants

γ :=
1

4(p− 1)(n+ 1)
and ξ := 1 + 2γ,

and moreover set

w̄1 :=
w1

λ
, w̄1,∗ :=

w1,∗

λ
, v̄ :=

v

λ
, v̄∗ :=

v∗
λ
, and s̄ :=

s

λ
.

Triangle inequality gives∫
B2R

|Du−Dv| dx ≤
∫
B2R

|Du−Dw1| dx+

∫
B2R

|Dw1 −Dw2| dx

+

∫
B2R

|Dw2 −Dv| dx, (4.129)

and we are going to estimate each integral on the right-hand side separately.
We start with the first integral. Using (4.127), we have∫
B2R

|Du−Dw1| dx ≤ H(p−2)(1+γ)

∫
B2R

(|Dv̄∗|+ s̄)(p−2)(1+γ)|Du−Dw1| dx

≤ c

∫
B2R

|Dv̄∗ −Dw̄1|(p−2)(1+γ)|Du−Dw1| dx

+ c

∫
B2R

(|Dw̄1|+ s̄)(p−2)(1+γ)|Du−Dw1| dx (4.130)

for a constant c ≡ c(data, H).
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To estimate the second-last integral in (4.130), we observe that (4.115)
and (4.124) imply∫
B2R

|Dv̄∗ −Dw̄1|q dx ≤ cλ−q
(∫

BMR

|Dv∗ −Du|q dx+

∫
B2R

|Du−Dw1|q dx
)

≤ cλ−q
[

Λ(BMR)

(MR)n−1

] q
p−1

(4.131)

for any q satisfying (4.116), where c ≡ c(data,M,H, q). We then estimate,
again using (4.115) and (4.124),∫

B2R

|Dv̄∗ −Dw̄1|(p−2)(1+γ)|Du−Dw1| dx

≤ c

(∫
B2R

|Dv̄∗ −Dw̄1|(p−1)(1+γ) dx

) p−2
p−1
(∫

B2R

|Du−Dw1|p−1 dx

) 1
p−1

≤ c

[
Λ(BMR)

λp−1(MR)n−1

] (p−2)(1+γ)
p−1

[
|µ|(BMR)

(MR)n−1

] 1
p−1

≤ cλ

[
Λ(BMR)

λp−1(MR)n−1

] (p−2)(1+γ)+1
p−1

≤ cλ

[
Λ(BMR)

λp−1(MR)n−1

]
= cλ2−p

[
Λ(BMR)

(MR)n−1

]
. (4.132)

Here, for the last inequality, we have used (4.126) and the fact that

(1 + γ)(p− 2) + 1 > p− 1.

Combining (4.132) with (4.130) gives∫
B2R

|Du−Dw1| dx

≤ cλ2−p
[

Λ(BMR)

(MR)n−1

]
+ c

∫
B2R

(|Dw̄1|+ s̄)(p−2)(1+γ)|Du−Dw1| dx. (4.133)

Estimating similarly as in (4.130) and this time using (4.117), (4.118) and
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(4.124), we also have∫
B2R

|Dw1 −Dw2| dx

≤ cλ2−p
[

Λ(BMR)

(MR)n−1

]
+ c

∫
B2R

(|Dw̄2|+ s̄)(p−2)(1+γ)|Dw1 −Dw2| dx (4.134)

and∫
B2R

|Dw2 −Dv| dx

≤ cλ2−p
[

Λ(BMR)

(MR)n−1

]
+ c

∫
B2R

(|Dv̄|+ s̄)(p−2)(1+γ)|Dw2 −Dv| dx. (4.135)

We now estimate the last integral on the right-hand side in each of (4.133),
(4.134) and (4.135). For simplicity, we will again give full details only for
(4.133). We apply Hölder’s inequality and (4.114), recalling that ξ = 1 + 2γ,
in order to have for any h > 0∫

B2R

(|Dw̄1|+ s̄)(p−2)(1+γ)|Du−Dw1| dx

≤ c

∫
B2R

[
λ2−p (|Dw1|+ |Du|+ s)p−2|Du−Dw1|2

(h+ |u− w1|)ξ

] 1
2

·
[
(|Dw̄1|+ s̄)(p−2)(1+2γ)(h+ |u− w1|)ξ

] 1
2 dx

≤ c

∫
B2R

[
λ2−p |V (Du)− V (Dw1)|2

(h+ |u− w1|)ξ

] 1
2

·
[
(|Dw̄1|+ s̄)(p−2)ξ(h+ |u− w1|)ξ

] 1
2 dx

≤ c

(
λ2−p

∫
B2R

|V (Du)− V (Dw1)|2

(h+ |u− w1|)ξ
dx

) 1
2

·
(∫

B2R

(|Dw̄1|+ s̄)(p−2)ξ(h+ |u− w1|)ξ dx
) 1

2

≤ cλ
2−p

2

[
h1−ξΛ(B2R)

Rn

] 1
2
(∫

B2R

(|Dw̄1|+ s̄)(p−2)ξ(h+ |u− w1|)ξ dx
) 1

2

.

(4.136)
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We then choose

h :=

(∫
B2R

(|Dw̄1|+ s̄)(p−2)ξ|u− w1|ξ dx
) 1

ξ

+ δ (4.137)

for δ > 0 sufficiently small, which gives(∫
B2R

(|Dw̄1|+ s̄)(p−2)ξ(h+ |u− w1|)ξ dx
) 1

2

≤ ch
ξ
2

(∫
B2R

(|Dw̄1|+ s̄)(p−2)ξ dx

) 1
2

+ ch
ξ
2 .

We note that the role of δ in (4.137) is just to guarantee that h > 0, as we
let δ → 0 at the end of the proof. Also, since (4.131) and (4.127) imply∫

B2R

(|Dw̄1|+ s̄)(p−2)ξ dx

≤ c

∫
B2R

|Dw̄1 −Dv̄∗|(p−2)ξ dx+ c

∫
B2R

(|Dv̄∗|+ s̄)(p−2)ξ dx

≤ c

[
Λ(BMR)

λp−1(MR)n−1

] (p−2)ξ
p−1

+ cH(p−2)ξ

≤ c,

we further have(∫
B2R

(|Dw̄1|+ s̄)(p−2)ξ(h+ |u− w1|)ξ dx
) 1

2

≤ ch
ξ
2 .

It then follows from (4.136) that∫
B2R

(|Dw̄1|+ s̄)(p−2)(1+γ)|Du−Dw1| dx

≤ c

(
h

R

) 1
2
[

Λ(B2R)

λp−2Rn−1

] 1
2

≤ cλ2−p

ε

[
Λ(BMR)

(MR)n−1

]
+
εh

R
(4.138)

holds whenever ε ∈ (0, 1).
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Finally, it remains to estimate h. We write

h ≤ c

(∫
B2R

|Dv̄∗ −Dw̄1|(p−2)ξ|u− w1|ξ dx
) 1

ξ

+ c

(∫
B2R

(|Dv̄∗|+ s̄)(p−2)ξ|u− w1|ξ dx
) 1

ξ

+ δ

=: I1 + I2 + δ. (4.139)

Using (4.117), (4.118) and (4.131), we estimate I1 as

I1 ≤ c

(∫
B2R

|Dv̄∗ −Dw̄1|ξ(p−1) dx

) p−2
ξ(p−1)

(∫
B2R

|u− w1|ξ(p−1) dx

) 1
ξ(p−1)

≤ cR

[
Λ(BMR)

λp−1(MR)n−1

] p−2
p−1

·
(∫

B2R

|Du−Dw1|ξ(p−1) dx

) 1
ξ(p−1)

≤ cR

[
Λ(BMR)

λp−1(MR)n−1

] p−2
p−1
[
|µ|(B2R)

(2R)n−1

] 1
p−1

≤ cRλ2−p
[

Λ(BMR)

(MR)n−1

]
. (4.140)

As for I2, we apply (4.115) and (4.127) to have

I2 ≤ cHp−2

(∫
B2R

|u− w1|ξ dx
) 1

ξ

≤ cR

∫
B2R

|Du−Dw1| dx

≤ cH(p−2)(1+γ)MR

∫
B2R

(|Dv̄∗|+ s̄)(p−2)(1+γ)|Du−Dw1| dx

≤ cR

∫
B2R

(|Dw̄1|+ s̄)(p−2)(1+γ)|Du−Dw1| dx

+ cR

∫
B2R

|Dv̄∗ −Dw̄1|(p−2)(1+γ)|Du−Dw1| dx.
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Applying (4.132) to the last integral, we obtain

I2 ≤ cR

∫
B2R

(|Dw̄1|+ s̄)(p−2)(1+γ)|Du−Dw1| dx+ cRλ2−p
[

Λ(BMR)

(MR)n−1

]
.

From this inequality together with (4.139) and (4.140), we find

h

R
≤ c∗

∫
B2R

(|Dw̄1|+ s̄)(p−2)(1+γ)|Du−Dw1| dx+ c∗λ
2−p
[

Λ(BMR)

(MR)n−1

]
+
δ

R
,

where c∗ ≡ c∗(data, H,M).
Putting this inequality into (4.138), choosing ε = 1/(2c∗) and then reab-

sorbing terms, we arrive at∫
B2R

(|Dw̄1|+ s̄)(p−2)(1+γ)|Du−Dw1| dx ≤ cλ2−p
[

Λ(BMR)

(MR)n−1

]
+
cδ

R
.

We let δ → 0 and then combine the resulting estimate with (4.133) to have∫
B2R

|Du−Dw1| dx ≤ cλ2−p
[

Λ(BMR)

(MR)n−1

]
. (4.141)

In a similar way, using Lemma 4.2.9, we can also deduce∫
B2R

(|Dw̄2|+ s̄)(p−2)(1+γ)|Dw1 −Dw2| dx ≤ cλ2−p
[

Λ(BMR)

(MR)n−1

]
and ∫

B2R

(|Dv̄|+ s̄)(p−2)(1+γ)|Dw2 −Dv| dx ≤ cλ2−p
[

Λ(BMR)

(MR)n−1

]
.

Combining the last two displays with (4.134) and (4.135), we obtain∫
B2R

|Dw1 −Dw2| dx+

∫
B2R

|Dw2 −Dv| dx ≤ cλ2−p
[

Λ(BMR)

(MR)n−1

]
. (4.142)

Finally, connecting (4.141) and (4.142) to (4.129), the desired estimate (4.128)
follows.
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We now establish linearized comparison estimates between (4.110) and
(4.113). We notice that, recalling the results in Sections 2.3.2 and 4.2.2,
the linearization procedure is basically the same as in [7, Section 5]; the
only difference is that µ in the estimates therein is replaced by Λ defined in
(4.119). Therefore we just sketch the strategies and omit the details.

With M ≥ 8 as in (4.125), and another free parameter θ1 ∈ (0, 1), we
consider the following two alternatives. One is the two-scales degenerate al-
ternative∫

B2MR

|A(Du)− (A(Du))B2MR
| dx ≥ θ1

[
|(A(Du))B2R/M

|+ sp−1
]
,

and the other is the two-scales non-degenerate alternative∫
B2MR

|A(Du)− (A(Du))B2MR
| dx < θ1

[
|(A(Du))B2R/M

|+ sp−1
]
.

In the non-degenerate alternative, we denote

λ :=

(∫
B2R/M

(|Du|2 + s2)
p−1

2 dx

) 1
p−1

and further distinguish two cases, making use of an additional free parameter
σ1 ∈ (0, 1/2n):

Λ(B2MR)

(2MR)n−1
≤ σ1λ

p−1 or λp−1 <
1

σ1

[
Λ(B2MR)

(2MR)n−1

]
.

Taking account of the above alternatives, and fixing M , θ1 and σ1 as
universal constants depending only on data as in [7, Remark 4], we let K =
4M2 and then make an elementary modification in order to conclude with
the following comparison estimate.

Lemma 4.2.13. Let u ∈ Agψ1,ψ2
(Ω) be the weak solution to (4.110) under

assumptions (2.8) when p ≥ 2, and assumptions (2.8) and (4.104) when
2 − 1/n < p < 2. There exists a constant K ≡ K(data) ≥ 128 such that
if B2KR b Ω is a ball with R ≤ 1, and if v is the unique weak solution to

155



CHAPTER 4. ELLIPTIC OBSTACLE PROBLEMS WITH MEASURE
DATA

(4.113) with B2R replaced by B2
√
KR, then the following inequalities∫

B4R

|A(Du)− A(Dv)| dx

≤ cRδm

∫
BKR

|A(Du)− (A(Du))BKR | dx+ c

[
Λ(BKR)

(KR)n−1+δ|p−2|

]
and ∫

B2R

|D(A(Dv))| dx

≤ c

R

∫
BKR

|A(Du)− (A(Du))BKR | dx+ c

[
Λ(BKR)

(KR)n+δ|p−2|

]
hold whenever δ ≥ 0, where m = min{p− 1, 1} and c ≡ c(data).

4.2.3 Proof of Theorem 4.2.2

In this section, we prove estimate (4.106), which with a standard covering
argument gives (4.105). The proof will be divided into three steps.

Step 1: Reduction to a priori estimates. First of all, we note that we may
restrict ourselves to the case when (4.109) holds. In fact, given a limit of
approximating solutions u to OP (ψ1, ψ2;µ), let {uk} and {µk} be the two
sequences as described in Definition 4.2.1. Once we have estimate (4.106)
for uk and µk, an elementary manipulation as in [7, Section 6.1], along with
(4.101) and (4.102), gives the same estimate for u and µ as well. Note that
we do not approximate the obstacles.

Step 2: Rescaling. For the proof of (4.106), we may assumeBR ≡ BR(x0) ≡
B1 ≡ B1(0) and ∫

B1

|A(Du)| dx+ Λ(B1) ≤ c(n, p),

and then prove ∫
B1/2

∫
B1/2

|A(Du(x))− A(Du(y))|
|x− y|n+σ

dx dy ≤ c (4.143)

for every σ ∈ (0, 1), where c ≡ c(data, σ). This can be done by a standard
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scaling argument as follows. We define

H :=

{∫
BR

|A(Du)| dx+

[
Λ(BR)

Rn−1

]} 1
p−1

and

ũ(y) :=
u(x0 +Ry)

HR
, ψ̃i(y) :=

ψi(x0 +Ry)

HR
(i = 1, 2),

µ̃(y) :=
Rµ(x0 +Ry)

Hp−1
, Ã(z) :=

A(Hz)

Hp−1
,

(4.144)

for y ∈ B1 and z ∈ Rn. We may assume that H > 0, otherwise there is
nothing to prove.

Step 3: Proof of (4.143) and conclusion. In the following, we fix the open
sets

Ω′ b Ω′′ ⊂ B1 with d := dist(Ω′, ∂Ω′′).

We moreover define

κ :=
m

m+ |p− 2|
=

{
1/(p− 1) if p ≥ 2,

p− 1 if p < 2

and
γ(t) := [1− κ(1− t)][κ(1− t) + t], t ∈ [0, 1).

The main essence here is the following bootstrap lemma, which can be proved
in the same way as in [7, Lemma 6.1], again modulo replacing µ by Λ in the
estimates therein.

Lemma 4.2.14. For open sets as above, assume that A(Du) ∈ W t,1(Ω′′) for
some t ∈ [0, 1) and

[A(Du)]t,1;Ω′′ ≤ c1

for some c1 > 0, when t > 0. Then A(Du) ∈ W t̃,1(Ω′) for every t̃ ∈ [0, γ(t))
with the estimate

[A(Du)]t̃,1;Ω′ ≤ c2,

where c2 depends only on data, d and t̃ if t = 0 and also on c1 if t > 0.
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Finally, for any vector h ∈ Rn such that |h| < dist(Ω′, ∂B1), it holds that

sup
h

∫
Ω′

|τh(A(Du))|
|h|γ(t)

dx ≤ c3,

where c3 depends only on data and d if t = 0 and also on c1 if t > 0.

Finally, we iterate the above lemma by using exactly the same argument
as the one after [7, Lemma 6.1], which implies the following: for every σ, ε ∈
(0, 1), there exists a constant c ≡ c(data, σ, ε) such that

[A(Du)]σ,1;B1−ε + sup
0<|h|<ε

∫
B1−ε

|τh(A(Du))|
|h|σ

dx ≤ c. (4.145)

This in particular implies (4.143), and the proof of Theorem 4.2.2 is complete.
Moreover, Corollary 4.2.3 easily follows from (4.106) and the following

inequality in [7, Section 7]:

|(|z1|2 + s2)γ/2z1 − (|z2|2 + s2)γ/2z2|
p−1
γ+1 . |A(z1)− A(z2)|, (4.146)

valid for every z1, z2 ∈ Rn and γ ∈ [0, p− 2].

Remark 4.2.15. We note that, considering again the scaling arguments in
Step 2, (4.145) also implies A(Du) ∈ Nσ,1

loc (Ω;Rn) for every σ ∈ (0, 1). More-
over, the estimate

sup
0<|h|<R/2

∫
BR/2

|τh(A(Du))|
|h|σ

dx ≤ c

Rσ

∫
BR

|A(Du)| dx+ cR1−σ[Λ(BR)]

holds for any ball BR b Ω and σ ∈ (0, 1), where c ≡ c(data, σ). For more on
such differentiability results and related problems, see [165].

4.2.4 Proof of Theorem 4.2.4

With (4.107) in force, we first obtain a Morrey type decay estimate.

Lemma 4.2.16. Let u ∈ W 1,max{p−1,1}(Ω) with ψ1 ≤ u ≤ ψ2 a.e. in Ω be
a limit of approximating solutions to OP (ψ1, ψ2;µ) under assumptions (2.8)
with 2− 1/n < p ≤ n. Assume (4.103) and (4.107) with p ≤ θ ≤ n. Then for
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every q satisfying (4.121), there exists a constant c ≡ c(data, q) such that

ρ
q(θ−1)
p−1

∫
Bρ

(|Du|+ s)q dx ≤ cR
q(θ−1)
p−1

∫
BR

(|Du|+ s)q dx+ c‖Λ‖q/(p−1)

L1,θ(BR)

holds whenever Bρ ⊂ BR b Ω are concentric balls.

Proof. Without loss of generality, we again argue under assumption (4.109);
a standard approximation argument will lead to the same result for a limit
of approximating solutions as well.

Let Bρ ⊂ BR be concentric balls as in the statement; we may assume
ρ ≤ R/2. We consider the weak solution v to (4.113) with the ball B2R

replaced by BR/2. We then recall the following decay estimate below the
natural exponent (see for instance [164, Lemma 3.3]):∫

Bρ

(|Dv|+ s)q dx ≤ c
( ρ
R

)n−q+qβ ∫
BR/2

(|Dv|+ s)q dx, (4.147)

where c ≡ c(data, q) ≥ 1 and β ≡ β(data) ∈ (0, 1].
Using (4.147), we proceed as∫

Bρ

(|Du|+ s)q dx ≤ c

∫
Bρ

(|Dv|+ s)q dx+ c

∫
Bρ

|Du−Dv|q dx

≤ c
( ρ
R

)n−q+qβ ∫
BR/2

(|Dv|+ s)q dx+ c

∫
BR/2

|Du−Dv|q dx

≤ c
( ρ
R

)n−q+qβ ∫
BR/2

(|Du|+ s)q dx+ c

∫
BR/2

|Du−Dv|q dx. (4.148)

To estimate the last integral, we apply the comparison estimate (4.120) along
with the density condition Λ ∈ L1,θ(Ω). In the case 2 − 1/n < p < 2, we
further apply Young’s inequality to the second term in the right-hand side
of (4.120). In turn, we have for p > 2− 1/n∫

BR/2

|Du−Dv|q dx ≤ cεR
n− q(n−1)

p−1 [Λ(BR)]
q
p−1 + ε

∫
BR

(|Du|+ s)q dx

≤ cεR
n− q(θ−1)

p−1 ‖Λ‖q/(p−1)

L1,θ(BR)
+ ε

∫
BR

(|Du|+ s)q dx

(4.149)
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whenever ε ∈ (0, 1), where cε ≡ cε(data, q, ε). Combining (4.148) and (4.149)
gives ∫

Bρ

(|Du|+ s)q dx ≤ c

[( ρ
R

)n−q+qβ
+ ε

] ∫
BR

(|Du|+ s)q dx

+ cεR
n− q(θ−1)

p−1 ‖Λ‖q/(p−1)

L1,θ(BR)

for any ε ∈ (0, 1). Since we are assuming p ≤ θ, and ε can be chosen arbi-
trarily small, we can apply Lemma 2.3.11 with the choice

Z(t) =

∫
Bt

(|Du|+ s)q dx

and γ = n− q(θ − 1)/(p− 1) < n− q + qβ, which concludes the proof.

Remark 4.2.17. We note that Lemma 4.2.16 continues to hold for problems
with measurable coefficients. This is due to the validity of (4.120) and (4.147)
for such problems.

We now prove Theorem 4.2.4. We again confine ourselves to the case when
BR ≡ B1 ≡ B1(0) and∫

B1

(|Du|+ s)p−1 dx+ ‖Λ‖L1,θ(B1) ≤ 1

hold, and then prove
[A(Du)]σ,1,θ;B1/3

≤ c (4.150)

for every σ ∈ (0, 1), where c ≡ c(data, σ). This can be again done by a
scaling argument as in (4.144), this time with the choice

H :=

{∫
BR

(|Du|+ s)p−1 dx+ ‖Λ‖L1,θ(BR)R
1−θ
} 1

p−1

.

Then we have
Λ(Bρ) ≤ ρn−θ ∀ Bρ ⊂ B1. (4.151)

Moreover, Lemma 4.2.16 with a simple covering argument implies

ρθ−1

∫
Bρ

|A(Du)| dx ≤ c ∀ Bρ ⊂ B2/3. (4.152)
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Let Br ⊂ B1/3 be an arbitrary ball. Then (4.106) and the scaling argument
imply∫
Br

∫
Br

|A(Du(x))− A(Du(y))|
|x− y|n+σ

dxdy ≤ cr−σ
∫
B2r

|A(Du)| dx+ cr1−σΛ(B2r)

≤ crn−θ+1−σ, (4.153)

where we have also used (4.151) and (4.152) for the last inequality. In par-
ticular, since r ≤ 1, we have

rθ−n
∫
Br

∫
Br

|A(Du(x))− A(Du(y))|
|x− y|n+σ

dxdy ≤ c.

Recalling that Br ⊂ B1/3 is arbitrary, we conclude with (4.150), which com-
pletes the proof of Theorem 4.2.4. Again, Corollary 4.2.5 follows from (4.108)
and (4.146).

Remark 4.2.18. In the above proof, especially looking at (4.153), we can
slightly improve Theorem 4.2.4 and Corollary 4.2.5 as follows:

A(Du) ∈ W σ,1,θ−1+σ
loc (Ω;Rn) ∀ σ ∈ (0, 1),

(|Du|2 + s2)γ/2Du ∈ W
σ γ+1
p−1

, p−1
γ+1

,θ−1+σ

loc (Ω;Rn) ∀ σ ∈ (0, 1).

These results perfectly fit with the scaling property of the problem; at the
same time, they allow to recover the maximal integrability results in [164,
168], in light of the embedding of fractional Sobolev-Morrey spaces. Indeed,
we have that Wα,q,θ embeds in Lt for every t < θq/(θ−αq) whenever αq < θ,
see for instance [186]. This improvement of Morrey space regularity can be
thought as a compensation for the lack of differentiability σ < 1; in particular,
it also arises in the case of general measures. Namely, Theorem 4.2.2 and
Corollary 4.2.3 are optimal in the scale of fractional Sobolev spaces, but not
in the scale of fractional Sobolev-Morrey spaces.
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4.3 Comparison principle for obstacle prob-

lems with L1-data

In this section, we consider obstacle problems related to

− divA(x,Du) = f in Ω, (4.154)

where f ∈ L1(Ω). The vector field A : Ω × Rn → Rn is assumed to be C1-
regular in the second variable, with ∂zA(·) being Carathéodory regular, and
to satisfy the following growth and monotonicity assumptions

|A(x, z)|+ |z||∂zA(x, z)| ≤ L|z|p−1 (4.155)

and
0 < (A(x, z1)− A(x, z2)) · (z1 − z2) (4.156)

for every z, z1, z2 ∈ Rn with z 6= 0, z1 6= z2 and a.e. x ∈ Ω, where L > 0
and p > 1 are fixed constants. At certain stages, in order to obtain several
regularity results, we will also consider the following ellipticity assumption:

ν|z|p−2|ξ|2 ≤ ∂zA(x, z)ξ · ξ (4.157)

for some ν > 0 and for every z ∈ Rn \ {0}, ξ ∈ Rn and a.e. x ∈ Ω. It is
readily seen that (4.157) implies the following monotonicity condition

(|z1|+ |z2|)p−2|z1 − z2|2 ≤ c(A(x, z1)− A(x, z2)) · (z1 − z2) (4.158)

for any z1, z2 ∈ Rn.
In this section, we provide a comparison principle for obstacle problems

with L1-data. As a consequence, we show that the solution to a given obstacle
problem with zero Dirichlet boundary condition is indeed affected by only
the positive part of the obstacle, instead of the whole obstacle.

We first recall the definition of limits of approximating solutions, in a
slightly different way.

Definition 4.3.1. Assume that ψ, g ∈ W 1,p(Ω) with (ψ − g)+ ∈ W 1,p
0 (Ω)

and f ∈ L1(Ω). We say that a function u ∈ T 1,p
g (Ω) with u ≥ ψ a.e. in Ω is

a limit of approximating solutions to the obstacle problem OP (ψ; f) if there
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are a sequence of functions

{fk} ⊂ L∞(Ω) with fk → f in L1(Ω) (4.159)

and a sequence of solutions {uk} ⊂ Agψ(Ω) to∫
Ω

A(x,Duk) ·D(φ− uk) dx ≥
∫

Ω

fk(φ− uk) dx ∀ φ ∈ Agψ(Ω)

with the following convergence

uk → u a.e. in Ω,∫
Ω

|uk − u|r dx→ 0 for every 0 < r <
n(p− 1)

n− p
,∫

Ω

|Duk −Du|q dx→ 0 for every 0 < q <
n(p− 1)

n− 1
.

(4.160)

We refer to [189, Lemma 3.4] for the proof of the existence of limits of
approximating solutions under assumptions (4.155) and (4.158). It is worth
mentioning that in [189], {fk} is taken to be a sequence in W−1,p′(Ω)∩L1(Ω)
which is not contained in L∞(Ω) in general. However, if one takes {fk} to be
the sequence of mollifications of f as in Remark 3.1.9, then it is a subset of
L∞(Ω). Hence, it is not restrictive to take {fk} ⊂ L∞(Ω) in Definition 4.3.1.
Moreover, such a construction gives the strong L1-convergence (4.159) for L1-
data, while only weak* convergence can be assured for measure data. This
will play a crucial role in the proof of uniqueness results in Lemma 4.3.3.

4.3.1 Comparison principles

Let us first consider the comparison principle for weak solutions to obstacle
problems. For an obstacle function ψ ∈ W 1,p(Ω), a Dirichlet boundary data
g ∈ W 1,p(Ω) with (ψ−g)+ ∈ W 1,p

0 (Ω) and a function f ∈ W−1,p′(Ω)∩L1(Ω),
the obstacle problem for (4.154) is formulated by the variational inequality∫

Ω

A(x,Du) ·D(φ− u) dx ≥
∫

Ω

f(φ− u) dx ∀ φ ∈ Agψ(Ω), (4.161)

The comparison principle for weak solutions to (4.161) is well-known,
which we state as follows:
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Lemma 4.3.2. Let g, ψ1, ψ2 ∈ W 1,p(Ω) satisfy (ψ1−g)+, (ψ2−g)+ ∈ W 1,p
0 (Ω)

and f1, f2 ∈ L∞(Ω). Under assumptions (4.155) and (4.156), let u1 ∈ Agψ1
(Ω)

and u2 ∈ Agψ2
(Ω) be the unique weak solutions to (4.161) with (ψ, f) =

(ψ1, f1) and (ψ, f) = (ψ2, f2), respectively. Then

ψ1 ≤ ψ2, f1 ≤ f2 implies u1 ≤ u2 a.e. in Ω.

We refer to [185, Theorem 3.2] for the proof of Lemma 4.3.2, where the
authors actually considered inhomogeneous double obstacle problems with
nonstandard growth. Its proof works for Lemma 4.3.2 in a similar way, as
mentioned in [185, Remark 3.7]. We note that such a comparison principle is
obtained in the context of the Lewy-Stampacchia inequalities in an abstract
form, see also [184]. For similar results in the setting of nonlocal problems,
see [192].

In order to extend Lemma 4.3.2 to any limits of approximating solutions,
we need the following uniqueness result.

Lemma 4.3.3. Let g, ψ ∈ W 1,p(Ω) satisfy (ψ − g)+ ∈ W 1,p
0 (Ω) and f ∈

L1(Ω). Under assumptions (4.155) and (4.158), there exists a unique limit
of approximating solutions u ∈ T 1,p

g (Ω) to OP (ψ; f).

Proof. As mentioned above, the existence of u is proved in [189, Lemma 3.4].
To show the uniqueness, let u and ū be two limits of approximating solutions
to OP (ψ; f). Then there are sequences of functions {fk}, {f̄k} ⊂ L∞(Ω) with
fk → f and f̄k → f in L1(Ω), and corresponding sequences of weak solutions
{uk}, {ūk} ⊂ Agψ(Ω) to (4.161) with the data {fk}, {f̄k}, respectively.

We then observe that uk +Tt(ūk−uk), ūk +Tt(uk− ūk) ∈ Agψ(Ω) for each
t > 0. Testing uk + Tt(ūk − uk) to (4.161) with (uk, fk) and ūk + Tt(uk − ūk)
to (4.161) with (ūk, f̄k) and subtracting them, we have∫

Ω

χ{|uk−ūk|≤t}(A(x,Duk)− A(x,Dūk)) · (Duk −Dūk) dx

≤
∫

Ω

(fk − f̄k)Tt(uk − ūk) dx (4.162)

for k ∈ N. The last convergence in (4.160) implies Duk → Du a.e. in Ω, so
we apply Fatou’s lemma to (4.162) to discover∫

Ω

χ{|u−ū|≤t}(A(x,Du)− A(x,Dū)) · (Du−Dū) dx = 0,
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where we have also used (4.156). Then Du = Dū a.e. in the set {|u− ū| ≤ t}
for every t > 0. Taking into account the fact that u, ū ∈ T 1,p

g (Ω), we obtain
Tt(u− ū) = 0 for each t > 0, from which the desired uniqueness follows.

Note that if a limit of approximating solutions u to OP (ψ; f) under as-
sumptions (4.155) and (4.158) belongs to the energy space W 1,p(Ω), then
Lemma 4.3.3 implies that u is the unique weak solution to (4.161).

Theorem 4.3.4. Let g, ψ1, ψ2 ∈ W 1,p(Ω) satisfy (ψ1 − g)+, (ψ2 − g)+ ∈
W 1,p

0 (Ω) and f1, f2 ∈ L1(Ω). Under assumptions (4.155) and (4.158), let u1

and u2 be the limits of approximating solutions to OP (ψ1; f1) and OP (ψ2; f2),
respectively. Then

ψ1 ≤ ψ2, f1 ≤ f2 implies u1 ≤ u2 a.e. in Ω.

Proof. Assume that ψ1 ≤ ψ2 and f1 ≤ f2. We now extend f1 and f2 by zero
outside Ω and then take f1,k = η1/k ∗ f1 and f2,k = η1/k ∗ f2 for each k ∈ N,
where η1/k is the standard mollifier. Let u1,k and u2,k be the weak solutions
to (4.161) with (ψ, f) = (ψ1, f1,k) and (ψ, f) = (ψ2, f2,k), respectively. Then,
since f1,k ≤ f2,k, Lemma 4.3.2 implies that u1,k ≤ u2,k for every k. From
Lemma 4.3.3 and Definition 4.3.1, we conclude that u1 ≤ u2 a.e. in Ω.

We now consider problems with zero Dirichlet boundary condition and
nonnegative data. It is readily seen that if g ≡ 0 and 0 ≤ f ∈ W−1,p′(Ω), then
the unique weak solution u ∈ Agψ(Ω) to (4.161) with the obstacle function

ψ ∈ W 1,p(Ω) is a weak supersolution to equation (4.154). Then the maximum
principle implies u ≥ 0 a.e. in Ω; hence, u ∈ Agψ+

(Ω) is the weak solution

to (4.161) with the obstacle function ψ+ ∈ W 1,p(Ω). This fact, together with
the approximating procedure and Lemma 4.3.3, yields the following:

Corollary 4.3.5. Let g ≡ 0, ψ ∈ W 1,p(Ω) satisfy ψ+ ∈ W 1,p
0 (Ω) and 0 ≤ f ∈

L1(Ω). Under assumptions (4.155) and (4.158), the limit of approximating
solutions u to OP (ψ; f) is indeed the limit of approximating solutions to
OP (ψ+; f).

This result continues to hold for problems with nonnegative measure data,
under an additional assumption on the approximating sequences.

Corollary 4.3.6. Let g ≡ 0, ψ ∈ W 1,p(Ω) satisfy ψ+ ∈ W 1,p
0 (Ω) and µ ∈

Mb(Ω) be a nonnegative measure. Under assumptions (4.155) and (4.158),
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let u be a limit of approximating solutions to OP (ψ;µ) such that the ap-
proximating sequence {µk} for µ as described in Definition 4.1.1 is made of
nonnegative functions. Then u is indeed a limit of approximating solutions
to OP (ψ+;µ).

We note that a limit of approximating solutions to an obstacle problem
is equal to the obstacle in a set called the contact set, so the regularity of the
solution is at best limited to that of the obstacle. Moreover, Corollary 4.3.5
implies that, in the case of zero Dirichlet boundary condition and nonnegative
L1-data, the contact set is contained in the set {ψ ≥ 0}.

4.3.2 Applications to regularity results

In this section, we apply Corollary 4.3.5 to improve three kinds of regularity
results for OP (ψ; f): gradient potential estimates, fractional differentiability,
and global Calderón-Zygmund type estimates. In what follows, we assume
g ≡ 0, f ≥ 0 and the vector field A(·) satisfies (4.155) and (4.157).

An application to gradient potential estimates

Here we assume that A(·) does not depend on the variable x, and improve the
gradient potential estimates in Section 4.1. For brevity, we confine ourselves
to report the improvement of Corollary 4.1.5.

Theorem 4.3.7. Let u ∈ W
1,max{p−1,1}
0 (Ω) with u ≥ ψ a.e. in Ω be the

limit of approximating solutions to the problem OP (ψ; f) under assumptions
(4.155) and (4.157) with p > 2− 1/n. If

If1(x0, R) +

∫ R

0

(∫
Br(x0)

|A(Dψ+)− (A(Dψ+))Br(x0)|p
′
dx

) 1
m dr

r
<∞

holds on a ball BR(x0) ⊂ Ω, where m := max{p′, 2}, then x0 is a Lebesgue
point of A(Du). Moreover, there exists a constant c ≡ c(data) such that

|Du(x0)|p−1 ≤ c

∫
BR(x0)

|Du|p−1 dx+ cIf1(x0, R)

+ c

[∫ R

0

(∫
Br(x0)

|A(Dψ+)− (A(Dψ+))Br(x0)|p
′
dx

) 1
m dr

r

]m
p′

.
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An application to fractional differentiability

Here we assume that A(·) does not depend on the variable x, and improve
the fractional differentiability results in Section 4.2. Note that all the results
in Section 4.2 hold for single obstacle problems in a similar way.

Theorem 4.3.8. Let u ∈ W
1,max{p−1,1}
0 (Ω) with u ≥ ψ a.e. in Ω be the

limit of approximating solutions to the problem OP (ψ; f) under assumptions
(4.155) and (4.157) with p > 2− 1/n. In the case 2− 1/n < p < 2, assume
further that ∂A(·) is symmetric. If the obstacle ψ ∈ W 1,p(Ω) satisfies ψ+ ∈
W 2,1(Ω) and DΨ+ := divA(Dψ+) ∈ L1(Ω), then

A(Du) ∈ W σ,1
loc (Ω;Rn) ∀ σ ∈ (0, 1).

Moreover, for any σ ∈ (0, 1), there exists a constant c ≡ c(data, σ) such that∫
BR/2

∫
BR/2

|A(Du(x))− A(Du(y))|
|x− y|n+σ

dx dy

≤ c

Rσ

∫
BR

|A(Du)| dx+
c

Rσ−1

∫
BR

f dx+
c

Rσ−1

∫
BR

|DΨ+| dx

whenever BR b Ω is a ball.

An application to global Calderón-Zygmund type estimates

Here, we assume that f ∈ Lq0(Ω) for

q0 =


np

np− n+ p
if p < n,

3

2
if p ≥ n.

Then f ∈ W−1,p′(Ω), and the limit of approximating solutions u to OP (ψ; f)
with ψ ∈ W 1,p(Ω) satisfying ψ+ ∈ W 1,p

0 (Ω) is the weak solution to (4.161)
with the obstacle function ψ+.

Calderón-Zygmund type estimates for obstacle problems with p-growth
were first proved in [31]. Later in [44], such local estimates were extended
to global ones under suitable assumptions on the vector field A(·) and the
domain Ω, which we state as follows:
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Definition 4.3.9. Let δ ∈ (0, 1/8) and R > 0 be given. We say that (A(·),Ω)
is (δ, R)-vanishing if the following two conditions hold:

(i) Denoting

θ(S)(x) := sup
z∈Rn\{0}

1

|z|p−1

∣∣∣∣A(x, z)−
∫
S

A(x̃, z) dx̃

∣∣∣∣
for any measurable set S ⊂ Rn and x ∈ S, we have

sup
0<r<R

sup
y∈Rn

∫
Br(y)

θ(Br(y))(x) dx ≤ δ.

(ii) For each y ∈ ∂Ω and r ∈ (0, R], there exists a coordinate system
{ỹ1, . . . , ỹn}, depending on y and r, such that y is at the origin and

Br(0) ∩ {ỹn > δr} ⊂ Br(0) ∩ Ω ⊂ Br(0) ∩ {ỹn > −δr}.

A domain satisfying (ii) is called a (δ, R)-Reifenberg flat domain. Note
that its definition is motivated from Lipschitz domains with small Lipschitz
constant. In particular, a (δ, R)-Reifenberg flat domain satisfies the following
measure density conditions (see [60]):

sup
0<r≤R

sup
x∈Ω

|Br(x)|
|Ω ∩Br(x)|

≤
(

2

1− δ

)n
≤
(

16

7

)n
,

inf
0<r≤R

inf
x∈∂Ω

|Ωc ∩Br(x)|
|Br(x)|

≥
(

1− δ
2

)n
≥
(

7

16

)n
.

We recall the result in [44] in the following way.

Lemma 4.3.10. Let u ∈ A0
ψ(Ω) be the weak solution to∫

Ω

A(x,Du) ·D(φ− u) dx ≥
∫

Ω

F ·D(φ− u) dx ∀ φ ∈ A0
ψ(Ω) (4.163)

under assumptions (4.155) and (4.157), where F ∈ Lp
′
(Ω;Rn) is a given

vector field. Assume that Dψ ∈ Lpq(Ω;Rn) and F ∈ Lp
′q(Ω;Rn) for some

q ∈ (1,∞). Then there exists a constant δ1 ≡ δ1(data, q) > 0 such that if
(A(·),Ω) is (δ1, R)-vanishing, then

‖Du‖Lpq(Ω) ≤ c‖Dψ‖Lpq(Ω) + c‖F‖Lp′q(Ω) (4.164)

holds for a constant c ≡ c(data, q, R,Ω).
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The above result was later extended to several problems with nonstandard
growth, see [8, 42] and references therein. We also refer to [132] and [49, 53] for
the extensions of (4.164) to obstacle problems with measurable nonlinearities
and to double obstacle problems, respectively.

Theorem 4.3.11. Let u ∈ A0
ψ(Ω) be the weak solution to (4.161) under

assumptions (4.155) and (4.157). Assume that

Dψ+ ∈ Lpq(Ω;Rn) and f ∈ Lm(q)(Ω)

for some q ∈ (1,∞), where

m(q) = max

{
npq

n(p− 1) + pq
, 1

}
. (4.165)

Then there exists a constant δ ≡ δ(data, q) > 0 such that if (A(·),Ω) is
(δ, R)-vanishing, then

‖Du‖Lpq(Ω) ≤ c‖Dψ+‖Lpq(Ω) + c‖f‖Lm(q)(Ω)

holds for a constant c ≡ c(data, q, R,Ω).

Proof. We first consider the unique SOLA v ∈ W 1,1
0 (Ω) to{

−4v = f in Ω,

v = 0 on ∂Ω,

and recall the following Calderón-Zygmund type estimates for elliptic mea-
sure data problems (see for instance [40, Theorem 1.2]): for any γ > 0, there
exists a constant δ2 ≡ δ2(n, γ) > 0 such that if M1(f) ∈ Lγ(Ω) and Ω is
(δ2, R)-Reifenberg flat, then

‖Dv‖Lγ(Ω) ≤ c‖M1(f)‖Lγ(Ω) (4.166)

holds for a constant c ≡ c(n, γ,R,Ω). Here, M1(f) is the 1-fractional maximal
function of f , defined by

M1(f)(x) := sup
r>0

(
r

∫
Br(x)

f dx̃

)
.
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Note that for any q > 1, the exponent m(q) in (4.165) is chosen to satisfy

m(q) =

{
(p′q)∗ if q ≥ n′/p′,

1 otherwise,

where (p′q)∗ is the inverse Sobolev exponent of p′q. Thus, the embedding
property of fractional maximal operators (see for example [135]) implies

‖M1(f)‖Lp′q(Ω) ≤ c‖f‖Lm(q)(Ω). (4.167)

In particular, we have Dv ∈ Lp′q(Ω;Rn). It then follows from Corollary 4.3.5
that u is the weak solution to (4.163) with F = Dv and ψ replaced by ψ+.
Finally, after choosing δ = min{δ1, δ2}, we combine (4.166) and (4.167) with
(4.164) in order to obtain the desired estimate.

Remark 4.3.12. In Theorem 4.3.11, we considered obstacle problems with
a nonnegative function f ∈ W−1,p′(Ω) in order to apply estimate (4.164)
and the comparison principle in Corollary 4.3.5. The related results can be
extended to obstacle problems with nonstandard growth conditions. It would
be interesting to extend Theorem 4.3.11 to irregular obstacle problems with
nonnegative L1-data.
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Chapter 5

Mixed local and nonlocal
equations with measure data

5.1 Main results

We consider the following mixed local and nonlocal elliptic equation

− divA(x,Du) + Lu = µ in Ω, (5.1)

where µ ∈ Mb(Rn). The Carathéodory vector field A : Ω × Rn → Rn is
assumed to satisfy the following growth and monotonicity conditions:{

|A(x, z)| ≤ Λ|z|p−1,

Λ−1(|z1|+ |z2|)p−2|z1 − z2|2 ≤ (A(x, z1)− A(x, z2)) · (z1 − z2)
(5.2)

for every x ∈ Ω and z, z1, z2 ∈ Rn, with Λ ≥ 1 being a fixed constant. The
nonlocal operator L is defined by

Lu(x) := P.V.

∫
Rn
|u(x)− u(y)|p−2(u(x)− u(y))K(x, y) dy, (5.3)

where K : Rn × Rn → R is a measurable, symmetric kernel satisfying

1

Λ|x− y|n+sp
≤ K(x, y) ≤ Λ

|x− y|n+sp
for a.e. x, y ∈ Rn with x 6= y. (5.4)
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In this chapter, we assume

s ∈ (0, 1), p > 2− 1

n
(5.5)

and use the abbreviation data := (n, s, p,Λ, diam(Ω)).
We adopt the following definition of nonlocal tails in [116], which is

slightly different from the one in [93, 94]. For a measurable function f :
Rn → R, x0 ∈ Rn and r > 0, we define

Tail(f ;x0, r) :=

(
rp
∫
Rn\Br(x0)

|f(x)|p−1

|x− x0|n+sp
dx

) 1
p−1

.

We will omit the point x0 when it is clear from the context. Accordingly, we
define the tail space as

Lp−1
sp (Rn) :=

{
f : Rn → R

∣∣∣ ∫
Rn

|f(x)|p−1

(1 + |x|)n+sp
dx <∞

}
.

Observe that f ∈ Lp−1
sp (Rn) if and only if Tail(f ;x0, r) <∞ for any x0 ∈ Rn

and r > 0. We also note that W 1,p(Rn) ⊂ Lp−1
sp (Rn).

With the space X 1,p
0 (Ω) to be introduced in the next section, we first

define weak solutions. In the following, we denote

Φp(t) := |t|p−2t, t ∈ R. (5.6)

Definition 5.1.1. Let µ ∈ W−1,p′(Ω). We say that a function u ∈ W 1,p(Rn)
is a weak solution to the equation (5.1), under assumptions (5.2)-(5.4) with
p > 1 and s ∈ (0, 1), if∫

Ω

A(x,Du) ·Dϕdx

+

∫
Rn

∫
Rn

Φp(u(x)− u(y))(ϕ(x)− ϕ(y))K(x, y) dxdy = 〈µ, ϕ〉
(5.7)

holds for any ϕ ∈ C∞0 (Ω). Accordingly, we say that u is a weak subsolution
(resp. supersolution) to (5.1) if (5.7) holds with “=” replaced by “≤” (resp.
“≥”) for every nonnegative ϕ ∈ C∞0 (Ω). Moreover, given any g ∈ W 1,p(Rn),
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we say that u is a weak solution to the problem{
−divA(x,Du) + Lu = µ in Ω,

u = g in Rn \ Ω
(5.8)

if u is a weak solution to (5.1) and, in addition, u− g ∈ X 1,p
0 (Ω).

The existence and uniqueness of weak solution to (5.8) can be proved by
standard monotonicity methods [193], see [57, Appendix] for details.

We next define SOLA.

Definition 5.1.2. Let µ ∈ Mb(Rn) and g ∈ W 1,p
loc (Rn) ∩ Lp−1

sp (Rn). We say
that a function

u ∈ W 1,q(Ω) for max{p− 1, 1} =: q0 ≤ q < q̄ := min

{
n(p− 1)

n− 1
, p

}
(5.9)

is a SOLA to (5.8), under assumptions (5.2)-(5.5), if it is a distributional
solution, i.e.,∫

Ω

A(x,Du) ·Dϕdx

+

∫
Rn

∫
Rn

Φp(u(x)− u(y))(ϕ(x)− ϕ(y))K(x, y) dxdy =

∫
Rn
ϕdµ

holds for any ϕ ∈ C∞0 (Ω), and u = g a.e. in Rn \ Ω. Moreover, there exists
a sequence of weak solutions {uk} ⊂ W 1,p(Rn) to the Dirichlet problems{

−divA(x,Duk) + Luk = µk in Ω

uk = gk in Rn \ Ω

in the sense of Definition 5.1.1, such that uk converges to u a.e. in Rn and
locally in Lq(Rn). Here the sequence {µk} ⊂ C∞0 (Rn) converges to µ weakly
in the sense of measures in Ω and also satisfies

lim sup
k→∞

|µk|(B) ≤ |µ|(B) (5.10)

for every ball B ⊂ Rn. The sequence {gk} ⊂ C∞0 (Rn) converges to g in the
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following sense: for any ball Br ≡ Br(z), it holds that

lim
k→∞
‖gk − g‖W 1,p(Br) = 0 and lim

k→∞
Tail(gk − g; z, r) = 0.

We now state the first result concerning the existence of SOLA.

Theorem 5.1.3. Let µ ∈ Mb(Rn) and g ∈ W 1,p
loc (Rn) ∩ Lp−1

sp (Rn). Under

assumptions (5.2)-(5.5), there exists a SOLA u to (5.8) such that u ∈ W 1,q(Ω)
for every q satisfying (5.9).

The next result is a pointwise upper bound via Wolff potentials.

Theorem 5.1.4. Let µ ∈ Mb(Rn) and g ∈ W 1,p
loc (Rn) ∩ Lp−1

sp (Rn). Let u be
a SOLA to (5.8) under assumptions (5.2)-(5.5), and assume that the Wolff
potential Wµ

1,p(x0, r) is finite for a ball Br(x0) ⊂ Ω. Then x0 is a Lebesgue
point of u in the sense that there exists the precise representative of u at x0

u(x0) := lim
ρ→0

(u)Bρ(x0). (5.11)

Moreover, the estimate

|u(x0)| ≤ cWµ
1,p(x0, r) + c

(∫
Br(x0)

|u|q0 dx
) 1

q0

+ cTail(u;x0, r) (5.12)

holds for a constant c ≡ c(data), where q0 := max{p− 1, 1}.

We can also obtain a lower bound when both µ and u are nonnegative,
which implies the sharpness of estimate (5.12).

Theorem 5.1.5. Let µ ∈Mb(Rn) be a nonnegative measure and g ∈ W 1,p
loc (Rn)∩

Lp−1
sp (Rn). Let u be a SOLA to (5.8) under assumptions (5.2)-(5.5) with

p < n. Assume that u is nonnegative in a ball Br(x0) ⊂ Ω and that the
approximating sequence {µk} for µ as described in Definition 5.1.2 is made
of nonnegative functions. Then the estimate

Wµ
1,p(x0, r/8) ≤ cu(x0) + cTail(u−;x0, r/2) (5.13)

holds for a constant c ≡ c(data), whenever Wµ
1,p(x0, r/8) is finite. In this

case, according to Theorem 5.1.4, u(x0) is defined as the precise represen-
tative of u at x0 as in (5.11). Moreover, when Wµ

1,p(x0, r/8) is infinite, we
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have
lim
t→0

(u)Bt(x0) =∞. (5.14)

Once we have the potential upper bound in Theorem 5.1.4, the well-
known mapping properties of Wolff potentials [76] imply the following local
Calderón-Zygmund type estimates.

Corollary 5.1.6. Let µ ∈ Mb(Rn) and g ∈ W 1,p
loc (Rn) ∩ Lp−1

sp (Rn). Let u be
a SOLA to (5.8) under assumptions (5.2)-(5.5). Then

• If p < n, then u belongs to the Marcinkiewicz space M
n(p−1)
n−p

loc (Ω).

• If 1 < γ < n/p, then we have the implication

µ ∈ Lγloc(Ω) =⇒ u ∈ L
nγ(p−1)
n−pγ

loc (Ω).

Note that we actually prove Theorem 5.1.4 as a corollary of the following
result, which is a global oscillation/excess decay estimate. Unlike the case of
local equations, we have to consider an excess functional which also reflects
long-range interactions. We define

E(v; z, r) :=

(∫
Br(z)

|v − (v)Br(z)|q0 dx
) 1

q0

+ Tail(v − (v)Br(z); z, r), (5.15)

where q0 := max{p − 1, 1}. We will also omit the point x0 when it is clear
from the context.

Theorem 5.1.7. Under the assumptions of Theorem 5.1.4, we have the es-
timate∫ r

0

E(u;x0, t)
dt

t
+
∣∣(u)Br(x0) − u(x0)

∣∣ ≤ cWµ
1,p(x0, r) + cE(u;x0, r) (5.16)

for a constant c ≡ c(data), whenever Wµ
1,p(x0, r) is finite.

A notable consequence of the above theorem is the following continuity
criterion.
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Theorem 5.1.8. Let µ ∈ Mb(Rn) and g ∈ W 1,p
loc (Rn) ∩ Lp−1

sp (Rn). Let u be
a SOLA to (5.8) under assumptions (5.2)-(5.5), and let Ω′ b Ω be an open
subset. If

lim
t→0

sup
x∈Ω′

Wµ
1,p(x, t) = 0, (5.17)

then u is continuous in Ω′.

This theorem gives the following corollary concerning the continuity of
solutions in borderline cases.

Corollary 5.1.9. Let µ ∈ Mb(Rn) and g ∈ W 1,p
loc (Rn) ∩ Lp−1

sp (Rn). Let u be
a SOLA to (5.8) under assumptions (5.2)-(5.5) with p < n. If one of the
following two conditions holds:

(i) µ ∈ L(n, 1) locally in Ω,

(ii) |µ|(Br) ≤ h(r)rn−p for every ball Br ⊂ Rn, with h : [0,∞) → [0,∞)
satisfying ∫

0

[h(r)]
1
p−1

dr

r
<∞,

then u is continuous in Ω.

We finally note that if the measure satisfies a better density condition,
then we can further improve the regularity of SOLA. In order to describe such
phenomena, we recall the definition of fractional (restricted and centered)
maximal functions. For x0 ∈ Rn and r > 0, we define

Mµ
β (x0, r) := sup

0<ρ<r

|µ|(Bρ(x0))

ρn−β
, β ∈ (0, n).

From the definitions of Mµ
p and Wµ

1,p, we have for any δ > 0[
Mµ

p (x0, r)
] 1
p−1 ≤ cWµ

1,p(x0, 2r) ≤ c(δ)
[
Mµ

p−δ(x0, 2r)
] 1
p−1 .

The last theorem shows a Hölder continuity criterion for SOLA to (5.1) in
terms of the concentration of the measure, which is analogous to the classical
results in [127, 158].
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Theorem 5.1.10. Let µ ∈ Mb(Rn) and g ∈ W 1,p
loc (Rn) ∩ Lp−1

sp (Rn). Let u be
a SOLA to (5.8) under assumptions (5.2)-(5.5), and let Ω′ b Ω be an open
set. If

sup
x∈Ω′

(
E(u;x, r) +

[
Mµ

p−δ(x, r)
] 1
p−1

)
<∞ (5.18)

for some δ ∈ (0, p] and r < dist(Ω′, ∂Ω), then u ∈ C0,β(Ω′) for

β =

{
δ/(p− 1) if δ < α(p− 1),

any number in (0, α), otherwise.

Here, α ∈ (0, 1) is the Hölder exponent for weak solutions to the homogeneous
equation

−divA(x,Dv) + Lv = 0 in Ω,

see Lemma 5.3.5 below for details.

Remark 5.1.11. In estimates (5.12) and (5.13), the dependence of the con-
stant c on diam(Ω) can be removed, provided r ≤ 1.

Remark 5.1.12. We can see that, by applying the methods in [152], our
results continue to hold for more general equations

−divA(x,Du) + LΦu = µ in Ω.

Here the nonlocal operator LΦ is defined by

LΦu(x) := P.V.

∫
Rn

Φ(u(x)− u(y))K(x, y) dy,

where K(·, ·) is a measurable, not necessarily symmetric kernel satisfying
(5.4) and Φ : R→ R is a continuous function satisfying

Λ−1|t|p ≤ Φ(t)t ≤ Λ|t|p, ∀ t ∈ R.

5.2 Preliminaries

We consider the space X 1,p
0 (Ω) ⊂ W 1,p(Rn) defined as the closure of C∞0 (Ω)

with respect to the norm ‖·‖W 1,p(Rn). Of course, we identify each element
in C∞0 (Ω) with its zero extension to Rn. Being a closed linear subspace of
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W 1,p(Rn), X 1,p
0 (Ω) is a separable, reflexive Banach space. It is in fact char-

acterized as

X 1,p
0 (Ω) =

{
f ∈ W 1,p(Rn) : f |Ω ∈ W 1,p

0 (Ω), f = 0 a.e. in Rn \ Ω
}
.

Moreover, we have

‖f‖W 1,p(Rn) = ‖f‖W 1,p(Ω) ≈ ‖Df‖Lp(Ω) ∀ f ∈ X 1,p
0 (Ω),

where the last equivalence follows from Poincaré’s inequality.
We also note the following result from [116, Lemma 2.3].

Lemma 5.2.1. Let p ≥ 1 and s ∈ (0, 1). There exists a constant c ≡
c(n, s, p,Ω) such that∫

Rn

∫
Rn

|f(x)− f(y)|p

|x− y|n+sp
dxdy ≤ c

∫
Ω

|Df |p dx

for every f ∈ X 1,p
0 (Ω).

5.3 Regularity for homogeneous equations

Here we collect various local regularity results for the homogeneous equation

− divA(x,Dv) + Lv = 0 in Ω. (5.19)

We start by recalling the following Caccioppoli estimate with tail, see
[116, Lemma 3.1].

Lemma 5.3.1. Let v ∈ W 1,p(Rn) be a weak subsolution to (5.19) under
assumptions (5.2)-(5.4) with p > 1 and s ∈ (0, 1). Then, for any ball Br ≡
Br(x0) ⊂ Ω and nonnegative φ ∈ C∞0 (Br), we have∫
Br

|D(w+φ)|p dx+

∫
Br

∫
Br

|w+(x)φ(x)− w+(y)φ(y)|pK(x, y) dxdy

≤ c

∫
Br

wp+|Dφ|p dx+ c

∫
Br

∫
Br

(max{w+(x), w+(y)})p|φ(x)− φ(y)|pK(x, y) dxdy

+ c

(
sup

x∈suppφ

∫
Rn\Br

wp−1
+ (y)K(x, y) dy

)∫
Br

w+φ
p dx,
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where w+ := (v − k)+ for any k ∈ R, and c ≡ c(data). If v is a weak
supersolution to (5.19), the estimate holds with w+ replaced by w− := (v−k)−.

Combining the above lemma with Sobolev’s embedding theorem, and
then applying De Giorgi iteration, we obtain the local boundedness of weak
subsolutions, see [116, Theorem 4.1].

Lemma 5.3.2. Let v ∈ W 1,p(Rn) be a weak subsolution to (5.19) under
assumptions (5.2)-(5.4) with p > 1 and s ∈ (0, 1). Then, for any ball Br ≡
Br(x0) ⊂ Ω and k ∈ R, we have

sup
Br/2

(v − k)+ ≤ c

(∫
Br

(v − k)p+ dx

) 1
p

+ Tail((v − k)+;x0, r/2),

where c ≡ c(data). If v is a weak supersolution to (5.19), this estimate holds
with (v − k)+ replaced by (v − k)−.

The estimate in Lemma 5.3.2 can be thought as a kind of reverse Hölder’s
inequality. By a modification which is completely similar to the one presented
in [152, Corollary 2.1], we can also obtain the following:

Lemma 5.3.3. Let v ∈ W 1,p(Rn) be a weak subsolution to (5.19) under
assumptions (5.2)-(5.4) with p > 1 and s ∈ (0, 1). Then for any ball Br ≡
Br(x0) ⊂ Ω and k ∈ R, we have

sup
Bσr

(v − k)+ ≤
c

(1− σ)np/(p−1)

[∫
Br

(v − k)+ dx+ Tail((v − k)+;x0, r/2)

]
whenever σ ∈ (0, 1), where c ≡ c(data). If v is a weak supersolution to (5.19),
this estimate holds with (v − k)+ replaced by (v − k)−.

Using this lemma, we establish a Caccioppoli type estimate below the
natural exponent.

Lemma 5.3.4. Let v ∈ W 1,p(Rn) be a weak solution to (5.19) under assump-
tions (5.2)-(5.4) with p > 1 and s ∈ (0, 1). Then for any ball Br ≡ Br(x0) b
Ω and k ∈ R, we have∫

Bσr

|Dv|q dx ≤ c

(1− σ)θqrq

[∫
Br

|v − k| dx+ Tail(v − k;x0, r/2)

]q
whenever q ∈ [1, p] and σ ∈ [1/2, 1), where c ≡ c(data) and θ ≡ θ(n, p).
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Proof. It suffices to consider the case q = p only, as the result for lower
values of q follows from Hölder’s inequality. We choose a cut-off function
φ ∈ C∞0 (B(1+σ)r/2) satisfying 0 ≤ φ ≤ 1, φ ≡ 1 in Bσr and |Dφ| ≤ 4/[(1−σ)r].
Applying Lemma 5.3.1 with this choice of φ, we obtain∫

Bσr

|Dv|p dx

≤ c

[(1− σ)r]p

∫
B(1+σ)r/2

|v − k|p dx+
c

[(1− σ)r]sp

∫
B(1+σ)r/2

|v − k|p dx

+
c

(1− σ)n+sprp

∫
B(1+σ)r/2

|v − k| dx
(
rp
∫
Rn\Br

|v(x)− k|p−1

|x− x0|n+sp
dx

)

≤ c

(1− σ)n+prp

[
sup

B(1+σ)r/2

|v − k|p + [Tail(v − k;x0, r/2)]p
]

where we have used the fact that

|x− x0|
|x− y|

≤ c(n)

1− σ

for x ∈ Rn \Br(x0) and y ∈ B(1+σ)r/2(x0), and then Young’s inequality. Also,
Lemma 5.3.3 implies

sup
B(1+σ)r/2

|v − k|p ≤ c

(1− σ)np2/(p−1)

[∫
Br

|v − k| dx+ Tail(v − k;x0, r/2)

]p
.

Combining the above two estimates gives the desired result.

Using Lemma 5.3.1 and a logarithmic lemma [116, Lemma 3.4], we can
prove the following oscillation estimate for weak solutions, which in turn
yields local Hölder continuity. Here we state it in a slightly different form, by
further applying Lemma 5.3.3. Moreover, we can also prove nonlocal weak
Harnack and Harnack inequalities, see [116, Sections 5-8] for details.

Lemma 5.3.5. Let v ∈ W 1,p(Rn) be a weak solution to (5.19) under as-
sumptions (5.2)-(5.4) with p > 1 and s ∈ (0, 1). Then v is locally Hölder
continuous. In particular, there exist constants α ∈ (0, 1) and c ≥ 1, both
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depending only on data, such that

osc
Bρ(x0)

v ≤ c
(ρ
r

)α [∫
B2r(x0)

|v − k| dx+ Tail(v − k;x0, r/2)

]
whenever 0 < ρ ≤ r and k ∈ R.

Lemma 5.3.6. Let v ∈ W 1,p(Rn) be a weak supersolution to (5.19), under
assumptions (5.2)-(5.4) with p > 1 and s ∈ (0, 1), such that v ≥ 0 in a ball
BR ≡ BR(x0) ⊂ Ω. Let q ∈ (1, p), d > 0 and define w := (v + d)(p−q)/q. Then∫
Br

φp|Dw|p dx+

∫
Br

∫
Br

(min{φ(x), φ(y)})p|w(x)− w(y)|pK(x, y) dxdy

≤ c

∫
Br

wp|Dφ|p dx+ c

∫
Br

∫
Br

(max{w(x), w(y)})p|φ(x)− φ(y)|pK(x, y) dxdy

+ c

(
sup

x∈suppφ

∫
Rn\Br

K(x, y) dy + d1−pR−p[Tail(u−;x0, R)]p−1

)∫
Br

wpφp dx

holds for any Br ≡ Br(x0) ⊂ B3R/4(x0) and nonnegative φ ∈ C∞0 (Br), where
c ≡ c(data).

Lemma 5.3.7. Let v ∈ W 1,p(Rn) be a weak supersolution to (5.19) under
assumptions (5.2)-(5.4) with p > 1 and s ∈ (0, 1) such that v ≥ 0 in BR ≡
BR(x0) ⊂ Ω. Let

t :=


n(p− 1)

n− p
if 1 < p < n,

∞ if p ≥ n.

Then the following estimate holds for any Br ≡ Br(x0) ⊂ BR/2(x0) and for
any t < t: (∫

Br

vt dx

) 1
t

≤ c inf
B2r

v + c
( r
R

) p
p−1

Tail(v−;x0, R),

where c ≡ c(data).

We moreover prove an excess decay estimate for (5.19), which will play a
crucial role in proving Theorem 5.1.7. Recalling the definition of the excess
functional in (5.15), we state a few basic properties (see [152, Lemma 2.4]
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for proof): for any η, ζ ∈ Lq0(Br(z)) ∩ Lp−1
sp (Rn), where q0 = max{p − 1, 1},

we have the decay

E(η; z, σr) ≤ c(σ, n, s, p)E(η; z, r)

and the quasi-triangle inequality

E(η + ζ; z, r) ≤ c(p) (E(η; z, r) + E(ζ; z, r)) .

Theorem 5.3.8. Let v ∈ W 1,p(Rn) be a weak solution to (5.19) under as-
sumptions (5.2)-(5.4) with p > 1 and s ∈ (0, 1). Then we have

E(v;x0, ρ) ≤ c
(ρ
r

)α
E(v;x0, r)

whenever 0 < ρ ≤ r, where α ∈ (0, 1) is as in Lemma 5.3.5 and c ≡ c(data).

Proof. We may assume that ρ ≤ r/4. Note that Lemma 5.3.5 and Hölder’s
inequality imply

osc
Bt
v ≤ c

(
t

r

)α
E(r) ∀ t ∈ [ρ, r/4].

In particular, it follows that(∫
Bρ

|v − (v)Bρ|q0 dx

) 1
q0

≤ osc
Bρ
v ≤ c

(ρ
r

)α
E(r). (5.20)

Let us now estimate the tail term appearing in the definition of E(ρ). We
start splitting as

[
Tail(v − (v)Bρ ; ρ)

]p−1
= ρp

∫
Rn\Bρ

|v(x)− (v)Bρ|p−1

|x− x0|n+sp
dx

= ρp
∫
Rn\Br/4

|v(x)− (v)Bρ|p−1

|x− x0|n+sp
dx

+ ρp
∫
Br/4\Bρ

|v(x)− (v)Bρ|p−1

|x− x0|n+sp
dx. (5.21)
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Then we note that, by Lemma 5.3.3 and Hölder’s inequality,

|(v)Bρ − (v)Br | ≤ sup
Br/2

|v − (v)Br | ≤ cE(r).

Hence, again using Hölder’s inequality, we estimate the first integral in the
right-hand side of (5.21) as

ρp
∫
Rn\Br/4

|v(x)− (v)Bρ|p−1

|x− x0|n+sp
dx

≤ cρp
∫
Rn\Br/4

|v(x)− (v)Br |p−1

|x− x0|n+sp
dx+ c

(ρ
r

)p
r(1−s)p|(v)Bρ − (v)Br |p−1

≤ cρp
∫
Rn\Br

|v(x)− (v)Br |p−1

|x− x0|n+sp
+ c
(ρ
r

)p
r(1−s)p

∫
Br

|v − (v)Br |p−1 dx

+ c
(ρ
r

)p
r(1−s)pE(r)p−1

≤ c
(ρ
r

)p
E(r)p−1. (5.22)

As for the second integral, we have

ρp
∫
Br/4\Bρ

|v(x)− (v)Bρ|p−1

|x− x0|n+sp
dx ≤ cr(1−s)p

∫ r/4

ρ

(ρ
t

)p(
osc
Bt
v

)p−1
dt

t

≤ cE(r)p−1

∫ r/4

ρ

(ρ
t

)p( t
r

)α(p−1)
dt

t

≤ c

p− α(p− 1)

(ρ
r

)α(p−1)

E(r)p−1. (5.23)

Combining (5.21), (5.22) with (5.23), we arrive at

Tail(v − (v)Bρ ; ρ) ≤ c
(ρ
r

)α
E(r).

This and (5.20) imply the desired result.
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5.4 Comparison estimates

In this section we derive several comparison estimates. Here we assume that

µ ∈ C∞0 (Rn), g ∈ W 1,p(Rn).

This a priori assumption will be removed with a proper approximation pro-
cedure in Section 5.5 below.

For a fixed ball B2r ≡ B2r(x0) ⊂ Rn, we first consider the weak solution
u ∈ W 1,p(Rn) to the Dirichlet problem{

−divA(x,Du) + Lu = µ in B2r,

u = g in Rn \B2r.
(5.24)

Next, we define v ∈ W 1,p(Rn) to be the weak solution to the homogeneous
Dirichlet problem {

−divA(x,Dv) + Lv = 0 in Br,

v = u in Rn \Br.
(5.25)

Lemma 5.4.1. Let u and v be as in (5.24) and (5.25), respectively. Then
we have ∫

Br

|V (Du)− V (Dv)|2

(d+ |u− v|)ξ
dx ≤ c

d1−ξ

ξ − 1
|µ|(Br)

for a constant c ≡ c(data), whenever d > 0 and ξ > 1.

Proof. We test (5.24) and (5.25) with

ϕ± := ±
(
d1−ξ − (d+ (u− v)±)1−ξ) ∈ X 1,p

0 (Br) ∩ L∞(Br).

Recalling the notation (5.6), we obtain

I1,± + I2,± + I3,±

:=

∫
Br

∫
Br

(Φp(u(x)− u(y))− Φp(v(x)− v(y))) (ϕ±(x)− ϕ±(y))K(x, y) dxdy

+ 2

∫
Rn\Br

∫
Br

(Φp(u(x)− u(y))− Φp(v(x)− v(y)))ϕ±(x)K(x, y) dxdy
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+

∫
Br

(A(x,Du)− A(x,Dv)) ·Dϕ± dx

=

∫
Br

ϕ± dµ. (5.26)

From the definition of ϕ±, we immediately have∣∣∣∣∫
Br

ϕ± dµ

∣∣∣∣ ≤ d1−ξ|µ|(Br). (5.27)

Proceeding as in the proof of [152, Lemma 3.1], we have

I1,±, I2,± ≥ 0.

As for I3,±, we observe that

I3,+ = (ξ − 1)

∫
Br∩{u≥v}

(A(x,Du)− A(x,Dv)) · (Du−Dv)

(d+ |u− v|)ξ
dx

≥ ξ − 1

c

∫
Br∩{u≥v}

|V (Du)− V (Dv)|2

(d+ |u− v|)ξ
dx

and

I3,− = (ξ − 1)

∫
Br∩{u<v}

(A(x,Du)− A(x,Dv)) · (Du−Dv)

(d+ |u− v|)ξ
dx

≥ ξ − 1

c

∫
Br∩{u<v}

|V (Du)− V (Dv)|2

(d+ |u− v|)ξ
dx.

Combining the estimates found for I1,±, I2,±, I3,± with (5.26) and (5.27), the
desired estimate follows.

Once we have the above lemma, we can proceed as in [144, 146] to obtain
the following comparison estimate between (5.8) and (5.25).

Lemma 5.4.2. Let u and v be as in (5.24) and (5.25), respectively. Then
for every q satisfying

1 ≤ q < min

{
p,
n(p− 1)

n− 1

}
= q̄, (5.28)
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we have the estimate∫
Br

|Du−Dv|q dx ≤ c

[
|µ|(Br)

rn−1

] q
p−1

+ cχ{p<2}

[
|µ|(Br)

rn−1

]q (∫
Br

|Du|q dx
)2−p

(5.29)

for some constant c ≡ c(data, q).

In the case 2 − 1/n < p < 2, we need to handle the additional quantity
appearing in the right-hand side of (5.29). To do this, we proceed with an ar-
gument similar to the one in [152, Lemma 3.5], making use of the Caccioppoli
estimates established in Section 5.3.

Lemma 5.4.3. Let u and v be as above, and assume that 2− 1/n < p < 2.
Then for every q ∈ [1, q̄), there exists c ≡ c(data, q) such that(∫

Br

|Du−Dv|q dx
) 1

q

≤ c

[
|µ|(B2r)

(2r)n−1

] 1
p−1

+ c

[
E(u;x0, 2r)

2r

]2−p [ |µ|(B2r)

(2r)n−1

]
.

(5.30)

Proof. For each ϕ ∈ W 1,q(Bt) with q ∈ [1, q̄) and t ∈ (0, 2r), we denote

F (ϕ; t) :=

(∫
Bt

|Dϕ|q dx
) 1

q

.

For 1 ≤ σ′ < σ ≤ 2, we define vσ ∈ W 1,p(Rn) as the weak solution to the
problem {

−divA(x,Dvσ) = 0 in Bσr,

vσ = u in Rn \Bσr.

We start with the obvious estimate

F (u;σ′r) ≤ F (vσ;σ′r) + F (u− vσ;σ′r). (5.31)

By Lemma 5.4.2, we have

F (u− vσ;σr) ≤ c

[
|µ|(B2r)

(2r)n−1

] 1
p−1

+ c

[
|µ|(B2r)

(2r)n−1

]
[F (u;σr)]2−p . (5.32)
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We then apply Lemma 5.3.4 to v − (vσ)Bσ , which implies

F (vσ;σ′r) ≤ c

(σ − σ′)θr

[∫
Bσr

|vσ − (vσ)Bσr | dx+ Tail(vσ − (vσ)Bσ ;σr/2)

]
.

The first term in the right-hand side is estimated as∫
Bσr

|vσ − (vσ)Bσr | dx ≤ 2

∫
Bσr

|u− vσ| dx+ c

∫
B2r

|u− (u)B2r | dx

≤ 2

∫
Bσr

|u− vσ| dx+ cE(u; 2r)

≤ crF (u− vσ;σr) + cE(u; 2r),

where we have also used Poincaré’s inequality. We then split the tail term as

Tail(vσ − (vσ)Bσr ;σr/2)

≤ cTail(u− (u)Bσr ;σr/2) + cTail(u− vσ − (u− vσ)Bσr ;σr/2) (5.33)

to estimate each term separately. The first term is estimated as

Tail(u− (u)Bσr ;σr/2) ≤ cTail(u− (u)B2r ;σr/2) + cr(1−s)p′ |(u)Bσr − (u)B2r |

≤ cTail(u− (u)B2r ;σr/2) + c

∫
B2r

|u− (u)B2r | dx

≤ cE(u; 2r). (5.34)

As for the second term, we have

Tail(u− vσ − (u− vσ)Bσr ;σr/2)

≤ cTail(u− vσ;σr/2) + cr(1−s)p′ |(u− vσ)Bσr |

≤ cTail(u− vσ;σr/2) + c

∫
Bσr

|u− vσ| dx

= c

∫
Bσr

|u− vσ| dx ≤ crF (u− vσ;σr). (5.35)

Combining (5.33), (5.34) and (5.35), we arrive at

F (vσ;σ′r) ≤ c

(σ − σ′)θ
[
r−1E(u; 2r) + F (u− vσ;σr)

]
. (5.36)
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Connecting (5.32) and (5.36) to (5.31) yields

F (u;σ′r) ≤ c

(σ − σ′)θ

{
r−1E(u; 2r) +

[
|µ|(B2r)

(2r)n−1

] 1
p−1

}

+
c

(σ − σ′)θ
[F (u;σr)]2−p

[
|µ|(B2r)

(2r)n−1

]
.

We apply Young’s inequality to the last term in the right-hand side, with
conjugate exponents 1/(2− p) and 1/(p− 1), in order to see that

F (u;σ′r) ≤ 1

2
F (u;σr) +

c

(σ − σ′)θ/(p−1)

{
r−1E(u; 2r) +

[
|µ|(B2r)

(2r)n−1

] 1
p−1

}

holds for some c ≡ c(data, q), whenever 1 ≤ σ′ ≤ σ ≤ 2. Then, applying
Lemma 2.3.12, we conclude that(∫

Br

|Du|q dx
) 1

q

≤ c

{
r−1E(u; 2r) +

[
|µ|(B2r)

(2r)n−1

] 1
p−1

}
.

This inequality and (5.29) yield (5.30) after an elementary manipulation.

The above two lemmas and Sobolev’s embedding theorem imply the fol-
lowing comparison estimate.

Lemma 5.4.4. Let u and v be as in (5.24) and (5.25), respectively. Let
γ ∈ [1, γ∗), with

γ∗ :=


n(p− 1)

n− p
if p < n,

∞ if p ≥ n.

Then there exists a constant c ≡ c(data, γ) such that(∫
Br

|u− v|γ dx
) 1

γ

≤ c

[
|µ|(B2r)

(2r)n−p

] 1
p−1

+ cχ{p<2}[E(u;x0, 2r)]
2−p
[
|µ|(B2r)

(2r)n−p

]
.

We end this section with the following comparison estimate in Ω instead
of balls, whose proof is the same as those of Lemmas 5.4.1 and 5.4.2.
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Lemma 5.4.5. Given g ∈ W 1,p(Rn), let u, ṽ ∈ W 1,p(Rn) be weak solutions
to the problems {

−divA(x,Du) + Lu = µ in Ω,

u = g in Rn \ Ω.

and {
−divA(x,Dṽ) + Lṽ = 0 in Ω,

ṽ = g in Rn \ Ω,

respectively. Then we have the estimate∫
Ω

|Du−Dṽ|q dx ≤ c [|µ|(Ω)]
q
p−1 + cχ{p<2} [|µ|(Ω)]q

(∫
Ω

|Du|q dx
)2−p

for every q satisfying (5.28), where c ≡ c(data,Ω, q).

5.5 Existence of SOLA

Here we prove Theorem 5.1.3. The proof will be divided into three steps.
Step 1: Construction of the approximating problems. We start with the

following lemma, whose proof is the same as that of [152, Lemma 4.1].

Lemma 5.5.1. Fix g ∈ W 1,p
loc (Rn) ∩ Lp−1

sp (Rn) and z ∈ Ω. There exists a
sequence {gk} ⊂ C∞0 (Rn) such that, for any R > 0,

gk → g in W 1,p(BR) and

∫
Rn\BR(z)

|gk(y)− g(y)|p−1

|y − z|n+sp
dy → 0 (5.37)

as k → ∞. Moreover, for every ε > 0 there exist a radius R̃ > 0 and an
index k̃ ∈ N, both depending on ε, such that∫

Rn\BR(z)

|g(y)|p−1 + |gk(y)|p−1

|y − z|n+sp
dy ≤ ε

whenever k ≥ k̃ and R ≥ R̃. Finally, we have for every R > 0

sup
k
‖gk‖W 1,p(BR) ≤ c(R, g(·)).
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We next construct an approximating sequence {uk} described in Defi-
nition 5.1.2. Note that the sequence {µk} obtained via convolutions as in
Remark 3.1.9 satisfies the convergence property and (5.10). Accordingly, we
define the weak solutions uk, vk ∈ W 1,p(Rn) to the Dirichlet problems{

−divA(x,Duk) + Luk = µk in Ω,

uk = gk in Rn \ Ω
(5.38)

and {
−divA(x,Dvk) + Lvk = 0 in Ω,

vk = gk in Rn \ Ω,
(5.39)

respectively. In the following lemma, we establish an initial estimate for vk.

Lemma 5.5.2. There exist constants c ≡ c(data) ≥ 1 and σ ≡ σ(data) ∈
(0, 1/4] satisfying the following: if BR ≡ BR(z) is a ball with center z ∈ Ω
and radius R ≥ 1 such that Ω ⊂ BσR(z), then

‖Dvk‖Lp(Ω) + [vk]s,p;BR ≤ c‖Dgk‖Lp(Ω) + c[gk]s,p;BR

+ cR−s‖gk‖Lp(BR) + cR
n
p
−sTail(gk; z,R).

Proof. We test (5.39) with ϕ = vk−gk. Recalling the notation (5.6), we have

0 =

∫
Ω

A(x,Dvk) · (Dvk −Dgk) dx

+

∫
BR

∫
BR

Φp(vk(x)− vk(y))(vk(x)− vk(y)− (gk(x)− gk(y)))K(x, y) dxdy

+ 2

∫
Rn\BR

∫
BR

Φp(vk(x)− gk(y))(vk(x)− gk(x))K(x, y) dxdy

=: I1 + I2 + I3. (5.40)

By using Young’s inequality, we directly have

I1 ≥
1

c
‖Dvk‖pLp(Ω)− c‖Dgk‖

p
Lp(Ω) and I2 ≥

1

c
[vk]

p
s,p;BR

− c[gk]ps,p;BR . (5.41)
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We split I3 as

I3 ≥ −c
∫
Rn\BR

∫
BR

|vk(x)|p−1|vk(x)− gk(x)|
|x− y|n+sp

dxdy

− c
∫
Rn\BR

∫
BR

|gk(y)|p−1|vk(x)− gk(x)|
|x− y|n+sp

dxdy

=: −I3,1 − I3,2.

Using the fact that

|x− y| ≥ |y − z| − |x− z| ≥ 3

4
|y − z|

for x ∈ supp(vk − gk) ⊆ BR/4 and y ∈ Rn \BR, along with Lemma 2.2.6 and
Young’s inequality, we have

I3,1 ≤ c

∫
Rn\BR

∫
BR

|vk(x)|p−1|vk(x)− gk(x)|
|y − z|n+sp

dxdy

≤ c

Rsp

∫
BR

|vk|p−1|vk − gk| dx

≤ cε
Rsp

∫
BR

|vk|p dx+
cε

Rsp

∫
BR

|vk − gk|p dx

≤ cεR
−sp‖vk‖pLp(BR) + cε[vk − gk]ps,p;BR

≤ cεR
−sp‖vk‖pLp(BR) + cε[vk]

p
s,p;BR

+ cε[gk]
p
s,p;BR

for any ε ∈ (0, 1), where cε ≡ cε(data, ε). We further observe that, by apply-
ing Lemma 2.2.6 to vk − gk in the ball B2σR,

‖vk‖pLp(BR) ≤ c‖vk − gk‖pLp(BσR) + c‖gk‖pLp(BR)

≤ cRspσsp[vk]
p
s,p;BR

+ cRspσsp[gk]s,p;BR + c‖gk‖pLp(BR).

From the last two inequalities, we obtain the estimate for I3,1:

I3,1 ≤ cε

(
[gk]

p
s,p;BR

+R−sp‖gk‖pLp(BR)

)
+ (cεσ

sp + cε) [vk]
p
s,p;BR

. (5.42)
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In a similar manner, we estimate I3,2 as

I3,2 =

∫
Rn\BR

∫
BR

|gk(y)|p−1|vk(x)− gk(x)|
|x− y|n+sp

dxdy

≤ c

∫
Rn\BR

|gk(y)|p−1

|y − z|n+sp
dy

∫
BR

|vk − gk| dx

≤ cR−p[Tail(gk; z, R)]p−1 ·Rs+ n
p′ [vk − gk]s,p;BR

≤ c[Tail(gk; z, R)]p−1 ·Rs(1−p)+ n
p′ [vk − gk]s,p;BR

≤ ε[vk]
p
s,p;BR

+ ε[gk]
p
s,p;BR

+ cεR
n−sp[Tail(gk; z,R)]p. (5.43)

Combining (5.40), (5.41), (5.42) and (5.43), we have

‖Dvk‖pLp(Ω) + [vk]
p
s,p;BR

≤ (cεσ
sp + c0ε) [vk]

p
s,p;BR

+ c‖Dgk‖pLp(Ω)

+ cε

(
[gk]

p
s,p;BR

+R−sp‖gk‖pLp(BR)

)
+ cεR

n−sp[Tail(gk; z,R)]p

for some c0 ≡ c0(data). Choosing first ε = 1/(4c0) and then σ ≡ σ(data) so
small that cεσ

sp ≤ 1/4, the desired estimate follows.

Step 2: A priori estimates for approximating solutions. We fix a point
z ∈ Ω satisfying Ω ⊂ BσR(z) with R := max{1, 4σ−1 diam(Ω)}, where σ ≡
σ(data) is the constant determined in Lemma 5.5.2. Now, with q ∈ [1, q̄), we
apply Lemmas 5.5.2 and 5.4.5 in order to have∫

Ω

|Duk|q dx ≤ c

∫
Ω

|Dvk|q dx+ c

∫
Ω

|Duk −Dvk|q dx

≤ c‖Dgk‖qLp(Ω) + c[gk]
q
s,p;BR

+ c‖gk‖qLp(BR) + c[Tail(gk; z,R)]q

+ c[|µk|(Ω)]
q
p−1 + cχ{p<2}[|µk|(Ω)]q

(∫
Ω

|Duk|q dx
)2−p

.

When 2 − 1/n < p < 2, we further apply Young’s inequality with conju-
gate exponents 1/(p − 1) and 1/(2 − p) and then reabsorb the last term.
Consequently, in any case, we have∫

Ω

|Duk|q dx ≤ c‖Dgk‖qLp(Ω) + c‖gk‖qW s,p(BR) + c[Tail(gk; z,R)]q + c[|µk|(Ω)]
q
p−1
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and therefore, applying Poincaré’s inequality to uk − g ∈ W 1,p
0 (Ω),∫

Ω

|uk|q dx ≤ c

∫
Ω

|uk − gk|q dx+ c

∫
Ω

|gk|q dx

≤ c

∫
Ω

|Duk −Dgk|q dx+ c

∫
Ω

|gk|q dx

≤ c

∫
Ω

|Duk|q dx+ c

∫
Ω

|Dgk|q dx+ c

∫
Ω

|gk|q dx

≤ c‖Dgk‖qLp(Ω) + c‖gk‖qW s,p(BR) + c[Tail(gk; z,R)]q + c[|µk|(Ω)]
q
p−1 .

All in all, using (3.15)1 and (5.37), we have the uniform estimate for uk:∫
Ω

|uk|q dx+

∫
Ω

|Duk|q dx ≤ c(data, |Ω|, |µ|(Ω), g(·), q). (5.44)

In a similar way, we apply Lemma 5.2.1 to uk − g ∈ X 1,p
0 (Ω) to discover that

for every h ∈ (0, 1),

[uk]h,q;Ω ≤ [uk − g]h,q;Ω + [g]h,q;Ω

≤ c‖Duk −Dg‖Lq(Ω) + [g]h,q;Ω

≤ c(data, |Ω|, |µ|(Ω), g(·), h, q). (5.45)

Step 3: A limiting process and existence of SOLA. From the results in
the previous step, we have the following: there exists u ∈ W 1,q(Ω) for every
q ∈ [p− 1, q̄) with u = g in Rn \ Ω such that, up to a subsequence,

uk ⇀ u in W 1,q(Ω)

uk → u in Lq(Ω)

uk → u a.e. in Rn.

(5.46)

Once we have estimate (5.44), with the same spirit as in [28], we obtain

Duk → Du in Lq(Ω), ∀ q ∈ [1, q̄).

In particular, this and Vitali convergence theorem yield

A(x,Duk)→ A(x,Du) in L1(Ω).
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Finally, it remains to show that u is a distributional solution to (5.8). Testing
(5.38) with ϕ ∈ C∞0 (Ω) and recalling the notation (5.6), we have∫

Rn
ϕdµk =

∫
Ω

A(x,Duk) ·Dϕdx

+

∫
Rn

∫
Rn

Φp(u(x)− u(y))(ϕ(x)− ϕ(y))K(x, y) dxdy

+

∫
Rn

∫
Rn

(Φp(uk(x)− uk(y))− Φp(u(x)− u(y)))

· (ϕ(x)− ϕ(y))K(x, y) dxdy. (5.47)

We now recall (5.45), (5.46) and the fact that u = g a.e. in Rn \ Ω. Then,
we are in a position to argue in exactly the same way as in [152, Step 3
in Section 4], concluding that the last term in the right-hand side of (5.47)
converges to zero as k →∞. This completes the proof of Theorem 5.1.3.

5.6 Potential estimates

5.6.1 Proof of Theorems 5.1.4 and 5.1.7

We first obtain an excess decay estimate for u.

Lemma 5.6.1. Let u be a SOLA to (5.8) under assumptions (5.4) and (5.5).
Then there exist constants c ≡ c(data) and η ≡ η(n, p) such that

E(u;x0, σρ) ≤ cσαE(u;x0, ρ) + cσ−η
[
|µ|(Bρ(x0))

ρn−p

] 1
p−1

(5.48)

for any ball Bρ(x0) ⊂ Rn and σ ∈ (0, 1).

Proof. Let {uk} be an approximating sequence for the SOLA u with measure
µk and boundary data gk, as described in Definition 5.1.2. We consider the
comparison map vk defined as the weak solution to{

−divA(x,Dvk) + Lvk = 0 in Bρ/2(x0),

vk = uk in Rn \Bρ/2(x0).
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Since vk = uk in Rn \Bρ/2(x0), we have for any t < ρ/2

E(uk − vk; t) ≤ c
(ρ
t

) n
q0

(∫
Bρ

|uk − vk|q0 dx

) 1
q0

.

This and Theorem 5.3.8 imply

E(uk;σρ) ≤ cE(vk;σρ) + cσ
− n
q0

(∫
Bρ

|uk − vk|q0 dx

) 1
q0

≤ cσαE(vk; ρ) + cσ
− n
q0

(∫
Bρ

|uk − vk|q0 dx

) 1
q0

≤ cσαE(uk; ρ) + cσ
− n
q0

(∫
Bρ

|uk − vk|q0 dx

) 1
q0

.

We then apply Lemma 5.4.4 to estimate the last term in the right-hand side.
When p ≥ 2, we directly have(∫

Bρ

|uk − vk|q0 dx

) 1
q0

≤ c

[
|µk|(Bρ)

ρn−p

] 1
p−1

.

When 2− 1/n < p < 2, we further apply Young’s inequality with conjugate
exponents 1/(2− p) and 1/(p− 1) to have(∫

Bρ

|uk − vk|q0 dx

) 1
q0

≤ c

[
|µk|(Bρ)

ρn−p

] 1
p−1

+ c[E(uk; ρ)]2−p
[
|µk|(Bρ)

ρn−p

]

≤ δE(uk; ρ) + cδ
p−2
p−1

[
|µk|(Bρ)

ρn−p

] 1
p−1

for any δ ∈ (0, 1). Choosing δ = σα+n/q0 and finally letting k →∞, we obtain
(5.48).

We are now ready to prove Theorem 5.1.7.
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Proof of Theorem 5.1.7. We start by integrating (5.48) with respect to Haar
measure and then making an elementary manipulation, to get∫ r

ρ

E(u;σt)
dt

t
≤ cσα

∫ r

ρ

E(u; t)
dt

t
+ cσ−η

∫ r

ρ

[
|µ|(Bt)

tn−p

] 1
p−1 dt

t

for any ρ ∈ (0, r]. Thus, choosing σ ≡ σ(data) so small that

cσα =
1

2
,

changing variables and then reabsorbing terms, we obtain∫ r

σρ

E(u;σt)
dt

t
≤ 2

∫ r

σr

E(u; t)
dt

t
+ c

∫ r

ρ

[
|µ|(Bt)

tn−p

] 1
p−1 dt

t
.

We further note the inequality∫ r

σr

E(u; t)
dt

t
≤ cE(u; r)

in order to have∫ r

ρ

E(u; t)
dt

t
≤ cE(u; r) + c

∫ r

ρ

[
|µ|(Bt)

tn−p

] 1
p−1 dt

t
. (5.49)

This gives the bound for the first term on the left-hand side of (5.16).
We now prove the bound for the second term, after showing the existence

of the limit in (5.11). To this end, let 0 < ρ̃ ≤ ρ/2 < r/8 and choose m ∈ N
and θ ∈ (1/4, 1/2] such that ρ̃ = θmρ. Then

∣∣(u)Bρ − (u)Bρ̃
∣∣ ≤ m−1∑

i=0

∣∣∣(u)Bθiρ − (u)Bθi+1ρ

∣∣∣ ≤ θ
− n
q0

m−1∑
i=0

E(u; θiρ).

Recalling the elementary inequality (see for instance [189, Lemma 2.3])

m−1∑
i=0

E(u; θiρ) =
1

log(1/θ)

m−1∑
i=0

∫ θi−1

θiρ

E(u; θiρ)
dt

t

≤ c
m−1∑
i=0

∫ θi−1ρ

θiρ

E(u; t)
dt

t
≤ c

∫ ρ/θ

ρ̃

E(u; t)
dt

t
,
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and then using (5.49), we have

∣∣(u)Bρ − (u)Bρ̃
∣∣ ≤ c

∫ ρ/θ

ρ̃

E(u; t)
dt

t
(5.50)

and therefore ∣∣(u)Bρ − (u)Bρ̃
∣∣ ≤ cE(u; r) + cWµ

1,p(x0, r). (5.51)

Then we note that the finiteness of Wµ
1,p(x0, r) implies the finiteness of the

left-hand side of (5.49). In turn, by the absolute continuity of the integral,
(5.50) implies that {(u)Bρ} is a Cauchy net. Consequently, the limit in (5.11)
exists and therefore defines the precise representative of u at x0. Now we let
ρ̃→ 0 in (5.51) and take ρ = r/4 to have

|(u)Br/4 − u(x0)| ≤ cE(u; r) + cWµ
1,p(x0, r).

On the other hand, we trivially have

|(u)Br − (u)Br/4| ≤ cE(u; r).

combining the last two estimates with (5.49) finally gives (5.16). Also, the
estimate (5.12) easily follows from (5.16).

5.6.2 Proof of Theorem 5.1.5

Here we note that if µ ∈ C∞0 (Rn) is nonnegative, then every weak solution u
to (5.1) is a weak supersolution to the homogeneous equation (5.19).

Lemma 5.6.2. Let u be the weak solution to (5.8) with µ ∈ C∞0 (Rn) being
nonnegative, such that u ≥ 0 in B4r ≡ B4r(x0) ⊂ Ω. Then the inequality

µ(Br)

rn−p
≤ crp−1

∫
B3r/2

|Du|p−1 dx+ crp−1

∫
B3r/2

∫
B3r/2

|u(x)− u(y)|p−1

|x− y|n+sp−1
dxdy

+ c

[
inf
Br
u+ Tail(u−;x0, 4r)

]p−1

holds for a constant c ≡ c(data).
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Proof. Let φ ∈ C∞0 (B5r/4) be a cut-off function satisfying 0 ≤ φ ≤ 1, φ ≡ 1
in Br and |Dφ| ≤ 16/r. Testing (5.8) with φ, we have

µ(Br)

rn−p
≤ crp

∫
B3r/2

|Du|p−1|Dφ| dx

+ crp
∫
B3r/2

∫
B3r/2

|u(x)− u(y)|p−1|φ(x)− φ(y)|K(x, y) dxdy

+ crp
∫
Rn\B3r/2

∫
B3r/2

(u(x)− u(y))p−1
+ φ(x)K(x, y) dxdy

≤ crp−1

∫
B3r/2

|Du|p−1 dx+ crp−1

∫
B3r/2

∫
B3r/2

|u(x)− u(y)|p−1

|x− y|n+sp−1
dxdy

+ crp
∫
Rn\B3r/2

∫
B3r/2

(u(x)− u(y))p−1
+ φ(x)K(x, y) dxdy.

Using (5.4) and the fact that |y− x0| ≤ 16|x− y| for x ∈ suppφ ⊂ B5r/4 and
y ∈ Rn \B3r/2, we estimate the last integral as

rp
∫
Rn\B3r/2

∫
B3r/2

(u(x)− u(y))p−1
+ φ(x)K(x, y) dxdy

≤ crp
∫
Rn\B3r/2

∫
B3r/2

(
[u(x)]p−1 + [u−(y)]p−1

)
φ(x)

dxdy

|y − x0|n+sp

≤ cr(1−s)p
∫
B3r/2

up−1 dx+ c[Tail(u−;x0, 4r)]
p−1.

Applying Lemma 5.3.7 completes the proof.

Lemma 5.6.3. Let u be the weak solution to (5.8) with µ ∈ C∞0 (Rn) being
nonnegative, such that u ≥ 0 in B4r ≡ B4r(x0) ⊂ Ω. Let h ∈ (0, s), q ∈ (0, q̄),
where q̄ has been defined in (5.28). Then we have the estimate(∫

B3r/2

|Du|q dx

) 1
q

+

(∫
B3r/2

∫
B3r/2

|u(x)− u(y)|q

|x− y|n+hq
dxdy

) 1
q

≤ c

r

[
inf
Br
u+ Tail(u−;x0, 4r)

]
(5.52)

for a constant c ≡ c(data, h, q).
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Proof. Let

d ≡ dδ := inf
Br
u+ Tail(u−;x0, 4r) + δ for δ > 0.

We note that the presence of δ is just to guarantee that d > 0; we will
eventually let δ → 0 at the end of the proof. With this choice of d, we set

ū := u+ d, w := ū1−m
p for m ∈ (1, p).

We then choose a cut-off function φ ∈ C∞0 (B7r/4) satisfying 0 ≤ φ ≤ 1, φ ≡ 1
in B3r/2 and |Dφ| ≤ 16/r. Applying Lemma 5.3.6 (with 2r instead of r and
R = 4r), we obtain∫

B3r/2

|Dw|p dx+

∫
B3r/2

∫
B3r/2

|w(x)− w(y)|p

|x− y|n+sp
dxdy ≤ c

rp

∫
B2r

wp dx.

By Lemma 5.3.7 and the definition of d, the right-hand side is estimated as∫
B2r

wp dx ≤ cdp−m.

We then estimate the left-hand side from below. For the first term, we apply
Hölder’s inequality and Lemma 5.3.7 to have∫

B3r/2

|Du|q dx =

(
p

p−m

)q ∫
B3r/2

|ū|
mq
p |Dw|q dx

≤
(

p

p−m

)q(∫
B3r/2

|ū|
mq
p−q dx

) p−q
p
(∫

B3r/2

|Dw|p dx

) q
p

≤ c

(
p

p−m

)q
d
mq
p

(∫
B3r/2

|Dw|p dx

) q
p

,

provided that
mq

p− q
<
n(p− 1)

n− p
.

For the second term, we follow the proof of [154, Lemma 8.6.4], again using
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Hölder’s inequality and Lemma 5.3.7, to have∫
B3r/2

∫
B3r/2

|u(x)− u(y)|q

|x− y|n+hq
dxdy

≤

(∫
B3r/2

∫
B3r/2

[ū(x) + ū(y)]mq/(p−q)

|x− y|n+(h−s)qp/(p−q) dxdy

) p−q
p

·

(∫
B3r/2

∫
B3r/2

|u(x)− u(y)|p

[ū(x) + ū(y)]m
dxdy

|x− y|n+sp

) q
p

≤ c

(
p

p−m

)q (
r(s−h)pdm

) q
p

(∫
B3r/2

∫
B3r/2

|w(x)− w(y)|p

|x− y|n+sp
dxdy

) q
p

,

which also holds provided

mq

p− q
<
n(p− 1)

n− p
and h < s.

We can always find m > 1 satisfying the above condition, since

q

p− q
<
n(p− 1)

n− p
⇐⇒ q <

n(p− 1)

n− 1
.

Combining the three estimates in the above display, we arrive at∫
B3r/2

∫
B3r/2

|Du|q dx+

∫
B3r/2

∫
B3r/2

|u(x)− u(y)|q

|x− y|n+hq
dxdy ≤ cdq

rq
.

Recalling the definition of d and letting δ → 0, (5.52) follows.

Lemma 5.6.4. Let u be the weak solution to (5.8) with µ ∈ C∞0 (Rn) being
nonnegative, such that u ≥ 0 in B4r ≡ B4r(x0) ⊂ Ω. Then[

µ(Br)

rn−p

] 1
p−1

≤ c

[
inf
Br
u+ Tail(u−;x0, 4r)

]
holds for a constant c ≡ c(data).
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Proof. Lemma 5.6.2 implies

[
µ(Br)

rn−p

] 1
p−1

≤ cr

(∫
B3r/2

|Du|p−1 dx

) 1
p−1

+ cr

(∫
B3r/2

∫
B3r/2

|u(x)− u(y)|p−1

|x− y|n+sp−1
dxdy

) 1
p−1

+ c

[
inf
Br
u+ Tail(u−;x0, 4r)

]
. (5.53)

We observe that (
|x− y|
r

)1−sp

≤ c

(
|x− y|
r

)−h(p−1)

for x, y ∈ B3r/2, provided that

1− sp ≥ −h(p− 1) ⇐⇒ h ≥ sp− 1

p− 1
.

Since (sp− 1)/(p− 1) < s, we can always find h ∈ (0, s) satisfying the above
condition. With such a choice of h and q = p− 1, Lemma 5.6.3 gives(∫

B3r/2

|Du|p−1 dx

) 1
p−1

+

(∫
B3r/2

∫
B2r

|u(x)− u(y)|p−1

|x− y|n+sp−1
dxdy

) 1
p−1

≤ c

r

[
inf
Br
u+ Tail(u−;x0, 4r)

]
.

Combining this estimate with (5.53), we finish the proof.

Proof of Theorem 5.1.5. In what follows, all the balls considered are con-
centric with center x0 as in the statement. Let {uk} be an approximating
sequence for the SOLA u as described in Definition 5.1.2, with the functions
µk being nonnegative. Then we apply Lemma 5.3.2 to get

sup
Br/2

(uk)− ≤ c

[∫
Br

(uk)− dx+ Tail((uk)−;x0, r/2)

]
.
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Since we have the convergence of uk and the fact that u is nonnegative in
Br, we have

lim sup
k→∞

sup
Br/2

(uk)− ≤ cTail(u−;x0, r/2),

for a constant c ≡ c(data).
We next observe that the function

ũk := uk − inf
Br/2

uk

is nonnegative in Br/2. Then, denoting

mρ,k := inf
Bρ
ũk and Tρ,k := Tail((ũk −mρ,k);x0, ρ)

for ρ ∈ (0, r/2] and applying Lemma 5.6.4, we discover that[
µk(Bρ)

ρn−p

] 1
p−1

≤ c (mρ,k −m4ρ,k + T4ρ,k)

holds for any ρ ∈ (0, r/8), where c ≡ c(data). Moreover, with M ≥ 1 being
a free parameter to be chosen in a few lines, we estimate for any ρ ∈ (0, r/2)

Tρ,k = ρ
p
p−1

[∫
Rn\Bρ

(ũk(x)−mρ,k)
p−1
−

|x− x0|n+sp
dx

] 1
p−1

≤ cρ
p
p−1

[∫
Rn\BMρ

(ũk(x)−mρ,k)
p−1
−

|x− x0|n+sp
dx

] 1
p−1

+ cρ
p
p−1

[∫
BMρ\Bρ

(ũk(x)−mρ,k)
p−1
−

|x− x0|n+sp
dx

] 1
p−1

≤ cM− p
p−1 (mρ,k −mMρ,k + TMρ,k) + c(mρ,k −mMρ,k)

≤ cM− p
p−1TMρ,k + c(mρ,k −mMρ,k), (5.54)

where we have used the inequality

(ũk(x)−mρ,k)− ≤ (ũk(x)−mMρ,k)− +mρ,k −mMρ,k.
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Now, with any t ∈ (0, r/8M) being fixed, we integrate (5.54) and then
use change of variables to obtain∫ r/(8M)

t

T4ρ,k
dρ

ρ
=

∫ r/(2M)

4t

Tρ,k
dρ

ρ

≤ cM− p
p−1

∫ r/(2M)

t

TMρ,k
dρ

ρ
+ c

∫ r/(2M)

t

(mρ,k −mMρ,k)
dρ

ρ

= cM− p
p−1

∫ r/2

tM

Tρ,k
dρ

ρ
+ c

(∫ Mt

t

mρ,k
dρ

ρ
+

∫ r/2

r/(2M)

mρ,k
dρ

ρ

)
.

Choosing M ≡M(data) satisfying

cM− p
p−1 =

1

2

and making elementary manipulations as those after [154, (7.8)], we have∫ r/8

t

T4ρ,k
dρ

ρ
≤ cmt,k + cTr/2,k

for some c ≡ c(data), whenever t < r/(8M). Once we have the last inequality,
we again proceed as in the proof of [154, Theorem 8.14] to obtain∫ r/8

t

[
µk(Bρ)

ρn−p

] 1
p−1 dρ

ρ
≤ cmt,k + cTr/2,k (5.55)

and
lim sup
k→∞

mt,k + lim sup
k→∞

Tr/2,k ≤ c(u)Bt + cTail(u−;x0, r/2).

For the left-hand side of (5.55), we can use the convergence µk
∗
⇀ µ and

Lebesgue’s dominated convergence theorem. Hence, letting k →∞, we get∫ r/8

t

[
µ(Bρ)

ρn−p

] 1
p−1 dρ

ρ
≤ c(u)Bt + cTail(u−;x0, r/2) ∀ t ∈ (0, r/(8M)),

where c ≡ c(data). Now, if Wµ
1,p(x0, r/8) is finite, then Theorem 5.1.4 implies

the existence of the precise representative of u at x0 as described in (5.11).
Consequently, letting t→ 0 in the above inequality gives (5.13). In a similar
way, if Wµ

1,p(x0, r/8) =∞, then (5.14) immediately follows.
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5.7 Continuity criteria for SOLA

5.7.1 Proof of Theorem 5.1.8

Let Ω′ b Ω be fixed as in the statement.
Step 1: Local VMO-regularity. We first show that u is locally VMO-regular

in Ω′, which means that for any Ω′′ b Ω′,

lim
t→0

E(u;x, t) = 0 uniformly in x ∈ Ω′′. (5.56)

Observe that the assumption (5.17) in particular implies that

lim
t→0

|µ|(Bt(x))

tn−p
= 0 uniformly in x ∈ Ω′. (5.57)

A straightforward calculation as in the proof of [152, Theorem 1.5] shows
that, with r < dist(Ω′′, ∂Ω′)/100,

H := sup
x∈Ω′′

E(u;x, r) <∞.

This together with (5.48) gives

E(u;x, σr) ≤ cσαH + cσ−η
[
|µ̄|(Br(x))

rn−p

] 1
p−1

whenever x ∈ Ω′′ and r < dist(Ω′′, ∂Ω′)/100. Given any ε > 0, we first choose
σ̃ > 0 satisfying

cσαH ≤ ε

4
for every σ < σ̃.

Then, by (5.57), we choose r̃ε ∈ (0, dist(Ω′′, ∂Ω′)/100) satisfying

cσ−η
[
|µ̄|(Br(x))

rn−p

] 1
p−1

≤ ε

4
for every r ≤ r̃ε and x ∈ Ω′′.

Summarizing, we have proved that for every ε > 0, there exists a radius
rε = σ̃r̃ε, depending only on data and H, such that E(u;x, r) < ε for r ≤ rε
and x ∈ Ω′′. This proves (5.56).
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Step 2: Continuity. We now show that for any ε > 0 and z ∈ Ω′, there
exists small δ ≡ δ(ε, data) > 0 such that

osc
Bδ(z)∩Ω

u ≤ ε.

Let us fix ε > 0 and z ∈ Ω′. Note that (5.56) in particular implies

E(u; z, t)→ 0 as t→ 0. (5.58)

Moreover, by using the triangle inequality, we have for any z̃ ∈ Bt(z)

E(u; z̃, t) ≤ cE(u; z, 2t).

Recalling Theorem 5.1.7, we also have∣∣(u)Br(x) − u(x)
∣∣ ≤ cWµ

1,p(x, r) + cE(u;x, r)

for all x ∈ Ω′ and r < min{1, dist(Ω′, ∂Ω)}. Therefore, using the above two
estimates leads to

|u(z)− u(z̃)| ≤
∣∣u(z)− (u)Bt(z)

∣∣+
∣∣u(z̃)− (u)Bt(z̃)

∣∣+
∣∣(u)Bt(z) − (u)Bt(z̃)

∣∣
≤ c

(
E(u; z, 2t) + Wµ

1,p(z, 2t) + Wµ
1,p(z̃, 2t)

)
for any z̃ ∈ Bt(z). In the last display, by (5.17) and (5.58), we can find a
small t > 0 for which the right-hand side is less than ε. Taking δ to be this
t, the proof is complete.

Remark 5.7.1. In Step 1, we actually proved that (5.57) implies the local
VMO-regularity of u in Ω′.

5.7.2 Proof of Theorem 5.1.10

By Lemma 5.6.1, we have

E(u;x, σt) ≤ cσαE(u;x, t) + cσ−η
[
|µ|(Bt(x))

tn−p

] 1
p−1
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whenever Bt(x) ⊂ Br(x) ⊂ Ω and σ ∈ (0, 1). Multiplying this inequality with
(σt)−β, we find

(σt)−βE(u;x, σt) ≤ cσα−βt−βE(u;x, t) + cσ−η−β
[
|µ|(Bt(x))

tn−p+β(p−1)

] 1
p−1

≤ cσα−βt−βE(u;x, t) + cσ−η−β
[
Mµ

p−β(p−1)(x, r)
] 1
p−1

.

We choose σ ≡ σ(data) so that cσα−β = 1/2 and then iterate the resulting
inequality to have

(σit)−βE(u;x, σit) ≤ ct−βE(u;x, t) + c
[
Mµ

p−β(p−1)(x, r)
] 1
p−1 ∀ i ∈ N ∪ {0}.

We now take t = σr in the last inequality. Then for any ρ ∈ (0, r), we choose
i ∈ N ∪ {0} satisfying σi+1r < ρ ≤ σir to get

ρ−βE(u;x, ρ) ≤ cr−βE(u;x, r) + c
[
Mµ

p−β(p−1)(x, r)
] 1
p−1

.

Eventually, we are able to take supremum with respect to ρ, thereby obtaining

sup
0<ρ<r

ρ−βE(u;x, ρ) ≤ cr−βE(u;x, r) + c
[
Mµ

p−β(p−1)(x, r)
] 1
p−1

.

Recalling (5.18), the desired Hölder continuity now follows from Campanato’s
characterization of Hölder spaces [118, Theorem 2.9].
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Chapter 6

Nonlocal double phase
problems

In this chapter, we study the regularity theory for weak solutions to the
following nonlocal equation:

Lu = 0 in Ω, (6.1)

where the integrodifferential operator L is defined by

Lu(x) := P.V.

∫
Rn
|u(x)− u(y)|p−2(u(x)− u(y))Ksp(x, y) dy

+ P.V.

∫
Rn
a(x, y)|u(x)− u(y)|q−2(u(x)− u(y))Ktq(x, y) dy.

Here, Ksp, Ktq : Rn×Rn → R are suitable kernels with orders (s, p) and (t, q),
respectively, for some 0 < s ≤ t < 1 < p ≤ q <∞, and a : Rn×Rn → R is a
nonnegative modulating coefficient.

A prototype of nonlocal double phase problems is the following equation:

P.V.

∫
Rn

|u(x)− u(y)|p−2(u(x)− u(y))

|x− y|n+sp
dy

+ P.V.

∫
Rn
a(x, y)

|u(x)− u(y)|q−2(u(x)− u(y))

|x− y|n+tq
dy = 0 in Ω,

(6.2)

which is the case when Ksp(x, y) ≡ |x− y|−n−sp and Ktq(x, y) ≡ |x− y|−n−tq
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in (6.1). It is in fact the Euler-Lagrange equation of the functional

v 7→
∫∫
CΩ

1

p

|v(x)− v(y)|p

|x− y|n+sp
+ a(x, y)

1

q

|v(x)− v(y)|q

|x− y|n+tq
dxdy, (6.3)

where
CΩ := (Rn × Rn) \ ((Rn \ Ω)× (Rn \ Ω)). (6.4)

The local version corresponding to (6.2) is the double phase equation

− div
(
|Du|p−2Du+ a(x)|Du|q−2Du

)
= 0 in Ω. (6.5)

Starting from [79, 80], the regularity for weak solutions to (6.5) and mini-
mizers of corresponding variational integral has been exhaustively studied,
see [18, 50, 81, 86, 90, 181] and references therein. In particular, for local
boundedness and Hölder continuity, it is shown that

a(·) ∈ L∞loc(Ω),

p ≤ q ≤ np

n− p
when p < n,

p ≤ q <∞ when p ≥ n
=⇒ u ∈ L∞loc(Ω),

u ∈ L∞loc(Ω), a(·) ∈ C0,α
loc (Ω), q ≤ p+ α =⇒ u ∈ C0,γ

loc (Ω),

see [16, 79, 83].

6.1 Main results

We say that a function f : Rn × Rn → R is symmetric if f(x, y) = f(y, x)
for every x, y ∈ Rn. The kernels Ksp, Ktq : Rn × Rn → R are measurable,
symmetric and satisfy

Λ−1

|x− y|n+sp
≤ Ksp(x, y) ≤ Λ

|x− y|n+sp
,

Λ−1

|x− y|n+tq
≤ Ktq(x, y) ≤ Λ

|x− y|n+tq

(6.6)

for a.e. (x, y) ∈ Rn × Rn, where Λ > 1 and

1 < p ≤ q <∞, 0 < s ≤ t < 1. (6.7)
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The modulating coefficient a : Rn × Rn → R is assumed to be nonnegative,
measurable, symmetric and bounded:

0 ≤ a(x, y) = a(y, x) ≤ ‖a‖L∞ , x, y ∈ Rn. (6.8)

In addition, in Theorem 6.1.2 and Section 6.5, we also assume that

|a(x1, y1)− a(x2, y2)| ≤ [a]α(|x1 − x2|+ |y1 − y2|)α, α > 0, (6.9)

for every (x1, y1), (x2, y2) ∈ Rn × Rn. Throughout this chapter, we use the
abbreviations {

data := (n, s, t, p, q,Λ, ‖a‖L∞)

data1 := (n, s, t, p, q,Λ, ‖a‖L∞ , α, [a]α).

With the relevant function spaces including A(Ω) and Lq−1
sp (Rn) to be

introduced in the next section, we introduce weak solutions under consider-
ation. We say that u ∈ A(Ω) is a weak solution to (6.1) if∫∫
CΩ

[
|u(x)− u(y)|p−2(u(x)− u(y))(ϕ(x)− ϕ(y))Ksp(x, y)

+a(x, y)|u(x)− u(y)|q−2(u(x)− u(y))(ϕ(x)− ϕ(y))Ktq(x, y)
]
dxdy = 0

(6.10)
for every ϕ ∈ A(Ω) with ϕ = 0 a.e. in Rn \ Ω. In addition, we say that
u ∈ A(Ω) is a weak subsolution (resp. supersolution) if (6.10) with “=”
replaced by “≤ (resp. ≥)” holds for every ϕ ∈ A(Ω) satisfying ϕ ≥ 0 a.e. in
Rn and ϕ = 0 a.e. in Rn \ Ω. Existence and uniqueness of weak solutions to
(6.1) with a Dirichlet boundary condition will be discussed in Section 6.3.

Now we state our main results. The first one is the local boundedness of
weak solutions.

Theorem 6.1.1. Let Ksp, Ktq, a : Rn × Rn → R be symmetric and satisfy
(6.6)-(6.8). If p ≤ q ≤ np

n− sp
when sp < n,

p ≤ q <∞ when sp ≥ n,
(6.11)

then every weak solution u ∈ A(Ω) ∩ Lq−1
sp (Rn) to (6.1) is locally bounded in

Ω.
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The second one is the local Hölder continuity. Here, we assume that a(·, ·)
is Hölder continuous in Rn × Rn and that u is locally bounded in Ω.

Theorem 6.1.2. Let Ksp, Ktq, a : Rn × Rn → R be symmetric and satisfy
(6.6)-(6.8). If a(·, ·) satisfies (6.9) and

tq ≤ sp+ α, (6.12)

then every weak solution u ∈ A(Ω) ∩ Lq−1
sp (Rn) to (6.1) which is locally

bounded in Ω is locally Hölder continuous in Ω. More precisely, for every
open subset Ω′ b Ω, there exists γ ∈ (0, 1), depending only on data1 and
‖u‖L∞(Ω′), such that u ∈ C0,γ

loc (Ω′).

Remark 6.1.3. In view of Theorem 6.1.1, we also see that, under the setting
in Theorem 6.1.2, if

p ≤ q ≤ min

{
np

n− sp
,
sp+ α

t

}
when sp < n,

p ≤ q ≤ sp+ α

t
=
n+ α

t
when sp = n,

then every weak solution u ∈ A(Ω) ∩ Lq−1
sp (Rn) to (6.1) is locally Hölder

continuous.

Remark 6.1.4. Here we give a heuristic explanation on the condition (6.12).
Under assumptions (6.7)-(6.9), we write the integrand of the energy func-
tional in (6.3) as(

1 +
p

q
|u(x)− u(y)|q−pa(x, y)|x− y|sp−tq

)
1

p

|u(x)− u(y)|p

|x− y|n+sp
, (x, y) ∈ CΩ.

If Br b Ω with r ∈ (0, 1], u is bounded in Br and a(x, y) = |x − y|α for
x, y ∈ Br, which is a simple example of a(·, ·) satisfying (6.9), then (6.12)
implies

1 +
p

q
|u(x)− u(y)|q−pa(x, y)|x− y|sp−tq ≈ 1 for (x, y) ∈ Br ×Br,

as the second term is bounded by (2‖u‖L∞)q−p2α+sp−tq. This means that we
can control the double phase type energy functional in (6.3) by means of the
W s,p-energy in local regions in Ω. This is the exact nonlocal analog of what
happens in the local case (6.5).
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In addition, one can expect that Theorems 6.1.1 and 6.1.2, with some
minor modifications in their proofs, still hold for the case when (6.12) is in
force with any s, t ∈ (0, 1), p, q > 1 and α ≥ 0. Note that if a(·, ·) is bounded
only, then we can take α = 0 and (6.12) becomes tq ≤ sp.

6.2 Preliminaries

6.2.1 Function spaces

We always assume that s, t, p, and q satisfy (6.7) and that Ksp, Ktq, a :
Rn × Rn → R satisfy (6.6) and (6.8). We denote

H(x, y, τ) :=
τ p

|x− y|sp
+ a(x, y)

τ q

|x− y|tq
, x, y ∈ Rn and τ ≥ 0, (6.13)

and

%(v;S) :=

∫
S

∫
S

H(x, y, |v(x)− v(y)|) dxdy

|x− y|n
(6.14)

for each measurable set S ⊆ Rn and v : S → R. Then we define a function
space concerned with weak solutions to (6.1) by

A(Ω) :=

{
v : Rn → R

∣∣∣ v|Ω ∈ Lp(Ω),

∫∫
CΩ
H(x, y, |v(x)− v(y)|) dxdy

|x− y|n
<∞

}
,

where CΩ is defined in (6.4). Note that %(v; Ω) < ∞ whenever v ∈ A(Ω),
which in particular implies

A(Ω) ⊂ W s,p(Ω).

We note that if sp > n, then every function in W s,p(Ω) is locally Hölder con-
tinuous, see for example [95, Theorem 8.2]. Thus, in this chapter we assume
without loss of generality that

sp ≤ n.

Moreover, by Lemma 2.2.4, we have

A(Ω) ⊂ Lqloc(Ω) if

p < q ≤ np

n− sp
when sp < n,

p < q <∞ when sp ≥ n.
(6.15)
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This will be used in the proof of several results concerning local boundedness.
We next define

Lq−1
sp (Rn) :=

{
v : Rn → R

∣∣∣ ∫
Rn

|v(x)|q−1

(1 + |x|)n+sp
dx <∞

}
.

Let m ∈ {s, t} and ` ∈ {p, q}. Since we have

1 + |x|
|x− x0|

≤ 1 + |x− x0|+ |x0|
|x− x0|

≤ 1 +
1 + |x0|

r
,

|v(x)|`−1

(1 + |x|)n+m`
≤ |v(x)|q−1 + 1

(1 + |x|)n+sp

for x ∈ Rn \Br(x0), we see that the nonlocal tail∫
Rn\Br(x0)

|v(x)|`−1

|x− x0|n+m`
dx

is finite whenever v ∈ Lq−1
sp (Rn) and Br(x0) ⊂ Rn.

Remark 6.2.1. If v ∈ Lq0(Rn) for some q0 ≥ q− 1, or if v ∈ Lq−1(BR(0))∩
L∞(Rn \BR(0)) for some R > 0, then v ∈ Lq−1

sp (Rn). Moreover, we have that

W s,p(Rn) ⊂ Lq−1
sp (Rn) if q ≤ p∗s + 1.

6.2.2 Inequalities

The following two lemmas are simple consequences of the fractional Sobolev-
Poincaré inequality. They will be used in the proof of Theorems 6.1.1 and
6.1.2, respectively.

Lemma 6.2.2. Assume that the constants s, t, p and q satisfy (6.7) and
(6.11). Then for every f ∈ W s,p(Br) we have∫

Br

∣∣∣∣ frs
∣∣∣∣p + L0

∣∣∣∣ frt
∣∣∣∣q dx ≤ cL0r

(s−t)q
(∫

Br

∫
Br

|f(x)− f(y)|p

|x− y|n+sp
dxdy

) q
p

+ c

(
|supp f |
|Br|

) sp
n
∫
Br

∫
Br

|f(x)− f(y)|p

|x− y|n+sp
dxdy

+ c

(
|supp f |
|Br|

)p−1 ∫
Br

∣∣∣∣ frs
∣∣∣∣p + L0

∣∣∣∣ frt
∣∣∣∣q dx
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for a constant c ≡ c(n, s, t, p, q), where L0 is any positive constant.

Proof. Applying Hölder’s inequality and (2.5), we have

∫
Br

∣∣∣∣ frt
∣∣∣∣q dx ≤ c

(∫
Br

∣∣∣∣f − (f)Br
rt

∣∣∣∣p∗s dx
) q

p∗s

+ c

∣∣∣∣(f)Br
rt

∣∣∣∣q
≤ cr(s−t)q

(∫
Br

∫
Br

|f(x)− f(y)|p

|x− y|n+sp
dxdy

) q
p

+ c

∣∣∣∣(f)Br
rt

∣∣∣∣q .
Likewise, we obtain

∫
Br

∣∣∣∣ frs
∣∣∣∣p dx ≤ c

(
|supp f |
|Br|

) sp
n

(∫
Br

∣∣∣∣f − (f)Br
rs

∣∣∣∣p∗s dx
) p

p∗s

+ c

∣∣∣∣(f)Br
rs

∣∣∣∣p
≤ c

(
|supp f |
|Br|

) sp
n
∫
Br

∫
Br

|f(x)− f(y)|p

|x− y|n+sp
dxdy + c

∣∣∣∣(f)Br
rs

∣∣∣∣p .
We also have∣∣∣∣(f)Br

rs

∣∣∣∣p + L0

∣∣∣∣(f)Br
rt

∣∣∣∣q
≤ r−sp

(
|supp f |
|Br|

)p−1 ∫
Br

|f |p dx+ L0r
−tq
(
|supp f |
|Br|

)q−1 ∫
Br

|f |q dx

≤
(
|supp f |
|Br|

)p−1 ∫
Br

∣∣∣∣ frs
∣∣∣∣p + L0

∣∣∣∣ frt
∣∣∣∣q dx.

We combine the above three displays to complete the proof.

Lemma 6.2.3. Assume that the constants s, t, p and q satisfy (6.7) and that
the function a(·, ·) satisfies (6.9) with α satisfying (6.12). Let Br ⊆ BR be
concentric balls with R/2 ≤ r ≤ R ≤ 1. Then for any f ∈ L∞(Br) we have[∫

Br

(∣∣∣∣ frs
∣∣∣∣p + a2

∣∣∣∣ frt
∣∣∣∣q)κ dx] 1

κ

≤ c
(

1 + ‖f‖q−pL∞(Br)

)∫
Br

∫
Br

H(x, y, |f(x)− f(y)|) dxdy

|x− y|n

+ c
(

1 + ‖f‖q−pL∞(Br)

)∫
Br

∣∣∣∣ frs
∣∣∣∣p + a1

∣∣∣∣ frt
∣∣∣∣q dx
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for some c ≡ c(n, s, t, p, q, [a]α), whenever the right-hand side is finite, where

κ := min

{
p∗s
p
,
q∗t
q

}
> 1, a1 := inf

BR×BR
a(·, ·) and a2 := sup

BR×BR
a(·, ·).

Proof. Using the assumptions, we estimate[∫
Br

(∣∣∣∣ frs
∣∣∣∣p + a2

∣∣∣∣ frt
∣∣∣∣q)κ dx] 1

κ

≤ c

[∫
Br

(∣∣∣∣ frs
∣∣∣∣p + a1

∣∣∣∣ frt
∣∣∣∣q)κ +

(
rα+sp−tq‖f‖q−pL∞(Br)

∣∣∣∣ frs
∣∣∣∣p)κ dx] 1

κ

≤ c
(

1 + ‖f‖q−pL∞(Br)

)[∫
Br

(∣∣∣∣ frs
∣∣∣∣p + a1

∣∣∣∣ frt
∣∣∣∣q)κ dx] 1

κ

.

We next apply (2.5) to see that[∫
Br

(∣∣∣∣ frs
∣∣∣∣p + a1

∣∣∣∣ frt
∣∣∣∣q)κ dx] 1

κ

≤ c

[∫
Br

(∣∣∣∣f − (f)Br
rs

∣∣∣∣p + a1

∣∣∣∣f − (f)Br
rt

∣∣∣∣q)κ dx] 1
κ

+ c

∣∣∣∣(f)Br
rs

∣∣∣∣p + ca1

∣∣∣∣(f)Br
rt

∣∣∣∣q
≤ c

∫
Br

∫
Br

|f(x)− f(y)|p

|x− y|n+sp
+ a1
|f(x)− f(y)|q

|x− y|n+tq
dxdy + c

∫
Br

∣∣∣∣ frs
∣∣∣∣p + a1

∣∣∣∣ frt
∣∣∣∣q dx

≤ c

∫
Br

∫
Br

H(x, y, |f(x)− f(y)|) dxdy

|x− y|n
+ c

∫
Br

∣∣∣∣ frs
∣∣∣∣p + a1

∣∣∣∣ frt
∣∣∣∣q dx.

Then the conclusion follows.

We also note the following numerical inequalities.

Lemma 6.2.4. Let p ≥ 1 and a, b ≥ 0. Then we have

ap − bp ≤ pap−1|a− b|

and, for any ε ∈ (0, 1),

ap − bp ≤ εbp + c(p)ε1−p|a− b|p.
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Proof. The first display is a direct consequence of Mean Value Theorem;
note that we may assume a ≥ b, otherwise it is obvious. For the proof of the
second display, see [94, Lemma 3.1].

We end this section with a standard iteration lemma from [118, Lemma 7.1].

Lemma 6.2.5. Let {yi}∞i=0 be a sequence of nonnegative numbers satisfying

yi+1 ≤ b1b
i
2y

1+β
i , i = 0, 1, 2, . . . ,

for some constants b1, β > 0 and b2 > 1. If

y0 ≤ b
−1/β
1 b

−1/β2

2 ,

then yi → 0 as i→∞.

6.3 Existence of weak solutions

In this section we show the existence of weak solutions to (6.1). By a standard
argument, such as the one in the proof of [93, Theorem 2.3], we see that
u ∈ A(Ω) is a weak solution to (6.1) if and only if it is a minimizer of the
functional

E(v; Ω) :=

∫∫
CΩ

1

p
|v(x)−v(y)|pKsp(x, y)+a(x, y)

1

q
|v(x)−v(y)|qKtq(x, y) dxdy.

(6.16)
We say that u ∈ A(Ω) is a minimizer of (6.16) if

E(u; Ω) ≤ E(v; Ω)

for every v ∈ A(Ω) with v = u a.e. in Rn \ Ω. Therefore, we prove the
existence and uniqueness of the minimizer of (6.16) with a Dirichlet boundary
condition.

Theorem 6.3.1. Let Ω be a bounded domain and g ∈ A(Ω) be a given
boundary data. Let Ksp, Ktq, a : Rn×Rn → R be symmetric and satisfy (6.6)-
(6.8). Then there exists a unique minimizer u ∈ A(Ω) of (6.16) with u = g
a.e. in Rn \Ω. Moreover, if g ∈ A(Ω)∩Lq−1

sp (Rn), then u ∈ A(Ω)∩Lq−1
sp (Rn).
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Proof. The uniqueness follows directly from the fact that the function τ 7→
τ p + a(x, y)τ q is strictly convex for each fixed (x, y). Now we prove the exis-
tence. The admissible set

Ag(Ω) := {v ∈ A(Ω) : v = g a.e. in Rn \ Ω}

is obviously nonempty, as g ∈ Ag(Ω). Let {uk} ⊂ Ag(Ω) be a minimizing
sequence. Then there exists a constant C such that

[uk]
p
s,p;Ω =

∫
Ω

∫
Ω

|uk(x)− uk(y)|p

|x− y|n+sp
dxdy ≤ ΛE(uk; Ω) ≤ C ∀ k ∈ N.

In particular, Lemma 2.2.3 implies that {[uk]s0,p;Ω} is bounded for any s0 ∈
(0, s). Then we choose a ball BR ≡ BR(x0) ⊃ Ω with R ≥ 1 and fix s0 ∈
(0, s/2) with np/(n + s0p) =: p0 > 1. Since uk − g = 0 a.e. in Rn \ Ω, the
fractional Sobolev embedding [95, Theorem 6.5] implies(∫

BR

|uk − g|p dx
) p0

p

≤ c[uk − g]p0

s0,p0;Rn

≤ c[uk − g]p0

s0,p0;BR
+ c

∫
BR

|uk(y)− g(y)|p0

(∫
Rn\BR

dx

|x− y|n+s0p0

)
dy

≤ c[uk − g]p0

s0,p0;BR
+ c

∫
BR

|uk(y)− g(y)|p0

(∫
B2R\BR

dx

|x− y|n+s0p0

)
dy

≤ c

∫
B2R

∫
BR

|(uk − g)(x)− (uk − g)(y)|p0

|x− y|n+s0p0
dxdy

≤ c[uk − g]p0

s0,p0;B2R
, (6.17)

where we have used the fact that∫
Rn\BR

dx

|x− y|n+s0p0
≤ (1 + c(n))

∫
B2R\BR

dx

|x− y|n+s0p0
∀ y ∈ BR.

Applying Lemma 2.2.3 to the right-hand side of (6.17), we have for all k ∈ N(∫
BR

|uk − g|p dx
) p0

p

≤ c[uk − g]p0

s0,p0;B2R
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≤ cRsp0 [uk − g]p0

s,p;B2R

≤ cRsp0

(∫∫
CΩ

|uk(x)− uk(y)|p

|x− y|n+sp
dxdy +

∫∫
CΩ

|g(x)− g(y)|p

|x− y|n+sp
dxdy

) p0
p

≤ cRsp0

(
C +

∫∫
CΩ

|g(x)− g(y)|p

|x− y|n+sp
dxdy

) p0
p

.

This implies that {uk − g} is bounded in Lp(BR), and hence in W s,p
0 (BR).

By the compact embedding theorem for fractional Sobolev spaces [95, The-
orem 7.1], there exist a subsequence {ukj − g} and v ∈ Lp(BR) such that{

ukj − g −→ v in Lp(BR),

ukj − g −→ v a.e. in BR,
as j →∞.

We extend v to Rn by letting v = 0 on Rn \ BR and set u := v + g. Then
ukj → u a.e. in Rn. Finally, Fatou’s lemma implies

E(u; Ω) ≤ lim inf
j→∞

E(ukj ; Ω).

This means that u ∈ Ag(Ω) and it is a minimizer of E .

Remark 6.3.2. In fact, the above theorem still holds even when a(·, ·) ≥ 0
is not bounded above.

6.4 Caccioppoli estimates and local bounded-

ness

We start with the following lemma which implies that the multiplication of
any function in A(Ω) and a cut-off function is also a function in A(Ω). We
recall the notation (6.14).

Lemma 6.4.1. Assume that the constants s, t, p and q satisfy (6.7), and
η ∈ W 1,∞

0 (Br). If one of the following two conditions holds:

(i) The inequality (6.11) holds and v ∈ Lp(B2r) satisfies %(v;B2r) <∞;

(ii) v ∈ Lq(B2r) satisfies %(v;B2r) <∞,

then %(vη;Rn) <∞. In particular, vη ∈ A(Ω) whenever Ω ⊃ B2r.
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Proof. We only consider the case (ii), since we also have v ∈ Lq(B2r) in the
case (i) by (6.15). We write

%(vη;Rn) = %(vη;B2r) + 2

∫
Rn\B2r

∫
B2r

H(x, y, |v(x)η(x)|) dxdy

|x− y|n
.

The first term on the right-hand side is estimated as

%(vη;B2r) ≤ c

∫
B2r

∫
B2r

H(x, y, |(v(x)− v(y))η(y)|) dxdy

|x− y|n

+ c

∫
B2r

∫
B2r

H(x, y, |v(x)(η(x)− η(y))|) dxdy

|x− y|n

≤ c
(
‖η‖L∞(B2r) + 1

)q
%(v;B2r)

+ c‖Dη‖pL∞(B2r)

∫
B2r

|v(x)|p
∫
B4r(x)

dy

|x− y|n+(s−1)p
dx

+ c‖Dη‖qL∞(B2r)
‖a‖L∞

∫
B2r

|v(x)|q
∫
B4r(x)

dy

|x− y|n+(t−1)q
dx

≤ c
(
‖η‖L∞(B2r) + 1

)q
%(v;B2r) + c‖Dη‖pL∞(B2r)

r(1−s)p
∫
B2r

|v(x)|p dx

+ c‖Dη‖qL∞(B2r)
‖a‖L∞r(1−t)q

∫
B2r

|v(x)|q dx

<∞.

The second term is estimated as∫
Rn\B2r

∫
B2r

H(x, y, |v(x)η(x)|) dxdy

|x− y|n

≤
(
‖η‖L∞(B2r) + 1

)q ∫
Rn\B2r

∫
Br

|v(x)|p

|x− y|n+sp
+ ‖a‖L∞

|v(x)|q

|x− y|n+tq
dxdy

≤ c
(
‖η‖L∞(B2r) + 1

)q ( 1

rsp

∫
Br

|v(x)|p dx+
‖a‖L∞
rtq

∫
Br

|v(x)|q dx
)
<∞,

and the conclusion follows.

Next, we prove a nonlocal Caccioppoli type estimate. We again recall
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(6.14) with (6.13), and further define

h(x, y, τ) :=
τ p−1

|x− y|sp
+ a(x, y)

τ q−1

|x− y|tq
, x, y ∈ Rn, τ ≥ 0. (6.18)

Lemma 6.4.2. Let Ksp, Ktq, a : Rn × Rn → R be symmetric and satisfy
(6.6)-(6.8), and u ∈ A(Ω) ∩ Lq−1

sp (Rn) be a weak solution to (6.1). Let B2r ≡
B2r(x0) b Ω be a ball, and assume that (6.11) holds or u is bounded in B2r.
Then for any φ ∈ C∞0 (Br) with 0 ≤ φ ≤ 1, we have∫

Br

∫
Br

H(x, y, |w±(x)− w±(y)|)(φq(x) + φq(y))
dxdy

|x− y|n

≤ c

∫
Br

∫
Br

H
(
x, y, |(φ(x)− φ(y))(w±(x) + w±(y))|

) dxdy

|x− y|n

+ c

(
sup

x∈suppφ

∫
Rn\Br

h(x, y, w±(y))
dy

|x− y|n

)∫
Br

w±(x)φq(x) dx (6.19)

for some c ≡ c(n, s, t, p, q,Λ), where w± := (u− k)± with k ≥ 0.

Proof. We only prove the estimate for w+, since the estimate for w− can be
proved similarly. In light of Lemma 6.4.1, we can test the weak formulation
(6.10) with w+φ

q ∈ A(Ω). Using the short notation

Φ`(τ) := |τ |`−2τ for ` ∈ {p, q} and τ ∈ R, (6.20)

we have

0 =

∫
Br

∫
Br

[Φp(u(x)− u(y))Ksp(x, y) + a(x, y)Φq(u(x)− u(y))Ktq(x, y)]

· (w+(x)φq(x)− w+(y)φq(y)) dxdy

+ 2

∫
Rn\Br

∫
Br

[Φp(u(x)− u(y))w+(x)φq(x)Ksp(x, y)

+ a(x, y)Φq(u(x)− u(y))w+(x)φq(x)Ktq(x, y)] dxdy

=: I1 + I2.

We first estimate I1. Assume that u(x) ≥ u(y). Then,

Φ`(u(x)− u(y))(w+(x)φq(x)− w+(y)φq(y))
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= (u(x)− u(y))`−1((u(x)− k)+φ
q(x)− (u(y)− k)+φ

q(y))

=


(w+(x)− w+(y))`−1(w+(x)φq(x)− w+(y)φq(y)), u(x) ≥ u(y) ≥ k

(u(x)− u(y))`−1w+(x)φq(x), u(x) > k ≥ u(y)

0, k ≥ u(x) ≥ u(y)

≥ (w+(x)− w+(y))`−1(w+(x)φq(x)− w+(y)φq(y))

= Φ`(w+(x)− w+(y))(w+(x)φq(x)− w+(y)φq(y)),

and hence

I1 ≥
∫
Br

∫
Br

[
Φp(w+(x)− w+(y))Ksp(x, y)

+ a(x, y)Φq(w+(x)− w+(y))Ktq(x, y)
]

· (w+(x)φq(x)− w+(y)φq(y)) dxdy. (6.21)

Moreover,

w+(x)φq(x)− w+(y)φq(y)

=
w+(x)− w+(y)

2
(φq(x) + φq(y)) +

w+(x) + w+(y)

2
(φq(x)− φq(y)),

which implies

Φ`(w+(x)− w+(y))(w+(x)φq(x)− w+(y)φq(y))

≥ |w+(x)− w+(y)|`φ
q(x) + φq(y)

2

− |w+(x)− w+(y)|`−1w+(x) + w+(y)

2
|φq(x)− φq(y)|.

Here, we use Lemma 6.2.4 to see that

|φq(x)− φq(y)| ≤ q(φq−1(x) + φq−1(y))|φ(x)− φ(y)|
≤ c(q)(φq(x) + φq(y))(q−1)/q|φ(x)− φ(y)|.

Thus, using Young’s inequality, we get

|w+(x)− w+(y)|`−1(w+(x) + w+(y))|φq(x)− φq(y)|

≤ |w+(x)− w+(y)|`−1(w+(x) + w+(y))(φq(x) + φq(y))
`−1
`

+ q−`
q` |φ(x)− φ(y)|
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≤ ε|w+(x)− w+(y)|`(φq(x) + φq(y))

+ cε(φ
q(x) + φq(y))(q−`)/q|φ(x)− φ(y)|`(w+(x) + w+(y))`.

Since 0 ≤ φ ≤ 1 and (q − `)/q ≥ 0, after choosing ε so small, we discover

Φ`(w+(x)− w+(y))(w+(x)φq(x)− w+(y)φq(y))

≥ |w+(x)− w+(y)|`φ
q(x) + φq(y)

4
− c|φ(x)− φ(y)|`(w+(x) + w+(y))`.

We notice that by the symmetry of the above inequality for x and y, we also
have the same inequality when u(x) < u(y). Inserting this into (6.21) and
using (6.6), we have

I1 ≥
1

4Λ

∫
Br

∫
Br

H(x, y, |w+(x)− w+(y)|)(φq(x) + φq(y))
dxdy

|x− y|n

− c
∫
Br

∫
Br

H(x, y, |φ(x)− φ(y)|(w+(x) + w+(y)))
dxdy

|x− y|n
.

For I2, we observe that

Φ`(u(x)− u(y))w+(x) ≥ −w`−1
+ (y)w+(x)

and use (6.6) and (6.18), to find

I2 ≥ −c
∫
Rn\Br

∫
Br

h(x, y, w+(y))w+(x)φq(x)
dxdy

|x− y|n

≥ −c
(

sup
x∈suppφ

∫
Rn\Br

h(x, y, w+(y))
dy

|x− y|n

)∫
Br

w+(x)φq(x) dx.

Combining the above estimates with I1 + I2 = 0, we obtain (6.19).

Remark 6.4.3. In fact, we can obtain (6.19) when q > p∗s and u is not
bounded in B2r, by using a truncation argument as in [182, Lemma 4.2]
provided the right-hand side of (6.19) is finite.

Now, we are ready to prove the local boundedness of weak solutions to
(6.1).
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Proof of Theorem 6.1.1. For brevity, we denote

H0(τ) := τ p + ‖a‖L∞τ q, τ ≥ 0.

In the following, c means a constant depending only on data.
Let Br ≡ Br(x0) b Ω be a fixed ball with r ≤ 1. For r/2 ≤ ρ < σ ≤ r

and k > 0, we denote

A+(k, ρ) := {x ∈ Bρ : u(x) ≥ k}

and apply Lemma 6.2.2 with f ≡ (u− k)+ to get

ρ−sp
∫
Bρ

H0(f) dx ≤
∫
Bρ

(
f

ρs

)p
+ ‖a‖L∞

(
f

ρt

)q
dx

≤ c‖a‖L∞ρ(s−t)q

(∫
Bρ

∫
Bρ

|f(x)− f(y)|p

|x− y|n+sp
dxdy

) q
p

+ c

(
|A+(k, ρ)|
|Bρ|

) sp
n
∫
Bρ

∫
Bρ

|f(x)− f(y)|p

|x− y|n+sp
dxdy

+ c

(
|A+(k, ρ)|
|Bρ|

)p−1 ∫
Bσ

(
f

ρs

)p
+ ‖a‖L∞

(
f

ρt

)q
dx. (6.22)

We now fix 0 < h < k and observe that, for x ∈ A+(k, ρ) ⊂ A+(h, ρ),

(u(x)− h)+ = u(x)− h ≥ k − h,
(u(x)− h)+ = u(x)− h ≥ u(x)− k = (u(x)− k)+.

This implies

|A+(k, ρ)| ≤
∫
A+(k,ρ)

(u− h)p+
(k − h)p

dx ≤ 1

(k − h)p

∫
A+(h,σ)

H0((u−h)+) dx (6.23)

and ∫
Bσ

(u− k)+ dx ≤
∫
Bσ

(u− h)+

(
(u− h)+

k − h

)p−1

dx

≤ 1

(k − h)p−1

∫
Bσ

H0((u− h)+) dx. (6.24)
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We then choose a cut-off function φ ∈ C∞0 (B(ρ+σ)/2) satisfying 0 ≤ φ ≤ 1,
φ ≡ 1 in Bρ and |Dφ| ≤ 4/(σ − ρ). Denoting the tail by

T (v; r) :=

∫
Rn\Br

|v(x)|p−1

|x− x0|n+sp
+ ‖a‖L∞

|v(x)|q−1

|x− x0|n+sp
dx,

Lemma 6.4.2 gives∫
Bρ

∫
Bρ

|f(x)− f(y)|p

|x− y|n+sp
dxdy

≤ c

(σ − ρ)p

∫
Bσ

(u(x)− h)p+

∫
Bσ

1

|x− y|n+(s−1)p
dydx

+
c‖a‖L∞
(σ − ρ)q

∫
Bσ

(u(x)− h)q+

∫
Bσ

1

|x− y|n+(t−1)q
dydx

+ c

(
sup

x∈suppφ

∫
Rn\Bσ

(u(y)− k)p−1
+

|x− y|n+sp
+ ‖a‖L∞

(u(y)− k)q−1
+

|x− y|n+tq
dy

)∫
Bσ

(u− k)+ dx

≤ cρ(1−s)p

(σ − ρ)p

∫
Bσ

(u− h)p+ dx+
c‖a‖L∞ρ(1−t)q

(σ − ρ)q

∫
Bσ

(u− h)q+ dx

+ c

(
σ + ρ

σ − ρ

)n+tq

[T ((u− k)+;σ)]

∫
Bσ

(u− k)+ dx

≤ cr(1−t)p

(σ − ρ)q

∫
Bσ

H0((u− h)+) dx+
crn+tq

(σ − ρ)n+tq
[T ((u− k)+;σ)]

∫
Bσ

(u− k)+ dx,

where we have used the fact that

|y − x0|
|y − x|

≤ 1 +
|x− x0|
|y − x|

≤ 1 +
σ + ρ

σ − ρ
≤ 2

σ + ρ

σ − ρ

for x ∈ suppφ and y ∈ Rn \ Bσ. Combining this estimate together with
(6.22)-(6.24) implies

ρ−sp
∫
Bρ

H0((u− k)+) dx

≤ cρ(s−t)q r(1−t)q

(σ − ρ)q2/p

(∫
Bσ

H0((u− h)+) dx

) q
p
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+ cρ(s−t)q r(n+tq)q/p

(σ − ρ)(n+tq)q/p

[T ((u− k)+;σ)]q/p

(k − h)q/p′

(∫
Bσ

H0((u− h)+) dx

) q
p

+
c

(k − h)sp2/n

r(1−t)p

(σ − ρ)q

(∫
Bσ

H0((u− h)+) dx

)1+ sp
n

+
crn+tq

(σ − ρ)n+tq

[T ((u− k)+;σ)]

(k − h)sp2/n+p−1

(∫
Bσ

H0((u− h)+) dx

)1+ sp
n

+
cr−tq

(k − h)p(p−1)

(∫
Bσ

H0((u− h)+) dx

)p
.

Now, for i = 0, 1, 2, . . . and k0 > 1, we write

σi :=
r

2
(1 + 2−i), ki := 2k0(1− 2−i−1) and yi :=

∫
A+(ki,σi)

H0((u− ki)+) dx.

Since H0(u) ∈ L1(Ω) from the assumption (6.11), we see that

y0 =

∫
A+(k0,r)

H0((u− k0)+) dx −→ 0 as k0 → ∞.

First, we consider k0 > 1 so large that

yi ≤ yi−1 ≤ · · · ≤ y0 ≤ 1, i = 1, 2, . . . .

Then, since
T ((u− ki)+;σi) ≤ T (u; r/2) <∞,

we have

yi+1 ≤ c̃
[
2iq

2/py
q/p
i + 2i[(n+tq)q/p+q/p′]y

q/p
i

+2i(sp
2/n+q)y

1+sp/n
i + 2i(n+tq+sp2/n+p−1)y

1+sp/n
i + 2ip(p−1)ypi

]
≤ c̃2θiy1+β

i

for some constant c̃ > 0 depending on data, r and T (u; r/2), where

θ =
(n+ p+ q)q

p
+ p2, β = min

{
q

p
− 1,

sp

n
, p− 1

}
.
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Finally, we can choose k0 so large that

y0 ≤ c̃−1/β2−θ/β
2

holds. Then Lemma 6.2.5 implies

y∞ =

∫
A+(2k0,r/2)

H0((u− 2k0)+) dx = 0,

which means that u ≤ 2k0 a.e. in Br/2.
Applying the same argument to −u, we finally obtain u ∈ L∞(Br/2).

6.5 Hölder continuity

Throughout this section, we assume that the modulating coefficient a(·, ·)
satisfies (6.8)-(6.9) with α satisfying (6.12), and that a weak solution u ∈
A(Ω) ∩ Lq−1

sp (Rn) under consideration is locally bounded in Ω. We fix any
Ω′ b Ω and define

M ≡M(Ω′) := 1 + ‖u‖q−pL∞(Ω′). (6.25)

6.5.1 Logarithmic estimates

We first obtain a logarithmic type estimate. This implies Corollary 6.5.2,
which will play a crucial role in the proof of Hölder continuity.

Lemma 6.5.1. Let Ksp, Ktq, a : Rn → R be symmetric and satisfy (6.6)-(6.9)
with α satisfying (6.12). Let u ∈ A(Ω) ∩ Lq−1

sp (Rn) be a weak supersolution
to (6.1) such that u ∈ L∞(Ω′) and u ≥ 0 in a ball BR ≡ BR(x0) ⊂ Ω′ with
R < 1. Then the following estimate holds true for any 0 < ρ < R/2 and
d > 0: ∫

Bρ

∫
Bρ

∣∣∣∣log

(
u(x) + d

u(y) + d

)∣∣∣∣ dydx

|x− y|n

≤ cM̃2

(
ρn + ρn+spd1−p

∫
Rn\BR

up−1
− (y) + uq−1

− (y)

|y − x0|n+sp
dy

+ ρn+tqd1−q
∫
Rn\BR(x0)

uq−1
− (y)

|y − x0|n+tq
dy

)
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for some c ≡ c(data1), where M̃ ≡ M̃(Ω′) := 1 + (‖u‖L∞(Ω′) + d)q−p.

Proof. We recall (6.13), (6.18) and (6.20), and further denote

H̃(x, y, τ) :=
τ p

ρsp
+ a(x, y)

τ q

ρtq
, h̃(x, y, τ) :=

τ p−1

ρsp
+ a(x, y)

τ q−1

ρtq
,

G(τ) :=
τ p

ρsp
+ a2

τ q

ρtq
, g(τ) :=

τ p−1

ρsp
+ a2

τ q−1

ρtq
,

where τ ≥ 0 and
a2 := sup

B2ρ×B2ρ

a(·, ·).

Let φ ∈ C∞0 (B3ρ/2) be a cut-off function satisfying 0 ≤ φ ≤ 1, φ ≡ 1 in Bρ

and |Dφ| ≤ 4/ρ. Testing (6.10) with ϕ(x) = φq(x)/g(u(x) + d), we have

0 ≤
∫
B2ρ

∫
B2ρ

[Φp(u(x)− u(y))Ksp(x, y) + a(x, y)Φq(u(x)− u(y))Ktq(x, y)]

·
(

φq(x)

g(u(x) + d)
− φq(y)

g(u(y) + d)

)
dxdy

+ 2

∫
Rn\B2ρ

∫
B2ρ

[Φp(u(x)− u(y))Ksp(x, y)

+ a(x, y)Φq(u(x)− u(y))Ktq(x, y)]
φq(x)

g(u(x) + d)
dxdy

=: I1 + I2.

Moreover in I1, we denote by F (x, y) the integrand with respect to the mea-
sure dxdy/|x− y|n, that is,

I1 =

∫
B2ρ

∫
B2ρ

F (x, y)
dxdy

|x− y|n
,

F (x, y) := [Φp(u(x)− u(y))Ksp(x, y) + a(x, y)Φq(u(x)− u(y))Ktq(x, y)]

· |x− y|n
(

φq(x)

g(u(x) + d)
− φq(y)

g(u(y) + d)

)
.

We also denote ū(x) := u(x)+d. Next, we estimate I1 and I2 separately. The
remaining part of the proof is divided into four steps.
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Step 1: Estimate of F (x, y) when ū(x) ≥ ū(y) ≥ ū(x)/2. We observe that

φq(x)

g(ū(x))
− φq(y)

g(ū(y))

=
φq(x)− φq(y)

g(ū(y))
+ φq(x)

(
1

g(ū(x))
− 1

g(ū(y))

)
≤ qφq−1(x)|φ(x)− φ(y)|

g(ū(y))
+ φq(x)

∫ 1

0

d

dσ

(
1

g(σū(x) + (1− σ)ū(y))

)
dσ.

To estimate the last integral, note that

d

dσ

(
1

g(σū(x) + (1− σ)ū(y))

)
= − g

′(σū(x) + (1− σ)ū(y))

g2(σū(x) + (1− σ)ū(y))
(ū(x)− ū(y)),

where a direct calculation shows

g′(τ)

g2(τ)
=

(p− 1)
τ p−2

ρsp
+ (q − 1)a2

τ q−2

ρtq(
τ p−1

ρsp
+ a2

τ q−1

ρtq

)2 , hence
p− 1

G(τ)
≤ g′(τ)

g2(τ)
≤ q − 1

G(τ)
.

Thus we have

φq(x)

g(ū(x))
− φq(y)

g(ū(y))
≤ qφq−1(x)|φ(x)− φ(y)|

g(ū(y))
− (p− 1)

φq(x)(ū(x)− ū(y))

G(ū(x))

≤ qφq−1(x)|φ(x)− φ(y)|
g(ū(y))

− p− 1

2q
φq(x)(ū(x)− ū(y))

G(ū(y))
.

Applying this inequality to F (x, y) and using (6.6), we have

F (x, y) ≤ Λq
h(x, y, ū(x)− ū(y))φq−1(x)|φ(x)− φ(y)|ū(y)

G(ū(y))

− p− 1

2qΛ

H(x, y, ū(x)− ū(y))φq(x)

G(ū(y))
. (6.26)

Let us now estimate the first term in the right-hand side of (6.26). Applying
Young’s inequality to the numerator, for any small ε > 0 we obtain

h(x, y, ū(x)− ū(y))φq−1(x)|φ(x)− φ(y)|ū(y)
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≤ ε(ū(x)− ū(y))pφ(q−1)p′(x) + cε|φ(x)− φ(y)|pūp(y)

|x− y|sp

+ a(x, y)
ε(ū(x)− ū(y))qφq(x) + cε|φ(x)− φ(y)|qūq(y)

|x− y|tq

≤ εφq(x)H(x, y, ū(x)− ū(y))

+ cε

(
|φ(x)− φ(y)|pρsp

|x− y|sp
ūp(y)

ρsp
+ a2
|φ(x)− φ(y)|qρtq

|x− y|tq
ūq(y)

ρtq

)
,

where for the last inequality we have used the fact that x, y ∈ B2ρ. It then
follows that

h(x, y, ū(x)− ū(y))φq−1(x)|φ(x)− φ(y)|ū(y)

G(ū(y))

≤ εφq(x)
H(x, y, ū(x)− ū(y))

G(ū(y))

+ cε

(
ρsp

|x− y|sp
|φ(x)− φ(y)|p +

ρtq

|x− y|tq
|φ(x)− φ(y)|q

)
for any small ε > 0. Putting this into (6.26) and choosing

ε =
p− 1

2q+1qΛ2
,

we have

F (x, y) ≤ c
|x− y|(1−s)p

ρ(1−s)p + c
|x− y|(1−t)q

ρ(1−t)q − p− 1

2q+1Λ

φq(x)H(x, y, ū(x)− ū(y))

G(ū(y))
.

In order to estimate the last term in the above display, we note that

a2 = a2 − a(x, y) + a(x, y) ≤ [a]α8αρα + a(x, y), x, y ∈ B2ρ,

to discover

G(ū(y)) =
ūp(y)

ρsp
+ a2

ūq(y)

ρtq

≤ ūp(y)

ρsp
+ [a]α8αρα−tq+sp‖ū‖q−pL∞(Ω′)

ūp(y)

ρsp
+ a(x, y)

ūq(y)

ρtq

≤ (1 + 8α[a]α)
(
1 + (‖u‖L∞(Ω′) + d)q−p

)
H̃(x, y, ū(y)), (6.27)
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where we have used the inequality in (6.12) with ρ ≤ 1. Then it follows that

−φ
q(x)H(x, y, ū(x)− ū(y))

G(ū(y))
≤ − 1

cM̃

φq(x)H(x, y, ū(x)− ū(y))

H̃(x, y, ū(y))

and therefore

F (x, y) ≤ c
|x− y|(1−s)p

ρ(1−s)p + c
|x− y|(1−t)q

ρ(1−t)q − 1

cM̃

φq(x)H(x, y, ū(x)− ū(y))

H̃(x, y, ū(y))
.

(6.28)
We now need to derive an estimate for log ū. Observe that

log ū(x)− log ū(y) =

∫ 1

0

ū(x)− ū(y)

σū(x) + (1− σ)ū(y)
dσ

≤ ū(x)− ū(y)

ū(y)
=

ū(x)− ū(y)

|x− y|s
ū(y)

ρs

|x− y|s

ρs

and that the function

τ 7→ τ p + a(x, y)τ q|x− y|−(t−s)q

τ
, τ ≥ 0,

is monotone increasing. We thus obtain

log ū(x)− log ū(y)

≤


(
ū(x)− ū(y)

|x− y|s

)p
+ a(x, y)

(
ū(x)− ū(y)

|x− y|s

)q
1

|x− y|(t−s)q(
ū(y)

ρs

)p
+ a(x, y)

(
ū(y)

ρs

)q
1

|x− y|(t−s)q

+ 1

 |x− y|sρs

≤ c
H(x, y, ū(x)− ū(y))

H̃(x, y, ū(y))
+
|x− y|s

ρs
.

For the last inequality, we have used the fact that |x − y| ≤ 2ρ. Finally,
inserting this into (6.28), we obtain

F (x, y) ≤ c
|x− y|(1−s)p

ρ(1−s)p + c
|x− y|(1−t)q

ρ(1−t)q + c
|x− y|s

ρs
− φq(x)

cM̃
log

(
ū(x)

ū(y)

)
.
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Step 2: Estimate of F (x, y) when ū(x) ≥ 2ū(y). We first observe from the
second inequality in Lemma 6.2.4 with ε = (2p−1 − 1)/2p that

φq(x)

g(ū(x))
− φq(y)

g(ū(y))
=
φq(x)− φq(y)

g(ū(x))
+ φq(y)

(
1

g(ū(x))
− 1

g(ū(y))

)
≤ φq(x)− φq(y)

g(ū(x))
+ φq(y)

(
1

g(2ū(y))
− 1

g(ū(y))

)
≤ φq(x)− φq(y)

g(ū(x))
−
(

1− 1

2p−1

)
φq(y)

g(ū(y))

≤ εφq(y) + cε|φ(x)− φ(y)|q

g(ū(x))
−
(

1− 1

2p−1

)
φq(y)

g(ū(y))

≤ c
|φ(x)− φ(y)|q

g(ū(x))
− 2p−1 − 1

2p
φq(y)

g(ū(y))
.

This implies

F (x, y) ≤ c
h(x, y, ū(x)− ū(y))|φ(x)− φ(y)|q

g(ū(x))
− 1

c

h(x, y, ū(x)− ū(y))φq(y)

g(ū(y))

Estimating the right-hand side similarly as in (6.27), we find

F (x, y) ≤ c
h(x, y, ū(x)− ū(y))|φ(x)− φ(y)|q

g(ū(x))
− φq(y)

cM̃

h(x, y, ū(x)− ū(y))

h̃(x, y, ū(y))
.

The first term in the right-hand side is estimated as

h(x, y, ū(x)− ū(y))|φ(x)− φ(y)|q

g(ū(x))

=

ρsp

|x− y|sp
|ū(x)− ū(y)|p−1

ρsp
+ a(x, y)

ρtq

|x− y|tq
|ū(x)− ū(y)|q−1

ρtq

|ū(x)− ū(y)|p−1

ρsp
+ a2
|ū(x)− ū(y)|q−1

ρtq

|x− y|q

ρq

≤ c

(
ρsp

|x− y|sp
+

ρtq

|x− y|tq

)
|x− y|q

ρq
,
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hence we have

F (x, y) ≤ c
|x− y|q−sp

ρq−sp
+ c
|x− y|(1−t)q

ρ(1−t)q − φq(y)

cM̃

h(x, y, ū(x)− ū(y))

h̃(x, y, ū(y))
. (6.29)

Furthermore, in this case we observe that

log ū(x)− log ū(y) ≤ log

(
2(ū(x)− ū(y))

ū(y)

)
≤ c

(
2(ū(x)− ū(y))

ū(y)

)p−1

≤ c

(
ū(x)− ū(y)

|x− y|s

)p−1

(
ū(y)

ρs

)p−1

|x− y|s(p−1)

ρs(p−1)

and that the function

τ 7→ τ p−1 + a(x, y)τ q−1|x− y|−(t−s)q

τ p−1
, τ ≥ 0,

is monotone increasing. Thus, again using the fact that |x−y| ≤ 2ρ, we have

log ū(x)− log ū(y)

≤ c


(
ū(x)− ū(y)

|x− y|s

)p−1

+ a(x, y)

(
ū(x)− ū(y)

|x− y|s

)q−1
1

|x− y|(t−s)q(
ū(y)

ρs

)p−1

+ a(x, y)

(
ū(y)

ρs

)q−1
1

|x− y|(t−s)q

+ 1


· |x− y|

s(p−1)

ρs(p−1)

≤ c
h(x, y, ū(x)− ū(y))

h̃(x, y, ū(y))
+ c
|x− y|s(p−1)

ρs(p−1)
.

Finally, inserting this into (6.29), we obtain

F (x, y) ≤ c
|x− y|q−sp

ρq−sp
+ c
|x− y|(1−t)q

ρ(1−t)q + c
|x− y|s(p−1)

ρs(p−1)
− φq(y)

cM̃
log

(
ū(x)

ū(y)

)
.
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Step 3: Estimate of I1. From Step 1 and Step 2, we have that

F (x, y) ≤ c
|x− y|(1−s)p

ρ(1−s)p + c
|x− y|(1−t)q

ρ(1−t)q + c
|x− y|s

ρs
+ c
|x− y|s(p−1)

ρs(p−1)

− (min{φ(x), φ(y)})q

cM̃

∣∣∣∣log

(
ū(x)

ū(y)

)∣∣∣∣ ,
when ū(x) ≥ ū(y). Moreover, by the symmetry of the above estimate for x
and y, the same estimate still holds when ū(x) < ū(y). Therefore, I1 is finally
estimated as follows:

I1 ≤ −
1

cM̃

∫
Bρ

∫
Bρ

∣∣∣∣log

(
ū(x)

ū(y)

)∣∣∣∣ dydx

|x− y|n

+ c

∫
B2ρ

∫
B4ρ(x)

(
|x− y|(1−s)p

ρ(1−s)p +
|x− y|(1−t)q

ρ(1−t)q

+
|x− y|s

ρs
+
|x− y|s(p−1)

ρs(p−1)

)
dydx

|x− y|n

≤ − 1

cM̃

∫
Bρ

∫
Bρ

∣∣∣∣log

(
ū(x)

ū(y)

)∣∣∣∣ dydx

|x− y|n
+ cρn. (6.30)

Step 4: Estimate of I2 and Conclusion. We start with the following ob-
servation:

(i) If y ∈ BR \B2ρ, then u(y) ≥ 0 and u(x)− u(y) ≤ u(x);

(ii) If y ∈ Rn \BR, then (u(x)−u(y))+ ≤ (u(x) +u−(y))+ = u(x) +u−(y).

Using this and the fact that suppφ ⊂ B3ρ/2, we write

I2 ≤ 2

∫
B3ρ/2

∫
Rn\B2ρ

h(x, y, u(x) + d)

g(u(x) + d)

dydx

|x− y|n

+ 2

∫
B3ρ/2

∫
Rn\BR

h(x, y, u−(y))

g(u(x) + d)

dydx

|x− y|n
. (6.31)

Since we are considering integrals over the complement of balls, we cannot
directly compare a2 and a(x, y) there. In order to overcome this difficulty, we
observe that (6.8) and (6.12) imply

a(x, y) ≤ a(x, y)− a(x, x) + a2
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≤ |a(x, y)− a(x, x)|
tq−sp
α (2‖a‖L∞)1− tq−sp

α + a2

≤ c|x− y|tq−sp + a2, (6.32)

whenever x ∈ B2ρ and y ∈ Rn.
For the first integral in (6.31), we use (6.32) and the fact that |x−y| > ρ/2

for x ∈ B3ρ/2 and y ∈ Rn \B2ρ to find

h(x, y, u(x) + d)

g(u(x) + d)
=

ūp−1(x)

|x− y|sp
+ a(x, y)

ūq−1(x)

|x− y|tq
ūp−1(x)

ρsp
+ a2

ūq−1(x)

ρtq

≤ c

ūp−1(x) + ūq−1(x)

|x− y|sp
+ a2

ūq−1(x)

|x− y|tq
ūp−1(x)

ρsp
+ a2

ūq−1(x)

ρtq

≤ cM̃
ρsp

|x− y|sp
,

which gives ∫
B3ρ/2

∫
Rn\B2ρ

h(x, y, u(x) + d)

g(u(x) + d)

dydx

|x− y|n
≤ cM̃ρn. (6.33)

For the second integral in (6.31), we use (6.32) and the fact that

|y − x0|
|y − x|

≤ 1 +
|x− x0|
|y − x|

≤ 1 +
3ρ/2

ρ/2
= 4

for x ∈ B3ρ/2 and y ∈ Rn \B2ρ to find

h(x, y, u−(y))

g(u(x) + d)
≤

up−1
− (y)

|x− y|sp
+ a(x, y)

uq−1
− (y)

|x− y|tq
dp−1

ρsp
+ a2

dq−1

ρtq

≤ c

up−1
− (y) + uq−1

− (y)

|x− y|sp
+ a2

uq−1
− (y)

|x− y|tq
dp−1

ρsp
+ a2

dq−1

ρtq
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≤ cρspd1−pu
p−1
− (y) + uq−1

− (y)

|y − x0|sp
+ cρtqd1−q u

q−1
− (y)

|y − x0|tq
.

Consequently, we obtain∫
B3ρ/2

∫
Rn\BR

h(x, y, u−(y))

g(u(x) + d)

dydx

|x− y|n

≤ cρn+spd1−p
∫
Rn\BR

up−1
− (y) + uq−1

− (y)

|y − x0|n+sp
dy

+ cρn+tqd1−q
∫
Rn\BR

uq−1
− (y)

|y − x0|n+tq
dy. (6.34)

Combining (6.30), (6.31), (6.33) and (6.34), the desired estimate follows.

The preceding lemma directly implies the following corollary.

Corollary 6.5.2. Under the assumptions of Lemma 6.5.1, let d, ζ > 0, ξ > 1
and define

v := min{(log(ζ + d)− log(u+ d))+, log ξ}.

Then we have∫
Bρ

|v − (v)Bρ| dx ≤ cM̃2

(
1 + ρspd1−p

∫
Rn\BR

up−1
− (y) + uq−1

− (y)

|y − x0|n+sp
dy

+ρtqd1−q
∫
Rn\BR

uq−1
− (y)

|y − x0|n+tq
dy

)
(6.35)

for some c ≡ c(data1), where M̃ = 1 + (‖u‖L∞(Ω′) + d)q−p.

Proof. It suffices to observe that∫
Bρ

|v − (v)Bρ| dx ≤
∫
Bρ

∫
Bρ

|v(x)− v(y)| dydx

≤ cρ−n
∫
Bρ

∫
Bρ

| log(u(x) + d)− log(u(y) + d)|
|x− y|n

dydx,

as v is a truncation of log(u+ d). Now Lemma 6.5.1 gives the desired result.
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6.5.2 Proof of Theorem 6.1.2

We are now in a position to prove Theorem 6.1.2. We first recall that Ω′ b Ω
has been fixed in the beginning of the section and the constant M was defined
in (6.25). We then fix a ball B2r ≡ B2r(x0) ⊂ Ω′. Let σ ∈ (0, 1/4] be a
constant depending only on data1 and ‖u‖L∞(Ω′) that satisfies

σ ≤ min

{
1

4
, 2−

2
sp , 6−

4(q−1)
sq , exp

(
−c∗M

3

ν∗

)}
, (6.36)

where the constants c∗ ≡ c∗(data1) ≥ 1 and ν∗ ≡ ν∗(data1, ‖u‖L∞(Ω′)) ∈
(0, 1) are to be determined in (6.52) and (6.58), respectively, and then choose
γ ∈ (0, 1) depending only on data1 and ‖u‖L∞(Ω′) satisfying

γ ≤ min

{
logσ

(
1

2

)
,

sp

2(p− 1)
,

tq

2(q − 1)
, logσ

(
1− σ

sq
2(q−1)

)}
. (6.37)

We define

1

2
K0 := sup

Br

|u|+
[
rsp
∫
Rn\Br

|u(x)|p−1 + |u(x)|q−1

|x− x0|n+sp
dx

] 1
p−1

+

[
rtq
∫
Rn\Br

|u(x)|q−1

|x− x0|n+tq
dx

] 1
q−1

(6.38)

and, for j ∈ N ∪ {0}, we write

rj := σjr, Bj := Brj(x0) and Kj := σγjK0.

Now, we are going to prove the following oscillation lemma, which implies
u ∈ C0,γ(Br).

Lemma 6.5.3. Under the assumptions of Theorem 6.1.2, let u be a weak
solution to (6.1). Then we have for every j ∈ N ∪ {0}

ω(rj) := osc
Bj
u ≤ Kj. (6.39)

Proof. Step 1: Induction. The proof goes by induction on j. For j = 0 it is
obvious from the definition of K0. Now we assume that (6.39) holds for all
i ∈ {0, . . . , j} with some j ≥ 0 and show that it holds also for j + 1. That is,
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we will show that
ω(rj+1) ≤ Kj+1. (6.40)

Without loss of generality, we assume that

ω(rj+1) ≥ 1

2
Kj+1.

Then, this together with the fact that σγ ≥ 1/2 from (6.37) implies that

ω(rj) ≥ ω(rj+1) ≥ 1

2
Kj+1 =

1

2
σγKj ≥

1

4
Kj. (6.41)

We note that either

|2Bj+1 ∩ {u ≥ infBj u+ ω(rj)/2}|
|2Bj+1|

≥ 1

2
(6.42)

or
|2Bj+1 ∩ {u ≤ infBj u+ ω(rj)/2}|

|2Bj+1|
≥ 1

2
(6.43)

must hold. We accordingly define

uj :=


u− inf

Bj
u if (6.42) holds,

sup
Bj

u− u if (6.43) holds.

Then we have

uj ≥ 0 in Bj and
|2Bj+1 ∩ {uj ≥ ω(rj)/2}|

|2Bj+1|
≥ 1

2
. (6.44)

Moreover, uj is a weak solution to (6.1) satisfying

sup
Bi

|uj| ≤ ω(ri) ≤ Ki ∀ i ∈ {0, . . . , j}. (6.45)

Step 2: Tail estimates. We first show that

rspj

∫
Rn\Bj

|uj(x)|p−1 + |uj(x)|q−1

|x− x0|n+sp
dx ≤ cMσ−γ(p−1)Kp−1

j (6.46)
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and

rtqj

∫
Rn\Bj

|uj(x)|q−1

|x− x0|n+tq
dx ≤ cσ−γ(q−1)Kq−1

j (6.47)

for a constant c ≡ c(data1). We will only give the proof of (6.46), since
(6.47) can be proved in almost the same way with s and p replaced by t and
q, respectively. From (6.45), (6.38) and (6.25), we have

rspj

∫
Rn\Bj

|uj(x)|p−1 + |uj(x)|q−1

|x− x0|n+sp
dx

= rspj

j∑
i=1

∫
Bi−1\Bi

|uj(x)|p−1 + |uj(x)|q−1

|x− x0|n+sp
dx

+ rspj

∫
Rn\B0

|uj(x)|p−1 + |uj(x)|q−1

|x− x0|n+sp
dx

≤
j∑
i=1

(
rj
ri

)sp (sup
Bi−1

|uj|

)p−1

+

(
sup
Bi−1

|uj|

)q−1
+ cM

(
rj
r1

)sp
Kp−1

0

≤ cM

j∑
i=1

(
rj
ri

)sp
Kp−1
i−1 , (6.48)

where for the first inequality we have used

rspj

∫
Rn\B0

|uj(x)|p−1 + |uj(x)|q−1

|x− x0|n+sp
dx

≤ c

(
rj
r0

)sp [(
sup
B0

|u|
)p−1

+

(
sup
B0

|u|
)q−1

]

+ crspj

∫
Rn\B0

|u(x)|p−1 + |u(x)|q−1

|x− x0|n+sp
dx

≤ cM

(
rj
r1

)sp
Kp−1

0 .

Now the sum appearing in (6.48) is estimated as

j∑
i=1

(
rj
ri

)sp
Kp−1
i−1 = Kp−1

0

(
rj
r0

)γ(p−1) j∑
i=1

(
ri−1

ri

)γ(p−1)(
rj
ri

)sp−γ(p−1)
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= Kp−1
j σ−γ(p−1)

j−1∑
i=0

σi(sp−γ(p−1))

≤ σ−γ(p−1)

1− σsp−γ(p−1)
Kp−1
j ≤ σ−γ(p−1)

1− σsp/2
Kp−1
j ≤ 2σ−γ(p−1)Kp−1

j ,

where we have used the facts that sp−γ(p−1) ≥ sp/2 and σsp/2 ≤ 1/2 from
(6.36).

Step 3: A density estimate. We next apply Corollary 6.5.2 to the function

v := min

{[
log

(
ω(rj)/2 + dj
uj + dj

)]
+

, k

}
,

where k > 0 is to be chosen and

dj := εKj with ε := σ
sq

2(q−1) ≥ max
{
σ

sp
2(p−1) , σ

tq
2(q−1)

}
. (6.49)

Note that by (6.41) we see that

dj ≤ 4ω(rj) ≤ 8‖u‖L∞(Ω′), hence M̃ ≤ cM. (6.50)

Combining the resulting estimate (6.35) with (6.46)-(6.47), and then using
(6.36), (6.49) and (6.50), we obtain∫

2Bj+1

|v − (v)2Bj+1
| dx

≤ cM2
[
1 +Md1−p

j σsp−γ(p−1)Kp−1
j + d1−q

j σtq−γ(q−1)Kq−1
j

]
≤ cM2

[
1 +Md1−p

j σsp/2Kp−1
j + d1−q

j σtq/2Kq−1
j

]
≤ cM3

[
1 +

(
d−1
j σ

sp
2(p−1)Kj

)p−1

+
(
d−1
j σ

tq
2(q−1)Kj

)q−1
]

≤ cM3 (6.51)

for a constant c ≡ c(data1). In addition, we have from (6.44) that

k =
1

|2Bj+1 ∩ {uj ≥ ω(rj)/2}|

∫
2Bj+1∩{v=0}

(k − v) dx

≤ 2

∫
2Bj+1

(k − v) dx = 2(k − (v)2Bj+1
).
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This inequality and (6.51) imply

|2Bj+1 ∩ {v = k}|
|2Bj+1|

≤ 2

k|2Bj+1|

∫
2Bj+1∩{v=k}

(k − (v)2Bj+1
) dx

≤ 2

k

∫
2Bj+1

|v − (v)2Bj+1
| dx ≤ cM3

k
.

At this moment, we choose

k = log

(
ω(rj)/2 + εω(rj)

3εω(rj)

)
= log

(
1/2 + ε

3ε

)
≥ log

(
1

6ε

)
≥ log

(
1√
ε

)
=

sq

4(q − 1)
log

1

σ
,

where we have used the fact that
√
ε = σsq/4(q−1) ≤ 1/6 from (6.36). Then it

follows that
|2Bj+1 ∩ {uj ≤ dj}|

|2Bj+1|
≤ cM3

k
≤ c∗M

3

log(1/σ)
(6.52)

for a constant c∗ ≡ c∗(data1).
Step 4: Iteration. Now we proceed with an iteration argument. For i =

0, 1, 2, . . . and for fixed j, we set

ρi = (1 + 2−i)rj+1, ρ̃i =
ρi + ρi+1

2
, Bi = Bρi , B̃i = Bρ̃i

and choose corresponding cut-off functions satisfying

φi ∈ C∞0 (B̃i), 0 ≤ φi ≤ 1, φi ≡ 1 on Bi+1, and |Dφi| ≤ 2i+2r−1
j+1.

Furthermore, we set

ki = (1 + 2−i)dj, wi = (ki − uj)+

and

Ai =
|Bi ∩ {uj < ki}|

|Bi|
=
|Bi ∩ {wi > 0}|

|Bi|
.

Note that

rj+1 < ρi+1 ≤ ρi ≤ 2rj+1, dj ≤ ki+1 ≤ ki ≤ 2dj and 0 ≤ wi ≤ ki ≤ 2dj.
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We then denote

a1,j := inf
B2rj+1

×B2rj+1

a(·, ·), a2,j := sup
B2rj+1

×B2rj+1

a(·, ·)

and

G(τ) :=
τ p

rspj+1

+ a2,j
τ q

rtqj+1

.

Using the fact that rj+1 < ρi+1 ≤ 2rj+1, and applying Lemma 6.2.3 with
f ≡ wi, we obtain

A
1/κ
i+1G(ki − ki+1)

=

[
1

|Bi+1|

∫
Bi+1∩{uj≤ki+1}

[G(ki − ki+1)]κ dx

] 1
κ

≤
[∫

Bi+1

[G(wi)]
κ dx

] 1
κ

≤ cM

∫
Bi+1

∫
Bi+1

H(x, y, |wi(x)− wi(y)|) dxdy

|x− y|n
+ cMG(dj)Ai, (6.53)

where for the last inequality we have also used the following estimate:∫
Bi

∣∣∣∣ wiρsi+1

∣∣∣∣p + a1,j

∣∣∣∣ wiρti+1

∣∣∣∣q dx ≤ c

[(
dj
rsj+1

)p
+ a2,j

(
dj
rtj+1

)q] |Bi ∩ {uj ≤ ki}|
|Bi|

= cG(dj)Ai,

which is immediate from the definitions of wi, ρi and Ai. In order to estimate
the integral on the right-hand side of (6.56), we apply Lemma 6.4.2 to wi
and φi in the ball Bi. Moreover, we estimate the tail term in the right-hand
side by using (6.32):∫

Bi+1

∫
Bi+1

H(x, y, |wi(x)− wi(y)|) dxdy

|x− y|n

≤ c

∫
Bi

∫
Bi
H(x, y, (wi(x) + wi(y))|φi(x)− φi(y)|) dxdy

|x− y|n

+ c

(
sup
y∈B̃i

∫
Rn\Bi

wp−1
i (x)

|x− y|n+sp
+ a(x, y)

wq−1
i (x)

|x− y|n+tq
dx

)∫
Bi
wiφ

q
i dx
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≤ c

∫
Bi

∫
Bi
H(x, y, (wi(x) + wi(y))|φi(x)− φi(y)|) dxdy

|x− y|n

+ c

(
sup
y∈B̃i

∫
Rn\Bi

wp−1
i (x) + wq−1

i (x)

|x− y|n+sp
+ a2,j

wq−1
i (x)

|x− y|n+tq
dx

)∫
Bi
wiφ

q
i dx.

(6.54)

We estimate the terms in the right-hand side of (6.54) separately. By the
definitions of wi and φi, we have∫

Bi

∫
Bi
H(x, y, (wi(x) + wi(y))|φi(x)− φi(y)|) dxdy

|x− y|n

≤ c2ipr−pj+1k
p
i

1

|Bi|

∫
Bi∩{uj≤ki}

∫
Bi

1

|x− y|n+(s−1)p
dydx

+ c2iqa2,jr
−q
j+1k

q
i

1

|Bi|

∫
Bi∩{uj≤ki}

∫
Bi

1

|x− y|n+(t−1)q
dydx

≤ c2iq
|Bi ∩ {uj ≤ ki}|

|Bi|

(
dpj
rspj+1

+ a2,j

dqj

rtqj+1

)
= c2iqG(dj)Ai, (6.55)

and ∫
Bi
wi(x)φqi (x) dx ≤ cdjAi. (6.56)

As for the tail term, we first observe the following facts:

|x− x0|
|x− y|

≤ 1 +
|y − x0|
|x− y|

≤ 1 +
2rj+1

2−(i+1)rj+1

≤ 2i+3

for x ∈ Rn\Bi and y ∈ B̃i; wi ≤ ki ≤ 2dj in Bj; and wi ≤ ki+|uj| ≤ 2dj+|uj|
in Rn \Bj. Using these facts, (6.46), (6.47) and (6.49), we see that

sup
y∈B̃i

∫
Rn\Bi

wp−1
i (x) + wq−1

i (x)

|x− y|n+sp
+ a2,j

wq−1
i (x)

|x− y|n+tq
dx

≤ c2i(n+tq)

∫
Rn\Bj+1

wp−1
i (x) + wq−1

i (x)

|x− x0|n+sp
+ a2,j

wq−1
i (x)

|x− x0|n+tq
dx
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≤ c2i(n+tq)

∫
Rn\Bj+1

dp−1
j + dq−1

j

|x− x0|n+sp
+ a2,j

dq−1
j

|x− x0|n+tq
dx

+ c2i(n+tq)

∫
Rn\Bj

|uj(x)|p−1 + |uj(x)|q−1

|x− x0|n+sp
+ a2,j

|uj(x)|q−1

|x− x0|n+tq
dx

≤ c2i(n+tq)M

(
dp−1
j

rspj+1

+ a2,j

dq−1
j

rtqj+1

)
+ c2i(n+tq)M

(
σ
sp
2

εp−1

dp−1
j

rspj+1

+ a2,j
σ
tq
2

εq−1

dq−1
j

rtqj+1

)

≤ c2i(n+tq)M
G(dj)

dj
. (6.57)

Therefore, combining (6.53), (6.54), (6.55), (6.56) and (6.57), we arrive at

A
1/κ
i+1G(2−i−1dj) = A

1/κ
i+1G(ki − ki+1) ≤ c2i(n+tq+q)M2G(dj)Ai,

which implies
Ai+1 ≤ c02iκ(n+tq+2q)M2κAκi

for a constant c0 ≡ c0(data1) ≥ 1. In order to apply Lemma 6.2.5, it should
be guaranteed that

A0 ≤ (c0M
2κ)−1/(κ−1)2−(n+tq+2q)κ/(κ−1)2

=: ν∗. (6.58)

This inequality holds by (6.52) and (6.36). More precisely, we have

A0 =
|2Bj+1 ∩ {uj ≤ 2dj}|

|2Bj+1|
≤ c∗M

3

log(1/σ)
≤ ν∗.

Hence it follows that Ai → 0 as i→∞, which means that

uj ≥ dj = εKj a.e. in Bj+1.

From this with (6.45) and (6.37), we finally obtain (6.40) as follows:

ω(rj+1) = sup
Bj+1

uj − inf
Bj+1

uj ≤ (1− ε)Kj =
(

1− σ
tq

2(q−1)

)
σ−γKj+1 ≤ Kj+1.
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nonlocal equations with general growth, Math. Ann., to appear.

[46] S.-S. Byun, H. Kim, and K. Song, Nonlocal Harnack inequality for frac-
tional elliptic equations with Orlicz growth, Preprint (2022), submitted.

[47] S.-S. Byun and Y. Kim, Riesz potential estimates for parabolic equa-
tions with measurable nonlinearities, Int. Math. Res. Not. IMRN
(2018), no. 21, 6737–6779.

[48] S.-S. Byun, H.-S. Lee, and K. Song, Regularity results for mixed local
and nonlocal double phase functionals, Preprint (2022), submitted.

[49] S.-S. Byun, S. Liang, and J. Ok, Irregular double obstacle problems with
Orlicz growth, J. Geom. Anal. 30 (2020), no. 2, 1965–1984.

[50] S.-S. Byun and J. Oh, Regularity results for generalized double phase
functionals, Anal. PDE 13 (2020), no. 5, 1269–1300.

[51] S.-S. Byun, J. Ok, and J.-T. Park, Regularity estimates for quasilinear
elliptic equations with variable growth involving measure data, Ann.
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국문초록

이 학위논문에서는 비선형 측도 데이터 문제들에 대하여 다양한 정칙성 결과

들을 얻는다. 해당 결과들은 비선형 칼데론-지그문트 이론 및 비선형 퍼텐셜
이론을 다루는 과정의 일부이다.
첫 번째로, 오를리츠 성장조건 및 경계선 이중위상 성장조건을 가지는 타

원형측도데이터문제에대하여각각최대적분성및분수차수미분성결과를

얻는다. 또한 포물형 측도 데이터 문제에 대하여 분수차수 미분성을 계수에
대한 최소한의 가정 하에서 증명한다.
두 번째로, 측도 데이터를 가지는 타원형 장애물 문제에 대하여 선형화

기법을 이용함으로써 그레이디언트 퍼텐셜 가늠 및 분수차수 미분성을 증명

한다.특히비정칙장애물문제에대해퍼텐셜가늠을얻기위한새로운방법을
개발한다. 더 나아가, L1 데이터를 가지는 단일 장애물 문제에 대하여는 해의

유일성 및 비교 원리를 증명하여 이러한 정칙성 결과들을 개선한다.
마지막으로, 측도 데이터를 가지는 국소 및 비국소 혼합 방정식에 대하여

해의 존재성, 정칙성 및 퍼텐셜 가늠을 증명한다. 또한, 비표준 성장조건을
가지는 비등방적 비국소 문제에 대한 정칙성 이론의 첫걸음으로서, 비국소
이중위상 문제에 대한 횔더 정칙성을 국소 이중위상 문제의 경우과 유사한

최적의 조건 하에서 증명한다.

주요어휘:측도데이터,칼데론-지그문트이론,퍼텐셜이론,비표준성장조건,
장애물 문제, 비국소 작용소
학번: 2017-28961
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