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Abstract

The effect of basis functions on QLBS

Sangpil Moon

Department of Mathematical Sciences

The Graduate School

Seoul National University

The question of whether it is suitable to select a set of basis functions

in a QLBS model without any restrictions is discussed in this research. In

his paper titled “QLBS: Q-Learner in the Black-Scholes(-Merton) Worlds”,

Igor Halperin proposed a discrete-time option hedging and pricing model

known as QLBS. In the study, he proved that the QLBS model converges to

the Black-Scholes-Merton model as the discrete-time interval converges to 0

under some circumstances, but he left the phenomenon where the discrete-

time interval is a specific positive number for future work. In this work,

I will demonstrate that, depending on the choice of a set of basis functions,

the reward setting in the QLBS model can result in option pricing that is

different from the initial outcome expected.

Key words:QLBS, Dynamic programming, Option hedging, Option pricing,

Markov Decision Process

Student Number: 2018-26597
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Chapter 1

Introduction

The risk of options is continuously neutralized to obtain the Black-Scholes-

Merton (BSM) model. However, in reality, continuously neutralizing is im-

possible. So there is an inevitable risk of mis-hedging. Igor Halperin proposed

a method of neutralizing risk in a discrete-time version of the BSM model

and named it the QLBS model. As it seems obvious in the setting, the QLBS

model converges to the BSM formulation as the interval of time steps van-

ishes.

To approximate the action function and Q-function, the QLBS model

freely chooses a set of basis functions. In this study, we demonstrate that

the reward in the QLBS model may not operate as expected when a set of

basis functions is chosen without any restrictions. In the section “NuQLear

experiments” of the paper “The QLBS Q-Learner Goes NuQLear:Fitted Q

Iteration, Inverse RL, and Option Portfolios” [3], Igor Halperin experimented

and obtained the expected result, but only when the set of basis functions is

composed of cubic B-splines; it does not apply to other sets of basis functions.

When the interval between discrete times converges to 0, as Igor Halperin

has demonstrated, the QLBS model converges to the Black-Scholes-Merton

model; nevertheless, the phenomena that occur when the interval is a specific

positive value are left for future work.

This paper is organized as follows. First, we establish the common char-
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CHAPTER 1. INTRODUCTION

acteristic of the basis function sets that can yield the greatest reward in the

QLBS model. We shall demonstrate that, even though such a set of basis

functions produces greater reward, the QLBS model does not produce the

anticipated outcome. And I will finish the thesis with a conclusion. A model-

based Dynamic Programming (DP) method and a data-driven Reinforcement

Learning (RL) method are both included in the QLBS model. Since RL con-

verges to the DP result in the same environment, I will only consider DP in

this study while considering a set of basis functions.
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Chapter 2

QLBS model

The QLBS model described in this chapter is based on Igor Halperin’s “QLBS:

Q-Learner in the Black-Scholes(-Merton) Worlds” [2].

2.1 Discrete portfolio

Let T be the maturity, St be the price of the stock at time t, HT (ST ) be the

payoff from the European option terminal at maturity, Bt be a risk-free bank

deposit, ut be the position in the stock at time t, and Πt be the portfolio.

The relationship is as follows at t ≤ T .

Πt = utSt +Bt (2.1.1)

Assume that there are no transaction fees and a self-financing constraint,

meaning that neither internal nor external money is allowed to flow. The

equation below will be reached if you sell all of the remaining stocks for cash

with a format of uT = 0 at maturity T .

ΠT = BT = HT (ST ) (2.1.2)

3



CHAPTER 2. QLBS MODEL

Now we may get the relational expression as below, where r is the risk-free

interest rate.

utSt+∆t + er∆tBt = ut+∆tSt+∆t +Bt+∆t (2.1.3)

Bt = e−r∆t [Bt+∆t + (ut+∆t − ut)St+∆t] , t = T −∆t, . . . ,∆t, 0. (2.1.4)

Substitute this expression into (2.1.1) and rearrange it as follows.

Πt = utSt + e−r∆t [Bt+∆t (ut+∆t − ut)St+∆t]

= e−r∆t
[
Bt+∆t + ut+∆tSt+∆t + er∆tutSt − utSt+∆t

]
= e−r∆t

[
Πt+∆t − ut

(
St+∆t − er∆tSt

)]
= e−r∆t [Πt+∆t − ut∆St] , ∆St = St+∆t − er∆tSt, t = T −∆t, . . . ,∆t, 0.

Then the following expression can be obtained.

Πt = e−r∆t [Πt+∆t − ut∆St] , ∆St = St+∆t−er∆tSt, t = T −∆t, . . . ,∆t, 0.

(2.1.5)

From the viewpoint of minimizing risk, identify ut(St) with the smallest vari-

ance while considering St as a random variable. When the available cross-

sectional information, which refers to the data of all concurrent pathways, is

expressed as Ft at time t, it is obtained as follows.

u∗
t (St) = argmin

u
V ar [Πt|Ft]

= argmin
u

V ar [Πt+∆t − ut∆St|Ft] , t = T −∆t, . . . ,∆t, 0. (2.1.6)

4



CHAPTER 2. QLBS MODEL

The optimal hedge can be calculated analytically using the derivative of (2.6)

with ut(St) as a variable.

V ar [Πt+∆t − ut(St)∆St|Ft]

= E
[
(Πt+∆t − ut(St)∆St)

2 |Ft

]
− (E [Πt+∆t − ut(St)∆St|Ft])

2

= E
[
Π2

t+∆t|Ft

]
− 2ut(St)E [Πt+∆t∆St|Ft] + u2

t (St)E
[
(∆St)

2 |Ft

]
− E [Πt+∆t|Ft]

2 + 2ut(St)E [Πt+∆t|Ft]E [∆St|Ft]− u2
t (St)E [∆St|Ft]

2

= V ar [Πt+∆t|Ft]− 2ut(St)Cov [Πt+∆t,∆St|Ft] + u2
t (St)V ar [∆St]

This provides

u∗
t (St) =

Cov [Πt+∆t,∆St|Ft]

V ar [∆St|Ft]
, t = T −∆t, . . . ,∆t, 0. (2.1.7)

2.2 Hedging and pricing at ∆t → 0

Consider the idea of fair option pricing, which is defined as the “time-t

expected value of the hedge portfolio Πt”[2]. Here is the definition.

Ct = E [Πt|Ft] (2.2.1)

Using (2.1.5), it may be written as

Ct = E
[
e−r∆tΠt+∆t − e−r∆tut(St)∆St|Ft

]
= e−r∆tE [Πt+∆t|Ft]− e−r∆tE [ut(St)∆St|Ft]

= e−r∆tE [E [Πt+∆t|Ft+∆t] |Ft]− e−r∆tut(St)E [∆St|Ft] (2.2.2)

= e−r∆tE [Ct+∆t|Ft]− e−r∆tut(St)E [∆St|Ft]

= e−r∆t (E [Ct+∆t|Ft]− ut(St)E [∆St|Ft])

5



CHAPTER 2. QLBS MODEL

(2.1.7) expressed as Ct is:

u∗
t (St) =

Cov [Πt+∆t,∆St|Ft]

V ar [∆St|Ft]

=
E [(Πt+∆t − E [Πt+∆t|Ft]) (∆St − E [∆St|Ft]) |Ft]

V ar [∆St|Ft]

=
E [Πt+∆t∆St|Ft]− E [Πt+∆t|Ft]E [∆St|Ft]

V ar [∆St|Ft]

=
E [E [Πt+∆t∆St|Ft+∆t] |Ft]− E [Πt+∆t|Ft]E [∆St|Ft]

V ar [∆St|Ft]

=
E [∆StE [Πt+∆t|Ft+∆t] |Ft]− E [E [Πt+∆t|Ft+∆t] |Ft]E [∆St|Ft]

V ar [∆St|Ft]

=
E [∆StCt+∆t|Ft]− E [Ct+∆t|Ft]E [∆St|Ft]

V ar [∆St|Ft]

=
Cov [Ct+∆t,∆St|Ft]

V ar [∆St|Ft]
(2.2.3)

It will be demonstrated that Ct closely approximates the solution of the

Black-Scholes-Merton Model at the optimal hedge when St has a geometric

Brownian motion, that is,

dSt

St

= µdt+ σdWt (2.2.4)

as ∆t → 0, where Wt is a standard Brownian motion, and µ and σ are

constants.

Using the first-order Taylor expansion, the relationship between Ct+∆t

and Ct is expressed as follows:

Ct+∆t = Ct +
∂Ct

∂St

∆St +O
((

∆St

)2)
= Ct +

∂Ct

∂St

∆St +O (∆t) (2.2.5)

Note that the symbol ∆St means St+∆t − St, which is different from ∆St in

6



CHAPTER 2. QLBS MODEL

(2.1.5). By substituting this into (2.2.3) and ∆t → 0, we get:

lim
∆t→0

u∗
t (St) = lim

∆t→0

Cov
[
Ct +

∂Ct

∂St
∆St +O (∆t) ,∆St|Ft

]
V ar [∆St|Ft]

= lim
∆t→0

1

V ar [∆St|Ft]

(
E
[(

Ct +
∂Ct

∂St

∆St +O (∆t)

)
∆St|Ft

]

− E
[
Ct +

∂Ct

∂St

∆St +O (∆t) |Ft

]
E [∆St|Ft]

)

= lim
∆t→0

1

V ar [∆St|Ft]

(
CtE [∆St|Ft] +

∂Ct

∂St

E
[
∆St∆St|Ft

]
+ E [O (∆t)∆St|Ft]

− CtE [∆St|Ft]−
∂Ct

∂St

E
[
∆St|Ft

]
E [∆St|Ft]− E [O (∆t) |Ft]E [∆St|Ft]

)

= lim
∆t→0

∂Ct

∂St

V ar [∆St|Ft]

(
E
[(
∆St + er∆tSt − St

)
∆St|Ft

]
− E

[
∆St + er∆tSt − St|Ft

]
E [∆St|Ft]

)

= lim
∆t→0

∂Ct

∂St

(
(E [∆St∆St|Ft]− E [∆St|Ft]E [∆St|Ft])

V ar [∆St|Ft]

)
=

∂Ct

∂St

(2.2.6)

Considering a sufficiently small ∆t and an optimal hedge in the second term

of (2.2.2),

ut(St)E [∆St|Ft] = u∗
t (St)E

[
St+∆t − er∆tSt|Ft

]
= u∗

t (St)E
[
St+∆t − St − St

(
er∆t − 1

)
|Ft

]
≈ u∗

t (St)E [dSt − rStdt|Ft]

= u∗
t (St)E [µStdt+ σStdWt − rStdt|Ft]

= u∗
t (St) (µ− r)Stdt ≈

∂Ct

∂St

(µ− r)Stdt (2.2.7)

Using the second-order Taylor expansion, the relationship between Ct+∆t and

7



CHAPTER 2. QLBS MODEL

Ct is expressed as follows:

Ct+∆t = Ct +
∂Ct

∂t
dt+

∂Ct

∂St

dSt +
1

2

∂2Ct

∂S2
t

(dSt)
2 + · · ·

= Ct +
∂Ct

∂t
dt+

∂Ct

∂St

St (µdt+ σdWt)

+
1

2

∂2Ct

∂S2
t

S2
t

(
σ2dW 2

t + 2µσdWtdt
)
+O

(
dt2
)

(2.2.8)

We obtain the following by substituting this into equation (2.2.2), along with

equation (2.2.7) and the optimal hedge.

Ct = e−r∆t (E [Ct+∆t|Ft]− u∗
t (St)E [∆St|Ft])

= e−r∆t

(
E
[
Ct +

∂Ct

∂t
dt+

∂Ct

∂St

St (µdt+ σdWt)

+
1

2

∂2Ct

∂S2
t

S2
t

(
σ2dW 2

t + 2µσdWtdt
)
+O

(
dt2
)
|Ft

]
− u∗

t (St)E [∆St|Ft]

)

= e−r∆t

(
Ct +

∂Ct

∂t
dt+

∂Ct

∂St

Stµdt+
1

2

∂2Ct

∂S2
t

S2
t σ

2dt

+ E
[
O
(
dt2
)
|Ft

]
− u∗

t (St)E [∆St|Ft]

)
≈ e−r∆t

(
Ct +

∂Ct

∂t
dt+

∂Ct

∂St

Stµdt+
1

2

∂2Ct

∂S2
t

S2
t σ

2dt

+ E
[
O
(
dt2
)
|Ft

]
− ∂Ct

∂St

(µ− r)Stdt

)
If the left and right sides are arranged,

Ct

(
er∆t − er·0

)
≈
(
∂Ct

∂t
+ rSt

∂Ct

∂St

+ σ2S2
t

1

2

∂2Ct

∂S2
t

)
dt+ e−r∆tE

[
O
(
dt2
)
|Ft

]
If ∆t → 0 is taken on both sides, the above equation becomes the Black-

Scholes equation.

∂Ct

∂t
+ rSt

∂Ct

∂St

+ σ2S2
t

1

2

∂2Ct

∂S2
t

− rCt = 0

8



CHAPTER 2. QLBS MODEL

2.3 Transformation to stationary state vari-

ables

The QLBS model converts St to Xt and uses it.

Xt = −
(
µ− σ2

2

)
t+ logSt

The reason is that, as can be seen below, Xt is expected to lower the interval

covered by a set of basis functions rather than St, and that St and Xt are

mutually convertible.

dXt = −
(
µ− σ2

2

)
dt+ d logSt

= −
(
µ− σ2

2

)
dt+

((
µ− σ2

2

)
dt+ σdWt

)
= σdWt

To explain the contents naturally and simply while concentrating on the topic

of this paper, I will utilize St as it is rather than Xt.

2.4 Bellman Equations

When looking at Ct = E [Πt|Ft] as the option price from the standpoint of

selling the option, there is an unconsidered risk. Since the bank deposit Bt

in (2.1.1) is fixed at time t = 0 to B0, it runs the danger of being depleted

over time. Here is one of the option price models that accounts for this risk.

C
(ask)
0 (S, u) = E0

[
Π0 + λ

T∑
t=0

e−rtV ar [Πt|Ft]

∣∣∣∣∣S0 = S, u0 = u

]
(2.4.1)

λ is referred to as the risk-aversion parameter in this context, and as its name

implies, it controls how sensitively to reject risk. And the index of
∑T

t=0 is a

series of numbers that goes from t to T increasing by ∆t. The value function

9



CHAPTER 2. QLBS MODEL

in the QLBS model is defined as follows when the stock price is St at time t.

Vt(St) = E

[
−Πt − λ

T∑
t′=t

e−r(t′−t)V ar [Πt′ |Ft′ ]

∣∣∣∣∣Ft

]
(2.4.2)

Additionally, the following introduces π (t, St).

π : {0,∆t, . . . , T −∆t} × X → A

X is the entire state set, A is the entire action set, and π is a function of

those two variables. In other words, if at ∈ A and xt ∈ X , at = π (t, xt)

follows. And this serves as µt(St) of the previous exposition.

Let’s look at (2.4.2).

Vt+∆t(St+∆t) = E

[
−Πt+∆t − λ

T∑
t′=t+∆t

e−r(t′−(t+∆t))V ar [Πt′|Ft′ ]

∣∣∣∣∣Ft+∆t

]

Vt+∆t(St+∆t) + E [Πt+∆t|Ft+∆t]

= E

[
−λ

T∑
t′=t+∆t

e−r(t′−(t+∆t))V ar [Πt′|Ft′ ]

∣∣∣∣∣Ft+∆t

]

e−r∆t
(
Vt+∆t(St+∆t) + E [Πt+∆t|Ft+∆t]

)
= −λE

[
T∑

t′=t+∆t

e−r(t′−t)V ar [Πt′ |Ft′ ]

∣∣∣∣∣Ft+∆t

]

Therefore, using the above equation and (2.1.5), V π
t (St) is expressed as fol-

lows. Here, V π
t (St) represents the expected value of the total rewards received

10



CHAPTER 2. QLBS MODEL

by following policy π at time t and state St.

V π
t (St) = E

[
−Πt − λ

T∑
t′=t

e−r(t′−t)V ar [Πt′ |Ft′ ]

∣∣∣∣∣Ft

]

= E

[
−Πt − λV ar [Πt|Ft]− λ

T∑
t′=t+∆t

e−r(t′−t)V ar [Πt′ |Ft′ ]

∣∣∣∣∣Ft

]

= E
[
−Πt

∣∣Ft

]
− λE

[
V ar [Πt|Ft]

∣∣Ft

]
− λE

[
T∑

t′=t+∆t

e−r(t′−t)V ar [Πt′|Ft′ ]

∣∣∣∣∣Ft

]
= E

[
−Πt

∣∣Ft

]
− λE

[
V ar [Πt|Ft]

∣∣Ft

]
+ E

[
−λE

[
T∑

t′=t+∆t

e−r(t′−t)V ar [Πt′ |Ft′ ]

∣∣∣∣∣Ft+∆t

] ∣∣∣∣∣Ft

]
= E

[
−Πt

∣∣Ft

]
− λE

[
V ar [Πt|Ft]

∣∣Ft

]
+ E

[
e−r∆t

(
V π
t+∆t(St+∆t) + E [Πt+∆t|Ft+∆t]

) ∣∣∣∣∣Ft

]
= E

[
e−r∆tΠt+∆t − Πt

∣∣Ft

]
− λE

[
V ar [Πt|Ft]

∣∣Ft

]
+ e−r∆tE

[
V π
t+∆t(St+∆t)

∣∣Ft

]
= E

[
e−r∆tat∆St

∣∣Ft

]
− λE

[
V ar [Πt|Ft]

∣∣Ft

]
+ e−r∆tE

[
V π
t+∆t(St+∆t)

∣∣Ft

]
(2.4.3)

For convenience, let’s denote e−r∆t as γ.

To obtain the Bellman equation for the QLBS model, let’s defineR(St, at, St+∆t)

as:

R(St, at, St+∆t) = γat∆St − λV ar
[
Πt

∣∣Ft

]
(2.4.4)

And substituting (2.4.4) into (2.4.3) and rearranging (2.4.3), the Bellman

equation for the QLBS model can be obtained as follows.

V π
t (St) = Eπ

[
R(St, at, St+∆t) + γV π

t+∆t(St+∆t)
]

(2.4.5)

As a result, R(St, at, St+∆t) from equation (2.4.4) is now the reward in the

QLBS model. The following factors also affect how the reward R(St, at, St+∆t)

11
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is expressed.

V ar
[
Πt

∣∣Ft

]
= E

[
Π2

t

∣∣Ft

]
−
(
E
[
Πt

∣∣Ft

])2
= γ2

(
E
[
(Πt+∆t − at∆St)

2
∣∣Ft

]
−
(
E
[
Πt+∆t

∣∣Ft

]
− E

[
at∆St

∣∣Ft

])2)
= γ2

(
E
[
Π2

t+∆t

∣∣Ft

]
−
(
E
[
Πt+∆t

∣∣Ft

])2 − 2E
[
Πt+∆tat∆St

∣∣Ft

]
+ 2E

[
Πt+∆t

∣∣Ft

]
E
[
at∆St

∣∣Ft

]
+ E

[
(at∆St)

2
∣∣Ft

]
−
(
E
[
at∆St

∣∣Ft

])2 )
= γ2

(
V ar

[
Πt+∆t

∣∣Ft

]
− 2 Cov

[
Πt+∆t, at∆St

∣∣Ft

]
+ V ar

[
at∆St

∣∣Ft

] )
(2.4.6)

Substituting (2.4.6) into (2.4.4),

R(St, at, St+∆t) = γat∆St − λV ar
[
Πt

∣∣Ft

]
(2.4.7)

= γat∆St

− λγ2
(
V ar

[
Πt+∆t

∣∣Ft

]
− 2 Cov

[
Πt+∆t, at∆St

∣∣Ft

]
+ V ar

[
at∆St

∣∣Ft

] )
Now, V π

t (St) can be calculated backward in time based on (2.4.5).

V π
T (ST ) = −ΠT (ST )− λV ar [ΠT ] is a terminal condition at time t = T that

starts backward recursion.

The definition of the action-value function, or Q-function, is similar to (2.4.2).

Qπ
t (s, a) = Eπ

[
−Πt(St)− λ

T∑
t′=t

e−r(t′−t)V ar [Πt′(St′)|Ft′ ]

∣∣∣∣St = s, at = a

]
(2.4.8)

The optimal policy π∗
t is definded as follows.

π∗
t (St) = argmax

π
V π
t (St) = argmax

at∈A
Q∗

t (St, at)

Therefore, the Bellman optimality equation for the action-value function is:

Q∗
t (s, a) = E

[
Rt (St, at, St+∆t) + γ max

at+∆t∈A
Q∗

t+∆t (St+∆t, at+∆t)

∣∣∣∣St = s, at = a

]
(2.4.9)

12
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, where t = 0,∆t, . . . , T −∆t.

Q∗
T (ST , aT = 0) = −ΠT (ST )− λV ar [ΠT (ST )] (2.4.10)

is a terminal condition at time t = T that starts backward recursion. Using

(2.1.2), ΠT (ST ) can be obtained.

2.5 Optimal Policy

Substituting equation (2.4.7) into (2.4.9) gives:

Q∗
t (s, a) = γE

[
Q∗

t+∆t

(
St+∆t, a

∗
t+∆t

)
+ at∆St

∣∣∣∣St = s, at = a

]
− λγ2E

[
V ar

[
Πt+∆t

∣∣St = s, at = a
]
− 2at Cov

[
Πt+∆t,∆St

∣∣St = s, at = a
]

+ a2tV ar
[
∆St

∣∣St = s, at = a
] ∣∣∣∣St = s, at = a

]

= γE
[
Q∗

t+∆t

(
St+∆t, a

∗
t+∆t

)
+ at∆St

∣∣∣∣St = s, at = a

]
− λγ2

[
V ar

[
Πt+∆t

∣∣St = s, at = a
]
− 2a Cov

[
Πt+∆t,∆St

∣∣St = s, at = a
]

+ a2V ar
[
∆St

∣∣St = s, at = a
] ]

(2.5.1)

It should be noted here that E
[
Q∗

t+∆t

(
St+∆t, a

∗
t+∆t

)
|St = s, at = a

]
depends

on at only by the conditional probability p (St+∆t|St, at). However, it can be

said that E
[
Q∗

t+∆t

(
St+∆t, a

∗
t+∆t

)
|St = s, at = a

]
does not depend on it be-

cause the option buyer or seller does not have any impact on the market ac-

cording to the assumption of the Black-Scholes model. Therefore, Q∗
t (St, at)

13
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is quadratic with respect to at.

Q∗
t (St, at) = γE

[
Q∗

t+∆t

(
St+∆t, a

∗
t+∆t

) ∣∣∣∣Ft

]
+ γatE

[
∆St

∣∣∣∣Ft

]
(2.5.2)

− λγ2

(
V ar

[
Πt+∆t

∣∣Ft

]
− 2at Cov

[
Πt+∆t,∆St

∣∣Ft

]
+ a2tV ar

[
∆St

∣∣Ft

])
(2.5.2) is calculated as follows when performing backward recursion by ap-

plying the Monte Carlo method to the stock price paths later.

Q∗
t (St, at) = γE

[
Q∗

t+∆t

(
St+∆t, a

∗
t+∆t

)
+ at∆St

∣∣∣∣Ft

]
(2.5.3)

− λγ2E
[
Π̂2

t+∆t − 2atΠ̂t+∆t∆Ŝt + a2t

(
∆Ŝt

)2 ∣∣∣∣Ft

]
, t = 0,∆t, . . . , T −∆t

In (2.5.3), it is defined as Π̂t+∆t := Πt+∆t−Πt+∆t, where Πt+∆t is the sample

mean of all values of Πt+∆t. ∆Ŝt is similarly defined.

For reference,

Q∗
t (St, at) = γE

[
Q∗

t+∆t

(
St+∆t, a

∗
t+∆t

)
+ at∆St

∣∣∣∣Ft

]
is the result of changing λ to 0 in (2.5.1). In (2.4.10), if λ = 0, then

Q∗
T (ST , aT = 0) = −ΠT (ST )

So, Q∗
t (St, at) = −Πt (St, at) is obtained by the above equations and (2.1.5).

It can be rephrased as follows utilizing the concept of a fair option price

(2.2.1).

Ct = γE
[
Ct+∆t − at∆St

∣∣∣∣Ft

]
(2.5.4)

This phrase has the same meaning as (2.2.2). Additionally, when ∆t → 0, as

discussed in section 2.2, we have the Black-Scholes equation if we replace at

with the optimal hedge (2.2.3). In an experiment designed to demonstrate the

effect of a set of basis functions, the discussion just made will be employed.

Returning to the main topic, using that Q∗
t (St, at) is quadratic with re-

14
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spect to at, the optimal action is obtained as follows.

a∗t (St) =
Cov [Πt+∆t,∆St|Ft] +

1
2γλ

E [∆St|Ft]

V ar [∆St|Ft]
, t = T −∆t, . . . ,∆t, 0.

(2.5.5)

Let’s now determine the limit of equation (2.5.5) when ∆t → 0.

Through (2.2.6), it is possible to determine that

lim
∆t→0

Cov [Πt+∆t,∆St|Ft]

V ar [∆St|Ft]
=

∂Ct

∂St

(2.5.6)

From the fact that

V ar [∆St|Ft] = E
[
(∆St − E [∆St|Ft])

2 |Ft

]
= E

[
(∆St)

2 |Ft

]
−
(
E [∆St|Ft]

)2
= E

[(
St+∆t − er∆tSt

)2 |Ft

]
−
(
E [∆St|Ft]

)2
= E

[(
St+∆t − St + St − er∆tSt

)2 |Ft

]
−
(
E [∆St|Ft]

)2
= E

[(
dSt − St

(
er∆t − 1

))2 |Ft

]
−
(
E [∆St|Ft]

)2
= E

[(
µStdt+ σStdWt − St

(
er∆t − 1

))2 |Ft

]
−
(
E [∆St|Ft]

)2
= E

[
(µStdt)

2 + (σStdWt)
2 +

(
St

(
er∆t − 1

))2
+ 2µσS2

t dt dWt

− 2σS2
t

(
er∆t − 1

)
dWt − 2µS2

t

(
er∆t − 1

)
dt
∣∣∣Ft

]
−
(
E [∆St|Ft]

)2
= (µStdt)

2 + (σSt)
2 dt

+
(
St

(
er∆t − 1

))2 − 2µS2
t

(
er∆t − 1

)
dt−

(
E [∆St|Ft]

)2
≈ (µStdt)

2 + (σSt)
2 dt+ (Str dt)2 − 2µS2

t r (dt)
2 −

(
E [∆St|Ft]

)2
= ((µ− r)Stdt)

2 + (σSt)
2 dt−

(
E [∆St|Ft]

)2
≈ ((µ− r)Stdt)

2 + (σSt)
2 dt− ((µ− r)Stdt)

2

= (σSt)
2 dt (2.5.7)
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and

E [∆St|Ft] = E
[
St+∆t − er∆tSt|Ft

]
= E

[
St+∆t − St + St − er∆tSt|Ft

]
= E

[
dSt − St

(
er∆t − 1

)
|Ft

]
(2.5.8)

≈ E [µStdt+ σStdWt − rStdt|Ft]

= (µ− r)Stdt

, the following conclusion can be drawn by combining equations (2.5.6),

(2.5.8), and (2.5.7).

lim
∆t→0

a∗t (St) =
∂Ct

∂St

+
µ− r

2λσ2

1

St

, t = T −∆t, . . . ,∆t, 0. (2.5.9)

From this, it can be seen that if µ = r or λ → ∞ for a risk-aversion parameter

λ, the same result as (2.2.6) is obtained when ∆t → 0. And according to

(2.4.1) and (2.4.8), the following relationship can be found.

C
(ask)
0 (S0, a

∗
0) = −Q∗

0(S0, a
∗
0)

From now on, I will outline how to use the backward recursion in a Monte

Carlo setting to determine option pricing for stock price paths. At this point,

the QLBS model assumes that a set of basis functions {Φn(x)} has been cho-

sen arbitrarily, and the discussion begins. Assume that a∗t (St) and Q∗
t (St, a

∗
t )

are expanded using {Φn(x)} and represented as follows.

a∗t (St) =
N∑
n

ϕntΦn(St), Q∗
t (St, a

∗
t ) =

N∑
n

ωntΦn(St) (2.5.10)

Let’s start by determining the coefficients {ϕnt} for the optimal action. As-

sume that there are as many stock price paths as KMC . The optimal action

expansion can be achieved by substituting equation (2.5.10) into equation

(2.5.3) and minimizing Gt(ϕ) (2.5.11) derived by using the Monte Carlo es-
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timate.

Gt(ϕ) =

KMC∑
k=1

−
N∑
n

ϕntΦn

(
Sk
t

)
∆Sk

t + γλ

(
Π̂k

t+1 −
N∑
n

ϕntΦn

(
Sk
t

)
∆Ŝk

t

)2


(2.5.11)

The gradient of Gt(ϕ) for ϕ is

∂Gt

∂ϕit

=

KMC∑
k=1

(
−Φi

(
Sk
t

)
∆Sk

t − 2γλ

(
Π̂k

t+∆t −
N∑
n

ϕntΦn

(
Sk
t

)
∆Ŝk

t

)
Φi

(
Sk
t

)
∆Ŝk

t

)

=

KMC∑
k=1

(
−
(
2γλΠ̂k

t+∆tΦi(S
k
t )∆Ŝk

t + Φi(S
k
t )∆Sk

t

)
+ 2γλ

N∑
n

ϕntΦn(S
k
t )Φi(S

k
t )
(
∆Ŝk

t

)2)
(2.5.12)

When ∂Gt

∂ϕit
= 0, it is expressed as

KMC∑
k=1

(
N∑
n

ϕntΦn(S
k
t )Φi(S

k
t )
(
∆Ŝk

t

)2)

=

KMC∑
k=1

(
Π̂k

t+∆tΦi(S
k
t )∆Ŝk

t +
1

2γλ
Φi(S

k
t )∆Sk

t

)
(2.5.13)

Now we define N ×N matrix A and N × 1 matrix B as follows.

(
A(t)

)
ij
:=

KMC∑
k=1

Φi(S
k
t )Φj(S

k
t )
(
∆Ŝk

t

)2
(2.5.14)

(
B(t)

)
i1
:=

KMC∑
k=1

(
Π̂k

t+∆tΦi(S
k
t )∆Ŝk

t +
1

2γλ
Φi(S

k
t )∆Sk

t

)

From (2.5.14) and (2.5.13),

A(t)ϕ∗
t = B(t) (2.5.15)
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Therefore, the coefficients of expansion of the optimal action a∗t (St) are

ϕ∗
t =

(
A(t)

)−1
B(t) (2.5.16)

Going forward, let’s look for coefficients {ωnt} for Q-function Q∗
t (St, a

∗
t ).

From (2.4.9),

Rt (St, a
∗
t , St+∆t) + γ max

at+∆t∈A
Q∗

t+∆t (St+∆t, at+∆t) = Q∗
t (St, a

∗
t ) + ϵt , (2.5.17)

where ϵt is a random noise and the mean of ϵt is zero. Therefore, by inserting

(2.5.10) into (2.5.17) and identifying the coefficients that minimize the square

sum of ϵt, one can derive the coefficients {ωnt} of expansion of the optimal

Q-function Q∗
t (St, a

∗
t ). In terms of formula, it can be viewed as resolving the

least squares optimization problem.

Ft(ω) = (2.5.18)

KMC∑
k=1

(
Rt(S

k
t , a

∗
t , S

k
t+∆t) + γ max

at+∆t∈A
Q∗

t+∆t

(
Sk
t+∆t, at+∆t

)
−

N∑
n

ωntΦn

(
Sk
t

))2

After obtaining the gradient of Ft(ω) for ωnt in the same way as for Gt(ϕ), if

N × N matrix C and N × 1 matrix D are defined as follows, the relational

expression (2.5.20) can be obtained.

(
C(t)

)
ij
:=

KMC∑
k=1

Φi(S
k
t )Φj(S

k
t ) (2.5.19)

(
D(t)

)
i1
:=

KMC∑
k=1

Φi(S
k
t )

(
Rt(St, a

∗
t , St+∆t) + γ max

at+∆t∈A
Q∗

t+∆t (St+∆t, at+∆t)

)

C(t)ω∗
t = D(t) (2.5.20)

Therefore, the coefficients of expansion of the optimal Q-function Q∗
t (St, a

∗
t )

are

ω∗
t =

(
C(t)

)−1
D(t) (2.5.21)
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Chapter 3

The optimal action and

Q-function in QLBS

In this chapter, we will introduce how to find the optimal action and the

optimal Q-function among all sets of basis functions. The experiment in

chapter 4 will be theoretically supported by the findings in this chapter.

3.1 The optimal action

The inverse matrix of A(t) is utilized in (2.5.16), however A(t) is not necessarily

invertible.

Lemma 3.1.1. Let
(
∆Ŝk

t

)2
> 0 for all k = 1, 2, · · · , KMC.

Then, A(t) is non-singular if and only if
Φ1 (S

1
t )

Φ1 (S
2
t )

...

Φ1

(
SKMC
t

)

 ,


Φ2 (S

1
t )

Φ2 (S
2
t )

...

Φ2

(
SKMC
t

)

 , . . . , and


ΦN (S1

t )

ΦN (S2
t )

...

ΦN

(
SKMC
t

)

 (3.1.1)

are linearly independent.
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Proof. For all 0 ̸= (x1, x2, . . . , xN) = X ∈ RN ,

XTA(t)X =
N∑
i

xi

N∑
j

xj

KMC∑
k

Φi

(
Sk
t

)
Φj

(
Sk
t

) (
∆Ŝk

t

)2
(3.1.2)

=

KMC∑
k

(
x1Φ1(S

k
t ) + x2Φ2(S

k
t ) + . . .+ xNΦN(S

k
t )
)2 (

∆Ŝk
t

)2
≥ 0

If (3.1.1) are linearly independent, then,

for all 0 ̸= (x1, x2, . . . , xN) = X ∈ RN ,

KMC∑
k

(
x1Φ1(S

k
t ) + x2Φ2(S

k
t ) + . . .+ xNΦN(S

k
t )
)2 (

∆Ŝk
t

)2
> 0,

then A(t) is positive definite. So it has only positive eigenvalues, and is non-

singular.

If (3.1.1) are not linearly independent, then,

for some 0 ̸= (x1, x2, . . . , xN) = X ∈ RN ,

KMC∑
k

(
x1Φ1(S

k
t ) + x2Φ2(S

k
t ) + . . .+ xNΦN(S

k
t )
)2 (

∆Ŝk
t

)2
= 0

Since A(t) is symmetric, it is orthogonally diagonalizable, say A(t) = QTDQ.

Because A(t) is positive semi-definite, all of its eigenvalues are non-negative.

And with 0 ̸= X ∈ RN , QX ̸= 0. So 0 = XTA(t)X = XTQTDQX. Hence at

least one of its eigenvalue is zero. It means that A(t) is singular.

The lemma 3.1.1 has an
(
∆Ŝk

t

)2
> 0 condition. This is natural when St

is a geometric Brownian motion. Because, if dSt

St
= µdt+ σdWt, then

ˆ t+∆t

t

dSt

St

= µ∆t+ σ (Wt+∆t −Wt) (3.1.3)
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By Ito’s formula,

d (lnSt) =
1

St

dSt +
1

2

(
− 1

S2
t

)
(dSt)

2 =
dSt

St

− 1

2S2
t

σ2S2
t dt

So,
dSt

St

= d (lnSt) +
1

2
σ2dt (3.1.4)

The following expression can be obtained by combining (3.1.4) and (3.1.3).

lnSt+∆t − lnSt +
1

2
σ2∆t = µ∆t+ σ (Wt+∆t −Wt)

lnSt+∆t = lnSt +

(
µ− 1

2
σ2

)
∆t+ σ (Wt+∆t −Wt)

Therefore,

lnSt+∆t ∼ N (lnSt + (µ− 1

2
σ2)∆t, σ2∆t) (3.1.5)

From (3.1.5),
(
∆Ŝk

t

)2
> 0 with probability 1.

In other cases, it is necessary to check that
(
∆Ŝk

t

)2
> 0 has been met.

For the sake of convenience, it is assumed in this chapter that {Sk
t } meet the

requirement.

Theorem 3.1.2. Let time t be fixed. Assume that KMC stock price paths and

a set of basis functions {Φn}Nn=1 are given and that Si
t ̸= Sj

t if i ̸= j. Then

there is a set of basis functions {Ψn}KMC
n=1 that is able to get a reward −Gt(ϕ)

(see 2.5.11)) greater than or equal to any reward of the set of basis functions

{Φn}Nn=1.

Proof. For n = 1, 2, . . . , N , define Φ̂n as
[
Φn(S

1
t ),Φn(S

2
t ), · · · ,Φn(S

KMC
t )

]
.

By linear algebra theory, there is a linearly independent subset {Φ̂′} of {Φ̂n}
such that Span({Φ̂′}) = Span({Φ̂n}). And then, {Φ̂′} can be expanded into

a basis {Φ̂∗
n} of RKMC .

Since Si
t ̸= Sj

t when i ̸= j, we can choose a set of basis functions {Ψn}KMC
n=1

such that has the value Φ̂∗
n for {Sk

t }
KMC
k=1 , that is, Ψn(S

k
t ) = k th element of

Φ̂∗
n for all k = 1, 2, · · · , KMC and for all n = 1, 2, · · · , KMC .
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Now, we will show that {Ψn}KMC
n=1 is the set of basis functions we are looking

for. As looking at (2.5.10) and (2.5.11), we can find out that the Span({Φ̂n})
determine the range of the reward −Gt(ϕ) for {Φn}Nn=1. In other words, the

wider Span is, the more range of reward can be obtained. From the fact that

Span({Φ̂n}) = Span({Φ̂′}) ⊆ Span({Φ̂∗
n}), we can get a reward greater than

or equal to any reward of the set of basis functions {Φn}Nn=1 with the set of

basis functions {Ψn}KMC
n=1 .

In the proof above, there is a part that says ‘we can choose a set of

basis functions {Ψn}KMC
n=1 such that has the value Φ̂∗

n for {Sk
t }

KMC
k=1 , that

is, Ψn(S
k
t ) = k th element of Φ̂∗

n for all k = 1, 2, · · · , KMC and for all

n = 1, 2, · · · , KMC ’. Is it really so? Let’s consider L2 space. {Ψn}KMC
n=1 may

be generated via spline interpolation (see Ref. [7]), and since the vectors

{
[
Ψn(S

1
t ),Ψn(S

2
t ), · · · ,Ψn(S

KMC
t )

]
}KMC
n=1 are linearly independent,

∑KMC

n=1 cnΨn

cannot be a zero function, where {cn} are constants. Since
∑KMC

n=1 cnΨn is

continuous and does have a non-zero value, ||
∑KMC

n=1 cnΨn||2 ̸= 0. Therefore,

{Ψn}KMC
n=1 is linearly independent in L2.

The premise that Si
t ̸= Sj

t if i ̸= j is necessary for the previous theorem

3.1.2. The requirement is met when St is a geometric Brownian motion, as

can be seen by deriving the equation (3.1.6) below from (3.1.5).

lnSt ∼ N (lnS0 + (µ− 1

2
σ2)t, σ2t) (3.1.6)

In other instances, we will first discuss the optimal action among all sets of

basis functions for the case that Si
t ̸= Sj

t if i ̸= j, and then discuss it for the

case that Si
t = Sj

t for some i ̸= j.

Theorem 3.1.3. Let time t be fixed and let {Ψn}KMC
n=1 be the set of basis

functions that we get from theorem 3.1.2. Then ,with the set of basis functions

{Ψn}KMC
n=1 , there is the only one point ξ such that −Gt(ξ) (see (2.5.11)) is

the unique global maximum reward of −Gt(ϕ).

Proof. Since the functionGt(ϕ) (2.5.11) is differentiable, the gradient ofGt(ξ)

must be zero if ξ is to be a local extremum point. By lemma 3.1.1 and the
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definition of {Ψn}KMC
n=1 , A(t) is non-singular. So from (2.5.12) and (2.5.14), we

know that ,with the set of basis functions {Ψn}KMC
n=1 , there is the only one

point ξ such that the gradient of Gt(ξ) is zero.

By the second-order Taylor expansion, for any h ∈ RKMC , there is a real

number α between 0 and 1 such that

Gt(ϕ+ h) = Gt(ϕ) +

KMC∑
i=1

∂Gt

∂ϕi

(ϕ)hi +
1

2!

KMC∑
j=1

KMC∑
i=1

∂2Gt

∂ϕj∂ϕi

(ϕ+ αh)hihj

where hi means the i th element of h. In particular, when ϕ is ξ, it becomes

Gt(ξ + h) = Gt(ξ) + +
1

2!

KMC∑
j=1

KMC∑
i=1

∂2Gt

∂ϕj∂ϕi

(ξ + αh)hihj

From equation (2.5.12),

∂2Gt

∂ϕj∂ϕi

(ξ + αh) = 2γλ

KMC∑
k=1

Φj(S
k
t )Φi(S

k
t )
(
∆Ŝk

t

)2
= 2γλ

(
A(t)

)
ji

Then,

1

2!

KMC∑
j=1

KMC∑
i=1

∂2Gt

∂ϕj∂ϕi

(ξ + αh)hihj =
1

2!

KMC∑
j=1

KMC∑
i=1

2γλ
(
A(t)

)
ji
hihj = γλ hTA(t)h

By the fact that A(t) is non-singular, (3.1.2), and lemma 3.1.1,

hTA(t)h > 0 for all 0 ̸= h ∈ RKMC

hence Gt(ξ + h) > Gt(ξ), that is to say Gt(ξ) is a global minimum. As

mentioned above, it is the unique one. Thus, the reward −Gt(ξ) is the unique

global maximum of −Gt(ϕ) with the set of basis functions {Ψn}KMC
n=1 .

Theorem 3.1.4. Let time t be fixed and let {Ψn}KMC
n=1 be the set of basis

functions that we get from theorem 3.1.2. Assume that an action function

a∗t (·), with the set of basis functions {Ψn}KMC
n=1 , gets the maximum reward
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−Gt(ξ). Then, for k = 1, 2, . . . , KMC, the action function has values below;

a∗t (S
k
t ) =

Π̂k
t+∆t

∆Ŝk
t

+
1

2γλ

∆Sk
t

(∆Ŝk
t )

2

Proof. Let
[
Ψ
]
be

Ψ1(S
1
t )∆Ŝ1

t Ψ1(S
2
t )∆Ŝ2

t . . . Ψ1(S
KMC
t )∆ŜKMC

t

Ψ2(S
1
t )∆Ŝ1

t Ψ2(S
2
t )∆Ŝ2

t . . . Ψ2(S
KMC
t )∆ŜKMC

t

...
...

. . .
...

ΨKMC
(S1

t )∆Ŝ1
t ΨKMC

(S2
t )∆Ŝ2

t . . . ΨKMC
(SKMC

t )∆ŜKMC
t


From (2.5.14),

[
A

(t)
ij

]
= [Ψ] [Ψ]T , where T denote the transpose symbol. By

the definition of
[
Ψ
]
from theorem 3.1.2, it is invertible. So is

[
A

(t)
ij

]
. Hence

the equation (2.5.16) has a solution, that is to say ξ = [ξ1, ξ2, . . . , ξKMC
]T =(

A(t)
)−1

B(t) by theorem 3.1.3. Now, we will calculate the action values that

have the maximum reward.
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a∗t (S

1
t )

a∗t (S
2
t )

...

a∗t (S
KMC
t )

 =


Ψ1(S

1
t ) Ψ2(S

1
t ) . . . ΨKMC

(S1
t )

Ψ1(S
2
t ) Ψ2(S

2
t ) . . . ΨKMC

(S2
t )

...
...

. . .
...

Ψ1(S
KMC
t ) Ψ2(S

KMC
t ) . . . ΨKMC

(SKMC
t )




ξ1

ξ2
...

ξKMC



=


Ψ1(S

1
t ) Ψ2(S

1
t ) . . . ΨKMC

(S1
t )

Ψ1(S
2
t ) Ψ2(S

2
t ) . . . ΨKMC

(S2
t )

...
...

. . .
...

Ψ1(S
KMC
t ) Ψ2(S

KMC
t ) . . . ΨKMC

(SKMC
t )


[
A(t)

]−1 [
B(t)

]

= diag

[(
∆Ŝ1

t

)−1

,
(
∆Ŝ2

t

)−1

, . . . ,
(
∆ŜKMC

t

)−1
] [

Ψ
]T [

A(t)
]−1 [

B(t)
]

= diag

[(
∆Ŝ1

t

)−1

,
(
∆Ŝ2

t

)−1

, . . . ,
(
∆ŜKMC

t

)−1
] [

Ψ
]T [

Ψ
]−T [

Ψ
]−1 [

B(t)
]

= diag

[(
∆Ŝ1

t

)−1

, . . . ,
(
∆ŜKMC

t

)−1
] [

Ψ
]−1[

Ψ
]


Π̂1
t+∆t +

1
2γλ

∆S1
t

∆Ŝ1
t

Π̂2
t+∆t +

1
2γλ

∆S2
t

∆Ŝ2
t

...

Π̂KMC
t+∆t +

1
2γλ

∆S
KMC
t

∆Ŝ
KMC
t



=



Π̂1
t+∆t

∆Ŝ1
t

+ 1
2γλ

∆S1
t

(∆Ŝ1
t )

2

Π̂2
t+∆t

∆Ŝ2
t

+ 1
2γλ

∆S2
t

(∆Ŝ2
t )

2

...
Π̂

KMC
t+∆t

∆Ŝ
KMC
t

+ 1
2γλ

∆S
KMC
t

(∆Ŝ
KMC
t )2



Theorem 3.1.5. In QLBS model, there is no set of basis functions that is

able to have greater reward than that of an action which has the same values

on {Sk
t }

KMC
k=1 as a∗t (S

k
t ) of theorem 3.1.4.

Proof. Let {Φn} be an arbitrary set of basis functions. Then, by theorem

3.1.2, there is a set of basis functions {Ψn}KMC
n=1 that is able to get reward

25



CHAPTER 3. THE OPTIMAL ACTION AND Q-FUNCTION IN QLBS

greater than or equal to any of the set of basis functions {Φn}. So any reward

of {Φn} can not be greater than the maximum reward of {Ψn}KMC
n=1 . By theo-

rem 3.1.4, when −Gt(ϕ) has the maximum reward with {Ψn}KMC
n=1 , the action

function has the values a∗t (S
k
t ) of theorem 3.1.4, for k = 1, 2, . . . , KMC .

Now let’s discuss the case that Si
t = Sj

t for some i ̸= j. To apply the case

to the procedure for the case that Si
t ̸= Sj

t if i ̸= j, it is necessary to slightly

modify Gt(ϕ). Let’s reindex as follows when there are K ′
MC distinct values

among {Sk
t }

KMC
k=1 . The {Slm

t } that reindex {Sk
t }

KMC
k=1 contains two indices: l,

a group of {Sk
t }

KMC
k=1 that consists of K ′

MC distinct values, and m, a group of

{Sk
t }

KMC
k=1 that overlap each other for each l. Let Ml denote the total number

of m for each l. Then (2.5.11) can be expressed as:

Gt(ϕ) =

KMC∑
k=1

−
N∑
n

ϕntΦn

(
Sk
t

)
∆Sk

t + γλ

(
Π̂k

t+∆t −
N∑
n

ϕntΦn

(
Sk
t

)
∆Ŝk

t

)2


=

K′
MC∑
l=1

Ml∑
m=1

(
−

N∑
n

ϕntΦn

(
Slm
t

)
∆Slm

t

+ γλ

(
Π̂lm

t+∆t −
N∑
n

ϕntΦn

(
Slm
t

)
∆Ŝlm

t

)2)

This also allows equation (2.5.13) to be expressed as:

KMC∑
k=1

(
N∑
n

ϕntΦn(S
k
t )Φi(S

k
t )
(
∆Ŝk

t

)2)

=

KMC∑
k=1

(
Π̂k

t+∆tΦi(S
k
t )∆Ŝk

t +
1

2γλ
Φi(S

k
t )∆Sk

t

)
K′

MC∑
l=1

Ml∑
m=1

(
N∑
n

ϕntΦn(S
lm
t )Φi(S

lm
t )
(
∆Ŝlm

t

)2)

=

K′
MC∑
l=1

Ml∑
m=1

(
Π̂lm

t+∆tΦi(S
lm
t )∆Ŝlm

t +
1

2γλ
Φi(S

lm
t )∆Slm

t

)
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And equation (2.5.14) is

(
A(t)

)
ij
:=

KMC∑
k=1

Φi(S
k
t )Φj(S

k
t )
(
∆Ŝk

t

)2
=

K′
MC∑
l=1

Ml∑
m=1

Φi(S
lm
t )Φj(S

lm
t )
(
∆Ŝlm

t

)2
=

K′
MC∑
l=1

Φi(S
l1
t )Φj(S

l1
t )

Ml∑
m=1

(
∆Ŝlm

t

)2
(
B(t)

)
i1
:=

KMC∑
k=1

(
Π̂k

t+∆tΦi(S
k
t )∆Ŝk

t +
1

2γλ
Φi(S

k
t )∆Sk

t

)

=

K′
MC∑
l=1

Ml∑
m=1

(
Π̂lm

t+∆tΦi(S
lm
t )∆Ŝlm

t +
1

2γλ
Φi(S

lm
t )∆Slm

t

)

=

K′
MC∑
l=1

Φi(S
l1
t )

Ml∑
m=1

(
Π̂lm

t+∆t∆Ŝlm
t +

1

2γλ
∆Slm

t

)

Now, since Slm
t ̸= Sl′m′

t if l ̸= l′, the method for the case that Si
t ̸= Sj

t if i ̸= j

can be applied. Therefore, we can see that

a∗t
(
Sl1
t

)
=

∑Ml

m=1

(
Π̂lm

t+∆t∆Ŝlm
t + 1

2γλ
∆Slm

t

)
∑Ml

m=1

(
∆Ŝlm

t

)2 , l = 1, 2, . . . , K ′
MC

is the optimal action we are looking for.

3.2 The optimal Q-function

The process of finding the optimal Q-function for all sets of basis functions

is essentially the same as the process for finding the optimal action for all

sets of basis functions.
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Lemma 3.2.1. C(t) is non-singular if and only if
Φ1 (S

1
t )

Φ1 (S
2
t )

...

Φ1

(
SKMC
t

)

 ,


Φ2 (S

1
t )

Φ2 (S
2
t )

...

Φ2

(
SKMC
t

)

 , . . . , and


ΦN (S1

t )

ΦN (S2
t )

...

ΦN

(
SKMC
t

)

 (3.2.1)

are linearly independent.

Proof. For all 0 ̸= (x1, x2, . . . , xN) = X ∈ RN ,

XTC(t)X =
N∑
i

xi

N∑
j

xj

KMC∑
k

Φi

(
Sk
t

)
Φj

(
Sk
t

)
(3.2.2)

=

KMC∑
k

(
x1Φ1(S

k
t ) + x2Φ2(S

k
t ) + . . .+ xNΦN(S

k
t )
)2 ≥ 0

If (3.2.1) are linearly independent, then,

for all 0 ̸= (x1, x2, . . . , xN) = X ∈ RN ,

KMC∑
k

(
x1Φ1(S

k
t ) + x2Φ2(S

k
t ) + . . .+ xNΦN(S

k
t )
)2

> 0,

then C(t) is positive definite. So it has only positive eigenvalues, and is non-

singular.

If (3.1.1) are not linearly independent, then,

for some 0 ̸= (x1, x2, . . . , xN) = X ∈ RN ,

KMC∑
k

(
x1Φ1(S

k
t ) + x2Φ2(S

k
t ) + . . .+ xNΦN(S

k
t )
)2 (

∆Ŝk
t

)2
= 0

Since C(t) is symmetric, it is orthogonally diagonalizable, say C(t) = QTDQ.

Because C(t) is positive semi-definite, all of its eigenvalues are non-negative.

And with 0 ̸= X ∈ RN , QX ̸= 0. So 0 = XTC(t)X = XTQTDQX. Hence at

least one of its eigenvalue is zero. It means that C(t) is singular.
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Theorem 3.2.2. Let time t be fixed. Assume that KMC stock price paths and

a set of basis functions {Φn}Nn=1 are given and that Si
t ̸= Sj

t if i ̸= j. Then

there is a set of basis functions {Ψn}KMC
n=1 that is able to get a squared error

Ft(ω) (see (2.5.18)) less than or equal to any squared error of the set of basis

functions {Φn}Nn=1.

Proof. For n = 1, 2, . . . , N , define Φ̂n as
[
Φn(S

1
t ),Φn(S

2
t ), · · · ,Φn(S

KMC
t )

]
.

By linear algebra theory, there is a linearly independent subset {Φ̂′} of {Φ̂n}
such that Span({Φ̂′}) = Span({Φ̂n}). And then, {Φ̂′} can be expanded into

a basis {Φ̂∗
n} of RKMC .

Since Si
t ̸= Sj

t when i ̸= j, we can choose a set of basis functions {Ψn}KMC
n=1

such that has the value Φ̂∗
n for {Sk

t }
KMC
k=1 , that is, Ψn(S

k
t ) = k th element of

Φ̂∗
n for all k = 1, 2, · · · , KMC and for all n = 1, 2, · · · , KMC .

Now, we will show that {Ψn}KMC
n=1 is the set of basis functions we are looking

for. As looking at (2.5.10) and (2.5.18), we can find out that the Span({Φ̂n})
determines the range of the squared error Ft(ω) for {Φn}Nn=1. In other words,

the wider Span is, the more range of reward can be obtained. From the fact

that Span({Φ̂n}) = Span({Φ̂′}) ⊆ Span({Φ̂∗
n}), we can get a squared error

less than or equal to any squared error of the set of basis functions {Φn}Nn=1

with the set of basis functions {Ψn}KMC
n=1 .

Theorem 3.2.3. Let time t be fixed and let {Ψn}KMC
n=1 be the set of basis

functions that we get from theorem 3.2.2. Then ,with the set of basis functions

{Ψn}KMC
n=1 , there is the only one point ξ such that Ft(ξ) (see (2.5.18)) is the

unique global minimum squared error of Ft(ω).

Proof. Since the function Ft(ω) (2.5.18) is differentiable, the gradient of Ft(ξ)

must be zero if ξ is to be a local extremum point. By lemma 3.2.1 and the

definition of {Ψn}KMC
n=1 , C(t) is non-singular. So from (2.5.19), we know that

,with the set of basis functions {Ψn}KMC
n=1 , there is the only one point ξ such

that the gradient of Ft(ξ) is zero.
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By the second-order Taylor expansion, for any h ∈ RKMC , there is a real

number α between 0 and 1 such that

Ft(ω + h) = Ft(ω) +

KMC∑
i=1

∂Ft

∂ωi

(ω)hi +
1

2!

KMC∑
j=1

KMC∑
i=1

∂2Ft

∂ωj∂ωi

(ω + αh)hihj

where hi means the i th element of h. In particular, when ω is ξ, it becomes

Ft(ξ + h) = Ft(ξ) +
1

2!

KMC∑
j=1

KMC∑
i=1

∂2Ft

∂ωj∂ωi

(ξ + αh)hihj

From equation (2.5.18),

∂2Ft

∂ωj∂ωi

(ξ + αh) = 2

KMC∑
k=1

Φj(S
k
t )Φi(S

k
t ) = 2

(
C(t)

)
ji

Then,

1

2!

KMC∑
j=1

KMC∑
i=1

∂2Ft

∂ωj∂ωi

(ξ + αh)hihj =
1

2!

KMC∑
j=1

KMC∑
i=1

2
(
C(t)

)
ji
hihj = hTC(t)h

By the fact that C(t) is non-singular, (3.2.2), and lemma 3.2.1,

hTC(t)h > 0 for all 0 ̸= h ∈ RKMC

hence Ft(ξ + h) > Ft(ξ), that is to say Ft(ξ) is a global minimum. As men-

tioned above, it is the unique one. Thus, the squared error Ft(ξ) is the unique

global minimum of Ft(ω) with the set of basis functions {Ψn}KMC
n=1 .

Theorem 3.2.4. Let time t be fixed and let {Ψn}KMC
n=1 be the set of basis func-

tions that we get from theorem 3.2.2. Assume that an Q-function Q∗
t (·, a∗t ),

with the set of basis functions {Ψn}KMC
n=1 , gets the minimum squared error

Ft(ξ). Then, for k = 1, 2, . . . , KMC, the Q-function has values below;

Q∗
t

(
Sk
t , a

∗
t

)
= Rt(S

k
t , a

∗
t , S

k
t+∆t) + γ max

at+∆t∈A
Q∗

t+∆t

(
Sk
t+∆t, at+∆t

)
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Proof. Let
[
Ψ
]
be

Ψ1(S
1
t ) Ψ1(S

2
t ) . . . Ψ1(S

KMC
t )

Ψ2(S
1
t ) Ψ2(S

2
t ) . . . Ψ2(S

KMC
t )

...
...

. . .
...

ΨKMC
(S1

t ) ΨKMC
(S2

t ) . . . ΨKMC
(SKMC

t )


From (2.5.19),

[
C

(t)
ij

]
= [Ψ] [Ψ]T , where T denote the transpose symbol. By

the definition of
[
Ψ
]
from theorem 3.2.2, it is invertible. So is

[
C

(t)
ij

]
. Hence

the equation (2.5.21) has a solution, that is to say ξ = [ξ1, ξ2, . . . , ξKMC
]T =(

C(t)
)−1

D(t) by theorem 3.2.3. Now, we will calculate the Q-function values

that have the minimum squared error.
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Q∗

t (S
1
t , a

∗
t )

Q∗
t (S

2
t , a

∗
t )

...

Q∗
t (S

KMC
t , a∗t )



=


Ψ1(S

1
t ) Ψ2(S

1
t ) . . . ΨKMC

(S1
t )

Ψ1(S
2
t ) Ψ2(S

2
t ) . . . ΨKMC

(S2
t )

...
...

. . .
...

Ψ1(S
KMC
t ) Ψ2(S

KMC
t ) . . . ΨKMC

(SKMC
t )




ξ1

ξ2
...

ξKMC



=


Ψ1(S

1
t ) Ψ2(S

1
t ) . . . ΨKMC

(S1
t )

Ψ1(S
2
t ) Ψ2(S

2
t ) . . . ΨKMC

(S2
t )

...
...

. . .
...

Ψ1(S
KMC
t ) Ψ2(S

KMC
t ) . . . ΨKMC

(SKMC
t )


[
C(t)

]−1 [
D(t)

]

=
[
Ψ
]T [

C(t)
]−1 [

D(t)
]

=
[
Ψ
]T [

Ψ
]−T [

Ψ
]−1 [

D(t)
]

=
[
Ψ
]−1[

Ψ
]


Rt(S
1
t , a

∗
t , S

1
t+∆t) + γmaxat+∆t∈A Q∗

t+∆t

(
S1
t+∆t, at+∆t

)
Rt(S

2
t , a

∗
t , S

2
t+∆t) + γmaxat+∆t∈A Q∗

t+∆t

(
S2
t+∆t, at+∆t

)
...

Rt(S
KMC
t , a∗t , S

KMC
t+∆t ) + γmaxat+∆t∈A Q∗

t+∆t

(
SKMC
t+∆t , at+∆t

)



=


Rt(S

1
t , a

∗
t , S

1
t+∆t) + γmaxat+∆t∈AQ∗

t+∆t

(
S1
t+∆t, at+∆t

)
Rt(S

2
t , a

∗
t , S

2
t+∆t) + γmaxat+∆t∈AQ∗

t+∆t

(
S2
t+∆t, at+∆t

)
...

Rt(S
KMC
t , a∗t , S

KMC
t+∆t ) + γmaxat+∆t∈A Q∗

t+∆t

(
SKMC
t+∆t , at+∆t

)



Theorem 3.2.5. In QLBS model, there is no set of basis functions that is

able to have less squared error than that of a Q-function which has the same

values on {Sk
t }

KMC
k=1 as Q∗

t (St, a
∗
t ) of theorem 3.2.4.
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Proof. Let {Φn} be an arbitrary set of basis functions. Then, by theorem

3.2.2, there is a set of basis functions {Ψn}KMC
n=1 that is able to get a squared

error less than or equal to any of the set of basis functions {Φn}. So any

squared error of {Φn} can not be less than the minimum squared error of

{Ψn}KMC
n=1 . By theorem 3.2.4, when Ft(ω) has the minimum squared error

with {Ψn}KMC
n=1 , the Q-function has the values Q∗

t

(
Sk
t , a

∗
t

)
of theorem 3.2.4,

for k = 1, 2, . . . , KMC .

Now let’s discuss the case that Si
t = Sj

t for some i ̸= j. To apply the case

to the procedure for the case that Si
t ̸= Sj

t if i ̸= j, it is necessary to slightly

modify Ft(ω). Let’s reindex as follows when there are K ′
MC distinct values

among {Sk
t }

KMC
k=1 . The {Slm

t } that reindex {Sk
t }

KMC
k=1 contains two indices: l,

a group of {Sk
t }

KMC
k=1 that consists of K ′

MC distinct values, and m, a group of

{Sk
t }

KMC
k=1 that overlap each other for each l. Let Ml denote the total number

of m for each l. Then (2.5.18) can be expressed as:

Ft(ω) =

KMC∑
k=1

(
Rt(S

k
t , a

∗
t , S

k
t+∆t) + γ max

at+∆t∈A
Q∗

t+∆t

(
Sk
t+∆t, at+∆t

)
−

N∑
n

ωntΦn

(
Sk
t

))2

=

K′
MC∑
l=1

Ml∑
m=1

(
Rt(S

lm
t , a∗t , S

lm
t+∆t)

+ γ max
at+∆t∈A

Q∗
t+∆t

(
Slm
t+∆t, at+∆t

)
−

N∑
n

ωntΦn

(
Slm
t

))2

Now, since Slm
t ̸= Sl′m′

t if l ̸= l′, the method for the case that Si
t ̸= Sj

t if i ̸= j

can be applied. Therefore, we can see that, for l = 1, 2, . . . , K ′
MC ,

Q∗
t (S

l1
t , a

∗
t ) =

1

Ml

Ml∑
m=1

(
Rt(S

l1
t , a

∗
t , S

lm
t+∆t) + γ max

at+∆t∈A
Q∗

t+∆t

(
Slm
t+∆t, at+∆t

))

is the optimal Q-function we are looking for.
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Chapter 4

Experiment : The optimal is

not optimal

Igor Halperin in his paper [2] “We will leave a detailed investigation of em-

pirical behavior of option prices and hedges in this pre-asymptotic regime to

a future work, while concentrating in this paper on a mathematical frame-

work.” said. The pre-asymptotic regime in this context refers to ∆t > 0 and

λ > 0. Let’s experiment with the effect of basis functions in this paper and

then examine the outcomes of the experiment.

4.1 Experimental Design

The experiment’s goal is to determine whether option pricing will improve

if we select a set of basis functions that produce greater rewards in Gt(ϕ)

(2.5.11). Chapter 3 and (2.5.4) provides the experiment’s theoretical back-

ground. The experiment is structured as follows.

- Consider a geometric Brownian motion dSt = µStdt + σStdWt for the

stock price St.

The details of the figures are as follows.

S0 = 100, µ = 0.03, σ = 0.05, T = 1, and ∆t = 1/24.
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- Prepare 100 instances of 500 paths data of such a stock price.

- With that data, the results are obtained for each of the two sets of

basis functions in the QLBS model.

One is a B-spline, and the other is a set of basis functions that can

achieve the highest reward in Gt(ϕ), a
∗
t (S

k
t ) =

Π̂k
t+∆t

∆Ŝk
t

+ 1
2γλ

∆Sk
t

(∆Ŝk
t )

2
, as

detailed in Chapter 3.

As observed in (2.5.4) and the remarks below, the QLBS model can

be used to estimate the option pricing of the BSM model if λ is large

enough in (2.5.5).

- Therefore, the error rate is defined as follows.

Error rate :=
E0 [Π0]− BSM value

BSM value
× 100

- The mean and standard deviation of the error rate are calculated after

100 iterations, and the results are contrasted.

- In addition to the stock price paths data of 500 bundles, the previous

experiment is also conducted using the same approach for stock price

paths of 1000, 5000, and 10,000 bundles.

- The experiment’s outcomes are then collected and compared.

4.2 Experimental results and analysis

The experimental results were presented in a graph and a table. In the graph,

the y-axis is the error rate and the x-axis is the number of stock price paths.

The orange circles represent the values of the original QLBS model using

B-spline basis functions. The vertical lines above and below the circle show

the standard deviation added to and subtracted from the mean. The blue

diamond shape indicates the value of the optimal QLBS model using the

set of basis functions obtained in Chapter 3. The first column in the table
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represents the number of stock price paths. In the remaining columns, the

index is in the first row.

Let’s analyze the experimental results. First, the original QLBS model

demonstrates that as the number of stock price paths rises, the average and

standard deviation of the error rate converges to zero. It indicates that option

pricing closely tracks the option value predicted by the BSM model. However,

in the case of the optimal QLBS model, the average error rate does not

decrease, and even the standard deviation does not converge to zero. Option

pricing was not carried out with the option value of the BSM model, despite

using the same data, and since the standard deviation did not converge, this

implies that option pricing was not carried out with any other points. The

standard deviation for the optimal QLBS model was too high to display in

36
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the graph.

We currently come to two conclusions.

1. The optimal QLBS model has higher rewards than the original QLBS

model. However, the preceding experimental results show that which

set of basis functions is used affects option pricing independently of

reward.

2. Depending on the choice of a set of basis functions, even with the same

quantity of data, the rate at which option pricing will converge varies.

Therefore, choosing a set of basis functions at random, as in the current

QLBS model [2], is no longer desirable. We require a theory that will enable

us to select a set of basis functions for the QLBS model that is more effective.

37



Bibliography

[1] Fischer Black and Myron Scholes. The pricing of options and corporate

liabilities. The Journal of political economy, 81(3):637–654, 1973.

[2] Igor Halperin. QLBS: Q-Learner in the Black-Scholes(-Merton) Worlds.

The Journal of derivatives, 28(1):99–122, 2020.

[3] Igor Halperin. The QLBS Q-Learner Goes NuQLear: Fitted Q Iteration,

Inverse RL, and Option Portfolios. Quantitative finance, 19(9):1543–

1553, 2019.

[4] Andreas J. Grau. Applications of Least-Squares Regressions to Pricing

and Hedging of Financial Derivatives. PhD. thesis, Technische Univer-

sität München, 2007.

[5] Marc Potters, Jean-Philippe Bouchaud, and, Dragan Sestovic. Hedged

Monte-Carlo: low variance derivative pricing with objective probabili-

ties. Physica A., 289(3):517–525, 2001.

[6] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An

Introduction, Second edition. The MIT Press, 2018.

[7] Rainer Kress. Numerical analysis. New York : Springer, 1998.

38



국문초록

이 논문은 QLBS model 에서 a set of basis functions 가 제약 없이 선택되는

것이 적절한가에 대해 논의한다. Igor Halperin 은 그의 논문 “QLBS: Q-Learner in

the Black-Scholes(-Merton) Worlds”에서 QLBS라는 discrete-time option hedging

and pricing model 을 소개했다. 그는 그 논문에서 특정한 조건 하에 discrete-time

간의 간격이 0 으로 수렴할수록 QLBS model 이 Black-Scholes-Merton model 에

수렴함을 증명하였지만 그 간격이 구체적인 양수일 때의 현상은 future work 로 남겨

두었다. 이 논문에서는 QLBS model 에서 설정한 reward 가 a set of basis functions

의 선택에 따라 애초에 기대했던 결과와 다른 option pricing 을 유도할 수 있다는

것을 보일 것이다.

주요어휘: QLBS, 다이나믹 프로그래밍, 옵션 헷징, 옵션 가격결정, 마르코프

결정 과정
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