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Abstract

Viscosity solution for geometric Asian barrier

option

Seongeun Jeong

Department of Mathematical Sciences

The Graduate School

Seoul National University

In this thesis, we consider Barrier option and Geometric Asian option

based on Black-Scholes model and derive partial di↵erential equation which

these two options satisfy. Also, we calculate its closed form solution as the

option value at time t. Moreover, by combining Barrier option and Geometric

Asian option, we consider Geometric Asian Barrier option and its modeling

partial di↵erential problem. However, It is not known that this problem has

classical solution. Instead, we show that the value of geometric Asian barrier

option becomes a viscosity solution of the modeling problem.

Key words: Black-Scholes equation, Barrier option, Geometric Asian op-

tion, Geometric Asian Barrier option,Viscosity solution
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Chapter 1

Introduction

Option pricing is an interesting subject in the quantitive finance. The basic

model in option pricing is the Black-Scholes model(equation)

@v

@t
+

1

2
�2x2 @

2v

@x2
+ rx

@v

@x
� rV = 0, (1.0.1)

which Fisher Black and Myron Scholes [6] discovered in 1973. It is a parabolic

equation and also can be transformed by the heat equation by change of

variable x = ex̃. So by using the fundamental solution of heat equation, we

calculate the solution of Black-Scholes equation([9]). The regular call and put

options satisfy (1.0.1). In the Black-Scholes model, we assume some following

conditions ([11]) :

1. The risk-free rate r is known.

2. The stock price processXt follows a geometric Brownian motion process

dXt = µXt dt+ �XtdWt

where µ and � are constant and Wt is a standard Brownian motion.

3. The stock pays no dividends.

4. There are no transaction costs and taxes.

1



CHAPTER 1. INTRODUCTION

5. There are no penalties for short sales.

6. The market is arbitrage free.

7. Option trading operates continuously.

Since (1.0.1) can be transformed by the heat equation. the value v(t, x) of

the option which satisfies (1.0.1) is represented as the closed form solution.

In addition to (1.0.1), there are di↵erent equation with specific conditions

which the exotic options satisfy. In particular, we focus on pricing Barrier

option, Geometric Asian option and Geometric Asian Barrier option. In the

case of them, the closed form solution sometime is not guaranteed.

In chapter 2, we consider the basic notions which are needed for option

pricing including Itô calculus with Brownian motion. Also, we study the risk-

neutral measure. We first prove the Girsanov theorem which represents how

to transform the real measure P into the risk-neutral measure eP. Since P and
eP are equivalent, we price the option under the risk-neutral measure. By the

Feynman-Kac formula, we also get the risk-neutral pricing formula and then

we derive the Black-Scholes formula.

In chapter 3, we study Barrier option. Barrier option is a derivative that

the payo↵ depends on whether the stock price hits a predetermined barrier

during the option period. In addition to regular call and put options, the

barrier option has additional barrier condition, B which is constant. First,

there are Up option and Down option. If the barrier is set above the initial

stock price, it is a up-option. Also, if the barrier is set below the initial stock

price, it is a down-option. In addition, there are Knock-in option and Knock-

out option. A Knock-in option becomes valid when the stock price hits the

barrier. For example, we consider knock-in call option. When the stock price

hit the barrier, a knock-in call option acts as a regular call option. However, a

knock-out option becomes invalid if the barrier is touched. Merton [13] firstly

priced the value of the down-out call option. M. Rubinstein introduced the

various types of payo↵ of barrier options and priced the value of barrier

options([14]). We calculate the value of down-in and up-out call option([15])

2



CHAPTER 1. INTRODUCTION

and confirm the equation with conditions for the barrier option.

In chapter 4, we study Geometric Asian option. Geometric Asian option is

a derivative whose payo↵ contains the geometric average of stock price instead

of the stock price. If the stock price has log-normal distribution, so does the

geometric average of the stock price. Therefore, only for the geometric Asian

option, there exists the closed solution formula in Black-Scholes model and

the solution has uniqueness([5]). The continuous geometric average of the

stock price is given by

exp

✓
1

t

ˆ t

0

logXudu

◆
.

Kemna and Vorst [12] derived the closed solution form for the geometric

Asian option specially at time t = 0. More generally, the closed form solution

for the geometric Asian option price at time t is given in [4]. So we derive

the value and the equation which the geometric Asian options satisfy using

the property of martingale and Markov.

In chapter 5, we consider the geometric Asian barrier option which is

the combination of the barrier option and the geometric Asian option. It has

being currently researched by Aimi and Guardasoni [3] and Aimi et al [1], [2].

Unlike the geometric Asian option, the geometric Asian barrier option has no

closed priced formula ([1]) in Black-Scholes model. Therefore, we adopt the

viscosity solution. We introduce the definition of viscosity solution of pde for

the geometric Asian barrier option([8]). Moreover, we confirm the equation

with conditions for the geometric Asian barrier option and we show that its

value become a viscosity solution.

3



Chapter 2

Black-Scholes equation

2.1 Itô Calculus

We consider stocks as the underlying asset for the option. We know that the

stock price is unexpected. That is, a stock price process must have random-

ness. For this randomness, we use the Brownian motion.

Definition 2.1.1. Let (⌦,F ,P) be a probability space and Ft be an associ-

ated filtration. A continuous stochastic process W = (Wt)t�0 is a standard

Brownian motion if it satisfies the followings

1. W0 = 0

2. For all 0  s  t, the increment Wt � Ws is independent of Fs and

follows normal distribution N (0, t� s).

For option pricing, the most important properties of Brownian motion

is a martingale and it accumulates quadratic variation at rate one per unit

time.

Theorem 2.1.2. Let (Wt)t�0 be a standard Brownian motion on the proba-

bility space (⌦,F ,P) and Ft be an associated filtration. Then the Brownian

motion Wt is a martingale.

4



CHAPTER 2. BLACK-SCHOLES EQUATION

Proof. For s < t,

E[Wt | Fs] = E[Wt �Ws +Ws | Fs]

= E[Wt �Ws | Fs] +Ws

= E[Wt �Ws] +Ws

= Ws

By Hölder inequality, we can get E[|Wt|] 
p
E[W 2

t ] =
p
t < 1. In all,

Brownian motion is a martingale.

Definition 2.1.3. Let f(t) be a function defined for 0  t  T . The

quadratic variation of f up to time t is

[f, f ]t = lim
n!1

n�1X

i=0

[f(ti+1)� f(ti)]
2

where ti =
it
n and 0 = t0 < t1 < · · · < tn = t.

Theorem 2.1.4. Let (Wt)t�0 be a standard Brownian motion on the proba-

bility space (⌦,F ,P). Then the quadratic variation of Brownian motion is

[W,W ]t = t.

Proof. The quadratic variation of Brownian motion is given by

[W,W ]t = lim
n!1

n�1X

i=0

(Wti+1 �Wti)
2 = lim

n!1

n�1X

i=0

�W 2
ti

We know Wti+1 �Wti ⇠ N (0, t
n). So we have

V ar[Wti+1 �Wti ] = E[(Wti+1 �Wti)
2] =

t

n
.

5



CHAPTER 2. BLACK-SCHOLES EQUATION

Therefore, we can derive

E
"
lim
n!1

n�1X

i=0

(Wti+1 �Wti)
2

#
= lim

n!1

n�1X

i=0

E[(Wti+1 �Wti)
2] = t

We need to show that the variance is zero. Then we write

V ar

"
lim
n!1

n�1X

i=0

(Wti+1 �Wti)
2

#
= E

2

4
 

lim
n!1

n�1X

i=0

�W 2
ti � t

!2
3

5

= lim
n!1

n�1X

i=0

E
"✓

�W 2
ti �

t

n

◆2
#

= lim
n!1

n�1X

i=0

✓
3t2

n2
� 2t2

n2
+

t2

n2

◆

= lim
n!1

2t2

n

= 0.

In all, we get the quadratic variation [W,W ]t = t .

Since we employ the Brownian motion process for the randomness, the

stochastic di↵erential equation of the stock price process have the Brown-

ian motion term. However, we know that the Brownian motion is nowhere

di↵erentiable. So for considering the Brownian motion term, we need new

calculus, called Itô calculus.

Definition 2.1.5. Let (Wt)t�0 be the Brownian motion on (⌦,F ,P), and
(Xt)t�0 be a stochastic process. If (Xt)t�0 satisfies the form

dXt = µ(t,Xt) dt+ �(t,Xt) dWt

where � and µ are locally bounded in t and progressively measurable, it is

6



CHAPTER 2. BLACK-SCHOLES EQUATION

called the Itô process. We can also write in integrated form

Xt = Xo +

ˆ t

0

µ(s,Xs) ds +

ˆ t

0

�(s,Xs) dWs

We call µ(t,Xt) the drift and �(t,Xt) the volatility of Xt.

Definition 2.1.6. Let (Wt)t�0 be a standard Brownian motion on (⌦,F ,P)
and (Ft)t�0 be a associated filtration. Assume

E
ˆ t

0

f(s,Ws)
2 dWs

�
< 1.

Then Itô integral is defined by

It =

ˆ t

0

f(s,Ws) dWs := lim
n!1

n�1X

i=0

f(ti,Wti)(Wti+1 �Wti)

where f(ti,Wti) is a simple process and 0 = t0 < t1 < · · · < tn�1 < tn = t.

Lemma 2.1.7. Let (Xt)t�0 be an Itô process and f(x, t) be C2-function.

Then, for every t � 0, we have almost surely

df(t,Xt) = ft(t,Xt) dt+ fx(t,Xt) dXt +
1

2
fxx(t,Xt) dXtdXt.

2.2 Risk-neutral measure

Theorem 2.2.1. Let (⌦,F ,P) be a probability space and eP be another prob-

ability measure on (⌦,F , eP). If P and eP are equivalent, there exists almost

surely positive random variable Z such that E[Z] = 1 and

eP(A) =
ˆ
A

Z dP

7



CHAPTER 2. BLACK-SCHOLES EQUATION

for A 2 F .

Such random variable Z is called Radon-Nikodym derivative and denoted by

Z =
deP
dP .

Proposition 2.2.2. Let P and eP be probability measures on (⌦,F). Suppose

for a random variable Z and A 2 F , we define

Z =
deP
dP

such that
eP(A) =

ˆ
A

Z dP

and P(Z > 0) = 1 . Then the probability measures P and eP are equivalent.

Proof. We say that two probability measures P and eP are equivalent if they

have same null-set. For A 2 F , suppose that P(A) = 0. Then we have

eP(A) =
ˆ
⌦

AZ dP = 0.

On the contrary, for eP(B) = 0, suppose B 2 F . Then we have

P(B) =

ˆ
⌦

B
1

Z
deP = 0.

Proposition 2.2.3. Let (⌦,F , (F)t�0,P) be a filtered probability space and eP
be another probability measure on (⌦,F) . For the Radon-Nikodym derivative

Z = deP
dP , define the Radon-Nikodym derivative process

Zt = E [Z | Ft]

Then Zt is a martingale under P.

8



CHAPTER 2. BLACK-SCHOLES EQUATION

Proof. By Theorem 2.2.1, we get

deP
dP = Z : ⌦ ! (0,1).

Moreover, we derive

E
"
deP
dP

#
=

ˆ
⌦

deP
dPdP =

ˆ
⌦

deP = 1.

Therefore, we can deduce Zt > 0 for o  t  T . Now, we want to check that

Zt is non-negative martingale. Clearly Zt is Ft-measurable. By the tower

property of the conditional expectation, we get the equality

E [Zt | Fs] = E [E [Z | Ft] | Fs]

= E [Z | Fs]

= Zs.

In addition, we obtain

E [|Zt|] = E [E [Z | Ft]]

= E [Z]

= 1 < 1.

In all, Zt is non-negative P-martingale.

Lemma 2.2.4. Let (⌦,F , (F)t�0,P) be a filtered probability space and eP be

another probability measure on (⌦,F , eP) such that P and P̃ are equivalent. Let

(Xt)0tT be a Ft-measurable and consider the positive P-martingale deP
dP |Ft=

Zt. Then the expectation value of Xt under eP is given by

eE [Xt] = E [XtZt] .

Proof. By the definition of the Radon-Nikodym derivative and the tower

9



CHAPTER 2. BLACK-SCHOLES EQUATION

property of the conditional expectation, we derive the equality

eE [Xt] = E [XtZ]

= E [E [XtZ | Ft]]

= E [XtE [Z | Ft]]

= E [XtZt] .

Lemma 2.2.5. Let (⌦,F , (F)t�0,P) be a filtered probability space and eP be

another probability measure on (⌦,F , eP) such that P and P̃ are equivalent. Let

(Xt)0tT be a Ft-measurable and consider the positive P-martingale deP
dP |Ft=

Zt. For 0  s  t  T ,

eE [Xt | Fs] =
1

Zs
E [XtZt | Fs] .

Proof. We know clearly 1
Zs
E [XtZt | Fs] is Fs-measurable. Then we need to

check the partial averaging property such that for any A 2 Fs,

ˆ
A

1

Zs
E [XtZt | Fs] deP =

ˆ
A

Xt deP.

Since we have

ˆ
A

1

Zs
E [XtZt | Fs] deP =

ˆ
A

1

Zs
E [XtZt | Fs]Zs dP

=

ˆ
A

XtZt dP

=

ˆ
A

Xt deP.

In all, we get the result

Ẽ [Xt | Fs] =
1

Zs
E [XtZt | Fs] .

10



CHAPTER 2. BLACK-SCHOLES EQUATION

Theorem 2.2.6. Let (⌦,F ,P) be a probability space and let (Xt)t�0 be a

martingale with respect to a filtration Ft with a continuous paths and X0 = 0.

If for all t � 0, the quadratic variation of Xt is

[X,X]t = lim
n!1

n�1X

i=0

(Xti+1 �Xti)
2 = t,

Xt is a Brownian motion.

Proof. We want to show Xt ⇠ N (0, t) by using the moment generating func-

tion. For fixed u, define f(t,Xt) = e✓Xt� 1
2 ✓

2t. By Itô formula,

df(t,Xt) =
@f

@t
dt+

@f

@Xt
dXt +

1

2

@2f

@X2
t

(dXt)
2

=

✓
@f

@t
+

1

2

@2f

@X2
t

◆
dt+

@f

@Xt
dXt

= ✓f(t,Xt)dXt.

By integrating and taking expectation both sides, we get

E[f(t,Xt)] = 1 + ✓E
ˆ t

0

f(s,Xs)dXs

�
.

Since Itô integral
´ t
0 f(s,Xs)dXs is a martingale and its value at time 0 is

zero, its expectation value is also zero. In all. the moment generating function

of Xt is

E[e✓Xt ] = e
1
2 ✓

2t.

which is the moment generating function for the normal distribution with

mean zero and variance t. That is, Xt ⇠ N (0, t). Since Xt is a martingale,

we can write for s < t

E[Xt �Xs | Fs] = 0

11



CHAPTER 2. BLACK-SCHOLES EQUATION

This means that the increment Xt �Xs is independent to Fs. Consider the

variance of Xt+s �Xt

V ar[Xt+s �Xt] = V ar[Xt+s] + V ar[Xt]� 2Cov[Xt+s, Xt]

= t+ s+ t� 2 (E [Xt+sXt � E[Xt+s]E[Xt]])

= 2t+ s� 2E[Xt+sXt]

= 2t+ s� 2E[Xt(Xt+s �Xt)�X2
t ]

= 2t+ s� 2E[X2
t ]

= s.

Since clearly E[Xt+s�Xt] = 0, we get Xt+s�Xt ⇠ N (0, s). We know that X0

and Xt has continuous paths. In all, Xt is a standard Brownian motion.

Theorem 2.2.7. (Girsanov Theorem)

Let (Wt)0t6T be a standard Brownian motion on (⌦,F ,P) and let (Ft)0tT

be a filtration for Brownian motion. For an adapted process (✓t)0tT , define

Zt = exp

0

@�
ˆ t

0

✓s dWs �
1

2

ˆ t

0

✓2s ds

1

A ,

fWt = Wt +

ˆ t

0

✓s ds.

and assume

E
h
e

1
2

´ T
0 ✓2t dt

i
< 1.

Then Zt is a martingale under P and (fWt)0tT is a standard Brownian

motion under eP defined by

Zt =
deP
dP

���
Ft

.

Proof. We will use Theorem 2.2.6. First, we want to show Zt is a martingale

under P. Put f(x) = ex. Then

Zt = f(At)

12



CHAPTER 2. BLACK-SCHOLES EQUATION

where

At = �
ˆ t

0

✓s dWs �
1

2

ˆ t

0

✓2s ds.

By Itô formula, we get the equation

dZt = f 0(At) dAt +
1

2
f 00(At) dAtdAt

= �✓tZt dWt.

By integrating both sides, we get

Zt = Zs �
ˆ t

s

✓uZu dWu.

Since it has no drift term, Zt is also a martingale. Conditioned on Z = ZT ,

by the martingale property, we can derive

Zt = E [ZT | Ft] = E [Z | Ft] , 0  t  T.

So Zt is a Radon-Nikodym derivative process.

Now, we are going to consider fWtZt. By Itô formula, we get

d(fWtZt) = fWt dZt + Zt dfWt + dfWt dZt

= (1� ✓tfWt)Zt dWt.

By integrating both sides, we get

fWtZt = fWsZs +

ˆ t

s

(1� ✓ufWu)Zu dWu.

Since it has no drift term and
´ t
s (1� ✓ufWu)Zu dWu is independent to Fs, we

can get the equation

E[fWtZt | Fs] = fWsZs.

13



CHAPTER 2. BLACK-SCHOLES EQUATION

Therefore, we consider fWt and then

eE[fWt | Fs] =
1

Zs
E[fWtZt | Fs] =

1

Zs

fWsZs = fWs.

Also, by the condition, eE[|fWt|] < 1. Clearly fW0 = 0 and has continuous

paths for t > 0. We want to derive the quadratic variation of fWt. For ti =
i
nt,

set 0 = t0 < t1 < t2 < ... < tn�1 < tn = t. Then the quadratic variation of
fWt is

lim
n!1

n�1X

i=1

⇣
fWti+1 �fWti

⌘2
= lim

n!1

n�1X

i=1

�
Wti+1 �Wti

�2

+ lim
n!1

n�1X

i=1

2
�
Wti+1 �Wti

�✓ˆ ti+1

ti

✓sds

◆

+ lim
n!1

n�1X

i=1

✓ˆ ti+1

ti

✓sds

◆2

= t.

Since the integration is continuous, lim
n!1

´ ti+1

ti
✓sds = 0, and then we can get

above result. By the Lévy theorem, fWt is a standard Brownian motion under
eP.

Remark 2.2.8. P and eP in Theorem 2.2.7 are equivalent.

Definition 2.2.9. Let (⌦,F ,P) be the probability space and let eP be another

probability measure such that they are equaivalent. Then the probability

measure eP is said to be the risk-neutral measure if it satisfies the following

conditions

1. eP and P are equivalent.

2. Under eP, the discounted underlying asset price is a martingale.

In the Black-Scholes model, we assumed that the stock price follows a ge-

ometric Brownian motion. Now, we consider the general geometric Brownian

14



CHAPTER 2. BLACK-SCHOLES EQUATION

motion form

dXt = µ(t)Xtdt+ �(t)XtdWt, 0  t  T (2.2.1)

where µ(t) and �(t) are adapted process. In the integral form, we have

Xt = X0 exp

ˆ t

0

✓
µ(u)� 1

2
�2(u)

◆
du+

ˆ t

0

�(u)dWu

�
. (2.2.2)

Define the discounted factor

Dt = e�
´ t
0 r(u) du (2.2.3)

where r(t) is the interest rate. Then the discounted stock price process is

given by

DtXt = X0 exp

ˆ t

0

✓
µ(u)� r(u)� 1

2
�2(u)

◆
du+

ˆ t

0

�(u) dWu

�
. (2.2.4)

In the di↵erential form, (2.2.4) is expressed by

d(DtXt) = (µ(t)� r(t))DtXt dt+ �(t)DtXt dWt

= �(t)DtXt (✓(t) dt+ dWt)
(2.2.5)

where ✓(t) := µ(t)�r(t)
�(t) is an adapted process. With ✓(t), consider Zt in The-

orem 2.2.7 and
fWt = ✓(t) +

ˆ t

0

✓(u) du. (2.2.6)

Define the probability measure eP with Radon-Nikodym derivative process Zt

with respect to eP. By Theorem 2.2.7, (2.2.6) is a standard Brownian motion

under eP. Therefore, (2.2.5) becomes

d(DtXt) = �(t)DtXt
fWt. (2.2.7)

and so it is a martingale under eP . Finally, we propose that eP is a risk-neutral

15
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measure. Moreover, under eP, we have

dXt = r(t)Xt dt+ �(t)Xt dfWt. (2.2.8)

Then (2.2.8) means that the return rate from the stock under the risk-neutral

measure is a risk-free rate.

Proposition 2.2.10. Let (Wt)t�0 be a standard Brownian motion on (⌦,F ,P).
Define the process Zt such that

Zt = exp

0

@�
ˆ t

0

✓s dWs �
1

2

ˆ t

0

✓2s ds

1

A

Then the probability measure eP defined by

Zt =
deP
dP

���
Ft

is a risk-neutral measure.

Proof. By Proposition 2.2.2, we know that P and eP are equivalent. From

(2.2.7), the discounted stock price process is a martingale. By Definition

2.2.9, eP is the risk-neutral measure.

2.3 Black-Scholes formula

Theorem 2.3.1. (Feynman-Kac formula)

Let (Wt)t�0 be a standard Brownian motion on the probability space (⌦,F ,P)
and Ft be a related filtration. Suppose that the stochastic process Xt satisfies

the generalized stochastic di↵erential equation such that

dXt = µ(t,Xt)dt+ �(t,Xt)dWt.

16



CHAPTER 2. BLACK-SCHOLES EQUATION

For Xt = x, we consider the following partial di↵erential equation

@v

@t
+

1

2
�2(t, x)

@2v

@x2
+ µ(t, x)

@v

@x
� r(t)v(t, x) = 0 (2.3.1)

with the boundary condition v(T, x) = V (XT ) . Then the solution is given by

v(t, x) = E
h
e�
´ T
t r(u)duV (XT ) | Ft

i
. (2.3.2)

Proof. Define the process Zu such that

Zu = e�
´ u
t r(z)dzv(u,Xu).

By Itô formula, we get

dZu =
@Zu

@u
du+

@Zu

@Xu
dXu +

1

2

@2Zu

@X2
u

(dXu)
2

= e�
´ u
t r(z)dz

✓
@v

@u
+

1

2
�2(u,Xu)

@2v

@X2
u

+ µ(u,Xu)
@v

@Xu
� r(u)v(u,Xu)

◆
du

+ e�
´ u
t r(z)dz�(u,Xu)

@v

@Xu
dWu

= e�
´ u
t r(z)dz�(u,Xu)

@v

@Xu
dWu.

By taking integral from t to T , we derive

ZT � Zt =

ˆ T

t

e�
´ u
t r(z)dz�(u,Xu)

@v

@Xu
dWu. (2.3.3)

Since the right side of (2.3.3) is Itô integral, we obtain

E[Zt] = E[ZT ].

Thus the conditional expectation can be given by

E[Zt | Ft] = E[ZT | Ft].

17
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Finally, we can get the result

v(t, x) = E
h
e�
´ T
t r(z)dz V (XT ) | Ft

i
. (2.3.4)

Consider Theorem 2.3.1 under the risk-neutral measure eP. By Theorem

2.3.1, under the Black-Scholes model, the value of option satisfies the Black-

Scholes equation

@v

@t
+

1

2
�2x2 @

2v

@x2
+ rx

@v

@x
� rv = 0.

for some constant r, � > 0. In addition, (2.3.4) becomes

eE
⇥
e�r(T�t)V (XT ) | Ft

⇤
. (2.3.5)

We refer (2.3.5) as the risk-neutral pricing formula. We are going to use the

risk-neutral pricing formula for pricing the option. Therefore, the value in

this paper means the risk-neutral value.

Now, we consider a European call and a put option whose expiration time

is T and strike price is K under Black-Scholes model. The payo↵ of a call

option is given by

(XT �K)+

and a put option is

(K �XT )
+.

By the risk-neutral pricing formula, the value of call option is given by

c(t, x) = eE[e�r(T�t)(XT �K)+ | Ft]. (2.3.6)

We have the stock price process

dXt = rXtdt+ �XtdfWt

18
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which is the geometric Brownian motion form under eP. Then we have

XT = Xt exp

✓
r � 1

2
�2

◆
(T � t) + �(fWT � W̃t)

�
(2.3.7)

Let Z = �fWT�fWtp
T�t

. Then Z follows the standard normal distribution and is

independent to Ft. Therefore, conditioned on Xt = x and Zt = z, (2.3.6)

holds with

c(t, x) = eE
"
e�r(T�t)

✓
x exp

✓
r � 1

2
�2

◆
(T � t)� �

p
T � tZ

�
�K

◆+
#

=
1p
2⇡

ˆ 1

�1
e�r(T�t)

✓
x exp

✓
r � 1

2
�2

◆
(T � t)� �

p
(T � t) z

�
�K

◆+

e�
1
2 z

2
dz

(2.3.8)

Moreover, we can only define (2.3.8) if

z <
log x

K +
�
r � 1

2�
2
�
(T � t)

�
p
T � t

:= d2.

Thus we get

c(t, x) =
1p
2⇡

ˆ d2

�1
x exp

✓
�1

2
z2 � �

p
(T � t) z � �2

2
(T � t)

◆
dz

� 1p
2⇡

ˆ d2

�1
e�r(T�t)Ke�

1
2 z

2
dz

=
xp
2⇡

ˆ d2

�1
exp


�1

2
(z + �

p
(T � t))2

�
dz �Ke�r(T�t)N(d2)

= xN(d1)�Ke�r(T�t)N(d2)

where N is a standard normal cumulative distribution function. Finally, the

value of European call option is

c(t, x) = xN(d1)�Ke�r(T�t)N(d2)

19
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where

d1 =
log x

K +
�
r + 1

2�
2
�
(T � t)

�
p
T � t

d2 = d1 � �
p
T � t.

Theorem 2.3.2. Let c(t) be a value of the call option and p(t) be a value

of the put option at time t. Suppose that call and put options have the same

maturity T and the strike price K. Then c(t) and p(t) have the relation

c(t)� p(t) = Xt �Ke�r(T�t)

By Theorem 2.3.2, we can get the value of European put option at time

t as follows:

p(t, x) = e�r(T�t)KN(�d2)� xN(�d1).

Moreover, the value of a call option satisfies the equation

8
><

>:

@v

@t
+

1

2
�2x2 @

2v

@x2
+ rx

@v

@x
� rv = 0. in HT

u(T, x, y) = f(y) := (XT �K)+ x 2 R+

(2.3.9)

where HT := [0, T )⇥ R+ .
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Chapter 3

Barrier Option

3.1 Pricing Barrier option

For the barrier option, whether the stock price hits the barrier determines the

validity of option. Thus the payo↵ must contain barrier restriction. Consider

the up-out call option. If the stock price hit the barrier, the up-out option

become worthless. For the validity of option, the maximum of the stock price

must be lower than the barrier. Therefor, the payo↵ is given by

(XT �K)+ ⇢
max

0tT
XtB

�.

where K is the strike price, B is the barrier and T is the maturity. On the

other hand, the down-in option must hit the barrier for the validity. So the

payo↵ of down-in put option is given by

(K �XT )
+ ⇢

min
0tT

XtB

�.

Between the values of these barrier options, there are relations.

Theorem 3.1.1. The value of the regular European call option is the sum

of the value of down-out call and a down-in call.
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Proof. The value of down-in call is given by

eE
"
e�r(T�t) (XT �K)+ ⇢

min
tuT

XuB

�
����Ft

#
. (3.1.1)

and the value of down-out call is given by

eE
"
e�r(T�t) (XT �K)+ ⇢

min
tuT

Xu�B

�
����Ft

#
. (3.1.2)

Then the sum of (3.1.1) and (3.1.2) is expressed by

eE
"
e�r(T�t) (XT �K)+

 
⇢

min
tuT

XuB

� + ⇢
min

tuT
Xu�B

�

!����Ft

#

= eE
"
e�r(T�t) (XT �K)+

 
⇢✓

min
tuT

XuB

◆
[
✓

min
tuT

Xu�B

◆�

!����Ft

#

= eE
⇥
e�r(T�t) (XT �K)+ | Ft

⇤

(3.1.3)

The last expression of (3.1.3) is the value of regular European call option.

Lemma 3.1.2. Let (⌦,F ,P) be a probability space and let (Wt)t�0 be a stan-

dard Brownian motion. For a stopping time T , we define

W̄t =

8
<

:
Wt if t  T

2WT �Wt if t > T.

Then (W̄t)t0 is also a standard Brownian motion.

Also, we can derive the reflection equality. Given m > 0, define the stop-

ping time Tm = inf{t � 0 : Wt = m}. Since WTm = m, we can derive the

equation

P(Tm  t,Wt  w) = P(Tm  t, 2WTm �Wt  w)

= P(Wt � 2m� w).
(3.1.4)
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Consider the maximum of the Brownian motion

Mt = max
0st

Ws. (3.1.5)

Then (3.1.4) can be expressed by

]
P(Tm  t,Wt  w) = P(Mt � m,Wt  w)

= P(Wt � 2m� w).
(3.1.6)

For the minimum of the Brownian motion

mt = min
0st

Ws, (3.1.7)

the reflection equality is given by

P(Tm  t,Wt � w) = P(mt  m,Wt < w)

= P(Wt  2m� w).
(3.1.8)

Theorem 3.1.3. Let (Wt)t0 be the standard Brownian motion on (⌦,F ,P).
Define (Mt)t�0 as (3.1.5). Conditioned on Mt = m and Wt = w, the joint

density function of the pair of (Mt,Wt) is given by

fMt,Wt(m,w) =
2(2m� w)

t
p
2⇡t

e�
(2m�w)2

2t , w � m,m < 0.

Proof. We have

P(Mt � m,Wt  w) =

ˆ 1

m

ˆ w

�1
fMt,Wt(x, y) dydx. (3.1.9)

Since the Brownian motion has a normal distribution, Wt ⇠ N (0, t), we

obtain

P(Wt � 2m� w) =
1p
2⇡t

ˆ 1

2m�w

e�
z2

2t dz. (3.1.10)
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By the equality (3.1.8), (3.1.9) and (3.1.10) are equivalent as

ˆ 1

m

ˆ w

�1
fMt,Wt(x, y) dydx =

1p
2⇡t

ˆ 1

2m�w

e�
z2

2t dz.

Therefore, we have

fMt,Wt(m,w) =
2(2m� w)

t
p
2⇡t

e�
(2m�w)2

2t , w  m,m > 0.

Theorem 3.1.4. Let (Wt)t0 be the standard Brownian motion on (⌦,F ,P).
Define (mt)t�0 as (3.1.7). Conditioned on Wt = w and mt = m, the joint

density function of the pair (mt,Wt) is given by

fmt,Wt(m,w) = �2(2m� w)

t
p
2⇡t

e�
(2m�w)2

2t , w  m,m > 0.

Proof. We have

P(mt < m,Wt � w) =

ˆ m

�1

ˆ 1

w

fmt,Wt(x, y) dydx. (3.1.11)

From the normal distribution of Brownian motion, we obtain

P(Wt  2m� w) =

ˆ 2m�w

�1

1p
2⇡t

e�
z2

2t dz. (3.1.12)

Since (3.1.11) and (3.1.12) are equivalent, we can get

fmt,Wt(m,w) = �2(2m� w)

t
p
2⇡t

e�
(2m�w)2

2t , w � m,m < 0.

We dealt with the standard Brownian motion with zero drift. Now, we

consider the Brownian motion with a drift. Let (fWt)06t6T be the standard
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Brownian motion on a probability space (⌦,F , eP). Define

cWt = ↵t+fWt. (3.1.13)

Then cWt is the Brownian motion with drift ↵ on (⌦,F , eP).

Theorem 3.1.5. Consider the Brownian motion defined by (3.1.3). Define

the maximum of cWt such that

cMT = max
0tT

cWt.

Then the joint density function of (cMT ,cWT ) under eP is given by

efM̂T ,ŴT
(m,w) =

2(2m� w)

T
p
2⇡T

e↵w� 1
2↵

2T� 1
2T (2m�w)2 ,m  w,m > 0.

Proof. With (3.1.13), we can define the Radon-Nikodym derivative

bZt = exp

✓
�↵fWt �

1

2
↵2t

◆
= exp

✓
�↵cWt +

1

2
↵2t

◆
. (3.1.14)

By Theorem 3.1.8, a probability measure bP is defined by

bZt =
dbP
deP

|Ft (3.1.15)

and cWt is the standard Brownian motion under bP. Therefore, by Theorem

4.1.3, the joint density function of (cMT ,dWT ) under bP is given by

bfcMT ,dWT
(m,w) =

2(2m� w)

T
p
2⇡T

e�
(2m�w)2

2T

We want to derive the joint density function of (M̂T , ŴT ) under eP. By Lemma
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3.1.6, we can derive

eP(M̂T 6 m, ŴT 6 w) = eE[ {M̂T6m,ŴT6w}]

= Ê

1

ẐT
{M̂T6m,ŴTw}

�

=

ˆ w

�1

ˆ m

1
e↵y�

1
2↵

2T f̂M̂T ,ŴT
(x, y) dxdy.

Thus, we arrive at

ˆ m

�1

ˆ w

�1

efcMT ,cWT
(x, y) dxdy =

ˆ w

�1

ˆ m

1
e↵y�

1
2↵

2T bfcMT ,cWT
(x, y) dxdy.

Therefore, we get the joint probability density function of (cMT ,cWT ) under
eP such that

efM̂T ,ŴT
(m,w) =

2(2m� w)

T
p
2⇡T

e↵w� 1
2↵

2T� 1
2T (2m�w)2 ,m � w,m > 0.

Theorem 3.1.6. Consider the Brownian motion defined by (3.1.13). Define

the minimum of cWt such that

bmT = min
0tT

cWt.

Then the joint density function of (bmT ,cWT ) under eP is given by

efcMT ,cWT
(m,w) = �2(2m� w)

T
p
2⇡T

e↵w� 1
2↵

2T� 1
2T (2m�w)2 ,m  w,m < 0.

Proof. It is the same as the proof of Theorem 3.1.5.

Proposition 3.1.7. Consider the down-in call option which expires at T

with the strike price K and the barrier B. Then for B < K, the risk-neutral
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value of down-in call option at time t is given by

v(t, x) = x
⇣ x

B

⌘(�1� 2r
�2 )

N

✓
�+

✓
T � t,

B2

Kx

◆◆

�Ke�r(T�t)
⇣ x

B

⌘(1� 2r
�2 )

N

✓
��

✓
T � t,

B2

Kx

◆◆
.

where we define

�±

✓
T � t,

B2

Kx

◆
=

log B2

Kx +
�
r ± 1

2�
2
�
(T � t)

�
p
T � t

Proof. Assume the strike price is larger than the barrier, B < K. Suppose

that the stock price satisfies

dXt = rXtdt+ �XtdfWt.

where fWt is the standard Brownian motion under eP. The risk-neutral value

of down-in call is given by

eE
"
e�r(T�t) (XT �K)+ ⇢

min
tuT

Xu<B

�
����Ft

#
(3.1.16)

For u � t, we have

Xu = Xt exp

✓
r � �2

2

◆
(u� t) + �(fWu �fWt)

�

= Xt exp
h
�cWu�t

i (3.1.17)

where we define
cWu�t = ↵(u� t) +fWu �fWt (3.1.18)

with ↵ = 1
�

�
r � 1

2�
2
�
. Define the minimum of (3.1.18) such that

bmT�t = min
tuT

cWu�t. (3.1.19)
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Therefore, by using (3.1.17) and (3.1.19), we have

(XT �K)+ ⇢
min

tuT
XuB

�

=
⇣
Xte

�cWT�t �K
⌘

n
Xte

�cWT�t>K, Xte
� bmT�tB

o

=
⇣
Xte

�cWT�t �K
⌘

{cWT�t>k, bmT�t<b}

(3.1.20)

where we define

k =
1

�
log

K

Xt
and b =

1

�
log

B

Xt
.

We have that (3.1.20) is valid only on {(m,w) : �1 < m  b, k < w < 1} .

Thus, since cWT�t and bmT�t are independent of Ft, conditioned on cWT�t = w,

bmT�t = m and Xt = x, (3.1.16) is expressed by

v(t, x) = eE
h
e�r(T�t)

⇣
Xte

�cWT�t �K
⌘

{cWT�t>k, bmT�t<b}
i

=

ˆ 1

k

ˆ b

�1
e�r(T�t) (xe�w �K)

�2(2m� w)

(T � t)
p

2⇡(T � t)
e↵w� 1

2↵
2(T�t)� (2m�w)2

2(T�t) dmdw

(3.1.21)

Put

y =
(2m� w)2

2(T � t)
, dy =

2(2m� w)

(T � t)
dm. (3.1.22)

If we apply (3.1.22) to (3.1.21), we obtain

v(t, x) =

ˆ 1

k

ˆ (2b�w)2

2(T�t)

1
�e�r(T�t) (xe�w �K)

1p
2⇡(T � t)

e↵w� 1
2↵

2(T�t)�y dydw

=
1p

2⇡(T � t)

ˆ 1

k

e�r(T�t) (xe�w �K) e↵w� 1
2↵

2(T�t)� (2b�w)2

2(T�t) dw

= xI1 �KI2

28



CHAPTER 3. BARRIER OPTION

where we define

I1 =
1p

2⇡(T � t)

ˆ 1

k

e�r(T�t)+�w+↵w� 1
2↵

2(T�t)� (2b�w)2

2(T�t) dw

I2 =
1p

2⇡(T � t)

ˆ 1

k

e�r(T�t)+↵w� 1
2↵

2(T�t)� (2b�w)2

2(T�t) dw
(3.1.23)

The integral form of (3.1.23) is generalized by

1p
2⇡(T � t)

ˆ 1

k

e�+�w� 1
2(T�t)w

2

dw (3.1.24)

Put

z =
w � �(T � t)p

T � t
. (3.1.25)

If we put (3.1.25) into (3.1.24), (3.1.24) is transformed to cumulative density

function of standard normal distribution such that

e�+
�2(T�t)

2
1p
2⇡

ˆ 1

k��(T�t)p
T�t

e�
1
z2 dz = e�+

�2(T�t)
2 N

✓
�k + �(T � t)p

T � t

◆
(3.1.26)

where N is the cumulative density function of the standard normal distribu-

tion. Therefore, (3.1.24) and (3.1.25) are expressed by

I1 =
⇣ x

B

⌘(�1� 2r
�2 )

N

✓
�+

✓
T � t,

B2

Kx

◆◆

I2 = e�r(T�t)
⇣ x

B

⌘(1� 2r
�2 )

N

✓
��

✓
T � t,

B2

Kx

◆◆
.

In all, we have the risk-neutral value of the up-in call option such that

v(t, x) = x
⇣ x

B

⌘(�1� 2r
�2 )

N

✓
�+

✓
T � t,

B2

Kx

◆◆

�Ke�r(T�t)
⇣ x

B

⌘(1� 2r
�2 )

N

✓
��

✓
T � t,

B2

Kx

◆◆
.
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Remark 3.1.8. By Theorem 3.1.1, we can get the value of down-in call

option

Proposition 3.1.9. Consider the up-out call option which expires at T with

the strike price K and the barrier B. Then for B > K, the risk-neutral value

of up-out call option at time t is given by

v(t, x) = x
h
N
⇣
�+

⇣
T � t,

x

K

⌘⌘
�N

⇣
�+

⇣
T � t,

x

B

⌘⌘i

�Ke�r(T�t)
h
N
⇣
��

⇣
T � t,

x

K

⌘⌘
�N

⇣
��

⇣
T � t,

x

B

⌘⌘i

� x
⇣ x

B

⌘(�1� 2r
�2 )


N

✓
�+

✓
T � t,

B2

Kx

◆◆
�N

✓
�+

✓
T � t,

B

x

◆◆�

+Ke�r(T�t)
⇣ x

B

⌘(1� 2r
�2 )


N

✓
��

✓
T � t,

B2

Kx

◆◆
�N

✓
��

✓
T � t,

B

x

◆◆�

where we define

�±

⇣
T � t,

x

K

⌘
=

log x
K +

�
r ± 1

2�
2
�
(T � t)

�
p
T � t

�±

⇣
T � t,

x

B

⌘
=

log x
B +

�
r ± 1

2�
2
�
(T � t)

�
p
T � t

�±

✓
T � t,

B

x

◆
=

log B
x +

�
r ± 1

2�
2
�
(T � t)

�
p
T � t

Proof. It is the same as the proof of Proposition 3.1.7.

3.2 PDE for Barrier option

Now, we consider the partial di↵erential equation which the barrier options

satisfy. Consider the up-out call option. Since the option becomes invalid

when the stock price hits the barrier, the payo↵ can be described by

V (T ) = (XT �K)+ { max
0tT

XtB}.
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Then the risk-neutral value of up-out call option is given by

V (t) = eE
"
e�r(T�t) (XT �K)+ ⇢

max
tuT

XuB

�
����Ft

#
. (3.2.1)

Since we assume that the stock price Xt follows the Markov process and the

payo↵ V (T ) only depends on the stock prices, there is a function v(t,Xt)

V (t) = v(t,Xt). (3.2.2)

Now, we assume that the up-out call option has not knocked out prior to

time t, conditioned on Xt = x. Then we have

v(t, x) = eE
"
e�r(T�t) (XT �K)+ ⇢

max
0tT

XuB

�
����Ft

#
. (3.2.3)

Moreover, (3.2.1) can be transformed into

e�rtV (t) = eE
⇥
e�rTV (T ) | Ft

⇤
.

Therefore, we can derive the equality

eE
⇥
e�rtV (t) | Fs

⇤
= eE

h
eE
⇥
e�rTV (T ) | Ft

⇤
| Fs

i

= eE
⇥
e�rTV (T ) | Fs

⇤

= e�rsV (s).

(3.2.4)

The equality (3.2.4) means that e�rtv(t, x) is a martingale. Thus we want to

derive the partial di↵erential equation which the barrier option value v(t, x)

follows.

Define the stopping time TB which is the first time that the stock price hits

the barrier B and then XTB = B. Since the stock price oscillates, TB can be

regarded as the knock-out time. By Optional sampling theorem, the stopped
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process of a martingale is also a martingale. Thus the process

e�r(t^TB)V (t ^ TB) =

8
<

:
e�rtV (t) 0  t  TB

e�rtV (TB) TB < t  T

is a martingale. Since we have (3.2.2), we also get e�rtv(t,Xt) is a martingale

by the stopping time TB. Therefore, we can derive the equation

d(e�rtv(t,Xt)) = �re�rtvdt+ e�rt@v

@t
dt+ e�rt @v

@x
dXt +

1

2
e�rt @

2v

@x2
dXtdXt

= e�rt

✓
@v

@t
+

1

2
�2x2 @

2v

@x2
+ rx

@v

@x
� rv

◆
dt+ e�rt�x

@v

@x
v dfWt.

(3.2.5)

Since the martingale has no dt term, dt term must be zero for 0  t  TB in

(3.2.5). Thus we obtain the equation

@v

@t
+

1

2
�2x2 @

2v

@x2
+ rx

@v

@x
� rv = 0. (3.2.6)

Moreover, the pair (t, x) can have any value in DT := [0, T ) ⇥ (0, B) only

before the option knocks out. That is, v(t, x) holds the Black-Scholes equation

in DT . In addition, we need a condition which express the barrier restriction

such that

v(t, B) = 0, t 2 [0, T ).

In all, the value of the up-out call option follows the problem

8
>>>><

>>>>:

@v

@t
+

1

2
�2x2 @

2v

@x2
+ rx

@v

@x
� rv = 0 in DT

v(T, x) = g(x) := (x�K)+ x 2 (0, B)

v(t, B) = 0 t 2 [0, T ).

(3.2.7)

If we consider a down-out put option, clearly the value of the down-out

put option satisfies the Black-Scholes equation. But, It has di↵erent domain.

Since the option have an e↵ect before the barrier is reached at any time
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t 2 [0, T ), the value v(t, x) satisfies the Black-Scholes equation in DT :=

[0, T )⇥ (B,1). In addition, the final condition is given by the payo↵ at the

maturity

v(T, x) = (K � x)+, x > B.

and the barrier restriction is represented by

v(t, B) = 0, t 2 [0, T ).
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Geometric Asian Option

4.1 Pricing Geometric Asian option

A geometric Asian option contains a geometric average instead of the stock

price. A geometric average can replace the stock price or the strike price.

In this paper, we only consider the case of replacing the stock price. Under

the price fluctuation, the average is less a↵ected than just stock price. So

the probability that the option is out of money abruptly at the maturity can

be decreased. This is why we use the geometric Asian option. Moreover, the

decline of volatility derive lower value than a regular call or put option.

Now, we define a process

Yt =

ˆ t

0

logXudu. (4.1.1)

where the stock price Xt satisfies

dXt = µXt dt+ �Xt dfWt.

Then the continuous geometric average of the stock price at time t is ex-
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pressed by

exp

✓
Yt

t

◆
.

Therefore, the payo↵ of the geometric Asian call option is given by

✓
exp

✓
YT

T

◆
�K

◆+

. (4.1.2)

and its put option is given by

✓
K � exp

✓
YT

T

◆◆+

. (4.1.3)

Compared with the payo↵ of a regular call option, we can find that the

geometric average replaces the stock price.

Now, we consider the value at the general time t. The risk-neutral value

of geometric Asian option at time t is given by

eE
"
e�r(T�t)

✓
exp

YT

T
�K

◆+ ����Ft

#

Since for u � t, we have

Xu = Xt exp

✓
r � �2

2

◆
(u� t) + �

⇣
fWu �fWt

⌘�
,

we have

YT =

ˆ t

0

logXu du+

ˆ T

t

logXu du

= Yt +

ˆ T

t


logXt +

✓
r � �2

2

◆
(u� t) + �

⇣
fWu �fWt

⌘�
du

= Yt + (T � t) logXt +

✓
r � �2

2

◆
(T � t)2

2
+ �

ˆ T

t

⇣
fWu �fWt

⌘
du.

(4.1.4)
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The stochastic integral in (4.1.4) has the distribution

ˆ T

t

⇣
fWu �fWt

⌘
du ⇠ N

✓
0,

(T � t)3

3

◆
. (4.1.5)

Let

Z = �

´ T
t

⇣
fWu �fWt

⌘
du

q
(T�t)3

3

.

Then Z has a standard normal distribution and is independent of Ft. By the

form (4.1.4), we can write

exp

✓
YT

T

◆
= exp

✓
Yt

T

◆
X

T�t
T

t exp

2

4

⇣
r � �2

2

⌘
(T � t)2

2T
� �

T

r
(T � t)3

3
Z

3

5.

For conciseness, we denote

A = exp

✓
Yt

T

◆
X

T�t
T

t ,

µ =

⇣
r � �2

2

⌘
(T � t)2

2T
,

� =
�

T

r
(T � t)3

3
.

Therefore, conditioned on Xt = x and Yt = y, the risk-neutral value of the

geometric Asian option at time t can be given by

v(t, x, y) = e�r(T�t)eE
⇥
(A exp(��Z + µ)�K)+

⇤
(4.1.6)

Then the payo↵ is nonzero where

Z <
log K

A + µ

�
:= d2.
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Thus (4.1.6) is expressed by

v(t, x, y) =
1p
2⇡

ˆ d2

�1
e�r(T�t) (A exp (��z + µ)�K) e�

z2

2 dz

= e�r(T�t)


1p
2⇡

ˆ d2

�1
A exp (µ) exp

✓
�z2

2
� �z

◆
dz � 1p

2⇡

ˆ d2

�1
Ke�

z2

2 dz

�

= e�r(T�t)


1p
2⇡

ˆ d2

�1
A exp

✓
µ+

�2

2

◆
exp

✓
�1

2
(z + �)2

◆
dz �KN(d2)

�

= e�r(T�t)


A exp

✓
µ+

�2

2

◆
N(d1)�KN(d2)

�

where d1 = d2 + �. In all, the value of the geometric Asian option at general

time t is given by

v(t, x, y) = e�r(T�t)

2

4X
T�t
T

t exp

✓
Yt

T

◆
exp

0

@

⇣
r � �2

2

⌘

2T
(T � t)2 +

�2(T � t)3

6T 2

1

AN(d1)�KN(d2)

3

5

(4.1.7)

where

d1 =
T log X

T�t
T

t
K + Yt +

⇣
r��2

2

⌘
(T�t)2

2 + �2(T�t)3

3T

�
q

(T�t)3

3

, (4.1.8)

d2 = d1 �
�

T

r
(T � t)3

3
. (4.1.9)

4.2 PDE for Geometric Asian option

Now, we derive the partial di↵erential equation which the geometric Asian

options satisfy. From (4.1.1) and (4.1.2), we can know that the payo↵ V (T )

depends on Xt and Yt. Since Yt is an integral of the stock price from 0 to

t, it depends on all past values between 0 and t. Therefore, unlike the stock

price Xt, Yt itself does not follow the Markov process. However, Yt is related

with Xt such that (Xt, Yt) is the Markov pair. Therefore, there is a function
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v(t,Xt, Yt) such that

V (t) = v(t,Xt, Yt). (4.2.1)

We know that (4.2.1) is a martingale by the same method of (3.2.4). Condi-

tioned onXt = x and Yt = y, we want to derive the general partial di↵erential

equation of which v(t, x, y) is a solution. By taking the di↵erential and two-

dimensional Itô formula, we obtain the equation

d(e�rtv(t,Xt, Yt)) = e�rt

✓
@v

@t
+

1

2
�2x2 @

2v

@x2
+ rx

@v

@x
+ log x

@v

@y
� rv

◆
dt

+ e�rt�x
@v

@x
dW̃t.

By the property of martingale, dt term must be zero and then we have

@v

@t
+

1

2
�2x2 @

2v

@x2
+ rx

@v

@x
+ log x

@v

@y
� rv = 0. (4.2.2)

In all, the geometric Asian call option generally satisfies the problem

8
>><

>>:

@v

@t
+

1

2
�2x2 @

2v

@x2
+ rx

@v

@x
+ log x

@v

@y
� rv = 0 in OT

u(T, x, y) = h(y) :=
⇣
exp

⇣ y

T

⌘
�K

⌘+

in O
(4.2.3)

where O := R+ ⇥ R and OT := [0, T )⇥O.
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Chapter 5

Viscosity Solution as Value of

Geometric Asian Barrier

Option

5.1 Geometric Asian Barrier Option

We considered the barrier option and the geometric Asian option. Now, we

combine these two options, called Geometric Asian Barrier option. It is the

geometric Asian option with an additional barrier condition.

We have two process, Xt such that

dXt = rXt dt+ �Xt dfWt,

and Yt such that

dYt = logXt dt.

For the geometric Asian barrier option, the path of the stock price is also

contained in the payo↵. That is, whether the stock price reaches the barrier

is important.

Suppose that the geometric Asian barrier options have the barrier B, the
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strike price K and the maturity T . Then the payo↵ (see [10]) is given by

up-out call :

✓
exp

✓
YT

T

◆
�K

◆+
⇢

max
0tT

Xt<B

� (5.1.1)

down-in call :

✓
exp

✓
YT

T

◆
�K

◆+
⇢

min
0tT

XtB

� (5.1.2)

up-in put :

✓
K � exp

✓
YT

T

◆◆+
⇢

max
0tT

Xt�B

� (5.1.3)

down-out put :

✓
K � exp

✓
YT

T

◆◆+
⇢

min
0tT

Xt>B

�. (5.1.4)

Now, we study the geometric Asian up-out call option. This option is only

valid before the stock price hits the barrier B. Therefore, the maximum value

of the stock price must be restricted below B and so the characteristic func-

tions on (5.1.1) express this barrier restriction. Finally, the payo↵ of the

geometric Asian up-out call option is given by (5.1.1). On the other hand,

the down-in option takes an e↵ect after the stock price reaches the barrier

B. So the stock price must be lower than the barrier. That is, the minimum

of the stock price is lower that the barrier. Therefore, we have (5.1.2). Other

things can be obtained similarly.

In the previous section, we derived (4.2.3) which the value of the geometric

Asian call option depending on t, Xt and Yt generally satisfies. The risk-

neutral value of geometric Asian up-out call option is given by

eE
"
e�r(T�t)

✓
exp

✓
YT

T

◆
�K

◆+
⇢

max
tuT

XuB

�
����Ft

#
. (5.1.5)

Since the geometric Asian barrier option also have same property with

the geometric Asian options, (5.1.5) basically satisfies the equation (4.2.2).

However, we additionally need to consider the existence of the barrier B.

For the up-out call option, the interval of the stock price is restricted by
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x 2 (0, B) and so we have additional boundary condition

v(t, B, y) = 0, t 2 [0, T ), y 2 R.

In all, we can consider the modeling di↵erential problem for the value of

Geometric Asian up-out call option

8
>>>>><

>>>>>:

@v

@t
+

1

2
�2x2 @

2v

@x2
+ rx

@v

@x
+ log x

@v

@y
� rv = 0 in ST

v(T, x, y) = g(y) :=
⇣
exp

⇣ y

T

⌘
�K

⌘+

in S

v(t, B, y) = 0 in [0, T )⇥ R.

(5.1.6)

where S := (0, B)⇥ R and ST := [0, T )⇥ S.

5.2 Viscosity solution

Now, we study the value of geometric Asian up-out call option

v(t, x, y) = eE
"
e�r(T�t)

✓
exp

✓
YT

T

◆
�K

◆+
⇢

max
tuT

XuB

�
����Ft

#
(5.2.1)

with the problem

8
>>>>><

>>>>>:

@v

@t
+

1

2
�2x2 @

2v

@x2
+ rx

@v

@x
+ log x

@v

@y
� rv = 0 in ST

v(T, x, y) = g(y) :=
⇣
exp

⇣ y

T

⌘
�K

⌘+

in S

v(t, B, y) = 0 in [0, T )⇥ R.

(5.2.2)

It is not known that the problem (5.2.2) has classical closed form solution.

Therefore, we are going to define the solution in the viscosity sense. If we

mention the function v(t, x, y), it means (5.2.1).

Definition 5.2.1. Let v 2 C(ST ) be a locally bounded function.
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(i) v is a viscosity subsolution of (5.2.2) in ST if v satisfies

v(T, x, y)  g(x, y) in S,

v(t, B, y)  0 in [0, T )⇥ R,

and for any ' 2 C2(ST ) such that

v(t0, x0, y0) = '(t0, x0, y0)

v(t, x, y)  '(t, x, y) for (t, x, y) 2 ST ,

we have

't + L' � 0 at (t0, x0, y0) 2 ST .

(ii) v is a viscosity supersolution of (5.2.2) in ST if v satisfies

v(T, x, y) � g(x, y) in S,

v(t, B, y) � 0 in [0, T )⇥ R,

and for any ' 2 C2(ST ) such that

v(t0, x0, y0) = '(t0, x0, y0)

v(t, x, y) � '(t, x, y) for (t, x, y) 2 ST ,

we have

't + L'  0 at (t0, x0, y0) 2 ST .

(iii) v is a viscosity solution of (5.2.2) if it is both a viscosity subsolution

and supersolution of (5.2.2).

Lemma 5.2.2. The function v(t, x, y) is continuous on ST .
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Proof. By Markov property, we can represent v as

v(t, x, y) = e�r(T�t) eE
"
g(YT ) ⇢

max
tuT

XuB

�
����Ft

#

= e�r(T�t)Ẽ

"
g(YT�t) ⇢

max
0uT�t

XsB

�

#
.

(5.2.3)

So (5.2.3) starts at time t = 0. Conditioned on X0 = x and Y0 = y, we can

write

X0,x
t = x exp

✓
r � 1

2
�2

◆
t+ �fWt

�

and

Y 0,x,y
t = y +

ˆ t

0

logX0,x
u du

For other (t0, x0, y0) 2 ST , we have

X0,x
t

X0,x0

t0

=
x

x0 exp

✓
r � 1

2
�2

◆
(t0 � t) + �

⇣
fWt �fWt0

⌘�

and

���Y 0,x,y
t � Y 0,x0,y0

t0

���  |y � y0|+
ˆ t

0

����log
X0,x

u

X0,x0
u

���� du+

�����

ˆ t0

t

logX0,x0

u du

�����

= |y � y0|+ t |log x� log x0|+

�����

ˆ t0

t

logX0,x0

u du

����� .

Since fWt is continuous a.s., we observe

⇣
X0,x0

t0 , Y 0,x0,y0

t0

⌘
!

�
X0,x

t , Y 0,x,y
t

�
a.s.
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as (t0, x0, y0) ! (t, x, y) and

max
0uT�t0

exp

✓
r � 1

2
�2

◆
u+ �fWu

�

! max
0uT�t

exp

✓
r � 1

2
�2

◆
u+ �fWu

�
a.s.

as t ! t0. Moreover, the payo↵ in (5.2.3) is given by

g(Y 0,x0,y0

T�t0 ) ⇢
max

0uT�t0
X0,x0

u B

� ! g(Y 0,x,y
T�t ) ⇢

max
0uT�t

X0,x
u B

� a.s. (5.2.4)

as (t0, x0, y0) ! (t, x, y). We know that (5.2.4) is bounded such like

0  g(Y 0,x,y
T�t ) ⇢

max
0uT�t

X0,x
u B

�  e
B
T ,

Therefore, by the Lebesgue’s dominated convergence theorem, we have

v(t0, x0, y0) ! v(t, x, y)

as (t0, x0, y0) ! (t, x, y).

Theorem 5.2.3. The function v(t, x, y) is a viscosity subsolution of (5.2.2).

Proof. Take any point (t0, x0, y0) 2 ST and any function ' 2 C2(ST ) such

that

v(t0, x0, y0) = '(t0, x0, y0)

and

v  ' in ST .

We assume that Xt and Yt start at time t0 with Xt0 = x0 and Yt0 = y0. That

is, we now denote Xt := X t0,x0
t and Yt := Y t0,x0,y0

t . Define the stopping time

44



CHAPTER 5. VISCOSITY SOLUTION AS VALUE OF GEOMETRIC
ASIAN BARRIER OPTION

⌧ and ⌧h such that

⌧ = inf
n
t0 < t : Xt � B or |Xt � x0|+ |Yt � y0| �

x0

2

o
(5.2.5)

and

⌧h = ⌧ ^ (t0 + h) (5.2.6)

for small h > 0. By the strong Markov property, we have

v(⌧h, X⌧h , Y⌧h) = e�r(T�⌧h)eE
"
g(YT ) ⇢

max
⌧huT

XuB

�
����F⌧h

#
. (5.2.7)

Therefore, we can derive the equality

v(t0, x0, y0)

= e�r(T�t0)eE
"
g(YT ) ⇢

max
t0uT

XuB

�
����Ft0

#

= e�r(T�t0)eE
"
eE
"
g(YT ) ⇢

max
⌧huT

XuB

� ⇢
max

t0u⌧h
XuB

�
����F⌧h

# ����Ft0

#

= er(⌧h�t0)eE
"
e�r(T�⌧h)eE

"
g(YT ) ⇢

max
⌧huT

XuB

�
����F⌧h

#
⇢

max
t0u⌧h

XuB

�
����Ft0

#

= e�r(⌧h�t0)eE
"
v(⌧h, X⌧h , Y⌧h)

⇢
max

t0u⌧h
XuB

�
����Ft0

#
.

(5.2.8)

Moreover, by definition of ⌧h, we know

⇢
max

t0u⌧h
XuB

� = 1.
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Thus, we obtain

'(t0, x0, y0) = v(t0, x0, y0)

= e�r(⌧h�t0)eE

v(⌧h, X⌧h , Y⌧h)

����Ft0

�

 e�r(⌧h�t0)eE

'(⌧h, X⌧h , Y⌧h)

����Ft0

�
.

(5.2.9)

Using Ito formula, we have

'(⌧h, X⌧h , Y⌧h)� '(t0, x0, y0)

=

ˆ ⌧h

t0

✓
't +

1

2
�2(Xu)

2'xx + rXu'x + logXu'y

◆
(u,Xu, Yu) du

+

ˆ ⌧h

t0

�Xu'(u,Xu, Yu) dfWu.

(5.2.10)

Putting (5.2.10) into (5.2.9), we obtain

'(t0, x0, y0)  e�r(⌧h�t0)'(t0, x0, y0)

+ e�r(⌧h�t0)eE
ˆ ⌧h

t0

✓
't +

1

2
�2(Xu)

2'xx + rXu'x + logXu'y

◆
(u,Xu, Yu) du

����Ft0

�

+ e�r(⌧h�t0)eE
ˆ ⌧h

t0

�Xu'(u,Xu, Yu) dfWu

����Ft0

�

= e�r(⌧h�t0)'(t0, x0, y0)

+ e�r(⌧h�t0)eE
ˆ ⌧h

t0

✓
't +

1

2
�2(Xu)

2'xx + rXu'x + logXu'y

◆
(u,Xu, Yu) du

����Ft0

�

(5.2.11)

For each event ! 2 ⌦ and su�ciently small h > 0, we can write

⌧h(!) = t0 + h.
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By the mean value theorem, we derive

1

h

ˆ ⌧h

t0

✓
't +

1

2
�2(Xu)

2'xx + rXu'x + logXu'y

◆
(u,Xu, Yu) du

!
✓
't +

1

2
�2x2

0'xx + rx0'x + log x0'y

◆
(t0, x0, y0) a.s.

as h ! 0. We know that

✓
't +

1

2
�2(Xt)

2'xx + rXt'x + logXt'y

◆
(t,Xt, Yt)

is uniformly bounded. By the Lebesgue’s dominated convergence theorem

and (5.2.11), we have

0  1

h

�
e�r(⌧h�t0) � 1

�
'(t0, x0, y0)

+ e�r(⌧h�t0)eE

1

h

ˆ ⌧h

t0

✓
't +

1

2
�2(Xu)

2'xx + rXu'x + logXu'y

◆
(u,Xu, Yu) du

����Ft0

�

!
✓
't +

1

2
�2x2

0'xx + rx0'x + log x0'y � r'

◆
(t0, x0, y0)

= ('t + L') (t0, x0, y0)
(5.2.12)

as h ! 0.

Theorem 5.2.4. The function v(t, x, y) is a viscosity supersolution of (5.2.2).

Proof. It is the same as the proof of Theorem 5.2.3 except the direction of

inequality.

From Theorem 5.2.3 and Theorem 5.2.4, we know that v(t, x, y) are vis-

cosity solution of (5.2.2).

Theorem 5.2.5. Let u and v be a viscosity subsolution and a supersolution

of (5.2.2), respectively. Assume that there exists A > 0 such that

u(t, x, y)  A exp
�
A(log x)2 + Ay2

�
and v(t, x, y) � � expA

�
A(log x)2 + Ay2

�
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in ST . Then we obtain

u  v in ST .

For the proof, we consider a barrier function � as

�(t, x, y) = exp

✓
1

6T0
+

(�2 + 2r)2

8�2

◆
(T � t)

exp

✓
(log x)2

6�2(t� T + 2T0)
+

y2

6�2(t� T + 2T0)3

◆
(5.2.13)

for (t, x, y) 2 [T � T0, T ]⇥ S, where 0 < T0 < min
�

1
24A�2 ,

1
2

 
. We know that

the barrier function � goes to 1 as x ! 0 or y ! ±1. Then, we have

�t + L� < 0

and

1

6�2(t� T + 2T0)
> 2A and

1

6�2(t� T + 2T0)3
> 2A (5.2.14)

for T � T0  t  T .

Proof of Theorem 5.2.5. For each " > 0 and the function (5.2.13), we con-

sider

u" = u� "� and v" = v + "�, (5.2.15)

Then u" and v" are also a viscosity subsolution and a supersolution of (5.2.2),

respectively. Moreover, there exists N > 0 such that

A exp
�
A(log x)2 + Ay2

�
 "�(t, x, y) (5.2.16)

if T � T0  t  T and x  1
N or |y| > N .

Let

RT = [T � T0, T )⇥ (
1

N
,B)⇥ (�N,N).
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Then clearly u" and v" are a viscosity subsolution and a supersolution of

(5.2.2), respectively in RT with

u"  v" on @pRT . (5.2.17)

By the comparison principle, we obtain

u"  v" in RT . (5.2.18)

In addition, we have

u"  v" in ([T � T0, T ]⇥ S) \RT . (5.2.19)

Therefore, from (5.2.18) and (5.2.19), we have

u"  v" in [T � T0, T ]⇥ S. (5.2.20)

By sending " to 0, we obtain

u  v in [T � T0, T ]⇥ S. (5.2.21)

By iterating this procedure to [T � (k + 1)T0, T � kT0] for k = 1, 2, · · · , we
conclude that

u  v in ST . (5.2.22)

Proposition 5.2.6. The problem (5.2.2) has a unique viscosity solution.

Proof. Suppose that u and v are viscosity solution of (5.2.2). Then, by The-

orem 5.2.5, we have

u  v and u � v in ST . (5.2.23)
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Therefore, the value of geometric Asian up-out call option

v(t, x, y) = eE
"
e�r(T�t)

✓
exp

✓
YT

T

◆
�K

◆+
⇢

max
tuT

XuB

�
����Ft

#
(5.2.24)

is unique solution of (5.2.2).
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Itô integral

A.1 Properties of Itô integral

Theorem A.1.1. Let (Wt)t�0 be a standard Brownian motion on (⌦,F ,P)
and (Ft)t�0 be the associated filtration. Then Itô integral is defined by

It =

ˆ t

0

f(u,Wu)dWu = lim
n!1

n�1X

i=0

f(ti,Wti)(Wti+1 �Wti).

Then It is a martingale.

Proof. For s < t, we write

It =

ˆ s

0

f(u,Wu) dWu +

ˆ t

s

f(u,Wu) dWu

= Is + lim
n!1

n�1X

i=m

f(ti,Wti)(Wti+1 �Wti)
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where m < n� 1. Since Wt is a martingale, we have

E[It | Fs] = Is + E
"
lim
n!1

n�1X

i=m

f(ti,Wti)(Wti+1 �Wti) | Fs

#

= Is + lim
n!1

n�1X

i=m

E
⇥
E
⇥
f(ti,Wti)(Wti+1 �Wti) | Fti

⇤
| Fs

⇤

= Is + lim
n!1

n�1X

i=m

E [f(ti,Wti)(Wti �Wti)]

= Is.

Since Wt is continuous and then lim
n!1

max
0kn�1

|Wtk+1
� Wtk | = 0, we get

E[|It|] < 1. So Itô integral It is a martingale.

Theorem A.1.2. (Itô isometry)

Let (Wt)t�0 be a standard Brownian motion on (⌦,F ,P) and (Ft)t�0 be the

associated filtration. Then the Itô integral satisfies

E
"✓ˆ t

0

f(s,Ws)dWs

◆2
#
= E

ˆ t

0

f(s,Ws)
2ds

�
.

Proof. First, we want to show W 2
t � t is also a martingale.

Clearly, W 2
t � t is Ft - adapted. Since Wt�Ws is independent to Fs for s < t,

we get

E[W 2
t � t | Fs] = E[(Wt �Ws +Ws)

2 | Fs]� t

= E[(Wt �Ws)
2 | Fs ] + 2E[Ws(Wt �Ws) | Fs] + E[W 2

s | Fs]� t

= W 2
s � s.

Moreover, E[|W 2
t � t|]  E[W 2

t + t] = 2t < 1 . It means that W 2
t � t is a

martingale.
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E
"✓ˆ t

0

f(s,Ws)dWs

◆2
#
� E

ˆ t

0

f(s,Ws)
2ds

�

= lim
n!1

n�1X

i=0

E[f(ti,Wti)
2(Wti+1 �Wti)

2]� lim
n!1

n�1X

i=0

E[f(ti,Wti)
2(ti+1 � ti)]

= lim
n!1

n�1X

i=0

E
⇥
E
⇥
f(ti,Wti)

2
�
(Wti+1 �Wti)

2 � (ti+1 � ti)
�
| Fti

⇤⇤

= lim
n!1

n�1X

i=0

E
h
E
h
f(ti,Wti)

2(W 2
ti+1

� ti+1) | Fti

ii

� 2 lim
n!1

n�1X

i=0

E
⇥
E
⇥
f(ti,Wti)

2Wti+1Wti | Fti

⇤⇤

+ lim
n!1

n�1X

i=0

E
⇥
E
⇥
f(ti,Wti)

2(W 2
ti + ti) | Fti

⇤⇤

= lim
n!1

n�1X

i=0

E
⇥
f(ti,Wti)

2(W 2
ti � ti � 2W 2

ti +W 2
ti + ti)

⇤

= 0.

Therefore, we get the result

E
"✓ˆ t

0

f(s,Ws) dWs

◆2
#
= E

ˆ t

0

f(s,Ws)
2 ds

�
.

Theorem A.1.3. (Quadratic variation of Itô integral)

The Itô integral, It =
´ t
0 f(s,Ws)dWs, has quadratic variation process such

that

[I, I]t =

ˆ t

0

f(s,Ws)
2ds
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Proof. By definition of the quadratic variation,

[I, I]t = lim
n!1

m�1X

k=0

(Itk+1
� Itk)

2.

where tk = kt
m , 0 = t0 < t1 < · · · < tm = t. Since f is a simple process

, f(tk,Wtk) is a constant value on [tk, tk+1). We partition the subinterval

[tk, tk+1) such that

tk = s0 < s1 < · · · < sn = tk+1

Then we can write

Isi+1 � Isi =

ˆ si+1

si

f(tk,Wtk)dWu = f(tk,Wtk)(Wsi+1 �Wsi).

Hence we have

(Itk+1
� Itk)

2 = lim
n!1

n�1X

i=0

(Isi+1 � Isi)
2

= f(tk,Wtk)
2 lim
n!1

n�1X

i=0

(Wsi+1 �Wsi)
2

= f(tk,Wtk)
2(tk+1 � tk)

Finally, the quadratic variation of Itô integral can be described by

[I, I]t = lim
m!1

m�1X

k=0

�
Itk+1

� Itk
�2

= lim
m!1

m�1X

k=0

f(tk,Wtk)
2(tk+1 � tk)

=

ˆ t

0

f(s,Ws)
2 ds
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A.2 Proof of (4.1.5)

First, we want to prove that the expectation value of Itô integral is zero.

Let (⌦,F ,P) be a probability space and let (Wt)t�0 be a standard Brow-

nian motion. Then the Itô integral is defined by

It =

ˆ t

0

f(s,Ws)dWs = lim
n!1

n�1X

i=0

f(ti,Wti)(Wti+1 �Wti)

Since Wt is a martingale, we have

E
ˆ t

0

f(s,Ws)dWs

�
= lim

n!1

n�1X

i=0

E[f(ti,Wti)(Wti+1 �Wti)]

= lim
n!1

n�1X

i=0

E
⇥
E[f(ti,Wti)(Wti+1 �Wti) | Fti ]

⇤

= lim
n!1

n�1X

i=0

E[f(ti,Wti)(Wti �Wti)]

= 0.

By integration by parts, we get

ˆ t

0

Ws ds = sWs|t0 �
ˆ t

0

s
dWs

ds
ds

= tWt �
ˆ t

0

s dWs

=

ˆ t

0

(t� s) dWs

This means that It =
´ t
0 (t � s) dWs is an Itô integral and so a martingale.

Moreover, according to above fact, we have

E[It] = 0.
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Thus the variance of It is

V ar[It] = E
⇥
I2t
⇤
= E

"✓ˆ t

0

(t� s) dWs

◆2
#
= E

ˆ t

0

(t� s)2 ds

�
=

t3

3
.

We want to show that It follows a normal distribution by using the mo-

ment generating function. Consider the quadratic variation of It. By above

theorem, we obtain

[I, I]t =

ˆ t

0

(t� s)2ds =
t3

3

In di↵erential form, we can write dItdIt = t2dt. Define the function f(t, It)

such that

f(t, It) = e
✓It� 1

2 ✓
2
⇣

t3

3

⌘

By Itô formula, we develop

df(t, It) =
@f

@t
dt+

@f

@It
dIt +

1

2

@2f

@I2t
dItdIt

= ✓f(t, It) dIt

By taking integration, we have

f(t, It) = f(0, I0) + ✓

ˆ t

0

f(t, It) dIt

By taking expectation, we obtain

E

e
✓It� 1

2 ✓
2
⇣

t3

3

⌘�
= 1 + E


✓

ˆ t

0

f(t, It) dIt

�

= 1
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Finally, we get E[e✓It ] = e
1
2 ✓

2 t3

3 which is the moment generating function of

a normal distribution with mean zero and variance t3

3 . That is, It follows a

normal distribution with mean zero and variance t3

3

It ⇠ N
✓
0,

t3

3

◆
.
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Martingale with zero drift term

Theorem A.0.1. (Martingale Representation, [7])

Let (Wt)otT be a Brownian motion on (⌦,F ,P) and let (Ft)0tT be the

filtration generated by this Brownian motion. If (Mt)0tT is a martingale

with respect to this filtration, there exists an adapted process (�t)0tT such

that

Mt = M0 +

ˆ t

0

�u dWu, 0  t  T.

Theorem A.0.2. Let (Wt)t�0 be a standard Brownian motion on (⌦,F ,P).
Define the process Mt such that

dMt = µ(t,Xt) dt+ �(t,Xt) dWt.

with E
⇣´ T

0 �s ds
⌘ 1

2

�
< 1. Then Mt is a martingale if and only if Mt has

no drift term.

Proof. ()) By the Martingale Representation theorem, we have an F -

measurable process �t such that

Mt = M0 +

ˆ t

0

�u dWu

) dMt = �t dWt.
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Therefore, a martingale process Mt has no drift term.

(() Consider Itô process

dMt = µ(t,Xt) dt+ �(t,Xt) dWt.

By taking integration, we obtain

Mt �Ms =

ˆ t

s

µ(u,Mu) du+

ˆ t

s

�(u,Mu) dWu

If we take conditional expectation with respect to the filtration Fs for s < t,

we get the formula

E[Mt | Fs] = E[Ms] + E
ˆ t

s

µ(u,Mu) du | Fs

�

= Ms + E
ˆ t

s

µ(u,Mu) du | Fs

�

Thus, if µ(t,Mt) is zero, Mt is a P - martingale.

Corollary A.0.3. Let (Wt)0tT be a standard Brownian motion on (⌦,F ,P)
and let (Ft)0tT be the filtration generated by this Brownian motion. For an

adapted process (✓t)0tT , define

Zt = exp


�
ˆ t

0

✓u dWu �
1

2

ˆ t

0

✓2u du

�

fWt = Wt +

ˆ t

0

✓u du

where fWt is a standard Brownian motion and eE
h´ T

0 ✓2uZ
2
u du

i
< 1. Let

(M̃t)0tT be a martingale under eP. Then there exists an adapted process

(e�t)0tT such that

fMt = fM0 +

ˆ t

0

e�u dfWu, 0  t  T.
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Proof. Let f(x) = ex, g(x) = 1
x and �t = �

´ t
0 ✓u dWu � 1

2

´ t

0 ✓
2
u du.

Then we have

dZt = df(�t)

= f 0(�t) d�t +
1

2
f 00(�t) d�td�t

= �✓tZt dWt

and

d

✓
1

Zt

◆
= f 0(Zt) dZt +

1

2
f 00(Zt) dZtdZt

=
1

Zt
✓t dWt +

✓2t
Zt

dt.

By Lemma 2.6, for s < t, we can derive

fMs = eE
h
fMt | Fs

i
= E

"
ZtM̃t

Zs
| Fs

#
.

Therefore, we have

Zs
fMs = E

h
Zt
fMt | Fs

i
.

It means that Mt = Zs
fMs is a martingale under P. By Theorem 4.1, there is

an adapted process (�)0tT such that

Mt = M0 +

ˆ t

0

�udWu, 0  t  T.
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Thus the di↵erential of fMt has the form

dfMt = d

✓
Mt

1

Zt

◆

=
1

Zt
dMt +Mt d

1

Zt
+ dMtd

1

Zt

=
�t

Zt
dWt +

Mt✓t
Zt

dWt +
Mt✓2t
Zt

dt+
�t✓t
Zt

dt

=
�t

Zt
(dWt + ✓t dt) +

Mt✓t
Zt

(dWt + ✓t dt)

= e�tdfWt

where

e�t =
�t +Mt✓t

Zt
.

Finally, it can be written by

fMt = fM0 +

ˆ t

0

e�u dfWu, 0  t  T.

Remark A.0.4. Corollary A.0.3 is the Martingale Representation theorem

on the probability space (⌦,F , eP). Therefore, we have the results that The-

orem A.0.1 also works for eP - martingale.
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