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Abstract

In this paper, we define the shifted superconformal vector of supersymmetric

charged free fermion vertex algebras, which is a 1-parameter deformation of

the superconformal vector of the SUSY bc-βγ system. Moreover, we find the

corresponding shifted N = 2 superconformal symmetry of SUSY charged free

fermion vertex algebras, by using the NK = 1 SUSY vertex algebra formal-

ism. Finally, in order to describe the shifted N = 2 superconformal symmetry

of the SUSY charged free fermion vertex algebra by N = 2 superfields, we

construct an NK = 2 SUSY version of the bc-βγ system.

Key words: Supersymmetric Vertex Algebras, Superconformal Vertex Alge-

bras, Supersymmetric Free Fermion Vertex Algebras, Superconformal Vectors

Student Number: 2021-22555
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Chapter 1

Introduction

Superconformal symmetries have been studied widely in both mathematics

and physics literature, see for example [1, 9, 16, 20]. Especially in the theory

of vertex algebras, superconformal vectors give rise to the superconformal

structures of vertex algebras (see [13]).

In this paper, we study the superconformal structure and the deforma-

tion of superconformal vectors of the supersymmetric charged free fermion

vertex algebras. In [4, 14], the non-SUSY charged free fermion vertex algebra

appears as a ghost part of the non-SUSY W -algebra. Just as in the non-

SUSY case, the SUSY charged free fermion vertex algebra is the ghost part

of the SUSY W -algebra, which was studied in [17, 18]. On the other hand,

conformal vectors play an important role in the theory of vertex algebras,

for example, they induce the notion of energy-momentum fields (see [13]).

Also, superconformal vectors can be regarded as supersymmetric analogues

of conformal vectors.

Despite some difficulties in finding superconformal vectors in general, the

constructions of superconformal vectors were studied in some cases. For ex-

ample, the superconformal vector of the non-SUSY free fermion vertex alge-

bra was studied in [9], and the Kac-Todorov construction (see [15]) of the

non-SUSY affine vertex algebras was given in [13]. In the SUSY case, some

basics about the superconformal structures of SUSY vertex algebras and es-

pecially superconformal vectors of the SUSY affine vertex algebras and the

SUSY bc-βγ system can be found in [11].
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CHAPTER 1. INTRODUCTION

In the context of BRST cohomology, deformations of the (super)conformal

vectors are also important, in addition to the construction of (super)conformal

vectors. In [5], the 1-parameter deformation of the conformal vector of the

non-SUSY bc-βγ system was introduced. Also, the modification of the Sug-

awara construction of the conformal vector of the non-SUSY affine vertex

algebra was used in [4, 14], and for the SUSY counterpart, the modified

Kac-Todorov superconformal vector of the SUSY affine vertex algebra was

presented in [12].

In the present paper, we give a 1-parameter deformation of the super-

conformal vector of the SUSY bc-βγ system (Theorem 4.6), which is called

the shifted superconformal vector of the SUSY charged free fermion vertex

algebras, in order to obtain varying conformal weights of monomial fields

of the SUSY charged free fermion vertex algebras. Also we find an N = 2

superconformal symmetry (Theorem 4.14), compatible with our shifted su-

perconformal vector.

The organization of this paper is as follows. In Chapter 2, following

[11, 13], we briefly review the definitions and basic properties of the vertex

algebras and the SUSY vertex algebras. In Chapter 3, we recall the defini-

tions of superconformal vertex algebras in the context of the vertex algebras

and the SUSY vertex algebras. In Chapter 4, we state the main results of

this work. We define the shifted superconformal vector of the supersymmetric

charged free fermion vertex algebras and find the corresponding N = 2 su-

perconformal symmetry. At the end of this chapter, we describe the shifted

N = 2 superconformal structure, using the NK = 2 SUSY vertex algebra

formalism. In Appendix A, we present some calculations of lambda brackets

of the SUSY charged free fermion vertex algebras. Appendix B contains the

charge decomposition of the SUSY charged free fermion vertex algebras.
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Chapter 2

Vertex algebras and SUSY

vertex algebras

In this chapter, we recollect the definitions of vertex algebras and SUSY

vertex algebras. We only consider the NK = 1 and NK = 2 SUSY vertex

algebras. The main references are [4], [11] and [13].

2.1 Vertex algebras

Definition 2.1. [13] Let V be a vector superspace. Let z be an even inde-

terminate. A field is an End(V )-valued formal distribution of the form

a(z) =
∑
j∈Z

z−j−1a(j), (2.1)

where a(j)v = 0 for all but finitely many j ∈ Z, for each v ∈ V .

Definition 2.2. [4, 13] A vertex algebra (V, |0〉 , ∂, Y ) consists of a vector

superspace V over C, an even vector |0〉, an even endomorphism ∂, and the

state-field correspondence Y which is a parity preserving linear map from V

to the space of End(V )-valued fields, such that the following axioms hold :

• (Vacuum)

∂ |0〉 = 0, Y (a, z) |0〉 |z=0 = a, (2.2)

3



CHAPTER 2. VERTEX ALGEBRAS AND SUSY VERTEX ALGEBRAS

• (Translation covariance)

[∂, Y (a, z)] = ∂zY (a, z), (2.3)

• (Locality) for any a, b ∈ V , there exists n ∈ Z≥0 such that

(z − w)n[Y (a, z), Y (b, w)] = 0. (2.4)

The normally ordered product on V is defined by

: ab := a(−1)b. (2.5)

In this paper, we just denote by ab the normally ordered product and : a : bc ::

is denoted by abc.

Definition 2.3. [4] A Lie conformal algebra is a Z/2Z-graded C[∂]-module

R with a λ-bracket which is a parity preserving C-bilinear map :

[ λ ] : R⊗R→ C[λ]⊗R, a⊗ b 7→ [a λ b], (2.6)

satisfying the following conditions :

• (Sesquilinearity)

[∂a λ b] = −λ[a λ b], [a λ ∂b] = (∂ + λ)[a λ b], (2.7)

• (Skew-symmetry)

[b λ a] = (−1)ab+1[a −∂−λ b], (2.8)

• (Jacobi identity)

[a λ [b µ c]] = [[a λ b] λ+µ c] + (−1)ab[b µ [a λ c]], (2.9)

where we write the λ-brackets as :

[a λ b] =
∑
j∈Z≥0

λj

j!
a(j)b. (2.10)
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CHAPTER 2. VERTEX ALGEBRAS AND SUSY VERTEX ALGEBRAS

Definition 2.4. [4] A vertex algebra is a tuple (V, ∂, [ λ ], |0〉 , : :) such that :

• (V, ∂, [ λ ]) is a Lie conformal algebra,

• (V, ∂, |0〉 , : :) is a unital differential superalgebra with a derivation ∂, sat-

isfying the following properties :

(Quasi-commutativity)

ab− (−1)abba =

∫ 0

−∂
[a λ b] dλ, (2.11)

(Quasi-associativity)

(ab)c− a(bc) =

(∫ ∂

0

dλa

)
[b λ c] + (−1)ab

(∫ ∂

0

dλb

)
[a λ c], (2.12)

• the λ-bracket and the product : : are related by :

(Non-commutative Wick formula)

[a λ bc] = [a λ b]c+ (−1)abb[a λ c] +

∫ λ

0

[[a λ b] µ c] dµ. (2.13)

Example 2.5. [4, 14] Let U be a finite-dimensional vector superspace and

A be a basis of U . Define two vector superspaces :

ϕU ' ΠU, ϕU ' ΠU∗, (2.14)

whose basis elements are denoted by ϕa and ϕa respectively. Here Π denotes

the parity reversing functor and U∗ is the dual vector space of U . Define the

λ-brackets on Rch = C[∂]⊗ (ϕU ⊕ ϕU) as :

[ϕa λ ϕ
b] = δab, [ϕa λ ϕb] = [ϕa λ ϕ

b] = 0, (2.15)

for a, b ∈ A. Then Rch is a Lie conformal algebra, and the charged free fermion

vertex algebra F ch associated to the vector superspace U is the universal

enveloping vertex algebra V (Rch).

Example 2.6. [6] Let U be the vector superspace with the basis A = A0̄∪A1̄

be a basis of U , where A0̄ = {β, γ} is the even part and A1̄ = {b, c} is the

odd part of the basis. Define the λ-brackets on Rbcβγ = C[∂]⊗ U as :

[β λ γ] = 1, [γ λ β] = −1,

[b λ c] = 1, [c λ b] = 1,
(2.16)

5



CHAPTER 2. VERTEX ALGEBRAS AND SUSY VERTEX ALGEBRAS

and other λ-brackets on the basis elements are zeros. Then Rbcβγ is a Lie

conformal algebra, and the bc-βγ system is the universal enveloping vertex

algebra V (Rbcβγ).

2.2 SUSY vertex algebras

In this section, we recall the definitions of the NK = 1 and NK = 2 SUSY

vertex algebras as in [11].

Definition 2.7. [11] Let V be a vector superspace. Let z be an even inde-

terminate and θ be an odd indeterminate such that θ2 = 0 and θz = zθ. An

N = 1 superfield is an End(V )-valued formal distribution of the form

a(z, θ) =
∑
j∈Z

z−j−1a(j|1) + θ
∑
j∈Z

z−j−1a(j|0), (2.1)

where a(j|∗)v = 0 for all but finitely many j ∈ Z, for each v ∈ V .

Definition 2.8. [11] An NK = 1 supersymmetric vertex algebra is a tuple

(V, |0〉 , D, Y ) consisting of a vector superspace V over C, an even vector |0〉,
an odd endomorphism D, and the state-field correspondence Y which is a

parity preserving linear map from V to the space of End(V )-valued N = 1

superfields, such that the following axioms hold :

• (Vacuum)

D |0〉 = 0, Y (a, z, θ) |0〉 |z=0,θ=0 = a, (2.2)

• (Translation covariance)

[D, Y (a, z, θ)] = (∂θ − θ∂z)Y (a, z, θ), (2.3)

• (Locality) for any a, b ∈ V , there exists n ∈ Z≥0 such that

(z − w)n[Y (a, z, θ), Y (b, w, ζ)] = 0. (2.4)

The normally ordered product on V is defined by

: ab := a(−1|1)b. (2.5)
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CHAPTER 2. VERTEX ALGEBRAS AND SUSY VERTEX ALGEBRAS

Remark 2.9. [11] Consider the noncommutative associative superalgebra

HN=1 = C[∂,D] generated by an even generator ∂ and an odd generator D,

with relations :

D2 = ∂, [∂,D] = 0, (2.6)

and consider the noncommutative associative superalgebra LN=1 = C[λ, χ]

generated by an even generator λ and an odd generator χ, with relations :

χ2 = −λ, [λ, χ] = 0. (2.7)

Definition 2.10. [11, 18] An NK = 1 supersymmetric Lie conformal algebra

is a Z/2Z-graded HN=1-module R with a Λ-bracket which is a C-bilinear map

of degree 1 :

[ Λ ] : R⊗R→ LN=1 ⊗R, a⊗ b 7→ [a Λ b], (2.8)

satisfying the following conditions :

• (Sesquilinearity)

[Da Λ b] = χ[a Λ b], [a Λ Db] = (−1)a+1(D + χ)[a Λ b], (2.9)

where D and χ are subject to the relation [D,χ] = 2λ,

• (Skew-symmetry)

[b Λ a] = (−1)ab[a −∇−Λ b], (2.10)

where −∇− Λ = (−∂ − λ,−D − χ) with the relations

[D,χ] = 2λ, [∂, λ] = [∂, χ] = [D,λ] = 0, (2.11)

• (Jacobi identity)

[a Λ [b Γ c]] = (−1)a+1[[a Λ b] Λ+Γ c] + (−1)(a+1)(b+1)[b Γ [a Λ c]], (2.12)

where Γ = (γ, η) and Λ + Γ = (λ+ γ, χ+ η) with relations :

[η, η] = −2γ, [γ, γ] = [γ, η] = [λ, γ] = [λ, η] = [χ, γ] = [χ, η] = 0. (2.13)

We write the Λ-brackets as :

[a Λ b] =
∑
j∈Z≥0

λj

j!
a(j|0)b+ χ

∑
j∈Z≥0

λj

j!
a(j|1)b. (2.14)

7



CHAPTER 2. VERTEX ALGEBRAS AND SUSY VERTEX ALGEBRAS

Definition 2.11. [11] An NK = 1 supersymmetric vertex algebra is a tuple

(V,D, [ Λ ], |0〉 , : :) such that :

• (V,D, [ Λ ]) is an NK = 1 SUSY Lie conformal algebra,

• (V,D, |0〉 , : :) is a unital differential superalgebra with an odd derivation

D, satisfying the following properties :

(Quasi-commutativity)

ab− (−1)abba =

∫ 0

−∇
[a Λ b] dΛ, (2.15)

(Quasi-associativity)

(ab)c− a(bc) =

(∫ ∇
0

dΛa

)
[b Λ c] + (−1)ab

(∫ ∇
0

dΛb

)
[a Λ c], (2.16)

• the Λ-bracket and the product : : are related by :

(Non-commutative Wick formula)

[a Λ bc] = [a Λ b]c+ (−1)(a+1)bb[a Λ c] +

∫ Λ

0

[[a Λ b] Γ c] dΓ, (2.17)

where the integral
∫ Λ

0
dΓ is computed as ∂η

∫ λ
0
dγ.

Example 2.12. [18] Let U be a finite-dimensional vector superspace and

A = A0̄ ∪ A1̄ be a basis of U , where A0̄ is the even part and A1̄ is the odd

part of the basis. Define two vector superspaces :

φU ' U, φŪ ' ΠU∗, (2.18)

whose basis elements are denoted by φa and φā respectively. Define the Λ-

brackets on Rch
N=1 = HN=1 ⊗ (φU ⊕ φŪ) as :

[φa Λ φb̄] = δab, [φa Λ φb] = [φā Λ φb̄] = 0, (2.19)

for a, b ∈ A. Then Rch
N=1 is an NK = 1 supersymmetric Lie conformal algebra,

and the supersymmetric charged free fermion vertex algebra F ch
N=1 associated

to the vector superspace U is the universal enveloping supersymmetric vertex

algebra V (Rch
N=1). For the description of the universal enveloping supersym-

metric vertex algebras, see Definition 2.13 of [18].
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CHAPTER 2. VERTEX ALGEBRAS AND SUSY VERTEX ALGEBRAS

Definition 2.13. [11] Let V be a vector superspace. Let z be an even in-

determinate and θ1, θ2 be odd indeterminates such that [θi, θj] = 0 and

[θi, z] = 0. An N = 2 superfield is an End(V )-valued formal distribution of

the form

a(z, θ1, θ2) =
∑
j∈Z

z−j−1a(j|11) + θ1
∑
j∈Z

z−j−1a(j|01)

+ θ2
∑
j∈Z

z−j−1a(j|10) + θ1θ2
∑
j∈Z

z−j−1a(j|00),
(2.20)

where a(j|∗∗)v = 0 for all but finitely many j ∈ Z, for each v ∈ V .

Definition 2.14. [11] An NK = 2 supersymmetric vertex algebra is a tuple

(V, |0〉 , D1, D2, Y ) consisting of a vector superspace V over C, an even vector

|0〉, an odd endomorphisms D1, D2 and the state-field correspondence Y

which is a parity preserving linear map from V to the space of End(V )-

valued N = 2 superfields, such that the following axioms hold :

• (Vacuum)

Di |0〉 = 0, Y (a, z, θ1, θ2) |0〉 |z=0,θi=0 = a, (2.21)

• (Translation covariance)

[Di, Y (a, z, θ1, θ2)] = (∂θi − θi∂z)Y (a, z, θ1, θ2), (2.22)

• (Locality) for any a, b ∈ V , there exists n ∈ Z≥0 such that

(z − w)n[Y (a, z, θ1, θ2), Y (b, w, ζ1, ζ2)] = 0. (2.23)

The normally ordered product on V is defined by

: ab := a(−1|11)b. (2.24)

Remark 2.15. [11] Consider the noncommutative associative superalgebra

HN=2 = C[∂,D1, D2] generated by an even generator ∂ and odd generators

D1, D2 with relations :

[Di, Dj] = 2δij∂, [∂,Di] = 0, (2.25)

and the noncommutative associative superalgebra LN=2 = C[λ, χ1, χ2] gen-

erated by an even generator λ and odd generators χ1, χ2 with relations :

[χi, χj] = −2δijλ, [λ, χi] = 0. (2.26)

9
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Definition 2.16. [8, 11] An NK = 2 supersymmetric Lie conformal algebra is

a Z/2Z-graded HN=2-module R with a Λ-bracket which is a parity preserving

C-bilinear map :

[ Λ ] : R⊗R→ LN=2 ⊗R, a⊗ b 7→ [a Λ b], (2.27)

satisfying the following conditions :

• (Sesquilinearity)

[Dia Λ b] = −χi[a Λ b], [a Λ Dib] = (−1)a(Di + χi)[a Λ b], (2.28)

where Di and χi are subject to the relation [Di, χj] = 2δijλ,

• (Skew-symmetry)

[b Λ a] = (−1)ab+1[a −∇−Λ b], (2.29)

where −∇− Λ = (−∂ − λ,−D1 − χ1,−D2 − χ2) with the relations

[Di, χj] = 2δijλ, [∂, λ] = [∂, χi] = [Di, λ] = 0, (2.30)

• (Jacobi identity)

[a Λ [b Γ c]] = [[a Λ b] Λ+Γ c] + (−1)ab[b Γ [a Λ c]], (2.31)

where Γ = (γ, η1, η2) and Λ + Γ = (λ+ γ, χ1 + η1, χ2 + η2) with relations :

[ηi, ηj] = −2δijγ, [γ, γ] = [γ, ηi] = [λ, γ]

= [λ, ηi] = [χi, γ] = [χi, ηj] = 0.
(2.32)

We write the Λ-brackets as :

[a Λ b] =
∑
j≥0

λj

j!
a(j|00)b− χ1

∑
j≥0

λj

j!
a(j|10)b

− χ2
∑
j≥0

λj

j!
a(j|01)b− χ1χ2

∑
j≥0

λj

j!
a(j|11)b.

(2.33)

Definition 2.17. [11] An NK = 2 supersymmetric vertex algebra is a tuple

(V,D1, D2, [ Λ ], |0〉 , : :) such that :

10



CHAPTER 2. VERTEX ALGEBRAS AND SUSY VERTEX ALGEBRAS

• (V,D1, D2, [ Λ ]) is an NK = 2 SUSY Lie conformal algebra,

• (V,D1, D2, |0〉 , : :) is a unital differential superalgebra with odd derivations

D1 and D2 satisfying the following properties :

(Quasi-commutativity)

ab− (−1)abba =

∫ 0

−∇
[a Λ b] dΛ, (2.34)

(Quasi-associativity)

(ab)c− a(bc) =

(∫ ∇
0

dΛa

)
[b Λ c] + (−1)ab

(∫ ∇
0

dΛb

)
[a Λ c], (2.35)

• the Λ-bracket and the product : : are related by :

(Non-commutative Wick formula)

[a Λ bc] = [a Λ b]c+ (−1)abb[a Λ c] +

∫ Λ

0

[[a Λ b] Γ c] dΓ, (2.36)

where the integral
∫ Λ

0
dΓ is ∂η1∂η2

∫ λ
0
dγ.
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Chapter 3

Superconformal vertex algebras

In this chapter, we review the definitions of N = 1 and N = 2 superconformal

vertex algebras in the context of the vertex algebras and the SUSY vertex

algebras. Details of the definitions can be found in [11] and [13].

Definition 3.1. [13] Let V be a vertex algebra. An even vector L ∈ V is

called a conformal vector if it satisfies the following conditions :

• Y (L, z) is a Virasoro field with central charge c, i.e.

[L λ L] = (∂ + 2λ)L+
c

12
λ3, (3.1)

• L(0) = ∂,

• L(1) is diagonalizable on V .

For v ∈ V , we say that v has conformal weight ∆ ∈ C if :

[L λ v] = (∂ + ∆λ)v +O(λ2), (3.2)

where O(λ2) is a polynomial in λ which has no constant and linear terms.

Moreover, if there is no O(λ2) term in (3.2), the vector v is called primary.

Definition 3.2. [10, 13] The N = 1 superconformal vertex algebra is gener-

ated by a conformal vector L, and an odd vector G which is called a super-

12



CHAPTER 3. SUPERCONFORMAL VERTEX ALGEBRAS

conformal vector, satisfying the following super-Virasoro relation :

[L λ L] = (∂ + 2λ)L+
c

12
λ3,

[L λ G] = (∂ +
3

2
λ)G,

[G λ G] = 2L+
c

3
λ2.

(3.3)

Definition 3.3. [10, 13] The N = 2 superconformal vertex algebra is gen-

erated by a conformal vector L, an even vector J , and two odd vectors G+,

G−, satisfying the following λ-bracket relations :

[L λ L] = (∂ + 2λ)L+
c

12
λ3, [L λ G

±] = (∂ +
3

2
λ)G±,

[G± λ G
±] = 0, [G+

λ G
−] = L+ (

1

2
∂ + λ)J +

c

6
λ2,

[L λ J ] = (∂ + λ)J, [G± λ J ] = ∓G±, [J λ J ] =
c

3
λ.

(3.4)

Definition 3.4. [11] Let V be an NK = 1 SUSY vertex algebra. A vector

T ∈ V is called an N = 1 superconformal vector if it satisfies the following

conditions :

• Y (T, z, θ) is a super-Virasoro field with central charge c, i.e.

[T Λ T ] = (2∂ + 3λ+ χD)T +
c

3
λ2χ, (3.5)

• T(0|0) = 2∂, T(0|1) = D,

• T(1|0) is diagonalizable on V .

For v ∈ V , we say that v has conformal weight ∆ ∈ C if :

[T Λ v] = (2∂ + 2∆λ+ χD)v +O(Λ2), (3.6)

where O(Λ2) is a polynomial in Λ which has no constant and linear terms.

Moreover, if there is no O(Λ2) term in (3.6), the vector v is called primary.

Definition 3.5. [10, 11] As an NK = 1 SUSY vertex algebra, the N = 2

superconformal vertex algebra is generated by an N = 1 superconformal

13
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vector T and an even vector J satisfying the following NK = 1 Λ-bracket

relations :

[T Λ T ] = (2∂ + 3λ+ χD)T +
c

3
λ2χ,

[T Λ J ] = (2∂ + 2λ+ χD)J,

[J Λ J ] = T +
c

3
λχ.

(3.7)

Definition 3.6. [11] Let V be an NK = 2 SUSY vertex algebra. A vector

P ∈ V is called an N = 2 superconformal vector if it satisfies the following

conditions :

• Y (P, z, θ1, θ2) is an N = 2 super-Virasoro field with central charge c, i.e.

[P Λ P ] = (2∂ + 2λ+ χ1D1 + χ2D2)P +
c

3
λχ1χ2, (3.8)

• P(0|00) = 2∂, P(0|10) = −D1, P(0|01) = D2,

• P(1|00) is diagonalizable on V .

For v ∈ V , we say that v has conformal weight ∆ ∈ C if :

[P Λ v] = (2∂ + 2∆λ+ χ1D1 + χ2D2)v +O(Λ2), (3.9)

where O(Λ2) is a polynomial in Λ which has no constant and linear terms.

Moreover, if there is no O(Λ2) term in (3.9), the vector v is called primary.

14



Chapter 4

Superconformal structures of

SUSY charged free fermion

vertex algebras

For the construction of superconformal vectors of the SUSY W -algebras in

Remark 4.10, a particular deformation of the standard superconformal vec-

tor T chst of the supersymmetric charged free fermion vertex algebra F ch
N=1 is

needed. In this chapter, we prove our main result Theorem 4.6 and find the

corresponding N = 2 superconformal symmetry of F ch
N=1 in Theorem 4.14.

We also construct an NK = 2 version of the bc-βγ system, so that Theorem

4.6 and Theorem 4.14 can be unified by the NK = 2 SUSY vertex algebra

formalism in Theorem 4.21.

4.1 Standard superconformal vectors of SUSY

charged free fermion vertex algebras

In this section, we recall the standard superconformal vectors of the SUSY

charged free fermion vertex algebras and the connection with the supercon-

formal vectors of a non-SUSY bc-βγ system. For the SUSY charged free

fermion vertex algebra F ch
N=1 associated to the vector superspace U , recall

that A = A0̄ ∪ A1̄ refers to the basis for U .

15
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Example 4.1. In [14], the standard conformal vector Lchst , for the non-SUSY

charged free fermion vertex algebra associated to osp(1|2), is defined as

Lchst = −1

2
ϕ1/2∂ϕ1/2 +

1

2
∂ϕ1/2ϕ1/2 + ∂ϕ1ϕ

1, (4.1)

and we can easily find that the corresponding standard superconformal vector

of F ch(osp(1|2)) is

Gch
st = ϕ1/2ϕ1 + ∂ϕ1ϕ1/2, (4.2)

i.e. the above two vectors satisfy the following λ-brackets :

[Lchst λ L
ch
st ] = (∂ + 2λ)Lchst +

c

12
λ3, (4.3)

[Lchst λ G
ch
st ] =

(
∂ +

3

2
λ
)
Gch
st , (4.4)

[Gch
st λ G

ch
st ] = 2Lchst +

c

3
λ2, (4.5)

with central charge c = −3. If we rename the fields ϕ1/2, ϕ1/2, ϕ1, ϕ1, as

b, c, β, γ, respectively with reversing the parity, then the vertex algebra

F ch(osp(1|2)) with Lchst and Gch
st is nothing but the well-known bc-βγ system

with the conformal vector and the superconformal vector :

Lchst =
1

2
(−c∂b+ ∂cb+ 2∂γβ), (4.6)

Gch
st = cβ + ∂γb, (4.7)

with central charge 3. More detailed explanations of bc-βγ system are in [6].

For details of the physical statements, the reader is referred to [19].

Definition 4.2. For anN = 1 superconformal structure of the SUSY charged

free fermion vertex algebra F ch
N=1, we slightly modify the superconformal vec-

tor of the SUSY bc-βγ system in Example 5.12 of [11]. Let T chst be a standard

superconformal vector of F ch
N=1 defined by

T chst =
∑
a∈A0̄

(∂φaφ
ā +DφaDφ

ā) +
∑
a∈A1̄

(φa∂φ
ā +DφaDφ

ā). (4.8)

16
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Then the field T chst satisfies the N = 1 superconformal relation

[T chst Λ T chst ] = (2∂ + 3λ+ χD)T chst +
cst
3
λ2χ, (4.9)

where the central charge cst is 3dimU . The verification of the above Λ-bracket

follows from Theorem 4.6.

Remark 4.3. [3, 6, 7, 10] Let F ch
N=1 be the SUSY charged free fermion vertex

algebra associated to the vector superspace U = U0̄⊕U1̄. For a basis element

a in A0̄, if we write each superfields φa, φ
ā as follows :

Y (φa, z, θ) = Y (γ, z) + θY (c, z),

Y (φā, z, θ) = Y (b, z) + θY (β, z),
(4.10)

then we can see that the A0̄-part of T chst is the dimU0̄ copies of the standard

superconformal vector of non-SUSY bc-βγ system, i.e.

Y (
∑
a∈A0̄

(∂φaφ
ā +DφaDφ

ā), z, θ) = Y (
∑
a∈A0̄

(Gch
st ), z) + 2θY (

∑
a∈A0̄

(Lchst ), z).

(4.11)

Similarly, if we expand the superfields of φa, φ
ā as

Y (φā, z, θ) = Y (γ, z) + θY (c, z),

Y (φa, z, θ) = Y (b, z) + θY (β, z),
(4.12)

for an odd element a in A, then T chst is the sum of dimU copies of Gch
st and

Lchst , i.e.

T chst =
∑
a∈A

Gch
st + 2θ(

∑
a∈A

Lchst ). (4.13)

In Remark 4.11, we also get a similar result for our shifted superconformal

vectors.

Proof. For any even element a, the superfield expansion of Y (Dφa, z, θ) is

obtained as

Y (Dφa, z, θ) = (∂θ + θ∂z)Y (φa, z, θ)

= (∂θ + θ∂z)(Y (γ, z) + θY (c, z))

= Y (c, z) + θY (∂γ, z)

(4.14)
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by using the rules in Theorem 4.16 of [11]. Similarly, we have

Y (Dφā, z, θ) = Y (β, z) + θY (∂b, z), (4.15)

so that

Y (DφaDφ
ā, z, θ) = (Y (c, z) + θY (∂γ, z))(Y (β, z) + θY (∂b, z))

= Y (cβ, z) + θY (∂γβ − c∂b, z).
(4.16)

The negative sign of c∂b follows from the anti-commutativity of the odd field

Y (c, z) and the odd indeterminate θ. The expansion of Y (∂φaφ
ā, z, θ) is also

given by

Y (∂φaφ
ā, z, θ) = Y (∂φa, z, θ)Y (φā, z, θ)

= ∂zY (φa, z, θ)Y (φā, z, θ)

= (Y (∂γ, z) + θY (∂c, z))(Y (b, z) + θY (β, z))

= Y (∂γb, z) + θY (∂cb+ ∂γβ, z),

(4.17)

hence we have

Y (∂φaφ
ā +DφaDφ

ā, z, θ) = Y (cβ + ∂γb, z)

+ 2θY
(1

2
(−c∂b+ ∂cb+ 2∂γβ), z

)
= Y (Gch

st , z) + 2θY (Lchst , z).

(4.18)

For an odd element a, we also get the following superfield expansion

Y (φa∂φ
ā, z, θ) = Y (φa, z, θ)Y (∂φā, z, θ)

= Y (φa, z, θ)∂zY (φā, z, θ)

= (Y (b, z) + θY (β, z))(Y (∂γ, z) + θY (∂c, z))

= Y (b∂γ, z) + θY (β∂γ − b∂c, z)

= Y (∂γb, z) + θY (∂cb+ ∂γβ, z),

Y (DφaDφ
ā, z, θ) = (Y (β, z) + θY (∂b, z))(Y (c, z) + θY (∂γ, z))

= Y (βc, z) + θY (∂bc+ β∂γ, z)

= Y (cβ, z) + θY (∂γβ − c∂b, z),

(4.19)
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hence the field Y (φa∂φ
ā +DφaDφ

ā, z, θ) of the A1̄-part has the same super-

field expansion as in (4.18). Thus we obtain the result

Y (T chst , z, θ) = Y (
∑
a∈A

Gch
st , z) + 2θY (

∑
a∈A

Lchst , z). (4.20)

4.2 Shifted superconformal vectors of SUSY

charged free fermion vertex algebras

In Theorem 4.6, we define the shifted superconformal vector T chsh , which is a

deformation of the standard superconformal vector T chst , by finding the proper

ghost term using Ansatz 4.5 that the requiring shifted superconformal vector

is a linear combination of three particular quadratic monomial terms, in order

to obtain varying conformal weights of each fields φa and φā.

Lemma 4.4. Let F ch
N=1 be the SUSY charged free fermion vertex algebra. For

any even element a in A, we have the following Λ-brackets :

[∂φaφ
ā

Λ ∂φaφ
ā] = ∂(∂φaφ

ā) + 2λ(∂φaφ
ā), (4.21)

[∂φaφ
ā

Λ φa∂φ
ā] = ∂(φa∂φ

ā) + 2λ(φa∂φ
ā) + λ2(φaφ

ā), (4.22)

[∂φaφ
ā

Λ DφaDφ
ā] = ∂(DφaDφ

ā) + λ(DφaDφ
ā)

+ χD(DφaDφ
ā) +

1

2
λ2χ− λχ(Dφaφ

ā),
(4.23)

[φa∂φ
ā

Λ ∂φaφ
ā] = −∂(∂φaφ

ā)− 2λ(∂φaφ
ā)− λ2(φaφ

ā), (4.24)

[φa∂φ
ā

Λ φa∂φ
ā] = −∂(φa∂φ

ā)− 2λ(φa∂φ
ā), (4.25)

[φa∂φ
ā

Λ DφaDφ
ā] = −∂(DφaDφ

ā)− λ(DφaDφ
ā)

− χD(DφaDφ
ā) +

1

2
λ2χ− λχ(φaDφ

ā),
(4.26)
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[DφaDφ
ā

Λ ∂φaφ
ā] = ∂(∂φaφ

ā) + λ(∂φaφ
ā)

+ χD(∂φaφ
ā) +

1

2
λ2χ+ λχ(Dφaφ

ā),
(4.27)

[DφaDφ
ā

Λ φa∂φ
ā] = ∂(φa∂φ

ā) + λ(φa∂φ
ā)

+ χD(φa∂φ
ā) +

1

2
λ2χ+ λχ(φaDφ

ā),
(4.28)

[DφaDφ
ā

Λ DφaDφ
ā] = ∂(DφaDφ

ā) + 2λ(DφaDφ
ā). (4.29)

Proof. For the Λ-bracket in (4.23), we have :

[∂φaφ
ā

Λ DφaDφ
ā] = [∂φaφ

ā
Λ Dφa]Dφ

ā +Dφa[∂φaφ
ā

Λ Dφā]

+

∫ Λ

0

[[∂φaφ
ā

Λ Dφa] Γ Dφ
ā] dΓ

= ((D + χ)∂φa)Dφ
ā +Dφa((D + χ)(∂ + λ)φā)

+

∫ Λ

0

[(D + χ)∂φa Γ Dφ
ā] dΓ

= ∂DφaDφ
ā + χ∂φaDφ

ā +Dφa∂Dφ
ā + λDφaDφ

ā

− χDφa∂φā − λχDφaφā +

∫ Λ

0

[(D + χ)∂φa Γ Dφ
ā] dΓ

= ∂(DφaDφ
ā) + λ(DφaDφ

ā)

+ χD(DφaDφ
ā)− λχ(Dφaφ

ā) +
1

2
λ2χ,

(4.30)

from (A.3) and (A.4) in Appendix A, and the non-commutative Wick formula
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of NK = 1 SUSY LCAs. Indeed, the integral term is computed as follows :∫ Λ

0

[(D + χ)∂φa Γ Dφ
ā] dΓ =

∫ Λ

0

(η − χ)(−γ)(−1)(D + η)[φa Γ φ
ā] dΓ

=

∫ Λ

0

(η − χ)γη dΓ

=

∫ Λ

0

−γ2 − χγη dΓ

= ∂η

(∫ λ

0

−γ2 − χγη dγ
)

= ∂η

(
−1

3
λ3 − 1

2
χλ2η

)
=

1

2
χλ2.

(4.31)

Similarly, by using the results in Lemma A.1, Lemma A.2 and Lemma A.3,

we can compute the other Λ-brackets.

Now we will find the shifted superconformal vectors in the SUSY charged

free fermion vertex algebras :

Ansatz 4.5. Let T chsh be the field written as a linear combination of three

quadratic terms in Lemma 4.4, i.e.

T chsh = m1∂φaφ
ā +m2φa∂φ

ā +m3DφaDφ
ā. (4.32)

Then the Λ-bracket of T chsh with itself follows from Lemma 4.4 :

[T chsh Λ T chsh ]

=

(
(m2

1 −m1m2 +m1m3)∂

+ (2m2
1 − 2m1m2 +m1m3)λ+ (m1m3)χD

)
∂φaφ

ā

+

(
(m1m2 −m2

2 +m2m3)∂

+ (2m1m2 − 2m2
2 +m2m3)λ+ (m2m3)χD

)
φa∂φ

ā

+

(
(m1m3 −m2m3 +m2

3)∂

+ (m1m3 −m2m3 + 2m2
3)λ+ (m1m3 −m2m3)χD

)
DφaDφ

ā

+ (m1m3 +m2m3)λ2χ.

(4.33)
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On the other hand,

(2∂ + 3λ+ χD)T chsh +
csh
3
λ2χ =

(
(2m1)∂ + (3m1)λ+ (m1)χD

)
∂φaφ

ā

+
(

(2m2)∂ + (3m2)λ+ (m2)χD
)
φa∂φ

ā

+
(

(2m3)∂ + (3m3)λ+ (m3)χD
)
DφaDφ

ā

+
csh
3
λ2χ.

(4.34)

By comparing the coefficients of each monomial terms, we know that the

triple of the form

(m1,m2,m3) = (ta + 1, ta, 1), (4.35)

for any complex number ta satisfies the lambda bracket equality :

[T chsh Λ T chsh ] = (2∂ + 3λ+ χD)T chsh +
csh
3
λ2χ, (4.36)

where the central charge is csh = 6ta + 3. For the odd element a ∈ A, we

obtain the result by replacing the fields φa and φā with φā and φa respectively.

Hence we have shown the following theorem :

Theorem 4.6. Let T chsh be the field defined by

T chsh =
∑
a∈A0̄

(ta + 1)∂φaφ
ā + taφa∂φ

ā +DφaDφ
ā

+
∑
a∈A1̄

ta∂φaφ
ā + (ta + 1)φa∂φ

ā +DφaDφ
ā,

(4.37)

where (ta)a∈A is a sequence of complex numbers. Then the field T chsh is a

superconformal vector of the SUSY charged free fermion vertex algebra F ch
N=1

with the central charge

csh =
∑
a∈A

(6ta + 3). (4.38)
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Definition 4.7. The field T chsh defined in Theorem 4.6 is called the shifted

superconformal vector of the supersymmetric charged free fermion vertex

algebra F ch
N=1.

Remark 4.8. If we define the ghost field T chghost as

T chghost =
∑
a∈A

ta∂(φaφ
ā), (4.39)

then the shifted superconformal vector T chsh can be written as

T chsh = T chst + T chghost. (4.40)

Moreover, if the complex numbers ta are all zeros, then the standard super-

conformal vector T chst is recovered.

Now, the conformal weight of each of fields φa and φā has one degree of

freedom.

Proposition 4.9. For an even element a in A, the conformal weights of φa
and φā are respectively −1

2
ta and 1

2
ta + 1

2
. For an odd element a in A, the

conformal weights are 1
2
ta + 1

2
and −1

2
ta respectively. Moreover, the fields φa

and φā are primary with respect to T chsh .

Proof. From the lambda brackets (A.1), (A.7) and (A.13) in Appendix A,

we have

[(ta + 1)∂φaφ
ā + taφa∂φ

ā +DφaDφ
ā

Λ φa]

= (ta + 1)[∂φaφ
ā

Λ φa] + ta[φa∂φ
ā

Λ φa] + [DφaDφ
ā

Λ φa]

= (ta + 1)∂φa − ta(∂ + λ)φa + (∂ + χD)φa

= 2∂φa − taλφa + χDφa,

(4.41)

for any even element a, and also we have

[(ta + 1)∂φaφ
ā + taφa∂φ

ā +DφaDφ
ā

Λ φā]

= (ta + 1)[∂φaφ
ā

Λ φā] + ta[φa∂φ
ā

Λ φā] + [DφaDφ
ā

Λ φā]

= (ta + 1)(∂ + λ)φā − ta∂φā + (∂ + χD)φā

= 2∂φā + (ta + 1)λφā + χDφā,

(4.42)
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from the lambda brackets in (A.2), (A.8) and (A.14). Hence, we have the

following Λ-brackets :

[T chsh Λ φa] = (2∂ − taλ+ χD)φa,

[T chsh Λ φā] = (2∂ + (ta + 1)λ+ χD)φā,
(4.43)

for any even element a, and

[T chsh Λ φa] = (2∂ + (ta + 1)λ+ χD)φa,

[T chsh Λ φā] = (2∂ − taλ+ χD)φā,
(4.44)

for any odd element a in A.

Remark 4.10. Roughly speaking, the SUSY W -algebra is the BRST co-

homology of the tensor product of the SUSY affine vertex algebra and the

SUSY charged free fermion vetex algebra, i.e. :

W (g, fodd, k) = H(V k(g)⊗ F ch
N=1, Q), (4.45)

where Q is the differential of V k(g) ⊗ F ch
N=1 and g denotes g with reversed

parity (for details, see Section 4.1 of [18]). For the SUSY affine vertex algebra

V k(g), there exists an N = 1 superconformal vector TKTst , the Kac-Todorov

superconformal vector which originally came from [15], of the SUSY affine

vertex algebra (see Example 5.9 of [11]). Also, for any vector v ∈ g, we know

that the vector

TKTsh = TKTst + ∂v, (4.46)

is also an N = 1 superconformal vector (see Example 2.13 of [12]). Hence,

we propose that the sum of our shifted superconformal vector in Theorem

4.6 and the Kac-Todorov superconformal vector

TW := TKTsh ⊗ 1 + 1⊗ T chsh (4.47)

gives a superconformal vector of the supersymmetric W -algebra.

Remark 4.11. Decomposition of the field T chsh via non-SUSY superconformal

vectors can be done in the same way as Remark 4.3, i.e. the shifted super-

conformal field T chsh of the SUSY charged free fermion vertex algebra F ch
N=1 is

the sum of shifted superconformal fields of the non-SUSY bc-βγ system.
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Proof. For a ∈ A0̄, we have

Y (φa∂φ
ā, z, θ) = Y (φa, z, θ)Y (∂φā, z, θ)

= Y (φa, z, θ)∂zY (φā, z, θ)

= (Y (γ, z) + θY (c, z))(Y (∂b, z) + θY (∂β, z))

= Y (γ∂b, z) + θY (c∂b+ γ∂β, z),

(4.48)

and, with the equations (4.16) and (4.17), the A0̄-part of the shifted super-

conformal field T chsh can be expressed as

(ta + 1)∂φaφ
ā + taφa∂φ

ā +DφaDφ
ā

= (ta)γ∂b+ (ta + 1)∂γb+ cβ

+ 2θ
(1

2
((ta − 1)c∂b+ (ta + 1)∂cb+ taγ∂β + (ta + 2)∂γβ)

)
.

(4.49)

If we define the ghost parts as

Lchghost =
ta
2

(c∂b+ ∂cb+ γ∂β + ∂γβ), (4.50)

Gch
ghost = ta(γ∂b+ ∂γb), (4.51)

we obtain the shifted superconformal vectors in the bc-βγ system as

Lchsh = Lchst + Lchghost

=
1

2
((ta − 1)c∂b+ (ta + 1)∂cb+ taγ∂β + (ta + 2)∂γβ),

(4.52)

Gch
sh = Gch

st +Gch
ghost

= (ta)γ∂b+ (ta + 1)∂γb+ cβ.
(4.53)

On the other hand, for the odd elements a ∈ A1̄, we have

Y (∂φaφ
ā, z, θ) = Y (∂φa, z, θ)Y (φā, z, θ)

= ∂zY (φa, z, θ)Y (φā, z, θ)

= (Y (∂b, z) + θY (∂β, z))(Y (γ, z) + θY (c, z))

= Y (∂bγ, z) + θY (∂βγ − ∂bc, z),

(4.54)
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and, also with the equations in (4.19), the A1̄-part of the shifted supercon-

formal field T chsh can be written as

(ta + 1)∂φaφ
ā + taφa∂φ

ā +DφaDφ
ā

= (ta)γ∂b+ (ta + 1)∂γb+ cβ

+ 2θ
(1

2
((ta − 1)c∂b+ (ta + 1)∂cb+ taγ∂β + (ta + 2)∂γβ)

)
,

(4.55)

of which the expression is same as the A0̄-parts.

Hence the shifted superconformal field of the SUSY charged free fermion

vertex algebra is the sum of dimU copies of the shifted superconformal field

of the non-SUSY bc-βγ system, i.e.

T chsh =
∑
a∈A

Gch
sh + 2θ(

∑
a∈A

Lchsh). (4.56)

Remark 4.12. In Remark 4.8, the SUSY vertex algebra case, the field T chst
is a special case of the field T chsh when ta = 0 for all a ∈ A. Likewise, we can

see that the each field of Lchst and Gch
st is also a special case of the each field

of Lchsh and Gch
sh in the non-SUSY bc-βγ system.

4.3 Shifted N = 2 superconformal structures

of SUSY charged free fermion vertex al-

gebras

From [3] and [11], we can use the fact that the field

J chst =
∑
a∈A0̄

Dφaφ
ā +

∑
a∈A1̄

Dφāφa, (4.57)

together with T chst form an N = 2 superconformal vertex algebra structure.

For the N = 2 superconformal symmetry of F ch
N=1 compatible with the shifted

superconformal vector T chsh , we find the corresponding ghost term in Theo-

rem 4.14. We also write the shifted N = 2 superconformal fields as N = 2

superfields in Theorem 4.21.
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Lemma 4.13. Let F ch
N=1 be the SUSY charged free fermion vertex algebra.

For any even element a in A, we have the following Λ-brackets :

[∂φaφ
ā

Λ Dφaφ
ā] = ∂(Dφaφ

ā) + λ(Dφaφ
ā) + χD(Dφaφ

ā)

+ χ(DφaDφ
ā)− 1

2
λ2,

(4.58)

[∂φaφ
ā

Λ φaDφ
ā] = ∂(φaDφ

ā) + λ(φaDφ
ā) + χD(φaDφ

ā)

− χ(DφaDφ
ā) + λχ(φaφ

ā) +
1

2
λ2,

(4.59)

[φa∂φ
ā

Λ Dφaφ
ā] = −∂(Dφaφ

ā)− λ(Dφaφ
ā)− χD(Dφaφ

ā)

− χ(DφaDφ
ā)− λχ(φaφ

ā)− 1

2
λ2,

(4.60)

[φa∂φ
ā

Λ φaDφ
ā] = −∂(φaDφ

ā)− λ(φaDφ
ā)− χD(φaDφ

ā)

+ χ(DφaDφ
ā) +

1

2
λ2,

(4.61)

[DφaDφ
ā

Λ Dφaφ
ā] = ∂(Dφaφ

ā) + λ(Dφaφ
ā)− χ(DφaDφ

ā)

+
1

2
λ2,

(4.62)

[DφaDφ
ā

Λ φaDφ
ā] = ∂(φaDφ

ā) + λ(φaDφ
ā) + χ(DφaDφ

ā)

+
1

2
λ2,

(4.63)

[Dφaφ
ā

Λ Dφaφ
ā] = ∂φaφ

ā +DφaDφ
ā + λχ, (4.64)

[Dφaφ
ā

Λ φaDφ
ā] = φa∂φ

ā −DφaDφā + λ(φaφ
ā), (4.65)

[φaDφ
ā

Λ Dφaφ
ā] = −∂φaφā −DφaDφā − λ(φaφ

ā), (4.66)

[φaDφ
ā

Λ φaDφ
ā] = −φa∂φā +DφaDφ

ā − λχ. (4.67)
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Proof. For the Λ-bracket in (4.58), we have :

[∂φaφ
ā

Λ Dφaφ
ā] = [∂φaφ

ā
Λ Dφa]φ

ā +Dφa[∂φaφ
ā

Λ φā]

+

∫ Λ

0

[[∂φaφ
ā

Λ Dφa] Γ φ
ā] dΓ

= ((D + χ)∂φa)φ
ā +Dφa(∂ + λ)φā

+

∫ Λ

0

[(D + χ)∂φa Γ φ
ā] dΓ

= ∂Dφaφ
ā + χ∂φaφ

ā +Dφa∂φ
ā + λDφaφ

ā

+

∫ Λ

0

−(η − χ)γ dΓ

= ∂(Dφaφ
ā) + λ(Dφaφ

ā) + χD(Dφaφ
ā)

+ χ(DφaDφ
ā)− 1

2
λ2,

(4.68)

from (A.3) and (A.2) in Lemma A.1. Similarly, we can compute the Λ-

brackets in (4.59)–(4.63) by using Lemma A.1, Lemma A.2 and Lemma A.3.

The Λ-brackets in (4.64)–(4.67) follows from Lemma A.4.

Theorem 4.14. Let J chghost be the field defined as

J chghost =
∑
a∈A0̄

ta(Dφaφ
ā + φaDφ

ā) +
∑
a∈A1̄

ta(Dφ
āφa + φāDφa). (4.69)

Then the current field

J chsh = J chst + J chghost, (4.70)

and the superconformal field T chsh generates an N = 2 superconformal struc-

ture of central charge csh.

Proof. For the A0̄-parts, by using the Lemma 4.13, we have the following
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Λ-brackets :

[T chst Λ J chst ] = (2∂ + 2λ+ χD)J chst ,

[T chst Λ J chghost] = (2∂ + 2λ+ χD)J chghost

+
∑
a∈A0̄

taλ
2 +

∑
a∈A0̄

taλχφaφ
ā,

[T chghost Λ J chst ] = −
∑
a∈A0̄

taλ
2 −

∑
a∈A0̄

taλχφaφ
ā,

[T chghost Λ J chghost] = 0,

(4.71)

hence, we have

[T chsh Λ J chsh ] = (2∂ + 2λ+ χD)J chsh . (4.72)

Also, we can check the following Λ-brackets :

[J chst Λ J chst ] = T chst +
∑
a∈A0̄

λχ,

[J chst Λ J chghost] = T chghost +
∑
a∈A0̄

taλφaφ
ā +

∑
a∈A0̄

taλχ,

[J chghost Λ J chst ] = −
∑
a∈A0̄

taλφaφ
ā +

∑
a∈A0̄

taλχ,

[J chghost Λ J chghost] = 0,

(4.73)

thus we obtain the following result :

[J chsh Λ J chsh ] = T chsh +
∑
a∈A0̄

(2ta + 1)λχ. (4.74)

For the A1̄-part, we have the same result by replacing the fields φa with φā,

and vice versa. Hence, the fields T chsh and J chsh satisfy theN = 2 superconformal

symmetry.

Remark 4.15. Indeed, we can write (see Example 3.13 in [3]) the N = 1

superfields T chsh and J chsh as :

T chsh (z, θ) = (Gch,+
sh (z) +Gch,−

sh (z)) + 2θLchsh(z),

J chsh(z, θ) = J chsh(z) + θ(Gch,−
sh (z)−Gch,+

sh (z)),
(4.75)
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where

Lchsh(z) =
∑
a∈A

1

2

(
(ta − 1)c∂b+ (ta + 1)∂cb

+ taγ∂β + (ta + 2)∂γβ

)
, (4.76)

Gch,+
sh (z) =

∑
a∈A

cβ, (4.77)

Gch,−
sh (z) =

∑
a∈A

(ta + 1)∂γb+ (ta)γ∂b, (4.78)

J chsh(z) =
∑
a∈A

(ta + 1)cb+ taγβ, (4.79)

from the equations (4.10), (4.14), (4.15), (4.52) and (4.53). Then we know

that the fields Lchsh, G
ch,+
sh , Gch,−

sh and J chsh satisfy the non-SUSY lambda bracket

relations of N = 2 superconformal vertex algebras.

Remark 4.16. From Definition 4.10 of [11], recall that the lambda brackets

of NK = 2 SUSY Lie conformal algebras are given by :

[u Λ v] =
∑
j≥0

λj

j!
u(j|00)v − χ1

∑
j≥0

λj

j!
u(j|10)v

− χ2
∑
j≥0

λj

j!
u(j|01)v − χ1χ2

∑
j≥0

λj

j!
u(j|11)v.

(4.80)

On the other hand, by sesquilinearity of NK = 2 SUSY LCAs, we have :

u(j|00)v = −D1D2u(j|11)v,

u(j|10)v = D2u(j|11)v,

u(j|01)v = −D1u(j|11)v,

(4.81)

hence we obtain the following equality :

[u Λ v] = −[D1D2u λ v]− χ1[D2u λ v]

+ χ2[D1u λ v]− χ1χ2[u λ v].
(4.82)
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Remark 4.17. Following the Remark 4.15, consider the NK = 2 SUSY ver-

tex algebra structure (see Remark 2.8 in [11]) where the odd endomorphisms

are defined by

D1 = (Gch,+
sh +Gch,−

sh )(0) = (Gch,+
st +Gch,−

st )(0),

D2 = i(Gch,+
sh −Gch,−

sh )(0) = i(Gch,+
st −Gch,−

st )(0),
(4.83)

and the state-field correspondence is given by

Y (v, z, θ1, θ2) = Y (v, z) + θ1Y (D1v, z)

+ θ2Y (D2v, z) + θ2θ1Y (D1D2v, z).
(4.84)

Let P ch
sh be the vector defined as :

P ch
sh = −iJ chsh (−1) |0〉

= −i
∑
a∈A

(ta + 1)cb+ taγβ.
(4.85)

Then the N = 2 superfield corresponding to P ch
sh is expanded as :

Y (P ch
sh , z, θ

1, θ2) =− iY (J chsh , z)− iθ1Y (D1J chsh , z)

− iθ2Y (D2J chsh , z)− iθ2θ1Y (D1D2J chsh , z)

=− iY (J chsh , z)− iθ1Y (Gch,−
sh −Gch,+

sh , z)

− θ2Y (Gch,+
sh +Gch,−

sh , z)− θ2θ1Y (2Lchsh, z)

=− iY (J chsh , z, θ
1)− θ2Y (T chsh , z, θ

1),

(4.86)

which follows from the non-SUSY lambda bracket relations of N = 2 super-

conformal vertex algebras.

Proposition 4.18. The field P ch
sh defined in Remark 4.17 satisfies the fol-

lowing lambda bracket :

[P ch
sh Λ P ch

sh ]NK=2 = (2∂ + 2λ+ χ1D1 + χ2D2)P ch
sh +

csh
3
λχ1χ2. (4.87)

Hence, the shifted N = 2 superconformal symmetry in Theorem 4.14 is gen-

erated by one N = 2 superfield P ch
sh in the NK = 2 SUSY vertex algebra

formalism.
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Proof. Note that the fields Lchsh, G
ch,+
sh , Gch,−

sh , J chsh in Remark 4.15 satisfy the

non-SUSY lambda bracket relations of N = 2 superconformal vertex algebras

(see Definition 3.3), and by the definitions of D1 and D2 in Remark 4.17, we

have :

D1J chsh = Gch,−
sh −Gch,+

sh ,

iD2J chsh = Gch,+
sh +Gch,−

sh ,

iD1D2J chsh = 2Lchsh.

(4.88)

Then, from the equality (4.82) in Remark 4.16, we have :

[P ch
sh Λ P ch

sh ] =− i[iD1D2J chsh λ J
ch
sh ]− iχ1[iD2J chsh λ J

ch
sh ]

− χ2[D1J chsh λ J
ch
sh ] + χ1χ2[J chsh λ J

ch
sh ]

=− i[2Lchsh λ J
ch
sh ]− iχ1[Gch,+

sh +Gch,−
sh λ J

ch
sh ]

− χ2[Gch,−
sh −Gch,+

sh λ J
ch
sh ] + χ1χ2[J chsh λ J

ch
sh ]

=− i(2∂ + 2λ)J chsh − iχ1(Gch,−
sh −Gch,+

sh )

− χ2(Gch,+
sh +Gch,−

sh ) + χ1χ2 csh
3
λ

=− i(2∂ + 2λ)J chsh − iχ1D1J chsh

− iχ2D2J chsh + χ1χ2 csh
3
λ

= (2∂ + 2λ+ χ1D1 + χ2D2)(−iJ chsh) +
csh
3
λχ1χ2.

(4.89)

Remark 4.19. Now, using the notations in Remark 4.3, let us define the

N = 2 superfields Φa and Φā as :

Φa = Y (γ, z, θ1, θ2)

= Y (γ, z) + θ1Y (D1γ, z) + θ2Y (D2γ, z) + θ2θ1Y (D1D2γ, z)

= Y (γ, z) + θ1Y (c, z) + θ2Y (ic, z) + θ2θ1Y (i∂γ, z)

= φa + iθ2D1φa,

(4.90)
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Φā = Y (b, z, θ1, θ2)

= Y (b, z) + θ1Y (D1b, z) + θ2Y (D2b, z) + θ2θ1Y (D1D2b, z)

= Y (b, z) + θ1Y (β, z) + θ2Y (iβ, z) + θ2θ1Y (i∂b, z)

= φā + iθ2D1φā,

(4.91)

where the NK = 2 SUSY vertex algebra structure is given by Remark 4.17.

Then the Λ-bracket of Φa and Φā is :

[Φa Λ Φā] = −iχ1 + χ2. (4.92)

We also know that :

D1Φa = D1φa − iθ2∂φa, D1Φā = D1φā − iθ2∂φā,

D2Φa = iD1φa + θ2∂φa, D2Φā = iD1φā + θ2∂φā,
(4.93)

so that, for any even element a ∈ A0̄, we have :

D1ΦaΦ
ā = D1φaφ

ā − iθ2(∂φaφ
ā +D1φaD

1φā),

ΦaD
1Φā = φaD

1φā − iθ2(φa∂φ
ā −D1φaD

1φā),
(4.94)

and, for any odd element a ∈ A1̄ :

D1ΦāΦa = D1φāφa − iθ2(φa∂φ
ā +D1φaD

1φā),

ΦāD1Φa = φāD1φa − iθ2(∂φaφ
ā −D1φaD

1φā).
(4.95)

Therefore, the N = 2 superfield P ch
sh in (4.86) can be written as :

P ch
sh = −i


∑
a∈A0̄

(ta + 1)D1ΦaΦ
ā + taΦaD

1Φā

+
∑
a∈A1̄

(ta + 1)D1ΦāΦa + taΦ
āD1Φa



= −i


∑
a∈A0̄

(ta + 1)D1ΦaΦ
ā + taΦaD

1Φā

+
∑
a∈A1̄

taD
1ΦaΦ

ā − (ta + 1)ΦaD
1Φā

 .

(4.96)
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Then, by using the NK = 2 lambda bracket (4.92) and the relations :

iD1Φa = D2Φa, iD1Φā = D2Φā, (4.97)

one can also check directly the field P ch
sh is an N = 2 superconformal vector

(see Theorem 4.21).

Definition 4.20. Let U be a finite-dimensional vector superspace and A =

A0̄ ∪A1̄ be a basis of U , where A0̄ is the even part and A1̄ is the odd part of

the basis. Define two vector superspaces :

ΦU ' U, ΦŪ ' ΠU∗, (4.98)

whose basis elements are denoted by Φa and Φā respectively. Define the Λ-

brackets on Rbcβγ
N=2 = HN=2 ⊗ (ΦU ⊕ ΦŪ) by :

[Φa Λ Φb̄] = δab(−iχ1 + χ2), [Φa Λ Φb] = [Φā
Λ Φb̄] = 0, (4.99)

for a, b ∈ A. Then the HN=2-module Rbcβγ
N=2 is an NK = 2 SUSY Lie conformal

algebra. Now let V (Rbcβγ
N=2) be the universal enveloping NK = 2 SUSY vertex

algebra of Rbcβγ
N=2, and let I(Rbcβγ

N=2) be the ideal generated by elements of

the form (4.97). Then we define the N = 2 supersymmetric bc-βγ system

associated to the vector superspace U as the quotient V (Rbcβγ
N=2)/I(Rbcβγ

N=2).

Theorem 4.21. Let P ch
sh be the vector defined by

P ch
sh = −i


∑
a∈A0̄

(ta + 1)D1ΦaΦ
ā + taΦaD

1Φā

+
∑
a∈A1̄

(ta + 1)D1ΦāΦa + taΦ
āD1Φa

 , (4.100)

where (ta)a∈A is a sequence of complex numbers. Then the vector P ch
sh is an

N = 2 superconformal vector of the N = 2 SUSY bc-βγ system with the

central charge

csh =
∑
a∈A

(6ta + 3). (4.101)
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Proof. Let a be an even element of A. From the non-commutative Wick

formula of NK = 2 SUSY LCAs, we have :

[Φa Λ D1ΦaΦ
ā] = (iχ1D1 − χ2D1)Φa, (4.102)

hence, by skew-symmetry :

[D1ΦaΦ
ā

Λ Φa] = −[Φa −∇−Λ D1ΦaΦ
ā]

= (−i(−D1 − χ1)D1 + (−D2 − χ2)D1)Φa

= i(2∂ + χ1D1 + χ2D2)Φa.

(4.103)

Therefore we have :

[D1ΦaΦ
ā

Λ D1Φa] = i(D1 + χ1)(2∂ + χ1D1 + χ2D2)Φa

= i(2∂ + λ+ χ1D1 + χ2D2)D1Φa − χ1χ2D1Φa.
(4.104)

Similarly, we obtain :

[D1ΦaΦ
ā

Λ Φā] = i(2∂ + λ+ χ1D1 + χ2D2)Φā + χ1χ2Φā. (4.105)

By the Λ-brackets in (4.104) and (4.105), and from the non-commutative

Wick formula, we have :

[D1ΦaΦ
ā

Λ D1ΦaΦ
ā] = [D1ΦaΦ

ā
Λ D1Φa]Φ

ā +D1Φa[D
1ΦaΦ

ā
Λ Φā]

+

∫ Λ

0

[[D1ΦaΦ
ā

Λ D1Φa] Γ Φā] dΓ

= i(2∂ + 2λ+ χ1D1 + χ2D2)(D1ΦaΦ
ā)− λχ1χ2.

(4.106)

On the other hand, we can compute :

[ΦaΦ
ā

Λ ΦaΦ
ā] = 0. (4.107)

From the Λ-brackets in (4.103) and (4.105), we have :

[D1ΦaΦ
ā

Λ ΦaΦ
ā] = i(2∂ + λ+ χ1D1 + χ2D2)(ΦaΦ

ā)

+ χ1χ2(ΦaΦ
ā)− λ(−iχ1 + χ2).

(4.108)
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Hence, using sesquilinearity, we find :

[D1ΦaΦ
ā

Λ D1(ΦaΦ
ā)] = i(2∂ + 2λ+ χ1D1 + χ2D2)(D1(ΦaΦ

ā))

+ (iλχ1 + λχ2)(ΦaΦ
ā)− iλ2 − λχ1χ2,

(4.109)

and, by skew-symmetry, we have :

[D1(ΦaΦ
ā) Λ D1ΦaΦ

ā] = −(iλχ1 + λχ2)(ΦaΦ
ā) + iλ2 − λχ1χ2. (4.110)

Combining the results in (4.106), (4.107), (4.109) and (4.110), we obtain :

[D1ΦaΦ
ā + taD

1(ΦaΦ
ā) Λ D1ΦaΦ

ā + taD
1(ΦaΦ

ā)]

= i(2∂ + 2λ+ χ1D1 + χ2D2)(D1ΦaΦ
ā + taD

1(ΦaΦ
ā))

− (2ta + 1)λχ1χ2,

(4.111)

hence, we get the result.
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Calculations of lambda brackets

For any even element a in A, we have the following lambda brackets in F ch
N=1.

Lemma A.1. Lambda brackets for ∂φaφ
ā :

[∂φaφ
ā

Λ φa] = ∂φa, (A.1)

[∂φaφ
ā

Λ φā] = (∂ + λ)φā, (A.2)

[∂φaφ
ā

Λ Dφa] = (D + χ)∂φa, (A.3)

[∂φaφ
ā

Λ Dφā] = (D + χ)(∂ + λ)φā, (A.4)

[∂φaφ
ā

Λ ∂φa] = (∂ + λ)∂φa, (A.5)

[∂φaφ
ā

Λ ∂φā] = (∂ + λ)2φā. (A.6)

Proof. The Λ-brackets can be obtained by using the rules of NK = 1 SUSY

vertex algebras. For the Λ-bracket in (A.1) :

[φa Λ ∂φaφ
ā] = [φa Λ ∂φa]φ

ā + (−1)(a+1)a∂φa[φa Λ φā]

+

∫ Λ

0

[[φa Λ ∂φa] Γ φ
ā] dΓ

= ∂φa,
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since, from sesquilinearity, we know that :

[φa Λ ∂φa] = (∂ + λ)[φa Λ φa] = 0.

Hence, by skew-symmetry, we get :

[∂φaφ
ā

Λ φa] = (−1)(a+a+1)a[φa −∇−Λ ∂φaφ
ā] = ∂φa.

Similarly, the other Λ-brackets also can be obtained by using the rules of

Λ-brackets of NK = 1 SUSY vertex algebras.

Lemma A.2. Lambda brackets for φa∂φ
ā :

[φa∂φ
ā

Λ φa] = −(∂ + λ)φa, (A.7)

[φa∂φ
ā

Λ φā] = −∂φā, (A.8)

[φa∂φ
ā

Λ Dφa] = −(D + χ)(∂ + λ)φa, (A.9)

[φa∂φ
ā

Λ Dφā] = −(D + χ)∂φā, (A.10)

[φa∂φ
ā

Λ ∂φa] = −(∂ + λ)2φa, (A.11)

[φa∂φ
ā

Λ ∂φā] = −(∂ + λ)∂φā. (A.12)

Proof. It follows from direct calculations.

Lemma A.3. Lambda brackets for DφaDφ
ā :

[DφaDφ
ā

Λ φa] = (∂ + χD)φa, (A.13)

[DφaDφ
ā

Λ φā] = (∂ + χD)φā, (A.14)

[DφaDφ
ā

Λ Dφa] = (∂ + λ)Dφa, (A.15)

[DφaDφ
ā

Λ Dφā] = (∂ + λ)Dφā, (A.16)

[DφaDφ
ā

Λ ∂φa] = (∂ + λ)(∂ + χD)φa, (A.17)

[DφaDφ
ā

Λ ∂φā] = (∂ + λ)(∂ + χD)φā. (A.18)

38
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Proof. The results can be verified by direct computations.

Lemma A.4. Lambda brackets for Dφaφ
ā and φaDφ

ā :

[Dφaφ
ā

Λ φa] = −Dφa, (A.19)

[Dφaφ
ā

Λ φā] = −(D + χ)φā, (A.20)

[Dφaφ
ā

Λ Dφa] = (∂ + χD)φa, (A.21)

[Dφaφ
ā

Λ Dφā] = (∂ + λ)φā, (A.22)

[φaDφ
ā

Λ φa] = (D + χ)φa, (A.23)

[φaDφ
ā

Λ φā] = Dφā, (A.24)

[φaDφ
ā

Λ Dφa] = −(∂ + λ)φa, (A.25)

[φaDφ
ā

Λ Dφā] = −(∂ + χD)φā. (A.26)

Proof. We also get the results from direct computations.
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Charge decomposition

Definition B.1. As in Section 5.1 of [12], the eigenvalue of J chsh (0|1) corre-

sponding to v ∈ F ch
N=1 is called the charge of v. Then, for any even element a

in A, the charges of φa and φā are ta and −(ta + 1) respectively. For the odd

elements, the charges of φa and φā are −(ta + 1) and ta respectively. Also, if

we define the BRST operator Q of F ch
N=1 as follows:

Q =
1

2

(
T chsh (0|1) − J

ch
sh (0|0)

)
, (B.1)

then we obtain the following result.

Proposition B.2. The BRST operator Q of F ch
N=1 satisfies Q2 = 0.

Proof. If we set d =
∑
a∈A

DφaDφ
ā, we know that :

Q =
1

2

(
T chsh (0|1) − J

ch
sh (0|0)

)
=

1

2

(
T chsh (0|1) −DJ

ch
sh (0|1)

)
= d(0|1),

(B.2)

by sesquilinearity of NK = 1 supersymmetric LCAs. Also we have :

[d Λ [d Γ v]] = [[d Λ d] Λ+Γ v] + [d Γ [d Λ v]]

= [∂d+ 2λd Λ+Γ v] + [d Γ [d Λ v]]

= (λ− γ)[d Λ+Γ v] + [d Γ [d Λ v]],

(B.3)
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for v ∈ F ch
N=1, from the Jacobi identity of NK = 1 supersymmetric LCAs

and the equation (4.29) in Lemma 4.4. Hence, by comparing the χη-terms in

(B.3), we have the result :

d(0|1)(d(0|1)v) = 0. (B.4)

Remark B.3. The BRST operator Q is invariant under any values of ta,

that is :

Q =
1

2

(
T chst (0|1) − J

ch
st (0|0)

)
. (B.5)

Indeed, if we decompose the fields T chsh and J chsh as in (4.75), then the BRST

operator Q is the zero mode of the field Gch,+
sh . On the other hand, the ghost

term contributes to the homotopy operator H of F ch
N=1 defined by :

H =
1

2

(
T chsh (0|1) + J chsh (0|0)

)
= (T chsh − d)(0|1), (B.6)

which is the zero mode of the field Gch,−
sh .

Proposition B.4. Let v ∈ F ch
N=1 be a vector of the charge m. Then Q(v) has

the charge m+ 1.

Proof. From the Lemma 4.13, we have :

[d Λ J chsh ] = (∂ + λ)J chsh − χd+
csh
6
λ2, (B.7)

where d =
∑
a∈A

DφaDφ
ā. Hence we have the following Λ-bracket :

[J chsh Λ d] = [d −Λ−∇ J
ch
sh ]

= −λJ chsh + (χ+D)d+
csh
6
λ2,

(B.8)

by skew-symmetry of NK = 1 supersymmetric LCAs, and then :

[J chsh Λ [d Γ v]] = −[[J chsh Λ d] Λ+Γ v] + [d Γ [J chsh Λ v]]

= [λJ chsh − (χ+D)d− csh
6

Λ+Γ v] + [d Γ [J chsh Λ v]]

= λ[J chsh Λ+Γ v]− η[d Λ+Γ v] + [d Γ [J chsh Λ v]],

(B.9)
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from the Jacobi identity of NK = 1 supersymmetric LCAs. By comparing

the coefficients of χη-terms in (B.9), we obtain the result :

J chsh (0|1)Q(v) = J chsh (0|1)(d(0|1)v)

= d(0|1)v + d(0|1)(J
ch
sh (0|1)v)

= Q(v) +Q(mv) = (m+ 1)Q(v).

(B.10)

Remark B.5. For the BRST operator Q and the homotopy operator H of

F ch
N=1, defined in Remark B.3, we have the following result from the simple

calculations :

Q(Diφ) =

{
Di+1φ, if i ∈ 2Z≥0

0, if i ∈ 2Z≥0 + 1,

H(Diφ) =

{
0, if i ∈ 2Z≥0

Di+1φ, if i ∈ 2Z≥0 + 1,

(B.11)

where φ stands either φa or φā for any a ∈ A. Also the homotopy operator

H decreases the charge by −1. Moreover, if the charges of u, v ∈ F ch
N=1 are

mu and mv respectively, then uv has the charge mu + (−1)umv.

Proposition B.6. For (ta)a∈A ∈ ZdimU , the supersymmetric charged free

fermion vertex algebra has a Z-grading :

F ch
N=1 =

⊕
m∈Z

F ch,m
N=1 , (B.12)

called the charge decomposition, where F ch,m
N=1 is the subspace whose elements

have the charge m.

Proof. Combining the facts in Remark B.5 and Proposition B.4, we obtain

the result.
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국문초록

본학위논문에서는,기존의초대칭 bc-βγ 체계의초등각대칭벡터를확장시킨

형태의 초대칭 자유페르미온 꼭지점대수의 N = 1 초등각대칭 벡터를 정의하

고, 이와 함께 쌍을 이루는 N = 2 초등각대칭을 찾았다. 그리고 이 결과들을

NK = 2 초대칭 꼭지점대수의 언어를 사용하여 나타내었다.

주요어휘: 초대칭 꼭지점대수, 초등각대칭 꼭지점대수, 초대칭 자유페르미온

꼭지점대수, 초등각대칭벡터

학번: 2021-22555
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