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Abstract

In this paper, we define the shifted superconformal vector of supersymmetric
charged free fermion vertex algebras, which is a 1-parameter deformation of
the superconformal vector of the SUSY be-(7 system. Moreover, we find the
corresponding shifted N = 2 superconformal symmetry of SUSY charged free
fermion vertex algebras, by using the Nx = 1 SUSY vertex algebra formal-
ism. Finally, in order to describe the shifted N = 2 superconformal symmetry
of the SUSY charged free fermion vertex algebra by N = 2 superfields, we
construct an N = 2 SUSY version of the be-Sv system.

Key words: Supersymmetric Vertex Algebras, Superconformal Vertex Alge-
bras, Supersymmetric Free Fermion Vertex Algebras, Superconformal Vectors
Student Number: 2021-22555
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Chapter 1

Introduction

Superconformal symmetries have been studied widely in both mathematics
and physics literature, see for example [1, 9, 16, 20]. Especially in the theory
of vertex algebras, superconformal vectors give rise to the superconformal
structures of vertex algebras (see [13]).

In this paper, we study the superconformal structure and the deforma-
tion of superconformal vectors of the supersymmetric charged free fermion
vertex algebras. In [4, 14], the non-SUSY charged free fermion vertex algebra
appears as a ghost part of the non-SUSY W-algebra. Just as in the non-
SUSY case, the SUSY charged free fermion vertex algebra is the ghost part
of the SUSY W-algebra, which was studied in [17, 18]. On the other hand,
conformal vectors play an important role in the theory of vertex algebras,
for example, they induce the notion of energy-momentum fields (see [13]).
Also, superconformal vectors can be regarded as supersymmetric analogues
of conformal vectors.

Despite some difficulties in finding superconformal vectors in general, the
constructions of superconformal vectors were studied in some cases. For ex-
ample, the superconformal vector of the non-SUSY free fermion vertex alge-
bra was studied in [9], and the Kac-Todorov construction (see [15]) of the
non-SUSY affine vertex algebras was given in [13]. In the SUSY case, some
basics about the superconformal structures of SUSY vertex algebras and es-
pecially superconformal vectors of the SUSY affine vertex algebras and the
SUSY be-f system can be found in [11].



CHAPTER 1. INTRODUCTION

In the context of BRST cohomology, deformations of the (super)conformal
vectors are also important, in addition to the construction of (super)conformal
vectors. In [5], the 1-parameter deformation of the conformal vector of the
non-SUSY be-f7v system was introduced. Also, the modification of the Sug-
awara construction of the conformal vector of the non-SUSY affine vertex
algebra was used in [4, 14], and for the SUSY counterpart, the modified
Kac-Todorov superconformal vector of the SUSY affine vertex algebra was
presented in [12].

In the present paper, we give a l-parameter deformation of the super-
conformal vector of the SUSY be-fv system (Theorem 4.6), which is called
the shifted superconformal vector of the SUSY charged free fermion vertex
algebras, in order to obtain varying conformal weights of monomial fields
of the SUSY charged free fermion vertex algebras. Also we find an N = 2
superconformal symmetry (Theorem 4.14), compatible with our shifted su-
perconformal vector.

The organization of this paper is as follows. In Chapter 2, following
[11, 13], we briefly review the definitions and basic properties of the vertex
algebras and the SUSY vertex algebras. In Chapter 3, we recall the defini-
tions of superconformal vertex algebras in the context of the vertex algebras
and the SUSY vertex algebras. In Chapter 4, we state the main results of
this work. We define the shifted superconformal vector of the supersymmetric
charged free fermion vertex algebras and find the corresponding N = 2 su-
perconformal symmetry. At the end of this chapter, we describe the shifted
N = 2 superconformal structure, using the Nx = 2 SUSY vertex algebra
formalism. In Appendix A, we present some calculations of lambda brackets
of the SUSY charged free fermion vertex algebras. Appendix B contains the
charge decomposition of the SUSY charged free fermion vertex algebras.



Chapter 2

Vertex algebras and SUSY
vertex algebras

In this chapter, we recollect the definitions of vertex algebras and SUSY
vertex algebras. We only consider the N = 1 and Nx = 2 SUSY vertex
algebras. The main references are [4], [11] and [13].

2.1 Vertex algebras

Definition 2.1. [13] Let V be a vector superspace. Let z be an even inde-
terminate. A field is an End(V')-valued formal distribution of the form

a(z) =Y 27 a, (2.1)
jez
where a¢jyv = 0 for all but finitely many j € Z, for each v € V.
Definition 2.2. [4, 13] A wvertex algebra (V,]0),0,Y) consists of a vector
superspace V over C, an even vector |0), an even endomorphism 0, and the
state-field correspondence Y which is a parity preserving linear map from V'

to the space of End(V)-valued fields, such that the following axioms hold :
e (Vacuum)

210) =0, Y(a,2)|0)|.eo = a, (2.2)



CHAPTER 2. VERTEX ALGEBRAS AND SUSY VERTEX ALGEBRAS

e (Translation covariance)
10,Y (a,2)] = 0,Y(a, 2), (2.3)
e (Locality) for any a, b € V, there exists n € Z>q such that
(z —w)"[Y(a,z2),Y(bw)] =0. (2.4)
The normally ordered product on V' is defined by
sab = a(_1)b. (2.5)

In this paper, we just denote by ab the normally ordered product and : a : bc ::
is denoted by abc.

Definition 2.3. [4] A Lie conformal algebra is a Z/2Z-graded C[0]-module
R with a A-bracket which is a parity preserving C-bilinear map :

[V ]:R®R—=CN®R, a®brsa, b, (2.6)

satisfying the following conditions :
e (Sesquilinearity)

Ba x b = —Alax b, [axdb=(+Na b (2.7)
o (Skew-symmetry)
baal = (~1)*[a gy 8], (2.8)
e (Jacobi identity)
[ax [0y cl = lax b aep ]+ (=1D)%B 4 [a s ], (2.9)

where we write the \-brackets as :

N
[axbl= > ﬁ%)b- (2.10)

J€Z>0



CHAPTER 2. VERTEX ALGEBRAS AND SUSY VERTEX ALGEBRAS

Definition 2.4. [4] A vertex algebra is a tuple (V,0,[ » |,]0),: :) such that :
e (V,0,[ »]) is a Lie conformal algebra,

e (V,0,]0),: :) is a unital differential superalgebra with a derivation 0, sat-
isfying the following properties :

(Quasi-commutativity)

ab — (—1)"ba = /_(;[a A b] d), (2.11)

(Quasi-associativity)

(ab)c — a(be) = (/08 d)\a) by ]+ (=1)® (/08 d)\b) layc, (2.12)

e the \-bracket and the product : : are related by :
(Non-commutative Wick formula)

A
[a 5 b = [a » ble + (—1)bfa » +/0 l[axb] , d du. (2.13)

Example 2.5. [4, 14] Let U be a finite-dimensional vector superspace and
A be a basis of U. Define two vector superspaces :

ou ~TIU, ¥ ~TIU*, (2.14)

whose basis elements are denoted by ¢, and ¢* respectively. Here Il denotes
the parity reversing functor and U* is the dual vector space of U. Define the
M-brackets on R" = C[9] @ (oy @ ¢Y) as :

[Qpa A (pb] - 5ab7 [(pa A ng] = [Spa A Spb] = Oa (215>

for a,b € A. Then R" is a Lie conformal algebra, and the charged free fermion
vertex algebra F°" associated to the vector superspace U is the universal
enveloping vertex algebra V (R").

Example 2.6. [6] Let U be the vector superspace with the basis A = AgUA;
be a basis of U, where Ag = {5,~} is the even part and A; = {b, ¢} is the
odd part of the basis. Define the A-brackets on R*?7 = C[9] ®@ U as :

Bavl=1 [v.B]=-1,

[b A C] = 1, [C A b] = 1, <216>

5



CHAPTER 2. VERTEX ALGEBRAS AND SUSY VERTEX ALGEBRAS

and other \-brackets on the basis elements are zeros. Then R’#7 is a Lie
conformal algebra, and the bc-8vy system is the universal enveloping vertex

algebra V (RY7).

2.2 SUSY vertex algebras

In this section, we recall the definitions of the Ny = 1 and N = 2 SUSY
vertex algebras as in [11].

Definition 2.7. [11] Let V be a vector superspace. Let z be an even inde-
terminate and 6 be an odd indeterminate such that §* = 0 and 6z = z6. An
N =1 superfield is an End(V')-valued formal distribution of the form

a(z0) = 2 lagn + 0> 2 a0, (2.1)

jez jez
where a(j, v = 0 for all but finitely many j € Z, for each v € V.

Definition 2.8. [11] An Nk = 1 supersymmetric vertex algebra is a tuple
(V,]0), D,Y) consisting of a vector superspace V over C, an even vector |0),
an odd endomorphism D, and the state-field correspondence Y which is a
parity preserving linear map from V' to the space of End(V)-valued N = 1
superfields, such that the following axioms hold :

e (Vacuum)

D|0) =0, Y(a,z0)0)|.—00=0 = a, (2.2)
e (Translation covariance)
[D,Y (a,z,0)] = (0p — 00.)Y (a, z,0), (2.3)
e (Locality) for any a, b € V, there exists n € Z>q such that
(z —w)"[Y(a,2,0),Y(b,w,¢)] = 0. (2.4)
The normally ordered product on V is defined by
s ab = a_1nb. (2.5)

6



CHAPTER 2. VERTEX ALGEBRAS AND SUSY VERTEX ALGEBRAS

Remark 2.9. [11] Consider the noncommutative associative superalgebra
Hy-1 = C[0, D] generated by an even generator d and an odd generator D,
with relations :

D?*=90, [0,D]=0, (2.6)

and consider the noncommutative associative superalgebra Ly—; = C[\, x]
generated by an even generator A and an odd generator y, with relations :

’=-X [Ax]=0. (2.7)

Definition 2.10. [11, 18] An Ni = 1 supersymmetric Lie conformal algebra
is a Z/2Z-graded H—1-module R with a A-bracket which is a C-bilinear map
of degree 1 :

[A]ZR®R—)£N:1®R, a®br—>[aAb], (28)

satisfying the following conditions :
e (Sesquilinearity)

[Da bl =xlarb], [aaDb]=(D)""(D+x)and], (29

where D and x are subject to the relation [D, x| = 2,
e (Skew-symmetry)

[baa)=(—1)"a _y_n b], (2.10)
where —V — A = (=0 — A\, =D — x) with the relations
[D,x] =2\, [0,A] =[0,x]=[D,\ =0, (2.11)
e (Jacobi identity)
anfbrdl= 0" aa b ave o+ (D)@ fan o], (212)
where I' = (,n) and A + T = (A + v, x +n) with relations :

] =-2v, [vyl=n=N=Nn==kn=0 (213
We write the A-brackets as :

N N
la A b] = Z ﬁa(ﬂo)b‘FX Z ﬁa(jll)b‘ (2.14)

J€Z>0 JEZ>0
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Definition 2.11. [11] An Nx = 1 supersymmetric vertex algebra is a tuple
(V,D,[ A ],10),: :) such that :

o (V,D,[ x])is an Ng =1 SUSY Lie conformal algebra,

e (V,D,|0),: :) is a unital differential superalgebra with an odd derivation
D, satisfying the following properties :

(Quasi-commutativity)

ab — (—1)%ba = /0 [a 5 ] dA, (2.15)

-V

(Quasi-associativity)

(ab)c — a(be) = (/OV dAa) [bac+ (=1 (/Ov dAb) laac], (2.16)

e the A-bracket and the product : : are related by :
(Non-commutative Wick formula)

A
(a5 b = [a » ble+ (=)@ a5 +/ fanblrdd,  (217)

where the integral fOA dl is computed as 0, fOA dy.

Example 2.12. [18] Let U be a finite-dimensional vector superspace and
A = A U A;j be a basis of U, where Aj is the even part and Aj is the odd
part of the basis. Define two vector superspaces :

v ~U, o ~TIIU*, (2.18)

whose basis elements are denoted by ¢, and ¢® respectively. Define the A-
brackets on R$_; = Hy—1 ® (¢ D ¢Y) as :

[0 & '] = Oupy  [Ba n P6) = [6° A 07 =0, (2.19)

for a,b € A. Then R$?_, is an N = 1 supersymmetric Lie conformal algebra,
and the supersymmetric charged free fermion vertex algebra F$', associated
to the vector superspace U is the universal enveloping supersymmetric vertex
algebra V(R$"_,). For the description of the universal enveloping supersym-
metric vertex algebras, see Definition 2.13 of [18].

8



CHAPTER 2. VERTEX ALGEBRAS AND SUSY VERTEX ALGEBRAS

Definition 2.13. [11] Let V' be a vector superspace. Let z be an even in-
determinate and €', #* be odd indeterminates such that [6%,6] = 0 and
[0%,2] = 0. An N = 2 superfield is an End(V)-valued formal distribution of
the form
a(z,0',0%) = Z z_j_la(jm) + 64! Z z_j_la(j‘m)
jez jez

02D 2 ago) + 0102 D 2 ago),

jez jez

(2.20)

where a(j.yv = 0 for all but finitely many j € Z, for each v € V.

Definition 2.14. [11] An Ng = 2 supersymmetric vertex algebra is a tuple
(V,]0), D', DY) consisting of a vector superspace V over C, an even vector
|0), an odd endomorphisms D!, D? and the state-field correspondence Y
which is a parity preserving linear map from V' to the space of End(V)-
valued N = 2 superfields, such that the following axioms hold :

e (Vacuum)

D'|0)y =0, Y(a,z2,0",60%)|0)|.—0pi—0 = a, (2.21)
e (Translation covariance)
(DY (a,z,0,0%)] = (0 — 0'0,)Y (a, 2,0, 6%), (2.22)
e (Locality) for any a, b € V, there exists n € Z> such that
(z —w)"[Y(a, 26", 6%),Y (b,w, ', ¢*)] = 0. (2.23)
The normally ordered product on V is defined by
s ab = aq11)b. (2.24)

Remark 2.15. [11] Consider the noncommutative associative superalgebra
Hy—o = C[0, D', D?] generated by an even generator d and odd generators
D', D? with relations :

[D', D’] = 26,0, [0,D"] =0, (2.25)

and the noncommutative associative superalgebra Ly—o = C[\, x!, x?] gen-
erated by an even generator A and odd generators !, x? with relations :

X' X7 = =267, [\ X' =0. (2.26)

9



CHAPTER 2. VERTEX ALGEBRAS AND SUSY VERTEX ALGEBRAS

Definition 2.16. [8, 11] An Nx = 2 supersymmetric Lie conformal algebra is
a Z/2Z-graded H y—o-module R with a A-bracket which is a parity preserving
C-bilinear map :

[A]:ROR—Ly2®R, a®br |ax b, (2.27)

satisfying the following conditions :
e (Sesquilinearity)

[Da 5 b] = —x'[a A b], [aa DB = (—1)(D"+x")]a A b], (2.28)

where D' and y' are subject to the relation [D*, x/] = 20;; ),
e (Skew-symmetry)

[baal = (=1 a _g_y 0], (2.29)
where =V — A = (=0 — A\, = D! — x', = D? — x?) with the relations
(D' x7] = 28,7, [0, =10,x'] = [D",\] =0, (2.30)
e (Jacobi identity)
laaordl=llaab] s+ (=D)"brland] (2.31)
where T' = (vy,n',n?) and A+ T = (A +~,x' + 7', x* + %) with relations :

', '] = =287, [v.9] = [v,nf] =

; ) (2.32)
=Nl == 7]=0
We write the A-brackets as :
3
[a b= Z ! a(jloob — X Z aoyb
= =N (2.33)
X Z _a(a\()l)b - x'x Z —a (ilin)b-
]>0 : ]>0 :

Definition 2.17. [11] An Ngx = 2 supersymmetric vertex algebra is a tuple
(V,D*, D?/[ A ],]0),: :) such that :

10
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o (V,D',D? [ A])is an Nxg =2 SUSY Lie conformal algebra,

o (V,D' D?|0),: :) is a unital differential superalgebra with odd derivations
D' and D? satisfying the following properties :

(Quasi-commutativity)

ab — (—1)%ba = /_Ov[a A b dA, (2.34)

(Quasi-associativity)

(ab)e — a(bc) = (/Ov dAa) [b A c]+ (=1)* (/OV dAb) [ac, (2.35)

e the A-bracket and the product : : are related by :
(Non-commutative Wick formula)

e nbd = oy Het (<)and+ [ [oxtledar, (239

where the integral fOA dl' is 0,10, fo/\ dy.

11



Chapter 3

Superconformal vertex algebras

In this chapter, we review the definitions of N = 1 and N = 2 superconformal
vertex algebras in the context of the vertex algebras and the SUSY vertex
algebras. Details of the definitions can be found in [11] and [13].

Definition 3.1. [13] Let V' be a vertex algebra. An even vector L € V is
called a conformal vector if it satisfies the following conditions :
e Y(L,z) is a Virasoro field with central charge c, i.e.

(L)L) =(0+2\L + 1—02A3, (3.1)

* Loy =9,
e L is diagonalizable on V.
For v € V', we say that v has conformal weight A € C if :

[L ) v] = (0+ ANv +O0(\?), (3.2)

where O(A?) is a polynomial in A which has no constant and linear terms.
Moreover, if there is no O(\?) term in (3.2), the vector v is called primary.

Definition 3.2. [10, 13] The N = 1 superconformal vertex algebra is gener-
ated by a conformal vector L, and an odd vector G which is called a super-

12



CHAPTER 3. SUPERCONFORMAL VERTEX ALGEBRAS

conformal vector, satisfying the following super-Virasoro relation :
Ly L] =(0+2\L + é)\?’,
3
[L\G]l=(0+ iA)G’ (3.3)

G\ G| = 2L+§A2.

Definition 3.3. [10, 13] The N = 2 superconformal vertex algebra is gen-
erated by a conformal vector L, an even vector J, and two odd vectors G,
G, satistying the following A-bracket relations :

3
Ly L] =(0+2)\L + 1—02)\3, L G*] = (04 506G,

1
GHAGH =0, G2 G =L+(50+NT+ gv, (3.4)

Ly J]=@+NJ, [GF\J]l=FGE [J,J = gx.

Definition 3.4. [11] Let V be an N = 1 SUSY vertex algebra. A vector
T €V is called an N = 1 superconformal vector if it satisfies the following
conditions :

o Y(T,z,0) is a super-Virasoro field with central charge c, i.e.

[T A T] = (20 + 3)\ + xD)T + gvx, (3.5)

® Tiojo) = 20, Tiopy = D,
e T{1)0) is diagonalizable on V.
For v € V, we say that v has conformal weight A € C if :

[T 5 v] = (20 + 2AX + xD)v + O(A?), (3.6)

where O(A?) is a polynomial in A which has no constant and linear terms.
Moreover, if there is no O(A?) term in (3.6), the vector v is called primary.

Definition 3.5. [10, 11] As an Nx = 1 SUSY vertex algebra, the N = 2
superconformal vertex algebra is generated by an N = 1 superconformal

13
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vector T" and an even vector J satisfying the following Nx = 1 A-bracket
relations :

[T A T] = (20 + 3\ + xD)T + A2y,

3
[T A J] = (204 2X\+ xD)J, (3.7)
[T A J] :T+§)\X.

Definition 3.6. [11] Let V be an Ni = 2 SUSY vertex algebra. A vector
P €V is called an N = 2 superconformal vector if it satisfies the following
conditions :

o Y (P, z,0',0%) is an N = 2 super-Virasoro field with central charge c, i.e.

[Py P| = (20 + 2\ + X' D' + x2D*)P + gAX1X2, (3.8)

® Pjon) = 20, Pojioy = —D', Pojory = D?,
® [1j00) is diagonalizable on V.
For v € V|, we say that v has conformal weight A € C if :

[P A v] = (20 + 2AX + X' D' + x*D?*)v + O(A?), (3.9)

where O(A?) is a polynomial in A which has no constant and linear terms.
Moreover, if there is no O(A?) term in (3.9), the vector v is called primary.

14



Chapter 4

Superconformal structures of
SUSY charged free fermion
vertex algebras

For the construction of superconformal vectors of the SUSY W-algebras in
Remark 4.10, a particular deformation of the standard superconformal vec-
tor T<" of the supersymmetric charged free fermion vertex algebra F§™, is
needed. In this chapter, we prove our main result Theorem 4.6 and find the
corresponding N = 2 superconformal symmetry of F§{®, in Theorem 4.14.
We also construct an Ng = 2 version of the be-8v system, so that Theorem
4.6 and Theorem 4.14 can be unified by the Nx = 2 SUSY vertex algebra
formalism in Theorem 4.21.

4.1 Standard superconformal vectors of SUSY
charged free fermion vertex algebras

In this section, we recall the standard superconformal vectors of the SUSY
charged free fermion vertex algebras and the connection with the supercon-
formal vectors of a non-SUSY bc-3v system. For the SUSY charged free
fermion vertex algebra F§", associated to the vector superspace U, recall
that A = Ay U Az refers to the basis for U.

15
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CHARGED FREE FERMION VERTEX ALGEBRAS

Example 4.1. In [14], the standard conformal vector L%, for the non-SUSY
charged free fermion vertex algebra associated to o0sp(1]2), is defined as

1 1
Ly = —5@1/23901/2 + 5(9%01/2%01/2 + 019", (4.1)

and we can easily find that the corresponding standard superconformal vector
of Fh(0sp(1]2)) is

G =" + dp11/2, (4.2)
i.e. the above two vectors satisfy the following A-brackets :
(L5 5 L) = (0 + 20 LG + 15X° (43)
ch ch 3 ch
L5 2 G = (04 5A) 64, (1.4)
(G5 2 G = 2L} + 2, (45)

with central charge ¢ = —3. If we rename the fields ¢/, @2, ', ¢1, as
b, ¢, B, 7, respectively with reversing the parity, then the vertex algebra
Fh(osp(1]2)) with L and G is nothing but the well-known be-37 system
with the conformal vector and the superconformal vector :

1
L = 5(—0@6 + 0cb + 2075), (4.6)
G = B+ 0, (4.7)

with central charge 3. More detailed explanations of be-/3y system are in [6].
For details of the physical statements, the reader is referred to [19].

Definition 4.2. For an N = 1 superconformal structure of the SUSY charged
free fermion vertex algebra Fig,, we slightly modify the superconformal vec-
tor of the SUSY be-3y system in Example 5.12 of [11]. Let T<" be a standard
superconformal vector of F$, defined by

Tt = 3 (0046" + D6 D) + Y (6a06" + DouDI"). (4g)

aEA(] aEAi

16
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CHARGED FREE FERMION VERTEX ALGEBRAS

Then the field T<" satisfies the N = 1 superconformal relation
(T3 A Tl = (20 43X+ XD)T + SN, (4.9)

where the central charge c; is 3dimU. The verification of the above A-bracket
follows from Theorem 4.6.

Remark 4.3. [3,6, 7, 10] Let F$, be the SUSY charged free fermion vertex
algebra associated to the vector superspace U = Uy @ Uy. For a basis element
a in Ag, if we write each superfields ¢,, ¢® as follows :

Y (¢a,2,0) =Y(7y,2) +60Y(c, 2),

‘ (4.10)
Y (%, 2,0) = Y(b,2) +0Y (8, 2),

then we can see that the Ag-part of T<" is the dimUy copies of the standard
superconformal vector of non-SUSY be-f7 system, i.e.

Y(D  (06a9" + DguD¢"), 2,0) =Y (D _(Gif)2) +20Y (D (LS). 2).

a€Agp a€Ap ac€Ap
(4.11)
Similarly, if we expand the superfields of ¢,, ¢® as
Y (6% 2,0) =Y (y,2) +60Y(c, 2),
(6%,2,0) = Y(3,2) + 0V (c,2) o)

Y(@a, 2,0) =Y (b, 2) + 0Y (5, ),

for an odd element a in A, then T<" is the sum of dimU copies of G and

ch ;
L ie.

T = GL+200> L. (4.13)
acA acA
In Remark 4.11, we also get a similar result for our shifted superconformal

vectors.

Proof. For any even element a, the superfield expansion of Y (D¢,, z,0) is
obtained as

Y (Dég, 2,0) = (9g + 00.)Y (¢a, 2,0)
= (0p + 00,)(Y(7,2) +0Y (c, 2)) (4.14)
=Y (c,z)+ 0Y (07, 2)

17



CHAPTER 4. SUPERCONFORMAL STRUCTURES OF SUSY
CHARGED FREE FERMION VERTEX ALGEBRAS

by using the rules in Theorem 4.16 of [11]. Similarly, we have
V(D4 2,0) = Y(8, 2) + 0V (3b, 2), (4.15)
so that

Y (DpoDo®, 2,0) = (Y(c,z) + 0Y (97, 2))(Y (B, z) + Y (9b, 2))

(4.16)
=Y (cB,2) +0Y(0v8 — cob, z).

The negative sign of cdb follows from the anti-commutativity of the odd field
Y (¢, z) and the odd indeterminate 6. The expansion of Y (9¢,¢%, z, 6) is also
given by

Y (0¢,d®, 2,0) = Y (0¢a, z,0)Y (6%, 2, 0)
= 0.Y(¢a, 2,0)Y (¢°, 2,0)
= (Y(0v,2) +0Y (0c, 2))(Y (b, 2) + 0Y (B, 2))
=Y (0vb, z) + 0Y (Ocb + 00, 2),

(4.17)

hence we have
Y(0¢ad" + DpaD¢", 2, 0) =Y (cB + 07b, 2)
+ 20Y<%(—c&b +och+2076),7)  (418)
=Y(GS,2) +20Y (L), 2).
For an odd element a, we also get the following superfield expansion

Y(¢a09",2,0) =Y (¢a, 2,0)Y (09", 2,0)

Y(¢a,2,0)0.Y (¢, 2,0)

= (Y (b, 2) +0Y(5,2))(Y (0, 2) + 0Y (0c, 2))
Y (b0, z) + 0Y (B0y — bOc, 2)

Y (09b, z) + Y (Ocb + 075, 2),

Y (D¢oD¢?, 2,0) = (Y(B,2) + 0Y (9b,2))(Y (¢, 2) + 0Y (0, 2))
Y (Be, z) + 0Y (0be + 50, 2)

Y (B, z) + 0Y (0vB — cob, z),

(4.19)
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hence the field Y (¢,00" + Do, D¢%, z,8) of the Ai-part has the same super-
field expansion as in (4.18). Thus we obtain the result

Y(T3,2,0) =Y (Y G, 2) +20Y (Y L3, 2). (4.20)

a€cA acA

]

4.2 Shifted superconformal vectors of SUSY
charged free fermion vertex algebras

In Theorem 4.6, we define the shifted superconformal vector T<, which is a
deformation of the standard superconformal vector T, by finding the proper
ghost term using Ansatz 4.5 that the requiring shifted superconformal vector
is a linear combination of three particular quadratic monomial terms, in order
to obtain varying conformal weights of each fields ¢, and ¢°.

Lemma 4.4. Let F$" | be the SUSY charged free fermion vertex algebra. For
any even element a in A, we have the following A-brackets :

[00a¢" & 0¢a”] = 0(0¢ad") + 2A(0¢ad”), (4.21)
[0620" A $a0¢"] = 0(6a00") + 2X($a0¢") + \*(da0"), (4.22)

[a¢a¢a A D¢aD¢a] = 8<D¢aD¢a) + )‘(quaqua)

1, ) (4.23)
+ xD(D¢.D¢") + 5)\ X — A (D¢ag”),

(006" A 0a"] = —0(0¢a¢”) — 2M00a9") — N*(¢ad”®), (4.24)
[¢aa¢a A ¢aa¢&] = _a(¢aa¢é) - 2)‘(¢aa¢a)a (425)

[¢aa¢a A D¢aD¢a] - _a(D¢aD¢a) - )‘(D¢GD¢a)

—XD(DY.DY) + SN~ M(6aD"),

(4.26)
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[D¢aD¢a A a¢a¢a] = a<a¢a¢a) + )\(aqﬁagba)

) 1 B (4.27)
+xD(96a0") + XX + AX(Ddad”),
[DOuDG 5 6u067] = 0(0,06%) + N(6,0") .
FXD(G09Y) + 3N+ (6D,
[D6.DG* 1 D6, DY) = 9D, D) + 2D, D). (429)

Proof. For the A-bracket in (4.23), we have :
0648 A D6uDG] = [0646" & D8I DS + Du[06,6" » DY
+ [ 10667 » Dol ¢ D] ar
= (D 4 x)0¢a) D" + Dgu((D + x)(0 + A"
-/ "D+ )96, ¢ D& dr
= 0D, Do + x0p, D" + Dpo,0D¢* + ADp,Dop*
— XD6,0¢" — A D" + /0 "D+ )96, ¢ D] dr
— )(D¢.D¢") + AN(D,D¢")

FAD(D6,D6") ~ M(D6ud") + 33y,
(4.30)

from (A.3) and (A.4) in Appendix A, and the non-commutative Wick formula
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of Ny =1 SUSY LCAs. Indeed, the integral term is computed as follows :
A A
| (@096, 1 D dr = [ (=2} =)(-DD + e v ¢7) T
0

)yn dT’

—y* — xyn dU

/A
I

([ )

1 1
— __)\3__ /\2 — )\2.
@7( 3 S X 77) 5X

(4.31)

Similarly, by using the results in Lemma A.1, Lemma A.2 and Lemma A.3,
we can compute the other A-brackets. O

Now we will find the shifted superconformal vectors in the SUSY charged
free fermion vertex algebras :

Ansatz 4.5. Let TS be the field written as a linear combination of three
quadratic terms in Lemma 4.4, i.e.

T = m10¢ad” + madad6” + my D D" (4.32)
Then the A-bracket of T with itself follows from Lemma 4.4 :
[Tsy & Tsiy]

(m% — mimso + m1m3)(9 a¢ ¢Tz
+ (2771% — 2m1m2 + mlmg))\ + (mlmg)xD ¢

(mymy — m3 + mams3)0 6,007
-+ (2m1m2 — ng + QOg))\ + <m2m3>XD ¢

( (m1m3 — Meoms + mg)a

+ (myms — mams + 2m3)\ + (myms — mams)xD

) D¢, D"

+ (m1m3 + m2m3>>\2x.
(4.33)
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On the other hand,

(20 + 3\ + xD)Th + &t ( 2m1)d + (3m1)A + (m1)x D)a%&
+ ( 2my)0 + (3ma) X + (ma)x D)(ba&ba
+ ((2m3)0 + (3ms)A + (ms)xD) DéuD"
+ Cg")\ X

(4.34)

By comparing the coefficients of each monomial terms, we know that the
triple of the form

(ml, ma, m3) = (ta —+ 1, ta, ].), (435)
for any complex number t, satisfies the lambda bracket equality :

(T30 T3 = (20 + 3) + XD)TS: + SN, (4.36)

where the central charge is ¢y, = 6t, + 3. For the odd element a € A, we
obtain the result by replacing the fields ¢, and ¢® with ¢® and ¢, respectively.

Hence we have shown the following theorem :

Theorem 4.6. Let T<! be the field defined by
Tt = (ta+ 1)00a0” + 1a0a00" + Dgu D"
CLGA@

+ ) 120640 + (ta + 160" + D D",

aEAi

(4.37)

where (ty)aca is a sequence of compler numbers. Then the field TS is a
superconformal vector of the SUSY charged free fermion vertex algebra F§,
with the central charge

Can =Y _(6ta+3). (4.38)

acA
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Definition 4.7. The field 79" defined in Theorem 4.6 is called the shifted
superconformal vector of the supersymmetric charged free fermion vertex
algebra Fi,.

Remark 4.8. If we define the ghost field T;ﬁost as

T;i}zlost = Z ta8(¢a¢a)’ (439)

a€A

then the shifted superconformal vector T can be written as

ch __ rch ch
Tsh - Tst + Tghost'

(4.40)

Moreover, if the complex numbers ¢, are all zeros, then the standard super-
conformal vector T<" is recovered.

Now, the conformal weight of each of fields ¢, and ¢* has one degree of
freedom.

Proposition 4.9. For an even element a in A, the conformal weights of ¢,
and ¢ are respectively —%ta and %tu + % For an odd element a in A, the
conformal weights are %ta + % and —%ta respectively. Moreover, the fields ¢,
and ¢° are primary with respect to TS

Proof. From the lambda brackets (A.1), (A.7) and (A.13) in Appendix A,
we have
[(ta + 1)8¢a¢a + ta¢aa¢a + D¢aD¢& A ¢a]
- (ta + 1)[a¢a¢a A gba] + ta[¢a8¢a A gba] + [D¢aD¢d A gba]

(4.41)
= (ta +1)0¢a — ta(9 + A)¢a + (0 + XD)¢a
= 28¢a - ta)\¢a + XD(baa
for any even element a, and also we have
[(ta + 1)00a0" + taa0¢" + Dpa D" 5 ¢]
= (ta + 1)[a¢a¢a A (ba] + ta[¢aa¢a A ¢Ez] + [D¢aD¢a A ¢Zz] (4 42)

= (to +1)(0 4+ N)¢® — 100" + (0 + xD)p?
= 200" + (to + 1)A¢" + x D",
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from the lambda brackets in (A.2), (A.8) and (A.14). Hence, we have the
following A-brackets :

[T & Ga) = (20 — toA + XD)a,

[T 1 6] = (20 + (1 + DA+ XD)&" )
for any even element a, and
[Ty & ¢a] = (20 + (ta + DA+ xD)u,
(75} 67] = (20— 1,0 + YD) .
for any odd element a in A. m

Remark 4.10. Roughly speaking, the SUSY W-algebra is the BRST co-
homology of the tensor product of the SUSY affine vertex algebra and the
SUSY charged free fermion vetex algebra, i.e. :

W (G, foaas k) = HV"(§) ® Fiy, Q), (4.45)

where @ is the differential of V*(g) ® F, and g denotes g with reversed
parity (for details, see Section 4.1 of [18]). For the SUSY affine vertex algebra
V*(g), there exists an N = 1 superconformal vector TX? the Kac-Todorov
superconformal vector which originally came from [15], of the SUSY affine
vertex algebra (see Example 5.9 of [11]). Also, for any vector v € g, we know

that the vector
TET = TXT + o, (4.46)

is also an N = 1 superconformal vector (see Example 2.13 of [12]). Hence,
we propose that the sum of our shifted superconformal vector in Theorem
4.6 and the Kac-Todorov superconformal vector

™ =TT 21+ 1T5 (4.47)
gives a superconformal vector of the supersymmetric W-algebra.

Remark 4.11. Decomposition of the field T via non-SUSY superconformal
vectors can be done in the same way as Remark 4.3, i.e. the shifted super-
conformal field T of the SUSY charged free fermion vertex algebra F§  is
the sum of shifted superconformal fields of the non-SUSY be-fv system.
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Proof. For a € Ag, we have

Y(¢a0¢",2,0) = Y (¢a, 2,0)Y (09", 2,0)
=Y (¢, 2,0)0.Y (6%, 2,0)
= (Y(y,2) +0Y(c,2))(Y(0b, z) + 6Y (08, 2))
=Y (y0b, z) 4+ 0Y (cOb + v00, 2),

(4.48)

and, with the equations (4.16) and (4.17), the Ag-part of the shifted super-
conformal field T<" can be expressed as

(to + 1)0¢a¢" + t40,00° + Dpo D"
= (ta)y0b+ (to + 1)Oyb+ ¢

+ 29(%((% — 1)cob + (to + 1)0cb + t,y0B + (ta + 2)875)).

(4.49)
If we define the ghost parts as
lq

Lg’}wst = E(cﬁb + Ocb +~v05 + 0vpB), (4.50)

G;’ﬁost = t,(v0b + O7b), (4.51)

we obtain the shifted superconformal vectors in the bc-3v system as
L?Z = LE? + Lgc]}ilwst
1 (4.52)
= 5((@ —1)cob + (t, + 1)0cb + t, 0B + (ta + 2)0v5),

= (to)y0b + (to + 1)0vb + cf5. '

On the other hand, for the odd elements a € Aj, we have
Y (0¢od”, 2,0) = Y (0¢a, 2,0)Y (6%, 2,0)
= 0.Y (¢4, 2,0)Y (6%, 2,0)
= (Y(9b,2) +0Y (95, 2))(Y (7, 2) + 0Y (c, 2))
=Y (0by, z) + 0Y (0B — Obe, 2),

(4.54)
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and, also with the equations in (4.19), the Aj-part of the shifted supercon-
formal field T<' can be written as

(ta + 1)0¢a¢" + ta0,00° + Dpo D"
= (ta)y0b+ (to + 1)Ovb+ ¢

1
+ 29(5(@ ~1)edb + (L + 1)Ach + ta708 + (ta + 2)37@),
(4.55)
of which the expression is same as the Ag-parts.
Hence the shifted superconformal field of the SUSY charged free fermion

vertex algebra is the sum of dimU copies of the shifted superconformal field
of the non-SUSY be-fy system, i.e.

ch ch ch
T =Y Gh+200> L. (4.56)

a€A a€A

O

Remark 4.12. In Remark 4.8, the SUSY vertex algebra case, the field T<"
is a special case of the field T" when t, = 0 for all a € A. Likewise, we can
see that the each field of L and G<! is also a special case of the each field
of L and G in the non-SUSY be-By system.

4.3 Shifted N = 2 superconformal structures
of SUSY charged free fermion vertex al-

gebras

From [3] and [11], we can use the fact that the field
J =" Deud" + Y D¢, (457)
a€Ap a€Ag

together with T form an N = 2 superconformal vertex algebra structure.
For the N = 2 superconformal symmetry of F$ | compatible with the shifted
superconformal vector T<, we find the corresponding ghost term in Theo-
rem 4.14. We also write the shifted N = 2 superconformal fields as N = 2
superfields in Theorem 4.21.
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Lemma 4.13. Let F$" | be the SUSY charged free fermion verter algebra.
For any even element a in A, we have the following A-brackets :

[0620" A D$ad®] = O(D$ad”) + A(D$ad”) + XD (Do)

4.58
+X(D¢aD¢a> o %)‘27 ( )
066" 5 uD) = 00uD) + XD +XDODF)
— X(DOuDE) + Ax(0u6) + LN |
006" 1 Do) = ~0DA) ~ ADos) —XDDo)
_ _ .60
~ X(D6 D)~ M(6u6") ~ LN,
[qba(‘?gba A ¢aD¢a] = _a(¢aD¢d) - )‘(gbaqua) - XD(¢QD¢6) 461
FX(D6DE) + 33 e
[D¢aD¢" n Dag’] = 0(Ddad") + MDad®) — x(DdaD")
Ly, (4.62)
+ 5 ’
[D6.D6" s uD¢] = 0(6,D6%) + A(6.D6°) + x(Dg D)
1)\2 (4.63)
+ YR
[D646" & Dout’] = 006" + Do D" + My, (164
(D6ud" 1 6.D6%) = 0,06° — D6 DS + X9, (465)

[¢QD¢EL A D¢a¢a] = _a¢a¢a - D¢aD¢a - /\(Qba(rba)v (466)

[6aD¢" & ¢aD"] = —¢a0¢" + Dpa D" — Ax. (4.67)
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Proof. For the A-bracket in (4.58), we have :
[a(ba(ba A D¢a¢a] = [a¢a¢a A D(ba](ba + D¢a[a¢a¢a A (ba]
A
+ [0, 5 Dol v o] ar
0
= ((D 4 X)0¢q)¢" + Do (0 + X)o*
A
+ [ D+ 006, 1 ¢7) ar
0
= 8D¢a¢a + X8¢a¢a + D¢aa¢a + /\ngagba
A
—(n — dl’
+ /O (n—x)v
= a(D¢a¢a) + /\<D¢a¢a) + XD(D¢a¢&>
+x(Da D) — 5

(4.68)

from (A.3) and (A.2) in Lemma A.l. Similarly, we can compute the A-
brackets in (4.59)—(4.63) by using Lemma A.1, Lemma A.2 and Lemma A.3.
The A-brackets in (4.64)—(4.67) follows from Lemma A.4. O

Theorem 4.14. Let JS' ., be the field defined as

Tohost = D ta(DGud" + 0aDO") + 3 ta(D&"¢u+6"Déa). (4 o)

ac€Ap a€Ag

Then the current field

Jsci}ll = Jscth + JCZost’ (47())

g

and the superconformal field TS generates an N = 2 superconformal struc-
ture of central charge cqy,.

Proof. For the Ag-parts, by using the Lemma 4.13, we have the following
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A-brackets :
[T & J = (20 + 2\ + xD)J,
[Tscth A ‘]ghost] - (28 + 2\ + XD)‘] host

g

+ Y N+ A dad”,

a€Ag a€Ag (4.71)
[Tohoss & T = =) tad® = > tadxdad”,
a€Ag a€Ag
[Tghost A host] =0,
hence, we have
[T A T = (20 42X + xD)JS. (4.72)

Also, we can check the following A-brackets :

i a T3 =T+ )2 W
CLEA()
[Jscth A J;Zost] = Tgcf}tlost + Z ta)‘(ba(ba + Z ta)\X;
a€Ag a€Ag (4.73)
[ehost & J5T == ) taddad™ + > taAx,
GEAO aer
[‘]ghost Jghost] - 07
thus we obtain the following result :
[T A T =T+ > (2ta + 1A (4.74)
a€Ap

For the Ai-part, we have the same result by replacing the fields ¢, with ¢%,
and vice versa. Hence, the fields <" and J&" satisfy the N = 2 superconformal
symmetry. O

Remark 4.15. Indeed, we can write (see Example 3.13 in [3]) the N =1
superfields 7% and J< as

Tii(2,0) = (G (2) + Goy (2) +20L5(2),

4.75
T (2,0) = JEH(2) + B(G (=) — G (=), (&75)
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where
=S (U e ) 6w
Got(z) = Z cf, (4.77)
G (2) = GGZA(@ +1)07b + (ta)70b, (4.78)
JN(2) = anA(ta +1)eb + tayf, (4.79)

from the equations (4.10), (4.14), (4.15), (4.52) and (4.53). Then we know
that the fields L, G, G~ and J< satisfy the non-SUSY lambda bracket
relations of N = 2 superconformal vertex algebras.

Remark 4.16. From Definition 4.10 of [11], recall that the lambda brackets
of Nx =2 SUSY Lie conformal algebras are given by :

2\
[UAU]:ZJ (jl00)V — X Z—Umo

j>0 7’ J>0

— X Z —U(]\m v — X X Z fU (11

]>0 : >0

(4.80)

On the other hand, by sesquilinearity of Ny = 2 SUSY LCAs, we have :

g0y = — D D*ugjnyv,
ugoyv = D*ugpiyv, (4.81)
U(j‘()l)v = —D1U(]~|11)1},

hence we obtain the following equality :

[u p v] = —[D'D*u 5 v] — x'[D*u y v]

(4.82)
+X*[D'u y v] — x'X[u 0]
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Remark 4.17. Following the Remark 4.15, consider the Nx = 2 SUSY ver-
tex algebra structure (see Remark 2.8 in [11]) where the odd endomorphisms

are defined by

D' = (G5 + G4 o) = (G + G ) o,

o o . o (4.83)
D? = i(Ggy™ = Gy o = i(GY" = G o),

and the state-field correspondence is given by

Y(v,2,60' 0% =Y (v,2) + 6'Y (D', 2) (4.84)
+ 0%Y (D?v, 2) + 020'Y (D' D?v, 2). '
Let P be the vector defined as :
Psci}zl = —Usciil(q) 10)

= — Z(t“ + 1)cb + t,yp5. (4.85)

a€A

Then the N = 2 superfield corresponding to P is expanded as :

Y(Pg,2,0",0%) = —iY (J3, 2) = i0'Y (D' g3, 2)
—i0?Y (D?JS, 2) —i0%0'Y (D' D*J 2)
= Y (J%, 2) —if'Y (G — G 2) (4.86)
—*Y (G + GO 2) — 0%0'Y (2L, 2)
= — Y (J9, 2,0") — 02V (T, 2,01,
which follows from the non-SUSY lambda bracket relations of N = 2 super-
conformal vertex algebras.

Proposition 4.18. The field P defined in Remark 4.17 satisfies the fol-
lowing lambda bracket :

(P9 & Pl = (20 4+ 20+ X' D'+ *D)Pif + 0% (487)

Hence, the shifted N = 2 superconformal symmetry in Theorem 4.14 is gen-
erated by one N = 2 superfield P in the Nx = 2 SUSY wvertex algebra
formalism.
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Proof. Note that the fields L, G G~ J< in Remark 4.15 satisfy the
non-SUSY lambda bracket relations of N = 2 superconformal vertex algebras
(see Definition 3.3), and by the definitions of D! and D? in Remark 4.17, we
have :
DG = Gy — Gy
iD*J = G g (4.88)
iD'D*J = 2L,
Then, from the equality (4.82) in Remark 4.16, we have :
[P a Pg]=—iliD'D*Jg \ T3] —ix [iD*Jg » T3]
= XDV Tl + X T
= — LG ) — i (G + G A T
PGS = G TR X T T
= — (20 + 20)J5 — i (G — GO
c ch,— Csh
— G G + X1X2?)\
= — (20 + 2\ JS — ix* D' ek
—ix’D*J5 + X1X20%h>\
= (20 + 2\ + x'D' + X*D*)(—iJG) + %hAXlX?.
(4.89)
O

Remark 4.19. Now, using the notations in Remark 4.3, let us define the
N = 2 superfields ®, and ®° as :

b, =Y(y,20" 0%
=Y (v,2) + 0'Y(D"y, 2) + 0°Y (D?y, 2) + 6*0'Y (D' D*y, 2)
=Y(v,2)+0Y (c,2) + 0°Y (ic, z) + 6*0'Y (10, 2)
= g + 10*D' P,

(4.90)
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d* =Y (b, 2,60, 6%

=Y (b, 2) +0'Y (D', 2) + 0*Y (D%, 2) + 0*0'Y (D' D%, 2)

=Y (b, 2) +0Y(B,2) + 0°Y (iB, 2) + 0*0'Y (i0b, z)
— ¢6 + ieZqubEL’

(4.91)

where the N = 2 SUSY vertex algebra structure is given by Remark 4.17.

Then the A-bracket of ®, and ®? is :
[@, 4 D] = —ix' + x°.
We also know that :

D'®, = D'¢, —i6°0¢,,  D'®" = D'¢" —it*0¢",
D*®, = iD'¢q + °0¢,,  D?®" =iD'¢" 4 609",

so that, for any even element a € Ay, we have :
qu)aq)& — Dl(bagba o Z~02(a¢a¢& 4 D1¢aD1¢a),
P D' = $D'¢" — i6*($,0¢" — D'¢aD'¢"),
and, for any odd element a € Az :
D'®®, = D'¢"¢, — i6*(¢.0¢" + D' ¢, D" ¢%),
P*D'®, = ¢"D'¢, — i0*(0p,¢" — D' ¢, D' ¢%).

Therefore, the N = 2 superfield P in (4.86) can be written as :

> (ta+ 1)D' 7 + t,,D' "
aEA(]
+ ) (ta+1)D'®"®, +t,9°D'D,

aEAi

ch __ .
Psh—_l

> (ta+ 1)D'® @7 + £, P, D'

aEA()

+ )t D' 0" — (t, + 1)@, D' 07

(IEAT
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Then, by using the Nx = 2 lambda bracket (4.92) and the relations :
iD'®, = D®B,, iD'®" = D*P%, (4.97)

one can also check directly the field P is an N = 2 superconformal vector
(see Theorem 4.21).

Definition 4.20. Let U be a finite-dimensional vector superspace and A =
Ag U Aj be a basis of U, where Ajg is the even part and Az is the odd part of
the basis. Define two vector superspaces :

oy ~U, oY ~IU", (4.98)

whose basis elements are denoted by @, and ®® respectively. Define the A-
brackets on R?ﬁg = Hy—s ® (Py ® V) by :

[@g 4 O] = dap(—ix" + X3), [®a a Pp] = [®7 4 B =0, (4.99)

for a,b € A. Then the H y—s-module R?\?g is an N = 2 SUSY Lie conformal
algebra. Now let V(R?\?i ) be the universal enveloping Ny = 2 SUSY vertex
algebra of R?\fi 4, and let I (R?\fi 1) be the ideal generated by elements of
the form (4.97). Then we define the N = 2 supersymmetric bc-fry system

associated to the vector superspace U as the quotient V (R%))/I(R%™).

Theorem 4.21. Let P be the vector defined by

> (ta+ 1)D'®, 0" + t,,D' "
CLEA()
+ ) (ta+1)D'®"®, +,9°D'D,

aEAj

Ph = 4 , 4.100
sh

where (tq)aca is a sequence of complex numbers. Then the vector P is an
N = 2 superconformal vector of the N = 2 SUSY be-B~ system with the
central charge

can = Y (6t +3). (4.101)

a€A
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Proof. Let a be an even element of A. From the non-commutative Wick
formula of Nx = 2 SUSY LCAs, we have :

[®, » D'®,9%] = (ix' D' — x*D")®,,, (4.102)
hence, by skew-symmetry :

[D'®, 0% \ &,] = —[P, _y_p D'®, P
= (—i(—=D' —x")D' 4+ (=D* — \*)D"%, (4.103)
=i(20 + x' D' + x*D*)®,.

Therefore we have :

[D'®,®% \ D'®,] = i(D* + x")(20 + x' D' + x*D?®,

4.104
i(20 + A+ x'D' + x*D*)D'®, — x'\*D'®,. ( )

Similarly, we obtain :
[D'®, 0 \ %] =i(20 + X+ X' D' + x2D?)®" + ' *d. (4.105)

By the A-brackets in (4.104) and (4.105), and from the non-commutative
Wick formula, we have :

[D'®,0 \ D'®, 0% = [D'®,d% y D'®,]D% + D'®,[D'®,d* 4 &
A
+/ ([D'®,® \ D'®,] r ®%] dT
0

=i(20 + 2\ + X' D' + x*D*)(D'®,0%) — Ax'x>.

(4.106)
On the other hand, we can compute :
[®,D% \ DD = 0. (4.107)
From the A-brackets in (4.103) and (4.105), we have :
D'®, 0" \ 0, =i(20+ A+ x' D' + x*D?)(®, 9"
D'y 0,47 = 1200 4D D @A)

+ X' (@ DY) — A(—ix" 4+ X7).
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Hence, using sesquilinearity, we find :

[D'®,d* \ D'(®,0%)] =i(20 + 2\ + x' D' + ?<2D2)(D1(d>a®a)) (4.109)
+ (I F ) (P, DY) — id% — Ay,
and, by skew-symmetry, we have :

[DY(®,9%) y D'®, DY = —(iAx" + A*) (P P%) + X — A\ (4.110)
Combining the results in (4.106), (4.107), (4.109) and (4.110), we obtain :

[D'®,®" + t,D' (9,0 , D'®,d" +t,D'(,%)]
=i(20 + 2\ + x' D' + \*D*)(D'®,®" + t,D' (®,9%))  (4.111)
- (Zta + 1))‘X1X2a

hence, we get the result. O]
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Appendix A

Calculations of lambda brackets

For any even element a in A, we have the following lambda brackets in F§ .

Lemma A.1. Lambda brackets for Op,¢® :

(000" A da] = O, (A1)

[06.0" & ¢"] = (0 + A)¢", (A.2)
006" & D] = (D + x)06a, (A.3)
[0¢ad” & D] = (D + x)(9 + A)o", (A.4)
[00a9" & Oda] = (0 + A)Oa, (A.5)
00" A 0¢%] = (0 + \)?¢". (A.6)

Proof. The A-brackets can be obtained by using the rules of Ny =1 SUSY
vertex algebras. For the A-bracket in (A.1) :

(b0 A 00a0”] = [P0 & 00a]0” + (—1) TV, [, & ¢7]
A
o A 00, a dr
T /0 (60 2 06a] r &7
:aqba’
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since, from sesquilinearity, we know that :

(b0 A Oba] = (D4 N)[da A ¢a] = 0.

Hence, by skew-symmetry, we get :

(0020 A ¢a] = (1), _g_p 00a0"] = 0.
Similarly, the other A-brackets also can be obtained by using the rules of

A-brackets of N = 1 SUSY vertex algebras. 0
Lemma A.2. Lambda brackets for ¢,0¢" :
609" & ¢a] = —(0+ A)da, (A7)
[0a0¢" A ¢°] = —0¢", (A.8)
[0a0¢" & Dol = —(D + x)(0 + N)da, (A.9)
609" » D] = —(D + x)0¢", (A.10)
[0.00% § 0da) = —(0 + A)?¢a, (A.11)
(000" A 0¢"] = —(0 + \)0g". (A.12)
Proof. Tt follows from direct calculations. 0O
Lemma A.3. Lambda brackets for Do D¢ :
[D$aDd" & ¢a] = (0 + XD)a, (A.13)
[DgaD¢" & ¢°] = (9 + xD)o", (A.14)
[Dpa D" A D] = (0 + N\) D¢y, (A.15)
[DéaD¢" x D¢"] = (0 + \)Dg", (A.16)
[D¢aD" 960 = (0 + A)(0 + xD) ¢, (A.17)
[DpaD¢" a 09" = (0 + A)(0+ xD)o". (A.18)
38
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APPENDIX A. CALCULATIONS OF LAMBDA BRACKETS

Proof. The results can be verified by direct computations.

Lemma A.4. Lambda brackets for D¢,¢* and ¢, D¢ :

[D¢a¢a A ¢a] = _D¢a7

[Dgad® 1 ¢"] = —(D + x)¢",

[D¢a¢a A D¢a] = (a+ XD)¢a7

[Ddad™ n D¢"] = (0 + )¢,

[¢aD¢a A ¢a] = (D + X)(baa

[gbaqu& A ¢a] = DQS(I?

[¢aD¢a A D¢a] = _(a+ )‘)Qbaa

[6aD¢" & D¢ = —(0 + xD)¢".

Proof. We also get the results from direct computations.
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Appendix B

Charge decomposition

Definition B.1. As in Section 5.1 of [12], the eigenvalue of Jh (o[1) corre-

sponding to v € F{" | is called the charge of v. Then, for any even element a
in A, the charges of ¢, and ¢* are t, and —(t, + 1) respectively. For the odd
elements, the charges of ¢, and ¢* are —(t, + 1) and ¢, respectively. Also, if
we define the BRST operator Q of F§", as follows:

Q= (Tscf];(ou) o Jscf}Z(mo)) ) (B-l)
then we obtain the following result.
Proposition B.2. The BRST operator Q of F, satisfies Q* = 0.

Proof. 1f we set d = . D¢, D¢", we know that :

a€A

Q= (Tfﬁl o1 Jsh(OlO)

1 Ci
=3 (Ts;’f(ou — DJG opy ) = doj1),

by sesquilinearity of N = 1 supersymmetric LCAs. Also we have :

[daldro]]=[ldad asrv]+[dr[da ]
= [8d+ 2Md air ’U] + [Cl r [d A UH (B?))
= A =Y[d asr vl +[dr [da 0],
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for v € F§,, from the Jacobi identity of Ny = 1 supersymmetric LCAs
and the equation (4.29) in Lemma 4.4. Hence, by comparing the yn-terms in
(B.3), we have the result :

dopm (dgopyv) = 0. (B-4)
0

Remark B.3. The BRST operator () is invariant under any values of ¢,
that is :

Q= (Tscth(0|1) - Jscth(0|0)> : (B.5)

Indeed, if we decompose the fields T<" and J as in (4.75), then the BRST
operator () is the zero mode of the field GEZ”L. On the other hand, the ghost
term contributes to the homotopy operator H of F' | defined by :

1 c c
H = 2 (Tsi}zl (0]1) + Jsh (0]0) ) - (Tsi}; - d)(0|1)7 (B6)

which is the zero mode of the field ngﬁ.

Proposition B.4. Let v € F{" | be a vector of the charge m. Then Q(v) has
the charge m + 1.

Proof. From the Lemma 4.13, we have :

[d p T = (8 4+ \)J" — xd + %W, (B.7)
where d = > D¢,D¢". Hence we have the following A-bracket :

acA

[ ad) =d sy J5]

= - AJS 4+ (x + D)d + F/\Q (B:8)
by skew-symmetry of Nx = 1 supersymmetric LCAs, and then :
[Joh a ld v o)) = —[[JG5 a d] asr 0] + [d [Tk a0l
=[\JG = (x+D)d — F asr v+ [dr G A ] (BY)

= /\[Jh a+r V] = n[d a4 v] +[d p [Jh A V],
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from the Jacobi identity of Nx = 1 supersymmetric LCAs. By comparing
the coefficients of xn-terms in (B.9), we obtain the result :

J§£(0|1)Q(U) = Js?f?(ou)(d(oll)?))
= d(oyv + dopy(J5h (o)) (B.10)
= Q(v) + Q(mv) = (m+1)Q(v).
]

Remark B.5. For the BRST operator ) and the homotopy operator H of
Fh |, defined in Remark B.3, we have the following result from the simple
calculations :

D¢, if i € 27+

Q(D's) =
( ¢) 0, if1 € 2220 + 1,

(B.11)
0, if i € 2750

D¢, if i€ 2Z5 + 1,

H(D's) = {

where ¢ stands either ¢, or ¢® for any a € A. Also the homotopy operator
H decreases the charge by —1. Moreover, if the charges of u,v € F§" are
m,, and m, respectively, then uv has the charge m, + (—1)%m,,.

Proposition B.6. For (t,)eca € ZYY | the supersymmetric charged free
fermion vertex algebra has a Z-grading :

ch ch,m
Fyly = @ Fy2y,s (B.12)

meZ

called the charge decomposition, where F]f,h:’T 18 the subspace whose elements
have the charge m.

Proof. Combining the facts in Remark B.5 and Proposition B.4, we obtain
the result. O]
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