creative
comimons

C O M O N S
& X EAlI-HI el Xl 2.0 Gigel=
Ol OtcHe =2 E 2= FR0l 86tH AFSA
o Ol MHE=E= SN, HE, 8E, A, SH & &5 = AsLIC

XS Mok ELICH

MNETEAl Fots BHEHNE HEAIGHHOF SLICH

Higel. M5t= 0 &

o Fot=, 0l MEZ2 THOIZE0ILE B2 H, 0l HAS0 B2 0|8
£ 2ok LIEFLH O OF 8 LICEH
o HEZXNZREH EX2 oItE O 0lelet xAdE=2 HEX EsLIT

AEAH OHE oISt Aele 212 WS0ll 26t g&
71 2f(Legal Code)E OloiotI| &H

olx2 0 Ed=t

Disclaimer =1

ction

Colle


http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

Universal Approximation in Deep
Learning

HagolA Y HE ZA A7

20234 2¢



Universal Approximation in Deep
Learning

A dissertation
submitted in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
to the faculty of the Graduate School of
Seoul National University

by

Geonho Hwang

Dissertation Director : Professor Myungjoo Kang

Department of Mathematical Sciences
Seoul National University

February 2023



Universal Approximation in Deep
Learning

CEEEPEEIEREE

Axns 724 F
o] =& oJStHIAL S =R o2 AET
20224¥ 109
A&dsta st

e
F435

3 A 59 olgEha SRS AE
20229 129

9 43 <

29% (

a9 4 (4
(
(

=

€
€

=/




(©) 2022 Geonho Hwang

All rights reserved.



Abstract

Universal Approximation in Deep
Learning

Geonho Hwang

Department of Mathematical Sciences
The Graduate School

Seoul National University

Universal approximation, whether a set of functions can approximate an arbitrary
function in a specific function space, has been actively studied in recent years owing
to the significant development of neural networks. Neural networks have various
constraints according to the structures, and the range of functions that can be
approximated varies depending on the structure. In this thesis, we demonstrate the
universal approximation theorem for two different deep learning network structures:
convolutional neural networks and recurrent neural networks.

First, we proved the universality of convolutional neural networks. A convolu-
tion with padding outputs the data of the same shape as the input data; therefore,
it is necessary to prove whether a convolutional neural network composed of convo-
lutions can approximate such a function. We have shown that convolutional neural
networks can approximate continuous functions whose input and output values have
the same shape. In addition, the minimum depth of the neural network required

for approximation was presented, and we proved that it is the optimal value. We



also verified that convolutional neural networks with sufficiently deep layers havd
universality when the number of channels is limited.

Second, we investigated the universality of recurrent neural networks. A recur-
rent neural network is past dependent, and we studied the universality of recur-
rent neural networks in the past-dependent function space. Specifically, we demon-
strated that a multilayer recurrent neural network with limited channels could
approximate arbitrary past-dependent continuous functions and L, functions, re-
spectively. We also extended this result to bidirectional recurrent neural networks,

GRU, and LSTM.

Key words: Universal approximation, Recurrent Neural Network, Convolutional
Neural Network, Deep Narrow Network
Student Number: 2017-25155

3 2 =1l 7
HI.,.1_l .



Contents

Abstract v
1 Introduction 1
1.1 Convolutional Neural Network . . . . ... ... ... ... ..... 2
1.2 Recurrent Neural Network . . . . . . ... ... . ... ... ..... 4
1.3 Related Works . . . . . .. .. 7

2 The Universal Property of Convolutional Neural Network 11
2.1 Notion and Definition . . . . . . ... .. ... 0L 11
2.2 Main Theorem . . . . . . . . . . 18
2.2.1 Problem Formulation . . ... ... ... ... ........ 18

222 Lemmas . . . . . ... 19

2.2.3 The Minimum Depth for the Universal Property of Convolu-
tional Neural Network . . . . ... ... ... ... ...... 28
2.2.4  The Minimum Width for the Universal Property of Convo-

lutional Neural Network . . . . . . . . . . . .. .. ... ... 44

3 The Universality Property of Deep Recurrent Neural Network 52

3.1 Terminologies and Notations . . . . . . ... .. .. ... ...... 52

vii



3.2 Universal Approximation for Deep RNN in Continuous Function Space 59

3.3 Universal Approximation for Stack RNN in LP Space . . . . ... .. 70
3.4 Variants of RNN . . . . . . . . . . s 74
3.0 Discussion . . . . . . ... e e 81
3.6 Proofs . . . . . . 82
3.6.1 Proof of the Lemma 3.2 . .. ... ... .. ... ....... 82

3.6.2 Proof of the Lemma 3.5 . . . ... ... ... ... ...... 89

3.6.3 Proof of Lemma 3.10 . . . . . . . . . ... ... ... .. ... 95

3.6.4 Proofof Lemma 3.12. . . . . .. . .. ... ... ... ... 96

3.6.5 Proof of Lemma 3.18 . . . . . . . . . ... ... ... ... 100

4 Conclusion 105
The bibliography 107
Abstract (in Korean) 114

viii
:



Chapter 1

Introduction

Deep learning, a type of machine learning that approximates a target function us-
ing a numerical model called an artificial neural network, has shown tremendous
success in diverse fields, such as regression [12], image processing [7, 46], speech
recognition [1], and natural language processing [24, 23]. While the excellent per-
formance of deep learning is attributed to a combination of various factors, it is
reasonable to speculate that its notable success is partially based on the universal
approximation theorem, which states that neural networks are capable of arbitrarily
accurate approximations of the target function. Formally, for any given function f
in a target class and € > 0, there exists a network A such that ||f — N|| < €. In
topological language, the theorem states that a set of networks is dense in the class
of the target function. In this sense, the closure of the network defines the range of
functions it network can represent.

As universality provides the expressive power of a network structure, studies on
the universal approximation theorem have attracted increasing attention. Examples

include the universality of multi-layer perceptrons (MLPs), the most basic neural



networks [6, 18], and the universality of recurrent neural networks (RNNs) with
the target class of open dynamical systems [36]. Recently, in [48], the authors has
demonstrated the universality of convolutional neural networks.

However, in some fields, the universal property is barely studied due to its com-
plex structure. Deep recurrent neural networks and convolutional neural networks
are two representative examples. In the case of the convolutional neural network,
convolution makes the complicated relationship between each component of the
function represented by a convolutional neural network. In Chapter 2, we stud-
ied the universal property of the convolutional neural network as a function from
sequence to sequence. We scrutinize the translation equivariance induced by the
idealized convolution neural network without padding and the asymmetry induced
by zero padding and its correlation.

The deep recurrent neural network also has similar complexity, too. The network
propagates the data through time direction and depth direction, which makes the
grid and creates complex interactions at the points of the grid. In Chapter 3, we
investigated the universal property of the deep narrow recurrent neural network.
We combinatorially analyze the linear deep narrow recurrent neural network and
utilize the result to get the universal property of general deep narrow recurrent

networks.

1.1 Convolutional Neural Network

The convolutional neural network(CNN) [32, 25], one of the most widely used deep
learning modules, has achieved tremendous accomplishment in numerous fields,

including object detection [45], image classification [10], and sound processing [40].



Starting with the most basic architecture, LeNet5 [25], many well-known deep
learning models such as VGGNet [37], ResNet [16], and ResNeXt [42] have been
constructed based on CNN. In this regard, it would be natural to be interested in
the universal property of CNN, which justifies using a specific network.

However, despite its extensive range of applications, research on the universal
property of CNN has been barely conducted. One of the rare studies is [48]. The
paper considered the convolutional neural network with a linear layer combined
in the last layer and proved the universal property of the network as the function
from R¢ to R. However, networks sometimes are expected to retain the output
data in the same shape as the input data. Representative examples include object
segmentation [28], depth estimation [4], or image processing such as deblurring [47],
inpainting [39], and denoising [11]. Another common usage of CNN is as a feature
extractor. The feature extractor extracts information from the data and feeds it to
the latter part of the deep learning model. Typically, the feature extracted by CNN
is multi-dimensional, and to achieve the purpose of being a module that can be used
in common across multiple networks, CNN needs to have the universal property.
Also, the paper assumed an unrealistic situation in which each convolutional layer
expands the dimension of the data, which makes the contribution restrictive.

Some other research papers tackle the universal property of CNN with multi-
dimensional output as a translation invariant function. Approaches that tackle
the universal property of CNN with multi-dimensional output are investigating
the approximation of the translation invariant function with convolutional neural
networks [43, 30]. These papers consider the convolutional network as a function
from R? to R?. However, the invariance of the network inevitably prevents the

use of practically used padding methods like zero padding. In addition, invariance



fundamentally contradicts the universal property in the more general continuous
function space.

In this regard, we studied the universality of the convolutional neural network
consisting of the convolutional layer with zero padding. Unlike the previous meth-
ods that only consider scalar output or the translationally invariant functions, We
directly tackle the universal property of CNN as a vector-to-vector function. De-
spite its dominant use in CNN, zero padding convolution has been outside the
interests of the study because it deteriorates the invariance of the network. How-
ever, we revealed that zero padding is critical in achieving the universal property.
More specifically, the universality occurs because zero padding interferes with in-
variance. We scrutinize the three-kernel convolutional neural network with zero
padding and explore the minimal depth and width bound for the universal prop-

erty. Our contributions are as follows:

e We proved that CNN has the universal property in the continuous function

space as a function that preserves the shape of the input data.

e We found the optimal number of convolutional layers for a function with

d-dimensional input to have the universal property.

e We proved that deep CNNs with ¢, + ¢, + 2 have the universal property,
where ¢, and ¢, are the number of channels of the input and output data,

respectively.

1.2 Recurrent Neural Network

Classical universal approximation theorems specialize in the representation power

of shallow wide networks with bounded depth and unbounded width. Based on

4



mounting empirical evidence that deep networks demonstrate better performance
than wide networks, the construction of deep networks instead of shallow networks
has gained considerable attention in recent literature. Consequently, researchers
have started to analyze the universal approximation property of deep networks
[5, 27, 34, 22]. Studies on MLP have shown that wide shallow networks require
only two depths to have universality, while deep narrow networks require widths
at least as their input dimension.

A wide network obtains universality by increasing its width even if the depth
is only two [6, 18]. However, in the case of a deep network, there is a function for a
narrow network that cannot be able to approximated, regardless of its depth [29,
33]. Therefore, clarifying the minimum width to guarantee universality is crucial,
and studies are underway to investigate its lower and upper bounds, narrowing the
gap.

Recurrent neural networks (RNNs) [35, 9] have been crucial for modeling com-
plex temporal dependencies in sequential data. They have various applications in
diverse fields, such as language modeling [31, 21], speech recognition [13, 3], rec-
ommendation systems [17, 41], and machine translation [2]. Deep RNNs are widely
used and have been successfully applied in practical applications. However, their
theoretical understanding remains elusive despite their intensive use. This defi-
ciency in existing studies motivated our work.

In this thesis, we prove the universal approximation theorem of deep narrow
RNNs and discover the upper bound of their minimum width. The target class
consists of a sequence-to-sequence function that depends solely on past informa-
tion. We refer to such functions as past-dependent functions. We provide the upper

bound of the minimum width of the RNN for universality in the space of the past-

T O 11
""H-.'I'.I.l |



Network Function class Activation Result

RNN  C (K,Rd)t ReLU Winin < dg + dy + 2
conti. nonpoly1 Wmin < dg +dy + 3
conti. nonpoly? Wiin < dp +dy +4

LP (K,R%)T ReLU Wnin < max {d, + 1,d,}
conti. nonpoly?  wmin < max {d; + 1, dy} +1
LSTM O (K,R%)f Wnin < dg + dy + 3
GRU  C(K,Rd)t Wnin < dg + dy + 3
BRNN C (IC, ]Rdy) ReLU Wmin < dp +dy +2
conti. nonpoly! Wiin < dy +dy + 3
conti. nonpoly2 Wmin < dp +dy +4
LP (lC,Rdy) ReLU Wmin < max {d; + 1,dy}

conti. nonpoly? Wiy < max {d, + 1, dy} +1

t requires the class to consists of past-dependent functions.

! requires an activation o to be continuously differentiable at some point zp with o(z0) = 0 and
o'(z0) # 0. tanh belongs here.

requires an activation o to be continuously differentiable at some point zo with ¢'(20) # 0. A
logistic sigmoid function belongs here.

2

Table 1.1: Summary of our results on the upper bound of the minimum width wmin
of RNNs. In the table, K indicates a compact subset of R% and 1 < p < co. We
abbreviate continuous to “conti” and denote the minimum width as wmin-

dependent functions. Surprisingly, the upper bound is independent of the length
of the sequence. This theoretical result highlights the suitability of the recurrent
structure for sequential data compared with other network structures. Further-
more, our results are not restricted to RNNs; they can be generalized to variants of
RNNs, including long short-term memory (LSTM), gated recurrent units (GRU),
and bidirectional RNNs (BRNN). As corollaries of our main theorem, LSTM and
GRU are shown to have the same universality and target class as an RNN. We
also prove that the BRNN can approximate any sequence-to-sequence function in
a continuous or LP space under the respective norms. We also present the upper

bound of the minimum width for these variants. Table 1.1 outlines our main results.

T O 11
""H-.'I'.I.l |



With a target class of functions that map a finite sequence z € R% to a finite

sequence y € R% we prove the following:

A deep RNN can approximate any past-dependent sequence-to-sequence con-
tinuous function with width d, + d, + 2 for the ReLU activation, d, +d, + 3

for tanh!, and d, + dy + 4 for non-degenerating activations.

e A deep RNN can approximate any past-dependent LP function (1 < p < o0)
with width max {d, + 1,d,} for the ReLU activation and max {d, + 1,d,}+1

for non-degenerating activations.

e A deep BRNN can approximate any sequence-to-sequence continuous func-
tion with width d, + d, + 2 for the ReLU activation, d, + d, + 3 for tanh!,

and d, + d, + 4 for non-degenerating activations.

e A deep BRNN can approximate any sequence-to-sequence LP function (1 <
p < oo) with width max {d, + 1, d, } for the ReLU activation and max {d, + 1, d, }+

1 for non-degenerating activations.

e A deep LSTM or GRU can approximate any past-dependent sequence-to-
sequence continuous function with width d, + dy + 3 and L function with

width max {d, + 1,d,} + 1.

1.3 Related Works

We briefly review some of the results of studies on the universal approximation

property. Studies have been conducted to determine whether a neural network

!Generally, non-degenerate o with o(z9) = 0 requires the same minimal width as tanh.



can learn a sufficiently wide range of functions, that is, whether it has universal
properties. In [6] and [18], the authors first proved that the most basic network, a
simple two-layered MLP, can approximate arbitrary continuous functions defined
on a compact set. Some follow-up studies have investigated the universal properties
of other structures for a specific task, such as a convolutional neural network for
image processing [48], an RNN for open dynamical systems [36, 15], and transformer
networks for translation and speech recognition [44]. Particularly for RNNs, it is
showed that open dynamical system with continuous state transition and output
function can be approximated by a network with a wide RNN cell and subsequent
linear layer in finite time [36]. Also, trajectory of the dynamical system can be
reproduced with arbitrarily small errors up to infinite time, assuming a stability
condition on long-term behavior [15].

While such prior studies mainly focused on wide and shallow networks, several
studies have determined whether a deep narrow network with bounded width can
approximate arbitrary functions [29, 14, 20, 22, 33]. Unlike the case of a wide
network that requires only one hidden layer for universality, there exists a function
that cannot be approximated by any network whose width is less than a certain
threshold. More specifically, considering that d, and d, indicate the dimensions of
the input and output vectors, respectively, the width d,—1 is insufficient for an MLP
to have universality in L! space if the activation function is ReLU [29]. In [14], there
are negative and positive results which indicated that universality is not attained
by width d;, but width d, + d, is sufficient to achieve universality in a continuous
function space with ReLU activation. In [20, 22], the condition is generalized on
the activation and proved that d, is too narrow, but d, +d, +2 is sufficiently wide.

The results show the lower bound d, and upper bound d, +d, + C' of the minimum



width of the MLP, where C' is a constant depending on the activation function. In
[33], the exact value max {d, + 1,d,} required for universality is determined in L”
space with ReLU.

As described earlier, studies on deep narrow MLP have been actively conducted,
but the approximation ability of deep narrow RNNs remains unclear. This is be-
cause the process by which the input affects the result is complicated compared
with that of an MLP. The RNN cell transfers information to both the next time
step in the same layer and the same time step in the next layer, which makes it
difficult to investigate the minimal width. In this regard, we examined the structure
of the RNN to apply the methodology and results from the study of MLPs to deep
narrow RNNs.

On the other hand, research on the convolutional neural network as a general-
purpose function is barely conducted. One of the research [48] studied the universal
property of the convolutional neural network as a function from the vector to the
scalar value. It tackles the network with a fully connected layer added to the last
layer to make the network’s output a scalar. Also, to employ the homomorphism
between the composition of convolutional layers and the multiplication of polyno-
mials, the paper assumed the impractical situation that data becomes longer as
the data go through the network. On the other hand, we proved the case for a fully
convolutional network that retains the shape of the input data to the output data.
The authors of [43] focused on the periodic convolutional network’s universal prop-
erty as the translation equivariant function. However, the translation equivariance
fundamentally contradicts the universal property as the general function from d-
dimensional input data to the d-dimensional output data. Because the translation

equivariance of the convolutional neural network is derived from cyclic padding, we



need different padding, such as zero padding.

10



Chapter 2

The Universal Property of

Convolutional Neural Network

2.1 Notion and Definition

We define notions and definitions that are used in the chapter. When we index the
data in R? or R%, we will use the subscript for indexing. For example, we express

the components of z € R? as
x = (z1,22,...,24q). (2.1)

When we index the unique dimension called channel, we will use the superscript

for indexing, that is, for x € R*¢,

r=(zh 2% ... 2%, (2.2)

11



where ¥ € R? for i € [1,¢], and
ot = (af,2h, .. ). (2.3)

The channel always comes first compared to other dimensions and is denoted as ¢
or its variant. We also define the concatenation operation ¢ along the channel as
follows. For x = (z',22%,...,2%) € R*? and y = (y', 92, ...,y?) € R2*4,

2

ray=(z'a% %yt y?) e Rlte)xd (2.4)

We now define the mathematical contents used in the remaining sections.

e Infinite-Length Convolution: Let wbe w = (w_g, w_g41,...,wg) € R2k+1,

Then an infinite-length convolution with kernel w is a map f : RZ — R% de-

fined as follows. For z = (...,2_1,20,21,...) € RZ,

k
filw) =) wiwiy;, (25)

i=k

where f(z) = (..., f_1(2), fo(z), fi(z),...) € RZ. We say that a convolution

has a kernel size of 2k + 1.

e Zero Padding Convolution: Let ¢ : R — R% be a natural inclusion map.

Formally, for z = (x1,29,...,24) € RY,

ti(x) == (2.6)

0  otherwise,

where «(x) = (...,t_1(z),00(x),1(z),...) € RZ And let pg : R — R? be a

12

2] S )] &)

11



projection map; that is, for z = (..., 2_1,20,21,...) € R%, py(x) is defined
as

pa(z) := (21,22, .., Ta). (2.7)

Let w € R?*1 be a kernel. Then zero padding convolution with kernel w is

a function f : R? — R? is defined as

fi=pgogour, (2.8)

where ¢ is an infinite-length convolution with kernel w. We also define it as
operation &®:

w®z:= f(x), (2.9)

where g is an infinite-length convolution with kernel w. We can interpret the
composition as constructing a temporary infinite-length sequence by filling
zeros in the remaining components, conducting the convolution with kernel,

and cutting off the unnecessary elements.

A zero padding convolution with kernel w is a linear transformation and

hence can be expressed as matrix multiplication; w ® x = Tx is satisfied for

13



the following matrix T € R9*:

wo w1 N W
w—-1 wo cee Wrp—1 Wk
T = W_ W_fy1 .- wo wp ... Wg—1 Wi . (2-10)
Wk cee W1 W2 ... Wkg-2 Wi—1 Wi
L W— W—k4+1 --- ’wo_

We define the set of Toeplitz matrix as

wj—; if |i —j| <s,
TOd(S) = (xi,j)lgi,jgd S RdXd Tij = o . (2.11)

0 otherwise.

Also, define Uy = (u;5), ., -, a8

1 ifi—j=t,
Ui = (2.12)

0 otherwise.

By definition, Uy is an identity matrix, and U; and U_; have a transpose
relationship with each other; U = U_;. The set {U_,,U_sy1,...Us} is the
basis of the set of Toeplitz matrices T'o4(s). Zero padding convolution with

kernel w = (w—_gs,wW_g41,...,ws) can be represented as

w®r = Z w;U_;. (2.13)

1=—35

14

320 8



Obviously, (U1)! = Uy, and (U_1)! = U_; for t > 0. Also, it is convenient to
interpret the matrix multiplication in the following way. Let A be a matrix or
a column vector. Then, Uz A and U_;A move A downward ¢ rows and upward
t rows, respectively. Similarly, AU; and AU_; move A to the left by ¢ columns

and right by ¢ columns, respectively. We also define E,, ., := (ei,j)lgmgd as

1 ifi=n,and j=m,
€ij = (2.14)

0 otherwise.

To deal with the composition of convolutions, we define Sy as follows.

n

N
Sn =9 [ Tij|Tij € Toa(1),n €N} . (2.15)
i=1 j=1
Sn is a vector space of matrix representations of linear transformations that

a linear three-kernel N-layered CNN can express.

Zero Padding Convolutional Layer: A convolutional layer with ¢; input
channels and ¢y output channels is a map f : R*% — ReX4 For each

1<i<c¢yand 1< j <, there exist zero padding convolutions with kernel

w; j € R?**1 and bias §; € R so that for x = (z!,2?,...,2%) € R4,
c1
fi@)=> wi; ®a) + 614, (2.16)
j=1

where f(z) = (f'(z), f2(z),..., f(x)). We extend the operation ® to the
multiplication between the vector-valued matrix. Let Mn,m(Rd) be the n xm

matrix whose components are d-dimensional vectors in R%. Then for A =

15



(aiji<i<ni<j<m € Mum(R* ) and B = (bj1)1<j<m,1<k<i € M (R?), we

denote matrix multiplication ® between A and B as
C:=A®B, (2.17)
where C' = (¢ k)1<i<ni<k<i € Mn,l(Rd), and c¢; 1, is calculated as
m
Cik = Z Qg5 ® bj,k:- (2.18)

J=1

Zero padding convolutional layer can be interpreted as a matrix multiplica-
tion between weight matrix W = (w; j)1<i<es1<j<e; € Meye; (R?) and input

vector X = (29)1<j<¢, € M, 1(RY) and bias summation.

1 1
f Wil W2 .. Wig T nly
2 2
f w2,1 w2,2 s W2 x 621d
= ® + . (2.19)
f Wey,1 Wey,2 -0 Weyycy x 602 1,

Activation Function: An activation function o is a scalar function o :
R — R. We extend the function component-wise to the multivariate versions

oq: R? x R? and Ocd Rexd » R4 Specifically, for z € RY,

od(x) == (o(x1),0(z2),...,0(xq)), (2.20)
where © = (x1,22,...,24). And for z = (z',22,...,2°) € R*? and 2 =
16

A 2 1—l| 1T



(zi,2h,...,2%) € RY,
(0ea(@))) = o(ah) for 1<i<e1<j<d (2.21)

We will slightly abuse notation so that ¢ means o, o4, and o4, depending

on the context.

We also define a modified version of activation function that selectively ap-
plies an activation function to each channel by modifying the activation
function as follows. For I C [1,c], define 57 : R*? — R4 as follows. If

r=(z',2% ... 2% and ' € R?,

. o(xt) ifiel,
oi(x) = (2.22)

' otherwise,

where 61 = (6},0%,...,09).

Convolutional Neural Network: An N-layered convolutional neural net-
work with ¢ input channels and ¢ output channels is a map f : R0*4 —
R~ >4 that is constructed by following N convolutional layers and the ac-
tivation function. For the channel sizes ¢y = ¢, c1,...,cy = c, there exist

convolutional layers C; : R%-1%4 5 R%*4 and f is defined as follows.
fi=CnoocoCyn_10---000C(]. (2.23)

We denote the channel sizes of the convolutional layer as cg —c; — -+ — ¢y
Then, we define Zévc, as the set of the convolutional neural networks with ¢

input channels and ¢’ output channels:

17

3 2 =1l 7
HI.,.1_l .



!
Zé\fc/ ={CnyocoCn_10---000C] : R  RE*d

c1,¢2,...cn—1 € N ,where ¢ = cg, ¢ = cy and (2.24)

C; : Ré-1%d _ Ré*4 are the 3-kernel convolutional layers}.

If we need to indicate the activation function explicitly, we denoted Eévc, as

aEéYC,. Also, define O'(E?{C/) as

n

o (Eé\fc,) = {Zai(a o fi)

=1

fiexlsaieRme No} . (2.25)

2.2 Main Theorem

2.2.1 Problem Formulation

The universal property of CNN, which we will discuss in this chapter, is whether
a continuous function from R? to R¢*? can be uniformly approximated by con-
volutional neural networks. Let C(X,Y) be a space of continuous function from X
to Y. Then we define the norm in C'(K, RCIXd) for each compact subset K C Re*¢

as follows:

Lf = glle= ) = sup || f(z) — g(@)]]2. (2.26)
zeK

What we want to show in Section 2.2.3 is under what condition, the closure with

respect to C*°(K) norm satisfy the following statement,

N, = C(K, R, (2.27)

18



And in Section 2.2.4, we will show that convolutional neural networks with bounded

width are also dense in C'(K, R*?) with respect to C>°(K) norm.

2.2.2 Lemmas

Now we present proofs for theorems. Before we get into the main theorems, we first

prove the lemma that will be used for proofs.
Lemma 2.1. The following statements are satisfied.

1. Eévc, is closed under concatenation. In other words, for fi € ¥V, and fo €

c,C

SN, the function f is defined as f(z) = fi(x) ® fo(z) € RE+IX Thep,

e’

fexy

c,c/+c’-

2. Eé\fc/ and U(Zé\’fcl) are vector spaces.

3. For a C* activation function o, UEéVC, is closed under partial differentiation;

for C* function f(x,0) and fg(x) := f(x,0), if fo(z) € 2276,, then, 2 (fo) €

SN, Also, (2N ) is closed under partial differentiation.

c,c'”

4. For f € O'(Zé\jc,) and a convolutional layer C with ¢ input channels and ¢’

output channels, C o f € W
Proof. 1. Let f; with channel sizes c —c; —cg —--- —cy_1 — ¢ be
fi=CnyoooCn_10---000C(h, (2.28)
and fo with channel sizes ¢ — ¢} —ch — - —y_; — ¢ be
for=CNoogoCly_yo0---000C]. (2.29)

19

i%_q_rr;



As in Equation (2.19), we can express C; as

CI(JT) =W, ®x+ 6, (2.30)

where W; is the ¢; X ¢;_1 matrix of kernels, and §; is the vector of length ¢;

consisting of d-dimensional vectors. Similarly, we can denote C! as

Ci(z) =W, ®xz+4d';. (2.31)
Then we can define the concatenation for i =2,3,..., N as
1 Wi X 51
T(xdy) = ® + = Ci(x) & Ca(y). (2.32)

W»/ y 5,i

1

Also, define C7 as

1 Wl 61 /
Ci(x):= ®x+ = Cy(z) ® Cy(x). (2.33)
Wi d'1

Then, we can construct f with channel sizes ¢ — (¢; +¢}) — (ca +¢5) — -+ —

(en—1 4y 1) — (d+ ") as

f=CloogoC}_jo-000CY. (2.34)

20

SEavk



f(x) =CXoooCh_qo---000C(x) (2.35)
=(CNocoCy_qo---0(coCi(x)®coCyx)) (2.36)
=(Cyoco--000C(x))®(Cyocgo---000Ci(x)) (2.37)

= fi(x) @ fa(w), (2.38)

which completes the proof.

. For the arbitrary fi, fo € Eé\fc,, express fi and fo as fj ;== CnyoocoCn_1o0
-~ocgo0(Cy and fy := C\oooCl_jo---00o0C(C]. Except for the axiom
that Eé\f - 18 closed under addition, other axioms can be shown simply by
giving proper operations to the last layer. For example, replacing Cy with
—C'y gives the inverse element of f;. For the axiom that Eé\’f o is closed under

addition, construct g as the concatenation of g; := Cy_10---00 0y and

g2 :=C)_,0---000C]. For the Cy and CY expressed as
Cy(z)=W®x+ 9, (2.39)

and

Cy@)=W ®x+4§, (2.40)

we can construct the convolutional layer C;, which satisfies

Chzdy) = [W W’]@ ! + (6 +8") = Cn(z) + CN(y). (2.41)
y

21

SEavk



Then,

Clrooog(x)=Coogi(z)® ga(x)

=Cnoocogi(r)+Cyhooogyx) = fi(z) + fa(x). (2.42)

Thus, f1 + f2 € &V

N .
el and 2. 1s a vector space.

For o(2Y,), it is obvious from the definition of o(XX,).

. Because $¥, is a vector space, M € ¥¥,. And because HM—

%fe ()|] < o(e€) supy ||($720f9 ()], it uniformly converges to zero; thus, %fg () €

Eé\f - Similar argument holds for O‘(Eé\’[ o)

. For g € U(E /), there exist g; € U(EN ), such that g; o, g. Then, we have
n;

gi = Z Qi j (J © gi,j)’ (243)
j=1

for g; ; € Zivc/ and a;; € R. Decompose C' into C' = L 4 d where L is the
linear transformation and § is the bias:

n;
Cogi=(L+d)o Za”aog” :5—|—Zai,jLoaogm c N+l (2.44)

c,c’
Jj=1

EN'H is a vector space. If {g; }ien uniformly converges to g, {Cog; }ien

because
uniformly converges to C o g for the continuous function C' in the compact

space, and it completes the proof.

O

Lemma 2.2. Consider the activation function o, which is the C'-function near o

22

Sk

& ]



and o’(a)) # 0. Then, for zero padding convolutional layers C1,Cs and a positive
number € € Ry, there exist zero padding convolutional layers C},Ch with same

input and output channels to C, Cy, respectively, such that
|C20G10C1 = Cyo000Ctllo=(x) <, (2.45)

where I C [1,c2], and ¢y is the number of output channels of Cf.

Proof. Let C; and Cy be C; : Ra*d — R2*d gnd Cy : R2*4 — R%*4 ) has
kernels wjlz and biases 5; for i € [1,c1] and j € [1, ¢o], and C5 has kernels w,%’ ; and
biases 67 for j € [1, o] and k € [1, c3). Then, define C] with kernels wéll and biases

7 and Cf with kernels wj? ; and biases §12 as follows:

1 . . 1 . .
w;, ifjel, 0 ifjel,
=" w=1" (240
A otherwise, a+ 5 otherwise ,
and
2 . .
wy ifjel, N
w = 52 = i’(a) + 82, (2.47)
N o'(a)

2 .
7(a) Wk, otherwise,

23



Then, fk, the k-th component of C) o o o C], becomes

Cc2
= Zw <Z wj i @ 53'11d> + 6221d
j=1
-t (3 )+ )
jel
Pt (o o) o) o

J¢l
c1
=St (3 uhie ) o)
jel i=1

N L wj, L0 No(a)
+§MW <Z ARl I=Try sl
J

i=1

And the k-th component of Cs 0 57 0 C1, gg, is
ZwaUI (Zw ® (z7) +51 ) + 6714
—Zw,”a[ (Zw ® ( x] +51 )

jel
+ Z w,%dﬁf (Z w]lZ ® (27) + 5;1d> + 6714

i3 i=1

C1

=St (3 uhee ) o)
jel i=1
c1 )
+ Z w,%’j (Z wjlZ ® (27) + 5}1(1) + 6714.
j¢l i=1
24

(2.48)

(2.49)

(2.50)

(2.51)

(2.52)

(2.53)

(2.54)

(2.55)

(2.56)

(2.57)



Then f;, — g becomes

9r(@) — fr(x) (2.58)
C1
= Zwl%,jg (Z wj; ® (27) + 5}1(1) (2.59)
jeI i=1
C1
=+ Z w,%d (Z wjlz ® (x]) + 5]11d> + 5,%1(1 (2.60)
j¢l i=1
C1
- (w%jg (Z wj; ® (27) + 531‘1d)> (2.61)
jel i=1
N o, =l wjl-’l- i 5]1-1d No(a) 9
_ Z (0/(a)wk,j0' < N ® (.Z' ) + N + « — 0"(04) — (5k1d (262)
Jj¢l i=1
C1
=D _wi, (Z wj; ® () + 5}1(1) + 071y (2.63)
I7; i=1
N 5 - walz j 531‘1d No(a) o
B % (O.l(a)wk,ja (Zl N ® (CL’ ) + T +« - O'/(O[) - 5k1d (264)
j i=

Let u;j be uj :=> 1, wjlZ ® (27) + 5}1d. Then,

) — xTr) = u)2A U'—Laﬁ a_NU(a)
o) = fle) = 3 (1 e (ha) - M) o)
uj —00
- sz,jo_,(]a)o(;[) a 0. (2.66)
iel

The convergence is uniform because x is in the compact domain K; thus, u; is

uniformly bounded for all z. O

Lemma 2.3. For the Lipschitz continuous activation function o, N > 2, the chan-
nel sizes co —c1 — -+ - —cn, indezes I; C [1,¢], and the convolutional layers C; with

c;—1 input channels and ¢; output channels, define the convolutional neural network

25



f as
f = CN o 5[]\]71 @) CN_1 O---0 5[1 e} Cl. (267)

. O N
Then, there exists g € EC,C, defined as
g:=CyoooCy_j0---000C], (2.68)

such that

1f = glle=x)y <, (2.69)

where C{ has c;_1 input channels and c; output channels.

Proof. Use the mathematical induction on N. By Lemma 2.2, the induction hy-
pothesis is satisfied for the case N = 2. Assume that the induction hypothesis is
satisfied for the case N = Nj. For the case N = Ny 41, consider the function fy,+1
defined as

fNo-‘rl = CN()-H o} &INO o CNO O---0 5[1 e} Cl. (2.70)

Then, for fyn, :=Cn, o 51]\70—1 o---0(C1,
INo+1 = CnNpt1 0 5INO ° fNy- (2.711)
By the induction hypothesis, there exists g € UZéVg,, such that
€
150 = gllee ) < ;- (2.72)

where [ denote the Lipschitz constant of Cn,41 0 51N0. Then,

N ™

[ fNo+1 — CNot+1 0 Ty, © glloee(x) <

26

___;rx;! _k:.'il_ ]_-.ll 3



Denote g as

g=Cy,000---000C]. (2.74)
By Lemma 2.2, there exist convolutional layers C%; ., and CY , such that
0 0

€

5 (2.75)

~ / 1 1!
[Cro+1 01y, © Cny — CNgs1 © 0 0 Oy llose(rry <

where K’ is the compact space K’ = 0o Cy. _ 0---000Cj(K). Define h € 02273/
as

h:=Cx,41000Cy,000Cy _j0---0C]. (2.76)
Then, the following equation is satisfied:

€

5 (2.77)

[CNo+1 01y, © 9 = hllcoo (i) <

To sum up,

[ fNo+1 — hllges (i) <

[/No+1 = CNo+1 0 G1y, © gllcoe (i) + [|CNg 41 0 G109 — hllose (i) < €. (2.78)

Therefore, the induction hypothesis is satisfied for N = Ny + 1, and it completes

the proof. 0

Corollary 2.4. For the Lipschitz continuous activation function o and N > 2,
Idapn - ToN .
Yo is the subset of EC’C, as functions defined on the compact set K where Id

1s the identity function; that is, IdZévc, C UZéVC,.

Lemma 2.3 and Corollary 2.4 imply that we can freely exchange the activation

27



function to the identity.

2.2.3 The Minimum Depth for the Universal Property of Convo-

lutional Neural Network

In this section, we showed the minimum depth for the three-kernel convolutional
neural network to be universal. Unlike MLP, which only needs a two-layered net-
work to get universality, CNN requires a much deeper minimum depth. This is
because the receptive field, the range of the input component which affects the
specific output component, is restricted by the convolution using the kernel. In the
case of a convolutional layer with a kernel size of three, each output receives input
from left and right one component. Therefore, when considering the convolutional
neural network constructed by composing these N layers of convolutional layers,
the input can take values from the left and right N components. Therefore, ob-
viously, in the case of a function with d-dimensional input and output, at least
d — 1 layers must be used for the first component of the output to receive the last
component of the input. Therefore, for a CNN with kernel size three to have the
universal property, at least d — 1 layers are required. The following proposition

shows that the minimum depth d — 1 is insufficient for the case of d = 3.

Proposition 2.5. If a compact domain K € R¢ contains an open subset near the

origin, three-kernel two-layered CNN does not have the universal property in K

when d = 3; that is, ¥? , # C(K, RY).

Proof. For a 3-dimensional input, consider the case where the numbers of input and
output channels are one, and the number of intermediate channels is n. Then, for a

convolutional layer C; with kernels (a’ ,a}, a%) and biases ¢; and a convolutional

28



layer Cy with kernels (b 1, b8, b%) and biases &y, the entire CNN f = (f1, fo, f3) =

Cy 0 0 o (] satisfies the following equations.

n
fl(flfl,xg,xg) = Z béa(af)m%—ailxg—i-éi)—i—bﬁa(aélxl +a6x2+aix3+5i)+50, (2.79)
=1

n
fa(w1, 22, 23) = Z b yo(agri + ajza + 0;)
i=1

+ bho(a’ x1 + abhrs + alxs + 6;) + bio(a’ jxo + abxs + 6;) + 6o, (2.80)

n
fa(xy,x0,23) = Z bi,la(ai,lxl + aéxg + aixg + 0;)
i=1

+bio(a’ g + ahxs + 6;) + 8. (2.81)

Then, the following equation holds.

fl(x7y70) _fQ(O,-T,y) (282)
= (Z bho(abr + aly + 6;) + bio(a’ 1o + ahy + (5,)) (2.83)
i=1

- <Z b jo(alz + 6;) + bho(ahr + aly + &) + bio(a’z + aby + 61)) (2.84)
i=1

=— Z bl o(aiz +5;). (2.85)
=1

Thus, fi(z,y,0) — f2(0,z,y) becomes the function of x. Let it

h(x) = fl(l',y,()) - f2(07$7y)‘ (286)

29



Also, define g = (g1, 92, 93) : R = R3 as
g(x1, 2, 23) := (22,0,0). (2.87)

Let K contains the open rectangle (—eg, ¢g)®. Then, the following equation is sat-

isfied for arbitrary x,y € (—eo, €o).

(f1 = 90)(,9,0) = (f2 = 92)(0,2,y)| = [y — h(z)|. (2.88)

If g e ZZC,, there exists f such that,

€0
1] = 9lleeuer < 7 (2.89)

which implies that [(f1 —g1)(z,y,0)| < ¢ and [(f2 —g2)(0,z,y)| < ¢ for arbitrary

x,y € (—¢€g, €0). However,

ly = h(z)] =[(f1 = 91)(,9,0) = (f1 — 92)(0, 7, y)|

. (2.90)
< ‘(fl - 91)($,y,0)| + |(f1 _92)(07xay)| < 507

for arbitrary z,y € [—ep, €], which becomes a contradiction, and it completes the

proof. O

Now we provide the main proposition of the chapter. Before we go further, we

will prove some important lemmas.

Lemma 2.6. For i € [1,n], l € N, and a non-polynomial C* activation function

30

2] S )] &)



o,if A; € ﬂ, then the following relation holds:

[[4i €=y, (2.91)
=1

where the product on the left hand side means the Hadamard product of the vector-

valued functions.

Proof. Let a; € R for i € [1,n]. Because Elc,l is a vector space by Lemma 2.1, and

6ly € Elc’l, the linear summation also in EZC’I:
n [
fi=) aiAi+614€ %L, (2.92)
i=1

By definition of O’(Elc,l)’

i=1

o (i a;A; + 51d> € 0(2271). (2.93)

By Lemma 2.1, O'(Elc’l) is closed under the partial differentiation with respect to

the parameters. Therefore, we have

(132) - (30

And the partial differentiation is calculated as the Hadamard product:

eo(XL)). (2.94)

(12) )] e oo
=1 i=1

=1

Because o is the non-polynomial function, there exist dy such that o) (o) # 0. By

31



substituting all a; to zero and § to &g, we get

[T 4™ () =[] Aic™ (%) € o(2L). (2.96)
=1 =1

a1==an=0,6=5y i
Also O'(Zlql) is a vector space, and [ [/ 4; € O'(Elcyl) which completes the proof. [

The lemma implies that the sufficiently smooth activation function can trans-
form input functions to the componentwise product.
Now we provide the main proposition which shows that the minimum width

d — 1 is sufficient for the case of d > 4.

Proposition 2.7. For the non-polynomial continuous activation function o and
d >4, (d—1)-layered convolutional neural networks have the universal property in

the continuous function space; that is, Eg;,l (K) = C(K,R%).

Proof. Before we go any further, we denote that we only have to prove that
Ei}l(K ) = C(K,R) because the concatenation of the function can be conducted
by Lemma 2.1. The flow of the proof follows the idea of [26]. The main idea is that
if we can approximate all polynomials, all continuous functions in the compact
domain can be approximated by the Stone—Weierstrass theorem [8]. The core dif-
ference is to make all multivariate polynomials in all positions of the output vector
independently. The complexity made by convolution is the real matter that makes
the problem tricky.

The proof is divided into the following steps. First, we will list the functions
that can be approximated by convolution under the assumption that the activation
function ¢ is a non-polynomial C'*° function. Next, we construct the projection,

which enables us to split each component of the output vector and construct an

32



arbitrary polynomial in an arbitrary position. Finally, we generalize the result for

the general non-polynomial activation function case later.

For the input vector z = (x',22,...,2°) € R®?, define the translation of
z' = (4,24, ...,2%) as follows:
pi_j = Uz’ = (0,...,0,2%, 25, ,xilfj), (2.97)
ph =t = (2%, 2%, ..., 1Y), (2.98)
and
pé =U_jz' = (xé-ﬂ, b, 28,0,...,0), (2.99)

Case 1. d = 4: It is obvious by definition that pé = U_jxi € 2:1:,1 for j €
{-1,0,1}. By Lemma 2.6, an arbitrary product of p§- is in O‘(Zé’l). In other words,

for some constants «; ; € N for i € [1,¢],j € {—1,0,1},

H H )i € o(BL). (2.100)

i=1j5=—-1

Consider vector-valued functions A', A%,..., A" € 0(%} ), and 14 € 0(3} ;). Also,

consider convolutional layers with kernel b* = (b’ ;,b%,b%). By Lemma 2.1,

VA ex?, (2.101)
for i € [1,n], and
@1, e X2 (2.102)
33

SEavk



We construct the second convolutional layer B with n input channel and one output
channel, which consists of convolutions with kernel and the bias §. By Lemma 2.6,

the Hadamard product of b* ® A’ is in U(Zil):

[[®AY) ea(x2,). (2.103)
=1

Now we construct the projection of the vectors [[;-, (bi ® Ai) to a certain axis.

Because 0"l @ 1, € 2 o and 14 € 2 the linear summation of two functions is

c, 1
s N2 .
also in ECJ.

T @1y + 61, € 32, (2.104)

Componentwise expression becomes

@1, + 01y = 014+

(b ™+ 0P O b o BT T oy T gt (2.105)
With § = —(b" 11 4+ 00 + 071, 57+ @ 14 + 614 becomes
V@ 144 014 = (—0™11,0,0, 00, (2.106)

Therefore, 1 = (1,0,0,0) and es = (0,0,0,1) are in ¥2,. By Lemma 2.6, the

Hadamard product of b* ® A’ and e is in 0(22’1):

pry (ﬁ (bi ® AZ)> =e ® <ﬁ (bi ® A’)) € 0(2211), (2.107)

i=1 i=1

where pr; means the projection to the i-th axis; that is, pr; (01, 62,03, 64) = (61,0,0,0),

34



and pry (1,62, 603,04) = (0,0,0,6,). Similarly, the Hadamard product of b’ ® A’ and

eq is in o (%2,):

(ﬁ (V' ® A ) =es® (ﬁ (b ® A") ) o(22)). (2.108)

We also know that

<H (b' ® A" ) + pry (H (' ® A" )
i=1 =1

= ﬂ (b ® A") — pry (H (b ® A" ) — pry (ﬁ (v ® A" ) . (2.109)
i=1 i=1

i=1

Therefore, pry ([TiL, (b* ® A%)) + prs ([Tiz, (b ® AY)) € 0(32)).
Now, we construct the desired polynomials using the ingredients made in the
previous steps. First, we will prove that for an monomial M; consisting of a:ﬁ, wé, mg,

except x4, (Mi,0,0,0) is the element of o (32 1)- More concretely, M is defined as

H I @i, (2.110)

i=135=1,2,3

where «; ; € Ng. Let A be

A= H I &)+ eo(sly). (2.111)

i j=-1,0,1

35



Then with b = (0,0,1), pr; (b ® A) = pr; (U_1A) € £2,

o1 which means

pri(U-14) (2.112)
c ' c ‘
= b H H al 7 H H (J"}—‘rl)ai’j ) H H ($3'+2)ai’j 5 0 (2113)
i=1j=1,2,3 i=1j=1,2,3 i=1j=1,2,3

H II @)*,0,0,0] €o(x2)), (2.114)

1=175=1,2,3

where x’5 := 0. Similarly, for a monomial My consisting of xé,xé,xi, except z,

(0,0,0, My) is the element of o(X2); that is, for a; ; € No,

H IT @i (2.115)

i=175=2,3,4

The proof is obvious from symmetry.

Next, we will prove that for a monomial Mj that contains at least one z7,

(0, M3,0,0) is the element of ¢(%2,); that is, for Mz defined as

Mz = g H I (@i, (2.116)

i=15=1,2,3,4

(0, M3,0,0) € 0'(2(2:71) where o ; € Ng. For the proof, define A; and Ay as

H II @)+ ea(=ly), (2.117)

i=17j=-1,0

and

C
=pP o [] [ @i_)*+ € o(5Ly). (2.118)

i=15=1,2

36



Also, define B as follows:
B:=(0,0,1)® Ay =U_1A3 € X2,

Then, we have

(pry +pr3) (41 © B) € 0(23,1)-

Because

(pry + pr3) (A1 © B) = (pry + pr3) (A1) © (pry + pr3) (B),

and

(pry + pr3) (B) = H H )i 0,0 |,

i=1j=3,4

(pry + pr3) (A1 © B) becomes

(pry + pr3) (A1 © B) = (pry) (A1) © (prg) (B)

= HH (2)*9,0,0 | © | 0,2 HH (2})*9,0,0

i=17=1,2 i=175=3,4

— HH $Yid 0,0 = (0, M3,0,0) € o(22)).

i=17=1

(2.119)

(2.120)

(2.121)

(2.122)

(2.123)

(2.124)

(2.125)

Similarly, the symmetrical argument shows that for a monomial M, containing at

least one z}, (0,0, My,0) is the element of o (32 1). What we have proven in this

step is that

e for a monomial M; that does not contain any z, (Mi,0,0,0) €

e for a monomial M; that does not contain any z¢, (0,0,0, M>)

37

0(22,1)7

€ U(Ez,l)a



e for a monomial Mj that contains at least one z¥, (0, M3,0,0) € 0(231),

e and for a monomial My that contains at least one x4, (0,0, My, 0) € U(Eal).

Now we will prove that for arbitrary monomial My, (My,0,0,0), (0, My,0,0),
(0,0, My, 0), and (0,0,0, My) are in Z‘g’l By Lemma 2.1, for an arbitrary convolu-
tional layer C' and the function f € U(Tal), C(f) € % If a monomial M contains
at least one x for some i € [1,¢], (0,M,0,0) € Wil). And for C(z) = Upx,
C((0,M,0,0)) = (0,M,0,0) € 32, and for C(z) = U_1z, C((0,M,0,0)) =
(M,0,0,0) € g Otherwise, if a monomial M does not contain any x%, (M, 0,0,0) €

o(22,). And for C(x) = Upz, C((M,0,0,0)) = (M,0,0,0) € gg”l, and for C(x) =
Uiz, C((M,0,0,0)) = (0,M,0,0) € g So for an arbitrary monomial M, (M, 0,0,0)
and (0, M, 0,0) are the elements Ofﬁ. And by symmetry, (0,0, M, 0) and (0,0,0, M)

are also in 23,1- It completes the proof for the case of d = 4.

Case 2. d > 5: The proof proceeds almost the same to Case 1. The difference is
that unlike Case 1, we can construct all the projections pr,, for all k € [1,d] when
d > 5. More concretely, for functions A* € U(Tgf’), i, kernels v* € R3, and ¢
defined as

¢ =b®A, (2.126)

the following relation holds for all k € [1,d],

pr), (H qi> € o(3477). (2.127)

=1

The proof is from the following steps.

38

2] -] &)



Step 1. In this step, we will show that we can assign different constants to each
axis. Let e; be the i-th standard basis in Euclidean space. And define the constant
function e; : R? — R? that has constant value e;: e;(z) = e; for all x € R
Then what we will prove is that ?712 contains e; for i € [1,d — 3] J[4,d]. More

generally, e; € X for i € [1,n—1]J[d—n+2,d]. It can be proved by the following

mathematical induction.
L. For the case of n = 2, constant function A(z) := 6114 € o(%] ;). Then, for
the convolutional layer B with kernel b = (b_1, by, b1) and the bias Jo,
BoAe¥?,. (2.128)

More specifically,

BoA = 511d+((52(b0+b1), 52(6_1+b0+b1), e (52(b_1+b0+b1),52(5_1+bo)).
(2.129)

Then, by substituting d; for & — da(b_1 + bg + b1), we get
BoA=0"14+ (—02b_1,0,...,0,—d2b1) € 52 . (2.130)
for arbitrary b_1 and b;. So e, eq € g, and the induction hypothesis is

satisfied for the case of n = 2.

2. Assume that for n = ng, the induction hypothesis is satisfied, i.e., e; € Ezol C
o(X29) for i € [1,ng — 1]U[d — no + 2,d]. Then, for the convolutional layer
C(z) := Uz,

Coeny1=en, €509 (2.131)

39

2] S )] &)

11



Similarly, for the convolutional layer C(x) = U_;z,
Coedny+2 = €d—no+1 € 2201“' (2.132)

Therefore, the induction hypothesis is satisfied for n = ng + 1, and Ziﬁ
contains e; for ¢ € [1,d — 4] |J[5, d].

Step 2. In this step, we will similarly construct a polynomial to the case of d = 4
and show that its projection can also be constructed. We first prove that for the
function f : R*¢ — RY defined as f;(x) = Uz, f; € g for j € [-1,1]. We use
the mathematical induction. When [ = 1, it is obviously satisfied. Assume that
the induction hypothesis is satisfied for {: fZ: € ZT for j € [—1,1]. By Lemma 2.6,
f; € O’(Tlcl), and for C(x) = U(z), C o f’ € 2l+1 And because C o f fl_H,
e[-L1],Co ]H l“ . Similarly, using C'(z) = U_1(x), we have C o f]’- = ]’-_1,
for j € [—1,1]. Therefore, the induction hypothesis is satisfied for [ + 1.
Consider | = d — 2. Then pé» =U_ja' € f for j € [-d+2,d —2]. By Lemma

2.6, for a; ; € No, the following relation holds:

f[ H )i € o(S077). (2.133)

i=1 j=—d+2

Additionally, consider e; € 0(2212). Then by applying Lemma 2.6 to pz'» and ey,

we get

C
e® | ] H pi)*i | € a(S472). (2.134)

i=1j=—d+2

Because for all ¢t € [1,d—3]J[4,d], e; isin ZC 1, we are able to get the projection pr;
of Hz 1 H]*—d—&-Q(p])ai’j for t € [17 d_3] U[47 d] For d > 5’ [1’ d—3} U[47 d] = [1a d],

40



so we have the projection to an arbitrary axis. For d = 5, [1,d — 3]J[4,d] =

{1,2,4,5}, and because pry = Iy — Zt:1’274’5 pr,, the projection to an arbitrary

axis is also available for d = 5.

Step 3. For an arbitrary monomial M = []7_; H;lzl(a:é)aivj, we will show that

the vector Me; is in 0(2?;2):
Me; = (0,...,0,M,0,...,0) € o(X47?),

for ¢ € [2,d — 1]. We know that

Cc

d—2
eo [T TI @)™ ] o=
i=1j=—d+2
By proper calculation, we get

c d c d . 4
e H H(p%t)ai’j - H H(et ®p§‘+t)°“i,j = H H(ﬂfé‘et)o‘i,j

i=1j=1 i=1j5=1 i=1j=1

c d
=TI 1I@) e = Mey.

i=1j=1

Therefore, Me; € 0'(2?52) for t € [2,d — 1].

(2.135)

(2.136)

(2.137)

(2.138)

Finally, by using proper Uy, Uy, U_; for the last convolutional layer, we can get

Me; € EZEI for all 7 € [1,d], and it completes the proof for the non-polynomial

C'*® activation function o.

Now remaining is to generalize the result of the non-polynomial C'*° activation

function for the general non-polynomial function. It comes from the Section 6 of the

[26]. For any non-polynomial function o, there exists the compact supported C'*°

41



function ¢ such that o ¢ is smooth and not a polynomial function(Step 5 and Step
6 of Section 6 [26]). And because ¢ * ¢ can be uniformly approximated by o(Step
4 of Section 6 [26]), any convolutional neural network with the activation function
o * ¢ can be uniformly approximated by the convolutional neural networks with
the activation function o. And because CNN with the activation function o * ¢ has
the universal property, CNN with the activation function o also has the universal

property, and it completes the entire proof. O

Remark 2.8. Translation equivariance is often referred to as the basis of the ad-

vantages of CNN models:

fs(@t) = fori(Tgi). (2.139)

In fact, infinite-length convolution without padding is translation equivariant. How-
ever, this property contradicts the universal property because of the relation between
the output vector and the input vector. Actually, as shown in the proof process,
padding plays an important role. The asymmetry that starts at the boundary gradu-
ally propagates toward the center, making it possible to achieve the universal prop-

erty.

Lemma 2.9. For the non-polynomial continuous activation function o and d =
2,3, d-layered convolutional neural networks has the universal property in the con-

tinuous function space; that is, ©¢ ,(K) = C(K, RY).
Proof. The proof is almost same to Proposition 2.7. Divide the case into d = 2 and

d=3.

Case 1 d = 2: For the vectors p* | = (0,2%),p} = (x%,2%), and ,p} = (x5,0),

Lemma 2.6 gives the following equation: for some constants «;; € Np for i €

42



[17 C]aj € {_17 07 1}7

[T € oLy (2.140)

i’j
For a monomial M that contains at least one x%, (0, M) is the element of o(281);
that is, for M = 2 [5_, Py | PR 6 l)a” (0, M) € o(%.,). it is obvious from the

following equation.

P H )% =(0,M) € a(%} ). (2.141)

Then, for C(z) = U_yz, C((0, M)) = (M,0) € X2, and for C(z) = Upz, C((0,M)) =

(0, M) € X2,. By symmetric process, for a monomial M that contains at least one

zb, (M,0), (0, M) € 22,1- Now remaining is to prove that the constant functions e

and ey are in g Because (1,1) € o(%} ), U-1((1,1)) = (1,0) = e; € Ecl, and
Ui((1,1)) =(0,1) = ez € % It completes the proof for the case d = 2.
Case 2 d =3: In the proof for Proposition 2.7, the following relation holds:

e €32, (2.142)

for i € [1,n — 1]U[,d] = {1, 3}. Because p;'- =U_ja' € g for j € [-2,2], by

Lemma 2.6, we have

H H %€ o(%2)), (2.143)

i=1j=-2

and

c 2
e | [] IT @) | € o(22)), (2.144)

i=1j=—2
for o; ; € Ng and t € {1,3} Because pry = I3 — pr; — pr3, above equation is also

satisfied for ¢t = 2.

43



For an arbitrary monomial M = [];_, H?Zl(:né-)o‘i’j ,

c 3
pry | [T TI@5-2)9 | = (0.M,0) € o(52). (2.145)
i j=1

Thus, using the convolutional layers U_1, Uy, and U; as the last layer, (M,0,0),
(0, M,0),(0,0,M) € ﬁ And it completes the proof. O

Combining Lemma 2.9, Lemma 2.5, and Proposition 2.7 altogether, we get the

following theorem:

Theorem 2.10. For the non-polynomial continuous activation function o, the min-

imal depth Ny for convolutional neural network to have the universal property is

2 if d=1,2,

Ni=143 else if d=3, (2.146)

d—1 else if d > 4.

In other words, for a compact set K C RC, Eivé? = C(K,RY), and Zi\ff}*l =+

C(K,RY).

2.2.4 The Minimum Width for the Universal Property of Convo-

lutional Neural Network

In this section, we prove the universal property of deep narrow convolutional neu-
ral networks. The proof process is as follows. First, construct the convolutional
neural networks, which can compute arbitrary linear summation of the input in

Lemma 2.13. Second, in Lemma 2.14, compose the linear summation and the ac-

44



tivation function to get the convolutional neural network which can approximate
the arbitrary continuous function using only one activation function layer. Finally,
construct the deep narrow neural network that can approximate the network men-

tioned above.

Lemma 2.11. S;_1 contains the following elements.

Ifntm<d—1, Enm€ S1.

Ifn+m>d+3, Enm€ Sq1.

Ifn+m=d+1, E,, € Sq—1.

Ifn +m = d; En,m + En+1,m+1 € Sdfl-

Proof. e By simple operation, we can know that Uy — UjU_1 = E; ;. And
Ut Uy —thU_) U™t =0~ tu™ ™ —UpU™ = Epm. Soif ndm < d—1,

En,m € Sd—l-

e Similarly, Uy—U_1U; = E(d,d). And U™ Y (Uy—U_ U U = Ut -
vrUmr=Ed—-n+1,d—m+1).Soif (d—n+1)+(d—m+1)>d+3,

then n+m < d —1, and thus Fg_,11,d—m+1 € Sa—1-

e Divide the case into two cases again. First, consider the case of n > m.
Then, We can easily observe that (Up)"™™ = Zf:_inn +1 Bntimyi. Because
Entimyi € Sg—q foralli < 0( (n+4)+(m+i) =d+14+2i <d-1)
and i >0 (n+1i)+(m+i) =d+1+2i >d+3), and (U1)" ™ € Sy_1,
Epm = (U)"™ — Zi#o Epntim+i € Sq—1. Similarly, if n < m, (U_;)™™" =

-1 —
>t i1 Bnsigmeis and thus By = (U-1)™7" = 32,40 Entim+i € Sa-1-

45

2] S )] &)

11



e Similar to the above case, if n > m, then (Up)"™™ = E?;TnH Eptim+i-

Enm + Bntimi1 = (U)"™ — Zi;ﬁO,lE”"‘i’m"'i € Sg—1. If n <m, By +

En+1,m+1 = (U—l)m_n - 217&071 En+i,m+z' S Sd—l'

Corollary 2.12. For arbitrary 1 <n,m <d, Ey,,, € Sq.

Proof. Obviously, Sg—1 C Sq. And E,, ,, € Sy, except for the cases of n +m = d
andn+m=d+2.Ifn+m=d, By, = Ept1,mUr. Because n +14+m =d +1,
En+1,m € S4_1, and thus En+1,mU1 eSg. Iftn+m=d+ 2, En,m = n—l,mU—L

Because n —1+m =d+1, E,_1m € Sq—1, and thus E,_1,,U_1 € Sg. O
Corollary 2.13. For arbitrary matriz L € R¥¢ I € S,.

In the following lemma, we prove that the convolutional neural networks with

only one activation function layer can approximate the arbitrary continuous func-

tion.
Lemma 2.14. Define the set of functions as follows. For x = (z',22,...,2°) €
R4 gnd 2 € RY,
n C '
T:=1{> ao <Z Ly + 5j> Li; eR™ 5, eRa; eRY,  (2.147)
j=1 i=1

where o is the non-polynomial continuous activation function. Then, T = C(K,R*%)

for the compact set K € R4,

Proof. Let z* be x* = (2%, 2%, .., x&) € R%. Define the arbitrary monomial of aré as

follows:

c d
M=T] @i, (2.148)

i=1j=1

46



for some degrees o; ; € R. We will show that for &k € [1,d],
Mey = (0,0,...,0,M,0,...,0) € T. (2.149)

Then, it is sufficient by Stone-Weierstrass theorem [8]. As in Lemma 2.1, T, the
closure of T', is a vector space and is closed under partial differentiation with respect

to the parameters. For § = (d1,02,...,d4) and b;+ € R,
C . —
oo f(zr)=0 (Z b By 2t + 5> eT. (2.150)
i=1
Then, partial differentiation with respect to d; and b; ; gives the following equation.

O Gir( 0\ LI
a(s,gHH<ab-j> o(f) = [[TT]GE)> | er @™ (f),  (2.151)
i=1j=1 b

i=1j=1

where n. = >7 Z;l:l ;j + 1. Then, with §; such that ¢(™(§;) # 0 and b; ; = 0,
we get,

Mey, €T. (2.152)

Therefore, all polynomials are in T, and by Stone-Weierstrass theorem, T =

C(K, R, O

We demonstrate the universality of the deep narrow convolutional neural net-

work in the next theorem.

Theorem 2.15. Any function f : R&=*% — R%* can be approzimated by convo-
lutional neural networks with at most c; + ¢, + 2 channels and the non-polynomial

continuous activation function; for any € > 0, there exists convolutional neural

47



network g with c; + ¢, + 2 channels such that,

1f = gllee () <€ (2.153)

Proof. First, consider the function f with ¢ input channels and one output channel:

f R RIXA, (2.154)

We denote the input as 2 and each channel of input as x = (2!, 22,...,2°). By

Lemma 2.14, there exist g : R®*¢ — R'*9 such that defined as follows:

g(z) = Zaja (Z Lj’ia:i + (%) , (2.155)
j=1 i=1

which can approximate f with an arbitrarily small error. Now construct the convo-
lutional neural network with channel size ¢ + 3 which approximates g. By Lemma
2.12, for arbitrary L;; € R¥9, there exists Cf}-l € Tog4(1) such that

i d
Lii=>Y []cr. (2.156)

Also, there exist CN']M € Tog4(1) such that

m;  d
8 = Zj 1S5 (2.157)

=1 k=1

48

2] S )] &)



Then, g becomes

n c
= Z a;o (Z Lj;+ 5jxi)
j=1 i=1
c Mi,j5

] _
:Zn:aja HC’“’Z+ZHC’”1 . (2.158)

j=1 i=1 =1 k=1 =1 k=1

Then we define the convolutional neural network with ¢+ 3 channels that calcu-
late the aforementioned equation. By Lemma 2.2, if we can approximate the func-
tion with the convolutional neural network with the partial activation function,
we can approximate the function with the original convolutional neural network.
Therefore, we can preserve ¢ channels from the input and process the (¢ + 1)-th,
(¢ + 2)-th, and (c + 3)-th channels. We get the desired output according to the

following process of function compositions.

1. Repeat the following for j =1,2,...,n

2. Calculate o (ZZ D H,C lele +4; ) in the (¢ + 2)-th channel, not
using the (¢ + 3)-th channel.

2.1. Repeat the following for i = 1,2,...,cand [ = 1,2,...,m; ;.

2.2. Calculate Hk . C kl 2% in the (¢ + 1)-th channel, not using the (c+ 2)-th

and the (¢ + 3)—th channels.

2.2.1. Copy ' from the i-th channel to the (¢ + 1)-th channel.
2.2.2. Conduct convolution with kernel C’Z-’f }l and the bias 0 on the (c+1)-th
channel for k =1,2,...,d.
2.3. Add []¢_, ClC '2 to the (c+2)-th channel and set the (c+ 1)-th channel

to 0.

49



2.4. Add 6; = Hk 1 C’ '14 to the (¢ + 2)-th channel.

2.4.1. Repeat the following for [ =1,2,...,m;.

2.4.2. Conduct the convolution with kernel (0,0,0) and the bias 1 on the
(¢ + 1)-th channel and get 14 on the (¢ 4 1)-th channel.

2.4.3. Conduct the convolution with kernel 5‘k’l and the bias 0 on the
(¢ + 1)-th channel for £ = 1,2,...,d and get H,C 1C’ 14 in the
(¢ 4 1)-th channel.

2.4.4. Add Hk 1C’ '14 to the (¢ + 2)-th channel and set the (¢ + 1)-th

channel to 0.

2.5. Apply the activation function on the (¢ 4+ 2)-th channel and get
o <Zz DIy Hk 1 Ck l2i 4§ ) in the (¢ + 2)-th channel.

3. Add ¢ (ZZ DI k . C kl '+ 45 ) to the (¢ + 3)-th channel and set the

(¢ + 2)-th channel to 0.
4. Get Y1 ajo (Zl DI e, Ck lyi g 8, ) in the (¢ + 3)-th channel.

5. Set the final convolutional layer with one output channel, which takes the

value from the (¢ + 3)-th channel.

In this process, the (¢ + 1)-th channel is used to calculate the product Hk . C kl

And the (c+2)-th channel is used to accumulate the summation > ¢, > I1¢ el Ck Ly
calculated in the (¢ + 1)-th channel. The (¢ 4 3)-th channel is used to accumulate
the final summation > 7, ajo (ZZ DI e, Ck Uy ) after the activation
function is applied to the (¢+ 2)-th channel. For the general case, when the output

channel size is ¢y, we can repeat the above process while preserving the output

50



components already processed, and using ¢, + ¢, + 2 channels is enough to generate

¢y output vectors. It completes the proof. O

o1

>0 8

e



Chapter 3

The Universality Property of
Deep Recurrent Neural

Network

3.1 Terminologies and Notations

This section introduces the definition of network architecture and the notation
used throughout this chapter. d, and d, denote the dimension of input and output
space, respectively. o is an activation function unless otherwise stated. Sometimes,
v indicates a vector with suitable dimensions.

First, we used square brackets, subscripts, and colon symbols to index a se-
quence of vectors. More precisely, for a given sequence of d,-dimensional vectors
z : N — R z[t]; or x;[t] denotes the j-th component of the ¢-th vector. The
colon symbol : is used to denote a continuous index, such as zfa : b] = (2li]), <<

or &tlan = ([t]a; 2[tlatt, - - ., z[t]p)T € RE7TL We call the sequential index t by

52



time and each xz[t] a token.

Second, we define the token-wise linear maps P : R&*N — R4*N and Q :
R%*N 5 RN t6 connect the input, hidden state, and output space. As the
dimension of the hidden state space R% on which the RNN cells act is different from
those of the input domain R% and output domain R%, we need maps adjusting the
dimensions of the spaces. For a given matrix P € R%*%  a lifting map P(x)[t] =
Px[t] lifts the input vector to the hidden state space. Similarly, for a given matrix
Q € R%>da projection map Q(s)[t] == Qs[t] projects a hidden state onto the
output vector. As the first token defines a token-wise map, we sometimes represent
token-wise maps without a time length, such as P : R% — R% instead of P :
R=xN _y Rds

Subsequently, an RNN is constructed using a composition of basic recurrent

cells between the lifting and projection maps. We considered four basic cells: RNN,

LSTM, GRU, and BRNN.

e RNN Cell A recurrent cell, recurrent layer, or RNN cell R maps an input
sequence z = (z[1],z[2],...) = (2[t]);ey € R%*N to an output sequence

y = (y[t])en € R™*" using
ylt+1] = R(z)[t + 1] = 0 (AR(z)[t] + Bzt + 1] + 6), (3.1)

where o is an activation function, A, B € R%*% are the weight matrices, and
6 € R% is the bias vector. The initial state y[0] can be an arbitrary constant

vector, which is zero vector 0 in this setting.

e LSTM cell Mathematically, an LSTM cell RysTam is a process that com-

93



putes two outputs, h and ¢, defined by the following relation:

flt +1] = osig Wyt + 1] + Ush[t] + Viclt] + bf) ,
ift+1] = Osig (Wiz[t + 1] + U;hlt] + Viclt] + b;) ,
¢t + 1] = tanh (Wex[t + 1] + U.h[t] 4+ b.) ,
(3.2)
clt+ 1] = ft + Left] + it + 1]eft + 1],
ot + 1] = asig (Woz[t + 1] 4+ Uoh[t] + Voclt + 1] + b,) ,

hlt + 1] = o[t + 1] tanh (c[t + 1]),

where W,, U, and V, are weight matrices; b, is the bias vector for each
* = f,i,c,0; and oy is the sigmoid activation function. The initial state is

zero in this thesis.

e GRU cell A GRU cell Rgry is a process that computes h defined by

rit + 1] = osig (Wralt + 1] + Uph[t] + b,)

hit + 1] = tanh (Wyz[t + 1] 4+ Uy, (r[t + 1] © h[t]) + bp) , 53)
z[t + 1] = osig (W[t + 1] + ULh[t] +b.), ‘

hlt +1] = (1 — z[t + 1)) hlt] + 2[t + 1]AJt + 1],
where W, and U, are weight matrices, b, is the bias vector for each x =

r, 2, h, and o is the sigmoid activation function. ® denotes component-wise

multiplication, and we set the initial state to zero in this study.

e BRNN cell A BRNN cell BR consists of a pair of RNN cells and a token-
wise linear map that follows the cells. An RNN cell R in the BRNN cell

BR receives input from z[1] to z[N] and the other Ry receives input from

54

2] S )] &)

11



z[N] to z[1] in reverse order. Then, the linear map £ in BR combines the

two outputs from the RNN cells. Specifically, a BRNN cell BR is defined as

follows:
R(z)[t +1] =0 (AR1(z)[t] + Bx[t + 1] + 6),
R(z)[t — 1] == 0 (AR(z B[t — 9),
R(z)[t —1] = o (AR(2)[t] + Bz[t — 1] +0) (3.4)
BR(@)[t] = £ (R(x)[t], R(x)[t])

= WR(z)[t] + WR(=)[t].

where A, B, A, B, W, and W are weight matrices; # and 6 are bias vectors.

e Network architecture An RNN N comprises a lifting map P, projection

map @9, and L recurrent cells Rq,...,Rr;

N =QoRro---oRioP. (3.5)

We denote the network as a stack RNN or deep RNN when L > 2, and each
output of the cell R; as the i-th hidden state. ds indicates the width of the
network. If LSTM, GRU, or BRNN cells replace recurrent cells, the network

is called an LSTM, a GRU, or a BRNN.

In addition to the type of cell, the activation function o affects universality.
We focus on the case of ReLLU or tanh while also considering the general activation
function satisfying the condition proposed by [22]. o is a continuous non-polynomial
function that is continuously differentiable at some zy with o/(zp) # 0. We refer to
the condition as a non-degenerate condition and zy as a non-degenerating point.

Finally, the target class must be set as a subset of the sequence-to-sequence

function space, from R% to R%. Given an RNN A/, each token y[t] of the output

95



sequence y = N (x) depends only on z[1:t] := (z[1],z[2],...,z[t]) for the input
sequence x. We define this property as past dependency and a function with this
property as a past-dependent function. More precisely, if all the output tokens
of a sequence-to-sequence function are given by f[t] (x[1:t]) for functions f[¢] :
R%*t 5 R% we say that the function is past-dependent. Meanwhile, we must
fix the finite length or terminal time N < oo of the input and output sequence.
Without additional assumptions such as in [15], errors generally accumulate over
time, making it impossible to approximate implicit dynamics up to infinite time
regardless of past dependency. Therefore we set the target function class as a class

of past-dependent sequence-to-sequence functions with sequence length V.

Remark 3.1. On a compact domain and under bounded length, the continuity of
[ REXN 5 RN Gmplies that of each f[t] : R%=*! — R% and vice versa. In
the case of the LP norm with 1 < p < oo, f : R%XN 5 R&WXN s [P integrable if
and only if f[t] is LP integrable for each t. In both cases, the sequence of functions
(fn)nen converges to g if and only if (fult]),cn converges to g[t] for each t. Thus,

we focus on approximating f[t] for each t under the given conditions.

Sometimes, only the last value NV (z)[N] is required considering an RNN A as
a sequence-to-vector function A : R%=*N — R We freely use the terminology
RNN for sequence-to-sequence and sequence-to-vector functions because there is
no confusion when the output domain is evident.

We have described all the concepts necessary to set a problem, but we end this
section with an introduction to the concepts used in the proof of the main theorem:.
For the convenience of the proof, we slightly modify the activation ¢ to act only

on some components, instead of all components. With activation ¢ and index set

o6

T O 11
""H-.'I'.I.l |



I C N, the modified activation oy is defined as

(&) o(s;) ifiel, (3.6)
or\s); = .
S; otherwise.

Using the modified activation function oy, the basic cells of the network are modified

in (3.1). For example, a modified recurrent cell can be defined as

R(x)[t +1]; = o1 (AR(z)[t] + Bzt + 1] 4+ 0),

o (AR(x)[t] + Bz[t + 1]+ 6), ifiel, (3.7)
(AR(z)[t] + Bz[t+ 1] + 6), otherwise.

Similarly, modified RNN, LSTM, GRU, or BRNN is defined using modified cells in
(3.1). This concept is similar to the enhanced neuron of [22] in that activation can
be selectively applied, but is different in that activation can be applied to partial
components.

As activation leads to the non-linearity of a network, modifying the activation
can affect the minimum width of the network. Fortunately, the following lemma
shows that the minimum width increases by at most one owing to the modification.

We briefly introduce the ideas here, with a detailed proof provided in Section 3.6.

Lemma 3.2. Let R : RN — RN pe o modified RNN cell, Q : R? — R,
and P : R* — R? be a token-wise linear projection and lifting map. Suppose that
an activation function o of R is non-degenerate with a non-degenerating point zg.
Then for any compact subset K C R and € > 0, there exists RNN cells R,

Ry : RUFBENXN _y RA+BOIXN *4nd o token-wise linear map P : RY — RIB(0)

o7



Q : R¥HAO) 5 RY sych that

sup HQoﬁoﬁ(x)—QoRgo'RloP(:p)H < e, (3.8)
zeKN

where

0 fz=0,
soy=q 0 U (3.9)

1  otherwise.

Sketch of proof. The detailed proof is available in Section 3.6.1. We use the Taylor
expansion of ¢ at zg to recover the value before activation. For the i-th component
with ¢ € I, choose a small § > 0 and linearly approximate o (29 + 62) as o(z9) +

d0'(20)z. An affine transform after the Taylor expansion recovers z. O

Remark 3.3. Note that the additional width only serves to translate some com-
ponents after activation to use the Taylor expansion at zy. We can remove the

additional node if the activation function is in the closure of the set,
{0 :R = R | 0 is non-degenerating at 0} , (3.10)

or use an affine projection map instead of a linear projection map.

The lemma implies that a modified RNN can be approximated by an RNN with
at most one additional width. For a given modified RNN Qo Rpo---0R; o P of
width d and € > 0, we can find RNN Rq,...,Ror and linear maps Pi,...,Pr,
Q1,...,9r such that

sup ||[QoRpo---0Ry0P(x)

zeKN

—(QLR2LRar-1PL) o -+ 0 (Q1R2R1P1) (z)|| < e (3.11)

o8



The composition R o P of an RNN cell R and token-wise linear map P can be

substituted by another RNN cell R'. More concretely, for R and P defined by

R(x)[t+ 1] = 0 (AR(x)[t] + Bx[t + 1] +0), (3.12)

P(z)[t] = P (z]t]), (3.13)

R o P defines an RNN cell R/

R'(z)[t +1] = o (AR (2)[t] + BPz[t + 1] +6) . (3.14)

Thus, Roj11 (P1119;) becomes a recurrent cell, and the composition,

(QrLR2rLRar—1Pr) o0 (QiR2R1Pr) (), (3.15)

defines a network of form (3.5).

3.2 Universal Approximation for Deep RNN in Con-

tinuous Function Space

This section introduces the universal approximation theorem of deep RNNs in

continuous function space.

Theorem 3.4 (Universal approximation theorem of deep RNN 1). Let f : Ré=*N —
R%W*N be o continuous past-dependent sequence-to-sequence function and o be

a non-degenerate activation function. Then, for any € > 0 and compact subset

99



K C R% | there exists a deep RNN N of width dy + dy + 2+ a(o) such that

sup sup ||f(z)[t] = N(z)[t]]| <e, (3.16)
e KN 1<t<N
where
0 o is ReLU,
a(o) =19 1 o is a non-degenerating function with o(zg) = 0, (3.17)

2 o is a non-degenerating function with o(zy) # 0.

To prove the above theorem, we deal with the case of the sequence-to-vector
function A : R%=*N 5 R first. Then, we extend our idea to a sequence-to-
sequence function using bias terms to separate the input vectors at different times.

The main concept of the proof consists of three steps. First, we embed the
sequential input z[1 : ¢] into D, for the disjoint subsets Dy, ..., Dy using bias and
a recurrent process. By embedding, effect of z[t] on y[t] and that of z[t + 1] on
y[t+1] will be completely independent. Embedding is unnecessary in the sequence-
to-vector case, where we consider only the last output y[N]. Next, we find a two-
layered MLP approximating the given target function and construct a modified
RNN in Lemma 3.5 that simulates the hidden node of the MLP. The node of
the MLP calculates the linear sum of all Nd, input components, which can be
represented as the sum of the inner product of some matrices and N input vectors
in R% . Finally, an additional buffer component of the modified RNN cell copies
another hidden node in the two-layered MLP. Then, the following modified RNN
cell accumulates two results from the copied nodes. The buffer component of the

modified RNN cell is then reset to zero to copy another hidden node of the MLP.

60



As this procedure is repeated, the modified RNN with bounded width copies the
two-layered MLP. As the number of additional components required in each step
depends on the activation function, we use a(co) to state the theorem briefly.
Now, we present the statements and sketches of the proof corresponding to each
step. The following lemma implies that a modified RNN computes the linear sum

of all the input components, which copies the hidden node of a two-layered MLP.

Lemma 3.5. Suppose A[l], A[2],---, A[N] € R'*% qre the given matrices. Then
there exists a modified RNNN = RpoRp_10---0RyoP : RlaxN _y Rldat)xN ¢
width dy+1 such that (the symbol x indicates that there exists some value irrelevant

to the proof)

N(x)[t] = fort < N,

- (3.18)

o (2 Alflalt])

Sketch of the proof. The detailed proof is available in Section 3.6.2. Define the m-

th modified RNN cell R,,, of the form of (3.1) without activation, with A,, =
Od, xd, Od,x1 Ia, Od,x1

, B, = ‘ where b, € R Then, the (dz + 1)th
O1xd, 1 b 0

component y[N]q,+1 of the final output y[/N] after N layers becomes a linear combi-
nation of b;x[j] with some constant coefficients «; ; and Zfil Eévzl a; jb;x]j]. Thus
the coefficient of z[j] is represented by >~ | a; ;b;, which we wish to be A[j] for

each j = 1,2,..., N. In matrix formulation, we intend to find b satisfying ATb = A,

by Al1]
where A = {aij} o oy ERVN b= | 1 | eRV*% and A= | : |.AsAis
bn A[N]
61



invertible there exist b; that solve (ATb)j = A[j]. O

After copying a hidden node using the above lemma, we add a component,
(d; + 2)th, to copy another hidden node. Then the results are accumulated in the
(dy + 1)th component, and the final component is to be reset to copy another
node. As the process is repeated, a modified RNN replicates the output node of a
two-layered MLP.

Lemma 3.6. Suppose w; € R, A;[t] € R™% are given for t = 1,2,...,N and
i=1,2,...,M. Then, there exists a modified RNN N : R%=*N 5 R of width d, + 2

such that

M N
N(x) =Y wio (Z A; [t]x[t]) . (3.19)
=1 t=1

Proof. First construct a modified RNN AN : R&*N REH+2DXN of width d, + 2

such that
EG
M(@)[t] = | « for t < N, (3.20)
I 0
i x[N]
Ni(@)[N] = |o (Z{L Al[t]x[t]> , (3.21)
0

as Lemma 3.5. Note that the final component does not affect the first linear sum-

mation and remains zero. Next, using the components except for the (d, + 1)th

62

2] S )] &)



one, construct Ny : RUeT2XN _y Rd2+2)xN which satisfies

ol
NoNi(2)[t] = | for t < N, (3.22)
)
NoNi(2)[N] = |o (th: A [t]x[t]) , (3.23)
o (S0 Asft]aft])
and use one modified RNN cell R after Mo to add the results and reset the last
component:
aft]
RNQNl(:L‘)[t] == * s (3.24)
I 0
_ [V)
RNoN1(2)[N] = | wio (32 Ar[t]a[t]) + wao (3 Ao[t][t]) | - (3.25)
0

As the (d, + 2)th component is reset to zero, we use it to compute the third sum

wzo (> As[t]z[t]) and repeat until we obtain the final network A such that

N@)IN = | 2X, wio (S, Ailteln) | - (3.26)

63

A 2t 8



Remark 3.7. The above lemma implies that a modified RNN of width d, + 2
can copy the output node of a two-layered MLP. We can extend this result to an
arbitrary dy-dimensional case. Note that the first d, components remain fized, the
(dy + 1)th component computes a part of the linear sum approximating the target
function, and the (d;+2)th component computes another part and is reset. When we
need to copy another output node for another component of the output of the target
function f : R%=*N — RN only one additional width is sufficient. Indeed, the
(dy+2)th component computes the sum and the final component, and the (d, +3)th
component acts as a buffer to be reset in that case. By repeating this process, we
obtain (dy + dy + 1)-dimensional output from the modified RNN, which includes all
dy outputs of the MLP and the components from the (dy + 1)th to the (dy + dy)th

ones.

Theorem 3.8 (Universal approximation theorem of deep RNN 2). Suppose f :
R%*N 5 R 4s a continuous sequence-to-vector function, K C R% is a compact
subset, o is a non-degenerating activation function, and zy is the non-degenerating
point. Then, for any € > 0, there exists a deep RNN N : R%=*N — Ry of width

dy +dy+ 1+ (o) such that

sup [|f(z) —N(2)|| <&, (3.27)
reKN
where
Blo) = A (3.28)

1 otherwise.

Proof. We present the proof for d, = 1 here, but adding d, —1 width for each output

component works for the case d, > 1. By the universal approximation theorem of

64



the MLP, there exist w; and A;[t] for i = 1,..., M such that

sup
zeKN

< (3.29)

M N
flz) - Z wio (Z Az‘[ﬂﬂﬂ)

€
5 .

Note that there exists a modified RNN A : R%*N 5 R of width d, + 2,

~ M N
N(z) =) wo <Z A; [t]m[t]) . (3.30)
i=1 t=1

By Lemma 3.2, there exists an RNN N : R%*N — R of width d, + 2 + (o) such

that
sup ||V (z) — N (z)|| < % (3.31)
zeK™

Hence we have || f(z) — N (2)]| < e. O

Now, we consider an RNN R as a function from sequence x to sequence y =
R(z) defined by (3.1). Although the above results are remarkable in that the min-
imal width has an upper bound independent of the length of the sequence, it only
approximates a part of the output sequence. Meanwhile, as the hidden states cal-
culated in each RNN cell are connected closely for different times, fitting all the
functions that can be independent of each other becomes a more challenging prob-
lem. For example, the coefficient of [t —1] in N (z)[t] equals the coefficient of z[t] in
N (z)[t + 1] if N is an RNN defined as in the proof of Lemma 3.5. This correlation
originates from the fact that x[t — 1] and z[t] arrive at N (z)[t], N (z)[t + 1] via the
same intermediate process, 1-time step, and N layers.

We sever the correlation between the coefficients of z[t — 1] and z[t] by defining

the time-enhanced recurrent cell as follows:

65



Definition 3.9. Time-enhanced recurrent cell, or layer, is a process that maps

sequence x = (zt]),cy € R%*N to sequence y = (y[t]),en € R=N via
ylt + 1] = R(z)[t + 1] = o (A[t + 1|R(x)[t] + B[t + 1]z[t + 1] + 0]t + 1])  (3.32)

where o is an activation function, A[t], B[t] € R%*% are weight matrices and

0[t] € R% is the bias given for each time step t.

Like RNN, time-enhanced RNN indicates a composition of the form (3.1) with
time-enhanced recurrent cells instead of RNN cells, and we denote it as TRNN.
The modified TRNN indicates a TRNN whose activation functions in some cell
act on only part of the components. Time-enhanced BRNN, denoted as TBRNN,
indicates a BRNN whose recurrent layers in each direction are replaced by time-
enhanced layers. A modified TBRNN indicates a TBRNN whose activation function
is modified to act on only part of the components. With the proof of Lemma 3.2
using A[t], B[t] instead of A, B, a TRNN can approximate a modified TRNN.

The following lemma shows that the modified TRNN successfully eliminates

the correlation between outputs. See the Section 3.6 for the complete proof.

Lemma 3.10. Suppose A;[t] € R are the given matrices for 1 < t < N,
1 < j < t. Then there exists a modified TRNN N : R&=*N 5 R@ADXN o f 4idth

ds + 1 such that
. x[t]
N(@)[t] = . : (3.33)
o (-1 Ajlte])
forallt=1,2,...,N.
Sketch of proof. The detailed proof is available in Section 3.6.3. Use by, [t] instead

of by, in the proof of Lemma 3.5. As the coefficient matrices at each time [t] after N

66



layers are full rank, we can find by, [t] implementing the required linear combination

for each time. O

Recall the proof of Theorem 3.6. An additional width serves as a buffer to
implement and accumulate linear sum in a node in an MLP. Similarly, we proceed
with Lemma 3.10 instead of Lemma 3.5 to conclude that there exists a modified

TRNN N of width d, + 2 such that each N[t] reproduces an MLP approximating
flt).

Lemma 3.11. Suppose w; € R, A; ;[t] € RY*% are thr given matrices for 1 <t <
N,1<j<t,1<i< M. Then, there exists a modified TRNN N : Ré=xN _y RIXN

of width dg + 2 such that

M t
N@)[t] =Y wio | Y Ai;txli] | - (3.34)
i=1 j=1

Proof. We omit the detailed proof because it is almost the same as the proof of

Lemma 3.6. The only difference is to use Lemma 3.10 instead of Lemma 3.5. O

This implies that the modified TRNN can approximate any past-dependent
sequence-to-sequence function.

Finally, we connect the TRNN and RNN. Although it is unclear whether a mod-
ified RNN can approximate an arbitrary modified TRNN, there exists a modified

RNN that approximates the specific one described in Lemma 3.10.

Lemma 3.12. Let N be a given modified TRNN that computes (3.33) and K C R%

be a compact set. Then ,for any € > 0 there exists a modified RNN N of width

67



dy + 2+ (o) such that

sup HN(m) —N(:U)H <e (3.35)

zeKN
where y7(ReLU) = 0, v(0) = 1 for non-degenerating activation o.

Sketch of proof. The detailed proof is available in Section 3.6.4. Without loss of

1
)

generality, we can assume K C [O ]d“ and construct the first cell as the output
at time t to be z[t] +t14,. As N compact sets K +t14, are disjoint, there exists an
MLP of width d, + 1+ ~(0) approximating x[t] +t14, — b[t]z[t] as a function from
R — R [14, 22]. Indeed, we need to approximate x[t] + t14, — 7lf] 1,
b[t]xi]
as a function from R% to R%*! Fortunately, the first d, components preserve
the original input data in the proof of Proposition 4.2(Register Model) in
[22]. Thus an MLP of width d, + 1 approximates b[t]z[t] while preserving the
x+1t1,, terms. Note that a token-wise MLP is a special case of an RNN of the same
width. Nonetheless, we need an additional width to keep the (d, + 1)th component
approximating b[t]z[t]. Using the token-wise MLP implemented by an RNN and
additional buffer width, we construct a modified RNN of width d; + 2 + (o)

approximating the modified TRNN cell used in the proof of Lemma 3.10. OJ

Summarizing all the results, we have the universality of a deep RNN in a con-

tinuous function space.

Proof of Theorem 3.4. As mentioned in Remark 3.7, we can set d, = 1 for nota-

tional convenience. By Lemma 3.11, there exists a modified TRNN N of width

68



d; + 2 such that

sup
rzeK™

() —/\T(x)H < § (3.36)

As N is a composition of modified TRNN cells of width d, + 2 satisfying (3.33),
there exists a modified RNN A of width d, + 3 4+ v(o) such that

sup
zeK"

(3.37)

N(z) —N(az)H < §

Then, by Lemma 3.2, there exists an RNN N of width d, + 3 + v(o) + (o) =

dy + 3 + a(o) such that

- €
sup ||N(z) = N(z)|| < =. (3.38)
rEK™ 3
The triangle inequality yields
sup ||f(z) — N(z)|| <e. (3.39)
zeK™
O

Remark 3.13. The number of additional widths o(o) = (o) + v(o) depends
on the condition of the activation function o. Here, (o) is required to find the
token-wise MLP that approzimates embedding from R% to Ré%*1_If further studies
determine a tighter upper bound of the minimum width of an MLP to have the
universal property in a continuous function space, we can reduce or even remove

a(o) according to the result.

There is still a wide gap between the lower bound d, and upper bound d, +

dy + 3+ a(o) of the minimum width, and hence, we expect to be able to achieve

69

2] S )] &)

11



universality with a narrower width. For example, if N = 1, an RNN is simply an
MLP, and the RNN has universality without a node required to compute the effect
of t. Therefore, apart from the result of the minimum width of an MLP, further

studies are required to determine whether v is essential for the case of N > 2.

3.3 Universal Approximation for Stack RNN in L? Space

This section introduces the universal approximation theorem of a deep RNN in LP

function space for 1 < p < oo.

Theorem 3.14 (Universal approximation theorem of deep RNN 3). Let f : Rd%*N —

R%W*N be a past-dependent sequence-to-sequence function in LP (RdeN,]RdyXN)
for 1 < p < oo, and o be a non-degenerate activation function with the non-
degenerating point zg. Then, for any € > 0 and compact subset K C R%, there

exists a deep RNN N of width max {d + 1,d,} + (o) satisfying

sup || f(@)[t] = N(@)[t]ll Lo revy <€ (3.40)

1<t<N

where v(ReLU) = 0, v(o) = 1 for other non-degenerating activation o.

Before we begin the proof of the theorem, we summarize the scheme used in
the proof. In [33], an MLP of width max{d, + 1,d,} + v(o) approximating a given
target function f is constructed using the “encoding scheme.” More concretely, the
MLP is separated into three parts: encoder, memorizer, and decoder.

First, the encoder part quantizes each component of the input and output into

a finite set. The authors use the quantization function g, : [0,1] — C,

Qn(v) ‘= Imax {C ey ‘ c< U} s (3.41)

70



where C,, := {0,27",2 x 27" ... ;1 — 27"}, Then, each quantized vector is encoded
into a real number by concatenating its components through the encoder Encyy :

[0, 1]d‘” — CdxM

dg
Encys(x) == ZqM(xi)Q_(Z_l)M. (3.42)
i=1

For small 6; > 0, the authors construct an MLP N, : [0,1]% — Cq,as of width

d; + 1+ (o) satisfying
|Encas(z) — Nene(2)]] < 61 (3.43)

Although the quantization causes a loss in input information, the LP norm neglects
some loss in a sufficiently small domain.

After encoding the input x to Ency(z) with large M, authors use the infor-
mation of z in Encys(x) to obtain the information of the target output f(z). More
precisely, they define the memorizer Memyy ys7 : Cg,nr — Ca, a7 to map the encoded

input Encys(z) to the encoded output Encyy (f(z)) as
Mem (Encys(z)) == (Encpp of o qur) (), (3.44)

assuming the quantized map qj; acts on x component-wise in the above equation.
Then, an MLP Nen, of width 2+ (o) approximates Mem; that is, for any d; > 0,

there exists Nyem satisfying
sup |[[Mem(Enc(z)) — Nopem (Enc(x))|| < d2. (3.45)

z€0,1]dx

Finally, the decoder reconstructs the original output vector from the encoded

71



output vector by cutting off the concatenated components. Owing to the preceding
encoder and memorizer, it is enough to define only the value of the decoder on

Ca,n- Hence the decoder Dec : Cq, prr — C;\lj, = (C M/)dy is determined by
Decypy(v) == where {9} = Enc (v) N Cj\l/'},. (3.46)

Indeed in [33], for small 3 > 0, an MLP Ngec : Cg, 0 — Cf\lj, of width dy + (o) is
construct so that

[Decar (v) = Naee(v)|| < d3. (3.47)

Although (3.43) and (3.47) are not equations but approximations when the activa-
tion is just non-degenerate, the composition N = Nye. 0 Nopem © Nene approximates
a target f with sufficiently large M, M’ and sufficiently small &y, .

Let us return to the proof of Theorem 3.14. We construct the encoder, mem-
orizer, and decoder similarly. As the encoder and decoder is independent of time
t, we use a token-wise MLP and modified RNNs define the token-wise MLPs. On
the other hand, the memorizer must work differently according to the time ¢ owing
to the multiple output functions. Instead of implementing various memorizers, we
separate their input and output domains at each time by translation. Then, it is

enough to define one memorizer on the disjoint union of domains.

Proof of Theorem 3.14. We first combine the token-wise encoder and translation

for the separation of the domains. Consider the token-wise encoder Ency; : R%*N —

72



RN " and the following recurrent cells Ri, Ry : RPN — RIXN

Ri()[t +1] = 27%MR (v)[t] + o[t + 1], (3.48)

Ra(v)[t + 1] = Ra(v)[t] + 1. (3.49)

Then the composition Repe = RoRq Encys defines an encoder of sequence from
KN to RIXN.

Renc(@)[t] =t + > Ency(x[j])2~ 0 D%, (3.50)
j=1

where x = (z[t]),_; 5 is a sequence in K. Note that the range D of Rep. is a

disjoint union of compact sets;
N
D=| [{Renc(x)[t] : 2 € KN} (3.51)
t=1
Hence there exists a memorizer Mem : R — R satisfying

Mern(Rene(@))[t] = Encar (f (qar()) []) (3.52)

foreacht = 1,2,..., N. The token-wise decoder Dec,;- is the last part of the proof.

To complete the proof, we need an approximation of the token-wise encoder
Encys : R% — R, modified recurrent cells Ry, Ry : RN — RN token-wise
memorizer Mem : R — R, and token-wise decoder Decpy : R — R%. Fol-
lowing [33], there exist MLPs of width d, + 1 + (o), 2 + v(0), and d, + v(o)
that approximate Encp;, Mem, and Decy;s respectively. Lemma 3.2 shows that
R1, Ry is approximated by an RNN of width 2 + 8(0). Hence, an RNN of width

max {d, + 1+ ~(0),2+ B(0),2+v(0),dy, + (o)} = max{d, +1,dy} + (o) ap-

73

2] S )] &)

11



proximates the target function f. O

3.4 Variants of RNN

This section describes the universal property of some variants of RNN, particularly
LSTM, GRU, or BRNN. LSTM and GRU are proposed to solve the long-term
dependency problem. As an RNN has difficulty calculating and updating its pa-
rameters for long sequential data, LSTM and GRU take advantage of additional
structures in their cells. We prove that they have the same universal property as
the original RNN. On the other hand, a BRNN is proposed to overcome the past
dependency of an RNN. BRNN consists of two RNN cells, one of which works in
reverse order. We prove the universal approximation theorem of a BRNN with the
target class of any sequence-to-sequence function.

The universal property of an LSTM originates from the universality of an RNN.
Mathematically LSTM Rpsras indicates a process that computes two outputs, h
and ¢, defined by (3.2). As an LSTM can reproduce an RNN with the same width,

we have the following corollary:

Corollary 3.15 (Universal approximation theorem of deep LSTM). Let f : Ré%*N —

R%W*N be o continuous past-dependent sequence-to-sequence function. Then, for any
e > 0 and compact subset K C R% | there exists a deep LSTM Npsru, of width

dy +dy + 3, such that
sup - sup ||f(z)[t] = Nesrar (@)l < e (3.53)

zeKN I<t<N

Proof. We set all parameters but W, U,, b., and by as zeros, and then (3.2) is

74



simplified as

[t + 1] = oug(by)elt] + %tanh (Uahlt] + Woalt + 1] + by) |

1 (3.54)
hit+1] = 5 tanh (c[t + 1]).
For any € > 0, a sufficiently large negative b yields
1 1
Hh[t +1] — 5 tanh (2 tanh (Uch[t] + Wex[t + 1] + bc)> ” < €. (3.55)

Thus, an LSTM reproduces an RNN whose activation function is (% tanh) o (% tanh)
without any additional width in its hidden states. In other words, an LSTM of
width d approximates an RNN of width d equipped with the activation function
(1 tanh) o (5 tanh). O

The universality of GRU is proved similarly.

Corollary 3.16 (Universal approximation theorem of deep GRU). Let f : R%=*N —
R&W*N be a continuous past-dependent sequence-to-sequence function. Then, for
any € > 0 and compact subset K C R%, there exists a deep GRU Ngry, of width

dy +dy + 3, such that
sup sup | f(x)[t] — Neru(x)[t]]] < e. (3.56)
ze KN 1<t<N

Proof. Setting only W}, Uy, by, and b, as non-zero, the GRU is simplified as

hlt + 1) = (1 — ogig (b2)) h[t] + 04 (b.) tanh <th[t +1]+ %Uhh[t] + bh> . (3.57)

75

2] S )] &)

11



For any € > 0, a sufficiently large b, yields

1
Hh[t + 1] — tanh (th[t + 1] + §Uhh[t] + bh>

‘ <e (3.58)

Hence, we attain the corollary. O

Remark 3.17. We refer to the width as the maximum of hidden states. However,
the definition is somewhat inappropriate, as LSTM and GRU cells have multiple
hidden states; hence, there are several times more components than an RNN with
the same width. Thus we expect that they have better approximation power or have
a smaller minimum width for universality than an RNN. Nevertheless, we retain
the theoretical proof as future work to identify whether they have different abilities
n approximation or examine why they exhibit different performances in practical

applications.

Now, let us focus on the universality of a BRNN. Recall that a stack of modified
recurrent cells A construct a linear combination of the previous input components
x[1 : t] at each time,

x|t]

N@) =] _ . (3.59)
Zj:l Ajltlzj]

Therefore, if we reverse the order of sequence and flow of the recurrent structure, a

stack of reverse modified recurrent cells A/ constructs a linear combination of the

subsequent input components x[t : N] at each time,

_ x|t
N(2)[t] = g . (3.60)

e Bjltlalj]

76

7 2 11 7
HI-,JI .



From this point of view, we expect that a stacked BRNN successfully approxi-
mates an arbitrary sequence-to-sequence function beyond the past dependency. As

previously mentioned, we prove it in the following lemma.

Lemma 3.18. Suppose A;[t] € RY™% are the given matrices for 1 < t < N,
1 < j < N. Then there exists a modified TBRNN N : Re&xN _y R(det)xN ¢

width d, + 1 such that
N(@)lt] = , (3.61)

forallt=1,2,...,N.

Sketch of proof. The detailed proof is available in Section 3.6.5. We use modified
TBRNN cells with either only a forward modified TRNN or a backward modified
TRNN. The stacked forward modified TRNN cells compute 23:1 Ajtlz[j], and

the stacked backward modified TRNN cells compute Zjvzt 1 Ajltlz[f]. O

As in previous cases, we have the following theorem for a TBRNN. The proof

is almost the same as that of Lemma 3.11 and 3.6.

Lemma 3.19. Suppose w; € RE, A jlt] € R4 gre the given matrices for 1 <
t<N,1<j<N,1<i< M. Then there exists a modified TBRNN N : RdaxN _y
RY™N of width d, + 2 such that

_ M N
N@)E] =Y wio | Y Aijltlzli] | - (3.62)
i=1 j=1

Proof. First, construct a modified deep TBRNN N : R%&*N —y R(d=+2)XN of width

7



d; + 2 such that
x[t]

Ni(@)[t] = |o (zjil Al,j[t]x[j]) : (3.63)
0
as Lemma 3.18. The final component does not affect the first linear summation

and remains zero. After N7, use the (d; +2)th component to obtain a stack of cells

Ny : RA=+2)XN _y Rlde+2)XN which satisfies

x[t]
NoNi (z)[t] = a(Zj.VzlAl,j[t]x[jD : (3.64)
o (S, Assltlals))

and use a modified RNN cell R to sum up the results and reset the last component:

x[t]
RNoNG (2)[t] = wlg(zyz 1A17j[t]x[j]>+w20(2§vz 1A2,j[t]x[j]) . (3.65)
0

As the (d; 4+ 2)th component resets to zero, we use it to compute the third sum

wso (> As j[tlx[j]) and repeat until we obtain the final network A such that

x[t]
N@)t] = |2 wio (ng: A [t]x[j]) . (3.66)
0

O

The following lemma fills the gap between a modified TBRNN and a modified

78

2] S )] &)

11!



BRNN.

Lemma 3.20. Let N be a modified TBRNN that computes (3.61) and K C R%
be a compact set. Then for any € > 0 there exists a modified BRNN N of width

dy + 2+ (o) such that

sup H/\?(a:) - /\7(37)” <e (3.67)

zeKN

where v(ReLU) = 0, v(0) = 1 for non-degenerating activation o.
Moreover, there exists « BRNN N of width d, + 2 + «(o) such that

sup HN(:U) — N(x)H <€, (3.68)
zeKN
where
0 o is ReLU,
a(o) =19 1 o is non-degenerating function with o(zo) = 0, (3.69)

2 o is non-degenerating function with o(zp) # 0.

Proof. We omit these details because we only need to construct a modified RNN
that approximates (3.59) and (3.60) using Lemma 3.12. As only the forward or
backward modified RNN cell is used in the proof of Lemma 3.18, it is enough
for the modified BRNN to approximate either the forward or backward modified
TRNN. Thus, it follows from Lemma 3.12. Lemma 3.2 provides the second part of

this theorem. 0

Finally, we obtain the universal approximation theorem of the BRNN from the

previous results.

79



Theorem 3.21 (Universal approximation theorem of deep BRNN). Let f : R%*N

R&W*N be o continuous sequence to seqeunce function and o be a non-degenerate
activation function. Then for any € > 0 and compact subset K C R% | there exists

a deep BRNN N of width d, + dy + 2 + a(o), such that

sup sup || f(2)[t] = N(2)[t]]| <, (3.70)
zeKN 1<I<SN

where

0 o s ReLU,
a(o) =19 1 o is non-degenerating function with o(z) = 0, (3.71)

2 o is non-degenerating function with o(zy) # 0.

Proof. As in the proof of Theorem 3.4, we set d, = 1 for notational convenience.
According Lemma 3.19, there exists a modified TBRNN N of width d, + 2 such

that
€

F(z) —N(x)H <5 (3.72)

sup
rzeKn"

Lemma 3.20 implies that there exists a BRNN of width d, + 3 + a(o) such that

sup ([N (x) —./\/(:c)H << (3.73)
TEK™ 2
The triangle inequality leads to
sup [|f(x) — N(@)] < e. (3.74)
reEK™
O
80

2] S )] &)



3.5 Discussion

We proved the universal approximation theorem and calculated the upper bound
of the minimum width of an RNN, an LSTM, a GRU, and a BRNN. In this section,
we illustrate how our results support the performance of a recurrent network.

We show that an RNN needs a width of at most d, + d, + 4 to approximate a
function from a sequence of d,-dimensional vectors to a sequence of d,-dimensional
vectors. The upper bound of the minimum width of the network depends only on
the input and output dimensions, regardless of the length of the sequence. The
independence of the sequence length indicates that the recurrent structure is much
more effective in learning a function on sequential inputs. To approximate a function
defined on a long sequence, a network with a feed-forward structure requires a wide
width proportional to the length of the sequence. For example, an MLP should have
a wider width than Nd, if it approximates a function f : R%>*N — R defined on a
sequence [20]. However, with the recurrent structure, it is possible to approximate
via a narrow network of width d, + 1 regardless of the length, because the minimum
width is independent of the length N. This suggests that the recurrent structure,
which transfers information between different time steps in the same layer, is crucial
for success with sequential data.

From a practical point of view, this fact further implies that there is no need to
limit the length of the time steps that affect dynamics to learn the internal dynamics
between sequential data. For instance, suppose that a pair of long sequential data
(z[t]) and (y[t]) have an unknown relation y[t] = f (z[t — p],z[t —p+ 1],..., z[t]).
Even without prior knowledge of f and p, a deep RNN learns the relation if we

train the network with inputs z[1 : t] and outputs y[t]. The MLP cannot repro-

81



duce the result because the required width increases proportionally to p, which is
an unknown factor. The difference between these networks theoretically supports
that recurrent networks are appropriate when dealing with sequential data whose

underlying dynamics are unknown in the real world.

3.6 Proofs

3.6.1 Proof of the Lemma 3.2

Without loss of generality, we may assume P is an identity map and I = {1,2,... k}.

Let R(z)[t+1] = o (AR(z)[t] + Bzt + 1] + ) be a given modified RNN cell, and
Q(z)[t] = Qx[t] be a given token-wise linear projection map. We use notations
Opm,n and 1,, to denote zero matrix in R™*™ and one vector in R respectively.
Sometimes we omit Oy, ,, symbol in some block-diagonal matrices if the size of the
zero matrix is clear.

Case 1: 0(z9) =0

Let P be the identity map. For § > 0 define R{ as
RS (x[t +1]) = o (B[t + 1] + 60 + 21y) . (3.75)
Since o is non-degenerating at zg and ¢’ is continuous at zg, we have

RS o P(x)[t + 1] = d0’ (20) (Ba[t + 1] + ) + o(9). (3.76)

82



Then construct a second cell to compute transition as

RS (2)[t + 1]
<5 1 5_lfk 0
=0 | ARY(2)[t] + — zlt +1] + . (3.77)
o'(20) Ig g 201q—k
- I _
where A = g A ¥
0lg—g mld—k

After that, the first output of RR{P(z) becomes

5 0
a,(lZO) - R+ | " (3.78)

Iq & 2014k

RIRIP(x)[1] = o

. (Ba[t] +0),, +970(9) (3.79)

(201q—k + 6(Bz[1] + ) + 0(9)

k+1:d

| e (B:f[ll + (9)_1:;c +o(1) (3.80)
_0/(20)5 (Bz[1] 4 6),, 1,4+ 0(9)

(| R | s
_UI(ZQ)5R($)[1]k+1:d + 0(6)

Now use mathematical induction on time ¢ to compute RIRIP(x) assuming

RIRIP@] = | atol (3.82)

o' (20)0R(2) [tk 11:a + 0(6)

83



From a direct calculation, we attain

-1
7 Lo RIP(x)[t+1] + O (3.83)
o'(0) Iq g, 201q—k
-1
= — Lo (60" (z0) (B[t + 1] 4 6) + 0(6)) + O (3.84)
a'(20) Iy 20ld—k
_ Bm[t—|— llek +9_1:k —|—_5_10(5) ’ (385)
2014k + 0 (B[t + 1] + 9)k+1:d +0(0)
and
ARSRSP(2)[t] (3.86)
_ I, i I, 7_3(9:") [t]1.x + o(1) (3.87)
| dak| | 5oy La-n | | 0" (20)0R(2) [t 1. + 0(0)
_ | A _ﬁ(w)[th:k o) (3.89)
I 5Idfk_ _’R,(x)[t]k+1;d +o(1)
_ (‘j”fz(x) )i+ o) | (3.89)
6 (AR@)[H]) ;1.4 + 0(0)

With the sum of above two results, we obtain the induction hypothesis (3.82) for

84

2] S )] &)



t+1,

RIRIP(@)[t + 1] (3.90)

Iy g 20la—k

_ (AR(@)1]) . + Balt + o + s+ 0(1) (3.92)

2014k +0 (AR(@)[t]) 1.q + 0 (Balt + 1] +8), ., ,+0(d)

_ R(z)[t + 1. + o(1) ' (3.93)

o' (20)0R(2)[t + 1t1:a + 0(6)

_ |1k
Setting Q% = Q and choosing d small enough complete the
1
U’(zo)5]d_k
proof:

o | RN o | o s 0(1) > ORI, (3.94)

R(z)[t]kt1:q + o(1)

Q" RIRIP()]t]

Case 2: 0(z9) #0
When o(z9) # 0, there is 0(2p) term independent of ¢ in the Taylor expansion of
o(z0+dx) = 0(20) + 0’ (z0)z + 0(J). An additional width removes the term in this

case; hence we need a lifting map P : RIXN _ R(A+1)XN.

P =| | (3.95)

85



Now for § > 0 define R{ as

RI(X):=0 |6 b X +46 ’ + 21 (3.96)
1 : 0td+1 | - :

As in the previous case, we have

0(20)1q + 60’ (20) (Bz[t + 1] + 8) + 0 (6)

RS o P(x)[t+ 1] = , (3.97)
a(20)
and construct a second cell RS to compute
I
R(@)[t +1] = o | ARY(x)[t] + | ) wft +1]
g1k
o’ (z0)
_ o(z0) 1
+ 59/ (z0) 7 . (3.98)
20Lldgy1—k — %Lﬂ-l—k
- Iy,
here A T A 1 1
where A = 5oy la—k sy Lk |-
STae1n 0 60’ (o) 60’ (20)
0
86

#;rﬁ'! _CI_‘,I_ ]—” 'cfj]_ =
I sl I :



After that, the first output of RR{P(x)[t] becomes

R ()[1]

1 |6
RIRIP(x)[1] = 0 (%)
0 Tgp1 g

_ 0(20)
50/(20)1k
201411k — %ldﬂ—k

(Ba[1] +6),,, + o(9)
=0 | | (201q-k + 6(Bz[1] +0)

+

jt1:q T 009)

20

o (Bz[1]+6),, +o(1)

= |0(20)1a—k + 0'(20)0 (Bz[1] +0) ., , + 0(d)
o(20)

R(x)[11x + o(1)

= |o(20)La— + ' (20)0R (@) [Upt1:a + 0(6) | -

O'(Zo)

Assume RIR{P(x) and use mathematical induction on time ¢.

R(@)[t) 1k + o(1)

RERIP(2)[t] = | 0:(20) Ly + 0 (20)6R(2) g4 124 + 0(6) | -

U(Z())

87

] 2

(3.99)

(3.100)

(3.101)

(3.102)

(3.103)

(3.104)



Direct calculation yields

1

o'(z

and

_1 _ o(20)
ol RIP(2)[t + 1] + 5o/ o) (3.105)
0) Tgp1—k 20Lagy1—k — %1%14@
B[t + 11 + 01 + o(1)
= |20la—k+6 (B[t +1]+6),,,,+0()] (3.106)
20
ARSRSP(2)[t] (3.107)
R(x)[t]1x + o(1)
= A | 0(20)La_g + 0’ (20)0R(x) 1 1:4 + 0(5) (3.108)
(20)
i _ R(2)[t]1x + o(1)
I A )
= [ R(2)[t]k+1:a + 0(1) (3.109)
0l i1k 0
0
(AR(2)[t]) ), + o(1)
= |0 (AR(2)[t]) 1.4 + 0(0) (3.110)
0

Adding two terms in (3.98), we obtain the induction hypothesis (3.104) for t + 1,

RERIP (@)t + 1] = | 0(20)La + 0’ (20)5R(@)[t + Upy1:a + 0(5) | -

R(x)[t + 11k + o(1)

o(z0)

88

(3.111)



I,

Setting Q% = [Q ()] ml‘i—k ——1 _1, .| and choosing ¢ small enough

o’(20)d
0
complete the proof:

7?’(x)[t]lzk + 0(1)
QRIRIP(x)[t] = [Q o] R(&)[sra + o(1) | = QR(@)[t] + o(1)
0

— QR (x)[t].

3.6.2 Proof of the Lemma 3.5

It suffices to show that there exists a modified RNN A that computes

z[N]
N (@)[N] = ,

S Alt]alt]

for given matrices A[l],..., A[N] € R X4,

(3.112)

(3.113)

RNN should have multiple layers to implement the arbitrary linear combina-

tion. To overcome the complex time dependency deriving from deep structures and

explicitly formulate the results of deep modified RNN, we force A and B to use the

information of the previous time step in a limited way. Define the modified RNN

cell at I-th layer R; as

Ri(x)[t + 1] = ARy () [t] + B[t + 1],

89

i
29 B

(3.114)



Od,.a, Od,n Ij, Og,1
where A; = ’ |, B = " | for by € R1Xd=,

Ode 1 by 1
Construct a modified RNN N}, for each L € N as

NL = RLORL—IO"'ORL (3115)
x
and denote the output of N7, at each time m for an input sequence 2’ = €
0
R%*1 of embedding of :
T(n,m) = N, (') [m]. (3.116)

Then we have the following lemma.

Lemma 3.22. Let T'(n,m) be the matriz defined by (3.116). Then we have

a[m]

T(n,m) = B , (3.117)
Do e (n+;n:i%])bix[j]
where (Z) means binomial coefficient ﬁlk)l forn > k. We define (Z) =0 for the

case of k > n orn <0 for notational convenience.

Proof. Since there is no activation in modified RNN (3.114), T'(n, m) has the form

of

T(n,m) = o . (3.118)

Doty 2o o biz[]

From the definition of the modified RNN cell and T, we first show that « satisfies

90

2] S )] &)

11



the recurrence relation

n—1,m n,m—1 . . .
T g +1 ifn=14and m =y,
ap" = ” I (3.119)
’ n—1,m n,m—1 .
o +a;; otherwise.
Tm
using mathematical induction on n, m in turn. Initially, 7'(0, m) = , T(n,0) =
0
Od, 1 .
by definition, and (3.118) holds when n = 0. Now assume (3.118) holds
0
for n < N, any m. To show that (3.118) holds for n = N 4+ 1 and any m, use

mathematical induction on m. By definition, we have a?’»o =

; 0 for any n. Thus

(3.118) holds when n = N + 1 and m = 0. Assume it holds for n = N + 1 and
m < M. Then

T(N +1,M +1)

~ |Odsde O T
O1,4, 1 Dot e OZQ;‘H’M%
i I, de,l TM+1
bvt1 1 D1 2 aﬁ,vaij (3.120)
B Od, 1
D1 2 az]\ZH’sz%
TM+1
_|_
ONF1TM41 + D0 Doy (ang’M + OéngH) biz;

Hence the relation holds for n = N + 1 and any m > 0.

91

"-:r'\-\. ! _'\-\.I:I_ 1_-li



Now remains to show

mANTIE]) i 1<i<n, 1<j<m,
) (5T =tsmhisds (3.121)

/L 7‘7 .
otherwise.

From the initial condition of «, we know o’ jm = a?’jo = 0 for all n, m € N. After

some direct calculation with the recurrence relation (3.118) of a, we have

1 1

) Ifn<iorm<j, o =0asa;" =, "+
11 17_7 7_] 7.7 1 —
ii) a7 = Z] +ay  +1=1
oy 1 1 im—1 . 1. ' .
iii) ag’;n =al "y al T = ag’;n implies a?}n =1 for m > j.
. - 1 1
iv) Similarly, a? = i b4 ;] ozfj g implies a =1 for n > 1.

Now use mathematical induction on n + m starting from n +m = i + j to show

ozrt]m = (m+7?__;_j) forn>1i, m>j.
i) n+m =i+ j holds only if n = ¢, m = j for n > i, m > j. In the case,

gt =1= ("),

ii) Assume that (3.121) holds for any n, m with n+m = k as induction hypoth-
esis. Now suppose n+m = k41 for given n, m. If n = ¢ or m = j we already

know a”]m =1= (""" ; ]) Otherwise n —1 >4, m — 1 > j, and we have

nm __ nlm nml
Ly T T T
m—i—n—l—i—j m+n—1—i—j
= . + . (3.122)
n—1—1 n—1i

o (mtn—i—j
B n—i ’

which completes the proof.

92



We have computed the output of modified RNN N such that

Ny (2) [N] = il : (3.123)

S i (L biald]

2n—i—j

If the square matrix Ay = {( i )}1<‘ N
<i,i<

i -1 _ o
has inverse A" = {Aij}i<; j<n

b = Ei\il At,iA[t] satisfies

252l G IRV 3 o G RO
Sl GyIY
j=11t=1 Li=1

= Z Z 6; e Alt]z[4]

j=11t=1

= Afjla[j],
j=1

where § is the Kronecker delta function.

The following lemma completes the proof.

n—i

Lemma 3.23. Matriz A,, = {(2"*i*j)}1<‘ . € R™¥"™ 4s invertible.
71,]7”

Proof. Use mathematical induction on n. Aj is a trivial case. Assume A, is invert-

93
.-:rxﬂ-! -RFI- '|_-.li -"‘.l.l



ible.

An+1 =

1

L G

(n+1

)

)

(

(7)

)

(")
(") ()

(3.125)

Applying elementary row operation to A,;1 by multiplying the matrix E on the

left and elementary column operation to EA, 1 by multiplying the matrix E7 on

the right where

0

0

we obtain the following relation:

EA, 1 ET =

Hence A,,41 is invertible by the induction hypothesis.

0 0 0
-1 0 0
1 0 0
0 1 -1
0 0 1
(n-1) O
n—2 0
(n—2) An Oml
. Oin 1
(@) 0
0 1]
94
.-':rx

(3.126)

. (3.127)



Corollary 3.24. The following matriz A, 1 € RF*™ 4s full-rank.

o i
e { (7)) C am
n—i n—k+1<i<n,1<j<n

We will use the matrix A, ; in the proof of Lemma 3.10 to approximate a
sequence-to-sequence function.
3.6.3 Proof of Lemma 3.10

Define token-wise lifting map P : R% — R%*1 and modified TRNN cell TR; :

RetDxN _y RdatD)XN a5 in the proof of Lemma 3.5:

poyi = | ™| (3.129)
0
and
TRU(X)[t+ 1] = ATR(X)[t] + Bi[t](X)[t + 1], (3.130)
where A; = Odeds Ot , Bi[t] = Ta, O, for b[t] € R, Then we
Ol,dx 1 bl[t] 1
have
T(n,m) := N () [m]
2[m] (3.131)

Sy Y (M bl

where € R=*N and Ny = TR oTRr_10---0TRi0P.

95

.-:rxﬂ-! -RFI- '|_-.li -"‘.l.l



Since for each ¢, the matrix

woen={ (7))
N,N—t+1 = .
N —i t<i<N,1<j<N

B {(2N—t+1—i—j>}
N —3j 1<i<N—t41,1<j<N

is full-rank, there exist b [t], bat], ..., bn|[t] satisfying
b [t] A¢[N]

AN N—t+1 = ,
bn|t] Aylt]

or

N .
S (YT et =

J=1

for each £ =1,2,..., N. Then we obtain

TN =3 Y (N *;:z‘j%mxm

i=1 j=1
t N . .
-2y (N *{Z“’)bi[ﬂw[ﬂ
=D Ajltl=[]
j=1

3.6.4 Proof of Lemma 3.12

(3.132)

(3.133)

(3.134)

(3.135)

(3.136)

As one of the modified TRNNs that computes (3.33), we use the modified TRNN

defined in Appendix 3.6.3. Specifically, we show that for a given [, there exists a

modified RNN of width d, + 2 4+ v(o) that approximates the modified TRNN cell

TRy : RU+DXN _y R(d=ADXN defined by (3.129). Suppose K € R%, K’ C R are

96

SEas

| &1

11



compact sets and X € (K x K')Y ¢ R@s+DxN_Then the output of the TRNN

cell TR, is

TRUX)[] = Kb, . (3.137)

> iy X [, + 2oy X [laa 1

Without loss of generality, assume K C [O, %]dz and let v = y(0). Let P : R+l

Xl:dx
0
R%+2+7 be a token-wise linear map defined by P(X) = . Construct the
Xdy+1
0,
modified recurrent cells Ry, Rg : R@t2H7(@)xN _y Rldat247(0)xN 49 for X'
R(dz+2+7) ><N’
Ry (X[t + 1] (3.138)
Od, 4, 04,
= 1 Ri(XNHH+Xt+10+ | 1 |, (3.139)
O144,14+ 0144
and
Idz 1da:
Rao(XN[t+1] = 1 X'[t]. (3.140)
Ol-i—'y,'y
97

___;rx;! _k:.'il_ ]_-.ll 3



Then, by definition for X € (K x K')",

RoR1P(X)[t] = . (3.141)

Note that D; = {RoR1P(X)[i]1a, | X € (K x KNV = {X[i]1.q, + t1q, | X €
(K x K’)N} are disjoint each other, D; N D; = ¢ for all i # j.

By the universal approximation theorem of deep MLP from [14, 22], for any
8, > 0, there exists an MLP N ppp - R — R4+ of width d, + 1 + ~ such that
for v € R%

Nivie(V)1.4, = v, (3.142)

and

sup sup ||b[t] (v —t1dg) — Niamrp(v)a,+1]l < 0. (3.143)
t=1,....N vE€Dy

Since token-wise MLP is implemented by RNN with the same width, there exists
an RNN A : RE=+247 5 R%E+24Y of width d, + 2 + v whose components all but

(dy + 2)-th construct N arzp so that for all X’ € R +2+7

Nivre (X'[thid,)
N(X[t] = X[, 42 : (3.144)

0,

98

2] &) &



Then for X € (K

NiR2R1P(X)[t] =

x K'Y we have

Nivinp (X[t)1:a, +t14,)
X([tldp+1

0,

(3.145)

Finally, define a recurrent cell Rz : R%&=+2+7 5 Ré=+2+7 of width d, + 2 + v as

Ra (X[t + 1]

Ody+1,do+1

and attain

I

T

O'y,’y_

R3N1R2R17D(X) [t]

X[t]l:dz + tldz
Nimrp (X[, +tla,) g, 11
S i Nisine (X[va, +31a,) g, 11 + g1 X[de 41

0,

X[t + 1],

(3.146)

(3.147)

With the token-wise projection map Q : R%*2+7 — R+l defined by Q(X') =

/
Xl:dz

/
de+2

99

, an RNN QRN RoyR P : RUADXN _y RAADXN of width d, + 2 +



maps X € R(@+DxN ¢4

QRN RaR1P(X)]t]
_ X[t]i:a, + 11,  (3.148)
S  Novne (X[, + 51d,) g, 01 + imt X [ilast
Since N vrrp (X[f)1:d, +j1dw)dz+1 — b[j] X [j]1.4,, we have
sup  [|[TRy(X) — QRsNRaR1P(X)|| — 0, (3.149)

Xe(KxK)N

as §; — 0. Approximating all TR; in Appendix 3.6.3 finishes the proof.

3.6.5 Proof of Lemma 3.18

The main idea of the proof is to separate the linear sum Z;V: 1 Aj[t]x[j] into the
past-dependent part Zg;ll A;[t]lz]j] and the remainder part Z;V:t Ajtlx[j]. Then,
we construct modified TBRNN with 2N cells; the former N cells have only a
forward recurrent cell to compute the past-dependent part, and the latter N cells
have only a backward recurrent cell to compute the remainder.

Let the first N modified TRNN cells R; : R(@&=+DXN _y Rd=ADXN 501 < [ < N

be defined as in the proof of Lemma 3.10:

Re(X) [t + 1] = AR (X) [t] + Bit) X[t + 1], (3.150)
@) @) I;, O
where 4; = dosda el , Bilt] = e bi[t] € RY*de. Then, with
O1.4, 1 by [t] 1
100



x
token-wise lifting map P : R% — R%*! defined by P(z) = , we construct

0
modified TRNN A : Ry o---0Rjo P : RexN _y Rlde+D)XN VWe know that if

Ci[m] € R'¥d are given for 1 < m < N and 1 < i < m, there exist b[t] for
1 <1< N, such that

Ny (z)[m] = : (3.151)
> ity Cilm][i]
Therefore, we will determine C;[m]| after constructing the latter N cells. Let f,,, =
ot Cilm]x[i] for brief notation.
After Ny, construct N modified TRNN cells R; : R(@+tDXN _y R(dat1)XN fo

1 <] < N in reverse order:

Ry (X) [t — 1] = ARy (X) [f] + Bl X[t — 1], (3.152)
_ 0 @) _ 1, 0 _ _
where A; = deoda el , Bi[t] = _dm o for bi[t] € RY¥% . Define Ny =
Ol,dz 1 b [t] 1
Ry o---07Ri, and we obtain the following result after a similar calculation with
_ x[t]
input sequence X[t] = Ny (x)[t] = :
Ji
_ _ I N+1-t
Ny (X)[N+1-1t]= [ ] , (3.153)
Z

where Z = Y30 [ S, (REEDBIN 41— jlelN + 1=+ (VNI fva .

101

2] S )] &)

11



We want to find f,, and b;|m] so that

N
Ny (X) [N+ 1= tlgp1 = > AN +1 = t]afi], (3.154)
i=1
foreacht=1,2,...,N.
Note that 22:1 PR (NH “Nb[N + 1 — jla[N + 1 — 5] does not contain
z[1],z[2], ..., z[N—t] terms, SOZ (N+t 1= 7) fn+1—j should contain SN AN+
1 — t]z[q]
L/N+t—1—j
Z( N_1 >fN+1j (3.155)
j=1
t N N+1—j
N+t—1—j a o
= Z ( N1 ) Z Ci[N + 1 — jlx[i] (3.156)
j:l =1
t N+1—j .
B N+t—1—3
= < N_1 )CZ[N + 1 — jlz[d] (3.157)
j=1 =1
N  N+l-i ,
-y ¥ (N” L ])CZ»[N—l— 1 — j)a[i] (3.158)
. : N -1
i=N+2—t j=1
N+41-t ¢ ,
Ntt—1-j L
+ z: Z ( N_1 )Ci[N—i— 1 — jlx[i]. (3.159)

Since matrix A; = {(N'H’_l_j

N_1 is a lower triangular (N +

) }1§t§N+17i,1§j§N+1fi
1—14) x (N 4+ 1 —14) matrix with unit diagonal components, there exist C;[i], C;[i +

1],..., C;i[N] such that

L/N+4t—1—j

Z( j)CZ-[NJrl_]] AN +1—1], (3.160)
foreacht=1,2,...,N+1—1.

102

A 2-t]) @



We now have
LN +t— 1 —J
Z ( )fN+1—j (3.161)

N+1—1
Z > <N+t )C[N+1—J] [i] (3.162)

1=N+4+2—-t j=1

N+1—t
+ ) AN 41— tafi] (3.163)
=1
t—1 1 N + F—1— j - '
- ( N1 >0N+1i[N +1—jlz[N+1—4 (3.164)
i=1 j=1
N+1—t
+ > AN+ 1tz (3.165)
=1
t—1 j
:Z (NJFJ\?;_i Z>CN+1 GIN+1—i]z[N +1—j] (3.166)
j=1i=1
N+1—t
+ ) AN 41— tafi]. (3.167)
=1

We switch 4 and j for the last equation. By Corollary 3.24, there exist b;[N 41 — j]

satisfying
N+t-—
bilN +1— 1
Z;( N >[+ J] (3.168)
J
NAt—1—i ,
= Ani1 [N +1—1] - Z( N1 )CN+1_J~[N+1—Z], (3.169)
1=1
forj=1,2,...,t—1, and
N . .
N+t—i—j\+ ‘
Z( N_z ]>bi[N+1_]]:AN+1_j[N+1—t], (3.170)
i=1
103

A L-tj) &



for j =t.
With the above C;[m] and b;[m], equation (3.154) holds for each t = 1,2,..., N. It
remains to construct modified TRNN cells to implement f,,, which comes directly

from the proof of Lemma 3.10.

104

!

I

11



Chapter 4

Conclusion

In this thesis, we investigated the universality of the recurrent neural network and
the convolutional neural network.

In Chapter 2, we studied the universality of convolutional neural networks with
both limited depth and unlimited width and with limited width and unlimited
depth. Although we have only dealt with the universality of three-kernel convo-
lutions, we expect that the same idea can be simply generalized to networks of
other kernel sizes. We think that convolution using striding and dilation and the
convolutional layer mixed with pooling are also interesting research topics for the
universality of convolutional neural networks. We hope that our research will serve
as a basis for active research in this field.

In Chapter 3, we investigated the universality and upper bound of the minimum
width of deep RNNs. The upper bound of the minimum width serves as a theoretical
basis for the effectiveness of deep RNNs, especially when underlying dynamics of
the data are unknown.

Our methodology enables various follow-up studies, as it connects an MLP

105



and a deep RNN. For example, the framework disentangles the time dependency
of output sequence of an RNN. This makes it feasible to investigate a trade-off
between width and depth in the representation ability or error bounds of the deep
RNN, which has not been studied because of the entangled flow with time and
depth. In addition, we separated the required width into three parts: one maintains
inputs and results, another resolves the time dependency, and the third modifies
the activation. Assuming some underlying dynamics in the output sequence, such
as an open dynamical system, we expect to reduce the required minimum width
on each part because there is a natural dependency between the outputs, and the
inputs are embedded in a specific way by the dynamics.

However, as LSTMs and GRUs have multiple hidden states in the cell process,
they may have a smaller minimum width than the RNN. By constructing an LSTM
and a GRU to use the hidden states to save data and resolve the time dependency,
we hope that our techniques demonstrated in the proof help analyze why these

networks have a better result in practice and suffer less from long-term dependency.

Clarification

This thesis was written by revising and combining some of the author’s works, [19]

and [38].

106

T O 11
""H-.'I'.I.l |



Bibliography

1]

A. BAEVSKI, Y. ZHOU, A. MOHAMED, AND M. AULI, wav2vec 2.0: A frame-

work for self-supervised learning of speech representations, Advances in Neural

Information Processing Systems, 33 (2020), pp. 12449-12460.

D. Baupanau, K. CHO, AND Y. BENGIO, Neural machine translation by

jointly learning to align and translate, arXiv preprint arXiv:1409.0473, (2014).

D. BAHDANAU, J. CHOROWSKI, D. SERDYUK, P. BRAKEL, AND Y. BENGIO,
End-to-end attention-based large vocabulary speech recognition, in 2016 IEEE
international conference on acoustics, speech and signal processing (ICASSP),

IEEE, 2016, pp. 4945-4949.

A. BHOI, Monocular depth estimation: A survey, arXiv preprint

arXiv:1901.09402, (2019).

N. COHEN, O. SHARIR, AND A. SHASHUA, On the expressive power of deep
learning: A tensor analysis, in Conference on Learning Theory, PMLR, 2016,

pp. 698-728.

G. CYBENKO, Approzimation by superpositions of a sigmoidal function, Math-

ematics of control, signals and systems, 2 (1989), pp. 303-314.

107



[7]

[11]

[12]

[13]

[14]

Z. Dar, H. Liu, Q. V. LE, aAND M. TaN, Coatnet: Marrying convolution
and attention for all data sizes, Advances in Neural Information Processing

Systems, 34 (2021), pp. 3965-3977.

L. DE BRANGES, The stone-weierstrass theorem, Proceedings of the American

Mathematical Society, 10 (1959), pp. 822-824.

J. L. ELMAN, Finding structure in time, Cognitive science, 14 (1990), pp. 179
211.

A. A. ELNGAR, M. ARAFA, A. FATHY, B. MOUSTAFA, O. MAHMOUDM,
M. SHABAN, AND N. Fawzy, Image classification based on cnn: a survey, J.

Cybersecurity Inf. Manag.(JCIM), 6 (2021), pp. 18-50.

L. FAN, F. ZHANG, H. FAN, AND C. ZHANG, Brief review of image denoising
techniques, Visual Computing for Industry, Biomedicine, and Art, 2 (2019),
pp. 1-12.

M. GARNELO, J. ScHWARZ, D. RosenBauMm, F. ViorLa, D. J.
REZENDE, S. EsvLAMI, AND Y. W. TEH, Neural processes, arXiv preprint

arXiv:1807.01622, (2018).

A. GrRAVES AND N. Jartry, Towards end-to-end speech recognition with re-

current neural networks, in International Conference on Machine Learning,

PMLR, 2014, pp. 1764-1772.

B. HANIN AND M. SELLKE, Approzimating continuous functions by relu nets

of minimal width, arXiv preprint arXiv:1710.11278, (2017).

108



[15]

[17]

[18]

[19]

[20]

[21]

J. HANSON AND M. RAGINSKY, Universal simulation of stable dynamical sys-
tems by recurrent neural nets, in Learning for Dynamics and Control, PMLR,

2020, pp. 384-392.

K. HE, X. ZHANG, S. REN, AND J. SUN, Deep residual learning for image
recognition, in Proceedings of the IEEE conference on computer vision and

pattern recognition, 2016, pp. 770-778.

B. Hipasi, A. KARATZOGLOU, L. BALTRUNAS, AND D. TIKK, Session-

based recommendations with recurrent neural networks, arXiv preprint

arXiv:1511.06939, (2015).

K. HORNIK, M. STINCHCOMBE, AND H. WHITE, Multilayer feedforward net-

works are universal approximators, Neural networks, 2 (1989), pp. 359-366.

G. HwaNG AND M. KANG, Universal property of convolutional neural net-

works, arXiv preprint arXiv:2211.09983, (2022).

J. JOHNSON, Deep, skinny neural networks are not universal approrimators,

in International Conference on Learning Representations, 2019.

R. Jozerowicz, O. VINYALS, M. SCHUSTER, N. SHAZEER, AND Y. WU,

Exploring the limits of language modeling, arXiv preprint arXiv:1602.02410,
(2016).

P. KiDGER AND T. LyoNs, Universal approximation with deep narrow net-

works, in Conference on learning theory, PMLR, 2020, pp. 2306-2327.

P. LAVANYA AND E. SASIKALA, Deep learning techniques on text classification

using natural language processing (nlp) in social healthcare network: A com-

109



[24]

[25]

[27]

prehensive survey, in 2021 3rd International Conference on Signal Processing

and Communication (ICPSC), IEEE, 2021, pp. 603-609.

Y. LECUN, Y. BENGIO, AND G. HINTON, Deep learning, nature, 521 (2015),
pp. 436-444.

Y. LECuN, L. Bortou, Y. BENGIO, AND P. HAFFNER, Gradient-based
learning applied to document recognition, Proceedings of the IEEE, 86 (1998),
pp- 2278-2324.

M. LEsHNO, V. Y. LIN, A. PINKUS, AND S. SCHOCKEN, Multilayer feedfor-
ward networks with a nonpolynomial activation function can approximate any

function, Neural networks, 6 (1993), pp. 861-867.

H. LIN AND S. JEGELKA, Resnet with one-neuron hidden layers is a universal

approximator, Advances in Neural Information Processing Systems, 31 (2018).

J. LONG, E. SHELHAMER, AND T. DARRELL, Fully convolutional networks for
semantic segmentation, in Proceedings of the IEEE conference on computer

vision and pattern recognition, 2015, pp. 3431-3440.

Z. Lu, H. Pu, F. WANG, Z. Hu, AND L. WANG, The expressive power of
neural networks: A view from the width, in Advances in Neural Information
Processing Systems, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fer-
gus, S. Vishwanathan, and R. Garnett, eds., vol. 30, Curran Associates, Inc.,

2017.

H. MARON, E. FETAYA, N. SEGOL, AND Y. LIPMAN, On the universality of

invariant networks, in International conference on machine learning, PMLR,

2019, pp. 4363-4371.

110



[31]

T. MikoLov, M. KARAFIAT, L. BURGET, J. CERNOCKY, AND S. KHUDAN-

PUR, Recurrent neural network based language model., in Interspeech, vol. 2,

Makuhari, 2010, pp. 1045-1048.

K. O’SHEA AND R. NAsH, An introduction to convolutional neural networks,

arXiv preprint arXiv:1511.08458, (2015).

S. Park, C. YuN, J. LEE, AND J. SHIN, Minimum width for universal ap-

prozimation, in International Conference on Learning Representations, 2021.

D. ROLNICK AND M. TEGMARK, The power of deeper networks for expressing

natural functions, In the International Conference on Learning Representa-

tions, (2018).

D. E. RuMELHART, G. E. HINTON, AND R. J. WILLIAMS, Learning repre-

sentations by back-propagating errors, nature, 323 (1986), pp. 533-536.

A. M. SCHAFER AND H.-G. ZIMMERMANN, Recurrent neural networks are

universal approximators, International journal of neural systems, 17 (2007),

pp. 253-263.

K. SIMONYAN AND A. ZISSERMAN, Very deep convolutional networks for large-

scale image recognition, arXiv preprint arXiv:1409.1556, (2014).

C. SoNG, G. HwWANG, AND M. KANG, Minimal width for universal property

of deep rnn, arXiv preprint arXiv:2211.13866, (2022).

R. SuTHAR AND M. K. R. PATEL, A survey on wvarious image inpainting

techniques to restore image, Int. Journal of Engineering Research and Appli-

cations, 4 (2014), pp. 85-88.

111



[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

X. Tan, T. QIN, F. SooNG, AND T.-Y. Liu, A survey on neural speech

synthesis, arXiv preprint arXiv:2106.15561, (2021).

C.-Y. Wu, A. AaMED, A. BEUTEL, A. J. SMOLA, AND H. JING, Recur-
rent recommender networks, in Proceedings of the tenth ACM international

conference on web search and data mining, 2017, pp. 495-503.

S. Xie, R. GIRSHICK, P. DOLLAR, Z. Tu, aAND K. HE, Aggregated residual
transformations for deep neural networks, in Proceedings of the IEEE confer-

ence on computer vision and pattern recognition, 2017, pp. 1492-1500.

D. YArROTSKY, Universal approximations of invariant maps by neural net-

works, Constructive Approximation, 55 (2022), pp. 407-474.

C. Yun, S. BHOJANAPALLI, A. S. RAWAT, S. REDDI, AND S. KUMAR, Are
transformers universal approximators of sequence-to-sequence functions?, in

International Conference on Learning Representations, 2020.

S. S. A. Zampi, M. S. ANSARI, A. AstAM, N. KANWAL, M. ASGHAR, AND
B. LEE, A survey of modern deep learning based object detection models, Dig-

ital Signal Processing, (2022), p. 103514.

X. ZHAI, A. KoOLESNIKOV, N. HOULSBY, AND L. BEYER, Scaling vision
transformers, in Proceedings of the IEEE/CVF Conference on Computer Vi-

sion and Pattern Recognition, 2022, pp. 12104-12113.

K. Zuang, W. REN, W. Luo, W.-S. Lal, B. STENGER, M.-H. YANG, AND
H. L1, Deep image deblurring: A survey, International Journal of Computer

Vision, 130 (2022), pp. 2103-2130.

112



[48] D.-X. ZHOU, Universality of deep convolutional neural networks, Applied and

computational harmonic analysis, 48 (2020), pp. 787-794.

113

A2 g



ol
——

ol
v

<

Toa

M

ol

i

o
—

A e ol

©

0g

24t et

A

It

H

o

Held YEAS Fxo o

=
pu—

F, =717 A= o

Ho

ol

A

Ho

Ton

o =
= &9

g9 2

G
T

o]
)

W

7HA

[e)
RS

X
-

L A o

o] A =]

oH

ol
_—
.
.

N
M

ol

34 2017-25155



	1 Introduction
	1.1 Convolutional Neural Network
	1.2 Recurrent Neural Network
	1.3 Related Works

	2 The Universal Property of Convolutional Neural Network
	2.1 Notion and Definition
	2.2 Main Theorem
	2.2.1 Problem Formulation
	2.2.2 Lemmas
	2.2.3 The Minimum Depth for the Universal Property of Convolutional Neural Network
	2.2.4 The Minimum Width for the Universal Property of Convolutional Neural Network


	3 The Universality Property of Deep Recurrent Neural Network
	3.1 Terminologies and Notations
	3.2 Universal Approximation for Deep RNN in Continuous Function Space
	3.3 Universal Approximation for Stack RNN in Lp Space
	3.4 Variants of RNN
	3.5 Discussion
	3.6 Proofs
	3.6.1 Proof of the Lemma 3.2
	3.6.2 Proof of the Lemma 3.5
	3.6.3 Proof of Lemma 3.10
	3.6.4 Proof of Lemma 3.12
	3.6.5 Proof of Lemma 3.18


	4 Conclusion
	The bibliography
	Abstract (in Korean)


<startpage>10
1 Introduction 1
 1.1 Convolutional Neural Network 2
 1.2 Recurrent Neural Network 4
 1.3 Related Works 7
2 The Universal Property of Convolutional Neural Network 11
 2.1 Notion and Definition 11
 2.2 Main Theorem 18
  2.2.1 Problem Formulation 18
  2.2.2 Lemmas 19
  2.2.3 The Minimum Depth for the Universal Property of Convolutional Neural Network 28
  2.2.4 The Minimum Width for the Universal Property of Convolutional Neural Network 44
3 The Universality Property of Deep Recurrent Neural Network 52
 3.1 Terminologies and Notations 52
 3.2 Universal Approximation for Deep RNN in Continuous Function Space 59
 3.3 Universal Approximation for Stack RNN in Lp Space 70
 3.4 Variants of RNN 74
 3.5 Discussion 81
 3.6 Proofs 82
  3.6.1 Proof of the Lemma 3.2 82
  3.6.2 Proof of the Lemma 3.5 89
  3.6.3 Proof of Lemma 3.10 95
  3.6.4 Proof of Lemma 3.12 96
  3.6.5 Proof of Lemma 3.18 100
4 Conclusion 105
The bibliography 107
Abstract (in Korean) 114
</body>

