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Abstract

Viscosity solution for geometric Asian barrier
option

Seongeun Jeong

Department of Mathematical Sciences
The Graduate School

Seoul National University

In this thesis, we consider Barrier option and Geometric Asian option
based on Black-Scholes model and derive partial differential equation which
these two options satisfy. Also, we calculate its closed form solution as the
option value at time t. Moreover, by combining Barrier option and Geometric
Asian option, we consider Geometric Asian Barrier option and its modeling
partial differential problem. However, It is not known that this problem has
classical solution. Instead, we show that the value of geometric Asian barrier

option becomes a viscosity solution of the modeling problem.
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Chapter 1
Introduction

Option pricing is an interesting subject in the quantitive finance. The basic

model in option pricing is the Black-Scholes model(equation)

v 1, ,0% v
- - - _ = 1.0.1
5 +20 x 922 +m:8$ rV =0, (1.0.1)

which Fisher Black and Myron Scholes [6] discovered in 1973. It is a parabolic
equation and also can be transformed by the heat equation by change of
variable x = €®. So by using the fundamental solution of heat equation, we
calculate the solution of Black-Scholes equation([9]). The regular call and put
options satisfy (1.0.1). In the Black-Scholes model, we assume some following
conditions ([11]) :

1. The risk-free rate r is known.

2. The stock price process X; follows a geometric Brownian motion process
dXt = [I,Xt dt + O'Xtth

where 1 and o are constant and W; is a standard Brownian motion.
3. The stock pays no dividends.

4. There are no transaction costs and taxes.
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5. There are no penalties for short sales.
6. The market is arbitrage free.
7. Option trading operates continuously.

Since (1.0.1) can be transformed by the heat equation. the value v(t,x) of
the option which satisfies (1.0.1) is represented as the closed form solution.
In addition to (1.0.1), there are different equation with specific conditions
which the exotic options satisfy. In particular, we focus on pricing Barrier
option, Geometric Asian option and Geometric Asian Barrier option. In the
case of them, the closed form solution sometime is not guaranteed.

In chapter 2, we consider the basic notions which are needed for option
pricing including It6 calculus with Brownian motion. Also, we study the risk-
neutral measure. We first prove the Girsanov theorem which represents how
to transform the real measure P into the risk-neutral measure P. Since P and
P are equivalent, we price the option under the risk-neutral measure. By the
Feynman-Kac formula, we also get the risk-neutral pricing formula and then
we derive the Black-Scholes formula.

In chapter 3, we study Barrier option. Barrier option is a derivative that
the payoff depends on whether the stock price hits a predetermined barrier
during the option period. In addition to regular call and put options, the
barrier option has additional barrier condition, B which is constant. First,
there are Up option and Down option. If the barrier is set above the initial
stock price, it is a up-option. Also, if the barrier is set below the initial stock
price, it is a down-option. In addition, there are Knock-in option and Knock-
out option. A Knock-in option becomes valid when the stock price hits the
barrier. For example, we consider knock-in call option. When the stock price
hit the barrier, a knock-in call option acts as a regular call option. However, a
knock-out option becomes invalid if the barrier is touched. Merton [13] firstly
priced the value of the down-out call option. M. Rubinstein introduced the
various types of payoff of barrier options and priced the value of barrier

options([14]). We calculate the value of down-in and up-out call option([15])
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and confirm the equation with conditions for the barrier option.

In chapter 4, we study Geometric Asian option. Geometric Asian option is
a derivative whose payoff contains the geometric average of stock price instead
of the stock price. If the stock price has log-normal distribution, so does the
geometric average of the stock price. Therefore, only for the geometric Asian
option, there exists the closed solution formula in Black-Scholes model and

the solution has uniqueness([5]). The continuous geometric average of the

1 t
exp <¥/ logXudu).
0

Kemna and Vorst [12] derived the closed solution form for the geometric

stock price is given by

Asian option specially at time ¢t = 0. More generally, the closed form solution
for the geometric Asian option price at time ¢ is given in [4]. So we derive
the value and the equation which the geometric Asian options satisfy using
the property of martingale and Markov.

In chapter 5, we consider the geometric Asian barrier option which is
the combination of the barrier option and the geometric Asian option. It has
being currently researched by Aimi and Guardasoni [3] and Aimi et al [1], [2].
Unlike the geometric Asian option, the geometric Asian barrier option has no
closed priced formula ([1]) in Black-Scholes model. Therefore, we adopt the
viscosity solution. We introduce the definition of viscosity solution of pde for
the geometric Asian barrier option([8]). Moreover, we confirm the equation
with conditions for the geometric Asian barrier option and we show that its

value become a viscosity solution.



Chapter 2

Black-Scholes equation

2.1 Ito Calculus

We consider stocks as the underlying asset for the option. We know that the
stock price is unexpected. That is, a stock price process must have random-

ness. For this randomness, we use the Brownian motion.

Definition 2.1.1. Let (£, F,P) be a probability space and F; be an associ-
ated filtration. A continuous stochastic process W = (W) is a standard

Brownian motion if it satisfies the followings
1. Wo=0

2. For all 0 < s < t, the increment W, — W, is independent of F, and
follows normal distribution A/ (0,t — s).

For option pricing, the most important properties of Brownian motion
is a martingale and it accumulates quadratic variation at rate one per unit

time.

Theorem 2.1.2. Let (W;)i>o be a standard Brownian motion on the proba-
bility space (Q, F,P) and F; be an associated filtration. Then the Brownian

motion Wy is a martingale.
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Proof. For s < t,

E[W, | F] = E[W, — W, + W, | F.]

= E[W, — W, | F,] + W,
E[W, — W, + W,
Wi

By Holder inequality, we can get E[|W;|] < /E[W?] = vVt < co. In all,
Brownian motion is a martingale.

]

Definition 2.1.3. Let f(¢) be a function defined for 0 < ¢ < T. The

quadratic variation of f up to time t is

Lf fle= = lim Z tiva) = f(t:)]?

where t; = 2L and 0 =t < t; <--- <t, =t

Theorem 2.1.4. Let (W;)i>0 be a standard Brownian motion on the proba-

bility space (0, F,P). Then the quadratic variation of Brownian motion is
(W, W], =

Proof. The quadratic variation of Brownian motion is given by

n—1 n—1
(W, W], = lim X;(Wm W,,)? = lim ZAW

We know W,,,, — W, ~ N(0,£). So we have

t
VaT[Wti-H - Wt] = E[<Wti+1 - Wti)Q] = E

7
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Therefore, we can derive

E

n—1 n—1
nh—)nolo Z(Wti+1 B Vth)QI - nlLHLIO ZE[(Wti+1 o VVtz)Q] =1
i=0 =0

We need to show that the variance is zero. Then we write

n—1 n—1 2
Var | lim ;(WM ~W,.)?| =E ( lim ;ij - t)
n—1 " 2
1 2
= im 3 | (ani - ) ]
n—1
, 32 22 ¢
:JLHSOZO<¥_F+E)
.2t
= lim —
n—,oo M
In all, we get the quadratic variation [W, W], =t . O

Since we employ the Brownian motion process for the randomness, the
stochastic differential equation of the stock price process have the Brown-
ian motion term. However, we know that the Brownian motion is nowhere
differentiable. So for considering the Brownian motion term, we need new

calculus, called Ito calculus.

Definition 2.1.5. Let (W;):>0 be the Brownian motion on (€2, F,P), and

(X¢)t>0 be a stochastic process. If (X;);>¢ satisfies the form
dXt = M(t, Xt) dt + U(t, Xt> dVVt

where o and p are locally bounded in ¢ and progressively measurable, it is
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called the Ito process. We can also write in integrated form

t t
X=X, +/ (s, Xs)ds —i—/ o(s, Xs) dW;
0 0

We call p(t, X;) the drift and o(t, X;) the volatility of Xj.

Definition 2.1.6. Let (W;);>¢ be a standard Brownian motion on (2, F,P)

and (F;)t>0 be a associated filtration. Assume

E Uotf(s, WS)QdWS} < 0.

Then Ito integral is defined by

n—1

t
I, :/ F(s, W) dW, = lim Y f(t;, W, )(Wi,,, — W)
0 =0

n—+00 4

where f(t;,W,,) is a simple process and 0 =ty < t; < -+ < t, 1 <t, =t.

Lemma 2.1.7. Let (X;)>0 be an Ito process and f(z,t) be C*-function.

Then, for every t > 0, we have almost surely

1
df(t, Xt) - ft<t, Xt> dt + fx<t, Xt> dXt + §fxx(t7 Xt) dXtht

2.2 Risk-neutral measure

Theorem 2.2.1. Let (2, F,P) be a probability space and P be another prob-
ability measure on (2, F, Iﬁ’) If P and P are equivalent, there exists almost

surely positive random variable Z such that E[Z] = 1 and

@mzézm
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for Ae F.
Such random variable Z is called Radon-Nikodym derivative and denoted by

_dP

4 =—.
dP

Proposition 2.2.2. Let P and P be probability measures on (2, F). Suppose

for a random variable Z and A € F, we define

_dP

7 -
dP

such that

@m_/zw
A
and P(Z > 0) = 1 . Then the probability measures P and P are equivalent.

Proof. We say that two probability measures P and P are equivalent if they
have same null-set. For A € F, suppose that P(A) = 0. Then we have

MAy:/ﬁuzmpzu
Q

On the contrary, for I@(B) = 0, suppose B € F. Then we have

1 ~
P(B) = 1g=dP =0.
()/QBZ 0
Il

Proposition 2.2.3. Let (Q, F, (F)i>0,P) be a filtered probability space and P
be another probability measure on (2, F) . For the Radon-Nikodym derivative
Z = % define the Radon-Nikodym derivative process

= B

Zt:E[Z|~7:t]

Then Z; is a martingale under P.
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Proof. By Theorem 2.2.1, we get

dP
Moreover, we derive
dP dP ~
E|l—| =] —dP= [ dP=1.
dP /Q dP /Q

Therefore, we can deduce Z; > 0 for o <t < T. Now, we want to check that
Z; is non-negative martingale. Clearly Z; is F;-measurable. By the tower

property of the conditional expectation, we get the equality

=E[Z]F]
= Zs.

In addition, we obtain

In all, Z; is non-negative P-martingale. O]

Lemma 2.2.4. Let (0, F, (F)i>0,P) be a filtered probability space and P be
another probability measure on (2, F, I?PJ’) such that P and P are equivalent. Let
(Xt)o<t<r be a Fi-measurable and consider the positive P-martingale %b:t:

Zy. Then the expectation value of X; under P is given by

E[X,]=E[X,Z)].

Proof. By the definition of the Radon-Nikodym derivative and the tower

___;rx_-! _'\-.‘I.“:_ -11 -
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property of the conditional expectation, we derive the equality

]

Lemma 2.2.5. Let (Q, F, (F)i=0,P) be a filtered probability space and P be
another probability measure on (§2, F, ]T”) such that P and P are equivalent. Let

(Xt)o<t<r be a Fi-measurable and consider the positive P-martingale %brt:
Zi. For0 <s<t<T,

~ 1
E[Xt|fs]:7E[XtZt|fs]

S

Proof. We know clearly ZLJE [(X:Z; | Fs] is Fs-measurable. Then we need to
check the partial averaging property such that for any A € F;,

1 ~ ~
/ —E[X,Z, | F,] dP = / X, dP.
A Zs A

Since we have

1 ~ 1
/ LR(X,2 | F] dP = / L R(X,2 | ] 7, P
A Z A Zs

— / XtZt dP
A

A

In all, we get the result

~ 1
]E[Xt’Fs]:g]E[XtZt‘fs]

s

10
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Theorem 2.2.6. Let (2, F,P) be a probability space and let (Xi)i>0 be a
martingale with respect to a filtration F; with a continuous paths and Xy = 0.

If for allt > 0, the quadratic variation of X; is

n—1

(X, X, = lim > (X, - X,)* =t,

n—00 4

X; is a Brownian motion.

Proof. We want to show X; ~ N(0,¢) by using the moment generating func-
tion. For fixed u, define f(¢, X;) = I Xi=30% By It6 formula,

of of 19°f

af (t, Xy) = ot —dt + 8_Xtht 2W<dXt)2
10%f of
(— + §3X2> dt + a—Xtht
=0f(t, Xy)dX;.

By integrating and taking expectation both sides, we get
t

E[f(1,X)] = 1+ 0F [ / f(s,Xs)dXs] .
0

Since It6 integral fot f(s, Xs)dX, is a martingale and its value at time 0 is

zero, its expectation value is also zero. In all. the moment generating function
of X, is

E[e’X] = 2%,
which is the moment generating function for the normal distribution with

mean zero and variance t. That is, X; ~ N(0,t). Since X; is a martingale,

we can write for s <t

E[X, — X, | Fs] =0

11
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This means that the increment X; — X is independent to F,. Consider the

variance of X; s — X

Var(Xips — Xi| = Var[ X + Var[Xy] — 2Cov[ Xy s, X4
=t+s+t—2(E[X X, — B[X,JE[X]))
=2t 4 5 — 2E[X, . X{]
=2t + 5 — 2EB[X;(X1ps — Xy) — X7
=2t + s — 2E[X?]

= S.

Since clearly E[X;,s— X;] = 0, we get Xy, s — X; ~ N(0, s). We know that X

and X; has continuous paths. In all, X; is a standard Brownian motion. []

Theorem 2.2.7. (Girsanov Theorem)
Let (Wy)o<t<r be a standard Brownian motion on (2, F,P) and let (Fi)o<t<r

be a filtration for Brownian motion. For an adapted process (0;)o<i<r, define

~ t
Wt:Wt+/ Qsds.
0

and assume
E [e% Jo 2 dt] < 0.

Then Z; is a martingale under P and </th)0§t§T is a standard Brownian
motion under P defined by N
dP

7, = —
ET AP

Fe
Proof. We will use Theorem 2.2.6. First, we want to show Z, is a martingale
under P. Put f(z) = e*. Then

Zy = f(At)

12
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t 1 t
At:—/ edeS——/ 62 ds.
0 2 0

By Ito formula, we get the equation

where

/! 1 iz
dZt = f (At) dAt + if (At) dAtdAt

- —QtZt th
By integrating both sides, we get
t
Zy=Zs— / 0,7, dW,.

Since it has no drift term, Z; is also a martingale. Conditioned on Z = Zr,

by the martingale property, we can derive
Zv=EZr | R =E[Z|F], 0<t<T.

So Z; is a Radon-Nikodym derivative process.

Now, we are going to consider WtZt. By It6 formula, we get

AW, Z) = W, dZ, + Z, dW, + dW, dZ,
- (1 - etWt)Zt th

By integrating both sides, we get
—_— —~— t —_—
W,Z, = W,Z, + / (1 — 0,W,)Z, dW,.
Since it has no drift term and f;(l — HuWU)Zu dW, is independent to F;, we

can get the equation
E[Wtzt | Fs] - WsZs-

13
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Therefore, we consider Wt and then

o 1~ — N
E[Wt | ]:s] - _E[WtZt | ]:s] = _WSZS = Ws~
Zs Zs
Also, by the condition, E[|W,]] < co. Clearly Wy = 0 and has continuous
paths for ¢t > 0. We want to derive the quadratic variation of Wt. For t; = %t,
set 0 =ty < t; <ty <..<t,_1<t,=rt Then the quadratic variation of
/th is
n—1

n—1
i 3 (Wi =) = fin 3 (¥, - W)
i=1 =1

n-l1 tit1
+ lim Y2 (Wi, — W) ( / ) 98d3>
n—o0 i1 t;

Since the integration is continuous, lim ftt_i“ O,ds = 0, and then we can get
n—oo

above result. By the Lévy theorem, W; is a standard Brownian motion under

P. m
Remark 2.2.8. P and P in Theorem 2.2.7 are equivalent.

Definition 2.2.9. Let (2, 7, P) be the probability space and let P be another
probability measure such that they are equaivalent. Then the probability
measure P is said to be the risk-neutral measure if it satisfies the following

conditions
1. P and P are equivalent.
2. Under I?PJ’, the discounted underlying asset price is a martingale.

In the Black-Scholes model, we assumed that the stock price follows a ge-

ometric Brownian motion. Now, we consider the general geometric Brownian

14
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motion form

where u(t) and o(t) are adapted process. In the integral form, we have
t 1 t
X, = Xgexp [/ <,u(u) — 502(u)> du +/ a(u)qu]. (2.2.2)
0 0
Define the discounted factor
Dy = e Jor(w)du (2.2.3)

where r(t) is the interest rate. Then the discounted stock price process is

given by

t 1 t
D, X, = Xyexp {/ (,u(u) —r(u) — 502(u)) du +/ o(u) qul. (2.2.4)
0 0
In the differential form, (2.2.4) is expressed by

d(D,X,) = (u(t) — r(t)) DX, dt + o(t) DX, AW,

(2.2.5)
= o(t)D,X, (0(t) dt + dW,)

where 0(t) := & (ti(_t;(t) is an adapted process. With 6(t), consider Z; in The-

orem 2.2.7 and

W, =6(t) + /te(u) du. (2.2.6)

Define the probability measure P with Radon-Nikodym derivative process Z;
with respect to P. By Theorem 2.2.7, (2.2.6) is a standard Brownian motion
under P. Therefore, (2.2.5) becomes

d(DyX,) = o(t) DX, W,. (2.2.7)

and so it is a martingale under P. Finally, we propose that P is a risk-neutral

15
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measure. Moreover, under ﬁ’, we have
dX, = r(t) X, dt + o(t) X, dW,. (2.2.8)

Then (2.2.8) means that the return rate from the stock under the risk-neutral

measure is a risk-free rate.

Proposition 2.2.10. Let (W};)>0 be a standard Brownian motion on (2, F,P).
Define the process Z;y such that

t 1
Zy = exp —/QdeS—é/ 9§ds
0 0

Then the probability measure P defined by

dP

7, = —
P AP

F

1s a risk-neutral measure.

Proof. By Proposition 2.2.2, we know that P and P are equivalent. From
(2.2.7), the discounted stock price process is a martingale. By Definition

2.2.9, P is the risk-neutral measure. O

2.3 Black-Scholes formula

Theorem 2.3.1. (Feynman-Kac formula)
Let (Wy)i>0 be a standard Brownian motion on the probability space (2, F,P)
and F; be a related filtration. Suppose that the stochastic process X; satisfies

the generalized stochastic differential equation such that

dXt = [L(t, Xt)dt + U(t, Xt)th

16
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For X; = x, we consider the following partial differential equation

ov 1, v ov
5% + 3¢ (, x)@ + ,u(t,:z:)(‘a—aC —r(t)v(t,z) =0 (2.3.1)
with the boundary condition v(T,x) = V(Xr) . Then the solution is given by
(t,z) = E [e’ftT’"(“)d“V(XT) | ]—“t] . (2.3.2)
Proof. Define the process Z, such that

Zy = e @y, X)),

By Ito formula, we get

dZ, = %Zu“du + S)Z(Zqu + %%(d}@)?
— e~ J () (% + %JQ(u, Xu)aa;% + p(u, Xu)ﬁa_;()u —r(u)v(u, Xu)) du
el r@dg(y, Xu)aa—;(]uqu
— e [ TRy, Xu)%dwu.
By taking integral from ¢ to 7', we derive
Ty — 7, = / ' el r@dzg(y, Xu)ﬂdwu. (2.3.3)
¢ 0X.

Since the right side of (2.3.3) is It6 integral, we obtain
E[Z)] = E[Z7].
Thus the conditional expectation can be given by

E[Z, | F,] = E[Z7 | Fy).

17
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Finally, we can get the result
o(t,z) =E [eh "@= Vv (X7) | . (2.3.4)

]

Consider Theorem 2.3.1 under the risk-neutral measure P. By Theorem
2.3.1, under the Black-Scholes model, the value of option satisfies the Black-

Scholes equation

ov 1 0? 0
i e LI |

ot 2 0x? ox

for some constant r,o > 0. In addition, (2.3.4) becomes
E[e TV (Xr) | F]. (2.3.5)

We refer (2.3.5) as the risk-neutral pricing formula. We are going to use the
risk-neutral pricing formula for pricing the option. Therefore, the value in
this paper means the risk-neutral value.

Now, we consider a European call and a put option whose expiration time
is T" and strike price is K under Black-Scholes model. The payoff of a call
option is given by

(Xr — K)"

and a put option is
(K — X7)*.

By the risk-neutral pricing formula, the value of call option is given by
c(t,z) =E[e T Xy — K)T | F. (2.3.6)
We have the stock price process

dXt = TXtdt + O‘Xtd/th

18
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which is the geometric Brownian motion form under P. Then we have

X7 = X, exp [(r - %#) (T —t) + o(Wy — Vvt)} (2.3.7)

_ Wr—W,
LetZ——fﬂ

independent to JF;. Therefore, conditioned on X; = x and Z; = z, (2.3.6)
holds with

. Then Z follows the standard normal distribution and is

-2 (s (- 1) 7o =r2] )
g [ oo (- ) -0y )
(2.3.8)

Moreover, we can only define (2.3.8) if

log &+ (r—30°) (T —t)

= d,.
oV —t 2

z <

Thus we get

2

c(t,x) = \/%_W/_ixexp (—%ZQ —o/(T—1t)z— %(T - t)) dz

1 [®

CVer )«
- \/% /:, exp {—%(z + aﬂ)ﬂ dz — Ke " TN (dy)

= aN(dy) — Ke "IN (d,)

e "M Ke37 4y

where N is a standard normal cumulative distribution function. Finally, the

value of European call option is

c(t,z) = xN(dy) — Ke "IN (dy)

19
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where
p Clog + (r+50°) (T —t)
b oVl —t
dQZdl—O'\/T—t.

Theorem 2.3.2. Let c(t) be a value of the call option and p(t) be a value
of the put option at time t. Suppose that call and put options have the same
maturity T and the strike price K. Then ¢(t) and p(t) have the relation

c(t) —pt) = X, — Ke "I

By Theorem 2.3.2, we can get the value of European put option at time
t as follows:
p(t,z) = e "TVKN(—dy) — xN(—dy).

Moreover, the value of a call option satisfies the equation

0 1 0? 0
ov + 25229 + rras _ py = 0. in Hrp

ot 2 0x? ox (2.3.9)
U(T,l',y):f(y) = (XT_K)+ r €RT

where Hy :=[0,7) x R* .
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Chapter 3

Barrier Option

3.1 Pricing Barrier option

For the barrier option, whether the stock price hits the barrier determines the
validity of option. Thus the payoff must contain barrier restriction. Consider
the up-out call option. If the stock price hit the barrier, the up-out option
become worthless. For the validity of option, the maximum of the stock price
must be lower than the barrier. Therefor, the payoff is given by
(Xp—K)"1 {

max thB}'
0<t<T

where K is the strike price, B is the barrier and 7' is the maturity. On the
other hand, the down-in option must hit the barrier for the validity. So the

payoff of down-in put option is given by

(K- Xp)t1 {og?gTXtSB}'

Between the values of these barrier options, there are relations.

Theorem 3.1.1. The value of the reqular European call option is the sum

of the value of down-out call and a down-in call.
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Proof. The value of down-in call is given by

E e ™D (X; —K)" 1 ]-"t] : (3.1.1)
{tgnzltlgT XugB}
and the value of down-out call is given by
E|e77TD(X; — K)T 1 ]—"t] : (3.1.2)
{tgnvlng XuzB}

Then the sum of (3.1.1) and (3.1.2) is expressed by

e~ r(T=1) (XT - K>+ (ﬂ{t?}}gTXUSB} + ]l{tgltigTXuzB})

=K

E

d

081 (14 o)) P

E [eir(T*t) (XT - K)+ ‘ .Ft]

(3.1.3)

The last expression of (3.1.3) is the value of regular European call option. [

Lemma 3.1.2. Let (2, F,P) be a probability space and let (W;)i>o be a stan-

dard Brownian motion. For a stopping time T, we define

_ W, ift<T
Wy —W, if t>T.

W, =

Then (Wy).<o is also a standard Brownian motion.

Also, we can derive the reflection equality. Given m > 0, define the stop-
ping time T, = inf{t > 0 : W; = m}. Since Wy, = m, we can derive the
equation

P(T,, <t W, <w)=P(T,, <t,2Wgp, — W, <w)

=P(W; > 2m — w). (314
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Consider the maximum of the Brownian motion

M; = max Wi. (3.1.5)

0<s<t

Then (3.1.4) can be expressed by

P(T,, <t, W, <w)=P(M, >m, W, <w)

(3.1.6)
=P(W; > 2m — w).
For the minimum of the Brownian motion
mg = min, Wi, (3.1.7)
the reflection equality is given by
P(T,, <t,W; > w) =P(m; <m, W; < w)
(3.1.8)

=P(W; <2m —w).

Theorem 3.1.3. Let (W;)i<o be the standard Brownian motion on (2, F,P).
Define (My)i>0 as (3.1.5). Conditioned on M; = m and Wy = w, the joint
density function of the pair of (M, W;) is given by

22m —w) _em—w?
. (myw) = ———=e 2w >m,m <0.
Fuawrm ) = = o

Proof. We have

POLzmWi<w)= [ [ fuwlepdds (319)

m —00

Since the Brownian motion has a normal distribution, W; ~ N(0,t), we

obtain

1 > 22
P(W; >2m —w) = \/%/ e 2 dz. (3.1.10)
2m—w
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By the equality (3.1.8), (3.1.9) and (3.1.10) are equivalent as

o] w 1 o0 22
xr,y)dydr = e 2 dz.
/m /oo fMt,Wt( y) ) \/% /2mw

Therefore, we have

22m —w (2m—w)?
sz,Wt(m7 ’U)) — gei 2 2t , W S m,m > 0

t\/ 27t
O]

Theorem 3.1.4. Let (W;)i<o be the standard Brownian motion on (2, F,P).
Define (m¢)i>o as (3.1.7). Conditioned on Wy = w and m; = m, the joint
density function of the pair (mg, W;) is given by

2(2m — w) _@mow?

e, (M, W) = —————=e
f t,Wt( ) t\/2_7Tt

Proof. We have

yw<m,m > 0.

Pimy <m, Wy > w) = / / Jmew, (z,y) dydz. (3.1.11)

—00 w
From the normal distribution of Brownian motion, we obtain

2m—w 1 9

e~ % dz. (3.1.12)

]P’(Wt§2m—w)—/_ Jont

Since (3.1.11) and (3.1.12) are equivalent, we can get

2(2m — m—w)?
fmt,Wt(m’w) = _M(;*@ 2t : , W Z m,m < 0

t\/ 27t
O]

We dealt with the standard Brownian motion with zero drift. Now, we

consider the Brownian motion with a drift. Let (Wt)ogth be the standard
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Brownian motion on a probability space (€2, F, ﬁ’) Define
W, = at + W,. (3.1.13)

Then W, is the Brownian motion with drift o on (Q, F,P).

Theorem 3.1.5. Consider the Brownian motion defined by (3.1.3). Define

the mazximum ofﬁ/\t such that

My = max W,.
0<t<T

Then the joint density function of (M\T, /WT) under P is given by

Pty (M, 0) = ng—\/%e

Proof. With (3.1.13), we can define the Radon-Nikodym derivative

_la2p L —w)2
aw—50°T— 55 (2m—w) 7m§w7m>0.

7, = exp (—aWt — §a2t> = exp (—aWt + §a2t> ) (3.1.14)

By Theorem 3.1.8, a probability measure P is defined by

4P
Z, = — |5 (3.1.15)
AP

and Wt is the standard Brownian motion under P. Therefore, by Theorem
4.1.3, the joint density function of (Z\//TT, ﬁf;) under P is given by

~ 22m —w) _em-w?
= =M, W) = ————¢ 2T
¥t g (s ) V27T

We want to derive the joint density function of (MT, WT) under P. By Lemma
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3.1.6, we can derive

~ ~ ~ ~

]P)(MT <m, Wr < w) = ]E[I]‘{MTém,WTgw}]

-1
=E {ZA_TIL{MTSWL,WTQ«U}}

:/ / eay—%QQTfMTWT(x,y)dxdy.

—00 J OO

Thus, we arrive at

m w ~ w m _la2 R
[ [ Fambednay= [ [ ey g deay

—00 J OO

Therefore, we get the joint probability density function of (]/\/[\T, WT) under
P such that

NA i \MmM W) = —————¢€
fMT,WT< ) T\/ﬁ

Theorem 3.1.6. Consider the Brownian motion defined by (3.1.13). Define

the minimum of W\t such that

mp = min W;.
0<I<T

Then the joint density function of (mr, WT) under P is gien by

~ 2(2m — w)
= = (M) = —————==
it (1) TV2rT

—la2p L —w)2
e 50°T— 5 (2m—w) ’mgw’m<o'

Proof. 1t is the same as the proof of Theorem 3.1.5. O

Proposition 3.1.7. Consider the down-in call option which expires at T
with the strike price K and the barrier B. Then for B < K, the risk-neutral
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value of down-in call option at time t is given by

=2 ()" v (n (1-0 )
ke () (1 (1o ).

where we define

B2\ logZ + (r+10%) (T 1)
A (T —t, 0 | = —Ke
oVl —1t

Kz
Proof. Assume the strike price is larger than the barrier, B < K. Suppose
that the stock price satisfies

dX, = rX,dt + o X,dW,.

where Wt is the standard Brownian motion under P. The risk-neutral value

of down-in call is given by

E

eI (Xp - K)t 1 { }}] (3.1.16)

min Xu<B}
t<u<T

For u > t, we have

2

X, = X, exp [(r - "—) (w—1) +o(W, — ’Wt)}

2 (3.1.17)
= X;exp [JWU,t]
where we define
Wy = alu—1t)+ W, — W, (3.1.18)
with @ = 1 (r — £6?) . Define the minimum of (3.1.18) such that
fr\LT_t = tgql}gnT Wu—t' (3119)
27
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CHAPTER 3. BARRIER OPTION
Therefore, by using (3.1.17) and (3.1.19), we have

(Xr—K)"1 {tggTXugB}

_ (Xte"WT*t _ K)

= (X~ K)

:H'{XteUWT_t>K, XteJﬁLT_lSB} (3120)

LiWr o>k, mr_o<b}

where we define
1 B

k= élog% and b= ;log?t.
We have that (3.1.20) is valid only on {(m,w) : —oo <m < b,k <w < o0} .
Thus, since W\T_t and my_,; are independent of F;, conditioned on WT_t = w,
mr_s =m and X; = z, (3.1.16) is expressed by

o(t, z) = 7 [efr(Tft) <Xt€UWT7t — K) E{WT—t>k7 mT_t<b}]

oo b
= / / efT(T*t) (J,’e”w _ K) (T _2(2m - w) eaw7%a2(T*t)7% dmdw
k —0o0

)2 (T — 1)
(3.1.21)

Put ) ) o2
y = % dy = %dm. (3.1.22)

If we apply (3.1.22) to (3.1.21), we obtain

(2b—w)?

R ) 1
U(t, x) = / / a _efr(Tft) (l.eaw _ K) —eawféoﬁ(Tft)fy dydw

_ /oo e T (ze7? — K) eaw_%QZ(T_t)_%dw
2n(T —t) J&
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where we define

I = / *T(T t)+owtaw—1a?(T—t)— (%T_iut)f dw
\/7_75
(3.1.23)
I, = / *T(T t)+aw—ga?(T—t)— (S(bth) dw
\/7_15
The integral form of (3.1.23) is generalized by
1 [ T PR ——
. e Y 2(T—1t) dw (3124)
2n(T —t) Jx
Put T
(T —1t
_w— (T 1) (3.1.25)
T—1t

If we put (3.1.25) into (3.1.24), (3.1.24) is transformed to cumulative density

function of standard normal distribution such that

20y e 2(r—t - -
eﬁ+%_1 e 2 dy = 65+N5)N< k(T t)) (3.1.26)
VI —t

where N is the cumulative density function of the standard normal distribu-
tion. Therefore, (3.1.24) and (3.1.25) are expressed by

I = %)(—1—55) N (M <T —, %))
I = (T (%)0_‘%) N <)\_ <T —¢ %)) .

In all, we have the risk-neutral value of the up-in call option such that

i =2(5) v (120 2))

0-%) P
—K—“T—“(f N (a(T—t2)).
© B 'Kz
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Remark 3.1.8. By Theorem 3.1.1, we can get the value of down-in call

option

Proposition 3.1.9. Consider the up-out call option which expires at T with
the strike price K and the barrier B. Then for B > K, the risk-neutral value

of up-out call option at time t is given by

ey o 0 (3 (P 2)) = (x (7= 2))]

— Ke@ [N( (7-1t.%)) —QN (- (-23))]
) o e )5 2)
<—> o (@) - (- (- 2)

where we define

N (T—t ﬁ) _ log £ + (r £ 30%) (T —t)
'K oVT —t
" (T_t 2) _log 4+ (r£30°) (T—1)
"B oVT —t
N (T—t E) :logg—l— r+10?) (T —t)
T oI —t
Proof. 1t is the same as the proof of Proposition 3.1.7. n

3.2 PDE for Barrier option

Now, we consider the partial differential equation which the barrier options
satisfy. Consider the up-out call option. Since the option becomes invalid

when the stock price hits the barrier, the payoff can be described by

V(T) = (XT — K)+]l{0r<nta<XTXt§B}.
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Then the risk-neutral value of up-out call option is given by

V() =E [e" T ( Xy — K)T 1
{tSugT }

max X,<B

J—"t] . (3.2.1)

Since we assume that the stock price X; follows the Markov process and the

payoff V(T') only depends on the stock prices, there is a function v(t, X;)
V(t) =v(t, Xy). (3.2.2)

Now, we assume that the up-out call option has not knocked out prior to

time ¢, conditioned on X; = x. Then we have

v(t,2) =E [T (Xp — K)T 1 { ]—}] . (3.2.3)

max XugB}
0<t<T

Moreover, (3.2.1) can be transformed into
V() =E [eTV(T) | F] .
Therefore, we can derive the equality

E[e'V(t) | F] =E[E[TV(TD)| 7] | 7|
=E[eV(T) | F] (3.2.4)
=e "V(s).

The equality (3.2.4) means that e "*v(¢, x) is a martingale. Thus we want to
derive the partial differential equation which the barrier option value v(¢, x)
follows.

Define the stopping time Tg which is the first time that the stock price hits
the barrier B and then X7, = B. Since the stock price oscillates, T can be

regarded as the knock-out time. By Optional sampling theorem, the stopped
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process of a martingale is also a martingale. Thus the process

e "V (t 0<t<T,
e—T(t/\T3)v(t A TB) _ ( ) >t >4IB
67TtV(TB) Tg <t <T

is a martingale. Since we have (3.2.2), we also get e "0 (¢, X;) is a martingale
by the stopping time T’z. Therefore, we can derive the equation
0 1 0%

- -7 - v —rt OV —r
dle "(t, X)) = —re "vdt + e tgdt +e t%dXt + 3¢ t@dXtht

0 1 0? 0 0 —~
=e " (8_: + 502:628_;; + r:t:a—i — rv) dt + e*”a:va—z;v dW,.
(3.2.5)
Since the martingale has no dt term, dt term must be zero for 0 <t < Tg in
(3.2.5). Thus we obtain the equation
v 1, ,0% ov

5 +ow Eye) + ree == 0. (3.2.6)

Moreover, the pair (¢,z) can have any value in Dy := [0,7) x (0, B) only
before the option knocks out. That is, v(¢, ) holds the Black-Scholes equation
in Dr. In addition, we need a condition which express the barrier restriction

such that
v(t,B)=0, tel0,T).

In all, the value of the up-out call option follows the problem

a'U 1 2 282’U av B

E%—ﬁa @+rxax—rv— in Dp

o(T,x) = g(x) = (x — K)* z € (0,B) (3.2.7)
v(t,B) =0 telo,T)

If we consider a down-out put option, clearly the value of the down-out
put option satisfies the Black-Scholes equation. But, It has different domain.

Since the option have an effect before the barrier is reached at any time
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t € [0,T), the value v(t,z) satisfies the Black-Scholes equation in Dr :=
[0,T) x (B,o0). In addition, the final condition is given by the payoff at the

maturity
v(T,z) = (K —x)", =>B.
and the barrier restriction is represented by

u(t,B) =0, tel0,T).
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Geometric Asian Option

4.1 Pricing Geometric Asian option

A geometric Asian option contains a geometric average instead of the stock
price. A geometric average can replace the stock price or the strike price.
In this paper, we only consider the case of replacing the stock price. Under
the price fluctuation, the average is less affected than just stock price. So
the probability that the option is out of money abruptly at the maturity can
be decreased. This is why we use the geometric Asian option. Moreover, the
decline of volatility derive lower value than a regular call or put option.

Now, we define a process

t
Y; :/ log X, du. (4.1.1)
0
where the stock price X; satisfies
dX, = pX, dt + o X, dW,.

Then the continuous geometric average of the stock price at time t is ex-
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pressed by

(¥)
exp 7 .

Therefore, the payoff of the geometric Asian call option is given by

(o () - x) 012

and its put option is given by

(K ~exp <%>)+ (4.1.3)

Compared with the payoff of a regular call option, we can find that the
geometric average replaces the stock price.
Now, we consider the value at the general time ¢. The risk-neutral value

of geometric Asian option at time ¢ is given by

E

Since for u > t, we have

X, = X, exp Kr—%) (u—t)—i-U(Wu—Wt)]a

we have
t T
YT:/ logXudu—l—/ log X, du
0 t

T 0_2 N N
:Yt+/ {IOgXt—i-(T—?)(u—t)+a<Wu—Wt>] du
t

2

=Y, + (T —t)log X; + (T—%) (T;t)2 —l—a/tT (Wu—m> du.
(4.1.4)
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The stochastic integral in (4.1.4) has the distribution

/tT (Wu—Wt> dUNN(O, <T;t)3). (4.1.5)

Let
ftT (Wu — Wt> du

(1—0)?

3

Z=-

Then Z has a standard normal distribution and is independent of F;. By the

form (4.1.4), we can write

T

(r-5) @12
= o ,
_ o [(T—1)
7TV s

Therefore, conditioned on X; = z and Y; = y, the risk-neutral value of the

geometric Asian option at time ¢ can be given by
o(t,z,y) = e "TIE [(Aexp(—Z + 1) — K)*] (4.1.6)
Then the payoff is nonzero where

log& +7
Z<M:

g

= ds.
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Thus (4.1.6) is expressed by

d2 2
t,x Aex G471 —K)e = dz
vty == [ e p(~7z+1) - K)
() da ZQ 1 do
=e "V Aex Jexp | —— — 7z | dz — — Ke™
\/27r/ p p( >

2 V2T J oo

=2

2

2
2 dz

d
2 1
—e T —— [ A i+ —(2+0)?)dz— KN
‘ _\/%/_oo eXp(H Q)GXP( 2<Z+0)>dz (@)

=2

=T | Aexp <ﬁ + %

)N(dl) - KN(dQ)]

where d; = dy 4+ 7. In all, the value of the geometric Asian option at general

time ¢ is given by

ey (=F) ey
(4.1.7)
where

% () @02 gy

T1 +Y + 2 + 2 (T-1)
— d 2 B (4.1.8)

a0
3
o [(T—1t)3

dy = dy — = : 4.1.9
2 1 T 3 ( )

4.2 PDE for Geometric Asian option

Now, we derive the partial differential equation which the geometric Asian
options satisfy. From (4.1.1) and (4.1.2), we can know that the payoff V(7T')
depends on X; and Y;. Since Y; is an integral of the stock price from 0 to
t, it depends on all past values between 0 and ¢. Therefore, unlike the stock
price X;, Y; itself does not follow the Markov process. However, Y; is related
with X; such that (X, Y;) is the Markov pair. Therefore, there is a function
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v(t, X, Y;) such that
V(t) =v(t, Xs, Y2). (4.2.1)

We know that (4.2.1) is a martingale by the same method of (3.2.4). Condi-
tioned on X; = x and Y; = y, we want to derive the general partial differential
equation of which v(¢, z,y) is a solution. By taking the differential and two-

dimensional Ito formula, we obtain the equation

ov

E“_

2
d(e™(t, Xy, V;)) = e ( AL 10g”7@ a TU) «

1
2 0x? ox dy
ov -

+ €7rt0'l'a—xth.

By the property of martingale, d¢ term must be zero and then we have

2

ov 5 0% ov
T s0 o5 e

1 ov
— I —— = 0. 4.2.2
5 T3 o +logx rv =0 ( )

o dy
In all, the geometric Asian call option generally satisfies the problem

1 2
@—I——(ﬂx?@—}—rx@—i—logx@—rv:o in Or
ot 2 0x? ox dy (4.2.3)

w(T,z,y) = h(y) := <exp (%) — K>+ in O

where O :=R" xR and O :=[0,T) x O.
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Chapter 5

Viscosity Solution as Value of
Geometric Asian Barrier

Option

5.1 Geometric Asian Barrier Option

We considered the barrier option and the geometric Asian option. Now, we
combine these two options, called Geometric Asian Barrier option. It is the
geometric Asian option with an additional barrier condition.

We have two process, X; such that
dXt = TXt dt + UXt d/—W_/h

and Y; such that
dY; = log X, dt.

For the geometric Asian barrier option, the path of the stock price is also
contained in the payoff. That is, whether the stock price reaches the barrier
is important.

Suppose that the geometric Asian barrier options have the barrier B, the
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strike price K and the maturity 7. Then the payoff (see [10]) is given by

t call : k) s
up-out call : { exp | — {Ogag XKB}
down-in call : (exp ( ) ) 1 x <B} (5.1.2)
s (5o ()
up-in put : — exp }

T
Y?)) { i sl (5.1.4)

Now, we study the geometric Asian up-out call option. This option is only

(5.1.1)

S

(5.1.3)

down-out put : ( — exp

valid before the stock price hits the barrier B. Therefore, the maximum value
of the stock price must be restricted below B and so the characteristic func-
tions on (5.1.1) express this barrier restriction. Finally, the payoff of the
geometric Asian up-out call option is given by (5.1.1). On the other hand,
the down-in option takes an effect after the stock price reaches the barrier
B. So the stock price must be lower than the barrier. That is, the minimum
of the stock price is lower that the barrier. Therefore, we have (5.1.2). Other

things can be obtained similarly.

In the previous section, we derived (4.2.3) which the value of the geometric
Asian call option depending on ¢, X; and Y; generally satisfies. The risk-

neutral value of geometric Asian up-out call option is given by

(1) Yr "
—r(T—t I
e (exp < T ) K> ﬂ{t&aé(TXugB}

Since the geometric Asian barrier option also have same property with

E

.7—}] . (5.1.5)

the geometric Asian options, (5.1.5) basically satisfies the equation (4.2.2).
However, we additionally need to consider the existence of the barrier B.

For the up-out call option, the interval of the stock price is restricted by
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z € (0, B) and so we have additional boundary condition
v(t,B,y) =0, t€[0,T), yeR.

In all, we can consider the modeling differential problem for the value of

Geometric Asian up-out call option

(Ov 1 0% ov ov )
E_}_éO_QIQ@_'_T‘I%_FlogI‘a—y—T’U:O lIlST

o(Ty) = gy) = (exp (5) - K>+ nS (5.1.6)

(v(t,B,y) =0 in [0,7) x R.

where § := (0, B) x R and Sy :=1[0,T) x S.

5.2 Viscosity solution
Now, we study the value of geometric Asian up-out call option

( ) ( ]rT +
—r(T—t
e exp (—> — K) 1
/ {tgtanTXugB}

o(t,z,y) =E

]—"t] (5.2.1)

with the problem

(v 1 0%v ov ov .
Ejtﬁa?x?@jtrx%%—logxa—y —rv=0 in Sy
Y + . 2.
o(T,a,y) = gy) = (exp () = K) in S (5:2:2)
vt B,y) =0 in [0,7) x R.

It is not known that the problem (5.2.2) has classical closed form solution.
Therefore, we are going to define the solution in the viscosity sense. If we

mention the function v(¢, x,y), it means (5.2.1).

Definition 5.2.1. Let v € C(Sr) be a locally bounded function.
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() v is a viscosity subsolution of (5.2.2) in Sy if v satisfies

o(T,z,y) < g(z,y) inS,
v(t, B,y) < in [0,7) x R,

and for any ¢ € C?(Sy) such that
U<t07 2o, Z/O) = Qp(t(], o, 3/0)
vt z,y) < ot x,y) for (t,x,y) € Sr,

we have

ot + Lo >0 at (to, zo,y0) € Sr.
(i) v is a viscosity supersolution of (5.2.2) in Sy if v satisfies

o(T,z,y) > g(x,y) inS,
v(t,B,y) >0 in [0,7) x R,

and for any ¢ € C?(Sy) such that
U(to, Lo, yO) = Sp(t(b Zo, yO)
(t,z,y) = ot x,y) for (t,x,y) € Sr,

we have

o+ Ly <0 at (to,z0,Y0) € Sr.

(74i) v is a viscosity solution of (5.2.2) if it is both a viscosity subsolution

and supersolution of (5.2.2).

Lemma 5.2.2. The function v(t, 7, y) is continuous on St.
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CHAPTER 5. VISCOSITY SOLUTION AS VALUE OF GEOMETRIC
ASTAN BARRIER OPTION

Proof. By Markov property, we can represent v as

max X,<B
t<u<T

(t,z,y) = e TE g(YT)]l{ } ft]

(5.2.3)

=e "TOE g(YTt)]l{

max XSSB}] ’
0<u<T—t

So (5.2.3) starts at time ¢t = 0. Conditioned on X, = x and Yy = y, we can

write
0,x 1 2 17
Xy"=xexp || T — 5 t+ oW,
and
t
Y =y + / log X2 du
0

For other (¢, 2',y’) € Sy, we have

Xz?@ T 1 2 / 1T 7 [T 7
XS’I,:;eXp r—g0 (t—t)+0<Wt—Wt/)

and

0,z
u
0,2/
u

077 07 /7/

t/
log / log X% du
t

t
S\y—y’H/
0

= |y —y'| +t[logz —loga’| +

t/
/ log X% du
t

Since W; is continuous a.s., we observe

0,z’ 0,z ,y’ 0,z v-0,z,
(Xt, Y, y)—>(Xt YY) as.
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as (t',2',y) — (t,x,y) and

1 —
max exp {(r — —02) u+ JWU]
0<u<T—t/ 2

1 N
—  max exp Kr — 502) u+ JWU] a.s.

0<u<T—t

as t — t'. Moreover, the payoff in (5.2.3) is given by

ax XS,IISB}%Q(Y:Ef{y)IL{ . XS’IgB} as.  (5.2.4)

0<u<lT—t

as (t',2',y') — (t,x,y). We know that (5.2.4) is bounded such like

max XO®<B
0<u<T—t

0< g(Yﬁﬁ;y)ﬂ{ = e,
Therefore, by the Lebesgue’s dominated convergence theorem, we have

o(t' 2" y') = u(t,z,y)

as (t',2',y) — (t,x,y). O
Theorem 5.2.3. The function v(t,x,y) is a viscosity subsolution of (5.2.2).

Proof. Take any point (to, o, %) € Sy and any function ¢ € C*(Sr) such
that

v(to, To, Yo) = ©(to, To, Yo)
and
v<¢ in S

We assume that X; and Y start at time ¢, with X;, = 9 and Y}, = yo. That

is, we now denote X, := X" and Y, := Y,/*"*%_ Define the stopping time
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7 and 75, such that
. To
r=inf {to < t: X, > Bor | X, — ol + ¥ — o z?} (5.2.5)

and
Th=TA (to+ h) (5.2.6)

for small h > 0. By the strong Markov property, we have

v(mn, X, Yr,) = e "R

g(Yr)1 ( ]—“Th] . (5.2.7)

max X,<B
T <u<T

Therefore, we can derive the equality

U(t07 Zo, ?JO)

max X,<B
to<u<T

= e TR | g(Vr)1 { } fm]

— efT(Tfto)IE E

1]

}_Th] 1{ max XugB}

to<u<Tp

DN o) o, o)

_ er(Th—to)IE e—r(T—Th)INE

-

(5.2.8)

Q(YT)H{

max XMSB}

T <u<T
}}0] .

]1{ . XusB} = 1.

to<u<Tp

— e—T(Th—to)IE

v(Th, X, Y )1
(h7 Th Th) { ax XuSB}
to<SusTp

Moreover, by definition of 7,,, we know
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Thus, we obtain

4P(t07 Zo, yO) = U(t07 X, ?JO)

_ efr(‘rh*to)fé |:'U(7'h7 XTM Y;_h)

7 to] (5.2.9)

S eir(ThitO)]?Ei {SO(ThJ XTh? YTh)

-l
Using Ito formula, we have

SO(ThJ XTh7 }/Th) - 90(7507 Zo, yO)

0

Th _—
—{—/ o Xup(u, Xy, Y,) dW,.

to

Putting (5.2.10) into (5.2.9), we obtain

@ (to, o, yo) < e ") o2y, 2, o)

~ Th 1
+ eir(ThitO)E |:/ (SOt + 50'2(Xu>2()0:m: + TXu(p:L" + log XU@?}) (u7 X“’ Yu> du
to

)

4 et {/ o Xup(u, Xy, Yy) dW,

to

)

= e_T(Th_tO)SO(tm Lo, yO)

[ ™ 1
4 rm—to) | [/ (got + 502()(“)290” + rXyup. + log Xug0y> (u, Xy, Yy) du
t
' (5.2.11)

7|

For each event w € ) and sufficiently small h > 0, we can write

Th(w) = to + h.
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By the mean value theorem, we derive

1 [™ 1
E / (th + 50'2<Xu)2¢:mc + T’Xu@z + log Xu@y) (u, Xua Yu) du
to

1 2.2 1
= o+ 20 Ty Prr + TT00s + log zopy | (to, Zo,yo) a.s.

as h — 0. We know that

1
(@t + 50'2(Xt)290xz + rXips + log thoy) (t7 Xt, Y;)

is uniformly bounded. By the Lebesgue’s dominated convergence theorem
and (5.2.11), we have

1
0< : (e77 (=) — 1) (to, To, Yo)
(-t (L[ L2 ix,)
+ e "R E/ Pt + 50- (Xu) Doz + TXUQOZ’ + log XUSOZ/ (U’Xu’ Yu) du ]:to
to

1
— (cpt + 50296390130 + 1z, + log zop, — w) (to, zo, Yo)

= (1 + L) (to, 0, Yo)
(5.2.12)

as h — 0. O]
Theorem 5.2.4. The function v(t,z,y) is a viscosity supersolution of (5.2.2).

Proof. 1t is the same as the proof of Theorem 5.2.3 except the direction of
inequality. ]

From Theorem 5.2.3 and Theorem 5.2.4, we know that v(¢,x,y) are vis-

cosity solution of (5.2.2).

Theorem 5.2.5. Let u and v be a viscosity subsolution and a supersolution

of (5.2.2), respectively. Assume that there exists A > 0 such that

u(t,z,y) < Aexp (A(logz)* + Ay*)  and v(t,z,y) > —exp A (A(log z)* + Ay?)
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in St. Then we obtain
u<wv in Sp.

For the proof, we consider a barrier function ¢ as

1 24 2r)?
o(t,x,y) = exp (G_TO + %) (T —1)

(log ) y?
5.2.13
P (602(t—T+2T0) ety OB

for (t,z,y) € [T — Ty, T] x S, where 0 < Ty < min{m, %} We know that

the barrier function ¢ goes to oo as © — 0 or y — *o0o. Then, we have

¢r+ Lo <0

and

1 1
> 2A d > 2A 5.2.14
602(t — T + 2Tp) W 602t — T+ 2Ty )3 (5:2.14)

forT —Ty<t<T.

Proof of Theorem 5.2.5. For each € > 0 and the function (5.2.13), we con-
sider

v =u—cp and v =v+egp, (5.2.15)

Then v and v° are also a viscosity subsolution and a supersolution of (5.2.2),

respectively. Moreover, there exists N > 0 such that
Aexp (A(logz)® + Ay®) < e(t, z,y) (5.2.16)

ifT—TOStSTande%or ly| > N.
Let
1
Ry = [T' = To,T) x (57 B) x (=N, N).
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Then clearly u® and v® are a viscosity subsolution and a supersolution of

(5.2.2), respectively in Ry with
u® <v° on OyRr. (5.2.17)
By the comparison principle, we obtain
u® <o in Ry (5.2.18)
In addition, we have
u* <v® in ([T =T, T] x S)\Rr. (5.2.19)
Therefore, from (5.2.18) and (5.2.19), we have
uw <ov® in [T—TT]xS. (5.2.20)
By sending ¢ to 0, we obtain
u<ov in [T—TyT]xS. (5.2.21)

By iterating this procedure to [T — (k + 1)To, T — kTp] for k =1,2,-- -, we

conclude that
u<v in &7 (5.2.22)

O
Proposition 5.2.6. The problem (5.2.2) has a unique viscosity solution.

Proof. Suppose that u and v are viscosity solution of (5.2.2). Then, by The-

orem 5.2.5, we have

u<v and w>wv in Sp. (5.2.23)
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Therefore, the value of geometric Asian up-out call option

(1) Yr "
—r(T—t I
e (exp ( T ) K) ﬂ{tgiaécTXugB}

is unique solution of (5.2.2).

v(t,z,y) =K

J—“t] (5.2.24)
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Appendix A

Ito integral

A.1 Properties of Ito integral

Theorem A.1.1. Let (W,);>0 be a standard Brownian motion on (2, F,P)
and (-7:t>t20 be the associated filtration. Then Ito integral is defined by

n—1

t
[t = / f(ua Wu)qu = 11_>Hl Z f(ti’ Wti)(Wti+1 - Wtz)
0 n—o00 P

Then I; s a martingale.

Proof. For s < t, we write

S t
j / £, W) dW, + / F(u, W) IV,
0 s
n—1

= I, + nlggo Z f(tiv Wti)(WtiJrl - Wtz)

o1
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where m < n — 1. Since W, is a martingale, we have

n—1
Ell | F) =L +E | lim Y f(t:, W) (Wa,,, = W2,) | F
n— 00 —

n—1

- ]s +nh_)noloZ]E [E [f(ti7Wti)(Wti+1 - VVtz) | 'th:l | ‘/—:S}

n—1

= Lo+ lim > E[f(t;, W) (W, = W)

= 1.
Since W; is continuous and then lim max |W,, , — W, | = 0, we get
n—oo 0<k<n—1
E[|;|] < oo. So It6 integral I; is a martingale. O

Theorem A.1.2. (Ité isometry)
Let (Wi)i>o be a standard Brownian motion on (2, F,P) and (F),5, be the

associated filtration. Then the Ito integral satisfies

( /0 t f(s, Ws>dWs)2 =E [ /0 t f(s, Wfds} :

Proof. First, we want to show W72 — t is also a martingale.
Clearly, W2 —t is F; - adapted. Since W; — W, is independent to F, for s < t,

we get

E

EW? —t | F] =E[(W, — W, + W)? | F] —t
= E[(W, — W,)? | Fy] + 2E[W, (W, — W,) | FJ] + EW?2 | F] — ¢
=W?—s.

s

Moreover, E[|[W?2 — t|] < E[W2 +t] = 2t < oo . It means that W2 —t is a

martingale.
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E

(/Otf(s, WS)dWS>2 _E Uotﬂs, Wfds]

n—1 n—1

= nh_glo Z E[f(tza Wtz‘)Q(Wt¢+1 - Wti)z] - 1}1_%10 Z E[f(tla Wt¢)2<ti+1 - tz)]
=0 =0

- nh—>noloZE [E [f(th Wti)Q ((WtiJrl - Wtz‘)Q - (ti-i-l - tl)) ’ ‘EZH

n—1
— lim SE [E | f(t;, W) X(W2,, —ti1) | |
1=0
n—1
o Q,JEEOZE [E [f(ti7 Wti)QWtHJ/Vti | ‘thH
=0
n—1
+ ,}glgoZ;E [E [f(ts, Wi 2(W2 +t,) | Fi]]
n—1
= lim Y B [f(ti, Wi (Wi —t; —2W2 + Wi +1,)]
=0

Therefore, we get the result

( / (W) dWS)Q

E

—E {/Otﬂs,wsfds]-

Theorem A.1.3. (Quadratic variation of Ité integral)
The Ito integral, I, = fg f(s, Ws)dWy, has quadratic variation process such
that

[],I]t:/o f(s, Wy)?ds
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Proof. By definition of the quadratic variation,

m—1
_ 1 _ 2
[17 I]t - nlggo Z(‘ltk+1 ‘[tk) :
k=0
where t, = %, 0=ty <ty <--- <t, =t Since f is a simple process

, f(te, Wh,) is a constant value on [ty,tr41). We partition the subinterval
[t, txr1) such that

te = 80 < 81 < +-- < 8y = Tgp1
Then we can write

Sit1
Isi+1 - ISi - / f(tk7 Wtk)qu - f(tk7 Wtk)(WSH_l - Wsz)

Hence we have

n—1
(Itk+1 - ‘[tk)2 = nlggo Z(]Si-H - ]si)2
=0
n—1
= [t W)? lim Y (Wi, = W)
1=0

= f(te, W, )2 (trgr — i)

Finally, the quadratic variation of Ito integral can be described by

m—1

[1,1]; = lim > (T, — 1)’
k=0

m—1

= lim D Flts Wi ) (tgr — te)

k=0
:/ f(s,Wy)*ds
0

o4

___;rx_-! _'\-.‘I.“:_ -11 -
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A.2 Proof of (4.1.5)

First, we want to prove that the expectation value of [to integral is zero.
Let (Q, F,P) be a probability space and let (W;);>o be a standard Brow-

nian motion. Then the [t0 integral is defined by

n—1

I, = / f(s,W)dW, = lim Zf ti, Wi ) (W, — Wiy)

Since W, is a martingale, we have
t n—1
E |:/0 f(sa WS)dWS] = nh_)I{.IOZE[f(t“ Wti)<Wti+1 - Wtz)]

= nh_E{.IOZE tla Wt (Wti+1 - Wtz) | ‘F-tz]]

n—1

= lim > B[f(t;, W) (Wi, — Wi,)
=0.
By integration by parts, we get

t t d‘Ir
|/|/ d — ‘/'/ 4 — 5
/0 ods = sWils /o " ds

t
=tW, —/ s dW,
0

= /Ot(t—s) dWy

This means that [, = fot (t —s)dW; is an It6 integral and so a martingale.

Moreover, according to above fact, we have

E[I,] = 0.
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Thus the variance of I, is

2

Var[l,] =E [I}] =E

</Ot(t—s)dW5) :E{/Ot(t—s)st} :g.

We want to show that I; follows a normal distribution by using the mo-

ment generating function. Consider the quadratic variation of [;,. By above

theorem, we obtain

[I,I]t:/o(t—s)st:%

In differential form, we can write dI;dl; = t?dt. Define the function f(t, I;)
such that

1 3
ft, 1) = eelt*ieZ(?)
By Ito formula, we develop
of af 10%f

t 1) = =L dt + = dI, + ==L dI,dI
df(t, I ot +8It t+26]t2 e

=0f(t, I;)dl,

By taking integration, we have

F(t1) = £0.1,) + 6 / f(t, 1) dI,

By taking expectation, we obtain

E [e“fiez(fq —1+E {9 /Ot f(t. 1) dlt]

=1
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. 123
Finally, we get E[e’/t] = e2*
a normal distribution with mean zero and variance

. . . . . 3
normal distribution with mean zero and variance %

3
t3
It NN (0,3) .

o7

+3

3

5 which is the moment generating function of

. That is, I; follows a



Appendix A
Martingale with zero drift term

Theorem A.0.1. (Martingale Representation, [7])
Let (Wy)o<t<r be a Brownian motion on (Q, F,P) and let (Fi)o<i<r be the
filtration generated by this Brownian motion. If (M;)o<i<r is a martingale

with respect to this filtration, there exists an adapted process (¢1)o<i<r Such
that

t
Mt:MO+/ Gy dWy, 0<t<T.
0

Theorem A.0.2. Let (W) be a standard Brownian motion on (2, F,P).
Define the process M, such that

th = M(t, Xt) dt + O-(t, Xt) th

with E (fOT Os ds) 2] < 00. Then M; is a martingale if and only if M; has

no drift term.

Proof. (=) By the Martingale Representation theorem, we have an F-

measurable process ¢; such that

t
Mt:MO+/ (buqu
0

= th - ¢t th
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Therefore, a martingale process M; has no drift term.

(<) Consider Ito process
dM; = p(t, X;) dt + o(t, X;) dW,.

By taking integration, we obtain

t t
M; — M, = / w(u, M,) du +/ o(u, M) dW,

If we take conditional expectation with respect to the filtration F;, for s < t,

we get the formula
t
E[M, | F)] = E[M,) + E [ / (o, M,) du | }"S}
t
=M, +E [/ w(u, M) du | .7-"5}

Thus, if u(t, My) is zero, M, is a P - martingale.
]

Corollary A.0.3. Let (Wy)o<i<r be a standard Brownian motion on (2, F,P)
and let (F;)o<i<r be the filtration generated by this Brownian motion. For an

adapted process (0;)o<i<r, define

t 1 t
Zy = exp [—/ 0, dW, — 5/ 95 du]
0 0

. t
Wt = Wt +/ eu du
0
where W, is a standard Brownian motion and E [fOT 62 72 du] < 00. Let

(Mt)ogth be a martingale under P. Then there exists an adapted process

(gt)()gtg:r such that

o~ —~— t~ —~—
Mt:M0+/ by dW,, 0<t<T.
0
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Proof. Let f(z) =", g(z) =1 and v, = — fot 0, dW, — L [T 02 du.

2 Jo Yu
Then we have

Az, = df(%)
= f'(n) dy + %f”(%) drydry

- —QtZt th
and
]‘ / ]' "
1 62
= —0,dW, + - dt.
A

By Lemma 2.6, for s < ¢, we can derive

M, =E|M,| | =E

Therefore, we have
Z,M, =E | ZM, | F].

It means that M; = ZSMS is a martingale under P. By Theorem 4.1, there is

an adapted process (¢)o<i<r such that

t
Mt:Mo—i-/ GudW,y, 0<t<T.
0
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Thus the differential of ]\Z has the form

~ 1
th - d (Mt )

Z
1
¢t Mtet M,07 o
d d dt + ——dt
Zt Wi+ Z, W, + 7, + Z,
M0
_ 9 (dW, + 0, dt) + = (dW, + 6, dt)
7 Z
= ¢tth
where
~ ¢+ M0,
G= T

Finally, it can be written by
—~ —_— t ~ —_—
0

]

Remark A.0.4. Corollary A.0.3 is the Martingale Representation theorem
on the probability space (2, F, IF) Therefore, we have the results that The-

orem A.0.1 also works for P - martingale.
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