

저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

이학박사 학위논문

Universal Approximation in Deep
Learning

딥러닝에서의 보편 근사 정리

2023년 2월

서울대학교 대학원

수 리 과 학 부

황 건 호

Universal Approximation in Deep
Learning

A dissertation

submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

to the faculty of the Graduate School of
Seoul National University

by

Geonho Hwang

Dissertation Director : Professor Myungjoo Kang

Department of Mathematical Sciences
Seoul National University

February 2023

Universal Approximation in Deep
Learning

딥러닝에서의 보편 근사 정리

지도교수 강 명 주

이 논문을 이학박사 학위논문으로 제출함

2022년 10월

서울대학교 대학원

수 리 과 학 부

황 건 호

황 건 호의 이학박사 학위논문을 인준함

2022년 12월

위 원 장 (인)

부 위 원 장 (인)

위 원 (인)

위 원 (인)

위 원 (인)

© 2022 Geonho Hwang

All rights reserved.

Abstract

Universal Approximation in Deep
Learning

Geonho Hwang

Department of Mathematical Sciences

The Graduate School

Seoul National University

Universal approximation, whether a set of functions can approximate an arbitrary

function in a specific function space, has been actively studied in recent years owing

to the significant development of neural networks. Neural networks have various

constraints according to the structures, and the range of functions that can be

approximated varies depending on the structure. In this thesis, we demonstrate the

universal approximation theorem for two different deep learning network structures:

convolutional neural networks and recurrent neural networks.

First, we proved the universality of convolutional neural networks. A convolu-

tion with padding outputs the data of the same shape as the input data; therefore,

it is necessary to prove whether a convolutional neural network composed of convo-

lutions can approximate such a function. We have shown that convolutional neural

networks can approximate continuous functions whose input and output values have

the same shape. In addition, the minimum depth of the neural network required

for approximation was presented, and we proved that it is the optimal value. We

v

vialso verified that convolutional neural networks with sufficiently deep layers have

universality when the number of channels is limited.

Second, we investigated the universality of recurrent neural networks. A recur-

rent neural network is past dependent, and we studied the universality of recur-

rent neural networks in the past-dependent function space. Specifically, we demon-

strated that a multilayer recurrent neural network with limited channels could

approximate arbitrary past-dependent continuous functions and Lp functions, re-

spectively. We also extended this result to bidirectional recurrent neural networks,

GRU, and LSTM.

Key words: Universal approximation, Recurrent Neural Network, Convolutional

Neural Network, Deep Narrow Network

Student Number: 2017-25155

Contents

Abstract v

1 Introduction 1

1.1 Convolutional Neural Network . 2

1.2 Recurrent Neural Network . 4

1.3 Related Works . 7

2 The Universal Property of Convolutional Neural Network 11

2.1 Notion and Definition . 11

2.2 Main Theorem . 18

2.2.1 Problem Formulation . 18

2.2.2 Lemmas . 19

2.2.3 The Minimum Depth for the Universal Property of Convolu-

tional Neural Network . 28

2.2.4 The Minimum Width for the Universal Property of Convo-

lutional Neural Network . 44

3 The Universality Property of Deep Recurrent Neural Network 52

3.1 Terminologies and Notations . 52

vii

3.2 Universal Approximation for Deep RNN in Continuous Function Space 59

3.3 Universal Approximation for Stack RNN in Lp Space 70

3.4 Variants of RNN . 74

3.5 Discussion . 81

3.6 Proofs . 82

3.6.1 Proof of the Lemma 3.2 . 82

3.6.2 Proof of the Lemma 3.5 . 89

3.6.3 Proof of Lemma 3.10 . 95

3.6.4 Proof of Lemma 3.12 . 96

3.6.5 Proof of Lemma 3.18 . 100

4 Conclusion 105

The bibliography 107

Abstract (in Korean) 114

viii

Chapter 1

Introduction

Deep learning, a type of machine learning that approximates a target function us-

ing a numerical model called an artificial neural network, has shown tremendous

success in diverse fields, such as regression [12], image processing [7, 46], speech

recognition [1], and natural language processing [24, 23]. While the excellent per-

formance of deep learning is attributed to a combination of various factors, it is

reasonable to speculate that its notable success is partially based on the universal

approximation theorem, which states that neural networks are capable of arbitrarily

accurate approximations of the target function. Formally, for any given function f

in a target class and ϵ > 0, there exists a network N such that ∥f − N∥ < ϵ. In

topological language, the theorem states that a set of networks is dense in the class

of the target function. In this sense, the closure of the network defines the range of

functions it network can represent.

As universality provides the expressive power of a network structure, studies on

the universal approximation theorem have attracted increasing attention. Examples

include the universality of multi-layer perceptrons (MLPs), the most basic neural

1

networks [6, 18], and the universality of recurrent neural networks (RNNs) with

the target class of open dynamical systems [36]. Recently, in [48], the authors has

demonstrated the universality of convolutional neural networks.

However, in some fields, the universal property is barely studied due to its com-

plex structure. Deep recurrent neural networks and convolutional neural networks

are two representative examples. In the case of the convolutional neural network,

convolution makes the complicated relationship between each component of the

function represented by a convolutional neural network. In Chapter 2, we stud-

ied the universal property of the convolutional neural network as a function from

sequence to sequence. We scrutinize the translation equivariance induced by the

idealized convolution neural network without padding and the asymmetry induced

by zero padding and its correlation.

The deep recurrent neural network also has similar complexity, too. The network

propagates the data through time direction and depth direction, which makes the

grid and creates complex interactions at the points of the grid. In Chapter 3, we

investigated the universal property of the deep narrow recurrent neural network.

We combinatorially analyze the linear deep narrow recurrent neural network and

utilize the result to get the universal property of general deep narrow recurrent

networks.

1.1 Convolutional Neural Network

The convolutional neural network(CNN) [32, 25], one of the most widely used deep

learning modules, has achieved tremendous accomplishment in numerous fields,

including object detection [45], image classification [10], and sound processing [40].

2

Starting with the most basic architecture, LeNet5 [25], many well-known deep

learning models such as VGGNet [37], ResNet [16], and ResNeXt [42] have been

constructed based on CNN. In this regard, it would be natural to be interested in

the universal property of CNN, which justifies using a specific network.

However, despite its extensive range of applications, research on the universal

property of CNN has been barely conducted. One of the rare studies is [48]. The

paper considered the convolutional neural network with a linear layer combined

in the last layer and proved the universal property of the network as the function

from Rd to R. However, networks sometimes are expected to retain the output

data in the same shape as the input data. Representative examples include object

segmentation [28], depth estimation [4], or image processing such as deblurring [47],

inpainting [39], and denoising [11]. Another common usage of CNN is as a feature

extractor. The feature extractor extracts information from the data and feeds it to

the latter part of the deep learning model. Typically, the feature extracted by CNN

is multi-dimensional, and to achieve the purpose of being a module that can be used

in common across multiple networks, CNN needs to have the universal property.

Also, the paper assumed an unrealistic situation in which each convolutional layer

expands the dimension of the data, which makes the contribution restrictive.

Some other research papers tackle the universal property of CNN with multi-

dimensional output as a translation invariant function. Approaches that tackle

the universal property of CNN with multi-dimensional output are investigating

the approximation of the translation invariant function with convolutional neural

networks [43, 30]. These papers consider the convolutional network as a function

from Rd to Rd. However, the invariance of the network inevitably prevents the

use of practically used padding methods like zero padding. In addition, invariance

3

fundamentally contradicts the universal property in the more general continuous

function space.

In this regard, we studied the universality of the convolutional neural network

consisting of the convolutional layer with zero padding. Unlike the previous meth-

ods that only consider scalar output or the translationally invariant functions, We

directly tackle the universal property of CNN as a vector-to-vector function. De-

spite its dominant use in CNN, zero padding convolution has been outside the

interests of the study because it deteriorates the invariance of the network. How-

ever, we revealed that zero padding is critical in achieving the universal property.

More specifically, the universality occurs because zero padding interferes with in-

variance. We scrutinize the three-kernel convolutional neural network with zero

padding and explore the minimal depth and width bound for the universal prop-

erty. Our contributions are as follows:

• We proved that CNN has the universal property in the continuous function

space as a function that preserves the shape of the input data.

• We found the optimal number of convolutional layers for a function with

d-dimensional input to have the universal property.

• We proved that deep CNNs with cx + cy + 2 have the universal property,

where cx and cy are the number of channels of the input and output data,

respectively.

1.2 Recurrent Neural Network

Classical universal approximation theorems specialize in the representation power

of shallow wide networks with bounded depth and unbounded width. Based on

4

mounting empirical evidence that deep networks demonstrate better performance

than wide networks, the construction of deep networks instead of shallow networks

has gained considerable attention in recent literature. Consequently, researchers

have started to analyze the universal approximation property of deep networks

[5, 27, 34, 22]. Studies on MLP have shown that wide shallow networks require

only two depths to have universality, while deep narrow networks require widths

at least as their input dimension.

A wide network obtains universality by increasing its width even if the depth

is only two [6, 18]. However, in the case of a deep network, there is a function for a

narrow network that cannot be able to approximated, regardless of its depth [29,

33]. Therefore, clarifying the minimum width to guarantee universality is crucial,

and studies are underway to investigate its lower and upper bounds, narrowing the

gap.

Recurrent neural networks (RNNs) [35, 9] have been crucial for modeling com-

plex temporal dependencies in sequential data. They have various applications in

diverse fields, such as language modeling [31, 21], speech recognition [13, 3], rec-

ommendation systems [17, 41], and machine translation [2]. Deep RNNs are widely

used and have been successfully applied in practical applications. However, their

theoretical understanding remains elusive despite their intensive use. This defi-

ciency in existing studies motivated our work.

In this thesis, we prove the universal approximation theorem of deep narrow

RNNs and discover the upper bound of their minimum width. The target class

consists of a sequence-to-sequence function that depends solely on past informa-

tion. We refer to such functions as past-dependent functions. We provide the upper

bound of the minimum width of the RNN for universality in the space of the past-

5

Network Function class Activation Result

RNN C
(
K,Rdy

)† ReLU
conti. nonpoly1

conti. nonpoly2

wmin ≤ dx + dy + 2
wmin ≤ dx + dy + 3
wmin ≤ dx + dy + 4

Lp
(
K,Rdy

)† ReLU
conti. nonpoly2

wmin ≤ max {dx + 1, dy}
wmin ≤ max {dx + 1, dy}+ 1

LSTM C
(
K,Rdy

)† wmin ≤ dx + dy + 3

GRU C
(
K,Rdy

)† wmin ≤ dx + dy + 3

BRNN C
(
K,Rdy

)
ReLU

conti. nonpoly1

conti. nonpoly2

wmin ≤ dx + dy + 2
wmin ≤ dx + dy + 3
wmin ≤ dx + dy + 4

Lp
(
K,Rdy

)
ReLU

conti. nonpoly2
wmin ≤ max {dx + 1, dy}

wmin ≤ max {dx + 1, dy}+ 1

† requires the class to consists of past-dependent functions.
1 requires an activation σ to be continuously differentiable at some point z0 with σ(z0) = 0 and
σ′(z0) ̸= 0. tanh belongs here.

2 requires an activation σ to be continuously differentiable at some point z0 with σ′(z0) ̸= 0. A
logistic sigmoid function belongs here.

Table 1.1: Summary of our results on the upper bound of the minimum width wmin

of RNNs. In the table, K indicates a compact subset of Rdx and 1 ≤ p < ∞. We
abbreviate continuous to “conti” and denote the minimum width as wmin.

dependent functions. Surprisingly, the upper bound is independent of the length

of the sequence. This theoretical result highlights the suitability of the recurrent

structure for sequential data compared with other network structures. Further-

more, our results are not restricted to RNNs; they can be generalized to variants of

RNNs, including long short-term memory (LSTM), gated recurrent units (GRU),

and bidirectional RNNs (BRNN). As corollaries of our main theorem, LSTM and

GRU are shown to have the same universality and target class as an RNN. We

also prove that the BRNN can approximate any sequence-to-sequence function in

a continuous or Lp space under the respective norms. We also present the upper

bound of the minimum width for these variants. Table 1.1 outlines our main results.

6

With a target class of functions that map a finite sequence x ∈ Rdx to a finite

sequence y ∈ Rdy , we prove the following:

• A deep RNN can approximate any past-dependent sequence-to-sequence con-

tinuous function with width dx + dy +2 for the ReLU activation, dx + dy +3

for tanh1, and dx + dy + 4 for non-degenerating activations.

• A deep RNN can approximate any past-dependent Lp function (1 ≤ p < ∞)

with width max {dx + 1, dy} for the ReLU activation and max {dx + 1, dy}+1

for non-degenerating activations.

• A deep BRNN can approximate any sequence-to-sequence continuous func-

tion with width dx + dy + 2 for the ReLU activation, dx + dy + 3 for tanh1,

and dx + dy + 4 for non-degenerating activations.

• A deep BRNN can approximate any sequence-to-sequence Lp function (1 ≤

p < ∞) with width max {dx + 1, dy} for the ReLU activation and max {dx + 1, dy}+

1 for non-degenerating activations.

• A deep LSTM or GRU can approximate any past-dependent sequence-to-

sequence continuous function with width dx + dy + 3 and Lp function with

width max {dx + 1, dy}+ 1.

1.3 Related Works

We briefly review some of the results of studies on the universal approximation

property. Studies have been conducted to determine whether a neural network

1Generally, non-degenerate σ with σ(z0) = 0 requires the same minimal width as tanh.

7

can learn a sufficiently wide range of functions, that is, whether it has universal

properties. In [6] and [18], the authors first proved that the most basic network, a

simple two-layered MLP, can approximate arbitrary continuous functions defined

on a compact set. Some follow-up studies have investigated the universal properties

of other structures for a specific task, such as a convolutional neural network for

image processing [48], an RNN for open dynamical systems [36, 15], and transformer

networks for translation and speech recognition [44]. Particularly for RNNs, it is

showed that open dynamical system with continuous state transition and output

function can be approximated by a network with a wide RNN cell and subsequent

linear layer in finite time [36]. Also, trajectory of the dynamical system can be

reproduced with arbitrarily small errors up to infinite time, assuming a stability

condition on long-term behavior [15].

While such prior studies mainly focused on wide and shallow networks, several

studies have determined whether a deep narrow network with bounded width can

approximate arbitrary functions [29, 14, 20, 22, 33]. Unlike the case of a wide

network that requires only one hidden layer for universality, there exists a function

that cannot be approximated by any network whose width is less than a certain

threshold. More specifically, considering that dx and dy indicate the dimensions of

the input and output vectors, respectively, the width dx−1 is insufficient for an MLP

to have universality in L1 space if the activation function is ReLU [29]. In [14], there

are negative and positive results which indicated that universality is not attained

by width dx, but width dx + dy is sufficient to achieve universality in a continuous

function space with ReLU activation. In [20, 22], the condition is generalized on

the activation and proved that dx is too narrow, but dx+dy+2 is sufficiently wide.

The results show the lower bound dx and upper bound dx+dy+C of the minimum

8

width of the MLP, where C is a constant depending on the activation function. In

[33], the exact value max {dx + 1, dy} required for universality is determined in Lp

space with ReLU.

As described earlier, studies on deep narrow MLP have been actively conducted,

but the approximation ability of deep narrow RNNs remains unclear. This is be-

cause the process by which the input affects the result is complicated compared

with that of an MLP. The RNN cell transfers information to both the next time

step in the same layer and the same time step in the next layer, which makes it

difficult to investigate the minimal width. In this regard, we examined the structure

of the RNN to apply the methodology and results from the study of MLPs to deep

narrow RNNs.

On the other hand, research on the convolutional neural network as a general-

purpose function is barely conducted. One of the research [48] studied the universal

property of the convolutional neural network as a function from the vector to the

scalar value. It tackles the network with a fully connected layer added to the last

layer to make the network’s output a scalar. Also, to employ the homomorphism

between the composition of convolutional layers and the multiplication of polyno-

mials, the paper assumed the impractical situation that data becomes longer as

the data go through the network. On the other hand, we proved the case for a fully

convolutional network that retains the shape of the input data to the output data.

The authors of [43] focused on the periodic convolutional network’s universal prop-

erty as the translation equivariant function. However, the translation equivariance

fundamentally contradicts the universal property as the general function from d-

dimensional input data to the d-dimensional output data. Because the translation

equivariance of the convolutional neural network is derived from cyclic padding, we

9

need different padding, such as zero padding.

10

Chapter 2

The Universal Property of

Convolutional Neural Network

2.1 Notion and Definition

We define notions and definitions that are used in the chapter. When we index the

data in Rd or RZ, we will use the subscript for indexing. For example, we express

the components of x ∈ Rd as

x = (x1, x2, . . . , xd). (2.1)

When we index the unique dimension called channel, we will use the superscript

for indexing, that is, for x ∈ Rc×d,

x = (x1, x2, . . . , xc), (2.2)

11

where xi ∈ Rd for i ∈ [1, c], and

xi = (xi1, x
i
2, . . . , x

i
d). (2.3)

The channel always comes first compared to other dimensions and is denoted as c

or its variant. We also define the concatenation operation ⊕ along the channel as

follows. For x = (x1, x2, . . . , xc1) ∈ Rc1×d and y = (y1, y2, . . . , yc2) ∈ Rc2×d,

x⊕ y = (x1, x2, . . . , xc1 , y1, y2, . . . , yc2) ∈ R(c1+c2)×d. (2.4)

We now define the mathematical contents used in the remaining sections.

• Infinite-Length Convolution: Let w be w = (w−k, w−k+1, . . . , wk) ∈ R2k+1.

Then an infinite-length convolution with kernel w is a map f : RZ → RZ de-

fined as follows. For x = (. . . , x−1, x0, x1, . . .) ∈ RZ,

fi(x) :=

k∑
j=−k

wjxi+j , (2.5)

where f(x) = (. . . , f−1(x), f0(x), f1(x), . . .) ∈ RZ. We say that a convolution

has a kernel size of 2k + 1.

• Zero Padding Convolution: Let ι : Rd → RZ be a natural inclusion map.

Formally, for x = (x1, x2, . . . , xd) ∈ Rd,

ιi(x) :=


xi if 1 ≤ i ≤ d,

0 otherwise,

(2.6)

where ι(x) = (. . . , ι−1(x), ι0(x), ι1(x), . . .) ∈ RZ. And let pd : RZ → Rd be a

12

projection map; that is, for x = (. . . , x−1, x0, x1, . . .) ∈ RZ, pd(x) is defined

as

pd(x) := (x1, x2, . . . , xd). (2.7)

Let w ∈ R2k+1 be a kernel. Then zero padding convolution with kernel w is

a function f : Rd → Rd is defined as

f := pd ◦ g ◦ ι, (2.8)

where g is an infinite-length convolution with kernel w. We also define it as

operation ⊛:

w ⊛ x := f(x), (2.9)

where g is an infinite-length convolution with kernel w. We can interpret the

composition as constructing a temporary infinite-length sequence by filling

zeros in the remaining components, conducting the convolution with kernel,

and cutting off the unnecessary elements.

A zero padding convolution with kernel w is a linear transformation and

hence can be expressed as matrix multiplication; w ⊛ x = Tx is satisfied for

13

the following matrix T ∈ Rd×d:

T =



w0 w1 . . . wk

w−1 w0 . . . wk−1 wk

...
. . .

. . .
. . .

w−k w−k+1 . . . w0 w1 . . . wk−1 wk

w−k . . . w−1 w2 . . . wk−2 wk−1 wk

. . .
. . .

. . .
. . .

. . .
. . .

w−k w−k+1 . . . w0



. (2.10)

We define the set of Toeplitz matrix as

Tod(s) :=

(xi,j)1≤i,j≤d ∈ Rd×d

∣∣∣∣∣∣∣∣xij =

wj−i if |i− j| ≤ s,

0 otherwise.

 . (2.11)

Also, define Ut = (ui,j)1≤i,j≤d
as

ui,j =


1 if i− j = t,

0 otherwise.

(2.12)

By definition, U0 is an identity matrix, and Ut and U−t have a transpose

relationship with each other; UT
t = U−t. The set {U−s, U−s+1, . . . Us} is the

basis of the set of Toeplitz matrices Tod(s). Zero padding convolution with

kernel w = (w−s, w−s+1, . . . , ws) can be represented as

w ⊛ x =

s∑
i=−s

wiU−i. (2.13)

14

Obviously, (U1)
t = Ut, and (U−1)

t = U−t for t ≥ 0. Also, it is convenient to

interpret the matrix multiplication in the following way. Let A be a matrix or

a column vector. Then, UtA and U−tA move A downward t rows and upward

t rows, respectively. Similarly, AUt and AU−t move A to the left by t columns

and right by t columns, respectively. We also define En,m := (ei,j)1≤i,j≤d as

ei,j =


1 if i = n , and j = m,

0 otherwise.

(2.14)

To deal with the composition of convolutions, we define SN as follows.

SN :=


n∑

i=1

N∏
j=1

Ti,j

∣∣∣∣∣∣Ti,j ∈ Tod(1), n ∈ N

 . (2.15)

SN is a vector space of matrix representations of linear transformations that

a linear three-kernel N -layered CNN can express.

• Zero Padding Convolutional Layer: A convolutional layer with c1 input

channels and c2 output channels is a map f : Rc1×d → Rc2×d. For each

1 ≤ i ≤ c2 and 1 ≤ j ≤ c1, there exist zero padding convolutions with kernel

wi,j ∈ R2k+1 and bias δi ∈ R so that for x = (x1, x2, . . . , xc1) ∈ Rc1×d,

f i(x) :=

c1∑
j=1

wi,j ⊛ xj + δi1d, (2.16)

where f(x) = (f1(x), f2(x), . . . , f c2(x)). We extend the operation ⊛ to the

multiplication between the vector-valued matrix. Let Mn,m(Rd) be the n×m

matrix whose components are d-dimensional vectors in Rd. Then for A =

15

(ai,j)1≤i≤n,1≤j≤m ∈ Mn,m(R2k+1) and B = (bj,k)1≤j≤m,1≤k≤l ∈ Mm,l(Rd), we

denote matrix multiplication ⊛ between A and B as

C := A⊛B, (2.17)

where C = (ci,k)1≤i≤n,1≤k≤l ∈ Mn,l(Rd), and ci,k is calculated as

ci,k :=
m∑
j=1

ai,j ⊛ bj,k. (2.18)

Zero padding convolutional layer can be interpreted as a matrix multiplica-

tion between weight matrix W = (wi,j)1≤i≤c2,1≤j≤c1 ∈ Mc2,c1(Rd) and input

vector X = (xj)1≤j≤c1 ∈ Mc1,1(Rd) and bias summation.



f1

f2

...

f c2


=



w1,1 w1,2 . . . w1,c1

w2,1 w2,2 . . . w2,c1

...
...

. . .
...

wc2,1 wc2,2 . . . wc2,c1


⊛



x1

x2

...

xc1


+



δ11d

δ21d
...

δc21d


. (2.19)

• Activation Function: An activation function σ is a scalar function σ :

R → R. We extend the function component-wise to the multivariate versions

σd : Rd × Rd and σc,d : Rc×d × Rc×d. Specifically, for x ∈ Rd,

σd(x) := (σ(x1), σ(x2), . . . , σ(xd)), (2.20)

where x = (x1, x2, . . . , xd). And for x = (x1, x2, . . . , xc) ∈ Rc×d and xi =

16

(xi1, x
i
2, . . . , x

i
d) ∈ Rd,

(σc,d(x))
i
j = σ(xij) for 1 ≤ i ≤ c, 1 ≤ j ≤ d. (2.21)

We will slightly abuse notation so that σ means σ, σd, and σc,d, depending

on the context.

We also define a modified version of activation function that selectively ap-

plies an activation function to each channel by modifying the activation

function as follows. For I ⊂ [1, c], define σ̃I : Rc×d → Rc×d as follows. If

x = (x1, x2, . . . , xc) and xi ∈ Rd,

σ̃i
I(x) =


σ(xi) if i ∈ I,

xi otherwise,

(2.22)

where σ̃I = (σ̃1
I , σ̃

2
I , . . . , σ̃

c
I).

• Convolutional Neural Network: An N -layered convolutional neural net-

work with c input channels and c′ output channels is a map f : Rc0×d →

RcN×d that is constructed by following N convolutional layers and the ac-

tivation function. For the channel sizes c0 = c, c1, . . . , cN = c′, there exist

convolutional layers Ci : Rci−1×d → Rci×d, and f is defined as follows.

f := CN ◦ σ ◦ CN−1 ◦ · · · ◦ σ ◦ C1. (2.23)

We denote the channel sizes of the convolutional layer as c0 − c1 − · · · − cn.

Then, we define ΣN
c,c′ as the set of the convolutional neural networks with c

input channels and c′ output channels:

17

ΣN
c,c′ := {CN ◦ σ ◦ CN−1 ◦ · · · ◦ σ ◦ C1 : Rc×d → Rc′×d

∣∣∣
c1, c2, . . . cN−1 ∈ N ,where c = c0, c

′ = cN and

Ci : Rci−1×d → Rci×d are the 3-kernel convolutional layers}.

(2.24)

If we need to indicate the activation function explicitly, we denoted ΣN
c,c′ as

σ
ΣN
c,c′ . Also, define σ(ΣN

c,c′) as

σ
(
ΣN
c,c′
)
:=

{
n∑

i=1

ai(σ ◦ fi)

∣∣∣∣∣ fi ∈ ΣN
c,c′ , ai ∈ R, n ∈ N0

}
. (2.25)

2.2 Main Theorem

2.2.1 Problem Formulation

The universal property of CNN, which we will discuss in this chapter, is whether

a continuous function from Rc×d to Rc′×d can be uniformly approximated by con-

volutional neural networks. Let C(X,Y) be a space of continuous function from X

to Y . Then we define the norm in C(K,Rc′×d) for each compact subset K ⊂ Rc×d

as follows:

||f − g||C∞(K) = sup
x∈K

||f(x)− g(x)||2. (2.26)

What we want to show in Section 2.2.3 is under what condition, the closure with

respect to C∞(K) norm satisfy the following statement,

ΣN
c,c′ = C(K,Rc′×d). (2.27)

18

And in Section 2.2.4, we will show that convolutional neural networks with bounded

width are also dense in C(K,Rc′×d) with respect to C∞(K) norm.

2.2.2 Lemmas

Now we present proofs for theorems. Before we get into the main theorems, we first

prove the lemma that will be used for proofs.

Lemma 2.1. The following statements are satisfied.

1. ΣN
c,c′ is closed under concatenation. In other words, for f1 ∈ ΣN

c,c′ and f2 ∈

ΣN
c,c′′, the function f is defined as f(x) := f1(x)⊕ f2(x) ∈ R(c′+c′′)×d. Then,

f ∈ ΣN
c,c′+c′′.

2. ΣN
c,c′ and σ(ΣN

c,c′) are vector spaces.

3. For a C∞ activation function σ,
σ
ΣN
c,c′ is closed under partial differentiation;

for C∞ function f(x, θ) and fθ(x) := f(x, θ), if fθ(x) ∈ ΣN
c,c′, then,

∂
∂θ (fθ) ∈

ΣN
c,c′. Also, σ(Σ

N
c,c′) is closed under partial differentiation.

4. For f ∈ σ(ΣN
c,c′) and a convolutional layer C with c′ input channels and c′′

output channels, C ◦ f ∈ ΣN+1
c,c′′ .

Proof. 1. Let f1 with channel sizes c− c1 − c2 − · · · − cN−1 − c′ be

f1 := CN ◦ σ ◦ CN−1 ◦ · · · ◦ σ ◦ C1, (2.28)

and f2 with channel sizes c− c′1 − c′2 − · · · − c′N−1 − c′′ be

f2 := C ′
N ◦ σ ◦ C ′

N−1 ◦ · · · ◦ σ ◦ C ′
1. (2.29)

19

As in Equation (2.19), we can express Ci as

Ci(x) = Wi ⊛ x+ δi, (2.30)

where Wi is the ci × ci−1 matrix of kernels, and δi is the vector of length ci

consisting of d-dimensional vectors. Similarly, we can denote C ′
i as

C ′
i(x) = W ′

i ⊛ x+ δ′i. (2.31)

Then we can define the concatenation for i = 2, 3, . . . , N as

C ′′
i (x⊕ y) :=

Wi

W ′
i

⊛

x
y

+

δi
δ′i

 = C1(x)⊕ C2(y). (2.32)

Also, define C ′′
1 as

C ′′
1 (x) :=

W1

W ′
1

⊛ x+

δ1
δ′1

 = C1(x)⊕ C ′
1(x). (2.33)

Then, we can construct f with channel sizes c− (c1 + c′1)− (c2 + c′2)− · · · −

(cN−1 + c′N−1)− (c′ + c′′) as

f := C ′′
N ◦ σ ◦ C ′′

N−1 ◦ · · · ◦ σ ◦ C ′′
1 . (2.34)

20

f(x) = C ′′
N ◦ σ ◦ C ′′

N−1 ◦ · · · ◦ σ ◦ C ′′
1 (x) (2.35)

= C ′′
N ◦ σ ◦ C ′′

N−1 ◦ · · · ◦ (σ ◦ C1(x)⊕ σ ◦ C2(x)) (2.36)

= (CN ◦ σ ◦ · · · ◦ σ ◦ C1(x))⊕ (C ′
N ◦ σ ◦ · · · ◦ σ ◦ C ′

1(x)) (2.37)

= f1(x)⊕ f2(x), (2.38)

which completes the proof.

2. For the arbitrary f1, f2 ∈ ΣN
c,c′ , express f1 and f2 as f1 := CN ◦ σ ◦ CN−1 ◦

· · · ◦ σ ◦ C1 and f2 := C ′
N ◦ σ ◦ C ′

N−1 ◦ · · · ◦ σ ◦ C ′
1. Except for the axiom

that ΣN
c,c′ is closed under addition, other axioms can be shown simply by

giving proper operations to the last layer. For example, replacing CN with

−CN gives the inverse element of f1. For the axiom that ΣN
c,c′ is closed under

addition, construct g as the concatenation of g1 := CN−1 ◦ · · · ◦ σ ◦ C1 and

g2 := C ′
N−1 ◦ · · · ◦ σ ◦ C ′

1. For the CN and C ′
N expressed as

CN (x) = W ⊛ x+ δ, (2.39)

and

C ′
N (x) = W ′ ⊛ x+ δ′, (2.40)

we can construct the convolutional layer C ′′
N , which satisfies

C ′′
N (x⊕ y) =

[
W W ′

]
⊛

x
y

+ (δ + δ′) = CN (x) + C ′
N (y). (2.41)

21

Then,

C ′′
N ◦ σ ◦ g(x) = C ′′

N ◦ σg1(x)⊕ g2(x)

= CN ◦ σ ◦ g1(x) + C ′
N ◦ σ ◦ g2(x) = f1(x) + f2(x). (2.42)

Thus, f1 + f2 ∈ ΣN
c,c′ , and ΣN

c,c′ is a vector space.

For σ(ΣN
c,c′), it is obvious from the definition of σ(ΣN

c,c′).

3. Because ΣN
c,c′ is a vector space,

fθ+ϵ(x)−fθ(x)
ϵ ∈ ΣN

c,c′ . And because ||fθ+ϵ(x)−fθ(x)
ϵ −

∂
∂θfθ(x)|| < o(ϵ) supθ || ∂

2

∂2θ
fθ(x)||, it uniformly converges to zero; thus, ∂

∂θfθ(x) ∈
σ
ΣN
c,c′ . Similar argument holds for σ(ΣN

c,c′).

4. For g ∈ σ(ΣN
c,c′), there exist gi ∈ σ(ΣN

c,c′), such that gi
i→∞−−−→ g. Then, we have

gi =

ni∑
j=1

ai,j(σ ◦ gi,j), (2.43)

for gi,j ∈ ΣN
c,c′ and ai,j ∈ R. Decompose C into C = L + δ where L is the

linear transformation and δ is the bias:

C ◦ gi = (L+ δ) ◦
ni∑
j=1

ai,j(σ ◦ gi,j) = δ +

ni∑
j=1

ai,jL ◦ σ ◦ gi,j ∈ ΣN+1
c,c′′ , (2.44)

because ΣN+1
c,c′′ is a vector space. If {gi}i∈N uniformly converges to g, {C◦gi}i∈N

uniformly converges to C ◦ g for the continuous function C in the compact

space, and it completes the proof.

Lemma 2.2. Consider the activation function σ, which is the C1-function near α

22

and σ′(α) ̸= 0. Then, for zero padding convolutional layers C1, C2 and a positive

number ϵ ∈ R+, there exist zero padding convolutional layers C ′
1, C

′
2 with same

input and output channels to C1, C2, respectively, such that

||C2 ◦ σ̃I ◦ C1 − C ′
2 ◦ σ ◦ C ′

1||C∞(K) < ϵ, (2.45)

where I ⊂ [1, c2], and c2 is the number of output channels of C1.

Proof. Let C1 and C2 be C1 : Rc1×d → Rc2×d and C2 : Rc2×d → Rc3×d. C1 has

kernels w1
j,i and biases δ1j for i ∈ [1, c1] and j ∈ [1, c2], and C2 has kernels w2

k,j and

biases δ2k for j ∈ [1, c2] and k ∈ [1, c3]. Then, define C ′
1 with kernels w′1

j,i and biases

δ′1j and C ′
2 with kernels w′2

k,j and biases δ′2k as follows:

w′1
j,i =


w1
j,i if j ∈ I,

w1
j,i

N otherwise,

δ′1j =


δ1j if j ∈ I,

α+
δ1j
N otherwise ,

(2.46)

and

w′2
k,j =


w2
k,j if j ∈ I,

N
σ′(α)w

2
k,j otherwise,

δ′2k =
Nσ(α)

σ′(α)
+ δ2k. (2.47)

23

Then, fk, the k-th component of C ′
2 ◦ σ ◦ C ′

1, becomes

fk(x) :=

c2∑
j=1

w′2
k,jσ

(
c1∑
i=1

w′1
j,i ⊛ (xj) + δ′1j 1d

)
+ δ′2k 1d (2.48)

=
∑
j∈I

w′2
k,jσ

(
c1∑
i=1

w′1
j,i ⊛ (xj) + δ′1j 1d

)
(2.49)

+
∑
j /∈I

w′2
k,jσ

(
c1∑
i=1

w′1
j,i ⊛ (xj) + δ′1j 1d

)
+ δ′2k 1d (2.50)

=
∑
j∈I

w2
k,jσ

(
c1∑
i=1

w1
j,i ⊛ (xj) + δ1j1d

)
(2.51)

+
∑
j /∈I

N

σ′(α)
w2
k,jσ

(
c1∑
i=1

w1
j,i

N
⊛ (xj) +

δ1j
N

+ α

)
+

Nσ(α)

σ′(α)
+ δ2k1d. (2.52)

And the k-th component of C2 ◦ σ̃I ◦ C1, gk, is

gk(x) =

c2∑
j=1

w2
k,j σ̃I

(
c1∑
i=1

w1
j,i ⊛ (xj) + δ1j1d

)
+ δ2k1d (2.53)

=
∑
j∈I

w2
k,j σ̃I

(
c1∑
i=1

w1
j,i ⊛ (xj) + δ1j1d

)
(2.54)

+
∑
j /∈I

w2
k,j σ̃I

(
c1∑
i=1

w1
j,i ⊛ (xj) + δ1j1d

)
+ δ2k1d (2.55)

=
∑
j∈I

w2
k,jσ

(
c1∑
i=1

w1
j,i ⊛ (xj) + δ1j1d

)
(2.56)

+
∑
j /∈I

w2
k,j

(
c1∑
i=1

w1
j,i ⊛ (xj) + δ1j1d

)
+ δ2k1d. (2.57)

24

Then fk − gk becomes

gk(x)− fk(x) (2.58)

=
∑
j∈I

w2
k,jσ

(
c1∑
i=1

w1
j,i ⊛ (xj) + δ1j1d

)
(2.59)

+
∑
j /∈I

w2
k,j

(
c1∑
i=1

w1
j,i ⊛ (xj) + δ1j1d

)
+ δ2k1d (2.60)

−
∑
j∈I

(
w2
k,jσ

(
c1∑
i=1

w1
j,i ⊛ (xj) + δ1j1d

))
(2.61)

−
∑
j /∈I

(
N

σ′(α)
w′2
k,jσ

(
c1∑
i=1

w1
j,i

N
⊛ (xj) +

δ1j1d

N
+ α

))
− Nσ(α)

σ′(α)
− δ2k1d (2.62)

=
∑
j /∈I

w2
k,j

(
c1∑
i=1

w1
j,i ⊛ (xj) + δ1j1d

)
+ δ2k1d (2.63)

−
∑
j /∈I

(
N

σ′(α)
w2
k,jσ

(
c1∑
i=1

w1
j,i

N
⊛ (xj) +

δ1j1d

N
+ α

))
− Nσ(α)

σ′(α)
− δ2k1d. (2.64)

Let uj be uj :=
∑c1

i=1w
1
j,i ⊛ (xj) + δ1j1d. Then,

gk(x)− fk(x) =
∑
j /∈I

w2
k,j

(
uj −

N

σ′(α)
σ
(uj
N

+ α
)
− Nσ(α)

σ′(α)

)
(2.65)

=
∑
j /∈I

w2
k,j

u2j
σ′(α)

o(
1

N
)

N→∞−−−−→ 0. (2.66)

The convergence is uniform because x is in the compact domain K; thus, uj is

uniformly bounded for all x.

Lemma 2.3. For the Lipschitz continuous activation function σ, N ≥ 2, the chan-

nel sizes c0− c1−· · ·− cN , indexes Ii ⊂ [1, ci], and the convolutional layers Ci with

ci−1 input channels and ci output channels, define the convolutional neural network

25

f as

f := CN ◦ σ̃IN−1
◦ CN−1 ◦ · · · ◦ σ̃I1 ◦ C1. (2.67)

Then, there exists g ∈ σ
ΣN
c,c′ defined as

g := C ′
N ◦ σ ◦ C ′

N−1 ◦ · · · ◦ σ ◦ C ′
1, (2.68)

such that

∥f − g∥C∞(K) < ϵ, (2.69)

where C ′
i has ci−1 input channels and ci output channels.

Proof. Use the mathematical induction on N . By Lemma 2.2, the induction hy-

pothesis is satisfied for the case N = 2. Assume that the induction hypothesis is

satisfied for the case N = N0. For the case N = N0+1, consider the function fN0+1

defined as

fN0+1 = CN0+1 ◦ σ̃IN0
◦ CN0 ◦ · · · ◦ σ̃I1 ◦ C1. (2.70)

Then, for fN0 := CN0 ◦ σ̃IN0
−1 ◦ · · · ◦ C1,

fN0+1 = CN0+1 ◦ σ̃IN0
◦ fN0 . (2.71)

By the induction hypothesis, there exists g ∈ σ
ΣN0
c,c′ , such that

∥fN0 − g∥C∞(K) <
ϵ

2l
. (2.72)

where l denote the Lipschitz constant of CN0+1 ◦ σ̃IN0
. Then,

∥fN0+1 − CN0+1 ◦ σ̃IN0
◦ g∥C∞(K) <

ϵ

2
. (2.73)

26

Denote g as

g = C ′
N0

◦ σ ◦ · · · ◦ σ ◦ C ′
1. (2.74)

By Lemma 2.2, there exist convolutional layers C ′′
N0+1 and C ′′

N0
, such that

∥CN0+1 ◦ σ̃IN0
◦ C ′

N0
− C ′′

N0+1 ◦ σ ◦ C ′′
N0

∥C∞(K′) <
ϵ

2
. (2.75)

where K ′ is the compact space K ′ = σ ◦C ′
N0−1 ◦ · · · ◦ σ ◦C ′

1(K). Define h ∈ σ
ΣN0
c,c′

as

h := C ′′
N0+1 ◦ σ ◦ C ′′

N0
◦ σ ◦ C ′

N0−1 ◦ · · · ◦ C ′
1. (2.76)

Then, the following equation is satisfied:

∥CN0+1 ◦ σ̃IN0
◦ g − h∥C∞(K) <

ϵ

2
. (2.77)

To sum up,

∥fN0+1 − h∥C∞(K) <

∥fN0+1 − CN0+1 ◦ σ̃IN0
◦ g∥C∞(K) + ∥CN0+1 ◦ σ̃IN0

◦ g − h∥C∞(K) < ϵ. (2.78)

Therefore, the induction hypothesis is satisfied for N = N0 + 1, and it completes

the proof.

Corollary 2.4. For the Lipschitz continuous activation function σ and N ≥ 2,

Id
ΣN
c,c′ is the subset of

σ
ΣN
c,c′ as functions defined on the compact set K where Id

is the identity function; that is,
Id
ΣN
c,c′ ⊂

σ
ΣN
c,c′.

Lemma 2.3 and Corollary 2.4 imply that we can freely exchange the activation

27

function to the identity.

2.2.3 The Minimum Depth for the Universal Property of Convo-

lutional Neural Network

In this section, we showed the minimum depth for the three-kernel convolutional

neural network to be universal. Unlike MLP, which only needs a two-layered net-

work to get universality, CNN requires a much deeper minimum depth. This is

because the receptive field, the range of the input component which affects the

specific output component, is restricted by the convolution using the kernel. In the

case of a convolutional layer with a kernel size of three, each output receives input

from left and right one component. Therefore, when considering the convolutional

neural network constructed by composing these N layers of convolutional layers,

the input can take values from the left and right N components. Therefore, ob-

viously, in the case of a function with d-dimensional input and output, at least

d− 1 layers must be used for the first component of the output to receive the last

component of the input. Therefore, for a CNN with kernel size three to have the

universal property, at least d − 1 layers are required. The following proposition

shows that the minimum depth d− 1 is insufficient for the case of d = 3.

Proposition 2.5. If a compact domain K ∈ Rc contains an open subset near the

origin, three-kernel two-layered CNN does not have the universal property in K

when d = 3; that is, Σ2
c,c′ ̸= C(K,Rc′).

Proof. For a 3-dimensional input, consider the case where the numbers of input and

output channels are one, and the number of intermediate channels is n. Then, for a

convolutional layer C1 with kernels (ai−1, a
i
0, a

i
1) and biases δi and a convolutional

28

layer C2 with kernels (bi−1, b
i
0, b

i
1) and biases δ0, the entire CNN f = (f1, f2, f3) :=

C2 ◦ σ ◦ C1 satisfies the following equations.

f1(x1, x2, x3) =
n∑

i=1

bi0σ(a
i
0x1+ai1x2+δi)+bi1σ(a

i
−1x1+ai0x2+ai1x3+δi)+δ0, (2.79)

f2(x1, x2, x3) =

n∑
i=1

bi−1σ(a
i
0x1 + ai1x2 + δi)

+ bi0σ(a
i
−1x1 + ai0x2 + ai1x3 + δi) + bi1σ(a

i
−1x2 + ai0x3 + δi) + δ0, (2.80)

f3(x1, x2, x3) =

n∑
i=1

bi−1σ(a
i
−1x1 + ai0x2 + ai1x3 + δi)

+ bi0σ(a
i
−1x2 + ai0x3 + δi) + δ0. (2.81)

Then, the following equation holds.

f1(x, y, 0)− f2(0, x, y) (2.82)

=

(
n∑

i=1

bi0σ(a
i
0x+ ai1y + δi) + bi1σ(a

i
−1x+ ai0y + δi)

)
(2.83)

−

(
n∑

i=1

bi−1σ(a
i
1x+ δi) + bi0σ(a

i
0x+ ai1y + δi) + bi1σ(a

i
−1x+ ai0y + δi)

)
(2.84)

= −
n∑

i=1

bi−1σ(a
i
1x+ δi). (2.85)

Thus, f1(x, y, 0)− f2(0, x, y) becomes the function of x. Let it

h(x) := f1(x, y, 0)− f2(0, x, y). (2.86)

29

Also, define g = (g1, g2, g3) : R3 → R3 as

g(x1, x2, x3) := (x2, 0, 0). (2.87)

Let K contains the open rectangle (−ϵ0, ϵ0)
3. Then, the following equation is sat-

isfied for arbitrary x, y ∈ (−ϵ0, ϵ0).

|(f1 − g1)(x, y, 0)− (f2 − g2)(0, x, y)| = |y − h(x)|. (2.88)

If g ∈ Σ2
c,c′ , there exists f such that,

||f − g||C∞(K) <
ϵ0
4
, (2.89)

which implies that |(f1− g1)(x, y, 0)| < ϵ0
4 and |(f2− g2)(0, x, y)| < ϵ0

4 for arbitrary

x, y ∈ (−ϵ0, ϵ0). However,

|y − h(x)| =|(f1 − g1)(x, y, 0)− (f1 − g2)(0, x, y)|

< |(f1 − g1)(x, y, 0)|+ |(f1 − g2)(0, x, y)| <
ϵ0
2
,

(2.90)

for arbitrary x, y ∈ [−ϵ0, ϵ0], which becomes a contradiction, and it completes the

proof.

Now we provide the main proposition of the chapter. Before we go further, we

will prove some important lemmas.

Lemma 2.6. For i ∈ [1, n], l ∈ N, and a non-polynomial C∞ activation function

30

σ, if Ai ∈ Σl
c,1, then the following relation holds:

n∏
i=1

Ai ∈ σ(Σl
c,1), (2.91)

where the product on the left hand side means the Hadamard product of the vector-

valued functions.

Proof. Let ai ∈ R for i ∈ [1, n]. Because Σl
c,1 is a vector space by Lemma 2.1, and

δ1d ∈ Σl
c,1, the linear summation also in Σl

c,1:

f :=
n∑

i=1

aiAi + δ1d ∈ Σl
c,1. (2.92)

By definition of σ(Σl
c,1),

σ

(
n∑

i=1

aiAi + δ1d

)
∈ σ(Σl

c,1). (2.93)

By Lemma 2.1, σ(Σl
c,1) is closed under the partial differentiation with respect to

the parameters. Therefore, we have

(
n∏

i=1

∂

∂ai

)[
σ

(
n∑

i=1

aiAi + δ1d

)]
∈ σ(Σl

c,1). (2.94)

And the partial differentiation is calculated as the Hadamard product:

(
n∏

i=1

∂

∂ai

)[
σ

(
n∑

i=1

aiAi + δ1d

)]
=

n∏
i=1

Aiσ
(n)(f) ∈ σ(Σl

c,1). (2.95)

Because σ is the non-polynomial function, there exist δ0 such that σ(n)(δ0) ̸= 0. By

31

substituting all ai to zero and δ to δ0, we get

n∏
i=1

Aiσ
(n)(f)

∣∣∣∣∣
a1=···=an=0,δ=δ0

=

n∏
i=1

Aiσ
(n)(δ0) ∈ σ(Σl

c,1). (2.96)

Also σ(Σl
c,1) is a vector space, and

∏n
i=1Ai ∈ σ(Σl

c,1) which completes the proof.

The lemma implies that the sufficiently smooth activation function can trans-

form input functions to the componentwise product.

Now we provide the main proposition which shows that the minimum width

d− 1 is sufficient for the case of d ≥ 4.

Proposition 2.7. For the non-polynomial continuous activation function σ and

d ≥ 4, (d− 1)-layered convolutional neural networks have the universal property in

the continuous function space; that is, Σd−1
c,c′ (K) = C(K,Rc′).

Proof. Before we go any further, we denote that we only have to prove that

Σd−1
c,1 (K) = C(K,R) because the concatenation of the function can be conducted

by Lemma 2.1. The flow of the proof follows the idea of [26]. The main idea is that

if we can approximate all polynomials, all continuous functions in the compact

domain can be approximated by the Stone–Weierstrass theorem [8]. The core dif-

ference is to make all multivariate polynomials in all positions of the output vector

independently. The complexity made by convolution is the real matter that makes

the problem tricky.

The proof is divided into the following steps. First, we will list the functions

that can be approximated by convolution under the assumption that the activation

function σ is a non-polynomial C∞ function. Next, we construct the projection,

which enables us to split each component of the output vector and construct an

32

arbitrary polynomial in an arbitrary position. Finally, we generalize the result for

the general non-polynomial activation function case later.

For the input vector x = (x1, x2, . . . , xc) ∈ Rc×d, define the translation of

xi = (xi1, x
i
2, . . . , x

i
d) as follows:

pi−j := Ujx
i = (0, . . . , 0, xi1, x

i
2, . . . , x

i
d−j), (2.97)

pi0 := xi = (xi1, x
i
2, . . . , x

i
d), (2.98)

and

pij := U−jx
i = (xij+1, . . . , x

i
d−1, x

i
d, 0, . . . , 0), (2.99)

Case 1. d = 4: It is obvious by definition that pij = U−jx
i ∈ Σ1

c,1 for j ∈

{−1, 0, 1}. By Lemma 2.6, an arbitrary product of pij is in σ(Σ1
c,1). In other words,

for some constants αi,j ∈ N for i ∈ [1, c], j ∈ {−1, 0, 1},

c∏
i=1

1∏
j=−1

(pij)
αi,j ∈ σ(Σ1

c,1). (2.100)

Consider vector-valued functions A1, A2, . . . , An ∈ σ(Σ1
c,1), and 14 ∈ σ(Σ1

c,1). Also,

consider convolutional layers with kernel bi = (bi−1, b
i
0, b

i
1). By Lemma 2.1,

bi ⊛Ai ∈ Σ2
c,1, (2.101)

for i ∈ [1, n], and

bn+1 ⊛ 14 ∈ Σ2
c,1. (2.102)

33

We construct the second convolutional layer B with n input channel and one output

channel, which consists of convolutions with kernel and the bias δ. By Lemma 2.6,

the Hadamard product of bi ⊛Ai is in σ(Σ2
c,1):

n∏
i=1

(
bi ⊛Ai

)
∈ σ(Σ2

c,1). (2.103)

Now we construct the projection of the vectors
∏n

i=1

(
bi ⊛Ai

)
to a certain axis.

Because bn+1 ⊛ 14 ∈ Σ2
c,1 and 14 ∈ Σ2

c,1, the linear summation of two functions is

also in Σ2
c,1:

bn+1 ⊛ 14 + δ14 ∈ Σ2
c,1. (2.104)

Componentwise expression becomes

bn+1 ⊛ 14 + δ14 = δ14+

(bn+1
0 + bn+1

1 , bn+1
−1 + bn+1

0 + bn+1
1 , bn+1

−1 + bn+1
0 + bn+1

1 , bn+1
−1 + bn+1

0). (2.105)

With δ = −(bn+1
−1 + bn+1

0 + bn+1
1), bn+1 ⊛ 14 + δ14 becomes

bn+1 ⊛ 14 + δ14 = (−bn+1
−1 , 0, 0,−bn+1

1). (2.106)

Therefore, e1 = (1, 0, 0, 0) and e4 = (0, 0, 0, 1) are in Σ2
c,1. By Lemma 2.6, the

Hadamard product of bi ⊛Ai and e1 is in σ(Σ2
c,1):

pr1

(
n∏

i=1

(
bi ⊛Ai

))
= e1 ⊙

(
n∏

i=1

(
bi ⊛Ai

))
∈ σ(Σ2

c,1), (2.107)

where pri means the projection to the i-th axis; that is, pr1(θ1, θ2, θ3, θ4) = (θ1, 0, 0, 0),

34

and pr4(θ1, θ2, θ3, θ4) = (0, 0, 0, θ4). Similarly, the Hadamard product of bi⊛Ai and

e4 is in σ(Σ2
c,1):

pr4

(
n∏

i=1

(
bi ⊛Ai

))
= e4 ⊙

(
n∏

i=1

(
bi ⊛Ai

))
∈ σ(Σ2

c,1). (2.108)

We also know that

pr2

(
n∏

i=1

(
bi ⊛Ai

))
+ pr3

(
n∏

i=1

(
bi ⊛Ai

))

=
n∏

i=1

(
bi ⊛Ai

)
− pr1

(
n∏

i=1

(
bi ⊛Ai

))
− pr4

(
n∏

i=1

(
bi ⊛Ai

))
. (2.109)

Therefore, pr2
(∏n

i=1

(
bi ⊛Ai

))
+ pr3

(∏n
i=1

(
bi ⊛Ai

))
∈ σ(Σ2

c,1).

Now, we construct the desired polynomials using the ingredients made in the

previous steps. First, we will prove that for an monomial M1 consisting of xi1, x
i
2, x

i
3,

except xi4, (M1, 0, 0, 0) is the element of σ(Σ2
c,1). More concretely, M1 is defined as

M1 =
c∏

i=1

∏
j=1,2,3

(xij)
αi,j , (2.110)

where αi,j ∈ N0. Let A be

A =

c∏
i

∏
j=−1,0,1

(pij)
αi,j+2 ∈ σ(Σ1

c,1). (2.111)

35

Then with b = (0, 0, 1), pr1 (b⊛A) = pr1 (U−1A) ∈ Σ2
c,1 , which means

pr1(U−1A) (2.112)

= pr1

 c∏
i=1

∏
j=1,2,3

(xij)
αi,j ,

c∏
i=1

∏
j=1,2,3

(xij+1)
αi,j ,

c∏
i=1

∏
j=1,2,3

(xij+2)
αi,j , 0

 (2.113)

=

 c∏
i=1

∏
j=1,2,3

(xij)
αi,j , 0, 0, 0

 ∈ σ(Σ2
c,1), (2.114)

where xi5 := 0. Similarly, for a monomial M2 consisting of xi2, x
i
3, x

i
4, except xi1,

(0, 0, 0,M2) is the element of σ(Σ2
c,1); that is, for αi,j ∈ N0,

M2 =
c∏

i=1

∏
j=2,3,4

(xij)
αi,j . (2.115)

The proof is obvious from symmetry.

Next, we will prove that for a monomial M3 that contains at least one xi4,

(0,M3, 0, 0) is the element of σ(Σ2
c,1); that is, for M3 defined as

M3 = xi04

c∏
i=1

∏
j=1,2,3,4

(xij)
αi,j , (2.116)

(0,M3, 0, 0) ∈ σ(Σ2
c,1) where αi,j ∈ N0. For the proof, define A1 and A2 as

A1 =

c∏
i=1

∏
j=−1,0

(pij)
αi,j+2 ∈ σ(Σ1

c,1), (2.117)

and

A2 = pi01 ⊙
c∏

i=1

∏
j=1,2

(pij−1)
αi,j+2 ∈ σ(Σ1

c,1). (2.118)

36

Also, define B as follows:

B := (0, 0, 1)⊛A2 = U−1A2 ∈ Σ2
c,1. (2.119)

Then, we have

(pr2 + pr3) (A1 ⊙B) ∈ σ(Σ2
c,1). (2.120)

Because

(pr2 + pr3) (A1 ⊙B) = (pr2 + pr3) (A1)⊙ (pr2 + pr3) (B) , (2.121)

and

(pr2 + pr3) (B) =

0, xi04

c∏
i=1

∏
j=3,4

(xij)
αi,j , 0, 0

 , (2.122)

(pr2 + pr3) (A1 ⊙B) becomes

(pr2 + pr3) (A1 ⊙B) = (pr2) (A1)⊙ (pr2) (B) (2.123)

=

0,
c∏

i=1

∏
j=1,2

(xij)
αi,j , 0, 0

⊙

0, xi04

c∏
i=1

∏
j=3,4

(xij)
αi,j , 0, 0

 (2.124)

=

0, xi04

c∏
i=1

4∏
j=1

(xij)
αi,j , 0, 0

 = (0,M3, 0, 0) ∈ σ(Σ2
c,1). (2.125)

Similarly, the symmetrical argument shows that for a monomial M4 containing at

least one xi1, (0, 0,M4, 0) is the element of σ(Σ2
c,1). What we have proven in this

step is that

• for a monomial M1 that does not contain any xi4, (M1, 0, 0, 0) ∈ σ(Σ2
c,1),

• for a monomial M2 that does not contain any xi1, (0, 0, 0,M2) ∈ σ(Σ2
c,1),

37

• for a monomial M3 that contains at least one xi4, (0,M3, 0, 0) ∈ σ(Σ2
c,1),

• and for a monomial M4 that contains at least one xi1, (0, 0,M4, 0) ∈ σ(Σ2
c,1).

Now we will prove that for arbitrary monomial M0, (M0, 0, 0, 0), (0,M0, 0, 0),

(0, 0,M0, 0), and (0, 0, 0,M0) are in Σ3
c,1. By Lemma 2.1, for an arbitrary convolu-

tional layer C and the function f ∈ σ(Σ2
c,1), C(f) ∈ Σ3

c,1. If a monomial M contains

at least one xi4 for some i ∈ [1, c], (0,M, 0, 0) ∈ σ(Σ2
c,1). And for C(x) = U0x,

C((0,M, 0, 0)) = (0,M, 0, 0) ∈ Σ3
c,1, and for C(x) = U−1x, C((0,M, 0, 0)) =

(M, 0, 0, 0) ∈ Σ3
c,1. Otherwise, if a monomialM does not contain any xi4, (M, 0, 0, 0) ∈

σ(Σ2
c,1). And for C(x) = U0x, C((M, 0, 0, 0)) = (M, 0, 0, 0) ∈ Σ3

c,1, and for C(x) =

U1x, C((M, 0, 0, 0)) = (0,M, 0, 0) ∈ Σ3
c,1. So for an arbitrary monomialM , (M, 0, 0, 0)

and (0,M, 0, 0) are the elements of Σ3
c,1. And by symmetry, (0, 0,M, 0) and (0, 0, 0,M)

are also in Σ3
c,1. It completes the proof for the case of d = 4.

Case 2. d ≥ 5: The proof proceeds almost the same to Case 1. The difference is

that unlike Case 1, we can construct all the projections prk for all k ∈ [1, d] when

d ≥ 5. More concretely, for functions Ai ∈ σ(Σd−3
c,1), qi, kernels bi ∈ R3, and qi

defined as

qi := bi ⊛Ai, (2.126)

the following relation holds for all k ∈ [1, d],

prk

(
n∏

i=1

qi

)
∈ σ(Σd−2

c,1). (2.127)

The proof is from the following steps.

38

Step 1. In this step, we will show that we can assign different constants to each

axis. Let ei be the i-th standard basis in Euclidean space. And define the constant

function ei : Rd → Rd that has constant value ei: ei(x) = ei for all x ∈ Rd.

Then what we will prove is that Σd−2
c,1 contains ei for i ∈ [1, d − 3]

⋃
[4, d]. More

generally, ei ∈ Σn
c,1 for i ∈ [1, n−1]

⋃
[d−n+2, d]. It can be proved by the following

mathematical induction.

1. For the case of n = 2, constant function A(x) := δ11d ∈ σ(Σ1
c,1). Then, for

the convolutional layer B with kernel b = (b−1, b0, b1) and the bias δ2,

B ◦A ∈ Σ2
c,1. (2.128)

More specifically,

B◦A = δ11d+(δ2(b0+b1), δ2(b−1+b0+b1), . . . , δ2(b−1+b0+b1), δ2(b−1+b0)).

(2.129)

Then, by substituting δ1 for δ′ − δ2(b−1 + b0 + b1), we get

B ◦A = δ′1d + (−δ2b−1, 0, . . . , 0,−δ2b1) ∈ Σ2
c,1. (2.130)

for arbitrary b−1 and b1. So e1, ed ∈ Σ2
c,1, and the induction hypothesis is

satisfied for the case of n = 2.

2. Assume that for n = n0, the induction hypothesis is satisfied, i.e., ei ∈ Σn0
c,1 ⊂

σ(Σn0
c,1) for i ∈ [1, n0 − 1]

⋃
[d − n0 + 2, d]. Then, for the convolutional layer

C(x) := U1x,

C ◦ en0−1 = en0 ∈ Σn0+1
c,1 . (2.131)

39

Similarly, for the convolutional layer C(x) = U−1x,

C ◦ ed−n0+2 = ed−n0+1 ∈ Σn0+1
c,1 . (2.132)

Therefore, the induction hypothesis is satisfied for n = n0 + 1, and Σd−3
c,1

contains ei for i ∈ [1, d− 4]
⋃
[5, d].

Step 2. In this step, we will similarly construct a polynomial to the case of d = 4

and show that its projection can also be constructed. We first prove that for the

function f : Rc×d → Rd defined as f i
j(x) = Ujx

i, f i
j ∈ Σl

c,1 for j ∈ [−l, l]. We use

the mathematical induction. When l = 1, it is obviously satisfied. Assume that

the induction hypothesis is satisfied for l: f i
j ∈ Σl

c,1 for j ∈ [−l, l]. By Lemma 2.6,

f i
j ∈ σ(Σl

c,1), and for C(x) = U1(x), C ◦ f i
j ∈ Σl+1

c,1 . And because C ◦ f i
j = f i

j+1, for

j ∈ [−l, l], C ◦ f i
j+1 ∈ Σl+1

c,1 . Similarly, using C(x) = U−1(x), we have C ◦ f i
j = f i

j−1,

for j ∈ [−l, l]. Therefore, the induction hypothesis is satisfied for l + 1.

Consider l = d− 2. Then pij = U−jx
i ∈ Σd−2

c,1 for j ∈ [−d+2, d− 2]. By Lemma

2.6, for αi,j ∈ N0, the following relation holds:

c∏
i=1

d−2∏
j=−d+2

(pij)
αi,j ∈ σ(Σd−2

c,1). (2.133)

Additionally, consider et ∈ σ(Σd−2
c,1). Then by applying Lemma 2.6 to pij and et,

we get

et ⊙

 c∏
i=1

d−2∏
j=−d+2

(pij)
αi,j

 ∈ σ(Σd−2
c,1). (2.134)

Because for all t ∈ [1, d−3]
⋃
[4, d], et is in Σd−2

c,1 , we are able to get the projection prt

of
∏c

i=1

∏d−2
j=−d+2(p

i
j)

αi,j for t ∈ [1, d−3]
⋃
[4, d]. For d > 5, [1, d−3]

⋃
[4, d] = [1, d],

40

so we have the projection to an arbitrary axis. For d = 5, [1, d − 3]
⋃
[4, d] =

{1, 2, 4, 5}, and because pr3 = I5 −
∑

t=1,2,4,5 prt, the projection to an arbitrary

axis is also available for d = 5.

Step 3. For an arbitrary monomial M =
∏c

i=1

∏d
j=1(x

i
j)

αi,j , we will show that

the vector Met is in σ(Σd−2
c,1):

Met = (0, . . . , 0,M, 0, . . . , 0) ∈ σ(Σd−2
c,1), (2.135)

for t ∈ [2, d− 1]. We know that

et ⊙

 c∏
i=1

d−2∏
j=−d+2

(pij)
αi,j

 ∈ σ(Σd−2
c,1). (2.136)

By proper calculation, we get

et ⊙

 c∏
i=1

d∏
j=1

(pij+t)
αi,j

 =
c∏

i=1

d∏
j=1

(et ⊙ pij+t)
αi,j =

c∏
i=1

d∏
j=1

(xijet)
αi,j (2.137)

=

c∏
i=1

d∏
j=1

(xij)
αi,jet = Met. (2.138)

Therefore, Met ∈ σ(Σd−2
c,1) for t ∈ [2, d− 1].

Finally, by using proper U1, U0, U−1 for the last convolutional layer, we can get

Met ∈ Σd−1
c,1 for all i ∈ [1, d], and it completes the proof for the non-polynomial

C∞ activation function σ.

Now remaining is to generalize the result of the non-polynomial C∞ activation

function for the general non-polynomial function. It comes from the Section 6 of the

[26]. For any non-polynomial function σ, there exists the compact supported C∞

41

function ϕ such that σ∗ϕ is smooth and not a polynomial function(Step 5 and Step

6 of Section 6 [26]). And because σ ∗ ϕ can be uniformly approximated by σ(Step

4 of Section 6 [26]), any convolutional neural network with the activation function

σ ∗ ϕ can be uniformly approximated by the convolutional neural networks with

the activation function σ. And because CNN with the activation function σ ∗ϕ has

the universal property, CNN with the activation function σ also has the universal

property, and it completes the entire proof.

Remark 2.8. Translation equivariance is often referred to as the basis of the ad-

vantages of CNN models:

fs(xt) = fs+i(xt+i). (2.139)

In fact, infinite-length convolution without padding is translation equivariant. How-

ever, this property contradicts the universal property because of the relation between

the output vector and the input vector. Actually, as shown in the proof process,

padding plays an important role. The asymmetry that starts at the boundary gradu-

ally propagates toward the center, making it possible to achieve the universal prop-

erty.

Lemma 2.9. For the non-polynomial continuous activation function σ and d =

2, 3, d-layered convolutional neural networks has the universal property in the con-

tinuous function space; that is, Σd
c,c′(K) = C(K,Rc′).

Proof. The proof is almost same to Proposition 2.7. Divide the case into d = 2 and

d = 3.

Case 1 d = 2: For the vectors pi−1 = (0, xi1), p
i
0 = (xi1, x

i
2), and , pi1 = (xi2, 0),

Lemma 2.6 gives the following equation: for some constants αi,j ∈ N0 for i ∈

42

[1, c], j ∈ {−1, 0, 1}, ∏
i,j

(pij)
αi,j ∈ σ(Σ1

c,1). (2.140)

For a monomial M that contains at least one xi1, (0,M) is the element of σ(Σ1
c,1);

that is, for M = xi01
∏c

i=1

∏
j=1,2(x

i
j)

αi,j , (0,M) ∈ σ(Σ1
c,1). it is obvious from the

following equation.

pi0−1

∏
i,j

(pij)
αi,j = (0,M) ∈ σ(Σ1

c,1). (2.141)

Then, for C(x) = U−1x, C((0,M)) = (M, 0) ∈ Σ2
c,1, and for C(x) = U0x, C((0,M)) =

(0,M) ∈ Σ2
c,1. By symmetric process, for a monomial M that contains at least one

xi2, (M, 0), (0,M) ∈ Σ2
c,1. Now remaining is to prove that the constant functions e1

and e2 are in Σ2
c,1. Because (1, 1) ∈ σ(Σ1

c,1), U−1((1, 1)) = (1, 0) = e1 ∈ Σ2
c,1, and

U1((1, 1)) = (0, 1) = e2 ∈ Σ2
c,1. It completes the proof for the case d = 2.

Case 2 d = 3: In the proof for Proposition 2.7, the following relation holds:

ei ∈ Σ2
c,1, (2.142)

for i ∈ [1, n − 1]
⋃
[, d] = {1, 3}. Because pij = U−jx

i ∈ Σ2
c,1 for j ∈ [−2, 2], by

Lemma 2.6, we have
c∏

i=1

2∏
j=−2

(pij)
αi,j ∈ σ(Σ2

c,1), (2.143)

and

et ⊙

 c∏
i=1

2∏
j=−2

(pij)
αi,j

 ∈ σ(Σ2
c,1), (2.144)

for αi,j ∈ N0 and t ∈ {1, 3} Because pr2 = I3 − pr1 − pr3, above equation is also

satisfied for t = 2.

43

For an arbitrary monomial M =
∏c

i=1

∏3
j=1(x

i
j)

αi,j ,

pr2

 c∏
i

3∏
j=1

(pij−2)
αi,j

 = (0,M, 0) ∈ σ(Σ2
c,1). (2.145)

Thus, using the convolutional layers U−1, U0, and U1 as the last layer, (M, 0, 0),

(0,M, 0),(0, 0,M) ∈ Σ3
c,1. And it completes the proof.

Combining Lemma 2.9, Lemma 2.5, and Proposition 2.7 altogether, we get the

following theorem:

Theorem 2.10. For the non-polynomial continuous activation function σ, the min-

imal depth Nd for convolutional neural network to have the universal property is

Nd =


2 if d = 1, 2,

3 else if d = 3,

d− 1 else if d ≥ 4.

(2.146)

In other words, for a compact set K ⊂ Rc, ΣND
c,c′ = C(K,Rc′), and ΣND−1

c,c′ ̸=

C(K,Rc′).

2.2.4 The Minimum Width for the Universal Property of Convo-

lutional Neural Network

In this section, we prove the universal property of deep narrow convolutional neu-

ral networks. The proof process is as follows. First, construct the convolutional

neural networks, which can compute arbitrary linear summation of the input in

Lemma 2.13. Second, in Lemma 2.14, compose the linear summation and the ac-

44

tivation function to get the convolutional neural network which can approximate

the arbitrary continuous function using only one activation function layer. Finally,

construct the deep narrow neural network that can approximate the network men-

tioned above.

Lemma 2.11. Sd−1 contains the following elements.

• If n+m ≤ d− 1, En,m ∈ Sd−1.

• If n+m ≥ d+ 3, En,m ∈ Sd−1.

• If n+m = d+ 1, En,m ∈ Sd−1.

• If n+m = d, En,m + En+1,m+1 ∈ Sd−1.

Proof. • By simple operation, we can know that U0 − U1U−1 = E1,1. And

Un−1
1 (U0−U1U−1)U

m−1
−1 = Un−1

1 Um−1
−1 −Un

1 U
m
−1 = En,m. So if n+m ≤ d−1,

En,m ∈ Sd−1.

• Similarly, U0−U−1U1 = E(d, d). And Un−1
−1 (U0−U−1U1)U

m−1
1 = Un−1

−1 Um−1
1 −

Un
−1U

m
1 = E(d− n+ 1, d−m+ 1). So if (d− n+ 1) + (d−m+ 1) ≥ d+ 3 ,

then n+m ≤ d− 1, and thus Ed−n+1,d−m+1 ∈ Sd−1.

• Divide the case into two cases again. First, consider the case of n ≥ m.

Then, We can easily observe that (U1)
n−m =

∑d−m
i=−n+1En+i,m+i. Because

En+i,m+i ∈ Sd−1 for all i < 0(∵ (n + i) + (m + i) = d + 1 + 2i ≤ d − 1)

and i > 0(∵ (n + i) + (m + i) = d + 1 + 2i ≥ d + 3), and (U1)
n−m ∈ Sd−1,

En,m = (U1)
n−m −

∑
i ̸=0En+i,m+i ∈ Sd−1. Similarly, if n < m, (U−1)

m−n =∑m−1
i=−n+1En+i,m+i, and thus En,m = (U−1)

m−n −
∑

i ̸=0En+i,m+i ∈ Sd−1.

45

• Similar to the above case, if n ≥ m, then (U1)
n−m =

∑d−m
i=−n+1En+i,m+i.

En,m + En+1,m+1 = (U1)
n−m −

∑
i ̸=0,1En+i,m+i ∈ Sd−1. If n < m, En,m +

En+1,m+1 = (U−1)
m−n −

∑
i ̸=0,1En+i,m+i ∈ Sd−1.

Corollary 2.12. For arbitrary 1 ≤ n,m ≤ d, En,m ∈ Sd.

Proof. Obviously, Sd−1 ⊂ Sd. And En,m ∈ Sd, except for the cases of n + m = d

and n+m = d+ 2. If n+m = d, En,m = En+1,mU1. Because n+ 1 +m = d+ 1,

En+1,m ∈ Sd−1, and thus En+1,mU1 ∈ Sd. If n + m = d + 2, En,m = En−1,mU−1.

Because n− 1 +m = d+ 1, En−1,m ∈ Sd−1, and thus En−1,mU−1 ∈ Sd.

Corollary 2.13. For arbitrary matrix L ∈ Rd×d, L ∈ Sd.

In the following lemma, we prove that the convolutional neural networks with

only one activation function layer can approximate the arbitrary continuous func-

tion.

Lemma 2.14. Define the set of functions as follows. For x = (x1, x2, . . . , xc) ∈

Rc×d and xi ∈ Rd,

T :=


n∑

j=1

ajσ

(
c∑

i=1

Lj,ix
i + δj

)∣∣∣∣∣∣Lj,i ∈ Rd×d, δj ∈ Rd, aj ∈ R

 , (2.147)

where σ is the non-polynomial continuous activation function. Then, T = C(K,R1×d)

for the compact set K ∈ Rc×d.

Proof. Let xi be xi = (xi1, x
i
2, . . . , x

i
d) ∈ Rd. Define the arbitrary monomial of xij as

follows:

M =
c∏

i=1

d∏
j=1

(xij)
αi,j , (2.148)

46

for some degrees αi,j ∈ R. We will show that for k ∈ [1, d],

Mek = (0, 0, . . . , 0,M, 0, . . . , 0) ∈ T . (2.149)

Then, it is sufficient by Stone–Weierstrass theorem [8]. As in Lemma 2.1, T , the

closure of T , is a vector space and is closed under partial differentiation with respect

to the parameters. For δ = (δ1, δ2, . . . , δd) and bi,t ∈ R,

σ ◦ f(x) = σ

(
c∑

i=1

bi,jEk,jx
i + δ

)
∈ T . (2.150)

Then, partial differentiation with respect to δj and bi,t gives the following equation.

 ∂

∂δk

c∏
i=1

d∏
j=1

(
∂

∂bi,j

)αi,j

σ(f) =

 c∏
i=1

d∏
j=1

(xij)
αi,j

 ek ⊙ σ(n)(f), (2.151)

where n =
∑c

i=1

∑d
j=1 αi,j + 1. Then, with δj such that σ(n)(δj) ̸= 0 and bi,j = 0,

we get,

Mek ∈ T . (2.152)

Therefore, all polynomials are in T , and by Stone–Weierstrass theorem, T =

C(K,R1×d).

We demonstrate the universality of the deep narrow convolutional neural net-

work in the next theorem.

Theorem 2.15. Any function f : Rcx×d → Rcy×d can be approximated by convo-

lutional neural networks with at most cx + cy +2 channels and the non-polynomial

continuous activation function; for any ϵ > 0, there exists convolutional neural

47

network g with cx + cy + 2 channels such that,

||f − g||C∞(K) < ϵ. (2.153)

Proof. First, consider the function f with c input channels and one output channel:

f : Rc×d → R1×d. (2.154)

We denote the input as x and each channel of input as x = (x1, x2, . . . , xc). By

Lemma 2.14, there exist g : Rc×d → R1×d such that defined as follows:

g(x) :=
n∑

j=1

ajσ

(
c∑

i=1

Lj,ix
i + δj

)
, (2.155)

which can approximate f with an arbitrarily small error. Now construct the convo-

lutional neural network with channel size c+ 3 which approximates g. By Lemma

2.12, for arbitrary Lj,i ∈ Rd×d, there exists Ck,l
i,j ∈ Tod(1) such that

Lj,i =

mi,j∑
l=1

d∏
k=1

Ck,l
i,j . (2.156)

Also, there exist C̃k,l
j ∈ Tod(1) such that

δj =

m̃j∑
l=1

d∏
k=1

C̃k,l
j 1d. (2.157)

48

Then, g becomes

g(x) =
n∑

j=1

ajσ

(
c∑

i=1

Lj,i + δjx
i

)

=
n∑

j=1

ajσ

 c∑
i=1

mi,j∑
l=1

d∏
k=1

Ck,l
i,j x

i +

m̃j∑
l=1

d∏
k=1

C̃k,l
j 1d

 . (2.158)

Then we define the convolutional neural network with c+3 channels that calcu-

late the aforementioned equation. By Lemma 2.2, if we can approximate the func-

tion with the convolutional neural network with the partial activation function,

we can approximate the function with the original convolutional neural network.

Therefore, we can preserve c channels from the input and process the (c + 1)-th,

(c + 2)-th, and (c + 3)-th channels. We get the desired output according to the

following process of function compositions.

1. Repeat the following for j = 1, 2, . . . , n.

2. Calculate σ
(∑c

i=1

∑mi,j

l=1

∏d
k=1C

k,l
i,j x

i + δj

)
in the (c + 2)-th channel, not

using the (c+ 3)-th channel.

2.1. Repeat the following for i = 1, 2, . . . , c and l = 1, 2, . . . ,mi,j .

2.2. Calculate
∏d

k=1C
k,l
i,j x

i in the (c+1)-th channel, not using the (c+2)-th

and the (c+ 3)-th channels.

2.2.1. Copy xi from the i-th channel to the (c+ 1)-th channel.

2.2.2. Conduct convolution with kernel Ck,l
i,j and the bias 0 on the (c+1)-th

channel for k = 1, 2, . . . , d.

2.3. Add
∏d

k=1C
k,l
i,j x

i to the (c+2)-th channel and set the (c+1)-th channel

to 0.

49

2.4. Add δj =
∑m̃j

l=1

∏d
k=1 C̃

k,l
j 1d to the (c+ 2)-th channel.

2.4.1. Repeat the following for l = 1, 2, . . . , m̃j .

2.4.2. Conduct the convolution with kernel (0, 0, 0) and the bias 1 on the

(c+ 1)-th channel and get 1d on the (c+ 1)-th channel.

2.4.3. Conduct the convolution with kernel C̃k,l
j and the bias 0 on the

(c + 1)-th channel for k = 1, 2, . . . , d and get
∏d

k=1 C̃
k,l
j 1d in the

(c+ 1)-th channel.

2.4.4. Add
∏d

k=1 C̃
k,l
j 1d to the (c + 2)-th channel and set the (c + 1)-th

channel to 0.

2.5. Apply the activation function on the (c+ 2)-th channel and get

σ
(∑c

i=1

∑mi,j

l=1

∏d
k=1C

k,l
i,j x

i + δj

)
in the (c+ 2)-th channel.

3. Add σ
(∑c

i=1

∑mi,j

l=1

∏d
k=1C

k,l
i,j x

i + δj

)
to the (c + 3)-th channel and set the

(c+ 2)-th channel to 0.

4. Get
∑n

j=1 ajσ
(∑c

i=1

∑mi,j

l=1

∏d
k=1C

k,l
i,j x

i + δj

)
in the (c+ 3)-th channel.

5. Set the final convolutional layer with one output channel, which takes the

value from the (c+ 3)-th channel.

In this process, the (c + 1)-th channel is used to calculate the product
∏d

k=1C
k,l
i,j .

And the (c+2)-th channel is used to accumulate the summation
∑c

i=1

∑mi,j

l=1

∏d
k=1C

k,l
i,j x

i

calculated in the (c+ 1)-th channel. The (c+ 3)-th channel is used to accumulate

the final summation
∑n

j=1 ajσ
(∑c

i=1

∑mi,j

l=1

∏d
k=1C

k,l
i,j x

i + δj

)
after the activation

function is applied to the (c+2)-th channel. For the general case, when the output

channel size is cy, we can repeat the above process while preserving the output

50

components already processed, and using cx+cy+2 channels is enough to generate

cy output vectors. It completes the proof.

51

Chapter 3

The Universality Property of

Deep Recurrent Neural

Network

3.1 Terminologies and Notations

This section introduces the definition of network architecture and the notation

used throughout this chapter. dx and dy denote the dimension of input and output

space, respectively. σ is an activation function unless otherwise stated. Sometimes,

v indicates a vector with suitable dimensions.

First, we used square brackets, subscripts, and colon symbols to index a se-

quence of vectors. More precisely, for a given sequence of dx-dimensional vectors

x : N → Rdx , x[t]j or xj [t] denotes the j-th component of the t-th vector. The

colon symbol : is used to denote a continuous index, such as x[a : b] = (x[i])a≤i≤b

or x[t]a:b = (x[t]a, x[t]a+1, . . . , x[t]b)
T ∈ Rb−a+1. We call the sequential index t by

52

time and each x[t] a token.

Second, we define the token-wise linear maps P : Rdx×N → Rds×N and Q :

Rds×N → Rdy×N to connect the input, hidden state, and output space. As the

dimension of the hidden state space Rds on which the RNN cells act is different from

those of the input domain Rdx and output domain Rdy , we need maps adjusting the

dimensions of the spaces. For a given matrix P ∈ Rds×dx , a lifting map P(x)[t] :=

Px[t] lifts the input vector to the hidden state space. Similarly, for a given matrix

Q ∈ Rdy×ds , a projection map Q(s)[t] := Qs[t] projects a hidden state onto the

output vector. As the first token defines a token-wise map, we sometimes represent

token-wise maps without a time length, such as P : Rdx → Rds instead of P :

Rdx×N → Rds .

Subsequently, an RNN is constructed using a composition of basic recurrent

cells between the lifting and projection maps. We considered four basic cells: RNN,

LSTM, GRU, and BRNN.

• RNN Cell A recurrent cell, recurrent layer, or RNN cell R maps an input

sequence x = (x[1], x[2], . . .) = (x[t])t∈N ∈ Rds×N to an output sequence

y = (y[t])t∈N ∈ Rds×N using

y[t+ 1] = R(x)[t+ 1] = σ (AR(x)[t] +Bx[t+ 1] + θ) , (3.1)

where σ is an activation function, A,B ∈ Rds×ds are the weight matrices, and

θ ∈ Rds is the bias vector. The initial state y[0] can be an arbitrary constant

vector, which is zero vector 0 in this setting.

• LSTM cell Mathematically, an LSTM cell RLSTM is a process that com-

53

putes two outputs, h and c, defined by the following relation:

f [t+ 1] = σsig (Wfx[t+ 1] + Ufh[t] + Vfc[t] + bf) ,

i[t+ 1] = σsig (Wix[t+ 1] + Uih[t] + Vic[t] + bi) ,

c̃[t+ 1] = tanh (Wcx[t+ 1] + Uch[t] + bc) ,

c[t+ 1] = f [t+ 1]c[t] + i[t+ 1]c̃[t+ 1],

o[t+ 1] = σsig (Wox[t+ 1] + Uoh[t] + Voc[t+ 1] + bo) ,

h[t+ 1] = o[t+ 1] tanh (c[t+ 1]) ,

(3.2)

where W∗, U∗ and V∗ are weight matrices; b∗ is the bias vector for each

∗ = f, i, c, o; and σsig is the sigmoid activation function. The initial state is

zero in this thesis.

• GRU cell A GRU cell RGRU is a process that computes h defined by

r[t+ 1] = σsig (Wrx[t+ 1] + Urh[t] + br) ,

h̃[t+ 1] = tanh (Whx[t+ 1] + Uh (r[t+ 1]⊙ h[t]) + bh) ,

z[t+ 1] = σsig (Wzx[t+ 1] + Uzh[t] + bz) ,

h[t+ 1] = (1− z[t+ 1])h[t] + z[t+ 1]h̃[t+ 1],

(3.3)

where W∗ and U∗ are weight matrices, b∗ is the bias vector for each ∗ =

r, z, h, and σsig is the sigmoid activation function. ⊙ denotes component-wise

multiplication, and we set the initial state to zero in this study.

• BRNN cell A BRNN cell BR consists of a pair of RNN cells and a token-

wise linear map that follows the cells. An RNN cell R1 in the BRNN cell

BR receives input from x[1] to x[N] and the other R2 receives input from

54

x[N] to x[1] in reverse order. Then, the linear map L in BR combines the

two outputs from the RNN cells. Specifically, a BRNN cell BR is defined as

follows:

R(x)[t+ 1] := σ (AR1(x)[t] +Bx[t+ 1] + θ) ,

R̄(x)[t− 1] := σ
(
ĀR̄(x)[t] + B̄x[t− 1] + θ̄

)
,

BR(x)[t] := L
(
R(x)[t], R̄(x)[t]

)
:= WR(x)[t] + W̄ R̄(x)[t].

(3.4)

where A, B, Ā, B̄, W , and W̄ are weight matrices; θ and θ̄ are bias vectors.

• Network architecture An RNN N comprises a lifting map P, projection

map Q, and L recurrent cells R1, . . . ,RL;

N := Q ◦RL ◦ · · · ◦ R1 ◦ P. (3.5)

We denote the network as a stack RNN or deep RNN when L ≥ 2, and each

output of the cell Ri as the i-th hidden state. ds indicates the width of the

network. If LSTM, GRU, or BRNN cells replace recurrent cells, the network

is called an LSTM, a GRU, or a BRNN.

In addition to the type of cell, the activation function σ affects universality.

We focus on the case of ReLU or tanh while also considering the general activation

function satisfying the condition proposed by [22]. σ is a continuous non-polynomial

function that is continuously differentiable at some z0 with σ′(z0) ̸= 0. We refer to

the condition as a non-degenerate condition and z0 as a non-degenerating point.

Finally, the target class must be set as a subset of the sequence-to-sequence

function space, from Rdx to Rdy . Given an RNN N , each token y[t] of the output

55

sequence y = N (x) depends only on x[1 : t] := (x[1], x[2], . . . , x[t]) for the input

sequence x. We define this property as past dependency and a function with this

property as a past-dependent function. More precisely, if all the output tokens

of a sequence-to-sequence function are given by f [t] (x[1 : t]) for functions f [t] :

Rdx×t → Rdy , we say that the function is past-dependent. Meanwhile, we must

fix the finite length or terminal time N < ∞ of the input and output sequence.

Without additional assumptions such as in [15], errors generally accumulate over

time, making it impossible to approximate implicit dynamics up to infinite time

regardless of past dependency. Therefore we set the target function class as a class

of past-dependent sequence-to-sequence functions with sequence length N .

Remark 3.1. On a compact domain and under bounded length, the continuity of

f : Rdx×N → Rdy×N implies that of each f [t] : Rdx×t → Rdy and vice versa. In

the case of the Lp norm with 1 ≤ p < ∞, f : Rdx×N → Rdy×N is Lp integrable if

and only if f [t] is Lp integrable for each t. In both cases, the sequence of functions

(fn)n∈N converges to g if and only if (fn[t])n∈N converges to g[t] for each t. Thus,

we focus on approximating f [t] for each t under the given conditions.

Sometimes, only the last value N (x)[N] is required considering an RNN N as

a sequence-to-vector function N : Rdx×N → Rdy . We freely use the terminology

RNN for sequence-to-sequence and sequence-to-vector functions because there is

no confusion when the output domain is evident.

We have described all the concepts necessary to set a problem, but we end this

section with an introduction to the concepts used in the proof of the main theorem.

For the convenience of the proof, we slightly modify the activation σ to act only

on some components, instead of all components. With activation σ and index set

56

I ⊆ N, the modified activation σI is defined as

σI(s)i =

 σ(si) if i ∈ I,

si otherwise.
(3.6)

Using the modified activation function σI , the basic cells of the network are modified

in (3.1). For example, a modified recurrent cell can be defined as

R(x)[t+ 1]i = σI (AR(x)[t] +Bx[t+ 1] + θ)i

=

 σ (AR(x)[t] +Bx[t+ 1] + θ)i if i ∈ I,

(AR(x)[t] +Bx[t+ 1] + θ)i otherwise.

(3.7)

Similarly, modified RNN, LSTM, GRU, or BRNN is defined using modified cells in

(3.1). This concept is similar to the enhanced neuron of [22] in that activation can

be selectively applied, but is different in that activation can be applied to partial

components.

As activation leads to the non-linearity of a network, modifying the activation

can affect the minimum width of the network. Fortunately, the following lemma

shows that the minimum width increases by at most one owing to the modification.

We briefly introduce the ideas here, with a detailed proof provided in Section 3.6.

Lemma 3.2. Let R̄ : Rd×N → Rd×N be a modified RNN cell, Q̄ : Rd → Rd,

and P̄ : Rd → Rd be a token-wise linear projection and lifting map. Suppose that

an activation function σ of R̄ is non-degenerate with a non-degenerating point z0.

Then for any compact subset K ⊂ Rd and ϵ > 0, there exists RNN cells R1,

R2 : R(d+β(σ))×N → R(d+β(σ))×N , and a token-wise linear map P : Rd → Rd+β(σ),

57

Q : Rd+β(σ) → Rd such that

sup
x∈KN

∥∥Q̄ ◦ R̄ ◦ P̄(x)−Q ◦R2 ◦ R1 ◦ P(x)
∥∥ < ϵ, (3.8)

where

β(σ) =

 0 if z0 = 0,

1 otherwise.
(3.9)

Sketch of proof. The detailed proof is available in Section 3.6.1. We use the Taylor

expansion of σ at z0 to recover the value before activation. For the i-th component

with i ̸∈ I, choose a small δ > 0 and linearly approximate σ (z0 + δz) as σ(z0) +

δσ′(z0)z. An affine transform after the Taylor expansion recovers z.

Remark 3.3. Note that the additional width only serves to translate some com-

ponents after activation to use the Taylor expansion at z0. We can remove the

additional node if the activation function is in the closure of the set,

{σ : R → R | σ is non-degenerating at 0} , (3.10)

or use an affine projection map instead of a linear projection map.

The lemma implies that a modified RNN can be approximated by an RNN with

at most one additional width. For a given modified RNN Q̄ ◦ R̄L ◦ · · · ◦ R̄1 ◦ P of

width d and ϵ > 0, we can find RNN R1, . . . ,R2L and linear maps P1, . . . ,PL,

Q1, . . . ,QL such that

sup
x∈KN

∥Q̄ ◦ R̄L ◦ · · · ◦ R̄1 ◦ P̄(x)

− (QLR2LR2L−1PL) ◦ · · · ◦ (Q1R2R1P1) (x)∥ < ϵ. (3.11)

58

The composition R ◦ P of an RNN cell R and token-wise linear map P can be

substituted by another RNN cell R′. More concretely, for R and P defined by

R(x)[t+ 1] = σ (AR(x)[t] +Bx[t+ 1] + θ) , (3.12)

P(x)[t] = P (x[t]) , (3.13)

R ◦ P defines an RNN cell R′

R′(x)[t+ 1] = σ
(
AR′(x)[t] +BPx[t+ 1] + θ

)
. (3.14)

Thus, R2l+1 (Pl+1Ql) becomes a recurrent cell, and the composition,

(QLR2LR2L−1PL) ◦ · · · ◦ (Q1R2R1P1) (x), (3.15)

defines a network of form (3.5).

3.2 Universal Approximation for Deep RNN in Con-

tinuous Function Space

This section introduces the universal approximation theorem of deep RNNs in

continuous function space.

Theorem 3.4 (Universal approximation theorem of deep RNN 1). Let f : Rdx×N →

Rdy×N be a continuous past-dependent sequence-to-sequence function and σ be

a non-degenerate activation function. Then, for any ϵ > 0 and compact subset

59

K ⊂ Rdx, there exists a deep RNN N of width dx + dy + 2 + α(σ) such that

sup
x∈KN

sup
1≤t≤N

∥f(x)[t]−N (x)[t]∥ < ϵ, (3.16)

where

α (σ) =


0 σ is ReLU,

1 σ is a non-degenerating function with σ(z0) = 0,

2 σ is a non-degenerating function with σ(z0) ̸= 0.

(3.17)

To prove the above theorem, we deal with the case of the sequence-to-vector

function N : Rdx×N → Rdy first. Then, we extend our idea to a sequence-to-

sequence function using bias terms to separate the input vectors at different times.

The main concept of the proof consists of three steps. First, we embed the

sequential input x[1 : t] into Dt for the disjoint subsets D1, . . . , DN using bias and

a recurrent process. By embedding, effect of x[t] on y[t] and that of x[t + 1] on

y[t+1] will be completely independent. Embedding is unnecessary in the sequence-

to-vector case, where we consider only the last output y[N]. Next, we find a two-

layered MLP approximating the given target function and construct a modified

RNN in Lemma 3.5 that simulates the hidden node of the MLP. The node of

the MLP calculates the linear sum of all Ndx input components, which can be

represented as the sum of the inner product of some matrices and N input vectors

in Rdx . Finally, an additional buffer component of the modified RNN cell copies

another hidden node in the two-layered MLP. Then, the following modified RNN

cell accumulates two results from the copied nodes. The buffer component of the

modified RNN cell is then reset to zero to copy another hidden node of the MLP.

60

As this procedure is repeated, the modified RNN with bounded width copies the

two-layered MLP. As the number of additional components required in each step

depends on the activation function, we use α(σ) to state the theorem briefly.

Now, we present the statements and sketches of the proof corresponding to each

step. The following lemma implies that a modified RNN computes the linear sum

of all the input components, which copies the hidden node of a two-layered MLP.

Lemma 3.5. Suppose A[1], A[2], · · · , A[N] ∈ R1×dx are the given matrices. Then

there exists a modified RNN N = RL ◦RL−1 ◦ · · · ◦R1 ◦P : Rdx×N → R(dx+1)×N of

width dx+1 such that (the symbol ∗ indicates that there exists some value irrelevant

to the proof)

N (x)[t] =

x[t]
∗

 for t < N,

N (x)[N] =

 x[N]

σ
(∑N

t=1A[t]x[t]
)
 .

(3.18)

Sketch of the proof. The detailed proof is available in Section 3.6.2. Define the m-

th modified RNN cell Rm, of the form of (3.1) without activation, with Am =Odx×dx Odx×1

O1×dx 1

, Bm =

Idx Odx×1

bm 0

 where bm ∈ R1×bx . Then, the (dx + 1)th

component y[N]dx+1 of the final output y[N] after N layers becomes a linear combi-

nation of bix[j] with some constant coefficients αi,j and
∑N

i=1

∑N
j=1 αi,jbix[j]. Thus

the coefficient of x[j] is represented by
∑N

i=1 αi,jbi, which we wish to be A[j] for

each j = 1, 2, . . . , N . In matrix formulation, we intend to find b satisfying ΛT b = A,

where Λ = {αi,j}1≤i,j≤N ∈ RN×N , b =


b1
...

bN

 ∈ RN×dx , and A =


A[1]

...

A[N]

. As Λ is

61

invertible there exist bi that solve
(
ΛT b

)
j
= A[j].

After copying a hidden node using the above lemma, we add a component,

(dx + 2)th, to copy another hidden node. Then the results are accumulated in the

(dx + 1)th component, and the final component is to be reset to copy another

node. As the process is repeated, a modified RNN replicates the output node of a

two-layered MLP.

Lemma 3.6. Suppose wi ∈ R, Ai[t] ∈ R1×dx are given for t = 1, 2, . . . , N and

i = 1, 2, . . . ,M . Then, there exists a modified RNN N : Rdx×N → R of width dx+2

such that

N (x) =
M∑
i=1

wiσ

(
N∑
t=1

Ai[t]x[t]

)
. (3.19)

Proof. First construct a modified RNN N1 : Rdx×N → R(dx+2)×N of width dx + 2

such that

N1(x)[t] =


x[t]

∗

0

 for t < N, (3.20)

N1(x)[N] =


x[N]

σ
(∑N

t=1A1[t]x[t]
)

0

 , (3.21)

as Lemma 3.5. Note that the final component does not affect the first linear sum-

mation and remains zero. Next, using the components except for the (dx + 1)th

62

one, construct N2 : R(dx+2)×N → R(dx+2)×N , which satisfies

N2N1(x)[t] =


x[t]

∗

∗

 for t < N, (3.22)

N2N1(x)[N] =


x[N]

σ
(∑N

t=1A1[t]x[t]
)

σ
(∑N

t=1A2[t]x[t]
)
 , (3.23)

and use one modified RNN cell R after N2 to add the results and reset the last

component:

RN2N1(x)[t] =


x[t]

∗

0

 , (3.24)

RN2N1(x)[N] =


x[N]

w1σ (
∑

A1[t]x[t]) + w2σ (
∑

A2[t]x[t])

0

 . (3.25)

As the (dx + 2)th component is reset to zero, we use it to compute the third sum

w3σ (
∑

A3[t]x[t]) and repeat until we obtain the final network N such that

N (x)[N] =


x[N]∑M

i=1wiσ
(∑N

t=1Ai[t]x[t]
)

0

 . (3.26)

63

Remark 3.7. The above lemma implies that a modified RNN of width dx + 2

can copy the output node of a two-layered MLP. We can extend this result to an

arbitrary dy-dimensional case. Note that the first dx components remain fixed, the

(dx + 1)th component computes a part of the linear sum approximating the target

function, and the (dx+2)th component computes another part and is reset. When we

need to copy another output node for another component of the output of the target

function f : Rdx×N → Rdy×N , only one additional width is sufficient. Indeed, the

(dx+2)th component computes the sum and the final component, and the (dx+3)th

component acts as a buffer to be reset in that case. By repeating this process, we

obtain (dx+ dy +1)-dimensional output from the modified RNN, which includes all

dy outputs of the MLP and the components from the (dx + 1)th to the (dx + dy)th

ones.

Theorem 3.8 (Universal approximation theorem of deep RNN 2). Suppose f :

Rdx×N → Rdy is a continuous sequence-to-vector function, K ⊂ Rdx is a compact

subset, σ is a non-degenerating activation function, and z0 is the non-degenerating

point. Then, for any ϵ > 0, there exists a deep RNN N : Rdx×N → Rdy of width

dx + dy + 1 + β(σ) such that

sup
x∈KN

∥f(x)−N (x)∥ < ϵ, (3.27)

where

β(σ) =

 0 if z0 = 0,

1 otherwise.
(3.28)

Proof. We present the proof for dy = 1 here, but adding dy−1 width for each output

component works for the case dy > 1. By the universal approximation theorem of

64

the MLP, there exist wi and Ai[t] for i = 1, . . . ,M such that

sup
x∈KN

∥∥∥∥∥f(x)−
M∑
i=1

wiσ

(
N∑
t=1

Ai[t]x[t]

)∥∥∥∥∥ <
ϵ

2
. (3.29)

Note that there exists a modified RNN N̄ : Rdx×N → R of width dx + 2,

N̄ (x) =

M∑
i=1

wiσ

(
N∑
t=1

Ai[t]x[t]

)
. (3.30)

By Lemma 3.2, there exists an RNN N : Rdx×N → R of width dx + 2 + β(σ) such

that

sup
x∈Kn

∥∥N̄ (x)−N (x)
∥∥ <

ϵ

2
. (3.31)

Hence we have ∥f(x)−N (x)∥ < ϵ.

Now, we consider an RNN R as a function from sequence x to sequence y =

R(x) defined by (3.1). Although the above results are remarkable in that the min-

imal width has an upper bound independent of the length of the sequence, it only

approximates a part of the output sequence. Meanwhile, as the hidden states cal-

culated in each RNN cell are connected closely for different times, fitting all the

functions that can be independent of each other becomes a more challenging prob-

lem. For example, the coefficient of x[t−1] in N (x)[t] equals the coefficient of x[t] in

N (x)[t+1] if N is an RNN defined as in the proof of Lemma 3.5. This correlation

originates from the fact that x[t− 1] and x[t] arrive at N (x)[t],N (x)[t+ 1] via the

same intermediate process, 1-time step, and N layers.

We sever the correlation between the coefficients of x[t−1] and x[t] by defining

the time-enhanced recurrent cell as follows:

65

Definition 3.9. Time-enhanced recurrent cell, or layer, is a process that maps

sequence x = (x[t])t∈N ∈ Rds×N to sequence y = (y[t])t∈N ∈ Rds×N via

y[t+ 1] := R(x)[t+ 1] = σ (A[t+ 1]R(x)[t] +B[t+ 1]x[t+ 1] + θ[t+ 1]) (3.32)

where σ is an activation function, A[t], B[t] ∈ Rds×ds are weight matrices and

θ[t] ∈ Rds is the bias given for each time step t.

Like RNN, time-enhanced RNN indicates a composition of the form (3.1) with

time-enhanced recurrent cells instead of RNN cells, and we denote it as TRNN.

The modified TRNN indicates a TRNN whose activation functions in some cell

act on only part of the components. Time-enhanced BRNN, denoted as TBRNN,

indicates a BRNN whose recurrent layers in each direction are replaced by time-

enhanced layers. Amodified TBRNN indicates a TBRNN whose activation function

is modified to act on only part of the components. With the proof of Lemma 3.2

using Ā[t], B̄[t] instead of Ā, B̄, a TRNN can approximate a modified TRNN.

The following lemma shows that the modified TRNN successfully eliminates

the correlation between outputs. See the Section 3.6 for the complete proof.

Lemma 3.10. Suppose Aj [t] ∈ R1×dx are the given matrices for 1 ≤ t ≤ N ,

1 ≤ j ≤ t. Then there exists a modified TRNN Ñ : Rdx×N → R(dx+1)×N of width

dx + 1 such that

Ñ (x)[t] =

 x[t]

σ
(∑t

j=1Aj [t]x[j]
)
 , (3.33)

for all t = 1, 2, . . . , N .

Sketch of proof. The detailed proof is available in Section 3.6.3. Use bm[t] instead

of bm in the proof of Lemma 3.5. As the coefficient matrices at each time [t] after N

66

layers are full rank, we can find bm[t] implementing the required linear combination

for each time.

Recall the proof of Theorem 3.6. An additional width serves as a buffer to

implement and accumulate linear sum in a node in an MLP. Similarly, we proceed

with Lemma 3.10 instead of Lemma 3.5 to conclude that there exists a modified

TRNN N of width dx + 2 such that each N [t] reproduces an MLP approximating

f [t].

Lemma 3.11. Suppose wi ∈ R, Ai,j [t] ∈ R1×dx are thr given matrices for 1 ≤ t ≤

N , 1 ≤ j ≤ t, 1 ≤ i ≤ M . Then, there exists a modified TRNN Ñ : Rdx×N → R1×N

of width dx + 2 such that

Ñ (x)[t] =
M∑
i=1

wiσ

 t∑
j=1

Ai,j [t]x[j]

 . (3.34)

Proof. We omit the detailed proof because it is almost the same as the proof of

Lemma 3.6. The only difference is to use Lemma 3.10 instead of Lemma 3.5.

This implies that the modified TRNN can approximate any past-dependent

sequence-to-sequence function.

Finally, we connect the TRNN and RNN. Although it is unclear whether a mod-

ified RNN can approximate an arbitrary modified TRNN, there exists a modified

RNN that approximates the specific one described in Lemma 3.10.

Lemma 3.12. Let Ñ be a given modified TRNN that computes (3.33) and K ⊂ Rdx

be a compact set. Then ,for any ϵ > 0 there exists a modified RNN N of width

67

dx + 2 + γ(σ) such that

sup
x∈KN

∥∥∥Ñ (x)−N (x)
∥∥∥ < ϵ, (3.35)

where γ(ReLU) = 0, γ(σ) = 1 for non-degenerating activation σ.

Sketch of proof. The detailed proof is available in Section 3.6.4. Without loss of

generality, we can assume K ⊂
[
0, 12
]dx and construct the first cell as the output

at time t to be x[t]+ t1dx . As N compact sets K+ t1dx are disjoint, there exists an

MLP of width dx+1+γ(σ) approximating x[t]+ t1dx → b[t]x[t] as a function from

Rdx → R [14, 22]. Indeed, we need to approximate x[t] + t1dx →

x[t] + t1dx

b[t]x[t]


as a function from Rdx to Rdx+1. Fortunately, the first dx components preserve

the original input data in the proof of Proposition 4.2(Register Model) in

[22]. Thus an MLP of width dx + 1 approximates b[t]x[t] while preserving the

x+t1dx terms. Note that a token-wise MLP is a special case of an RNN of the same

width. Nonetheless, we need an additional width to keep the (dx+1)th component

approximating b[t]x[t]. Using the token-wise MLP implemented by an RNN and

additional buffer width, we construct a modified RNN of width dx + 2 + γ(σ)

approximating the modified TRNN cell used in the proof of Lemma 3.10.

Summarizing all the results, we have the universality of a deep RNN in a con-

tinuous function space.

Proof of Theorem 3.4. As mentioned in Remark 3.7, we can set dy = 1 for nota-

tional convenience. By Lemma 3.11, there exists a modified TRNN Ñ of width

68

dx + 2 such that

sup
x∈Kn

∥∥∥f(x)− Ñ (x)
∥∥∥ <

ϵ

3
. (3.36)

As Ñ is a composition of modified TRNN cells of width dx + 2 satisfying (3.33),

there exists a modified RNN N̄ of width dx + 3 + γ(σ) such that

sup
x∈Kn

∥∥∥Ñ (x)− N̄ (x)
∥∥∥ <

ϵ

3
. (3.37)

Then, by Lemma 3.2, there exists an RNN N of width dx + 3 + γ(σ) + β(σ) =

dx + 3 + α(σ) such that

sup
x∈Kn

∥∥N̄ (x)−N (x)
∥∥ <

ϵ

3
. (3.38)

The triangle inequality yields

sup
x∈Kn

∥f(x)−N (x)∥ < ϵ. (3.39)

Remark 3.13. The number of additional widths α(σ) = β(σ) + γ(σ) depends

on the condition of the activation function σ. Here, γ(σ) is required to find the

token-wise MLP that approximates embedding from Rdx to Rdx+1. If further studies

determine a tighter upper bound of the minimum width of an MLP to have the

universal property in a continuous function space, we can reduce or even remove

α(σ) according to the result.

There is still a wide gap between the lower bound dx and upper bound dx +

dy + 3 + α(σ) of the minimum width, and hence, we expect to be able to achieve

69

universality with a narrower width. For example, if N = 1, an RNN is simply an

MLP, and the RNN has universality without a node required to compute the effect

of t. Therefore, apart from the result of the minimum width of an MLP, further

studies are required to determine whether γ is essential for the case of N ≥ 2.

3.3 Universal Approximation for Stack RNN in Lp Space

This section introduces the universal approximation theorem of a deep RNN in Lp

function space for 1 ≤ p < ∞.

Theorem 3.14 (Universal approximation theorem of deep RNN 3). Let f : Rdx×N →

Rdy×N be a past-dependent sequence-to-sequence function in Lp
(
Rdx×N ,Rdy×N

)
for 1 ≤ p < ∞, and σ be a non-degenerate activation function with the non-

degenerating point z0. Then, for any ϵ > 0 and compact subset K ⊂ Rdx, there

exists a deep RNN N of width max {dx + 1, dy}+ γ(σ) satisfying

sup
1≤t≤N

∥f(x)[t]−N (x)[t]∥Lp(KN) < ϵ, (3.40)

where γ(ReLU) = 0, γ(σ) = 1 for other non-degenerating activation σ.

Before we begin the proof of the theorem, we summarize the scheme used in

the proof. In [33], an MLP of width max{dx +1, dy}+ γ(σ) approximating a given

target function f is constructed using the “encoding scheme.” More concretely, the

MLP is separated into three parts: encoder, memorizer, and decoder.

First, the encoder part quantizes each component of the input and output into

a finite set. The authors use the quantization function qn : [0, 1] → Cn

qn(v) := max
{
c ∈ Cn

∣∣ c ≤ v
}
, (3.41)

70

where Cn := {0, 2−n, 2× 2−n, . . . , 1− 2−n}. Then, each quantized vector is encoded

into a real number by concatenating its components through the encoder EncM :

[0, 1]dx → CdxM

EncM (x) :=

dx∑
i=1

qM (xi)2
−(i−1)M . (3.42)

For small δ1 > 0, the authors construct an MLP Nenc : [0, 1]dx → CdxM of width

dx + 1 + γ(σ) satisfying

∥EncM (x)−Nenc(x)∥ < δ1. (3.43)

Although the quantization causes a loss in input information, the Lp norm neglects

some loss in a sufficiently small domain.

After encoding the input x to EncM (x) with large M , authors use the infor-

mation of x in EncM (x) to obtain the information of the target output f(x). More

precisely, they define the memorizer MemM,M ′ : CdxM → CdyM ′ to map the encoded

input EncM (x) to the encoded output EncM ′(f(x)) as

Mem (EncM (x)) := (EncM ′ ◦f ◦ qM) (x), (3.44)

assuming the quantized map qM acts on x component-wise in the above equation.

Then, an MLP Nmem of width 2+γ(σ) approximates Mem; that is, for any δ2 > 0,

there exists Nmem satisfying

sup
x∈[0,1]dx

∥Mem(Enc(x))−Nmem(Enc(x))∥ < δ2. (3.45)

Finally, the decoder reconstructs the original output vector from the encoded

71

output vector by cutting off the concatenated components. Owing to the preceding

encoder and memorizer, it is enough to define only the value of the decoder on

CdyM ′ . Hence the decoder Dec : CdyM ′ → Cdy
M ′ := (CM ′)dy is determined by

DecM ′(v) := v̂ where {v̂} := Enc−1
M ′(v) ∩ Cdy

M ′ . (3.46)

Indeed in [33], for small δ3 > 0, an MLP Ndec : CdyM ′ → Cdy
M ′ of width dy + γ(σ) is

construct so that

∥DecM ′(v)−Ndec(v)∥ < δ3. (3.47)

Although (3.43) and (3.47) are not equations but approximations when the activa-

tion is just non-degenerate, the composition N = Ndec ◦Nmem ◦Nenc approximates

a target f with sufficiently large M,M ′ and sufficiently small δ1, δ2.

Let us return to the proof of Theorem 3.14. We construct the encoder, mem-

orizer, and decoder similarly. As the encoder and decoder is independent of time

t, we use a token-wise MLP and modified RNNs define the token-wise MLPs. On

the other hand, the memorizer must work differently according to the time t owing

to the multiple output functions. Instead of implementing various memorizers, we

separate their input and output domains at each time by translation. Then, it is

enough to define one memorizer on the disjoint union of domains.

Proof of Theorem 3.14. We first combine the token-wise encoder and translation

for the separation of the domains. Consider the token-wise encoder EncM : Rdx×N →

72

R1×N , and the following recurrent cells R1,R2 : R1×N → R1×N

R1(v)[t+ 1] = 2−dxMR1(v)[t] + v[t+ 1], (3.48)

R2(v)[t+ 1] = R2(v)[t] + 1. (3.49)

Then the composition Renc = R2R1 EncM defines an encoder of sequence from

KN to R1×N :

Renc(x)[t] = t+
t∑

j=1

EncM (x[j])2−(j−1)dxM , (3.50)

where x = (x[t])t=1,...,N is a sequence in K. Note that the range D of Renc is a

disjoint union of compact sets;

D =

N⊔
t=1

{
Renc(x)[t] : x ∈ KN

}
. (3.51)

Hence there exists a memorizer Mem : R → R satisfying

Mem(Renc(x))[t] = EncM ′ (f (qM (x)) [t]) (3.52)

for each t = 1, 2, . . . , N . The token-wise decoder DecM ′ is the last part of the proof.

To complete the proof, we need an approximation of the token-wise encoder

EncM : Rdx → R, modified recurrent cells R1,R2 : R1×N → R1×N , token-wise

memorizer Mem : R → R, and token-wise decoder DecM ′ : R → Rdy . Fol-

lowing [33], there exist MLPs of width dx + 1 + γ(σ), 2 + γ(σ), and dy + γ(σ)

that approximate EncM , Mem, and DecM ′ respectively. Lemma 3.2 shows that

R1,R2 is approximated by an RNN of width 2 + β(σ). Hence, an RNN of width

max {dx + 1 + γ(σ), 2 + β(σ), 2 + γ(σ), dy + γ(σ)} = max {dx + 1, dy} + γ(σ) ap-

73

proximates the target function f .

3.4 Variants of RNN

This section describes the universal property of some variants of RNN, particularly

LSTM, GRU, or BRNN. LSTM and GRU are proposed to solve the long-term

dependency problem. As an RNN has difficulty calculating and updating its pa-

rameters for long sequential data, LSTM and GRU take advantage of additional

structures in their cells. We prove that they have the same universal property as

the original RNN. On the other hand, a BRNN is proposed to overcome the past

dependency of an RNN. BRNN consists of two RNN cells, one of which works in

reverse order. We prove the universal approximation theorem of a BRNN with the

target class of any sequence-to-sequence function.

The universal property of an LSTM originates from the universality of an RNN.

Mathematically LSTM RLSTM indicates a process that computes two outputs, h

and c, defined by (3.2). As an LSTM can reproduce an RNN with the same width,

we have the following corollary:

Corollary 3.15 (Universal approximation theorem of deep LSTM). Let f : Rdx×N →

Rdy×N be a continuous past-dependent sequence-to-sequence function. Then, for any

ϵ > 0 and compact subset K ⊂ Rdx, there exists a deep LSTM NLSTM , of width

dx + dy + 3, such that

sup
x∈KN

sup
1≤t≤N

∥f(x)[t]−NLSTM (x)[t]∥ < ϵ. (3.53)

Proof. We set all parameters but Wc, Uc, bc, and bf as zeros, and then (3.2) is

74

simplified as

c[t+ 1] = σsig(bf)c[t] +
1

2
tanh (Uch[t] +Wcx[t+ 1] + bc) ,

h[t+ 1] =
1

2
tanh (c[t+ 1]) .

(3.54)

For any ϵ > 0, a sufficiently large negative bf yields

∥∥∥∥h[t+ 1]− 1

2
tanh

(
1

2
tanh (Uch[t] +Wcx[t+ 1] + bc)

)∥∥∥∥ < ϵ. (3.55)

Thus, an LSTM reproduces an RNN whose activation function is
(
1
2 tanh

)
◦
(
1
2 tanh

)
without any additional width in its hidden states. In other words, an LSTM of

width d approximates an RNN of width d equipped with the activation function(
1
2 tanh

)
◦
(
1
2 tanh

)
.

The universality of GRU is proved similarly.

Corollary 3.16 (Universal approximation theorem of deep GRU). Let f : Rdx×N →

Rdy×N be a continuous past-dependent sequence-to-sequence function. Then, for

any ϵ > 0 and compact subset K ⊂ Rdx, there exists a deep GRU NGRU , of width

dx + dy + 3, such that

sup
x∈KN

sup
1≤t≤N

∥f(x)[t]−NGRU (x)[t]∥ < ϵ. (3.56)

Proof. Setting only Wh, Uh, bh, and bz as non-zero, the GRU is simplified as

h[t+ 1] = (1− σsig (bz))h[t] + σsig (bz) tanh

(
Whx[t+ 1] +

1

2
Uhh[t] + bh

)
. (3.57)

75

For any ϵ > 0, a sufficiently large bz yields

∥∥∥∥h[t+ 1]− tanh

(
Whx[t+ 1] +

1

2
Uhh[t] + bh

)∥∥∥∥ < ϵ. (3.58)

Hence, we attain the corollary.

Remark 3.17. We refer to the width as the maximum of hidden states. However,

the definition is somewhat inappropriate, as LSTM and GRU cells have multiple

hidden states; hence, there are several times more components than an RNN with

the same width. Thus we expect that they have better approximation power or have

a smaller minimum width for universality than an RNN. Nevertheless, we retain

the theoretical proof as future work to identify whether they have different abilities

in approximation or examine why they exhibit different performances in practical

applications.

Now, let us focus on the universality of a BRNN. Recall that a stack of modified

recurrent cells N construct a linear combination of the previous input components

x[1 : t] at each time,

N (x)[t] =

 x[t]∑t
j=1Aj [t]x[j]

 . (3.59)

Therefore, if we reverse the order of sequence and flow of the recurrent structure, a

stack of reverse modified recurrent cells N̄ constructs a linear combination of the

subsequent input components x[t : N] at each time,

N̄ (x)[t] =

 x[t]∑N
j=tBj [t]x[j]

 . (3.60)

76

From this point of view, we expect that a stacked BRNN successfully approxi-

mates an arbitrary sequence-to-sequence function beyond the past dependency. As

previously mentioned, we prove it in the following lemma.

Lemma 3.18. Suppose Aj [t] ∈ R1×dx are the given matrices for 1 ≤ t ≤ N ,

1 ≤ j ≤ N . Then there exists a modified TBRNN Ñ : Rdx×N → R(dx+1)×N of

width dx + 1 such that

Ñ (x)[t] =

 x[t]

σ
(∑N

j=1Aj [t]x[j]
)
 , (3.61)

for all t = 1, 2, . . . , N .

Sketch of proof. The detailed proof is available in Section 3.6.5. We use modified

TBRNN cells with either only a forward modified TRNN or a backward modified

TRNN. The stacked forward modified TRNN cells compute
∑t

j=1Aj [t]x[j], and

the stacked backward modified TRNN cells compute
∑N

j=t+1Aj [t]x[j].

As in previous cases, we have the following theorem for a TBRNN. The proof

is almost the same as that of Lemma 3.11 and 3.6.

Lemma 3.19. Suppose wi ∈ RR, Ai,j [t] ∈ R1×dx are the given matrices for 1 ≤

t ≤ N , 1 ≤ j ≤ N , 1 ≤ i ≤ M . Then there exists a modified TBRNN Ñ : Rdx×N →

R1×N of width dx + 2 such that

Ñ (x)[t] =

M∑
i=1

wiσ

 N∑
j=1

Ai,j [t]x[j]

 . (3.62)

Proof. First, construct a modified deep TBRNN N1 : Rdx×N → R(dx+2)×N of width

77

dx + 2 such that

N1(x)[t] =


x[t]

σ
(∑N

j=1A1,j [t]x[j]
)

0

 , (3.63)

as Lemma 3.18. The final component does not affect the first linear summation

and remains zero. After N1, use the (dx+2)th component to obtain a stack of cells

N2 : R(dx+2)×N → R(dx+2)×N , which satisfies

N2N1(x)[t] =


x[t]

σ
(∑N

j=1A1,j [t]x[j]
)

σ
(∑N

j=1A2,j [t]x[j]
)
 , (3.64)

and use a modified RNN cell R to sum up the results and reset the last component:

RN2N1(x)[t] =


x[t]

w1σ
(∑N

j=1A1,j [t]x[j]
)
+ w2σ

(∑N
j=1A2,j [t]x[j]

)
0

 . (3.65)

As the (dx + 2)th component resets to zero, we use it to compute the third sum

w3σ (
∑

A3,j [t]x[j]) and repeat until we obtain the final network N such that

N (x)[t] =


x[t]∑M

i=1wiσ
(∑N

t=1Ai,j [t]x[j]
)

0

 . (3.66)

The following lemma fills the gap between a modified TBRNN and a modified

78

BRNN.

Lemma 3.20. Let Ñ be a modified TBRNN that computes (3.61) and K ⊂ Rdx

be a compact set. Then for any ϵ > 0 there exists a modified BRNN N̄ of width

dx + 2 + γ(σ) such that

sup
x∈KN

∥∥∥Ñ (x)− N̄ (x)
∥∥∥ < ϵ, (3.67)

where γ(ReLU) = 0, γ(σ) = 1 for non-degenerating activation σ.

Moreover, there exists a BRNN N of width dx + 2 + α(σ) such that

sup
x∈KN

∥∥∥Ñ (x)−N (x)
∥∥∥ < ϵ, (3.68)

where

α (σ) =


0 σ is ReLU,

1 σ is non-degenerating function with σ(z0) = 0,

2 σ is non-degenerating function with σ(z0) ̸= 0.

(3.69)

Proof. We omit these details because we only need to construct a modified RNN

that approximates (3.59) and (3.60) using Lemma 3.12. As only the forward or

backward modified RNN cell is used in the proof of Lemma 3.18, it is enough

for the modified BRNN to approximate either the forward or backward modified

TRNN. Thus, it follows from Lemma 3.12. Lemma 3.2 provides the second part of

this theorem.

Finally, we obtain the universal approximation theorem of the BRNN from the

previous results.

79

Theorem 3.21 (Universal approximation theorem of deep BRNN). Let f : Rdx×N →

Rdy×N be a continuous sequence to seqeunce function and σ be a non-degenerate

activation function. Then for any ϵ > 0 and compact subset K ⊂ Rdx, there exists

a deep BRNN N of width dx + dy + 2 + α(σ), such that

sup
x∈KN

sup
1≤t≤N

∥f(x)[t]−N (x)[t]∥ < ϵ, (3.70)

where

α (σ) =


0 σ is ReLU,

1 σ is non-degenerating function with σ(z0) = 0,

2 σ is non-degenerating function with σ(z0) ̸= 0.

(3.71)

Proof. As in the proof of Theorem 3.4, we set dy = 1 for notational convenience.

According Lemma 3.19, there exists a modified TBRNN Ñ of width dx + 2 such

that

sup
x∈Kn

∥∥∥f(x)− Ñ (x)
∥∥∥ <

ϵ

2
. (3.72)

Lemma 3.20 implies that there exists a BRNN of width dx + 3 + α(σ) such that

sup
x∈Kn

∥∥∥Ñ (x)−N (x)
∥∥∥ <

ϵ

2
. (3.73)

The triangle inequality leads to

sup
x∈Kn

∥f(x)−N (x)∥ < ϵ. (3.74)

80

3.5 Discussion

We proved the universal approximation theorem and calculated the upper bound

of the minimum width of an RNN, an LSTM, a GRU, and a BRNN. In this section,

we illustrate how our results support the performance of a recurrent network.

We show that an RNN needs a width of at most dx + dy + 4 to approximate a

function from a sequence of dx-dimensional vectors to a sequence of dy-dimensional

vectors. The upper bound of the minimum width of the network depends only on

the input and output dimensions, regardless of the length of the sequence. The

independence of the sequence length indicates that the recurrent structure is much

more effective in learning a function on sequential inputs. To approximate a function

defined on a long sequence, a network with a feed-forward structure requires a wide

width proportional to the length of the sequence. For example, an MLP should have

a wider width than Ndx if it approximates a function f : Rdx×N → R defined on a

sequence [20]. However, with the recurrent structure, it is possible to approximate

via a narrow network of width dx+1 regardless of the length, because the minimum

width is independent of the length N . This suggests that the recurrent structure,

which transfers information between different time steps in the same layer, is crucial

for success with sequential data.

From a practical point of view, this fact further implies that there is no need to

limit the length of the time steps that affect dynamics to learn the internal dynamics

between sequential data. For instance, suppose that a pair of long sequential data

(x[t]) and (y[t]) have an unknown relation y[t] = f (x[t− p], x[t− p+ 1], . . . , x[t]).

Even without prior knowledge of f and p, a deep RNN learns the relation if we

train the network with inputs x[1 : t] and outputs y[t]. The MLP cannot repro-

81

duce the result because the required width increases proportionally to p, which is

an unknown factor. The difference between these networks theoretically supports

that recurrent networks are appropriate when dealing with sequential data whose

underlying dynamics are unknown in the real world.

3.6 Proofs

3.6.1 Proof of the Lemma 3.2

Without loss of generality, we may assume P̄ is an identity map and I = {1, 2, . . . , k}.

Let R̄(x)[t+1] = σI
(
ĀR(x)[t] + B̄x[t+ 1] + θ̄

)
be a given modified RNN cell, and

Q(x)[t] = Q̄x[t] be a given token-wise linear projection map. We use notations

Om,n and 1m to denote zero matrix in Rm×n and one vector in Rm respectively.

Sometimes we omit Om,n symbol in some block-diagonal matrices if the size of the

zero matrix is clear.

Case 1: σ(z0) = 0

Let P be the identity map. For δ > 0 define Rδ
1 as

Rδ
1 (x[t+ 1]) := σ

(
δB̄x[t+ 1] + δθ̄ + z01d

)
. (3.75)

Since σ is non-degenerating at z0 and σ′ is continuous at z0, we have

Rδ
1 ◦ P(x)[t+ 1] = δσ′(z0)

(
B̄x[t+ 1] + θ̄

)
+ o(δ). (3.76)

82

Then construct a second cell to compute transition as

Rδ
2(x)[t+ 1]

= σ

ÃRδ
2(x)[t] +

1

σ′(z0)

δ−1Ik

Id−k

x[t+ 1] +

 0k

z01d−k


 , (3.77)

where Ã =

Ik
δId−k

 Ā

Ik
1

δσ′(z0)
Id−k

.
After that, the first output of Rδ

2Rδ
1P(x) becomes

Rδ
2Rδ

1P(x)[1] = σ

 1

σ′(z0)

δ−1Ik

Id−k

Rδ
1(x)[1] +

 0k

z01d−k


 (3.78)

= σ


 (

B̄x[1] + θ̄
)
1:k

+ δ−1o(δ)(
z01d−k + δ(B̄x[1] + θ̄

)
k+1:d

+ o(δ)


 (3.79)

=

 σ
(
B̄x[1] + θ̄

)
1:k

+ o(1)

σ′(z0)δ
(
B̄x[1] + θ̄

)
k+1:d

+ o(δ)

 (3.80)

=

 R̄(x)[1]1:k + o(1)

σ′(z0)δR̄(x)[1]k+1:d + o(δ)

 . (3.81)

Now use mathematical induction on time t to compute Rδ
2Rδ

1P(x) assuming

Rδ
2Rδ

1P(x)[t] =

 R̄(x)[t]1:k + o(1)

σ′(z0)δR̄(x)[t]k+1:d + o(δ)

 . (3.82)

83

From a direct calculation, we attain

1

σ′(z0)

δ−1Ik

Id−k

Rδ
1P(x)[t+ 1] +

 0k

z01d−k

 (3.83)

=
1

σ′(z0)

δ−1Ik

Id−k

(δσ′(z0)
(
B̄x[t+ 1] + θ̄

)
+ o(δ)

)
+

 0k

z01d−k

 (3.84)

=

 B̄x[t+ 1]1:k + θ̄1:k + δ−1o(δ)

z01d−k + δ
(
B̄x[t+ 1] + θ̄

)
k+1:d

+ o(δ)

 , (3.85)

and

ÃRδ
2Rδ

1P(x)[t] (3.86)

=

Ik
δId−k

 Ā

Ik
1

δσ′(z0)
Id−k


 R̄(x)[t]1:k + o(1)

σ′(z0)δR̄(x)[t]k+1:d + o(δ)

 (3.87)

=

Ik
δId−k

 Ā

 R̄(x)[t]1:k + o(1)

R̄(x)[t]k+1:d + o(1)

 (3.88)

=

 (
ĀR̄(x)[t]

)
1:k

+ o(1)

δ
(
ĀR̄(x)[t]

)
k+1:d

+ o(δ)

 . (3.89)

With the sum of above two results, we obtain the induction hypothesis (3.82) for

84

t+ 1,

Rδ
2Rδ

1P(x)[t+ 1] (3.90)

= σ

ÃRδ
2Rδ

1P(x)[t] +
1

σ′(z0)

 Ik
δ

Id−k

Rδ
1P(x)[t+ 1] +

 0k

z01d−k


 (3.91)

= σ

 (
ĀR̄(x)[t]

)
1:k

+ B̄x[t+ 1]1:k + θ̄1:k + o(1)

z01d−k + δ
(
ĀR̄(x)[t]

)
k+1:d

+ δ
(
B̄x[t+ 1] + θ̄

)
k+1:d

+ o(δ)

 (3.92)

=

 R̄(x)[t+ 1]1:k + o(1)

σ′(z0)δR̄(x)[t+ 1]k+1:d + o(δ)

 . (3.93)

Setting Qδ = Q̄

Ik
1

σ′(z0)δ
Id−k

 and choosing δ small enough complete the

proof:

QδRδ
2Rδ

1P(x)[t] = Q̄

 R̄(x)[t]1:k + o(1)

R̄(x)[t]k+1:d + o(1)

 = Q̄R̄(x)[t]+o(1) → Q̄R̄(x)[t]. (3.94)

Case 2: σ(z0) ̸= 0

When σ(z0) ̸= 0, there is σ(z0) term independent of δ in the Taylor expansion of

σ(z0+ δx) = σ(z0)+ δσ′(z0)x+ o(δ). An additional width removes the term in this

case; hence we need a lifting map P : Rd×N → R(d+1)×N :

P(x)[t] =

x[t]
0

 . (3.95)

85

Now for δ > 0 define Rδ
1 as

Rδ
1 (X) := σ

δ

B̄
0

X + δ

θ̄
0

+ z01d+1

 . (3.96)

As in the previous case, we have

Rδ
1 ◦ P(x)[t+ 1] =

σ(z0)1d + δσ′(z0)
(
B̄x[t+ 1] + θ̄

)
+ o (δ)

σ(z0)

 , (3.97)

and construct a second cell Rδ
2 to compute

Rδ
2(x)[t+ 1] = σ

ÃRδ
2(x)[t] +

 Ik
δσ′(z0)

Id+1−k

σ′(z0)

x[t+ 1]

+

 − σ(z0)
δσ′(z0)

1k

z01d+1−k − σ(z0)
σ′(z0)

1d+1−k


 , (3.98)

where Ã =

Ik
δId+1−k


Ā

0



Ik

1
δσ′(z0)

Id−k − 1
δσ′(z0)

1d−k

0

.

86

After that, the first output of Rδ
2Rδ

1P(x)[t] becomes

Rδ
2Rδ

1P(x)[1] = σ

 1

σ′(z0)

δ−1Ik

Id+1−k

Rδ
1(x)[1] (3.99)

+

 − σ(z0)
δσ′(z0)

1k

z01d+1−k − σ(z0)
σ′(z0)

1d+1−k


 (3.100)

= σ




(
B̄x[1] + θ̄

)
1:k

+ o(δ)(
z01d−k + δ(B̄x[1] + θ̄

)
k+1:d

+ o(δ)

z0


 (3.101)

=


σ
(
B̄x[1] + θ̄

)
1:k

+ o(1)

σ(z0)1d−k + σ′(z0)δ
(
B̄x[1] + θ̄

)
k+1:d

+ o(δ)

σ(z0)

 (3.102)

=


R̄(x)[1]1:k + o(1)

σ(z0)1d−k + σ′(z0)δR̄(x)[1]k+1:d + o(δ)

σ(z0)

 . (3.103)

Assume Rδ
2Rδ

1P(x) and use mathematical induction on time t.

Rδ
2Rδ

1P(x)[t] =


R̄(x)[t]1:k + o(1)

σ(z0)1d−k + σ′(z0)δR̄(x)[t]k+1:d + o(δ)

σ(z0)

 . (3.104)

87

Direct calculation yields

1

σ′(z0)

δ−1Ik

Id+1−k

Rδ
1P(x)[t+ 1] +

 − σ(z0)
δσ′(z0)

1k

z01d+1−k − σ(z0)
σ′(z0)

1d+1−k

 (3.105)

=


B̄x[t+ 1]1:k + θ̄1:k + o(1)

z01d−k + δ
(
B̄x[t+ 1] + θ̄

)
k+1:d

+ o(δ)

z0

 , (3.106)

and

ÃRδ
2Rδ

1P(x)[t] (3.107)

= Ã


R̄(x)[t]1:k + o(1)

σ(z0)1d−k + σ′(z0)δR̄(x)[t]k+1:d + o(δ)

σ(z0)

 (3.108)

=

Ik
δId+1−k


Ā

0




R̄(x)[t]1:k + o(1)

R̄(x)[t]k+1:d + o(1)

0

 (3.109)

=


(
ĀR̄(x)[t]

)
1:k

+ o(1)

δ
(
ĀR̄(x)[t]

)
k+1:d

+ o(δ)

0

 . (3.110)

Adding two terms in (3.98), we obtain the induction hypothesis (3.104) for t+ 1,

Rδ
2Rδ

1P(x)[t+ 1] =


R̄(x)[t+ 1]1:k + o(1)

σ(z0)1d−k + σ′(z0)δR̄(x)[t+ 1]k+1:d + o(δ)

σ(z0)

 . (3.111)

88

SettingQδ =

[
Q̄ 0

]
Ik

1
σ′(z0)δ

Id−k − 1
σ′(z0)δ

1d−k

0

 and choosing δ small enough

complete the proof:

QδRδ
2Rδ

1P(x)[t] =

[
Q̄ 0

]
R̄(x)[t]1:k + o(1)

R̄(x)[t]k+1:d + o(1)

0

 = Q̄R̄(x)[t] + o(1)

→ Q̄R̄(x)[t]. (3.112)

3.6.2 Proof of the Lemma 3.5

It suffices to show that there exists a modified RNN N that computes

N (x)[N] =

 x[N]∑N
t=1A[t]x[t]

 , (3.113)

for given matrices A[1], . . . , A[N] ∈ R1×dx .

RNN should have multiple layers to implement the arbitrary linear combina-

tion. To overcome the complex time dependency deriving from deep structures and

explicitly formulate the results of deep modified RNN, we force A and B to use the

information of the previous time step in a limited way. Define the modified RNN

cell at l-th layer Rl as

Rl(x)[t+ 1] = AlRl(x)[t] +Blx[t+ 1], (3.114)

89

where Al =

Odx,dx Odx,1

O1,dx 1

, Bl =

Idx Odx,1

bl 1

 for bl ∈ R1×dx .

Construct a modified RNN NL for each L ∈ N as

NL := RL ◦ RL−1 ◦ · · · ◦ R1, (3.115)

and denote the output of NL at each time m for an input sequence x′ =

x
0

 ∈

Rdx+1 of embedding of x:

T (n,m) := Nn

(
x′
)
[m]. (3.116)

Then we have the following lemma.

Lemma 3.22. Let T (n,m) be the matrix defined by (3.116). Then we have

T (n,m) =

 x[m]∑∞
i=1

∑∞
j=1

(
n+m−i−j

n−i

)
bix[j]

 , (3.117)

where
(
n
k

)
means binomial coefficient n!

k!(n−k)! for n ≥ k. We define
(
n
k

)
= 0 for the

case of k > n or n < 0 for notational convenience.

Proof. Since there is no activation in modified RNN (3.114), T (n,m) has the form

of

T (n,m) =

 xm∑∞
i=1

∑∞
j=1 α

n,m
i,j bix[j]

 . (3.118)

From the definition of the modified RNN cell and T , we first show that α satisfies

90

the recurrence relation

αn,m
i,j =

 αn−1,m
i,j + αn,m−1

i,j + 1 if n = i and m = j,

αn−1,m
i,j + αn,m−1

i,j otherwise.
(3.119)

using mathematical induction on n,m in turn. Initially, T (0,m) =

xm
0

, T (n, 0) =
Odx,1

0

 by definition, and (3.118) holds when n = 0. Now assume (3.118) holds

for n ≤ N , any m. To show that (3.118) holds for n = N + 1 and any m, use

mathematical induction on m. By definition, we have αn,0
i,j = 0 for any n. Thus

(3.118) holds when n = N + 1 and m = 0. Assume it holds for n = N + 1 and

m ≤ M . Then

T (N + 1,M + 1)

=

Odx,dx Odx,1

O1,dx 1


 xM∑∞

i=1

∑∞
j=1 α

N+1,M
i,j xj


+

 Idx Odx,1

bN+1 1


 xM+1∑∞

i=1

∑∞
j=1 α

N,M+1
i,j xj


=

 Odx,1∑∞
i=1

∑∞
j=1 α

N+1,M
i,j bixj


+

 xM+1

bN+1xM+1 +
∑∞

i=1

∑∞
j=1

(
αN+1,M
i,j + αN,M+1

i,j

)
bixj

 .

(3.120)

Hence the relation holds for n = N + 1 and any m > 0.

91

Now remains to show

αn,m
i,j =


(
m+n−i−j

n−i

)
if 1 ≤ i ≤ n, 1 ≤ j ≤ m,

0 otherwise.
(3.121)

From the initial condition of α, we know α0,m
i,j = αn,0

i,j = 0 for all n,m ∈ N. After

some direct calculation with the recurrence relation (3.118) of α, we have

i) If n < i or m < j, αn,m
i,j = 0 as αn,m

i,j = αn−1,m
i,j + αn,m−1

i,j .

ii) αi,j
i,j = αi−1,j

i,j + αi,j−1
i,j + 1 = 1.

iii) αi,m
i,j = αi−1,m

i,j + αi,m−1
i,j = αi,m−1

i,j implies αi,m
i,j = 1 for m > j.

iv) Similarly, αn,j
i,j = αn−1,j

i,j + αn,j−1
i,j = αn−1,j

i,j implies αn,j
i,j = 1 for n > i.

Now use mathematical induction on n + m starting from n + m = i + j to show

αn,m
i,j =

(
m+n−i−j

n−i

)
for n ≥ i, m ≥ j.

i) n + m = i + j holds only if n = i, m = j for n ≥ i, m ≥ j. In the case,

αi,j
i,j = 1 =

(
m+n−i−j

n−i

)
.

ii) Assume that (3.121) holds for any n, m with n+m = k as induction hypoth-

esis. Now suppose n+m = k+1 for given n, m. If n = i or m = j we already

know αn,m
i,j = 1 =

(
m+n−i−j

n−i

)
. Otherwise n− 1 ≥ i, m− 1 ≥ j, and we have

αn,m
i,j = αn−1,m

i,j + αn,m−1
i,j

=

(
m+ n− 1− i− j

n− 1− i

)
+

(
m+ n− 1− i− j

n− i

)
=

(
m+ n− i− j

n− i

)
,

(3.122)

which completes the proof.

92

We have computed the output of modified RNN NN such that

NN

(
x′
)
[N] =

 x[N]∑N
i=1

∑N
j=1

(
2n−i−j
n−i

)
bix[j]

 . (3.123)

If the square matrix ΛN =
{(

2n−i−j
n−i

)}
1≤i,j≤N

has inverse Λ−1
N = {λi,j}1≤i,j≤N ,

bi =
∑N

t=1 λt,iA[t] satisfies

N∑
i=1

N∑
j=1

(
2n− i− j

n− i

)
bix[j] =

n∑
i=1

n∑
j=1

n∑
t=1

(
2n− i− j

n− i

)
λt,iA[t]x[j]

=

n∑
j=1

n∑
t=1

[
n∑

i=1

(
2n− i− j

n− i

)
λt,i

]
A[t]x[j]

=
n∑

j=1

n∑
t=1

δj,tA[t]x[j]

=
n∑

j=1

A[j]x[j],

(3.124)

where δ is the Kronecker delta function.

The following lemma completes the proof.

Lemma 3.23. Matrix Λn =
{(

2n−i−j
n−i

)}
1≤i,j≤n

∈ Rn×n is invertible.

Proof. Use mathematical induction on n. Λ1 is a trivial case. Assume Λn is invert-

93

ible.

Λn+1 =



(
2n
n

) (
2n−1
n

) (
2n−2
n

)
. . .

(
n+1
n

) (
n
n

)
(
2n−1
n−1

) (
2n−2
n−1

) (
2n−3
n−1

)
. . .

(
n

n−1

) (
n−1
n−1

)
...

...
...

. . .
...

...(
n+1
1

) (
n
1

) (
n−1
1

)
. . .

(
2
1

) (
1
1

)
(
n
0

) (
n−1
0

) (
n−2
0

)
. . .

(
1
0

) (
0
0

)


. (3.125)

Applying elementary row operation to Λn+1 by multiplying the matrix E on the

left and elementary column operation to EΛn+1 by multiplying the matrix ET on

the right where

E =



1 −1 0 . . . 0 0

0 1 −1 . . . 0 0

0 0 1 . . . 0 0

...
...

...
. . .

...
...

0 0 0 . . . 1 −1

0 0 0 . . . 0 1


, (3.126)

we obtain the following relation:

EΛn+1E
T =



(
2n−2
n−1

) (
2n−3
n−1

) (
2n−4
n−1

)
. . .

(
n−1
n−1

)
0(

2n−3
n−2

) (
2n−4
n−2

) (
2n−5
n−2

)
. . .

(
n−2
n−2

)
0

...
...

...
. . .

...
...(

n−1
0

) (
n−2
0

) (
n−3
0

)
. . .

(
0
0

)
0

0 0 0 . . . 0 1


=

 Λn On,1

O1,n 1

 . (3.127)

Hence Λn+1 is invertible by the induction hypothesis.

94

Corollary 3.24. The following matrix Λn,k ∈ Rk×n is full-rank.

Λn,k =

{(
2n− i− j

n− i

)}
n−k+1≤i≤n,1≤j≤n

. (3.128)

We will use the matrix Λn,k in the proof of Lemma 3.10 to approximate a

sequence-to-sequence function.

3.6.3 Proof of Lemma 3.10

Define token-wise lifting map P : Rdx → Rdx+1 and modified TRNN cell T Rl :

R(dx+1)×N → R(dx+1)×N as in the proof of Lemma 3.5:

P(x)[t] =

x[m]

0

 , (3.129)

and

T Rl(X)[t+ 1] = AlT Rl(X)[t] +Bl[t](X)[t+ 1], (3.130)

where Al =

Odx,dx Odx,1

O1,dx 1

, Bl[t] =

 Idx Odx,1

bl[t] 1

 for bl[t] ∈ R1×dx . Then we

have

T (n,m) := Nn (x) [m]

=

 x[m]∑∞
i=1

∑∞
j=1

(
n+m−i−j

n−i

)
bi[j]x[j]

 ,
(3.131)

where x ∈ Rdx×N and NL = T RL ◦ T RL−1 ◦ · · · ◦ T R1 ◦ P.

95

Since for each t, the matrix

ΛN,N−t+1 =

{(
2N − i− j

N − i

)}
t≤i≤N,1≤j≤N

(3.132)

=

{(
2N − t+ 1− i− j

N − j

)}
1≤i≤N−t+1,1≤j≤N

. (3.133)

is full-rank, there exist b1[t], b2[t], . . . , bN [t] satisfying

ΛN,N−t+1


b1[t]

...

bN [t]

 =


At[N]

...

At[t]

 , (3.134)

or
N∑
j=1

(
N + k − j − t

N − j

)
bj [t] = At[k], (3.135)

for each k = 1, 2, . . . , N . Then we obtain

T (N, t) =
∞∑
i=1

∞∑
j=1

(
N + t− i− j

N − i

)
bi[j]x[j]

=
t∑

j=1

N∑
i=1

(
N + t− i− j

N − i

)
bi[j]x[j]

=

t∑
j=1

Aj [t]x[j].

(3.136)

3.6.4 Proof of Lemma 3.12

As one of the modified TRNNs that computes (3.33), we use the modified TRNN

defined in Appendix 3.6.3. Specifically, we show that for a given l, there exists a

modified RNN of width dx + 2 + γ(σ) that approximates the modified TRNN cell

T Rl : R(dx+1)×N → R(dx+1)×N defined by (3.129). Suppose K ⊂ Rdx , K ′ ⊂ R are

96

compact sets and X ∈ (K ×K ′)N ⊂ R(dx+1)×N . Then the output of the TRNN

cell T Rl is

T Rl(X)[t] =

 X[t]1:dx∑t
j=1 bl[j]X[j]1:dx +

∑t
j=1X[j]dx+1

 . (3.137)

Without loss of generality, assume K ⊂
[
0, 12
]dx and let γ = γ(σ). Let P : Rdx+1 →

Rdx+2+γ be a token-wise linear map defined by P(X) =



X1:dx

0

Xdx+1

0γ


. Construct the

modified recurrent cells R1,R2 : R(dx+2+γ(σ))×N → R(dx+2+γ(σ))×N as for X ′ ∈

R(dx+2+γ)×N ,

R1(X
′)[t+ 1] (3.138)

=


Odx,dx

1

O1+γ,1+γ

R1(X
′)[t] +X ′[t+ 1] +


0dx

1

01+γ

 , (3.139)

and

R2(X
′)[t+ 1] =


Idx 1dx

1

O1+γ,γ

X ′[t]. (3.140)

97

Then, by definition for X ∈ (K ×K ′)N ,

R2R1P(X)[t] =



X[t]1:dx + t1dx

t

X[t]dx+1

0γ


. (3.141)

Note that Di = {R2R1P(X)[i]1:dx | X ∈ (K ×K ′)N} = {X[i]1:dx + t1dx | X ∈

(K ×K ′)N} are disjoint each other, Di ∩Dj = ϕ for all i ̸= j.

By the universal approximation theorem of deep MLP from [14, 22], for any

δl > 0, there exists an MLP Nl,MLP : Rdx → Rdx+1 of width dx + 1 + γ such that

for v ∈ Rdx ,

Nl,MLP (v)1:dx = v, (3.142)

and

sup
t=1,...,N

sup
v∈Dt

∥bl[t] (v − t1dx)−Nl,MLP (v)dx+1∥ < δl. (3.143)

Since token-wise MLP is implemented by RNN with the same width, there exists

an RNN Nl : Rdx+2+γ → Rdx+2+γ of width dx + 2 + γ whose components all but

(dx + 2)-th construct Nl,MLP so that for all X ′ ∈ Rdx+2+γ ,

Nl(X
′)[t] =


Nl,MLP (X ′[t]1:dx)

X ′[t]dx+2

0γ

 . (3.144)

98

Then for X ∈ (K ×K ′)N we have

NlR2R1P(X)[t] =


Nl,MLP (X[t]1:dx + t1dx)

X[t]dx+1

0γ

 . (3.145)

Finally, define a recurrent cell R3 : Rdx+2+γ → Rdx+2+γ of width dx + 2 + γ as

R3(X
′)[t+ 1]

=


Odx+1,dx+1

1

Oγ,γ

R3(X
′)[t] +



Idx

1

1 1

Oγ,γ


X ′[t+ 1], (3.146)

and attain

R3N1R2R1P(X)[t]

=



X[t]1:dx + t1dx

Nl,MLP (X[t]1:dx + t1dx)dx+1∑t
j=1Nl,MLP (X[j]1:dx + j1dx)dx+1 +

∑t
j=1X[j]dx+1

0γ


. (3.147)

With the token-wise projection map Q : Rdx+2+γ → Rdx+1 defined by Q(X ′) =X ′
1:dx

X ′
dx+2

, an RNN QR3NlR2R1P : R(dx+1)×N → R(dx+1)×N of width dx + 2 + γ

99

maps X ∈ R(dx+1)×N to

QR3NlR2R1P(X)[t]

=

 X[t]1:dx + t1dx∑t
j=1Nl,MLP (X[j]1:dx + j1dx)dx+1 +

∑t
j=1X[j]dx+1

 . (3.148)

Since Nl,MLP (X[j]1:dx + j1dx)dx+1 → bl[j]X[j]1:dx , we have

sup
X∈(K×K′)N

∥T Rl(X)−QR3NlR2R1P(X)∥ → 0, (3.149)

as δl → 0. Approximating all T Rl in Appendix 3.6.3 finishes the proof.

3.6.5 Proof of Lemma 3.18

The main idea of the proof is to separate the linear sum
∑N

j=1Aj [t]x[j] into the

past-dependent part
∑t−1

j=1Aj [t]x[j] and the remainder part
∑N

j=tAj [t]x[j]. Then,

we construct modified TBRNN with 2N cells; the former N cells have only a

forward recurrent cell to compute the past-dependent part, and the latter N cells

have only a backward recurrent cell to compute the remainder.

Let the first N modified TRNN cellsRl : R(dx+1)×N → R(dx+1)×N for 1 ≤ l ≤ N

be defined as in the proof of Lemma 3.10:

Rl (X) [t+ 1] = AlRl (X) [t] +Bl[t]X[t+ 1], (3.150)

where Al =

Odx,dx Odx,1

O1,dx 1

, Bl[t] =

 Idx Odx,1

bl[t] 1

 for bl[t] ∈ R1×dx . Then, with

100

token-wise lifting map P : Rdx → Rdx+1 defined by P(x) =

x
0

, we construct

modified TRNN N : RN ◦ · · · ◦ R1 ◦ P : Rdx×N → R(dx+1)×N . We know that if

Ci[m] ∈ R1×dx are given for 1 ≤ m ≤ N and 1 ≤ i ≤ m, there exist bl[t] for

1 ≤ l ≤ N , such that

NN (x)[m] =

 x[m]∑m
i=1Ci[m]x[i]

 . (3.151)

Therefore, we will determine Ci[m] after constructing the latter N cells. Let fm =∑m
i=1Ci[m]x[i] for brief notation.

After NN , construct N modified TRNN cells R̄l : R(dx+1)×N → R(dx+1)×N for

1 ≤ l ≤ N in reverse order:

R̄l

(
X̄
)
[t− 1] = ĀlR̄l

(
X̄
)
[t] + B̄l[t]X̄[t− 1], (3.152)

where Āl =

Odx,dx Odx,1

O1,dx 1

, B̄l[t] =

 Idx Odx,1

b̄l[t] 1

 for b̄l[t] ∈ R1×dx . Define N̄N =

R̄N ◦ · · · ◦ R̄1, and we obtain the following result after a similar calculation with

input sequence X̄[t] = NN (x)[t] =

x[t]
ft

:

N̄N

(
X̄
)
[N + 1− t] =

x[N + 1− t]

Z

 , (3.153)

where Z =
∑t

j=1

[∑N
i=1

(
N+t−i−j

N−i

)
b̄i[N + 1− j]x[N + 1− j] +

(
N+t−1−j

N−1

)
fN+1−j

]
.

101

We want to find fm and b̄i[m] so that

N̄N

(
X̄
)
[N + 1− t]dx+1 =

N∑
i=1

Ai[N + 1− t]x[i], (3.154)

for each t = 1, 2, . . . , N .

Note that
∑t

j=1

∑N
i=1

(
N+t−i−j

N−i

)
b̄i[N + 1 − j]x[N + 1 − j] does not contain

x[1], x[2], . . . , x[N−t] terms, so
∑t

j=1

(
N+t−1−j

N−1

)
fN+1−j should contain

∑N−t
i=1 Ai[N+

1− t]x[i].

t∑
j=1

(
N + t− 1− j

N − 1

)
fN+1−j (3.155)

=

t∑
j=1

(
N + t− 1− j

N − 1

)N+1−j∑
i=1

Ci[N + 1− j]x[i] (3.156)

=
t∑

j=1

N+1−j∑
i=1

(
N + t− 1− j

N − 1

)
Ci[N + 1− j]x[i] (3.157)

=

N∑
i=N+2−t

N+1−i∑
j=1

(
N + t− 1− j

N − 1

)
Ci[N + 1− j]x[i] (3.158)

+
N+1−t∑
i=1

t∑
j=1

(
N + t− 1− j

N − 1

)
Ci[N + 1− j]x[i]. (3.159)

Since matrix Λi =
{(

N+t−1−j
N−1

)}
1≤t≤N+1−i,1≤j≤N+1−i

is a lower triangular (N +

1− i)× (N +1− i) matrix with unit diagonal components, there exist Ci[i], Ci[i+

1], . . . , Ci[N] such that

t∑
j=1

(
N + t− 1− j

N − 1

)
Ci[N + 1− j] = Ai[N + 1− t], (3.160)

for each t = 1, 2, . . . , N + 1− i.

102

We now have

t∑
j=1

(
N + t− 1− j

N − 1

)
fN+1−j (3.161)

=
N∑

i=N+2−t

N+1−i∑
j=1

(
N + t− 1− j

N − 1

)
Ci[N + 1− j]x[i] (3.162)

+

N+1−t∑
i=1

Ai[N + 1− t]x[i] (3.163)

=
t−1∑
i=1

i∑
j=1

(
N + t− 1− j

N − 1

)
CN+1−i[N + 1− j]x[N + 1− i] (3.164)

+
N+1−t∑
i=1

Ai[N + 1− t]x[i] (3.165)

=

t−1∑
j=1

j∑
i=1

(
N + t− 1− i

N − 1

)
CN+1−j [N + 1− i]x[N + 1− j] (3.166)

+
N+1−t∑
i=1

Ai[N + 1− t]x[i]. (3.167)

We switch i and j for the last equation. By Corollary 3.24, there exist b̄i[N +1− j]

satisfying

N∑
i=1

(
N + t− i− j

N − i

)
b̄i[N + 1− j] (3.168)

= AN+1−j [N + 1− t]−
j∑

i=1

(
N + t− 1− i

N − 1

)
CN+1−j [N + 1− i], (3.169)

for j = 1, 2, . . . , t− 1, and

N∑
i=1

(
N + t− i− j

N − i

)
b̄i[N + 1− j] = AN+1−j [N + 1− t], (3.170)

103

for j = t.

With the above Ci[m] and b̄i[m], equation (3.154) holds for each t = 1, 2, . . . , N . It

remains to construct modified TRNN cells to implement fm, which comes directly

from the proof of Lemma 3.10.

104

Chapter 4

Conclusion

In this thesis, we investigated the universality of the recurrent neural network and

the convolutional neural network.

In Chapter 2, we studied the universality of convolutional neural networks with

both limited depth and unlimited width and with limited width and unlimited

depth. Although we have only dealt with the universality of three-kernel convo-

lutions, we expect that the same idea can be simply generalized to networks of

other kernel sizes. We think that convolution using striding and dilation and the

convolutional layer mixed with pooling are also interesting research topics for the

universality of convolutional neural networks. We hope that our research will serve

as a basis for active research in this field.

In Chapter 3, we investigated the universality and upper bound of the minimum

width of deep RNNs. The upper bound of the minimum width serves as a theoretical

basis for the effectiveness of deep RNNs, especially when underlying dynamics of

the data are unknown.

Our methodology enables various follow-up studies, as it connects an MLP

105

and a deep RNN. For example, the framework disentangles the time dependency

of output sequence of an RNN. This makes it feasible to investigate a trade-off

between width and depth in the representation ability or error bounds of the deep

RNN, which has not been studied because of the entangled flow with time and

depth. In addition, we separated the required width into three parts: one maintains

inputs and results, another resolves the time dependency, and the third modifies

the activation. Assuming some underlying dynamics in the output sequence, such

as an open dynamical system, we expect to reduce the required minimum width

on each part because there is a natural dependency between the outputs, and the

inputs are embedded in a specific way by the dynamics.

However, as LSTMs and GRUs have multiple hidden states in the cell process,

they may have a smaller minimum width than the RNN. By constructing an LSTM

and a GRU to use the hidden states to save data and resolve the time dependency,

we hope that our techniques demonstrated in the proof help analyze why these

networks have a better result in practice and suffer less from long-term dependency.

Clarification

This thesis was written by revising and combining some of the author’s works, [19]

and [38].

106

Bibliography

[1] A. Baevski, Y. Zhou, A. Mohamed, and M. Auli, wav2vec 2.0: A frame-

work for self-supervised learning of speech representations, Advances in Neural

Information Processing Systems, 33 (2020), pp. 12449–12460.

[2] D. Bahdanau, K. Cho, and Y. Bengio, Neural machine translation by

jointly learning to align and translate, arXiv preprint arXiv:1409.0473, (2014).

[3] D. Bahdanau, J. Chorowski, D. Serdyuk, P. Brakel, and Y. Bengio,

End-to-end attention-based large vocabulary speech recognition, in 2016 IEEE

international conference on acoustics, speech and signal processing (ICASSP),

IEEE, 2016, pp. 4945–4949.

[4] A. Bhoi, Monocular depth estimation: A survey, arXiv preprint

arXiv:1901.09402, (2019).

[5] N. Cohen, O. Sharir, and A. Shashua, On the expressive power of deep

learning: A tensor analysis, in Conference on Learning Theory, PMLR, 2016,

pp. 698–728.

[6] G. Cybenko, Approximation by superpositions of a sigmoidal function, Math-

ematics of control, signals and systems, 2 (1989), pp. 303–314.

107

[7] Z. Dai, H. Liu, Q. V. Le, and M. Tan, Coatnet: Marrying convolution

and attention for all data sizes, Advances in Neural Information Processing

Systems, 34 (2021), pp. 3965–3977.

[8] L. De Branges, The stone-weierstrass theorem, Proceedings of the American

Mathematical Society, 10 (1959), pp. 822–824.

[9] J. L. Elman, Finding structure in time, Cognitive science, 14 (1990), pp. 179–

211.

[10] A. A. Elngar, M. Arafa, A. Fathy, B. Moustafa, O. Mahmoudm,

M. Shaban, and N. Fawzy, Image classification based on cnn: a survey, J.

Cybersecurity Inf. Manag.(JCIM), 6 (2021), pp. 18–50.

[11] L. Fan, F. Zhang, H. Fan, and C. Zhang, Brief review of image denoising

techniques, Visual Computing for Industry, Biomedicine, and Art, 2 (2019),

pp. 1–12.

[12] M. Garnelo, J. Schwarz, D. Rosenbaum, F. Viola, D. J.

Rezende, S. Eslami, and Y. W. Teh, Neural processes, arXiv preprint

arXiv:1807.01622, (2018).

[13] A. Graves and N. Jaitly, Towards end-to-end speech recognition with re-

current neural networks, in International Conference on Machine Learning,

PMLR, 2014, pp. 1764–1772.

[14] B. Hanin and M. Sellke, Approximating continuous functions by relu nets

of minimal width, arXiv preprint arXiv:1710.11278, (2017).

108

[15] J. Hanson and M. Raginsky, Universal simulation of stable dynamical sys-

tems by recurrent neural nets, in Learning for Dynamics and Control, PMLR,

2020, pp. 384–392.

[16] K. He, X. Zhang, S. Ren, and J. Sun, Deep residual learning for image

recognition, in Proceedings of the IEEE conference on computer vision and

pattern recognition, 2016, pp. 770–778.

[17] B. Hidasi, A. Karatzoglou, L. Baltrunas, and D. Tikk, Session-

based recommendations with recurrent neural networks, arXiv preprint

arXiv:1511.06939, (2015).

[18] K. Hornik, M. Stinchcombe, and H. White, Multilayer feedforward net-

works are universal approximators, Neural networks, 2 (1989), pp. 359–366.

[19] G. Hwang and M. Kang, Universal property of convolutional neural net-

works, arXiv preprint arXiv:2211.09983, (2022).

[20] J. Johnson, Deep, skinny neural networks are not universal approximators,

in International Conference on Learning Representations, 2019.

[21] R. Jozefowicz, O. Vinyals, M. Schuster, N. Shazeer, and Y. Wu,

Exploring the limits of language modeling, arXiv preprint arXiv:1602.02410,

(2016).

[22] P. Kidger and T. Lyons, Universal approximation with deep narrow net-

works, in Conference on learning theory, PMLR, 2020, pp. 2306–2327.

[23] P. Lavanya and E. Sasikala, Deep learning techniques on text classification

using natural language processing (nlp) in social healthcare network: A com-

109

prehensive survey, in 2021 3rd International Conference on Signal Processing

and Communication (ICPSC), IEEE, 2021, pp. 603–609.

[24] Y. LeCun, Y. Bengio, and G. Hinton, Deep learning, nature, 521 (2015),

pp. 436–444.

[25] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based

learning applied to document recognition, Proceedings of the IEEE, 86 (1998),

pp. 2278–2324.

[26] M. Leshno, V. Y. Lin, A. Pinkus, and S. Schocken, Multilayer feedfor-

ward networks with a nonpolynomial activation function can approximate any

function, Neural networks, 6 (1993), pp. 861–867.

[27] H. Lin and S. Jegelka, Resnet with one-neuron hidden layers is a universal

approximator, Advances in Neural Information Processing Systems, 31 (2018).

[28] J. Long, E. Shelhamer, and T. Darrell, Fully convolutional networks for

semantic segmentation, in Proceedings of the IEEE conference on computer

vision and pattern recognition, 2015, pp. 3431–3440.

[29] Z. Lu, H. Pu, F. Wang, Z. Hu, and L. Wang, The expressive power of

neural networks: A view from the width, in Advances in Neural Information

Processing Systems, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fer-

gus, S. Vishwanathan, and R. Garnett, eds., vol. 30, Curran Associates, Inc.,

2017.

[30] H. Maron, E. Fetaya, N. Segol, and Y. Lipman, On the universality of

invariant networks, in International conference on machine learning, PMLR,

2019, pp. 4363–4371.

110

[31] T. Mikolov, M. Karafiát, L. Burget, J. Cernockỳ, and S. Khudan-

pur, Recurrent neural network based language model., in Interspeech, vol. 2,

Makuhari, 2010, pp. 1045–1048.

[32] K. O’Shea and R. Nash, An introduction to convolutional neural networks,

arXiv preprint arXiv:1511.08458, (2015).

[33] S. Park, C. Yun, J. Lee, and J. Shin, Minimum width for universal ap-

proximation, in International Conference on Learning Representations, 2021.

[34] D. Rolnick and M. Tegmark, The power of deeper networks for expressing

natural functions, In the International Conference on Learning Representa-

tions, (2018).

[35] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, Learning repre-

sentations by back-propagating errors, nature, 323 (1986), pp. 533–536.

[36] A. M. Schäfer and H.-G. Zimmermann, Recurrent neural networks are

universal approximators, International journal of neural systems, 17 (2007),

pp. 253–263.

[37] K. Simonyan and A. Zisserman,Very deep convolutional networks for large-

scale image recognition, arXiv preprint arXiv:1409.1556, (2014).

[38] C. Song, G. Hwang, and M. Kang, Minimal width for universal property

of deep rnn, arXiv preprint arXiv:2211.13866, (2022).

[39] R. Suthar and M. K. R. Patel, A survey on various image inpainting

techniques to restore image, Int. Journal of Engineering Research and Appli-

cations, 4 (2014), pp. 85–88.

111

[40] X. Tan, T. Qin, F. Soong, and T.-Y. Liu, A survey on neural speech

synthesis, arXiv preprint arXiv:2106.15561, (2021).

[41] C.-Y. Wu, A. Ahmed, A. Beutel, A. J. Smola, and H. Jing, Recur-

rent recommender networks, in Proceedings of the tenth ACM international

conference on web search and data mining, 2017, pp. 495–503.

[42] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He, Aggregated residual

transformations for deep neural networks, in Proceedings of the IEEE confer-

ence on computer vision and pattern recognition, 2017, pp. 1492–1500.

[43] D. Yarotsky, Universal approximations of invariant maps by neural net-

works, Constructive Approximation, 55 (2022), pp. 407–474.

[44] C. Yun, S. Bhojanapalli, A. S. Rawat, S. Reddi, and S. Kumar, Are

transformers universal approximators of sequence-to-sequence functions?, in

International Conference on Learning Representations, 2020.

[45] S. S. A. Zaidi, M. S. Ansari, A. Aslam, N. Kanwal, M. Asghar, and

B. Lee, A survey of modern deep learning based object detection models, Dig-

ital Signal Processing, (2022), p. 103514.

[46] X. Zhai, A. Kolesnikov, N. Houlsby, and L. Beyer, Scaling vision

transformers, in Proceedings of the IEEE/CVF Conference on Computer Vi-

sion and Pattern Recognition, 2022, pp. 12104–12113.

[47] K. Zhang, W. Ren, W. Luo, W.-S. Lai, B. Stenger, M.-H. Yang, and

H. Li, Deep image deblurring: A survey, International Journal of Computer

Vision, 130 (2022), pp. 2103–2130.

112

[48] D.-X. Zhou, Universality of deep convolutional neural networks, Applied and

computational harmonic analysis, 48 (2020), pp. 787–794.

113

국문초록

특정 함수 공간의 임의의 함수를 함수 집합이 근사할 수 있는지 여부를 의미하는

보편 근사 가능성을 판별하는 것은 뉴럴 네트워크의 큰 발전에 힘입어 최근 활발히

연구되고있다.뉴럴네트워크는다양한구조에따라함수에다양한제약조건을발생

시키고근사할수있는함수의범위가달라지게되며,다른함수공간을목적으로하면

그 목적에 대응하는 보편 근사 정리가 필요하게 된다. 이런 목적에 맞춰 본 논문에서

우리는 합성곱 신경망과 순환 신경망, 두가지 서로 다른 딥러닝 네트워크 구조에 대한

보편 근사 정리를 증명하였다.

첫째로 우리는 합성곱 신경망의 보편성에 대해 증명하였다. 패딩이 적용된 합성곱

은 입력값과 동일한 형태의 값을 출력하게 되며 이에 따라 합성곱으로 구성된 합성곱

신경망이 이와 같은 함수를 근사가능한지 여부를 증명할 필요가 있다. 우리는 입력값

과 출력값이 동일한 형태를 가지는 연속 함수에 대하여 합성곱 신경망이 보편적으로

근사가능하다는 것을 증명하였다. 또한 근사에 필요한 신경망의 최소 깊이를 제시하

였으며 이것이 최적 값임을 증명하였다. 또한 채널의 개수가 제한된 상황에서 충분히

깊은 층을 가지는 합성곱 신경망이 마찬가지로 보편성을 가진다는 것을 증명하였다.

둘째로 우리는 순환 신경망의 보편성을 증명하였다. 순환 신경망은 시간 순서의

앞부분에 위치한 입력값에 의해 뒷부분의 출력값이 결정되는 과거 의존성을 가지며

우리는 순환 신경망의 과거 의존적 함수 공간에서의 보편성에 대해 연구하였다. 구

체적으로 우리는 채널의 개수가 제한된 다층 순환 신경망이 임의의 연속함수와 Lp

함수를 각각 근사할 수 있다는 것을 증명하였다. 또한 양방향 순환신경망과 GRU,

LSTM에도 본 결과를 확장하였다.

주요어휘: 보편 근사 정리, 순환 신경망, 합성곱 신경망, 심층 협소 신경망

학번: 2017-25155

	1 Introduction
	1.1 Convolutional Neural Network
	1.2 Recurrent Neural Network
	1.3 Related Works

	2 The Universal Property of Convolutional Neural Network
	2.1 Notion and Definition
	2.2 Main Theorem
	2.2.1 Problem Formulation
	2.2.2 Lemmas
	2.2.3 The Minimum Depth for the Universal Property of Convolutional Neural Network
	2.2.4 The Minimum Width for the Universal Property of Convolutional Neural Network

	3 The Universality Property of Deep Recurrent Neural Network
	3.1 Terminologies and Notations
	3.2 Universal Approximation for Deep RNN in Continuous Function Space
	3.3 Universal Approximation for Stack RNN in Lp Space
	3.4 Variants of RNN
	3.5 Discussion
	3.6 Proofs
	3.6.1 Proof of the Lemma 3.2
	3.6.2 Proof of the Lemma 3.5
	3.6.3 Proof of Lemma 3.10
	3.6.4 Proof of Lemma 3.12
	3.6.5 Proof of Lemma 3.18

	4 Conclusion
	The bibliography
	Abstract (in Korean)

<startpage>10
1 Introduction 1
 1.1 Convolutional Neural Network 2
 1.2 Recurrent Neural Network 4
 1.3 Related Works 7
2 The Universal Property of Convolutional Neural Network 11
 2.1 Notion and Definition 11
 2.2 Main Theorem 18
 2.2.1 Problem Formulation 18
 2.2.2 Lemmas 19
 2.2.3 The Minimum Depth for the Universal Property of Convolutional Neural Network 28
 2.2.4 The Minimum Width for the Universal Property of Convolutional Neural Network 44
3 The Universality Property of Deep Recurrent Neural Network 52
 3.1 Terminologies and Notations 52
 3.2 Universal Approximation for Deep RNN in Continuous Function Space 59
 3.3 Universal Approximation for Stack RNN in Lp Space 70
 3.4 Variants of RNN 74
 3.5 Discussion 81
 3.6 Proofs 82
 3.6.1 Proof of the Lemma 3.2 82
 3.6.2 Proof of the Lemma 3.5 89
 3.6.3 Proof of Lemma 3.10 95
 3.6.4 Proof of Lemma 3.12 96
 3.6.5 Proof of Lemma 3.18 100
4 Conclusion 105
The bibliography 107
Abstract (in Korean) 114
</body>

