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Abstract

The effect of basis functions on QLBS

Sangpil Moon
Department of Mathematical Sciences

The Graduate School

Seoul National University

The question of whether it is suitable to select a set of basis functions
in a QLBS model without any restrictions is discussed in this research. In
his paper titled “QLBS: @Q-Learner in the Black-Scholes(-Merton) Worlds”,
Igor Halperin proposed a discrete-time option hedging and pricing model
known as QLBS. In the study, he proved that the QLBS model converges to
the Black-Scholes-Merton model as the discrete-time interval converges to 0
under some circumstances, but he left the phenomenon where the discrete-
time interval is a specific positive number for future work. In this work,
I will demonstrate that, depending on the choice of a set of basis functions,
the reward setting in the QLBS model can result in option pricing that is

different from the initial outcome expected.

Key words: QLBS, Dynamic programming, Option hedging, Option pricing,
Markov Decision Process
Student Number: 2018-26597
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Chapter 1
Introduction

The risk of options is continuously neutralized to obtain the Black-Scholes-
Merton (BSM) model. However, in reality, continuously neutralizing is im-
possible. So there is an inevitable risk of mis-hedging. Igor Halperin proposed
a method of neutralizing risk in a discrete-time version of the BSM model
and named it the QLBS model. As it seems obvious in the setting, the QLBS
model converges to the BSM formulation as the interval of time steps van-
ishes.

To approximate the action function and Q-function, the QLBS model
freely chooses a set of basis functions. In this study, we demonstrate that
the reward in the QLBS model may not operate as expected when a set of
basis functions is chosen without any restrictions. In the section “Nu@)Lear
experiments” of the paper “The QLBS ()-Learner Goes NuQLear:Fitted ()
Iteration, Inverse RL, and Option Portfolios” [3], Igor Halperin experimented
and obtained the expected result, but only when the set of basis functions is
composed of cubic B-splines; it does not apply to other sets of basis functions.
When the interval between discrete times converges to 0, as Igor Halperin
has demonstrated, the QLBS model converges to the Black-Scholes-Merton
model; nevertheless, the phenomena that occur when the interval is a specific
positive value are left for future work.

This paper is organized as follows. First, we establish the common char-
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acteristic of the basis function sets that can yield the greatest reward in the
QLBS model. We shall demonstrate that, even though such a set of basis
functions produces greater reward, the QLBS model does not produce the
anticipated outcome. And I will finish the thesis with a conclusion. A model-
based Dynamic Programming (DP) method and a data-driven Reinforcement
Learning (RL) method are both included in the QLBS model. Since RL con-
verges to the DP result in the same environment, I will only consider DP in

this study while considering a set of basis functions.



Chapter 2

QLBS model

The QLBS model described in this chapter is based on Igor Halperin’s “QLBS:
Q-Learner in the Black-Scholes(-Merton) Worlds” [2].

2.1 Discrete portfolio

Let T be the maturity, S; be the price of the stock at time ¢, Hr(Sr) be the
payoff from the European option terminal at maturity, B; be a risk-free bank
deposit, u; be the position in the stock at time ¢, and II; be the portfolio.
The relationship is as follows at t < T.

Ht = UtSt + Bt (211)

Assume that there are no transaction fees and a self-financing constraint,
meaning that neither internal nor external money is allowed to flow. The
equation below will be reached if you sell all of the remaining stocks for cash

with a format of uy = 0 at maturity 7'

HT = BT = HT(ST> (212)
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Now we may get the relational expression as below, where r is the risk-free
interest rate.

W Spiar + € By = i arSriar + Bria (2.1.3)
Bt = GiTAt I:Bt+At + (U/t+At - Ut)St+At] y t=1T — At, c. ,At, 0. (214)

Substitute this expression into (2.1.1) and rearrange it as follows.

I, = u; Sy + e " [Biyat (Uesar — ur) Serat)

—rAt rAt
=e [Bt+At + UpparSerar + € upSy — utStJrAt}

= e A [HtJrAt — Ut (St+At — €TAtSt)}

= e "M Mpar — wAS],  ASy=Spae— €S, t=T—At,... At0.

Then the following expression can be obtained.

I, = e "2 [[pnr — wAS], AS; = Siinr—e™™1S, t=T—At,...,At,0.

(2.1.5)
From the viewpoint of minimizing risk, identify u,(S;) with the smallest vari-
ance while considering S; as a random variable. When the available cross-
sectional information, which refers to the data of all concurrent pathways, is

expressed as F; at time t, it is obtained as follows.

uy (Sy) = argmin Var [I1;| F]

= al"gmin Var [Ht-i-At — UtASt|JT';t] s t=1T — At, ey At, 0. (216)



CHAPTER 2. QLBS MODEL

The optimal hedge can be calculated analytically using the derivative of (2.6)

with u.(S;) as a variable.

Var [Ty ne — ui(Sp) ASy| F]
= E [(Mrae — ue(S)AS)? | F] — (B [Meyae — u(Se) AS|F))?
= E [T7, o/ F] — 20(S)E [ acAS|F] + uf (SR [(AS)? | Fi]
— B [y ad B + 2ui(S)E [y ae| F) E [AS Fi] — wf (S)E[AS| F]”
= Var [[lyad Fi] — 2w, (Sy)Cov [Ty ag, AS | F] + w2 (S,)Var [AS)]

This provides

OOU [Ht+At 3 ASt |.E]

e <St> - Var [A5t|ft] ’

t=T—At,...,At0. (2.1.7)

2.2 Hedging and pricing at At — 0

Consider the idea of fair option pricing, which is defined as the “time-t

expected value of the hedge portfolio II,”[2]. Here is the definition.
Using (2.1.5), it may be written as

Cy =E [e " nr — € " uy(Sy) AS, | F]
= e "ME [ ae| Fr] — €7 E [ue(S) AS| Fy)
= e MR [E [y ad| Froad | Fi] — e g (Sy)E [AS;|F] (2.2.2)
= e MR [Copnd Fi] — €7y (S)E [AS| F]
= e " (B [Crpael Fi] — wi(St)E[AS) F))
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(2.1.7) expressed as Cy is:

Cov [y as, ASy|F]
Var [AS;|F]
E [(TLya: — E Iy ae F]) (AS; — E[AS|F]) [ F
- Var [AS;|F]
_E e at ASe|Fi] — E [y e | Fi) E [AS: | F
o Var [AS|F]
E [E [Ty a:ASy| Frpnd] |Fi] — E [ ae Fi) E[AS|F]
- Var [AS;|F]
_ E[ASE [y ad Fryad |F] — E[E [ ae Frpad [F) E[AS|F]
- Var [AS;| Fi]
_ E[ASCiyad ] = E[Criae i) E[AS,|F]
B Var [ASy|F]
. Cov [Ct+At7 Astu:t]
 Var[AS|F]

up (5y) =

(2.2.3)

It will be demonstrated that C; closely approximates the solution of the
Black-Scholes-Merton Model at the optimal hedge when S; has a geometric

Brownian motion, that is,

d
DSt _ it + odw; (2.2.4)

t

as At — 0, where W, is a standard Brownian motion, and p and o are
constants.
Using the first-order Taylor expansion, the relationship between Cyia¢

and C} is expressed as follows:

OC,— 2 aC,
Crone = Cy + a—SZASt +0 ((ASt) ) = O+ 8—S:A5t LO(AY)  (22.5)

Note that the symbol AS, means S;;a; — S;, which is different from AS, in
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(2.1.5). By substituting this into (2.2.3) and At — 0, we get:

Cov [ct + 29RS, + O (At) ,Astm}
Algl up(S1) = Alg—% Var [AS;|F]

L 1 0C—
n Al}:l—{lo Var [ASy|F] (E {(Ct 0S5, a5, T 0 (At)> ASA.E}

-E {C’t + %A& + O (At) IE} E [AS|F] )
t

s 1 aC,
=l A (CtIE ASIF]+ 5 E [AS,AS,|F] +E [0 (At) AS,| F]

8C’t

~ CE[AS|F] - 55 F [AS|F E[AS|F] - E[O (At) | F]E [AStlft]>

ac,

= 9% rAt -
Al}fao Var [ASt|-Ft] (E [(ASt +e St St) ASt|ft]

) [ASt + erAtSt _ St|]:t} E [ASt|]:t]>

_ i 90 ((BIASAS)|F) — E[AS,|F]E[AS)|F))
At—0 05, Var [AS;|Fi
o0C,
= — 2.2.
s, (2.2.6)

Considering a sufficiently small At and an optimal hedge in the second term
of (2.2.2),

u (S E[AS|Fy] = uj (Sp)E [SHN - emtSt]}"t}
= u; (S)E [St+At -5 — S (emt — 1) |]:t]
~ uy (S)E [dS; — rSydt|F]
= uy (Sy)E [uSidt + oS, dW; — rSydt|F]
= uy(Sy) (pp — 7) Sidt ~ ggz (11— 1) Sydt (2.2.7)

Using the second-order Taylor expansion, the relationship between Cy, A+ and

H ‘~1]| 5k
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C; is expressed as follows:

3@ 86} 1 82 C115

Crear = Cor Zrdi+ e dSit 5 852 (dSe)" +
ac, . aC,
= Cp+ 5t + astS s (pdt + odWy)
1 a Ct 2 2 2 2
209 St (o2dW} + 2uodWidt) + O (dt?) (2.2.8)

We obtain the following by substituting this into equation (2.2.2), along with
equation (2.2.7) and the optimal hedge.

Cy = e " (E [Crrad Fi] — i (S)E[AS,|F])

ac,  aC

__—rAt t t

—e ( [Ot+ i+ S S udt + 0dIF)
L 10

o5
B mt( ac, ,  aC, 19°¢,

S2 (o2dW + 2podWdt) + O (d12) | 7| — uj (S)E [AS,|F) >

52 2dt

+E[O (dt2) | 7] — u; (S)E[AS,|F] )

oC, oC, 19°C
~ —T'At t t t o2 2
<Ct+—8t dt + 5o Sedt + 5 8525 o’dt
+E[O (dt?) | F] —%( —7) Stdt)

If the left and right sides are arranged,

. ac aC 192C B
e = er) = (Tt i+ 0282 85;) dt + SB[ (d12) |F)

If At — 0 is taken on both sides, the above equation becomes the Black-

Scholes equation.

0 0C: | 531 0°C,

ot 0, £2 0857

—TCtZO

A -L-t) 8k
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2.3 Transformation to stationary state vari-

ables

The QLBS model converts S; to X; and uses it.

0.2
Xy =— <,u—?>t+log5t

The reason is that, as can be seen below, X, is expected to lower the interval
covered by a set of basis functions rather than S;, and that S; and X, are

mutually convertible.

02

o? o?
= — (,u— ?) dt + ((u— ?) dt—l—ath) = odW;

To explain the contents naturally and simply while concentrating on the topic

of this paper, I will utilize S; as it is rather than Xj.

2.4 Bellman Equations

When looking at C; = E [II;|F;] as the option price from the standpoint of
selling the option, there is an unconsidered risk. Since the bank deposit B
in (2.1.1) is fixed at time ¢ = 0 to By, it runs the danger of being depleted

over time. Here is one of the option price models that accounts for this risk.

T
(S u) = By |y + A > e WVar I, F)

t=0

So = S,up = u] (2.4.1)

A is referred to as the risk-aversion parameter in this context, and as its name
implies, it controls how sensitively to reject risk. And the index of Zf:o is a

series of numbers that goes from ¢ to T increasing by At. The value function
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in the QLBS model is defined as follows when the stock price is S; at time ¢.

T
Vi(Sy) =E [ -II, =AY e " War [Ty Fy]

t'=t

]—}] (2.4.2)

Additionally, the following introduces 7 (¢, St).
7:{0,At,.... T— At} x X - A

X is the entire state set, A is the entire action set, and 7 is a function of
those two variables. In other words, if a; € A and z; € X, a; = 7 (t,2)

follows. And this serves as 1;(S;) of the previous exposition.
Let’s look at (2.4.2).

T
Virar(Sipa) = E | —Tpar — A Y e 7080V [T, | Fy fHAtI
t'=t+At
Vigar(Serar) + E Mg ae| Fryad
T
=F [=\ Z oW =AY/ 0 [T | Fo] ]:HAt]
t'=t+At
e A (V;H-At(st—i-At) + E [y ae| Frrnd] )
T
==AE| > e IVar (M| Fy ftw]
t=t+At

Therefore, using the above equation and (2.1.5), V;7(S;) is expressed as fol-

lows. Here, V;7(.S;) represents the expected value of the total rewards received

10
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by following policy 7 at time ¢ and state S;.

V(S =E |-II, — )\Z "=V ar [y | Fy ]
=E |11, — \Var[II,|F,] — Z "DV ar [y | Fo] | F,
=t+At
T
=E [-IL|F] = AE [Var [L|F]|F] = AE | Y e War [II,]Fy) ]—“t]
t'=t+At

) [—Ht‘ﬂ} —AE [VCLT’ [IL;| F] }ft}

+E | -)E

= E [-IL|F] - AE [Var [IL|F] | 7]

T
Z eV ar [Ty | Fyl

t'=t+At

ft+At]

4

IR efrAt (Vt:rLAt(St—i-AO +E [Ht+At|ft+At])

Fi

=E [ pne — | F] — AE [Var [IL|F] | F] + e "™ E [VEa(Serad) | F
=E [e "0, AS|F] — AE [Var [IL|F] | F] + e ™E [V (Serar)| Fi]

(2.4.3)
For convenience, let’s denote e "¢ as 7.

To obtain the Bellman equation for the QLBS model, let’s define R(Sy, as, Siyar)

as:
R(St, Ay, St+At> = vatASt — XVar [Ht|]:t] (244)

And substituting (2.4.4) into (2.4.3) and rearranging (2.4.3), the Bellman
equation for the QLBS model can be obtained as follows.

V7 (Sy) = E™ [R(S, ar, Seear) + YV ae(Sirad)] (2.4.5)

As a result, R(Sy, as, Siray) from equation (2.4.4) is now the reward in the
QLBS model. The following factors also affect how the reward R(S;, a;, Si1at)

11
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is expressed.

Var [IL|F] = E [IG|F] - (E[IL|7])°
. (E (Mo ae — aAS)? | F] = (B [Ty ac] B — E [0A8,| 7] )2)
= 72 (E [, 0| F] = (B [Mesa| 7)) = 2B [Ty secnd S| 7]
+ 2B [Ty o] F) B [wAS|F] + E[(0A8)° | F] - (B [0A8]F])")
=92 (Var [Meyae| 7] = 2 Cov [Ty a0, aAS | F] + Var [aAS|F] )
(2.4.6)

Substituting (2.4.6) into (2.4.4),

R(St, Qy, St+At> = 'yatASt — \Var [Ht|]:t} (247)
= va; AS;
- )\’72 (VCLT [Ht-‘y—At‘ft] —2 Cov [Ht+At7 atAStlf-t} + Var [atASt|ft] )

Now, V7 (S;) can be calculated backward in time based on (2.4.5).
VI (St) = —1lp(S7) — AVar [ll7] is a terminal condition at time ¢t = 7" that
starts backward recursion.

The definition of the action-value function, or Q-function, is similar to (2.4.2).

T
—IL(S) = A > e "I Var [Ty (Sy) | Fo

t'=t

Q?(Sv a) =[E"

Sy =s,a; = a]
(2.4.8)
The optimal policy 7} is definded as follows.

7/ (Sy) = argmax V" (S;) = argglax Q7 (S, ar)

Therefore, the Bellman optimality equation for the action-value function is:

Q;(s,a) =E | R (S, ar, Seent) +7 ma}ECA Qi (Stxat, ariat) ‘St =S5 a4 =a
At At
(2.4.9)

12
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, where t =0, At, ..., T — At.
Q:} (ST, ar = O) = —HT (ST) — XVWar [HT (ST)] (2410)

is a terminal condition at time ¢ = T' that starts backward recursion. Using
(2.1.2), Iy (St) can be obtained.

2.5 Optimal Policy

Substituting equation (2.4.7) into (2.4.9) gives:

Qi (s,a) =~E {QZ}At (St-‘rAta a;:rm) + a; AS,

St:s,at:a}

— MWE |Var [sad] S = s, a0 = a] — 2a, Cov [Ty a, AS|S; = s,a; = a
+a;Var [AS|Sy = s,a; = a] Sy = 5,0, = a]
=E [Q;At (Strat ajyny) + aAS S, = 5,0, = a]
— M |Var [a| Se = s,a0 = a] — 2a Cov [Ty ar, AS|S, = 5,0, = a
+a*Var [AS]S, = s,a; = a ] (2.5.1)

It should be noted here that E [Q}, o, (Stxa, afa;) [St = s, a; = a] depends
on a; only by the conditional probability p (S;:a¢|St, ar). However, it can be
said that E [Qf,a, (Strae, afas) [St = s, a, = a] does not depend on it be-
cause the option buyer or seller does not have any impact on the market ac-

cording to the assumption of the Black-Scholes model. Therefore, Q7 (S, a;)

13
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is quadratic with respect to a;.

Qi (S ar) = 1E {@;At R

E:| + ’}/(ItE |:ASt

]-“t} (2.5.2)

_ >\72 (VCLT [Ht—l-AtlE} _ 2at Cov [Ht+At; ASt‘E] + CL?V(I’T’ [ASt‘E} )

(2.5.2) is calculated as follows when performing backward recursion by ap-

plying the Monte Carlo method to the stock price paths later.

Q; (Si,ar) =~E [Qam (5t+Ata a;rm) + atAS;

]—"t} (2.5.3)

~ N “ A\ 2
~ A\2E [Hti o — 2001 A A8 + a2 (ASt)

ft},t:O,At,...,T—At

In (2.5.3), it is defined as fIHAt := Iy ar — Ay, where IT, 4 a¢ is the sample
mean of all values of [T, A;. AS, is similarly defined.

For reference,

Qi (St,ar) =K {Qﬁm (Stvar afyar) + aAS,

7|
is the result of changing A to 0 in (2.5.1). In (2.4.10), if A = 0, then
Q7 (Sr,ar = 0) = ~Ilr (S7)

So, Qf (St, ar) = —1II; (S, a¢) is obtained by the above equations and (2.1.5).
It can be rephrased as follows utilizing the concept of a fair option price
(2.2.1).

Ci =9E |:Ct+At — a;AS;

]—}] (2.5.4)

This phrase has the same meaning as (2.2.2). Additionally, when At — 0, as
discussed in section 2.2, we have the Black-Scholes equation if we replace a;
with the optimal hedge (2.2.3). In an experiment designed to demonstrate the
effect of a set of basis functions, the discussion just made will be employed.

Returning to the main topic, using that Q; (S, a;) is quadratic with re-

14
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spect to a;, the optimal action is obtained as follows.

N Cov [HtJrAt, ASt‘JT'-t] + QVL)\]E [ASt‘JT"t]
a; (St) =

t=T—At,...,At,0.

Var [ASt|ft] ’
(2.5.5)
Let’s now determine the limit of equation (2.5.5) when At — 0.
Through (2.2.6), it is possible to determine that
. Cov[ypar, ASHF]  0C
A0 Var [AS|F a5, ( )

From the fact that

Var [AS,|F)] = E[(AS, — E[AS|F])? 7]
E[(A5)?17] - (E[ASF))’

=K |(Stzar — € St) |-7:t} - (E [ASt"B] )2

(

—E[(Sivae = Si+ S - e28)" |F] - (E[ASIF])
(dSt S, (62 — 1)) IE} — (E[AS|F))
(

pSidt + oS,dW, — S, (¢ = 1)) || - (E[AS|F])*
[m&ﬁ) + (@S, dW,)? + (S, (e — 1)) + 2u0 S2dt dW,

— 205} (emt — 1) dW, — 2uS;} (emt —1)dt

]—"t] — (E[ASIF])
= (uSydt)* + (05,) dt
+ (S (€2 = 1)) = 2082 (€2 — 1) dt — (E[AS,|F] )

~ (uSidt)? + (05)? dt + (Syr dt)? — 2uS?r (dt)* — (E[AS|F))
= (=) Sudt)’ + (08 dt — (E[AS|F])’
~ ((p—r) Stdt) +(0S))" dt — (= r) Sydt)”
= (08,)*d (2.5.7)
15
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and

=E [Siiar — € St|-7:t]
=E [Serar — Si+ S — €25, F]

—E[dS, — S (¢ — 1) |F] (2.5.8)
~ E [uSidt + 0SidW, — rSydt|Fi]

= (u

, the following conclusion can be drawn by combining equations (2.5.6),
(2.5.8), and (2.5.7).

lim ay(S;) = oG p—rl

— t=T—-At,... At0. 2.5.9
At—0 a8, * 2X\02 S,’ T ( )

From this, it can be seen that if u = r or A — oo for a risk-aversion parameter
A, the same result as (2.2.6) is obtained when At — 0. And according to
(2.4.1) and (2.4.8), the following relationship can be found.

C8™M(So, af) = —Qi(So, af)

From now on, I will outline how to use the backward recursion in a Monte
Carlo setting to determine option pricing for stock price paths. At this point,
the QLBS model assumes that a set of basis functions {®,,(x)} has been cho-
sen arbitrarily, and the discussion begins. Assume that a;(S;) and Q; (S, a;)

are expanded using {®,(z)} and represented as follows.

N
Si) = Z Gt ®n(St), Qi (S, ay) ant(b (S)) (2.5.10)

Let’s start by determining the coefficients {¢,,;} for the optimal action. As-
sume that there are as many stock price paths as Kj,;c. The optimal action
expansion can be achieved by substituting equation (2.5.10) into equation
(2.5.3) and minimizing G¢(¢) (2.5.11) derived by using the Monte Carlo es-

16
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timate.

Kye

N N 2
k=1 n n
(2.5.11)

The gradient of G;(¢) for ¢ is

0G,
Dbt

Knce
=y ( i (SF) ASY — 2%( E A qum@ (S¥) AS’“) ®, (SF) ASf)

M

=
Q =

(- Gttmshast + oqshiast)

k=1

+ 29 i 6ra D (SF)D3(SF) <AS§)2 ) (2.5.12)

When gg‘t = 0, it is expressed as
Kyce N2
3% (S outistiosh (a5t)
Kne

_Z<Hf+m (SFYASK + i (Sk)ASk) (2.5.13)

Now we define N x N matrix A and N X 1 matrix B as follows.

Kye

N 2
(AD) =" ®i(SHD,(SF) (ASZ“> (2.5.14)
k=1
MC . ~ 1
(89), = 3 (M s (sHASE + S ashiast )
k=1
From (2.5.14) and (2.5.13),
Wer = BY (2.5.15)

17



CHAPTER 2. QLBS MODEL
Therefore, the coefficients of expansion of the optimal action a;(S;) are
¢ = (AW BW (2.5.16)

Going forward, let’s look for coefficients {w,;} for Q-function Q;(St, ay).
From (2.4.9),

Ry (Sta a:» St+At) + 7 max QL-At (St—i—Ata at+At) = Q:(Sm GZ) + €, (25'17)

atAt€A

where ¢, is a random noise and the mean of ¢, is zero. Therefore, by inserting
(2.5.10) into (2.5.17) and identifying the coefficients that minimize the square
sum of ¢, one can derive the coefficients {w,;} of expansion of the optimal
Q-function Q; (S, a;). In terms of formula, it can be viewed as resolving the

least squares optimization problem.

Fi(w) = (2.5.18)
Kye N 2
Z (Rt(sf7 a, Sf+At) +7 max QL—At (SerAw at+At) - Z Wit Py, (Sf)>
—1 aryat€A -

After obtaining the gradient of F}(w) for wy,; in the same way as for Gy(¢), if
N x N matrix C' and N x 1 matrix D are defined as follows, the relational

expression (2.5.20) can be obtained.
Kye

(CW), = > BilSH)D;(SS) (2.5.19)

Kue
(D(t))zl = Z (I)Z(Stk) (Rt(St, (Z;k, St.l,-At) + ¥ max Q:—i—At (St—i-At; at+At))

a cA
1 t+At

CWur = pW (2.5.20)

Therefore, the coefficients of expansion of the optimal Q-function Q;(.S;, a;)
are
wi = (¢ p® (2.5.21)



Chapter 3

The optimal action and

Q-function in QLBS

In this chapter, we will introduce how to find the optimal action and the

optimal Q-function among all sets of basis functions. The experiment in

chapter 4 will be theoretically supported by the findings in this chapter.

3.1 The optimal action

The inverse matrix of A® is utilized in (2.5.16), however A® is not necessarily

invertible.

N2
Lemma 3.1.1. Let <ASf> >0 forallk=1,2,-
Then, A is non-singular if and only if

D, (S})
D, (S7)

..,and

d, (StKMc) P, (StKMc)

are linearly independent.

19
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CHAPTER 3. THE OPTIMAL ACTION AND Q-FUNCTION IN QLBS

Proof. For all 0 # (z1,79,...,75) = X € RY,

N N
J k

If (3.1.1) are linearly independent, then,
for all 0 # (z1,7,...,75) = X € RY,

Kye A\ 2
> (@1®(SE) + 22 @a(SF) + .+ ax@y (1) (ASF) >0,
k

then A® is positive definite. So it has only positive eigenvalues, and is non-
singular.

If (3.1.1) are not linearly independent, then,

for some 0 # (21, 29,...,2y) = X € RY,

Kye 9

3 (2@ (SF) + 22®a(SF) + ..+ on By (SF)) (ASf) —0
k
Since A® is symmetric, it is orthogonally diagonalizable, say A® = QT DQ.
Because A® is positive semi-definite, all of its eigenvalues are non-negative.
And with 0 # X € RY, QX # 0. So 0 = XTA®OX = XTQTDQX. Hence at

least one of its eigenvalue is zero. It means that A® is singular. O]

A\ 2
The lemma 3.1.1 has an <AS{“> > 0 condition. This is natural when S;

is a geometric Brownian motion. Because, if % = pdt + odWy, then

t+At ds
/t ?tt = /.LAt +0 (Wt+At - Wt) (313)
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By Ito’s formula,

LT G 2_ @5 L e
d(lIlSt) = StdSt+ 5 ( S?) (dSt) = St 25?0' Stdt

So,
dS;

S
The following expression can be obtained by combining (3.1.4) and (3.1.3).

1
=d(InS,) + §a2dt (3.1.4)

1
InSiine —InS; + 502At = puAt + o0 (Wisar — Wy)

1
In St-l—At =1In St + <,u — 50’2) At + o (Wt—i-At - Wt)

Therefore, .
In St-i—At ~ N(ln St + (,[L — 50‘2)At, O'QAt) (315)

N2
From (3.1.5), (ASf) > 0 with probability 1.

AN\ 2
In other cases, it is necessary to check that (ASf) > (0 has been met.
For the sake of convenience, it is assumed in this chapter that {S¥} meet the

requirement.

Theorem 3.1.2. Let time t be fixed. Assume that Ky stock price paths and
a set of basis functions {®,}N_, are given and that Si # S} if i # j. Then
there is a set of basis functions { U, }5MC that is able to get a reward —Gy(¢)

(see 2.5.11)) greater than or equal to any reward of the set of basis functions
{®a}nls-

Proof. For n = 1,2,..., N, define ®, as (@, (S}), ©,(S7), -+ - ,@n(StKMC)]
By linear algebra theory, there is a linearly independent subset {ZI\J’ } of {671}
such that Span({®'}) = Span({®,}). And then, {®'} can be expanded into
a basis {®*} of REwmc,

Since Si # S/ when i # j, we can choose a set of basis functions {W,, }/¢

such that has the value EI\D;Z for {SF} e that is, U, (SF) = k th element of
EI;; forall k=1,2,--- | Kyec and for allmn =1,2,--- | Kyc.
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Now, we will show that {¥,}#¢ ig the set of basis functions we are looking
for. As looking at (2.5.10) and (2.5.11), we can find out that the Span({®,})
determine the range of the reward —Gy(¢) for {®,}_;. In other words, the
wider Span is, the more range of reward can be obtained. From the fact that
Span({®,}) = Span({®'}) C Span({®:}), we can get a reward greater than
or equal to any reward of the set of basis functions {®,}"_, with the set of

basis functions {¥, } ¢, O

In the proof above, there is a part that says ‘we can choose a set of
basis functions {U,}5¥¢ such that has the value &% for {Sk}fre  that
is, \Iln(Sf) = k th element of &3* for all & = 1,2,---, K¢ and for all
KMC m

n=12-,Kyc Is it really so? Let’s consider L? space. {¥,} 2 ay

be generated via spline interpolation (see Ref. [7]), and since the vectors
([T (SH), U (S2), -+, U, (S{€)] Jiee are linearly independent, S-h¢ ¢, T,
cannot be a zero function, where {cn} are constants. Since f;lc c, ¥, is
continuous and does have a non-zero value, || S5 ¢, W, ||, # 0. Therefore,
(W, }Eve is linearly independent in L2.

The premise that S # S7 if i # j is necessary for the previous theorem
3.1.2. The requirement is met when S; is a geometric Brownian motion, as

can be seen by deriving the equation (3.1.6) below from (3.1.5).
1
InS; ~N(InSp+ (pn— 502)15, o’t) (3.1.6)

In other instances, we will first discuss the optimal action among all sets of
basis functions for the case that S? # S7if i # j, and then discuss it for the
case that S! = S7 for some i # j.

Theorem 3.1.3. Let time t be fized and let {U,}5MC be the set of basis
functions that we get from theorem 3.1.2. Then ,with the set of basis functions
(W, YSMe there is the only one point € such that —Gy(€) (see (2.5.11)) is

the unique global mazimum reward of —Gy(®).

Proof. Since the function G(¢) (2.5.11) is differentiable, the gradient of G¢(§)

must be zero if ¢ is to be a local extremum point. By lemma 3.1.1 and the
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definition of {W, }X*c  A® is non-singular. So from (2.5.12) and (2.5.14), w
know that ,with the set of basis functions {¥,}#¢ there is the only one
point & such that the gradient of G¢(€) is zero.

By the second-order Taylor expansion, for any h € REMC¢ there is a real

number « between 0 and 1 such that

K]\]C KMC KIWC’
8Gt 82Gt
Gi(o+h) = Z 2! Z Z 80 (¢ + ah) hih,
=1 i=1 ¢

where h; means the ¢ th element of h. In particular, when ¢ is &, it becomes

KMC Kye ath

Gi§+h) = Gi(¢ ++2vzza¢a¢ (€ + ah) hih,

j=1 =1

From equation (2.5.12),

0°Gi — B k k a2 (t)
56,0, & +ah) =27 ’; @;(SE)2i(SF) (ASE) =292 (49)
Then,
1 e e g2 | Ko Kare

QIZZ@¢]8¢ §+ahhh—212227)\ ji il = ARTAD

By the fact that A® is non-singular, (3.1.2), and lemma 3.1.1,
RTA®R > 0 for all 0 # h € R¥wme

hence G¢(§ + h) > Gi(§), that is to say G¢(§) is a global minimum. As
mentioned above, it is the unique one. Thus, the reward —Gy(€) is the unique

global maximum of —Gy(¢) with the set of basis functions {¥, } ¢, O

Theorem 3.1.4. Let time t be fized and let {V,}5MC be the set of basis
functions that we get from theorem 3.1.2. Assume that an action function

ar(-), with the set of basis functions {U,}MC  gets the mazimum reward
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—Gy(&). Then, for k =1,2,..., Kyc, the action function has values below,

ff., 1 AS)

ar(Sk) = e —
¢(50) ASE 29X (ASF)2
Proof. Let [\I/} be
[ W (SHASE U (S2AT2 ... Wy (SKue)AGKue ]
Uo(SHAS!  Wy(S2)AS2 ... Wy(SKmeyAGKme
\IIKMC(Stl>A§t1 \IJKMC(StQ)AS\tQ WKA{C(‘Sg(Afc)Agg(MC

From (2.5.14), [Ag)] = [W] [¥]", where T denote the transpose symbol. By

the definition of [¥] from theorem 3.1.2, it is invertible. So is [AZ(;)] Hence
]T

the equation (2.5.16) has a solution, that is to say £ = [£1,&, ..., {xye
(A(t))*1 B® by theorem 3.1.3. Now, we will calculate the action values that

have the maximum reward.
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a;(S}) W(S)) Wy(S})
af(StQ) _ ‘1’1(5152) ‘1’2(53)
(st || wa(sie) wy(sioe)
\Ill(St) ‘112(5151) ‘I;KIVIC<St1)
_ W (S7) Wy (S7) Uk (S7)
| WL(SIC) Wy(SENC) L W, (510

\IJKMC(Stl) 51
\IJKMC(StQ) §2
\IJKMC(StKMc) 1L gKMC ]

4] 5]

_ diag {(AS’}) C(a8) (A@KMC)*} o] A0 [B0]

— diag {(A A;) - (A§f) oo (A@KMc)‘l] (W] [w] e [BY)]

_ diag {(ﬁg)‘l o (B ‘1} ][]

71
My ne +
172
I ae +

1 ASE
27X AS}!
1 A8
27\ AS2

ﬁtl-t\At 1 A§tl
ASE T 2A(a8h?
H?tAt 1 AS7
_ AS? 29X (AS2)?
ﬁf:_z»itc n 1 AStKMC
i Agfch 29 (Agfch)z i

1 Asfme

TTKnmc
Ht+At

29 A:S‘\Z(MC |

]

Theorem 3.1.5. In Q)LBS model, there is no set of basis functions that is

able to have greater reward than that of an action which has the same values
on {SF}FMC s af(SF) of theorem 3.1.4.

Proof. Let {®,} be an arbitrary set of basis functions. Then, by theorem

3.1.2, there is a set of basis functions {¥,},

25
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CHAPTER 3. THE OPTIMAL ACTION AND Q-FUNCTION IN QLBS

greater than or equal to any of the set of basis functions {®,,}. So any reward
of {®,} can not be greater than the maximum reward of {¥, }#¢ By theo-
rem 3.1.4, when —G () has the maximum reward with {¥, }X¥¢ the action

function has the values a}(SF) of theorem 3.1.4, for k =1,2,..., Kyec. O

Now let’s discuss the case that S} = Sf for some i # j. To apply the case
to the procedure for the case that S} # S7if i # j, it is necessary to slightly
modify Gi(¢). Let’s reindex as follows when there are K, distinct values
among {SF1MC The {SI} that reindex {SF}1¢ contains two indices: [,
a group of {SF} f M that consists of K, distinct values, and m, a group of
{SF e that overlap each other for each I. Let M; denote the total number

of m for each [. Then (2.5.11) can be expressed as:

Kyce N N 2
k=1 n n

Kye M N
=> % <_ D Gu®n (S) AS™
=1 m=1 n
N 2
o (ﬂmt 3 bt (517) As:zm) )

This also allows equation (2.5.13) to be expressed as:

b (fj S (S1)2,(51) (Aﬁf)Q)

1
_Z(wat (SFYASF + ) (S’“)AS’“)

Kiye M
=1 m=1
Kiye M 1
. lm lm Slm lm lm
- ZZI: mzzzl <Ht+At S )ASt +2,y_>\q)i(5’t )ASt >
26
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And equation (2.5.14) is

Kye
Z ;(Sf)® (Ask)
wac M, )

= Z Z D, Slm Slm) <A5ﬁém>
=1 m=1

M,

- Z ZCRLICRDY (a5’

KMC - 1
( ( koD (SF)ASE + (S’“)AS’“)

k=
KMC M, A .
Lz ( Fai(STIAST + m@xsimmsim)
Kl M,
Z i(S7") Z ( t+AtASlm + —ASlm)

= m=1
Now, since SI™ # S if [ I, the method for the case that Si # S7 if i # j
can be applied. Therefore, we can see that
Sy (M, A8 + mAS’m)

M (AS“")

* 11
a; (St ) =
is the optimal action we are looking for.

3.2 The optimal Q-function

The process of finding the optimal Q-function for all sets of basis functions
is essentially the same as the process for finding the optimal action for all

sets of basis functions.
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Lemma 3.2.1. C% is non-singular if and only if

®y (S}) Dy (S}) Dy (S))
®; (S7) P, (S7) and Dy (S7) (3.2.1)
I P, (StKMC) |1 o, (StKMC) | i by (StKMC) |

are linearly independent.

Proof. For all 0 # (x1,2s,...,7y5) = X € RV,

N Kye
XTc®x Z ij Z D, (SF) ®; (SF) (3.2.2)
Kyc
= Z I‘lq) +$2CI)2(S ) +$N(I)N(Sf>)220
k

If (3.2.1) are linearly independent, then,
for all 0 # (21, 79,...,25) = X € RY,

Kye

37 (@1 ®1(SF) + 22®a(SF) + ...+ axPy(S)) > 0,
k

then C'®) is positive definite. So it has only positive eigenvalues, and is non-
singular.

If (3.1.1) are not linearly independent, then,

for some 0 # (21, 79,...,2y) = X € RY,

Kye A\ 2
k

Since C'") is symmetric, it is orthogonally diagonalizable, say C* = QT DQ.
Because C® is positive semi-definite, all of its eigenvalues are non-negative.
And with 0 # X € RY, QX # 0. So 0 = XTCWX = XTQTDQX. Hence at

least one of its eigenvalue is zero. It means that C® is singular.
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]

Theorem 3.2.2. Let timet be fixed. Assume that Ky stock price paths and
a set of basis functions {®,\N_, are given and that S! # S if i # j. Then
there is a set of basis functions {¥, }n MC that is able to get a squared error

Fi(w) (see (2.5.18)) less than or equal to any squared error of the set of basis
functions {®,}_,

Proof. For n = 1,2,..., N, define D, as [Cbn(Sg),CI)n(Sf),--- ,(IJn(StKMC)}.
By linear algebra theory, there is a linearly independent subset {®'} of {®,}
such that Span({®'}) = Span({®,,}). And then, {&'} can be expanded into
a basis {®*} of REmc,

Since S! # S/ when i # j, we can choose a set of basis functions {W,, }/*
such that has the value ®* for {SE}fre that is, U, (SF) = k th element of
O forall k=1,2,-- , Kyc and foralln =1,2,-- , Kyc.

Now, we will show that {¥, }4¢ ig the set of basis functions we are looking
for. As looking at (2.5.10) and (2.5.18), we can find out that the Span({an})

determines the range of the squared error Fy(w) for {®,}»_,. In other words,

KMC

the wider Span is, the more range of reward can be obtained. From the fact
that Span({®,}) = Span({®'}) C Span({®*}), we can get a squared error
less than or equal to any squared error of the set of basis functions {®,}_,

with the set of basis functions {¥,,}*c O

Theorem 3.2.3. Let time t be fized and let {U,}5MC be the set of basis
functions that we get from theorem 3.2.2. Then ,with the set of basis functions
(W, YEve “there is the only one point € such that Fy(€) (see (2.5.18)) is the

unique global minimum squared error of Fy(w).

Proof. Since the function F;(w) (2.5.18) is differentiable, the gradient of F;(&)
must be zero if ¢ is to be a local extremum point. By lemma 3.2.1 and the
definition of {¥, }fMc C® is non-singular. So from (2.5.19), we know that
,with the set of basis functions {¥, }¥¢  there is the only one point & such
that the gradient of Fy() is zero.
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By the second-order Taylor expansion, for any h € REM¢ | there is a real

number « between 0 and 1 such that

Kye 8Ft KMC Kye aQFt

Flwth) =Fw)+ 2 5o @hit g Z Z Guoyy & ) B

=1
where h; means the ¢ th element of h. In particular, when w is &, it becomes

1 Kye Kpco 82Ft

FE+M =F@Q+ 5D ) 5055 (€ +ah)hihy
. i—1 3

From equation (2.5.18),

82 Kye
_ k (QkY — (t)
a%&%gw-h 2?2@‘s ®;(Sf) =2(C)
Then
1 Kye Kue aQFt 1 Kye Kue
— . = (t) . — T @)
3 2 fya; (&M =57 2 Q2 2(C0) kb = hTCTh

By the fact that C® is non-singular, (3.2.2), and lemma 3.2.1,
RTC®h > 0 for all 0 # h € REve

hence Fi(§ + h) > Fi(€), that is to say F;(€) is a global minimum. As men-
tioned above, it is the unique one. Thus, the squared error F;(§) is the unique
global minimum of F(w) with the set of basis functions {¥,}*c O

Theorem 3.2.4. Let time t be fived and let {0, }SMC be the set of basis func-
tions that we get from theorem 3.2.2. Assume that an Q-function Q5 (-,a;),

with the set of basis functions {¥, }KMC gets the minimum squared error
Fi(§). Then, for k=1,2,..., Kyc, the Q-function has values below,

Q} (Sf7 a;‘) = Rt(va a;, S, +At) +y maX Qt+At (Sl{:-Aﬁ at—i—At)

A+ At
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Proof. Let [\Il} be

i \IJKMC<St1) ‘IJKJWC(StQ>

\IJKMC (StKMC)

From (2.5.19), [CS)} = [¥] [¥]", where T denote the transpose symbol. By

the definition of [\Il} from theorem 3.2.2, it is invertible. So is [
the equation (2.5.21) has a solution, that is to say £ = [£1, &, . ..

7€KMC]

] . Hence

T

(C(t))_l D® by theorem 3.2.3. Now, we will calculate the Q-function values

that have the minimum squared error.
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Wy (S)) Us(S)) oo Ukye(SH 3
] W) WS Uk,e(SP) &
WS (S L iS5 | | e
1 (S)) Uo(S) oo Wy (S)H
_ \Dl(Stz) \I’2<St2) e \I’K]MC (5152) [C(t):| —1 [D(t):|
WS Wa(SE) L Wi (5K |

1 * 1 * 1
Ry(S;, af, St+At) +ymax,, ,ed QFar (St+At7 at+At)

_ [\D} -1 [\I]] Rt(S1§27 a;, St2+At) + maXa.H—Ate-A Q:—&-At (St2+At> at+At)

Kye + oKue * Kyo
Rt(St y At St+At ) + Yy MaXg,, A,c4 Qt+m (SHN ) at+At)

1 * 1 * 1
R(S;, af, StJrAt) + YMaXg,, A,eA Qt+At (St+Ata at+At)

2 * 2 * 2
R(S7, af, St+At) + YMaXg,, 5,€A Qt+At (St+At7 at+At)

Kye + oKue * Kyce
Ry(S; y A s St+At )+ maXa,, neA Qi (St+At ) at+At)

]

Theorem 3.2.5. In QQLBS model, there is no set of basis functions that is
able to have less squared error than that of a Q-function which has the same
values on {SE}FMC as QF (S;, a}) of theorem 3.2.4.
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Proof. Let {®,} be an arbitrary set of basis functions. Then, by theorem
3.2.2, there is a set of basis functions {¥, }52¢ that is able to get a squared
error less than or equal to any of the set of basis functions {®,}. So any
squared error of {®,} can not be less than the minimum squared error of
{U,}Eve By theorem 3.2.4, when F,(w) has the minimum squared error
with {\II }Eme the Q-function has the values QF (SF,a;) of theorem 3.2.4,
for k=1,2,..., Kyc. O]

Now let’s discuss the case that S! = Sg for some i # j. To apply the case
to the procedure for the case that S} # Sf if i # j, it is necessary to slightly
modify F;(w). Let’s reindex as follows when there are K, distinct values
among {SF1MC The {S'} that reindex {SF}i¢ contains two indices: [,
a group of {SF}MC that consists of K}, distinct values, and m, a group of
{SF} f ¢ that overlap each other for each [. Let M; denote the total number

of m for each [. Then (2.5.18) can be expressed as:

a AtEA

Kye N
(Rt(Sf, a’t ) St+At) + 7 max Qt+At (SerAt’ at+At) - antq)n (Sf)>

!
Mc M

(Rt Sém) at ) St+At)

=1 m=1

N
+ 7 max Qt+At (Sérmj @t+At) - antcbn (Stlm) )

aiAt€A
Now, since S/ # S if [ # I, the method for the case that S # S7 if i # j

can be applied. Therefore, we can see that, for I =1,2,..., K},

Q:(SF? ;tk = M Z (Rt S§17at>sl+m) +7 max Q;rm (SéTAwatJrAt))

AL+ ALE

is the optimal Q-function we are looking for.
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Chapter 4

Experiment : The optimal is

not optimal

Igor Halperin in his paper [2] “We will leave a detailed investigation of em-
pirical behavior of option prices and hedges in this pre-asymptotic regime to
a future work, while concentrating in this paper on a mathematical frame-
work.” said. The pre-asymptotic regime in this context refers to At > 0 and
A > 0. Let’s experiment with the effect of basis functions in this paper and

then examine the outcomes of the experiment.

4.1 Experimental Design

The experiment’s goal is to determine whether option pricing will improve
if we select a set of basis functions that produce greater rewards in Gi(¢)
(2.5.11). Chapter 3 and (2.5.4) provides the experiment’s theoretical back-

ground. The experiment is structured as follows.

- Consider a geometric Brownian motion dS; = uS;dt + 0S;dW; for the
stock price .S;.
The details of the figures are as follows.
So =100, p=10.03, 0 =0.05, T'=1, and At = 1/24.
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- Prepare 100 instances of 500 paths data of such a stock price.

- With that data, the results are obtained for each of the two sets of

basis functions in the QLBS model.

One is a B-spline, and the other is a set of basis functions that can

. . . " Ik, 4, ASF
achieve the highest reward in Gy(¢), aj(SF) = —=&t + QWL)‘W’

ASE
detailed in Chapter 3.

As observed in (2.5.4) and the remarks below, the QLBS model can
be used to estimate the option pricing of the BSM model if A is large

enough in (2.5.5).
- Therefore, the error rate is defined as follows.

Eq [IIy] — BSM val
Error rate = ol ]g]SM Valueva e x 100

- The mean and standard deviation of the error rate are calculated after

100 iterations, and the results are contrasted.

- In addition to the stock price paths data of 500 bundles, the previous

experiment is also conducted using the same approach for stock price

paths of 1000, 5000, and 10,000 bundles.

- The experiment’s outcomes are then collected and compared.

4.2 Experimental results and analysis

The experimental results were presented in a graph and a table. In the graph,
the y-axis is the error rate and the x-axis is the number of stock price paths.
The orange circles represent the values of the original QLBS model using
B-spline basis functions. The vertical lines above and below the circle show
the standard deviation added to and subtracted from the mean. The blue
diamond shape indicates the value of the optimal QLBS model using the

set of basis functions obtained in Chapter 3. The first column in the table
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Error rate (percentile)

* # The optimal QLBS
The original QLES
_q_U -
»
3{] -
* *
20 1
10 A
D L ) ) 1 )
500 1000 5000 10000
Number of path
nean_original| mean_optimal| std_original| std_optima
500 19 37.65 427 65.47
1000 12.29 46,98 2.1 12317
5000 3.79 23.76 0.87 29.77
10000 2.22 23.32 0.52 34.73

represents the number of stock price paths. In the remaining columns, the
index is in the first row.

Let’s analyze the experimental results. First, the original QLBS model
demonstrates that as the number of stock price paths rises, the average and
standard deviation of the error rate converges to zero. It indicates that option
pricing closely tracks the option value predicted by the BSM model. However,
in the case of the optimal QLBS model, the average error rate does not
decrease, and even the standard deviation does not converge to zero. Option
pricing was not carried out with the option value of the BSM model, despite
using the same data, and since the standard deviation did not converge, this
implies that option pricing was not carried out with any other points. The

standard deviation for the optimal QLBS model was too high to display in
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the graph.

We currently come to two conclusions.

1. The optimal QLBS model has higher rewards than the original QLBS
model. However, the preceding experimental results show that which
set of basis functions is used affects option pricing independently of

reward.

2. Depending on the choice of a set of basis functions, even with the same

quantity of data, the rate at which option pricing will converge varies.

Therefore, choosing a set of basis functions at random, as in the current
QLBS model [2], is no longer desirable. We require a theory that will enable

us to select a set of basis functions for the QLBS model that is more effective.
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